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ABSTRACT

The speciation of iron (Fe) was studied in the high latitude North Atlantic Ocean - a 

seasonally Fe limited region. The presence of organic Fe(III) binding ligands and 

siderophores as specific Fe chelators were investigated in order to improve our 

understanding of their role in the biogeochemical cycle of Fe in this region. 

The presence of organic ligands (L
T
) in the high latitude North Atlantic Ocean maintains 

Fe in the soluble phase and enhances the residence time of Fe in the oceanic water 

column by preventing its precipitation. Analysis of Fe speciation by competitive ligand 

exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) showed that 99.5% –

99.9% of total dissolved Fe (dFe) was bound to Fe(III) binding ligands in this region. 

The ratio of [L
T
]/[dFe] was used to highlight the variations in ligand distribution. High 

and variable [L
T
]/[dFe] ratios (1.6-5.8) were observed in surface waters as a result of the 

low dFe concentrations (~0.1 nM) and possible ligands production by heterotrophic 

bacteria. The [L
T
]/[dFe] ratio decreased with depth to a more constant value (1.2-2.6) in 

deeper waters (300-1000 m) due to a steady state between dFe and L
T

which is 

reflecting a balance between Fe removal by scavenging and Fe supply by 

remineralisation of biogenic particles with stabilisation through ligands. Moreover, the 

log K´
FeL

in the surface waters in this study compared well with those reported for 

siderophore type ligands.

Dissolved siderophores – specific low molecular weight (600 – 1000 Da) Fe binding 

ligands were also determined in this region. Three hydroxamate-type siderophores 

(ferrioxamine B, ferrioxamine G and ferrioxamine E) were detected in the dissolved 

phase in the high latitude North Atlantic. Total dissolved siderophore concentrations 

ranged between 0–135 x 10-18 M and the distributions of the siderophores varied both 

spatially and temporally. The low total dissolved siderophore concentrations in the 

seawater in the region indicated that these siderophores will not greatly influence Fe 

biogeochemistry in this high latitude region. Furthermore, the low concentrations may 

be related to the low seawater temperature (9-12ºC) which can restrict siderophore 

production by heterotrophic bacteria. Siderophores production was also investigated in 

seawater samples amended with combinations of Fe, glucose, ammonium or nitrate 

and phosphate.  Siderophore production either decreased or remained unchanged in 

the presence of added Fe and nitrate. Diversity and concentration of siderophores were 

highest in incubations with added glucose, ammonia and phosphate, confirming that 

readily available nutrient sources are likely to be important to siderophore production 

by heterotrophic bacteria in the ocean.
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CHAPTER 1 - Introduction

1.1 Introduction

Iron (Fe) exists in seawater in different physical and chemical forms, e.g. inorganic 

soluble ferric (Fe(III)) and ferrous (Fe(II)) ions, organically complexed Fe, colloidal and 

particulate Fe (Ye et al., 2009). The physical form of Fe is defined by physical size 

fractions separated on the basis of filtration methods - either with conventional 

membrane filters or with the use of various ultra-filtration methods (Bruland & Wells, 

1995; Bruland & Rue, 2001) (Fig. 1). Iron can for example be divided into three 

operationally defined classes; dissolved Fe (dFe:<0.2-0.45 μm), total dissolvable Fe 

(TdFe: represents Fe in unfiltered seawater left acidified to pH ca. 1.7 for ca. 6 

months), and particulate Fe (PFe: >0.2 μm). A significant fraction of the Fe previously 

classified as dissolved Fe is now considered to be present in the colloidal size range 

(0.02-0.4 μm) (Wu et al., 2001). 

Figure 1: Various chemical forms and species of Fe which can exist in dissolved and 

particulate phase (Bruland & Rue, 2001).

Iron plays a special role in marine food chains, as it is an essential ingredient for 

growth and functioning of organisms. In phytoplankton cells, Fe plays a major role in 

the electron transfer processes in photosynthesis and respiration (Geider, 1993). Iron 

is essential for the synthesis of the photosynthetic pigment Chlorophyll a along with a 

range of enzymes (Geider & Laroche, 1994).
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Iron is transported to the marine environment by four major routes - fluvial, aeolian, 

submarine hydrothermal, and glacial. Coastal waters receive large inputs of Fe from 

rivers and anoxic sediments (Johnson et al., 1997a), whereas offshore regions rely 

mainly on atmospheric dust deposition and/or upwelling and mixing of deep waters as 

sources of Fe (Duce et al., 1991). 

Atmospheric dust accounts for a major portion of the global Fe input to the world’s 

ocean (Martin & Fitzwater, 1988; Guieu et al., 2002), away from river inputs. Dust is 

considered the principal source of soluble and bio-available Fe to remote open ocean 

surface water (Jickells et al., 2005). The majority of Fe inputs via this pathway originate 

from arid and semi-arid landmasses, with important areas being North Africa, the 

Asian deserts and the Middle East. These arid and semi-arid landmasses are very 

sensitive to global change (Gong et al., 2004), hence changes in their source strength

with subsequent changes in Fe supply could have a strong impact on the ocean 

primary productivity and climate. 

Production of dust occurs when winds above a threshold velocity transport soil grains 

horizontally and produce smaller particles, which are carried up into the atmosphere 

for long range transport. Deposition of dust occurs via dry and wet deposition, and is 

strongly seasonal and episodic in nature (Prospero & Carlson, 1972; Gao et al., 2001).

In certain regions wet and dry atmospheric deposition represents a significant source 

of Fe to the ocean and can alleviate Fe limitation (Duce et al., 1991; Jickells et al., 

2005). In high latitude areas of the North Pacific, North Atlantic and Southern Ocean, 

the atmospheric Fe deposition is very low (Fig. 2).

Figure 2: Modelling dust fluxes to the world's oceans (Jickells et al., 2005).
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1.2 Iron limiting conditions 

Large scale in situ Fe enrichment experiments have been carried out in the Equatorial 

Pacific, Pacific Subpolar and Southern Ocean (Martin et al., 1990; Martin et al., 1994; 

Kumar et al., 1995; Coale et al., 1996; Falkowski et al., 1998; Boyd et al., 2000; 

Gervais et al., 2002; Tsuda et al., 2003; Boyd et al., 2004; Coale et al., 2004) (Fig. 3). 

Most of the experiments have shown that Fe is an important factor controlling 

phytoplankton growth in the high nutrient low chlorophyll (HNLC) regions.

Atmospheric deposition is insufficient to compensate for the low ambient Fe 

concentrations (Fung et al., 2000), resulting in depleted dissolved Fe concentrations 

(Martin & Fitzwater, 1988; Coale et al., 1996; Hutchins et al., 1998; Boyd et al., 2000).

Figure 3: World map showing the locations of the ten major Fe addition experiments 

completed thus far. IronEx-1 (Martin et al., 1994), IronEx-2 (Coale et al., 1996), SOIREE 

(Boyd et al., 2000), Eisenex (Gervais et al., 2002), SEEDS I (Tsuda et al., 2003), SEEDS II 

(Roy et al., 2008), SoFeX North (Coale et al., 2004), SoFeX South (Coale et al., 2004), 

SERIES (Boyd et al., 2004), and Eifex (Hoffmann et al., 2006).

There have been a few studies investigating the importance of Fe on primary 

production conducted in North Atlantic Ocean due to the assumption that its surface 

waters contain enhanced Fe concentrations due to the atmospheric inputs of Saharan 

desert dust. Dissolved Fe concentrations in surface waters of the North Atlantic are 

expected to be highly variable as Fe is supplied to this region through episodic 

Saharan dust depositions (Duce et al., 1991; De Jong et al., 2000; Spokes et al., 2001)

and important hydrographic features such as fronts or mesoscales eddies (De Jong et 

al., 2000). Indeed, in a study in the high latitude of North Atlantic Ocean (~50ºN) Fe

was not considered a limiting micronutrient due to the absence of a phytoplankton 
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response in Fe enrichment experiments (Martin et al., 1993). Thus, despite the low 

atmospheric Fe inputs, this region was considered to differ from other high latitude 

regions including the HNLC Southern Ocean. Moreover, this region is known as an 

important region of deep winter mixed layers (>600 m) (Holliday & Reid, 2001; Allen et 

al., 2005). The deep winter mixing supplies nutrients and Fe to the surface water, and 

allows sufficient nutrients for spring bloom development upon shoaling (Ducklow & 

Harris, 1993) with a rapid increase in the chlorophyll biomass (Siegel et al., 2002; 

Sanders et al., 2005).

Recent manipulations of phytoplankton communities in bottle experiments and in situ

physiological measurements have however indicated the formation of the Fe limited 

conditions in the North Atlantic Ocean (~40ºN)  (Blain et al., 2004; Moore et al., 2006). 

Furthermore, Fe enrichment incubation experiments in the central Iceland Basin have 

also shown an increase in biomass accumulation after 24 or 48 hours during post 

spring bloom conditions (Nielsdottir et al., 2009). Dissolved Fe profiles (Fig. 4) also 

indicate a very low Fe concentration in the surface water (<0.010-0.218 nM, n=43) in 

this region, with residual nitrate concentrations (1-5 µM). The surface dissolved Fe 

concentrations determined in the Iceland Basin are consistent with previous 

observations south of Iceland (Martin et al., 1993; Measures et al., 2008). 

Nielsdottir et al. (2009) concluded that the supply of nitrate and phosphate to the 

surface water by winter overturning was not accompanied by sufficient dissolved Fe to 

allow complete drawdown of their concentrations and have suggested the formation of 

Fe limitation in the central Iceland Basin under post spring bloom conditions. 

Moreover, the low concentration of dissolved aluminum in this region (1-3 nM; 

Achterberg, unpublished data) also indicates that the atmospheric inputs of Fe are low 

in this region.

The biological uptake of Fe in this region is thus likely controlled by the availability of 

Fe (De Baar et al., 1990; Martin et al., 1990). The Fe bioavailability is influenced by its 

chemical forms, biogeochemical cycling and the different uptake strategies of the

phyto- and bacterio-plankton communities (Hutchins et al., 1999a; Nodwell & Price, 

2001; Maldonado et al., 2005; Strzepek et al., 2005). In the biogeochemical cycle, Fe 

becomes bio-available as Fe(II) which is produced by photo or biological reduction 

(Weber et al., 2005). In addition, inorganic Fe(III) is also available for uptake by 

organisms (Hudson & Morel, 1990). For these reasons, Fe speciation is an important 

characteristic of the biological Fe cycle that needs to be considered in this region. 
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Figure 4: Vertical profile of dissolved Fe concentration in the Iceland Basin. Samples 

were collected at three stations located in the central Iceland Basin; (station 16236 

(59.14ºN, 19.31ºW), station 16260 (59.19ºN, 19.12ºW) and station 16282 (59.40ºN, 

20.61ºW) (Nielsdottir et al., 2009).

1.3 Iron speciation

The chemistry of Fe, such as its inorganic and organic complexation in seawater (Fig. 

5), is very complex and not yet fully understood.  In seawater (pH~8.1), Fe(II) is rapidly 

oxidised to Fe(III) which has a low solubility (Liu & Millero, 1999; Waite & Nodder, 

2001). The solubility of Fe in seawater is largely determined by organic complexation 

(Kuma et al., 1996; Millero, 1996; Waite & Nodder, 2001; Liu & Millero, 2002; Tani et 

al., 2003), which therefore plays an important role in regulating dFe concentrations in 

seawater (Johnson et al., 1997a; Kuma et al., 1998; Archer & Johnson, 2000).

1.3.1 Organic Fe(III) binding ligands

Organic Fe(III)-binding ligands have a potential to regulate the oceanic Fe cycle. The 

abundance of organic Fe(III)-binding ligands regulates the concentration of Fe in the 

water column, as more than 99% of dissolved Fe is organically complexed (Gledhill & 

Van Den Berg, 1994; Rue & Bruland, 1995; Van Den Berg, 1995; Croot & Johansson, 

2000). Organic ligands in seawater are thought to specifically complex Fe(III) and 

responsible for increasing its apparent solubility. The formation of Fe(III) complexes 
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with organic matter resulted in the high solubility of Fe(III) in the initial seawater 

(Salinity=36) (0.5 nM) compared to the diluted seawater (0.2-0.3 nM) with 0.7 M 

sodium chloride (NaCl) (Liu & Millero, 2002). In diluted seawater the Fe(III) solubility 

approaches the solubility in pure NaCl (10 pM) (Liu & Millero, 1999). The formation of 

organic Fe(III) binding ligands could be increasing the Fe(III) solubility by 20-fold 

(Millero, 2001) and reduce scavenging rates (Johnson et al., 1997a) in seawater.

Figure 5: Schematic representation of the speciation of Fe in natural sea water and the 

possible uptake pathways of Fe by an algal cell (Gerringa et al., 2000).

On the other hand, organic Fe complexation dramatically reduces the fraction of 

inorganic Fe (Fe´) in the seawater system (Hudson et al., 1992), resulting in low 

concentrations of free Fe(III) (< 0.1 pM) (Rue & Bruland, 1997). Free Fe(III)

concentrations could therefore fall below the concentration required for organisms, 

even for low-Fe adapted species (Sunda et al., 1991). However, Sunda & Huntsman 

(1995) have been suggested that the low concentration of free Fe could support a very 

slow growth rate of picoplankton due to their high surface to volume ratio. In fact, this 

free Fe(III) could increases due to photo-reduction of Fe(III) complexes during the day 

(Rue & Bruland, 1997; Maldonado et al., 2005; Barbeau, 2006) and consequently, 

maintain the growth rate of phytoplankton (Sunda & Huntsman, 1995). 

The production of ligands is widely supposed to be regulated by the Fe level (Reid et 

al., 1993; Wilhelm & Trick, 1994; Wilhelm et al., 1996; Macrellis et al., 2001). The 

vertical distribution of Fe complexing ligands have been measured in the most ocean 

waters (Table 1), but the sources and chemical structures of these ligands are presently 
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much less understood, although clearly the release of ligands is linked to microbial 

biomass and thus their source is thought to be biological (Boye et al., 2005). 

Table 1: Overview of oceanic regions with reported organic speciation of Fe: 

concentrations of dissolved Fe (dFe) and the organic ligands for Fe (L
T
), conditional 

stability constants (~1010 conversion factor relates log K'
Fe-L

to log K'
Fe(III)-L

).

Location Depth(m) [dFe] (nM) [L
T
] (nM) log K'

FeL
References

Atlantic Ocean 80 -100

800 -1000

1.6–1.8

0.8–0.85

3.5–4.8

3.0–5.0

19.0

19.6

(Gledhill & Van Den 

Berg, 1995)

Western Mediterranean 0 -165

400 -

2500

3.1

2.6

4.0 -12

6.4-7.8

21.3-22.5

19.79–

20.38

(Van Den Berg, 1995)

Northwest Atlantic Ocean < 400 0.45 – 0.60 > 23.22 (Wu & Luther, 1995)

HNLC region of the Equatorial 

Pacific

Surface 0.02–

0.04

L
1

: 

0.31±0.01

L
2

: 

0.19±0.09

22.67

21.81

(Rue & Bruland, 1997)

Southern Ocean Pacific sector 25 – 800 0.14±0.72 2.0±12.0 20.6–21.6 (Nolting et al., 1998)

Northwestern Atlantic Surface 0.5–1.9 2.0–5.0 22.3–22.9 (Witter & Luther, 1998)

Southern Ocean Atlantic 

sector

Surface 0.25±0.13 0.72±0.23 22.1±0.5 (Boye et al., 2001)

Southern Ocean eastern 

Atlantic sector

Eastern North Atlantic Ocean

Southern Ocean (Indian 

sector)

Surface

Surface

Surface

1.0–3.0

0.31±0.18

0.91

0.9–3.0

1.79±0.73

0.44-1.61

21.4–23.5

19.8-22.7

21.7

(Croot et al., 2004)

(Gerringa et al., 2006)

(Gerringa et al., 2008)

Tropical North Atlantic Ocean

Eastern North Atlantic Ocean

Surface

Surface

0.1–0.4

0.1-0.4

0.82–1.46

0.8-1.2

22.85±0.38

21.6-22.6

(Rijkenberg et al., 2008)

(Thuroczy et al., 2010)

1.4 Specific Fe(III) chelators: Siderophores 

There is a prominent hypothesis that an important fraction of natural organic Fe(III

binding ligands are bacterial siderophores (Tortell et al., 1999) which alter Fe 

bioavailability to marine organisms (Hutchins et al., 1999a). Siderophores (from the 

Greek “Fe carriers”) (Drechsel & Jung, 1998) are low molecular weight organic 

compounds (300-1500 Da) which are produced by prokaryotes as part of a specific Fe 

uptake mechanism (Vraspir & Butler, 2009). Figure 6 shows the schematic role of 

siderophores in the Fe cycle in the mixed layer as suggested by Tortell et al. (1999).
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Figure 6: The role of siderophores in the Fe cycle in the upper and deep ocean (Tortell

et al., 1999).

The siderophore family includes hydroxamate acid, catechol or α-hydroxy carboxylic 

acid functional groups for Fe coordination. These specific chelators have an 

extraordinarily high affinity for Fe(III) (Jalal et al., 1984; Matzanke et al., 1991; 

Boukhalfa & Crumbliss, 2002), compared to other divalent ions (Kraemer, 2004). Once 

Fe chelation deprotonation occurs, the tricatecholates and trihydroxamates generally 

form 1:1 complexes with trivalent Fe with stability constants of 1052 (enterobactin) 

(Drechsel & Jung, 1998; Budzikiewicz, 2004) and 1030.6 (ferrioxamine B) (Boukhalfa & 

Crumbliss, 2002; Kraemer, 2004) (Fig.7).

There are several lines of indirect evidence consistent with the hypothesis that marine 

organic Fe(III) binding ligands include siderophores (Tortell et al., 1999). Marine 

microorganisms, mostly heterotrophic bacteria and cyanobacteria, are reported to 

produce siderophores to facilitate Fe uptake under low Fe level seawater cultures 

(Trick, 1989; Reid et al., 1993; Wilhelm & Trick, 1994; Wilhelm et al., 1996). In fact, the 

production of several different types of siderophores by marine bacteria (Butler, 

2005a) and by mixed bacterial populations in incubations of natural seawater have 

been documented (Gledhill et al., 2004). Moreover, these siderophores have similar 

conditional stability constant in seawater to the natural organic Fe(III) binding ligands 

(Macrellis et al., 2001). Several hydroxamate and catecholate siderophores have 

conditional stability constants between 1011.5 - 1012.5 (Lewis et al., 1995). Measurements 

of Fe(III) binding ligands from the California coastal upwelling region have shown that 
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a large proportion of the ligands is similar in size (300-1000 Da) and contain functional 

groups similar to siderophores (Macrellis et al., 2001). This similarity could give us 

some information about the structural nature of the organic molecules that bind Fe(III).

                                    Enterobactin                                Ferrioxamine B

Aerobactin

Figure 7: Examples of siderophores type ligands with enterobactin (catecholate), 

ferrioxamine B (hydroxamate) and aerobactin (α-hydroxy carboxylic). Three catechol 

rings wrap around the Fe(III) to afford a right-handed (D) coordination propeller with 

the highest known binding constant for ferric ion.

However, the first direct observations of siderophores in natural seawater have been 

reported by Mawji et al. (2008a) the Atlantic Ocean samples. Two types of 

hydroxamate siderophores, Ferrioxamine G (FOG) and ferrioxamine E (FOE) (Fig. 8) 

were successful identified using a recently developed high performance liquid 

chromatography- mass spectrometry method (Mawji et al., 2008a). The total 

concentrations of siderophores ranged between 3-20 pM, which was much lower than 

the dFe concentrations (0.58±0.25 nM, n =118) (Mawji et al., 2008a). Thus, they were 

suggested to be present as Fe complexes in seawater, since this type of siderophore 

(ferrioxamines) are hydrophilic, stable and do not photochemically degrade in natural 

sunlight (Barbeau et al., 2003). 
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                             Ferrioxamine E                                  Ferrioxamine G

Figure 8: Structures of the two siderophores identified in Atlantic seawater samples. A 

less abundant cyclic ferrioxamine E and a more abundant linear ferrioxamine G (Mawji

et al., 2008a).

The study by Mawji et al. (2008a) showed that dissolved siderophore-like compounds 

occur in seawater, and hence play an active role as Fe-complexing agents in the natural 

marine environment (Macrellis et al., 2001). The Fe(III) siderophore complexes are 

thermodynamically very stable (Renshaw et al., 2002). The formation of these 

complexes would minimize the adsorption of Fe to particles, thereby maximizing the 

Fe residence time in seawater, which benefits the biological community (Johnson et al., 

1997a; Sunda, 1997; Sunda & Huntsman, 1997). These organic complexes with high 

stability constants therefore strongly influence Fe biogeochemistry in the ocean (Mawji

et al., 2008a; Hopkinson & Morel, 2009; Vraspir & Butler, 2009).

1.5 Future speciation study in the high latitude North 

Atlantic Ocean

The distribution of dissolved Fe in the water column of the high latitude North Atlantic

has been studied and the low Fe concentrations yield Fe limitation of phytoplankton 

during post spring bloom conditions (Nielsdottir et al., 2009). Measurements of 

dissolved Fe concentrations alone are insufficient for understanding the accessibility of 

Fe to microorganism. Therefore, knowledge of the chemical speciation of Fe is critical 

and facilitates an improved understanding of the mechanisms which microorganism

utilise Fe in order to fulfil their requirements in this region. Since the solubility and 

bioavailability of Fe are controlled by its speciation (Sunda et al., 1991; Zhu et al., 

1992; Kuma & Matsunaga, 1995; Rue & Bruland, 1995; Kuma et al., 1996), it is 

important to determine Fe speciation in these waters. To our knowledge, there is no Fe

speciation data available for this ocean region yet.
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The nature of organic Fe(III) binding ligands in seawater is still largely unknown and 

little is known about their ecological significance. The high organic Fe(III)-binding

affinities of the unidentified compounds strongly suggest that they could be 

siderophores biosynthesized by marine bacteria. Siderophores potentially facilitate Fe 

uptake for certain Fe limited microorganisms in high latitude North Atlantic Ocean. 

However, the direct determination of siderophores in natural seawater has been 

reported in only a limited number of locations (Mawji et al., 2008a; Velasquez et al., 

2011) and there were no data on the occurrence of siderophore-like substances in the 

high latitude North Atlantic Ocean. Thus, we will determine the presence of 

siderophore in this region using the recently developed analytical techniques (Mawji et 

al., 2008a). The concentrations and structures of siderophores will help us to better 

understand the biological availability of Fe in seawater.
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1.6 Objectives of study

The overall aim of this research is to study the speciation of Fe and the role of 

siderophores (specific Fe chelater) in the biogeochemical cycle of Fe in the high 

latitude North Atlantic. 

Specific objectives were to:

1. To determine the distribution of Fe speciation in the high latitude North Atlantic 

Ocean in order to understand the role of organic Fe(III) binding ligands in the 

distribution of Fe in the water column.

2. To identify and quantify the presence of dissolved siderophores in natural 

seawater in the high latitude North Atlantic Ocean by interfacing liquid 

chromatography with inductively coupled plasma mass spectrometry (LC-ICP-MS) 

and liquid chromatography with electro spray ionization mass spectrometry (LC-

ESI-MS) methods.

3. To study the siderophore type chelates produced by marine bacterioplankton in 

nutrient enrichment incubation experiments from the high latitude North Atlantic 

Ocean seawater.
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1.7 Thesis structure

In Chapter 2, I describe in detail the methods which were used in this work. The Fe 

speciation and Liquid Chromatography with Inductively Coupled Plasma Mass 

Spectrometry (LC-ICP-MS) methods were used for studies reported in the Chapter 3, 

Chapter 4 and Chapter 5, respectively. Each chapter includes an area specific 

introduction and presents work carried out in the high latitude North Atlantic. 

Chapter 3 presents the first assessment of organic Fe(III) binding ligands in the high 

latitude North Atlantic Ocean (Iceland Basin), an ocean region which undergoes 

seasonal Fe limitation. The results from 2009 were compared to results from 2007 in 

order to obtain a better understanding of the role of organic Fe(III) binding ligands in 

controlling Fe concentrations throughout the water column. The ratio of [L
T
]/[dFe] was 

used to analyse trends in Fe speciation in the Iceland Basin and it was compared to the 

other regions including Hatton-Rockall and Rockall Trough.

Chapter 4 includes the identification and quantification of dissolved hydroxamate 

siderophores in the high latitude North Atlantic Ocean using High Performance Liquid 

Chromatography – Electro Spray Ionization – Mass Spectrometry (LC-ESI-MS) and liquid 

chromatography with inductively coupled plasma mass spectrometry (LC-ICP-MS). 

Samples were collected from the Iceland Basin and Irminger Basin during two cruises in 

summer 2010. 

Chapter 5 described the siderophore type chelates produced by marine 

bacterioplankton in experiments where seawater was incubated with different sources 

of nutrients, were also examined. The effect of different additions of Fe(III) level (9 nM 

and 90 nM) to the incubated samples were investigated during April-May 2010 cruise,

while the effect of different sources of nitrogen (ammonium and nitrate) on the 

production of siderophore type chelates was examined in July-August 2010. 

Chapter 6 provides a synthesis of Chapter 3, Chapter 4 and Chapter 5 regarding the Fe 

speciation study in the high latitude North Atlantic Ocean (Iceland Basin) and highlights 

directions for future research.
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CHAPTER 2 - Methodology

2.1 Cleaning Processes

2.1.1 Low density polyethylene bottles (Nalgene)

Trace-metal clean low density polyethylene (LDPE) 250 mL (Nalgene) bottles were used 

for collecting seawater samples for the determination of Fe speciation. This type of 

bottle was also used for storing prepared chemicals. Bottles were cleaned according to 

the procedures described in Achterberg et al. (2001). The LDPE bottles were soaked in 

Decon 90 (2% v/v) for 24 hours to remove any residual organic material before rinsing 

with reverse osmosis (Milli-RO; Millipore systems) water three times. The bottles were 

then soaked in hydrochloric acid (HCl) (AR grade, Fisher scientific 50% v/v, 6 M) for  a 

week before rinsing them with Milli-Q (MQ) water (>18.2 MΏ cm-1; Millipore systems) 

three times. Following this pre-treatment, the LDPE bottles were submerged in a nitric 

acid (HNO3) (AR grade, Fisher scientific 50% v/v, 3M) bath for another week. After that, 

they were rinsed with MQ water three times before filling up with MQ water. Finally, the 

bottles were acidified to a pH of ~2 with sub-boiled quarts distilled hydrochloric acid 

(HCl) (9 M) (1 mL per 1000 mL MQ water) in a Class 100 laminar flow hood in a 

dedicated clean room (class 1000). The bottles were tightly capped, bagged and stored 

in double plastic bags until they were required for use.

2.1.2 Teflon fluorinated ethylene polypropylene (FEP) (Nalgene)

Teflon FEP 30 mL bottles were used for the equilibration of samples prior to the 

determination of labile Fe for competitive ligands exchange-adsorptive cathodic 

stripping voltammetry (CLE-AdCSV) experiments and for storing the reagents. The 

Teflon bottles were first cleaned by rinsing with ethanol (HPLC grade), then a short 

wash with 10% HCl (Romil SPA grade), followed by a final rinse with MQ water. 

2.1.3 Polyethylene heavy duty carboy (Nalgene)

A polyethylene heavy duty carboy 20L (Nalgene) was used for collecting seawater 

required for siderophore analysis from OTE (Ocean Test Equipment) samplers on board 

the ship. The carboy was cleaned by rinsing with RO water and soaked in 10% HCl for 

2-3 days. Then, the carboys were rinsed with MQ water three times and were double 

bagged before storing until use. In between seawater extractions, the carboy was 

thoroughly rinsed with MQ water.

2.2 Sampling

Seawater samples for dissolve Fe speciation and siderophore analysis were obtained 

during a number of RRS Discovery cruises in the period between 2007-2009, in the 
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high latitude North Atlantic Ocean (Fig. 9). Samples for Fe speciation measurements 

were collected during RRS Discovery cruise 321 (D321) and RRS Discovery cruise 340 

(D340) in August-September 2007 and June 2009, respectively. Meanwhile, samples for 

siderophore analysis, including siderophore incubation experiments, were collected 

during RRS Discovery cruise 350 (D350) in April-May 2010 and RRS Discovery cruise 

354 (D354) in July-August 2010. 

Figure 9: Overview of the study area at high latitude North Atlantic Ocean (reference: 

http://www.utanrikisraduneyti.is/media/Skyrslur/Icelandic_Continental_Shelf_Executiv

e_Summary.pdf).

Seawater samples from depths >5 m were collected with a trace metal clean titanium 

CTD frame with 10-20 L trace metal clean Teflon coated OTE bottles, fitted with 

silicone O rings and plastic-coated  springs (Fig. 10). Following deployment, these 

bottles were taken off from the titanium frame and carried to the clean container. 

Gentle pressure filtration with oxygen free nitrogen at 1.1 bar was used for sampling 

the dissolved organic Fe(III) binding ligands. A 0.2 μm pore size cartridge filters 

(Sartobran P-300, Sartorius) were used for filtering seawater samples from the bottles 

to the 250 mL LDPE bottles (Nalgene). The seawater samples were taken from 9-13 

depths at each station. The same OTE bottles were also sampled for dissolved Fe (dFe), 
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which was determined by Maria Nielsdottir (RRS D321) and Sebastian Steigenberger 

(RRS D340 and D354) (see below) after acidification to pH 2 (a final concentration of 

0.011 M) using ultra-pure HCl, Romil UpA grade). The samples for organic Fe(III)-

binding ligands analyses were immediately frozen at -20ºC (not acidified) for 

subsequent land based analysis. Hydrographic data were obtained from a Seabird 

9/11+ CTD attached to the titanium rosette frame.

    

Figure 10: Titanium CTD frame fitted with 10-20 L trace metal clean Teflon OTE 

bottles. The OTE bottles which have been taken off from titanium CTD frame and 

carried to the clean container for seawater sampling.

For the siderophore samples, a seawater sample was collected at the chlorophyll a

maximum depth and below the chlorophyll a maximum layer using trace metal clean 

teflon coated OTE bottles. Surface seawater samples (at a depth of ca. 3 m) were 

collected by using a trace metal clean towfish. The seawater sample was transferred 

into polyethylene 20 L carboy (Nalgene) in the clean container (Table 1). 

2.3 Determination of total dissolved iron (dFe) 

concentration

Data for concentrations of total dFe for this study were provided by Maria Nielsdottir 

(cruise D321) and Sebastian Steigenberger (D340 and D354). The concentration of dFe 

was measured by using an automated flow-injection chemiluminescence method 

(Obata et al., 1993) following modifications described by De Jong et al. (1998). An 8-

hydroxyquinoline (8-HQ) immobilized on Toyopearl gel (Landing et al., 1986; Landing 

& Bruland, 1987) was used as preconcentration/matrix removal resin. The detection in 

this method is based on the chemiluminescence (Sigma) produced by the Fe catalyzed 
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oxidation of luminol (3-aminophthalhydrazide, Sigma) by hydrogen peroxide (H
2
O

2
) 

(Romil UpA grade). Samples were stored for at least 24 hours prior to analysis.

Table 2: Overview of the sampling activities during the RRS Discovery cruises. FeL –

organic Fe(III) binding ligands samples, incubation experiment – seawater nutrients 

enrichment experiment for siderophores production.  

Cruise Date Latitude (ºN) Longitude (ºW) Sampling activity Depth (m)

D321 26/08/2007 61.30 19.59 - FeL and dissolved Fe 35-2237 m, 10 depths

06/08/2007 59.08 18.54 - FeL and dissolved Fe 10-0811 m, 9 depths

12/08/2007 59.11 19.07 - FeL and dissolved Fe 12-0537 m, 9 depths

08/08/2007 59.42 19.52 - FeL and dissolved Fe 50-0810 m, 7 depths

28/08/2007 57.32 12.37 - FeL and dissolved Fe 11-1620 m, 11 depths

D340 11/06/2009 62.00 20.00 - FeL and dissolved Fe 11-1620 m, 11 depths

12/06/2009 60.01 20.01 - FeL and dissolved Fe 05-1000 m, 10 depths

14/06/2009 59.40 19.12 - FeL and dissolved Fe 05-1000 m, 10 depths

15/06/2009 58.53 17.00 - FeL and dissolved Fe 05-1000 m, 10 depths

15/06/2009 57.32 12.37 - FeL and dissolved Fe 05-1000 m, 10 depths

19/06/2009 57.23 10.52 - FeL and dissolved Fe 05-765 m, 9 depths

D350 29/04/2010

01/05/2010

21.51

34.52

58.34

60.56

- Incubation experiment

- Dissolved siderophores

3

25, 85

02/05/2010 34.57 60.02 - Dissolved siderophores 27, 93

03/05/2010 37.55 59.59 - Dissolved siderophores 27, 68

- Incubation experiment 27

04/05/2010 29.10 59.58 - Dissolved siderophores 24

05/05/2010 26.02 59.54 - Dissolved siderophores 30

06/05/2010 21.44 60.50 - Dissolved siderophores 30

07/05/2010 20.01 61.57 - Dissolved siderophores 20

08/05/2010 19.52 63.05 - Dissolved siderophores 23

D354 11/07/2010 19.58 60.00 - Dissolved siderophores 20, 30

12/07/2010 19.58 60.00 - Incubation experiment 3

14/07/2010 23.00 60.00 - Dissolved siderophores 20, 50

15/07/2010 23.37 60.02 - Incubation experiment 20

16/07/2010 29.00 60.02 - Dissolved siderophores 20, 75

18/07/2010 35.00 60.02 - Incubation experiment 3

19/07/2010 41.00 60.02 - Dissolved siderophores 20, 80

41.35 59.59 - Incubation experiment 3

22/07/2010 35.00 63.00 - Dissolved siderophores 20, 70

24/07/2010 30.00 63.00 - Dissolved siderophores 20, 60

26/07/2010 35.00 58.00 - Dissolved siderophores 40

35.02 58.13 - Incubation experiment 40

30/07/2010 35.04 63.49 - Dissolved siderophores 20

31/07/2010 33.23 63.30 - Dissolved siderophores 3

02/08/2010 23.35 63.25 - Dissolved siderophores 20

03/08/2010 24.27 61.47 - Dissolved siderophores 30

04/08/2010 24.45 61.14 - Dissolved siderophores 3

06/08/2011 24.00 61.45 - Dissolved siderophores 3
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2.4 Determination of natural organic Fe(III) binding ligands

The determination of Fe and the elucidation of its chemical speciation present a great 

analytical challenge, due to the extremely low Fe concentrations in the ocean (<0.1 nM) 

(Measures et al., 2008; Nielsdottir et al., 2009) and the high potential for 

contamination.  Flow injection chemiluminescence (De Jong et al., 1998), or 

preconcentration followed by high resolution inductively coupled plasma mass 

spectrometry (Milne et al., 2010) are now methods of choice for the determination of 

dissolvable and total dissolved Fe. However, Fe speciation is most often assessed by 

competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) 

and has been successfully used to determine the natural organics Fe(III) binding 

ligands in seawater in many studies (Gledhill & Van Den Berg, 1994; Rue & Bruland, 

1995, 1997; Witter & Luther, 1998; Croot & Johansson, 2000; Boye et al., 2001; Croot

et al., 2004; Boye et al., 2005; Gerringa et al., 2006; Gerringa et al., 2008; Rijkenberg

et al., 2008; Thuroczy et al., 2010) . One key advantage of these voltammetric 

methods is that they are sensitive, allow metal speciation measurements and require 

limited sample handling, minimising the chances of contamination. 

In CLE-AdCSV experiments, the excess Fe(III) binding ligands are titrated by further 

additions of Fe(III), and the results of this titrations are used to calculate the 

concentration of the natural organic Fe(III) binding ligands and the conditional stability 

constant for the organic Fe(III) binding ligands complex (Ruzic, 1982; Gerringa et al., 

1995b). Added Fe(III) in the sample is equilibrated overnight in the presence of an 

added ligand, which has known thermodynamic properties, and has an ability to 

absorb on the mercury electrode at a preset potential with subsequent  determination

by cathodic stripping voltammetry. Due to slow kinetic reaction of the added Fe and 

added ligands with the sample which includes organic ligands (Van Den Berg, 1995), 

inorganic ligands and other trace metals (Nagai et al., 2007), an overnight equilibration 

is required for sufficient equilibration in titration experiments (Hudson et al., 1992; 

Gerringa et al., 2008). The function of the added ligands is to bind Fe(III) which is 

present in the seawater samples to make it detectable by AdCSV. The added ligand 

competes with the natural ligands in the sample so, if half of the Fe(III) is bound by the 

added ligand, the complex stability of natural ligand is about the same as that of 

added ligand.

This method has been used with added ligands including 1-nitroso-2-naphthol (1N2N) 

(Van Den Berg et al., 1991; Gledhill & Van Den Berg, 1994), salicylaldoxime (SA) (Rue & 

Bruland, 1995) and 2-(2-thiazolylazo)-4- methylphenol (TAC) (Croot & Johansson, 

2000). The presence of an excess of the organic ligands in the seawater samples is 

indicated by the curvature in a plot of the measured voltammetric current (i
p
) versus 
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the total Fe concentration (Fig. 11). Curvature is usually only observed at low Fe(III) 

concentrations (<1 nM). The curvature is evidence for natural organic Fe(III) binding 

ligands complex formation with added Fe, and as the natural ligands become saturated 

with Fe a straight line is observed indicating that all the added Fe is being complexed 

by the added ligand (Van Den Berg, 1995). 

Titration curve

[FeT] nM

0.0 2.0 4.0 6.0 8.0 10.0

i P
 (

nM
)

0

10

20

30

40

50

Figure 11: The current (nA) plotted versus the total amount of Fe from St. E2 (10 m 

depth) (Table 6, Chapter 3). The first few points of the titration indicated that about 

half of the natural organic complex dissociated due to the competition with the added 

ligand. The concentration of added ligand and Fe(III) complex is directly related to the 

peak heights (i
p
) of the voltammetric measurements.

In this study, TAC (Fig. 12) was used as the added ligand (Croot & Johansson, 2000). 

TAC is sufficiently sensitive to use for open ocean seawater titrations without the use 

of an oxidant (like hydrogen peroxide for 1N2N; (Gledhill & Van Den Berg, 1994)), 

which may perturb the in-situ speciation. Furthermore the peak of Fe-TAC is free from 

interference at pH 8, unlike SA which often has interfering of Cu-SA peak (Croot & 

Johansson, 2000). 

The detection window is determined by the sensitivity of the CLE-AdSV analysis (the 

limit of detection defines the lowest determinable free or labile metal concentrations 

and therefore its strongest complexes) and by others aspects such as perturbation of 

equilibrium and its definition of the labile metal concentration (Van Den Berg & Donat, 

1992). It could be varied by varying the degree of ligand competition with different 

added ligand concentrations (TAC). Indeed, the centre of detection window in CLE-

AdCSV analysis equals to α
Fe'(TAC)2 

(α-coefficient for complexation of iron(III) by a TAC as 

added competitive ligand), with values for α
FeL

(α-coefficient for natural organic
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complexation of Fe(III)) within approximately a decade on either side of α
Fe'(TAC)2

being 

measurable. The value of α
Fe'(TAC)2 

(250) calculated from TAC concentration and its 

conditional stability constant (Croot & Johansson, 2000). Furthermore, the full 

speciation of a Fe cannot be calculated from Fe(TAC)
2

measurements or even from a 

single complexing capacity titration, as the data cannot be extrapolated outside the 

detection window of the CLE-AdCSV technique used. Therefore, a complexation model 

needed to be used for calculating the speciation of Fe.

         

                                                    (a)                                                  (b)

Figure 12: a) Chemical structure of 2-(2-thiazolylazo)-4-methylphenol or alternatively 2-

(2-thiazolylazo)-p-cresol (common name TAC) and b) Proposed coordination of Fe(TAC)
2

by Croot & Johansson (2000).

There are two methods for fitting of the titration data to calculate the organic Fe(III)-

binding ligands concentrations and their respective conditional stability constants 

according to the Langmuir isotherm. These are the linear transformation of Van Den 

Berg/Ruzic (Ruzic, 1982) and the non linear method according to Gerringa et al.

(1995a). The linearization method of Ruzic (1982) has been criticized as being 

oversimplified (Buffle et al., 1992). In fact, linear methods are applicable only with 

caution to chemically heterogeneous complex mixtures of ligands (Miller & Bruland, 

1997; Bruland & Rue, 2001). Thus, other authors (Fish & Jordan, 1983; Gerringa et al., 

1995a) suggested the use of non-linear curve fitting routines for direct fitting of the 

titration data. In fact, Gerringa et al. (1995a) found that there is no difference between 

the value for the total Fe(III)-binding ligands concentration estimated using the linear 

or the non linear method, but the non linear method is more suited to the error 

structure of the data. The standard error of the estimated parameters can be calculated 

consistently using the non linear method.
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2.4.1 Chemical preparation

2.4.1.1 2-(2-Thiazolylazo)-p-cresol (TAC) stock solution

A 0.02 M TAC stock solution was prepared in triple quartz distilled (QD) methanol by 

diluting 0.43854g of TAC (C
10

H
9
N

3
OS, Aldrich) in 100 mL methanol (HPLC grade). A 

final concentration of 10.0 µM TAC was used throughout this study.

2.4.1.2 Borate buffer (H
3
BO

3
)  

A borate buffer 1.0 M solution was prepared in 0.3 M ammonia (Suprapur, Merck) to 

buffer at pH 8.05. 6.184 g boric acid (H
3
BO

3
, Fisher Scientific) was diluted in 25% 

NH
4
OH (Suprapur, Merck), before make up to 100 mL with MQ water. Iron 

contamination was removed from this stock solution after complexation with TAC 

using a C
18

(SepPak, Whatman). TAC at a final concentration of 20 µM was added to the 

boric acid (pH 8.05) and left to equilibrate overnight. The C
18

SepPak column was 

activated with 10 mL of MeOH (HPLC grade), followed by 10 mL of 0.6 N HCl (Romil 

UpA grade). Then it was rinsed with 20 mL of MQ water before loading the buffer 

solution using a peristaltic pump. The pH of buffer was checked before the cleaning 

procedure, and adjusted using HCl (Romil UPA grade) and NH
4
OH (Romil UpA grade), 

so that a pH of ~8.05 was obtained on addition of 50 µL buffer solution to 10 mL 

seawater. A final concentration of 5.0 mM borate buffer (pH 8.05) was used for 

seawater samples throughout this study.

2.4.1.3 Iron(III) stock solution

A 10-6 M Fe(III) stock solution was prepared by diluting a Fe(III) ICP-MS stock standard 

(1000 ppm in nitric acid, MW=55.847 g/mol, Fisher Scientific) in 0.01 M HCl  (Romil 

UpA grade). All the chemical preparation was done on a Class 100 laminar airflow 

bench at room temperature (25ºC). 

2.4.2 Sample preparation

The seawater samples (200 mL) were buffered to pH 8.05 (1.0 mL of 1.0 M borate 

buffer) and left for an hour before adding 100 µL of 0.02 M TAC so that the final 

concentration of TAC was 10 µM. According to Croot & Johansson (2000), the 

sensitivity (S) was not significantly enhanced when the concentration of TAC >10 µM 

was used but increases in background slope in the vicinity of the Fe(TAC)
2

peak at 

higher concentrations have been observed. The sample was subdivided over 12 

subsamples in the FEP bottles (Nalgene) (30 mL) containing increasing concentrations 

of Fe(III) between 0 and 8 nM - sufficient to saturate the natural ligands. The Fe(III)  was 

added to all but two of the bottles, and allowed to equilibrate overnight (>15 hours) in 

a room temperature (Hudson et al., 1992; Gerringa et al., 2008). All sample 

manipulations were performed on a Class 100 laminar airflow bench at room 
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temperature (25ºC). The Teflon FEP bottles were conditioned with seawater which 

added with TAC, boric acid and Fe(III) twice before the equilibration experiment. The 

bottles were rinsed with MQ between equilibration experiments.  

2.4.3 Voltammetric procedure

A model 663 VA voltammeter (Ω Metrohm, Swiss Made) (Fig. 13) was used throughout 

this study. The sub samples were transferred to the voltammetric cell and then were 

deaerated for 300s with dry nitrogen gas to remove oxygen from the samples. 

Subsequently, the Fe(TAC)
2

complexes in the sample were adsorbed onto a fresh 

mercury (Hg) drop (Hanging Mercury Drop Electrode, HMDE) at an applied potential of -

0.40V for 60s, while the sample was stirred. At pH 8.0 and above the solution is a red-

orange color due to the presence of TAC (Croot & Johansson, 2000). At the completion 

of the adsorption period, the stirrer was stopped and the potential was scanned using 

a differential pulse mode from -0.40V to -0.90V at 19.5 mV s-1, and the stripping 

current from the adsorbed Fe(TAC)
2

recorded. The concentration of Fe(TAC)
2

in the 

samples was measured in each subsample. 

Figure 13: The voltammeter used for determination of organic Fe(III) binding ligands. 

Three electrodes electrochemical cell for voltammetric analysis was used; hanging 

mercury drop electrode (HMDE), reference electrode (KCl) and counter electrode. This 

instrument was set up on a Class 100 laminar airflow bench at room temperature 

(25ºC).

Differential pulse mode was used as it gives low background currents, avoids 

interference from nickel (Ni) and results in a well defined peak for Fe(TAC)
2

(Croot & 

Johansson, 2000) (Fig. 14). Every scan was repeated twice without purging, and the 

average of the peak heights was used for further calculations. The voltammetric cell 

was rinsed only with MQ water between analyses, and the subsamples were run in 
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order of increasing Fe(III) additions. Measurements were performed on a Class 100 

laminar airflow bench at room temperature (25ºC).

Figure 14: Voltammogram of Fe(TAC)
2

peak under differential pulse mode from 

seawater sample from St. B4 (10 m depth) (Table 6, Chapter 3). Voltammetric 

parameters: deposition time 120s; deposition potential -0.5V; start potential -0.42V; 

end potential -1.0V.

2.4.4 Calculation of organic Fe(III) binding ligands

Titration data was used to calculate the conditional stability constant and the 

concentrations of the natural ligands. The principle of measuring the binding 

characteristics of dissolved organic ligands with Fe is extensively described in several 

publications (Gledhill & Van Den Berg, 1994; Croot & Johansson, 2000; Thuroczy et al., 

2010). It is possible to determine the conditional stability constant and the 

concentration of natural dissolved organic ligands, since the added concentration of 

TAC (10.0 µM) and its binding strength with Fe (1022.4M-2) (Croot & Johansson, 2000) are 

known. To calculate conditional stability constant (Log K'
FeL

) and the concentration of 

total natural dissolved organic ligands ([L
T
]), a non-linear regression of the Langmuir 

isotherm (Gerringa et al., 1995a) was used with a single ligand model (Eq.1). It is 

assumed that equilibrium between all Fe(III) species exists, all binding sites between Fe 

and the unknown ligands are equal and that the binding is reversible.

(Eq.1)
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Where K' is the conditional stability constant of Fe with the ligands, (either TAC or the 

natural organic ligands (L)) and [TAC] are the concentrations of free Fe ligands (not Fe 

bound), [Fe(TAC)
2
] and [FeL] is the concentrations of Fe complexes. 

The [Fe(TAC)
2
] was calculated by dividing the peak height, i

p
(nA) over the slope 

(sensitivity = S) of the straight part of the titration curve (Eq. 2),

(Eq. 2)

The total Fe concentration ([Fe
T
]) consists of that dissolved Fe concentration which was 

measured by flow-injection method (dFe) augmented by that Fe(III)
added

during the 

titration (Eq. 3):

(Eq.3)

The concentration of Fe complex by natural organic ligands ([FeL]) was obtained by a 

difference total Fe concentration ([Fe
T
]) and [Fe(TAC)

2
] (Eq. 4):

     (Eq.4)

The concentration of Fe(III) ([Fe3+]) is directly related to the [Fe(TAC)
2
] by α

Fe(TAC)2
(Eq. 5):

(Eq.5)

Where α
Fe(TAC)2

is the overall α-coefficient for inorganic complexation and complexation 

by TAC (excluding complexation by L) at a concentration of 10 µM (Eq. 6). The 

inorganic side reaction coefficient for Fe was taken as α
Fe'

= 1010 (Sunda et al., 1991):

(Eq.6)

Where, is the conditional stability constant of Fe with TAC, assuming an 

equilibrium as follows (Eq. 7); 

       (Eq.7)
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A good agreement was found between estimates for β'
Fe(TAC)2

made using EDTA (1012.3M-2) 

and DTPA (1012.4±0.3 M-2) at different TAC concentrations (Croot & Johansson, 2000). A 

value of 1012.4M-2 (in Fe3+ notation =1022.4M-2) was used throughout our studies.

Data pairs of [Fe3+] and [FeL] resulting from CLE-AdCSV measurements are fitted to the 

non-linear fit directly. The non-linear fitting routine of the package SYSTAT was used to 

calculate L
T

and K'
FeL

(Wilkinson et al., 1992). This performs a least-squares fit with the 

simplex algorithm. Asymptotic standard errors and the correlation between the 

parameters have been computed from the Hessian matrix.

To make sure the accuracy the titration method, I have analysis a few seawater 

samples from GEOTRACE inter-calibration iron speciation data 2008 and 2009. The 

result of my iron speciation data was in a range of others iron speciation measurement 

(Table 3).

Table 3: Comparison between iron speciation data obtained from CLE-AdCSV 

measurements at National Oceanography Centre Southampton (NOCS) and GEOTRACE 

data.

Bottle Sampling [DFe] (nM) Measurement at NOCS GEOTRACE data

no. date L
T
(nM)   stdev Log K

'FeL
     stdev L

T
(nM)   Log K

'FeL
     

1020 22-Jun-08 0.05 0.58 0.03 22.71 0.16 0.50 - 0.80 22.1- 23.0

1021 0.53 0.03 22.32 0.16

1022 25-Jun-08 0.05 0.41 0.06 22.76 0.18 0.30 - 0.60 22.1- 23.0

1023 0.41 0.03 23.15 0.38

4186 13-May-09 0.09 1.22 0.04 22.84 0.10 1.10 - 1.40 22.1- 23.0

4187 1.24 0.05 23.07 0.21

4301 14-May-09 0.09 1.36 0.04 22.71 0.10 1.10 - 1.40 22.1- 23.0

4302 1.18 0.03 23.00 0.16

4145 13-May-09 0.06 1.00 0.05 22.98 0.25 1.10 - 1.40 22.1- 23.0

4146 0.58 0.02 23.03 0.30

2.5 Determination of dissolved siderophores

Siderophores have structural diversity and low concentrations in the environment. It 

has led to challenges in their determination, along with limitations in the analytical 

techniques available for their detection. 

Previously, the quantification of siderophores has been done by using

spectrophotometric assays like the chrome azural S test, the Arnow assay and the 

Csaky test (Neilands, 1983). The chrome azurol S (CAS) (Shenker et al., 1995) is a 

universal spectrometric method which has been used for determining siderophores in 
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solution. The Arnow assay and Csaky assay were used to determine catecholate and 

hydroxamate siderophores, respectively. A catecholate structure produces a yellow 

colour upon reaction with nitrite-molybdate in an acid medium, and changes to an 

intense orange-red when the medium is basic. The absorbance of the siderophore 

complex is measured at 515 nm and with a detection limit for siderophores of 0.02 μM 

(Neilands & Nakamura, 1991). On the other hand, the Csaky test is the most sensitive 

assay for determination of hydroxamine acids and has a detection limit of 1.2 μM 

(Naito et al., 2008). However, these assays are only able to identify the presence of a 

siderophores functional groups and thus have several major disadvantages, including 

matrix interference and the inability to provide any indication of the type and range of 

siderophores produced (Mc Cormack et al., 2003).

More recently, a combination of high performance liquid chromatography-inductively 

coupled plasma-mass spectrometry (LC-ICP-MS) and high performance liquid 

chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) method has 

been used successfully for identifying and quantifying siderophores in environmental 

samples (Mawji et al., 2008a). The HPLC technique allows the siderophore type 

chelates present in the samples to be separated by using a chromatographic 

separation column before determination using ICP-MS or ESI-MS. 

During ESI-MS analysis, the identification of prospective siderophore type chelates is 

undertaken by measuring their mass to charge ratio (m/z). This technique can also 

provide information on the structure of a siderophore by collision induced dissociation 

(CID) analysis (Mawji et al., 2008b). On the other hand, LC–ICP–MS which is a hard 

ionisation technique, can offer quantification of siderophore type chelates according to 

their metal content, this is more challenging with ESI–MS as different compounds have 

different ionisation efficiencies. LC-ICP-MS has been reported to offer superior 

detection limits to ESI-MS as it destroys the organic part of the molecule thereby 

reducing interferences during analysis.

2.5.1 Preparation of reagents

2.5.1.1 Ammonium carbonate 

A 1.0 M ammonium carbonate solution was prepared by diluting 2.37 g of ammonium 

carbonate stock (NH
4
HCO

3
, 79 g/mol, Fisher Scientific) in 30 mL MQ water. Then, 0.336 

mL of 1 M solution was diluted with 29.664 mL MQ to obtain an 11.2 mM ammonium 

carbonate solution. All chemical preparation in the laboratory was performed on a 

Class 100 laminar airflow bench at room temperature (20ºC). 

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


Khairul Nizam Mohamed Chapter 2 - Methodology

34

2.5.1.2 Extraction Solvent 

A mixed extraction solvent was used to elute siderophores from polystyrene-

divinylbenzene solid-phase extraction (SPE) cartridge (Isolute ENV+) cartridge. This 

solvent was prepared by mixing acetonitrile/propan-2-ol/Mill-Q water/formic acid with 

a ratio of 81:14:5:1 (v/v/v/v) in a 50 mL TPP centrifuge tube (Fisher Scientific). Solvents 

(Optima LC/MS grade) were purchased from Fisher Scientific, and formic acid (Aristar) 

was purchased from BDH Chemicals Ltd. 

2.5.1.3 Mobile phase solvent

A binary gradient mobile phase was used for HPLC analysis. Solvent A was prepared by 

mixing 95% water: 5% methanol: 0.1% formic acid, (v/v/v) in a 500 mL glass vessel 

(Schott Duran, Germany). Solvent B was prepared by adding 0.1% formic acid to 99.9% 

methanol (v:v). Formic acid was added to the B to avoid a change of pH during gradient 

elution, as suggested by Gledhill et al. (2004).

2.5.1.4 Gallium working standard

A working standard of 0.14 M gallium was prepared from gallium standard (Ga(NO
3
)
3
, 

69.72 g/mol, ICP–MS standard, VWR). It was diluted with 2% nitric acid in 50 mL TPP 

centrifuge tube (Fisher Scientific).

2.5.1.5 Iron (III) chloride

A 1.0 M Fe(III) chloride solution was prepared by diluting 8.109 g of Fe(III) chloride 

hydrate stock (FeCl
3
, 270.3 g/mol, Fisher Scientific) in 30 mL MQ water. 

2.5.1.6 DFOB standard

A 7.7 mM DFOB standard solution was prepared by diluting 0.050530 g of 

deferrioxamine mesylate salt (C
25

H
48
N

6
O

8
CH

4
O

3
S, 656.8 g/mol, EMC micro-collection) in 

10 mL of 50%:50% of formic acid: MQ water. This standard solution was stored at -

20ºC. It was defrosted and diluted to the working standard concentrations (0.1- 20.0 

nM) with 50%:50% of formic acid: MQ water.

2.5.1.7 FOB working standard

Iron-siderophore (Ferrioxamine B, FOB) working standards were prepared by adding 1 

mole of Fe(III) chloride to 1 molar equivalent of DFOB (Deferrioxamine B) standard in 

the 2 mL safe lock tube Amber (Eppendorf AG). Then it was left to equilibrate for 12 

hours in room temperature (25ºC). This working standard was made freshly each day. 
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2.5.1.8 Ga-FOB working standard

Gallium-siderophore (Ga-FOB) working standards were made by adding excess Ga to 

the DFOB standard in ratio 1:1 (v/v) in the 2 mL safe lock tube Amber (Eppendorf AG), 

which was left for 12 hours at room temperature (25ºC). This working standard was 

made daily. 

2.5.1.9 Nitric acid 

A 2% nitric acid was prepared by adding 0.6 mL of nitric acid (BDH, Aristar) to 29.4 mL 

MQ water.

2.5.2 Solid phase extraction (SPE)

Solid phase extraction (SPE) is based on the reversible adsorption of substances on a 

solid phase, and has been used to pre-concentrate naturally occurring dissolved 

siderophores from large volumes of seawater (Macrellis et al., 2001; Mc Cormack et al., 

2003). They have found that the polystyrene divinylbenzene stationary phase is 

successful at retaining model siderophores, with extraction recoveries from 21-37% 

(Mc Cormack et al., 2003) up to 79-91% (Macrellis et al., 2001).

Pre-concentration is necessary because of the low concentration of siderophores in the 

marine waters. It also reduces matrix interferences such as non-volatile salts, which are 

incompatible with analytical techniques like LC-ESI-MS and LC-ICP-MS. After adsorption, 

impurities such as salts are washed out by a solvent that allows the substance of 

interest to remain adsorbed. After this cleaning step, the adsorbed analytes are eluted 

using a non polar solvent. As non polar solvent are not compatible with HPLC 

separation, causing the compounds of interest to elute in the solvent front, the non 

polar solvent were removed by evaporation under nitrogen and the residue was 

dissolved in water or aqueous buffer.

Seawater samples (20 L) was sequentially filtered (3.0 and 0.2 μm) using cellulose 

nitrate membrane filters (Whatman). Then, the seawater was concentrated onto a 

polystyrene-divinylbenzene solid-phase extraction (SPE) cartridge (Isolute ENV+) (Mc 

Cormack et al., 2003; Gledhill et al., 2004; Mawji et al., 2008a) with a reservoir volume 

of 3 mL, sorbent mass of 200 mg, average particle size of 90 µm and nominal porosity 

of 800 Å. The cartridges were pre-washed with 1 mL methanol (LC-MS grade, Riedel-de 

Haen) before pre-concentrating the seawater sample. A vacuum pump was used for 

filtration and extraction with flow rate 3-4 mL min-1. The volume of seawater extracted 

through the cartridge was recorded from the corboy scale measurement. The cartridge 

was frozen at -20ºC until further processing and analysis on shore. The diagram for 

filtration and extraction step is shown in Figure 15 below.
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Figure 15: Diagram shows a) the filtration and b) extraction procedure for dissolved 

siderophores pre-concentration from sea water sample. The cellulose nitrate

membrane filters were fitted to a polycarbonate 47 mm in-line filter holder (Pall 

Corporation).

In the land-based laboratory, the cartridges were defrosted and washed with 1 mL of 

11.2 mM ammonium carbonate (Twining et al., 2004) in order to remove salt from the 

sample. Siderophore type chelates were eluted with 5 mL of 81:14:5:1 (v/v/v/v) 

acetonitrile/propan-2-ol/water/formic acid (Mawji et al., 2008a). The eluant was 

collected into 7 mL clear vials with screw top PTFE lined caps (Supelco) and blown 

down under nitrogen gas to 100 μL. Then, it was diluted with 1% formic acid to make 

up 500 μL solution. A 200 μL subsample was transferred into a 2 mL eppendorf vial 

prior to identification and quantification of siderophores.

2.5.3 Quantification of dissolved siderophores

The high-performance liquid chromatography-inductively coupled plasma mass 

spectrometry (LC-ICP-MS) (Shimadzu HPLC coupled to a Thermo X-series ICP-MS)) was 

used to quantify siderophore concentrations in natural seawater samples by 

monitoring the gallium-69 isotope (69Ga) (Mawji et al., 2008a). The ICP-MS only detects 

organic compounds that react with trivalent Ga (siderophores). 

Gallium addition was used to displace Fe from siderophores as its determination by 

ICP-MS suffers from lower background interferences compared to Fe. The 69Ga isotope, 

which has a natural abundance of 60%, is not subjected to spectral interferences from 
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argon. Gallium has a similar chemistry and stability constants with siderophores to Fe 

(Moberg et al., 2004). The stability constants for Fe and Ga complex with DFOB is 

30.99 and 28.17 at pH above 2 (Kiss & Farkas, 1998), respectively. In fact, Ga is an 

effective competitor for Fe in a siderophore transport systems, where a 10 fold excess 

of Ga could displace Fe from ferrichrome, ferrioxamine B and triacetylfusarinine C 

(Emery & Hoffer, 1980; Emery, 1986). However, the amount of excess Ga which is 

needed to displace Fe is dependent on the levels of Fe in the solution and sample 

matrix (Gledhill et al., 2004). In this study a final concentration of 10 µM Ga was used 

to quantify the amount of siderophores in dissolved phase as preliminary experiments 

showed that this was sufficient to replace Fe after overnight equilibration (Fig. 16),

whilst minimizing the elution of background Ga. 

Figure 16: Percentage exchange of Ga(III) in FOB complex at the different equilibration 

time. A 10 µM of Ga(III) standard was equilibrate with 1 nM FOB standard at room 

temperature before measuring the concentration of GaFOB comples by LC-ICP-MS.

The ICP–MS Ga standard (Ga(NO
3
)
3
, (VWR) with final concentration 10 µM, was added to 

a 200 μL sub-sample and allowed to equilibrate overnight at room temperature before 

analysis by the LC-ICP-MS method. The HPLC was carried out by using two pumps (LC-

10ADVPµ, Shimadzu) and vacuum degasser (NLG Analytical). Samples and standards (5 

μL) were manually injected onto the separation column using a metal-free injector 

(Rheodyne 9725i, Alsbach, Germany). The chromatographic separation was performed 

by using a polystyrene divinyl benzene stationary phase (PRP-H1, 100×2.1 mm 5 μm, 

Hamilton) column. The mobile phase was comprised of two solvents (A and B, see 

section 2.5.1.3). A standard gradient of 95% solvent A to 100% solvent B over 20 

minutes at the beginning of chromatogram was followed by isocratic elution with 100% 

solvent B for 5 minutes (Mc Cormack et al., 2003; Gledhill et al., 2004; Mawji et al., 

2008a). The flow rate for the mobile phase was maintained at 150 µL min-1. Before the 

system returned to the starting conditions, it was re-equilibrated with 100% solvent A 
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for 7 minutes. Due to high concentration of free excess Ga in the sample, a 2% nitric 

acid was immediately injected onto the column and an additional 15 minute isocratic 

step at 100% solvent A was inserted after the sample injection, while the HPLC eluant 

line was connected to the waste. This step is important for avoiding high background 

Ga counts and restored the base line to initial counts during the ICP-MS analysis. 

Subsequently (15 minutes), the effluent line was connected to the ICP-MS via a 

desolvating nebulizer (MCN 6000, Cetac Technologies). 

The membrane desolvation nebulizer was used to reduce the contribution of the 

organic solvent from the mobile phase and allow matrices with a high volatile organic 

content to be analysed by ICP-MS (Sutton & Caruso, 1999; Cartwright et al., 2005). The 

optimum conditions for MCN 6000 desolvator are 100 mL min-1 nebuliser gas flow 

(nitrogen gas), 1.0 L min-1 sweep gas flow (argon gas) and 160ºC membrane 

temperature.

Figure 17 shows a schematic diagram of the LC-ICP-MS method, which used for 

siderophores quantification in this study. The LC-ICP-MS system was cleaned before the 

determination of seawater samples in order to remove all siderophore complexes and 

Ga, especially from the separation column. A propan-2-ol (IPA) solution was injected 

onto the separation column using a metal-free injector followed by 2% nitric acid and 

running in chromatogram condition as described above. This cleaning procedure was 

carried out 2-3 times until no peak observed in the chromatogram. An injection of 1% 

formic acid solution was used as blank.

Figure 17: Diagram LC-ICP-MS method fitted with MCN-6000 microconcentric nebuliser 

desolvation system. Sample/working standards were manually injected into the system 

which fitted with polystyrene-divinylbenze reversed-phase column.
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2.5.4 Identification of dissolved siderophores

Identification of different types of siderophores in the natural seawater was carried out 

by high-performance liquid chromatography-electrospray ionization mass spectrometry 

(LC-ESI-MS) (Mawji et al., 2008a).

The ESI-MS is a soft ionization technique (operating at atmospheric pressure) where 

molecules are subject to a phase change from liquid to gas phase ions and the 

technique is particularly suitable for polar and nonvolatile compounds. It is ideal for 

the analysis of siderophores due to potential separation of these compounds (Gledhill, 

2001) and provision of structural information after collision induced dissociation (CID) 

of parent ions (Mc Cormack et al., 2003). In fact, LC-ESI-MS has been successfully 

applied to the analysis of catecholate (Berner et al., 1991) and hydroxamate type 

siderophores (Gilar et al., 2001; Gledhill, 2001; Martinez et al., 2001; Groenewold et 

al., 2004a; Essen et al., 2006; Mawji et al., 2008a). Moreover, it has been used by 

Gledhill et al. (2004) to identify previously unknown siderophore type compounds.

Samples and FOB working standards solution were transferred into 2 mL screw top vial 

(Thermo Scientific), and the solution was automatically injected (25 μL volume) onto 

the separation column using an auto sampler (Accela, Thermo Scientific). The 

chromatographic separation for LC-ESI-MS analysis was carried out by using a 

polystyrene divinyl benzene stationary phase (PRP-H1 column, Hamilton) with 

dimension 100×2.1 mm and particle size of 5 μm. An Accela 1250 pump was used to 

pump the mobile phase which comprised of solvent A and solvent B at 150 µL min-1

flow rate through the system. The chromatography was started with a standard 

gradient of 100% solvent A to 100% solvent B over a period of 20 minutes. Then an 

isocratic elution with 100% solvent B was conducted for 2 minutes. Another standard 

gradient of 100% solvent B to 100% solvent A was performed over 3 minutes before re-

equilibrating the system with 100% solvent A for 5 minutes. At the beginning of the 

chromatography, the ESI-MS divert valve was connected to the waste for 0.88 minutes 

before automatically injected sample or standard solution into the ESI system over 26 

minutes. Then, the divert valve will be automatically connected to the waste within 

0.88 minutes before the end of the gradient. A 1% formic acid solution was used as 

blank during this analysis.

The setting for the ESI source of LTQ Velos (Thermo Scientific) was as follows; spray 

voltage +4.0 kV, capillary voltage +35 V, tube lens 140.0 V with a vaporizer 

temperature of 400ºC and capillary temperature of 275ºC. A nitrogen sheath gas flow 

rate was 60 (arbitrary units). Charged droplets, produced at the heated ESI needle, 

underwent solvent evaporation and shrinkage resulting in droplet disintegration. These 
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ions were transferred to the mass spectrometer via a heated capillary and an S lens (Di 

Marco & Bombi, 2006). The charge was supplied to molecules by addition or removal 

of ions, usually protons, in order to produce the positively charged ([M+H]+) or 

negatively charged ([M-H+]) ion. However, formation of sodium, potassium and 

ammonium adducts ([M+Na]+), ([M+K]+) and ([M+NH
4
]+), also frequently occurred. The 

mass to charge ratio of each type of siderophore was determined using a linear ion 

trap mass spectrometer in the positive ion mode. Data was collected and interpreted 

using Xcalibur 2.0 software (Thermoquest). Instrument tuning and mass calibrations 

were carried out and checked using the automatic calibration procedure and standard 

calibration solutions. 

The full mass spectrum (MS) was obtained by scanning between m/z 200-1500, while 

the ferric complexes of the siderophores were detected by selective ion monitoring 

(SIM) of the most abundant ion (parent ion) in the total ion mass spectra. During the 

SIM analysis, the instrument was set up for selective ion monitoring of masses [M+H]+; 

m/z 614, 654, 672, 857, 883, 885, 911 and [M+Na]+; m/z 636, 676, 694, 879, 905, 

907, 933. The selection of these ions was based on the ferrioxamine and amphibactin 

siderophore complexes with the H+ adduct ([M+1]+)  and the Na+ adduct ([M+23]+).

To confirm the identification of siderophores from SIM analysis, collision induced 

dissociation (CID) analysis of the parent ion was carried out. The instrument was set up 

for data dependant acquisition of CID spectra analysis. The parent ion in each total ion 

mass spectra undergoes fragmentation on bombardment with helium atoms at 

activation amplitude of 35% (Gledhill et al., 2004). The obtained fragmentation pattern 

was then compared with the previous published data to obtain confirmation of the 

siderophores identity. 

2.6 Nutrient enrichment experiments

In order to identify siderophores isolated from seawater and to assess the diversity of 

siderophores produced in the high latitude North Atlantic Ocean, nutrient enrichment 

experiments aimed at encouraging bacterial growth and thus siderophore production 

have also been carried out during this study. The nutrients, including carbon (100 M 

glucose, Fisher Scientific), nitrogen (200 M ammonium chloride, Fisher Scientific or 

200 M sodium nitrate, Fisher Scientific) and phosphate (20 M di-sodium hydrogen 

orthophosphate, Fisher Scientific) (Gledhill et al., 2004), were added to unfiltered 

seawater samples in order to stimulate bacterial growth and siderophore production. 
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2.6.1 Chemical preparation

2.6.1.1 Glucose solution

A 0.1 M glucose solution was prepared by diluting 4.502 g of glucose stock (C
6
H

12
O

6
, 

180.080 g/mol, Fisher Scientific) into 250 mL MQ water. A final concentration of 100 

µM of glucose was added to seawater samples. All nutrients were prepared in acid 

cleaned 250 mL LDPE bottle (Nalgene) in a laminar flow hood.

2.6.1.2 Ammonium chloride solution

A 2.675 g of ammonium chloride stock (NH
4
Cl, 53.49 g/mol, Fisher Scientific) was 

diluted into 250 mL MQ water (final concentration 0.2 M). Ammonia was added to 

obtain a final concentration of 200 µM for the incubated seawater.

2.6.1.3 Sodium nitrate solution

A 4.250 g of Sodium nitrate stock (NaNO
3
, 84.99 g/mol, Fisher Scientific) was diluted 

into 250 mL MQ water to get 0.2 M concentration solution. Nitrate was added to obtain 

a final concentration of 200 µM in the incubated seawater.

2.6.1.4 Di-sodium hydrogen orthophosphate solution 

A 0.02 M di-sodium hydrogen orthophosphate solution was prepared by diluting 0.760 

g of stock (Na
2
HPO

4
, 156.01 g/mol, Fisher Scientific) into 250 mL MQ water. Phosphate 

was added to obtain a final concentration of 200 µM in the incubated seawater.

2.6.1.5 Paraformaldehyde

The 10% paraformaldehyde solution was prepared from paraformaldehyde stock

((C
1
H

2
O)

n
, 30.03 g/mol, Sigma Aldrich) in the fume hood. A 5.0 g of paraformaldehyde 

added to 40 mL MQ water. Then 0.5 mL of 1.0 M NaOH (Fisher Scientific) was added 

and heated to 60ºC in water bath. The solution was allowed to cool, and the final 

volume was adjusted to 50 mL with MQ water. The solution was stored at -80ºC. A final 

solution of 1 % paraformaldehyde was used to fix the flow cytometry samples. 

2.6.2 Nutrient cleaning

Iron and other trace metal contaminants were removed from nutrient solutions using 

chelex-100 (Sigma). The chelex-100 column was cleaned with 50 mL MQ water and 50 

mL 1.0 M HCI (Fisher Scientific), followed by another 50 mL MQ water. The column was 

conditioned with 250 mL of 0.05 M NaOH (Fisher Scientific). The pH of each nutrient 

was adjusted to 8 using 0.05 M NaOH or 1.0 M HCl before loading on to the column. 

The first 50 mL of the nutrient eluant was discharged, and the remainder was collected 

into 250 mL acid cleaned LDPE bottle (Nalgene) and stored at 4ºC. The column was 

rinsed with 150 mL MQ water between nutrients.
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2.6.3 Incubation conditions

Seawater samples for incubation experiments were collected from trace metal clean 

Teflon coated OTE bottles and the towfish. Unfiltered seawater was added to 2 L 

polystyrene tissue culture flask (Becton Dickinson) and was enriched with nutrients in a 

laminar flow hood. Incubation conditions are given in Table 4. The nutrient solutions 

were filter sterilized (10 mL BD DiscarditTM II syringe, 0.2 µm Minisart RC-membrane, 

Sartorius stedim filter) on addition to the seawater. The nutrient enrichment 

experiments represent an assay for siderophores that may be detected in seawater.

Table 4: The final concentration for each nutrient which added into the seawater 

samples (2000 mL) during the enrichment experiment. The incubation experiment was 

carried out in duplicate.

Duplicate Fe(III) source Carbon source Phosphate source Nitrogen source

incubations [Fe(III)] nM [C
6
H

12
O

6
] µM [Na

2
HPO

4
] µM [NH

4
Cl] µM [NaNO

3
] µM

Control - - - - -

GNP - 100 20 200 -

GNP+Fe 9 100 20 200 -

GNP++Fe 90 100 20 200 -

GNO
3
P - 100 20 - 200

G - 100 - - -

The enriched seawater was incubated in the dark on deck in incubators at ambient 

surface ocean temperature (Fig. 18), with un-enriched seawater used as a control. The 

samples were incubated until the bacteria in the incubations had reached the late 

exponential or stationary growth phase (4-5 days). Bacterial growth was monitored 

daily using absorption measurements (Red Tide USB 650 visible spectrophotometer, 

Ocean Optics) at a wavelength of 600 nm (Kirchman et al., 2003). Samples were 

collected daily for enumeration of bacteria (flow cytometric analysis) and frozen at -

80ºC after adding 1% (v:v) paraformaldehyde.

At the end of incubation period, samples were sequentially filtered through 3.0 and 0.2 

μm cellulose acetate filters to remove bacterial cells (Sartorius polycarbonate filter unit, 

45 mm nitrocellulose membrane filter, Millipore). In a laminar flow hood, the filtered 

supernatant was passed over pre-washed polystyrene-divinylbenzene solid phase 

extraction (SPE) cartridges (Isolute ENV+, 200mg x 3mL) under gentle vacuum (Supelco 

Visiprep™) for extraction of siderophores. Cartridges loaded with sample were frozen 

at -20ºC until further processing and analysis on shore. Prior to analysis, SPE cartridges 

were defrosted and eluted with 5 mL of 81:14:5:1 (v/v/v/v) acetonitrile: propan-2-ol: 

water: formic acid as described in section 2.5.2 above. 
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Figure 18: The incubation experiment which carried out in the dark on deck in 

incubators at ambient seawater temperature.

2.6.4 Determination of siderophores produced in nutrient enrichment experiments

The quantification of siderophores in the incubated seawater samples was carried out 

as for seawater samples (section 2.5.3), except for the concentration of added Ga. In 

order to ensure complete exchange of Fe with Ga, a higher final concentration of 14 

mM Ga (ICP–MS standard, VWR) was added to extracts from nutrient enrichment 

experiments and left overnight before analysis by LC-ICP-MS. 

The identifications of siderophore type compounds in the incubation samples were 

carried by LC-ESI-MS method in the full scans mode (m/z 200-1500) on both 

unamended samples and samples pre-equilibrated with 14 mM Ga (Mawji et al., 2011). 

The analysis of samples after addition of excess Ga allows unknown siderophores to be 

identified in the complex mass chromatograms (Mc Cormack et al., 2003). In the 

samples with added Ga, the Ga complexes of siderophores were determined through 

the distinctive isotopic ratio of Ga (69Ga/71Ga ratio 3:2) in the full mass spectra. The 

identity of the siderophores was  compared to the retention time for the potential Ga 

complex peak to peaks at similar retention times in the unamended sample, that were 

m/z 13 units less than the most abundant isotope in the added Ga sample (equivalent 

to the difference in mass between 56Fe and 69Ga).

Siderophores identified by Ga exchange were then characterised by collision induced 

dissociation (CID) analysis of the selected parent ions as described in section 2.5.4.
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2.6.5 Flow cytometry analysis

Flow cytometric analysis used to enumerate bacterioplankton was based on their 

fluorescence and light scattering properties. Heterotrophic bacterioplankton do not 

possess detectable autofluorescence, and therefore fluorescent probes are added, such 

as DNA or protein stains. During this study, the nucleic acid stain SYBR Green I was 

used (Sigma-Aldrich) to determined abundance of heterotrophic bacterioplankton in 

the samples.

10 µL of SYBR Green I was added to samples (1 mL) and the solution was incubated for 

1 hour in the dark at room temperature. Then, the sample was analysed for total 

bacterial numbers using flow cytometry (FACScalibur, Becton Dickinson, Oxford, UK). 
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CHAPTER 3 - Dissolved Fe(III) speciation in 

the high latitude North Atlantic Ocean

The present chapter is available on line: Khairul N. Mohamed, Sebastian Steigenberger, 

Maria C. Nielsdottir, Martha Gledhill, Eric, P. Achterberg (2011) Dissolved iron(III) 

speciation in the high latitude North Atlantic Ocean. Deep-Sea Research I, 58, 1049–

1059.

3.1 Introduction

Dissolved iron concentrations ([dFe]) in surface waters of the North Atlantic Ocean are 

spatially and temporally highly variable due to biological activity, episodic deposition 

of Saharan dust, and hydrographic features including fronts and eddies (Duce et al., 

1991; Rijkenberg et al., 2008; Nielsdottir et al., 2009). The influence of the Saharan 

aerosol supply diminishes with latitude, with the high latitude North Atlantic receiving 

very low dust and hence atmospheric Fe inputs, comparable with inputs to the High 

Nutrient Low Chlorophyll (HNLC) North Pacific (Jickells et al., 2005). Measurements of 

surface water dissolved aluminum as a tracer of mineral aerosol inputs showed low 

concentrations of ~2 nM and below in the region (Measures et al., 2008), suggestive of 

low atmospheric dust derived Fe inputs. The dFe concentrations in the surface water of 

the Iceland Basin are reported to range from <0.01 to 0.22 nM (mean 0.09 nM; 

(Measures et al., 2008; Nielsdottir et al., 2009). Moreover, manipulations of 

phytoplankton communities in bottle experiments showed Fe limitation under post 

bloom conditions in the Iceland Basin (Moore et al., 2006; Nielsdottir et al., 2009).

The low Fe inputs and extremely low inorganic Fe solubility in seawater (Kuma et al., 

1996; Liu & Millero, 2002) bring in an important question: What are the chemical forms 

in which Fe exists in the Iceland Basin? Because the physicochemical form or speciation 

of Fe can affect its solubility (Zhu et al., 1992; Kuma et al., 1996) and bioavailability 

(Hutchins et al., 1999a; Castruita et al., 2008; Hassler & Schoemann, 2009; Hassler et 

al., 2011), it is important to determine the organic Fe speciation in order to 

understand the biotic and abiotic cycles of Fe in marine systems. 

It is known that more than 99% of the total dissolved Fe in seawater is complexed by 

dissolved organic Fe(III)-binding ligands (Gledhill & Van Den Berg, 1994; Rue & Bruland, 

1995; Hunter & Boyd, 2007; Thuroczy et al., 2010), which enhance the otherwise very 

low Fe solubility (0.08-0.2 nM) and reduce the fraction of inorganic Fe (ionic Fe and Fe-

hydroxides) (Wu et al., 2001; Liu & Millero, 2002). Consequently, the distribution of Fe 

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


Khairul Nizam Mohamed Chapter 3 – Dissolved Fe(III) speciation 

50

in the ocean is controlled by competition between Fe stabilisation by organic ligands 

and Fe removal processes (Wu et al., 2001;Bergquist et al., 2007; Boyd & Ellwood, 

2010). The removal is mainly caused by biological uptake and scavenging, i.e. the 

precipitation and adsorption of Fe onto particles, and colloid aggregation.

The nature and origin of the Fe(III) binding organic ligands remains largely unknown. 

They are known to have a range of stability constants between 19 and 23 (log values; 

for review see Hunter & Boyd (2007), and can either be addressed as one pool of 

ligands (L) or as two separate ligand classes L
1

(stronger ligand class) and L
2

(weaker 

ligand class) (Hunter & Boyd, 2007).

Some information about the nature of the molecules that bind Fe(III) can be gained 

from their conditional stability constants, which are similar to those of siderophores 

extracted and purified from seawater cultures (Witter et al., 2000; Gledhill et al., 2004; 

Mawji et al., 2008a; Mawji et al., 2011). Furthermore, the strong Fe(III) binding 

compounds do not appear to be part of a more general group of organics such as 

humic acids, since the binding strength of humic-Fe complexes is lower than the 

strong ligands commonly observed in the ocean (Mantoura et al., 1978; Laglera & Van 

Den Berg, 2009).

Laboratory and field studies have suggested that a fraction of the natural organic Fe(III) 

binding ligand pool in seawater consists of siderophores (Macrellis et al., 2001; 

Gledhill et al., 2004; Mawji et al., 2008a; Mawji et al., 2011; Velasquez et al., 2011). 

Marine heterotrophic bacteria and cyanobacteria are known to excrete siderophores as 

part of a highly specific Fe uptake process (Reid et al., 1993; Vraspir & Butler, 2009). It 

is less clear whether eukaryotic phytoplankton can excrete similarly strong organic 

ligands (Fuse et al., 1993; Boye & Van Den Berg, 2000; Boye et al., 2005; Buck et al., 

2007), although iron binding ligands have been shown to be produced when grazers 

consume phytoplankton (Sato et al., 2007). Only in a few cases has an apparently 

straightforward relationship between ligand characteristics and phytoplankton biomass 

been found (Rue & Bruland, 1997;Boye et al., 2005; Rijkenberg et al., 2006). 

Furthermore, eukaryotes such as diatoms are thought to be able to reduce organic Fe 

species using membrane based Fe reducing enzymes (Maldonado et al., 2001; Shaked

et al., 2005) prior to oxidation and transport into the cell (Maldonado et al., 2006). As 

inorganic Fe(III) species are more readily reduced, the complexation of Fe(III) by 

organic ligands diminishes the rate of reduction and hence renders Fe less available. 

Thus the major portion of the organic ligand pool remains uncharacterised and their 

role in iron biogeochemistry is therefore unclear.
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The distribution of dFe in the water column has been studied in the high latitude 

Atlantic Ocean (Martin et al., 1993; Measures et al., 2008; Nielsdottir et al., 2009), 

however much less is known about the speciation of dFe. The aim of this work is to 

determine the distribution of dissolved Fe species in the high latitude North Atlantic 

and relate this to oceanographic and biological features. This study provided the first 

assessment of organic Fe(III) binding ligands for the study region. During this study, Fe 

speciation was measured using electrochemical methods to determine the 

concentration of organic Fe(III)-binding ligands and the strength of their complexes.

3.2 Material and methods

3.2.1 Sampling

Seawater samples were collected at North Atlantic Ocean stations situated between 

Iceland and Scotland (Fig. 19), during RRS Discovery cruises 321 (D321) and 340 

(D340) in August-September 2007 and June 2009, respectively. The sampling of the 

depth profiles was carried out using a titanium CTD frame fitted with 10 L trace metal 

clean Teflon coated OTE (Ocean Test Equipment) bottles. Samples were filtered under 

slight N
2

gas over pressure using 0.2 μm pore size cartridge filters (Sartobran P-300, 

Sartorius). All 250 mL high density polyethylene bottles (Nalgene) were cleaned 

according to a standard protocol (Achterberg et al., 2001). Samples for dFe were 

acidified to pH 2 (a final concentration of 0.011 M) using ultra pure HCl (Romil UPA 

grade). Sample bottles for Fe-binding ligand analysis were thoroughly rinsed with de-

ionised water and then seawater before filling. Samples were then immediately frozen 

at -20°C (not acidified) for subsequent land based analysis. Hydrographic data (Fig. 20) 

were obtained from a Seabird 9/11+ CTD attached to the titanium rosette frame.

3.2.2 Determination of dissolved Fe

Dissolved Fe concentrations were measured using an automated flow-injection 

chemiluminescence method (Obata et al., 1993; De Jong et al., 1998) with 8-

hydroxyquinoline (8-HQ) immobilized on Toyopearl gel (Landing et al., 1986) as 

preconcentration/ matrix removal resin. The detection limit, calculated as 3 × the 

standard deviation of the lowest standard addition, was on average 0.027 ± 0.017 

(n=11) nM dFe; the analytical blank was 0.028 ± 0.009 (n =13) nM dFe (Nielsdottir et 

al., 2009).

3.2.3 Determination of organic Fe(III)-binding ligands

Determination of the Fe(III)-binding capacity in the samples was undertaken using 

competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) 

with TAC (thiazolylazo-p-cresol; Sigma-Aldrich) as competing ligand (Croot & 

Johansson, 2000). All solutions were prepared with 18.2 MΩ cm−1 deionized water 
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(Milli-Q, Millipore) and sample manipulations were performed in a Class 100 laminar 

flow bench at room temperature (20ºC) in a clean electrochemistry laboratory. A 0.02 

M stock solution of TAC was prepared in triple quartz distilled (QD) methanol (0.439 g 

in 100 mL methanol), and a mixed NH
3
/NH

4
OH borate pH buffer (1.0 M; pH 8.05; 

Suprapur, Merck) solution was prepared by dissolution of boric acid in 0.3 M ammonia 

(Suprapur, Merck). Iron contamination was removed from the borate buffer using a C18 

SepPak column (Whatman) after the addition of TAC to the buffer. Iron standard 

solutions were prepared using a 1000 mg L−1 Fe ICP-MS stock solution (Fisher 

Scientific).

Seawater (200 mL) was buffered to pH 8.05 (5.0 mM borate buffer) and TAC added to a 

final concentration of 10 μM. The pH was checked on every sample following buffer 

addition. The sample was subdivided into 12 pre-conditioned FEP (Nalgene) bottles and 

Fe(III) was added in increments up to a total added Fe concentration of 8 nM, sufficient 

to saturate the natural organic Fe(III) binding ligands present in the samples. The Fe(III) 

was added to all but two of the bottles and allowed to equilibrate overnight (>15 

hours).

The concentration of Fe(TAC)
2

in each aliquot was determined by adsorptive cathodic 

stripping voltammetry using a μAutolab potentiostat (Ecochemie, Netherlands) and a 

static mercury drop electrode (Metrohm Model VA663). The sample was deaerated for 

300 s with nitrogen gas. The Fe(TAC)
2

complex in the sample was adsorbed onto a 

fresh mercury (Hg) drop at an applied potential of -0.40 V for 60 s whilst the sample 

was stirred. The stirrer was stopped and the potential was scanned from -0.40 V to -

0.90 V at 19.5 mV s-1 using a differential pulse mode, and the stripping reduction 

current from the adsorbed Fe(TAC)
2

was recorded. The limit of detection for the 

technique for dissolved Fe measurements was 0.15 nM (3σ of blank) using a 60 s 

deposition time, with a blank of 0.08 nM. Details of Fe-binding ligand measurement 

were described in Chapter 2.

3.2.4 Calculation of Fe speciation 

The titration data was used to calculate the conditional stability constants (K′
FeL

) and 

concentrations of the organic binding ligands ([L
T
]). The principle of determining the 

binding characteristics of dissolved organic ligands with Fe has been described in 

detail by Croot & Johansson (2000). A non-linear regression of the Langmuir isotherm 

was used to determine the concentration and conditional stability constants of the 

natural dissolved organic ligands, according to Gerringa et al. (1995a):
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Where K' is the conditional stability constant of Fe with the ligands, (either TAC or the 

natural organic ligands (L)) and [TAC] is the concentrations of free (not Fe bound) 

ligands. Whilst [Fe(TAC)
2
] and [FeL] are the concentrations of the Fe complexes with 

TAC and natural ligands, respectively. The alpha coefficient for the inorganic speciation 

of Fe (Fe) used in this study was 1010 (Hudson et al., 1992). Details of Fe speciation 

calculation are described in Chapter 2.

3.3 Results and discussion 

3.3.1 Study area 

The majority of the stations were located in the Iceland Basin, whilst station B4 was 

located on the Hatton-Rockall Plateau and stations A5, B5 and B6 in the Rockall Trough 

region (Fig. 20).

Figure 19: Sampling stations visited during cruise D321 (August/September 2007) (A1-

A5) and cruise D340 (June 2009) (B1-B6). Stations were located in the Iceland Basin 

(A1, A2, A3, A4, B1, B2 and B3), Hatton-Rockall (B4) and Rockall Trough (A5, B5 and 

B6). The isobaths represent 1000 and 2000 m depth contours.
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Water mass definitions by Fogelqvist et al. (2003) are used here to describe the three 

different sampling regions. In the upper water layer of the Iceland Basin the 

predominant flow of relatively warm and saline waters from the North Atlantic Current 

is in a north easterly direction. Along the edge of the Reykjanes Ridge, periodically a 

southerly flow can be observed. During the cruise in June 2009 (D340) the surface 

waters had similar physical properties in the Iceland Basin, the Hatton-Rockall region 

and Rockall Trough. Northeast Atlantic Water (NEAW) with a salinity of around 35.2-

35.3 and a potential temperature between 9.1-10.4ºC (Table , Fig. 20) was observed 

from the surface waters (<150 m) down to mid layer depths of ca. 500 m. Below the 

mid layer depths (down to ca. 1000 m depth), the potential temperature decreased to a 

minimum of ~5ºC indicating Iceland-Scotland Overflow Water (ISOW; salinity ca. 35.0, 

Table 6) which travels along the deeper part of the Iceland slope (Table 6, Fig. 20)

(Sherwin, unpublished data, 2009). At ca. 1500 m depth, Labrador Sea Water (LSW) was 

present, extending from the southern edge of the Iceland Basin and with a potential 

temperature of ca. 2.7ºC. The bottom waters in the Iceland Basin were formed by North 

East Atlantic Deep Waters (NEADW) with salinities of 34.95-35.0 and potential 

temperatures of 2-3ºC.

Figure 20: Potential temperature–salinity plot for CTD data from the Iceland Basin and 

Rockall Trough regions for the D340 cruise. NEAW: Northeast Atlantic Water; ISOW: 

Iceland-Scotland Overflow Water; LSW: Labrador Sea Water.

Dissolved oxygen showed enhanced concentrations in the surface layer (8.2-9.3 mg L-1; 

Table 5) and minimum levels between ca. 600 and 900 m depth (6.5-7.5 mg L-1; Table 

5). The study region is characterized by the occurrence of mesoscale eddies 

(Kupferman et al., 1986), which are important for the transfer of new nutrients into the 

euphotic zone.
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Table 5: Physical, nutrient and chlorophyll a data from stations occupied during cruises 

D321 and D340.

Station Depth Salinity Pot. temp. Oxygen Phosphate Nitrate Silicate Chl. a

(m) (ºC) (mg/L) (µM) (µM) (µM) (µg/L)

A1 5 35.24 13.51 8.13 0.18 3.02 0.00 0.20

Aug. 26 2007 32 35.23 13.41 8.10 0.20 3.82 0.09 0.20

61.30 N0 75 35.34 10.58 7.98 0.72 19.52 3.63 0.13

19.59 W0 200 35.32 9.86 7.98 0.73 19.77 3.93 0.04

610 35.28 9.27 8.18 1.06 31.42 10.69

800 35.28 9.27 8.19 1.06 31.38 10.82

Depth 1000 35.22 8.55 8.00 1.02 30.54 10.68

2220 m 1200 35.22 8.55 8.00 1.02 29.73 10.43

1500 35.14 7.28 6.97 1.02 29.55 11.05

1800 35.14 7.28 6.96 0.98 28.49 11.07

2100 35.07 5.88 7.17 0.90 26.80 10.13

2205 35.07 5.87 7.18 0.88 26.87 9.48

A2 7 35.27 13.74 8.22 0.27 3.17 0.52 0.17

Aug. 6 2007 13 35.27 13.65 8.18 0.27 3.00 0.47 0.18

59.08 N0 23 35.27 13.62 8.12 0.28 3.08 0.47 0.22

18.54 W0 30 35.27 13.59 8.08 0.31 3.65 0.54 0.24

34 35.28 13.11 8.04 0.38 4.58 0.73 0.25

50 35.32 10.83 8.10 0.72 10.13 2.23 0.21

Depth 78 35.32 10.44 8.13 0.73 10.90 3.35 0.09

2680 m 129 35.30 10.07 8.08 0.81 12.45 4.87 0.04

406 35.28 9.24 8.10 0.89 13.81 6.41

811 35.16 7.21 6.97

A3 5 35.22 13.41 8.21 0.25 3.18 0.38 0.47

Aug. 12 2007 12 35.22 13.41 8.20 0.53 3.37 0.41 0.48

59.11 N0 23 35.22 12.89 8.24 0.33 4.43 0.55 0.41

19.07 W0 30 35.23 12.39 8.28 0.42 5.67 0.84 0.44

34 35.28 10.77 8.59 0.64 8.61 1.54 0.41

50 35.26 10.10 8.41 0.74 10.13 2.67 0.27

Depth 78 35.28 9.97 8.18 0.79 12.16 3.73 0.09

1970 m 128 35.28 9.68 8.14 0.88 13.10 4.88

405 35.27 9.06 8.17 0.94 14.53 6.46

537 35.25 8.78 8.19

A4 7 35.22 13.38 8.15 0.25 2.37 0.23 0.17

Aug. 8 2007 12 35.22 13.22 8.14 0.27 2.30 0.23 0.18

59.42 N0 22 35.22 13.16 8.15 0.24 2.31 0.23 0.22

-19.52 W0 29 35.22 13.16 8.14 0.25 2.41 0.25 0.24

34 35.22 13.16 8.14 0.26 2.63 0.31 0.25

50 35.21 10.23 8.40 0.79 8.73 2.24 0.21

Depth 78 35.23 9.88 8.35 0.79 9.70 3.21 0.09

2690 m 128 35.25 9.65 8.24 0.81 13.04 4.37 0.04

204 35.27 9.43 8.10 0.90 10.80 5.61

406 35.24 8.81 7.99 0.97 12.12 6.81

609 35.21 8.12 7.97 1.07 12.85 7.79

810 35.11 6.67 6.92 1.33 16.12 11.91
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Cont. Table 5

Station Depth Salinity Pot. temp. Oxygen Phosphate Nitrate Silicate Chl. a

(m) (0C) (mg/L) (µM) (µM) (µM) (µg/L)

A5 10 35.22 12.88 8.26 0.04 1.44 0.09 0.33

Aug. 28 2007 20 35.22 12.80 8.27 0.09 2.15 0.12 0.40

57.32 N0 35 35.24 10.65 8.51 0.30 7.14 0.92 0.27

12.37 W0 60 35.26 9.63 8.46 0.47 12.57 2.08 0.06

125 35.27 9.06 8.30 0.59 15.09 3.64 0.04

600 35.28 8.95 8.41 0.71 17.53 5.73

Depth 900 35.27 8.88 8.36 0.99 23.03 10.12

1636 m 1100 35.15 7.45 6.87 0.98 22.00 10.01

1300 35.19 5.38 7.97

1400 35.08 5.02 8.11

1620 35.01 4.24 8.17

B1 5 35.3 10.39 9.17 0.27 12.40 1.19 0.85

Jun 11 2009 40 35.29 9.07 8.83 0.30 12.90 1.07 0.41

62.00 N0 80 35.29 8.73 8.67 0.47 17.63 2.48 0.05

20.00 W0 150 35.28 8.51 8.43 0.54 18.92 3.75 0.02

300 35.25 8.20 8.23 0.56 18.79 3.84 0.04

500 35.23 7.89 8.14 0.66 20.80 5.92

Depth 700 35.15 7.00 7.12 0.68 21.68 6.67

1833 m 800 35.10 6.30 7.10 0.94 25.32 10.72

1000 35.05 5.08 7.90 0.89 24.55 10.32

1200 34.98 2.79 8.27 0.86 23.82 10.92

1790 35.00 2.79 8.61 0.82 23.16 11.01

B2 5 35.36 11.57 9.31 0.23 8.70 0.15 0.68

Jun 12 2009 20 35.35 10.91 9.20 0.21 9.01 0.12 0.93

60.03 N0 50 35.33 9.72 8.55 0.25 10.30 0.10 0.33

20.01 W0 100 35.35 9.55 8.24 0.5 17.97 3.20 0.08

150 35.34 9.36 8.24 0.54 19.05 3.68 0.02

300 35.35 9.12 8.10 0.59 20.77 5.12

Depth 400 35.27 8.58 7.98 0.62 22.16 5.94

2744 m 500 35.23 8.12 8.03 0.7 23.06 6.56

750 35.11 6.64 6.70 0.95 28.82 11.06

1000 35.01 4.94 7.52 0.93 28.72 11.5

2000 34.91 3.21 8.33 0.87 27.49 12.2

2730 34.98 2.55 8.20 0.82 26.90 15.66
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Cont. Table 5

Station Depth Salinity Pot. temp. Oxygen Phosphate Nitrate Silicate Chl. a

(m) (0C) (mg/L) (µM) (µM) (µM) (µg/L)

B3 5 35.35 11.21 9.15 0.21 11.02 0.08 0.42

Jun 14 2009 25 35.35 11.18 8.97 0.20 11.04 0.03 0.71

59.40 N0 50 35.31 10.70 8.52 0.32 14.42 0.28 0.32

19.12 W0 80 35.29 9.52 8.32 0.50 19.44 2.93 0.09

100 35.30 9.45 8.33 0.52 19.71 2.91 0.06

150 35.32 9.36 8.11 0.56 21.33 4.02

Depth 300 35.3 9.01 8.02 0.65 22.30 5.44

2695 m 400 35.28 8.74 7.87 0.70 22.82 6.22

600 35.23 8.08 7.13 0.84 24.48 8.58

780 35.14 6.97 6.66 0.99 25.60 11.15

1000 35.07 5.57 7.18 0.99 25.49 11.66

2000 34.91 3.41 8.30 0.91 25.00 12.32

2650 34.98 2.77 8.21 0.91 24.23 14.76

B4 5 35.40 11.48 8.88 0.13 4.01 0.03 0.48

Jun 15 2009 10 35.40 11.31 8.80 0.18 5.02 0.06 0.57

58.53 N0 27 35.40 11.30 8.79 0.18 5.12 0.11 0.19

17.00 W0 80 35.37 9.85 8.32 0.54 13.44 2.79 0.07

150 35.38 9.63 8.08 0.59 14.94 3.78 0.06

300 35.36 9.35 8.07 0.61 15.53 4.37

Depth 400 35.35 9.25 7.97 0.65 16.08 5.48

1167 m 600 35.33 9.01 7.67 0.99 22.77 10.48

850 35.19 7.36 6.50 1.03 22.94 11.60

1140 35.06 5.22 7.16 1.01 22.83 16.07

B5 5 35.45 12.43 8.99 0.13 2.89 0.22 0.22

Jun 16 2009 30 35.45 12.23 8.49 0.30 6.39 0.48 0.20

57.32 N0 50 35.44 11.02 8.26 0.36 8.62 0.51 0.16

12.37 W0 100 35.45 10.35 8.01 0.49 13.09 1.63 0.05

150 35.43 10.01 7.80 0.58 14.46 3.51 0.04

300 35.38 9.43 8.04 0.6 14.78 2.73

Depth 500 35.34 8.91 7.60 0.74 17.38 6.49

1693 m 800 35.24 7.4 6.50 0.99 22.07 10.33

1000 35.13 5.81 7.08 0.98 22.01 11.09

1640 34.94 3.38 8.09 1.00 21.45 15.87

B6 5 35.47 12.22 8.43 0.17 3.97 0.75 0.23

Jun 19 2009 30 35.47 12.22 8.38 0.16 3.98 0.77 0.22

57.23 N0 50 35.47 12.13 8.24 0.23 6.02 0.92 0.06

10.52 W0 100 35.46 10.68 7.95 0.45 12.40 2.13 0.04

150 35.46 10.49 7.94 0.49 13.11 2.27 0.04

300 35.47 10.23 7.86 0.56 14.38 4.43

Depth 500 35.41 9.77 7.77 0.63 15.5 4.90

790 m 700 35.36 9.21 7.73 0.71 16.53 5.74

765 35.33 8.89 7.25 0.79 18.44 7.00
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3.3.2 Dissolved Fe (dFe) distribution

Vertical distributions of [dFe] showed sub-nanomolar concentrations at all stations 

during this study, with concentrations over 1 nM in near bottom samples at two 

stations (Fig. 21). The [dFe] in surface waters (≤150 m) in the Iceland Basin ranged 

between 0.04-0.34 nM (Table 6), with a concentration (average ± standard deviation 

(1σ)) of 0.14 ± 0.08 nM (n=19) (Table 6) during the August-September 2007 (D321) 

cruise. Dissolved Fe concentrations in this region during the June 2009 (D340 cruise) 

ranged between 0.10-0.7 nM (Table 6) with an average value of 0.24 ± 0.17 nM (n=14) 

(Table 6). Surface waters [dFe] values were also depleted relative to deeper waters in 

the Rockall Trough region for both D321 and D340, with average concentrations of 

0.15±0.05 nM (n=5) and 0.25±0.13 nM (n=11) (Table 6), respectively. However, higher 

[dFe] were observed in the surface waters of the Hatton-Rockall region for D340, 

ranging between 0.44-0.87 nM (Table 6) with an average concentration of 0.67±0.15 

nM (n=5) (Table 6). This enhanced surface water [dFe] was associated with an 

anticyclonic mode water eddy (Read & Pollard, 2001) present in the Hatton-Rockall 

region. The eddy transferred deeper waters enriched in dissolved Fe and 

macronutrients to the surface, thereby increasing surface [dFe] in comparison to the 

Iceland Basin and Rockall Trough region. 

The extremely low [dFe] in the surface waters of Iceland Basin were due to low 

atmospheric Fe inputs, as indicated by low surface water dissolved aluminium 

concentration observed during D321 (1-3 nM; Achterberg, unpublished data), 

combined with biological uptake. In fact, the high latitude North Atlantic receives low 

atmospheric Fe inputs which are comparable with those in the HNLC North Pacific 

(Jickells et al., 2005). Although the deep winter mixing in this region supplies Fe and 

macro-nutrients to the surface waters to fuel the spring bloom, the Fe:nitrate ratio of

this supply is low and results in very low [dFe] in surface waters following the spring 

bloom with concomitant enhanced residual nitrate concentrations (Nielsdottir et al., 

2009). The resulting Fe limitation of the phytoplankton community (Nielsdottir et al., 

2009) may influence the production of organic Fe(III)-binding ligands (Boye et al., 

2005; Buck et al., 2010) in the surface waters of the Iceland Basin. The dissolved Fe 

distribution in the surface waters of the Rockall Trough region indicate that this area of 

the high latitude North Atlantic is similar to the Iceland Basin, with high surface water 

concentrations of nitrate, phosphate and silicate (stations A5, B5 and B6, Table 5)

coupled to low [dFe] likely influencing the overall levels of productivity in this region.
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Table 6: Iron speciation data for the Iceland Basin from stations occupied during 

cruises D321 and D340. Total dissolved Fe concentration ([dFe]), total binding ligands

([L
T
]) and stability constant of Fe ligand (log K´

FeL
) were determined, and free iron 

binding-ligand([L'] = [L
T
] – [dFe]), α

Fe organic
= [L'] x K, [pFe] = - log {dFe /(α

Fe organic
- α

Fe inorganic
)} 

were calculated. sd – standard deviation (1σ).

St. Depth [dFe] [L
T
] log K'

FeL
[L'] log [pFe] [L

T
]/[dFe] FeL

(m) nM sd nM sd mol-1 sd nM sd α
Fe org.

(M) (%)

A1 35 0.12 0.00 1.07 0.06 22.19 0.13 0.94 0.06 13.16 23.07 8.6 99.9

78 0.13 0.01 0.87 0.08 22.00 0.17 0.74 0.08 12.87 22.75 6.6 99.9

616 0.41 0.01 1.75 0.16 21.62 0.12 1.34 0.16 12.75 22.14 4.3 99.8

809 0.50 0.02 2.11 0.24 21.75 0.15 1.61 0.24 12.95 22.26 4.2 99.9

1014 0.44 0.01 0.66 0.09 21.76 0.22 0.22 0.09 12.1 21.45 1.5 99.2

1221 0.87 0.01 1.27 0.16 21.47 0.16 0.40 0.16 12.08 21.14 1.5 99.2

1527 0.45 0.01 0.58 0.05 21.83 0.15 0.13 0.05 11.94 21.29 1.3 98.9

1819 0.78 0.01 1.04 0.11 21.67 0.17 0.27 0.11 12.10 21.21 1.3 99.2

2133 0.74 0.06 1.59 0.18 21.64 0.15 0.85 0.19 12.57 21.7 2.1 99.7

2237 1.52 0.03 2.14 0.21 21.60 0.15 0.62 0.22 12.4 21.22 1.4 99.6

A2 10 0.22 0.03 0.50 0.04 22.56 0.23 0.28 0.05 13.01 22.67 2.3 99.9

20 0.22 0.03 0.35 0.01 23.22 0.21 0.13 0.03 13.33 22.99 1.6 99.9

30 0.21 0.06 0.48 0.04 22.24 0.23 0.27 0.07 12.67 22.35 2.3 99.8

34 0.18 0.01 0.67 0.04 22.26 0.16 0.49 0.05 12.96 22.71 3.8 99.9

50 0.17 0.04 0.66 0.05 22.71 0.21 0.49 0.07 13.4 23.18 3.9 99.9

78 0.18 0.08 0.92 0.15 21.98 0.27 0.74 0.17 12.85 22.59 5.1 99.9

129 0.34 0.08 0.61 0.03 23.10 0.22 0.27 0.09 13.53 23.00 1.8 99.9

406 0.85 0.08 1.12 0.12 21.65 0.16 0.27 0.14 12.07 21.14 1.3 99.2

811 0.20 0.04 0.37 0.03 22.31 0.23 0.17 0.05 12.54 22.23 1.8 99.7

A3 12 0.06 0.00 0.26 0.04 23.34 0.49 0.2 0.04 13.64 23.87 4.4 99.9

22 0.04 0.00 0.28 0.03 22.72 0.43 0.24 0.03 13.09 23.47 6.7 99.9

30 0.13 0.00 0.43 0.05 22.87 0.36 0.3 0.05 13.34 23.22 3.2 99.9

34 0.07 0.00 0.41 0.08 22.55 0.55 0.34 0.08 13.08 23.23 5.8 99.9

50 0.06 0.00 0.28 0.05 23.86 0.71 0.22 0.05 14.19 24.4 4.5 99.9

78 0.05 0.00 0.19 0.03 22.92 0.50 0.14 0.03 13.07 23.35 3.6 99.9

128 0.16 0.00 0.27 0.02 22.83 0.29 0.12 0.02 12.91 22.72 1.8 99.9

405 0.35 0.00 0.42 0.05 23.3 0.42 0.07 0.05 13.13 22.58 1.2 99.9

537 0.25 0.00 0.58 0.04 22.01 0.15 0.33 0.04 12.52 22.12 2.3 99.7

A4 50 0.06 0.02 0.28 0.07 21.72 0.42 0.22 0.07 12.06 22.3 4.8 99.1

78 0.04 0.01 0.27 0.06 22.99 0.68 0.23 0.06 13.36 23.74 6.6 99.9

128 0.14 0.01 0.69 0.06 22.25 0.23 0.55 0.07 12.99 22.84 4.9 99.9

204 0.27 0.03 0.92 0.06 22.19 0.13 0.65 0.06 13.00 22.56 3.4 99.9

406 0.53 0.05 1.10 0.05 22.40 0.11 0.57 0.07 13.16 22.43 2.1 99.9

609 0.76 0.02 1.48 0.09 22.14 0.13 0.72 0.09 12.99 22.11 1.9 99.9

810 0.79 0.02 2.56 0.20 21.95 0.12 1.77 0.20 13.20 22.30 3.2 99.9
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Cont. Table 6

St. Depth [dFe] [L
T
] log K'

FeL
[L'] log [pFe] [L

T
]/[dFe] FeL

(m) nM sd nM sd mol-1 sd nM sd α
Fe org.

(M) (%)

A5 11 0.16 0.01 0.41 0.04 22.03 0.24 0.26 0.05 12.44 22.25 2.6 99.6

21 0.14 0.01 0.49 0.05 22.35 0.27 0.35 0.05 12.89 22.73 3.4 99.9

36 0.09 0.00 0.52 0.02 22.78 0.13 0.43 0.02 13.42 23.47 5.8 99.9

61 0.12 0.01 0.46 0.02 22.69 0.16 0.34 0.02 13.22 23.13 3.7 99.9

125 0.23 0.02 0.52 0.03 23.51 0.21 0.29 0.03 13.98 23.63 2.3 99.9

601 0.65 0.06 0.78 0.11 21.70 0.23 0.13 0.12 11.82 21.01 1.2 98.5

901 0.39 0.02 0.48 0.04 21.98 0.18 0.09 0.05 11.92 21.33 1.2 98.8

1100 0.08 0.00 0.24 0.02 23.11 0.28 0.16 0.02 13.31 23.41 3.0 99.9

1300 0.59 0.01 0.72 0.03 22.19 0.11 0.13 0.03 12.30 21.54 1.2 99.5

1400 0.68 0.04 0.86 0.08 22.89 0.49 0.18 0.09 13.15 22.32 1.3 99.9

1620 0.84 0.04 1.24 0.13 22.39 0.32 0.40 0.14 12.99 22.07 1.5 99.9

B1 5 0.34 0.07 0.91 0.06 22.34 0.17 0.56 0.09 13.09 22.56 2.6 99.9

40 0.70 0.01 1.30 0.05 22.35 0.10 0.61 0.05 13.14 22.29 1.9 99.9

80 0.25 0.02 0.43 0.02 22.64 0.18 0.18 0.03 12.89 22.49 1.7 99.9

150 0.43 0.01 0.89 0.03 22.95 0.12 0.46 0.03 13.61 22.97 2.1 99.9

300 0.58 0.01 1.67 0.04 23.36 0.07 1.09 0.04 14.4 23.63 2.9 99.9

500 0.83 0.02 1.22 0.02 23.28 0.11 0.39 0.03 13.87 22.95 1.5 99.9

700 1.59 0.02 2.08 0.01 23.66 0.34 0.49 0.02 14.35 23.15 1.3 99.9

800 2.23 0.04 2.52 0.09 22.50 0.16 0.29 0.10 12.97 21.62 1.1 99.9

1000 1.55 0.06 2.12 0.05 23.03 0.13 0.56 0.08 13.78 22.59 1.4 99.9

1200 1.51 0.06 1.95 0.07 22.5 0.13 0.44 0.09 13.15 21.97 1.3 99.9

1790 1.42 0.03 1.87 0.08 22.95 0.21 0.45 0.09 13.61 22.45 1.3 99.9

B2 5 0.18 0.03 0.76 0.04 22.53 0.15 0.58 0.05 13.3 23.05 4.3 99.9

10 0.10 0.01 0.47 0.03 22.71 0.20 0.37 0.03 13.28 23.29 4.8 99.9

20 0.15 0.03 0.71 0.03 22.53 0.13 0.56 0.04 13.28 23.10 4.8 99.9

80 0.21 0.02 0.49 0.04 22.46 0.39 0.28 0.05 12.90 22.58 2.3 99.9

150 0.29 0.02 0.6 0.03 22.95 0.20 0.31 0.04 13.43 22.96 2 99.9

300 0.38 0.01 0.87 0.04 22.51 0.15 0.50 0.04 13.21 22.63 2.3 99.9

400 0.40 0.03 0.76 0.03 22.19 0.30 0.36 0.05 12.74 22.14 1.9 99.8

500 0.71 0.03 1.31 0.02 23.28 0.07 0.61 0.04 14.06 23.21 1.9 99.9

750 0.68 0.04 0.92 0.05 23.49 0.37 0.23 0.07 13.86 23.02 1.3 99.9

1000 0.56 0.03 0.89 0.03 23.64 0.18 0.33 0.04 14.16 23.41 1.6 99.9

B3 5 0.12 0.00 0.39 0.05 22.51 0.35 0.28 0.05 12.95 22.88 3.3 99.9

10 0.17 0.01 0.57 0.03 22.98 0.17 0.40 0.03 13.59 23.35 3.3 99.9

25 0.11 0.01 0.38 0.02 22.46 0.16 0.28 0.02 12.90 22.88 3.6 99.9

80 0.12 0.01 0.60 0.03 22.8 0.15 0.48 0.03 13.48 23.41 5.2 99.9

150 0.12 0.01 0.67 0.05 22.49 0.19 0.55 0.05 13.23 23.14 5.5 99.9

300 0.24 0.02 0.66 0.03 22.12 0.09 0.42 0.03 12.74 22.36 2.7 99.8

400 0.43 0.03 0.62 0.02 23.31 0.22 0.19 0.04 13.60 22.97 1.5 99.9

600 0.33 0.04 0.61 0.06 22.43 0.43 0.29 0.07 12.89 22.37 1.9 99.9

780 0.52 0.04 0.99 0.04 23.14 0.14 0.48 0.05 13.81 23.1 1.9 99.9

1000 0.82 0.03 1.40 0.05 23.15 0.19 0.58 0.06 13.92 23.00 1.7 99.9
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Cont. Table 6

St. Depth [dFe] [L
T
] log K'

FeL
[L'] log [pFe] [L

T
]/[dFe] FeL

(m) nM sd nM sd mol-1 sd nM sd α
Fe org.

(M) (%)

B4 5 0.69 0.04 1.16 0.03 22.13 0.17 0.47 0.05 12.8 21.96 1.7 99.8

10 0.67 0.06 1.05 0.08 22.8 0.26 0.39 0.10 13.38 22.56 1.6 99.9

27 0.44 0.05 1.01 0.06 22.69 0.21 0.57 0.08 13.45 22.8 2.3 99.9

80 0.67 0.08 1.12 0.09 22.06 0.17 0.45 0.12 12.71 21.88 1.7 99.8

150 0.87 0.05 1.22 0.10 22.38 0.26 0.35 0.12 12.92 21.98 1.4 99.9

300 0.63 0.05 1.30 0.04 22.58 0.10 0.67 0.07 13.41 22.61 2.1 99.9

400 0.91 0.07 1.77 0.14 22.44 0.28 0.86 0.16 13.37 22.41 1.9 99.9

600 0.93 0.06 1.69 0.1 23.03 0.38 0.75 0.12 13.90 22.94 1.8 99.9

850 1.03 0.06 2.03 0.08 23.14 0.18 1.00 0.10 14.14 23.13 2.0 99.9

1141 2.61 0.20 3.15 0.05 23.68 0.13 0.54 0.21 14.41 23.00 1.2 99.9

B5 5 0.23 0.03 0.57 0.02 22.16 0.09 0.35 0.04 12.7 22.34 2.5 99.8

10 0.27 0.02 0.89 0.05 22.32 0.16 0.62 0.05 13.11 22.69 3.3 99.9

30 0.36 0.01 0.69 0.03 22.10 0.09 0.34 0.03 12.63 22.08 1.9 99.8

50 0.41 0.01 0.71 0.02 22.76 0.12 0.30 0.03 13.24 22.63 1.7 99.9

100 0.25 0.00 0.84 0.04 22.37 0.13 0.60 0.04 13.14 22.75 3.4 99.9

150 0.52 0.04 0.98 0.04 23.44 0.16 0.46 0.05 14.10 23.39 1.9 99.9

300 0.41 0.02 1.00 0.04 22.42 0.11 0.59 0.04 13.19 22.58 2.4 99.9

400 0.79 0.04 1.27 0.05 22.86 0.15 0.48 0.06 13.54 22.65 1.6 99.9

800 0.86 0.03 1.40 0.04 22.57 0.09 0.54 0.05 13.3 22.37 1.6 99.9

1000 0.82 0.03 0.96 0.04 22.85 0.21 0.14 0.05 12.99 22.08 1.2 99.9

B6 5 0.08 0.01 0.69 0.05 22.63 0.16 0.61 0.05 13.41 23.5 8.5 99.9

30 0.18 0.03 0.55 0.06 21.82 0.18 0.37 0.06 12.39 22.13 3.1 99.6

50 0.12 0.02 0.46 0.03 22.96 0.32 0.34 0.03 13.49 23.43 4.0 99.9

100 0.21 0.04 0.53 0.02 22.23 0.07 0.32 0.04 12.73 22.41 2.5 99.8

150 0.17 0.02 0.66 0.03 22.34 0.15 0.49 0.04 13.03 22.8 3.9 99.9

300 0.27 0.04 0.8 0.06 22.19 0.18 0.53 0.07 12.92 22.48 2.9 99.9

500 0.35 0.05 0.89 0.05 22.09 0.10 0.55 0.07 12.83 22.29 2.6 99.9

700 0.29 0.05 0.52 0.04 22.40 0.19 0.23 0.06 12.76 22.29 1.8 99.8

765 0.45 0.07 0.60 0.02 22.51 0.13 0.15 0.07 12.7 22.05 1.3 99.8

In the water column between 300-1000 m, the [dFe] increased with depth at all 

stations sampled during this study (Fig. 21). The mid layer depth [dFe] for D321 in the 

Iceland Basin (Stations A2, A3 and A4) ranged between 0.25-0.85 nM (Table 7), with an 

average value of 0.52 ± 0.24 nM (n=10) (Table 7). An average concentration of 0.79 ± 

0.56 nM (n=15) (Table 7) was observed in the region during D340. In the Hatton-

Rockall region, the [dFe] at mid layer depths were enhanced during D340, ranging 

from 0.63-1.03 nM (Table 7) with an average of 0.88 ± 0.17 nM (n=4) (Table 7). The 

[dFe] in the Rockall Trough region ranged between 0.27-0.86 nM for D340 (Table 7), 

with an average of 0.53 ± 0.25 nM (n=8) (Table 7). The increase with depth of [dFe]

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


Khairul Nizam Mohamed Chapter 3 – Dissolved Fe(III) speciation 

62

(Fig. 21) suggests Fe supply by remineralisation of sinking biogenic particles, akin to 

nutrients such as nitrate (Boyd & Ellwood, 2010), as indicated by the strong 

correlations between dFe and nutrients (Table 8, Fig. 21). Iron differs from truly 

scavenged metals such as lead, as there is a strong biological Fe requirement with 

uptake by living cells, with subsequent release during their remineralisation. The 

relative enhanced [dFe] at mid layer depths (0.22-0.85 nM) (Table 6) for D321 and

D340 in the Iceland Basin and Rockall Trough regions form an important feature of 

oceanic Fe distributions. The [dFe] below ca. 1000 m ranged between ca. 0.8-1 nM, 

with enhanced concentrations near the seafloor for Stations A5, B5 and B6 which were 

most likely due to benthic supplies (Laes et al., 2007). The Fe behavior at depth below 

the surface layers is at least partially attributable to the presence of high affinity 

organic ligands which specifically complex Fe(III) and increase its apparent solubility by 

enhancing colloid dissolution and reducing scavenging rates (Johnson et al., 1997b).

Table 7: Iron speciation data averaged for parts of the water column for stations A1, 

A2, A3, A4, B1, B2 and B3 located in the Iceland Basin, station B4 in the Hatton-Rockall 

region and stations A5, B5 and B6 in the Rockall Trough region

Regions Cruise Depth [dFe] [L
T
] log K' [L'] log pFe [L

T
]/[dFe] FeL

(m) nM sd nM sd mol-1 sd nM sd αFe 
org.

(M) (%)

<150 (n=19) 0.14 0.08 0.50 0.26 22.65 0.54 0.36 0.23 13.13 23.08 4.3 99.9

D321 300-1000 (n=10) 0.52 0.24 1.28 0.77 22.13 0.52 0.76 0.65 12.81 22.15 2.6 99.8

Iceland >1000 (n=6) 0.80 0.40 1.21 0.59 21.66 0.13 0.42 0.27 12.20 21.34 1.5 99.3

Basin <150 (n=14) 0.24 0.17 0.64 0.28 22.57 0.19 0.42 0.15 13.16 22.90 3.4 99.9

D340 300-1000 (n=15) 0.79 0.56 1.24 0.60 23.01 0.52 0.45 0.22 13.62 22.81 1.8 99.9

>1000 (n=2) 1.46 0.06 1.91 0.06 22.73 0.32 0.45 0.09 13.38 22.21 1.3 99.9

Hatton <150 (n=5) 0.67 0.15 1.11 0.08 22.41 0.33 0.44 0.09 13.05 22.24 1.7 99.9

to Rockall D340 300-1000 (n=4) 0.88 0.17 1.70 0.30 22.80 0.34 0.82 0.14 13.71 22.77 1.9 99.9

>1000 (n=1) 2.61 0.20 3.15 0.05 23.68 0.13 0.54 0.21 14.41 23.00 1.2 99.9

<150 (n=5) 0.15 0.05 0.48 0.05 22.67 0.55 0.33 0.07 13.19 23.04 3.6 99.8

Rockall D321 300-1000 (n=2) 0.52 0.22 0.87 0.30 22.36 0.37 0.34 0.21 12.80 21.17 1.8 98.6

Trough >1000 (n=4) 0.55 0.33 0.76 0.41 22.64 0.42 0.22 0.13 12.94 22.33 1.8 99.8

D340 <150 (n=11) 0.25 0.13 0.69 0.16 22.47 0.45 0.44 0.13 13.09 22.74 3.3 99.9

300-1000 (n=8) 0.53 0.25 0.93 0.30 22.49 0.27 0.40 0.19 13.03 22.35 1.9 99.9

Table 8: The Pearson product moment correlation for the relationship between 

dissolved Fe and nutrients for cruises D321 and D340.

D321 D340

Silicate Nitrate Phosphate Silicate Nitrate Phosphate

Correlation Coefficient with dFe 0.672 0.602 0.529 0.585 0.466 0.678

P value 8.22E-07 1.94E-05 0.000265 9.19E-07 0.000177 2.58E-09

Number of samples 43 43 43 60 60 60
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Figure 21: Correlation between dFe and nutrients during August/September 2007 

(D321) cruise and June 2009 (D340) cruise.

3.3.3 Organic Fe(III)-binding ligands 

This study showed relatively high and variable concentrations of Fe binding ligands in 

the surface waters of the study region (Table 7). The ligand concentrations were 0.50 ± 

0.26 nM (n=19) and 0.64 ± 0.28 nM (n=14) in the surface waters of the Iceland Basin 

for the D321 and D340 cruises (Table 7), respectively. In the Hatton-Rockall and 

Rockall Trough regions, the ligand concentrations were 1.11±0.08 nM (n=5) and 0.69 ± 

0.16 nM (n=11) (Table 7) in the surface waters for D340, respectively. Furthermore, the 

[L
T
] at the mid layer depths (300-1000 m) were higher than in surface waters at all 

stations. In the Iceland Basin, [L
T
] increased to >1 nM, with average concentrations of 

1.28 ± 0.77 nM (n=10) and 1.24 ± 0.6 nM (n=15) for D321 and D340 (Table 7), 

respectively. The highest [L
T
] at mid layer depths were observed in the Hatton-Rockall 

region (1.70 ± 0.3 nM; n=4) (Table 7). In the Rockall Trough region, the average [L
T
] 

were 0.87 ± 0.3 nM (n=2) and 0.93 ± 0.3 nM (n=8) for D321 and D340, respectively 

(Table 7). The [L
T
] profiles showed similar trends to those of [dFe] (Fig. 22) and the

major nutrients nitrate and phosphate, suggesting that all of these constituents were 
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released simultaneously during remineralization of sinking biogenic particles (Wu et 

al., 2001; Ye et al., 2009). Indeed, Wu et al. (2001) suggested that the regeneration of 

sinking biogenic particles forms an important source of ligands in oceanic waters.

Figure 22: Vertical profiles of dissolved Fe (dFe) and ligand (L
T
) concentrations for 

cruises D321 (Stations A1-A5) and D340 (Stations B1-B6).

The ligand concentrations were always in excess of [dFe] throughout the water column 

at all stations (Fig. 22). Between 99.5-99.9% of dFe was organically complexed (not 

considering Fe(II)) (Table 7) during both cruises. This observation agrees with other 

studies in the North Pacific (Rue & Bruland, 1995), Equatorial Pacific (Rue & Bruland, 

1997), North Atlantic (Gledhill & Van Den Berg, 1994; Wu & Luther, 1995; Witter & 

Luther, 1998), South and Equatorial Atlantic (Powell & Donat, 2001), the Mediterranean 

Sea (Van Den Berg, 1995), the Southern Indian Ocean (Gerringa et al., 2008) and the 

Southern Ocean (Nolting et al., 1998; Boye et al., 2001).

The high proportion of organic complexation is due to the high stability of the Fe(III)-

ligand complexes, reflected by the high log K'
FeL

in surface waters (log K'
FeL

= 21.7-23.3) 

(Table 7). The presence of strong organic Fe(III) binding ligands in the surface waters, 

coupled with the high inorganic side reaction coefficient of Fe3+ in oxic seawater i.e., 

α
Fe
′=1010 (Hudson et al., 1992) and low dissolved Fe concentrations, resulted in low 
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concentrations of free Fe3+ (ca. pFe3+ 21-23) (Table 7). Therefore, marine organisms 

may well have to use the organically complexed Fe to survive under depleted Fe 

conditions. However, the factors that affect and control an organism's ability to utilize 

the complexed Fe are not yet well understood.

During this study, I could not derive two classes of Fe(III)-binding ligands from the 

titration curves. Previous studies in the Atlantic Ocean (Gledhill & Van Den Berg, 1994; 

Witter & Luther, 1998) also reported one class of Fe(III)-binding ligands. Rue & Bruland 

(1995, 1997) reported two classes of Fe-binding ligands for the Pacific Ocean; in the 

Central North Pacific a strong ligand class (L
1
) with a log K'

FeL
= 22.7 and a mean

concentration of 0.31 nM, and a weaker class (L
2
) with a K'

FeL
= 21.8 and a mean 

concentration of 0.19 nM were observed (Rue & Bruland, 1995). Furthermore, during 

the Iron-Ex II experiments in the equatorial Pacific these workers observed L
1

with a log 

K'
FeL

= 23.07 and a mean concentration of 0.44 nM, and L
2

with a log K'
FeL

= 21.48 and a 

mean concentration of 1.5 nM (Rue & Bruland, 1997). Rue & Bruland (1997) used a 

detection window (27.5 μM of salicylaldoxime (SA), with α
Fe'SA

= 73) that was lower than 

the one used in this study (10.0 μM of TAC α
Fe'TAC

= 250). Consequently, it is possible 

that weaker ligands were not detected in titrations. 

The average log K'
FeL

value for surface waters falls within the range reported for the 

Northwest Atlantic Ocean (log K'
FeL

=22.3-22.9) (Witter & Luther, 1998), Western 

Mediterranean (log K'
FeL

=21.3-22.5) (Van Den Berg, 1995) and the Southeastern Atlantic 

Ocean (log K'
FeL

=21.4-23.5) (Croot et al., 2004). A further study in the Atlantic Ocean 

Gledhill & Van Den Berg (1994) reported lower values for the conditional stability 

constant (log K'
FeL

=19.0), but higher ligand concentrations of 3.5-4.8 nM than observed 

in the Iceland Basin. The log K'
FeL

value in the tropical North Atlantic Ocean reported by 

Rijkenberg et al. (2008), using the same method and data treatment approaches, was 

only slightly higher (22.85 ± 0.38) than in this study. This may reflect differences 

between tropical and sub-polar waters in the biological ligand sources and different 

fractions of the Fe(III) binding ligands pool which are taken up by the microbial 

community (Hutchins et al., 1999a).

Nevertheless, despite differences in oceanic regimes and choices of the competitive 

ligands (e.g. TAC, SA) and their concentration, a remarkably similar picture has 

emerged for log K' of FeL complexes between present data and others. Indeed, the 

conditional stability constants of the organic Fe ligand complexes (log K'
FeL

≈ 22-23) for 

both cruises were similar to the log K'
FeL

of strong ligands from the Pacific Ocean (Rue & 

Bruland, 1997), suggesting that the predominant ligand fraction in the Iceland Basin is 

similar to the one in the Pacific and may indicate siderophore type ligands. Siderophore 
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concentrations were related to the abundance of heterotrophic bacteria in the Atlantic 

Ocean (Mawji et al., 2008a), suggesting release during the bacterially mediated organic 

matter mineralization processes. However, the similar stability constants of ligands 

and siderophores during this study are not sufficient to assume a similar chemical 

structure of ligands. Therefore, further studies are necessary to determine the 

presence of siderophore-like compounds because there is no data on the occurrence of 

these compounds in the study region to date.

3.3.4 Fe speciation 

In order to identify trends in Fe speciation throughout the water column, I have 

examined the ratio of [L
T
]/[dFe] to highlight the differences in ligand saturation state 

(Thuroczy et al., 2010; Thuroczy et al., 2011). An enhanced ratio (i.e. >1) indicates a 

relatively large excess of ligands, and external inputs of Fe would be readily 

complexed by ligands. The ligands therefore have an enhanced capacity to buffer Fe. 

Removal of Fe by biological uptake or ligand production would increase the [L
T
]/[dFe] 

ratio. Conversely, a low ratio indicates a more complete saturation of the ligands with 

Fe, and additional external Fe inputs would be removed from the water column 

through precipitation and scavenging processes (Thuroczy et al., 2010). The vertical 

profiles of the [L
T
]/[dFe] ratios in the Iceland Basin showed a similar trend as for the 

Hatton-Rockall and Rockall Trough regions for both cruises, with high and variable 

[L
T
]/[dFe] ratios in the surface waters (<150 m) and a lower and more constant ratio at 

depth (Fig. 23).

In the Iceland Basin, the enhanced [L
T
]/[dFe] ratios (3.4-4.3) (Table 6) in surface waters 

were due to the low [dFe] as a result of the low atmospheric Fe inputs combined with 

biological uptake, and resulting in Fe stress for the phytoplankton community 

(Nielsdottir et al., 2009). This, in turn, may have triggered the production of Fe binding 

ligands (low free [Fe3+], pFe≈23) (Table 6) by the marine microbial community to 

facilitate Fe uptake (Croot et al., 2001; Gledhill et al., 2004; Boye et al., 2005; Mawji et 

al., 2008a; Mawji et al., 2011; Velasquez et al., 2011).

The enhanced average ratios of [L
T
]/[dFe] found in surface waters of the Rockall Trough 

region of 3.6 (n=5) and 3.3 (n=11) for D321 and D340 (Table 7), respectively, were 

likely due to the relatively low [dFe] as a consequence of biological Fe uptake, low 

atmospheric Fe inputs and possible ligand production by Fe stressed microorganisms. 

The enhanced productivity of this shallow region was most likely supported by benthic 

Fe inputs transferred to the surface by water column mixing processes (Johnson et al., 

2001).

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


Khairul Nizam Mohamed Chapter 3 – Dissolved Fe(III) speciation 

67

Figure 23: Depth profiles of the [dFe]/[L
T
] ratio for cruises D321 (Stations A1-A5) and 

D340 (Stations B1-B6).

The relatively low average [L
T
]/[dFe] ratio of 1.72 (n=5) (Table 7) in surface waters of 

the Hatton-Rockall region was the result of enhanced [dFe] in this region supplied by 

an anticyclonic mode water eddy. It has been shown that ligands produced by 

phytoplankton can complex Fe (Fuse et al., 1993; Boye et al., 2005; Buck et al., 2010). 

However, only a few studies have reported a clear relationship between chlorophyll a 

and L
T

concentrations, indicating that ligand production was related to phytoplankton 

biomass and associated bacteria and viruses (Rue & Bruland, 1997; Boye et al., 2005; 

Gerringa et al., 2006). In this study, I did not find a clear relationship between 

chlorophyll a and L
T

in surface waters (r2=0.0006, p>0.05; n=30). Possibly, the standing 

stock of the phytoplankton and bacteria was not related to the production of ligands. 

The grazing of the phytoplankton cells by zooplankton could have provided an 

alternate source of ligand in the surface layer (Hutchins et al., 1999a). Moreover, the 

variations in ligand concentrations in the surface layer (<150 m) are the result of a 

balance between production and breakdown processes (including photo-chemical 

degradation) (Croot et al., 2001; Boye et al., 2003; Rijkenberg et al., 2006).

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


Khairul Nizam Mohamed Chapter 3 – Dissolved Fe(III) speciation 

68

At depths between ca. 300-1000 m, the [L
T
]/[dFe] ratio decreased with depth to 

between 1.8-2.6 in the Iceland Basin (Table 7, Fig. 23) for both cruises. In the Hatton-

Rockall and Rockall Trough regions for D340, the average ratios were respectively 1.9 

(n=4) and 1.9 (n=8). The trends in ligands to dissolved Fe ratios observed in this study, 

agree with those reported by Thuroczy et al. (2010) and Thuroczy ey al. (2011). In the 

Southern Ocean these authors observed enhanced [L
T
]/[dFe] ratios in the surface

waters, with an average value of 4.4; lower [L
T
]/[dFe] were observed in deeper waters, 

with ratios ranging between 1.1 and 2.7 (Thuroczy et al., 2011). The decrease of the 

[L
T
]/[dFe] ratio was mainly due to the increase of [dFe] with depth throughout the water 

column (Fig. 23). This [dFe] increase resulted in a progressive occupation of the Fe-

binding ligand sites. The near-saturation of ligands is deemed to be consistent with the 

precipitation of Fe as insoluble oxyhydroxide and its removal from the deep ocean 

(Thuroczy et al., 2010; Thuroczy et al., 2011). Consequently, this indicates a steady 

state between dissolved organic ligands and dissolved Fe, reflecting a balance between 

degradation/remineralisation and scavenging in deep waters.

The relatively constant ratios of [L
T
]/[dFe] at depths below the surface mixed layer (Fig. 

23) suggested that the ligands were refractory compounds that originated from

degradation of sinking organic matter produced in surface waters (Kuma et al., 1996; 

Hunter & Boyd, 2007). The microbial degradation would produce Fe binding ligands in 

the deep waters (Kuma et al., 1996), where only one principal group of ligands is 

observed (Rue & Bruland, 1995; Hunter & Boyd, 2007) with a long decay time. 

Recalcitrant land-derived organic matter transferred from shelf seas into the deep 

ocean, forms an alternative ligand source (Bauer et al., 2002). A recent modelling study 

has confirmed enhanced decay times of Fe binding ligands in deep waters in excess of 

7 years (Ye et al., 2009).

3.4 Conclusion

The low [dFe] in surface waters of the high latitude North Atlantic Ocean coincided with 

excess organic ligands which prevented Fe precipitation and scavenging by forming 

stable chelates. This condition therefore prevented more pronounced Fe stress in the 

microbial surface water community. The Fe speciation analysis showed that dissolved 

Fe was 99.5% – 99.9% organically bound throughout the water column.

The ratio of [L
T
]/[dFe] as described by Thuroczy et al. (2010) , provided a useful 

concept to highlight the variations in ligand distributions throughout the water column 

and between different regimes in terms of primary production. High and variable 

[L
T
]/[dFe] ratios were observed in the surface waters and related to microbial ligand 

production and low [dFe] due to the low Fe inputs combined with biological Fe uptake.
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Moreover, decreasing ratios of [L
T
]/[dFe] with depth were observed to near constant 

ratios in the 300-1000 m depth region, reflecting a steady state between dissolved Fe 

and organic ligands which are possibly produced from the mineralisation of sinking 

biogenic particles or derived from terrestrial sources. This observation confirms the 

important role of organic ligands in keeping Fe in the soluble phase, and avoiding its 

precipitation and enhancing the residence time of Fe in the oceanic water column.

The conditional stability constants of the organic Fe ligand complexes (log K'
FeL

≈ 22-23) 

observed in the water column of this study region did not show a decrease with depth, 

as reported by Rue & Bruland (1995) , and thought to be indicative of a preferential 

degradation of the stronger ligand types according to Hunter & Boyd (2007). The 

stability constants observed in this study compared well with those reported for 

siderophore type ligands. However, while siderophores may well have a specific role in 

surface waters of this study region, it is unclear whether they are sufficiently resistant 

to breakdown for a role in deep water Fe complexation.
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CHAPTER 4 - Determination of dissolved 

hydroxamate siderophores in the high 

latitude North Atlantic Ocean

4.1 Introduction

Iron (Fe) is an essential element for the biochemical and physiological functioning of 

terrestrial and oceanic organisms. In an aqueous aerobic environment and at neutral 

seawater pH, iron is rapidly converted to highly insoluble oxy-hydroxides. In seawater 

the presence of naturally occurring organic ligands further decreases the concentration 

of the biologically important labile Fe species (Fe3+ concentrations < 10−14 M) (Rue & 

Bruland, 1995; Bruland & Rue, 2001; Hunter & Boyd, 2007) which it is lower than the

concentrations required for the sustenance of microbial life (Neilands, 1995). 

The high latitude North Atlantic is known for its deep winter overturning (>600 m). 

This process supplies nitrate and Fe from deeper water to the surface layer (Ducklow & 

Harris, 1993; Holliday & Reid, 2001; Allen et al., 2005), resulting in large 

phytoplankton bloom (Sanders et al., 2005) during the spring and subsequently 

significant drawdown of surface water macronutrients. However, in many regions of 

the open North Atlantic, including the Iceland and Irminger Basins, residual 

concentrations of nitrate persist into the summer, after the spring bloom has ceased. 

This phenomenon is due to depleted Fe concentrations which limit the summer

biological production and macronutrient drawdown by phytoplankton in this region 

(Nielsdottir et al., 2009). Thus it has been suggested that the high latitude North 

Atlantic forms a seasonal high-nutrient, low chlorophyll (HNLC) environment. Hence, 

competition for Fe between microorganisms is likely to be strong under these 

conditions. Although it is known that certain pathogenic microorganisms have evolved 

specialised mechanisms to extract Fe bound to a host-protein, a high proportion of 

prokaryotic microorganisms produce Fe specific chelaters called siderophores to 

acquire Fe from their environment (Andrews et al., 2003; Butler, 2004; Gledhill et al., 

2004; Butler & Martinez, 2007; Mawji et al., 2008a; Velasquez et al., 2011).

Siderophores are low molecular weight organic compounds (300 - 1500 Da) and are 

selective to Fe(III) (Boukhalfa & Crumbliss, 2002; Dhungana & Crumbliss, 2005). 

Common features of siderophores are the formation of six coordinate octahedral

complexes and the incorporation of hydroxamate, catecholate and α-hydroxy-

carboxylic acid chelating groups in different architectures (linear/cyclic) (Boukhalfa & 

Crumbliss, 2002). These compounds make Fe more available for biological uptake by 
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bacteria by enhancing its solubility (Trick & Wilhelm, 1995; Crumbliss & Dhungana, 

2004). 

Marine heterotrophic bacteria and cyanobacteria have been shown to produce

siderophores to acquire Fe and take up both their own siderophores as well as those 

produced by other organisms when Fe limited (Reid et al., 1993; Wilhelm & Trick, 

1994; Wilhelm et al., 1996; Martinez et al., 2001; Butler, 2005b). For example, Vibrio 

parahaemolyticus can utilise siderophores produced by Vibrio cholerae (Holbein, 

1980). Bacteria of the genus Vibrio represent an important component of the marine 

bacterioplankton community. These marine bacteria are known to produce 

deferrioxamine B (DFOB) and deferrioxamine G (DFOG) to bind Fe(III) and form 

complexes with trivalent Fe (Martinez et al., 2001; Gledhill et al., 2004). The Fe(III)-

siderophore complexes have high stability constants and are not readily 

photochemically degraded in natural sunlight (Barbeau et al., 2003). For example, the 

FOB complex has a stability constant of 1030.6 (Kraemer, 2004) compared to 1020 for the 

Fe(III)-EDTA complex (Martell et al., 1994). Thus, these Fe(III)-siderophore complexes 

increase solubility and bioavailability of Fe(III) (Hutchins et al., 1999b) to the 

heterotrophic bacteria in surface waters. However, there has been no evidence that 

eukaryotic phytoplankton actively produce siderophores (Hopkinson & Morel, 2009; 

Boyd & Ellwood, 2010). However, it is possible that eukaryotic phytoplankton acquire 

Fe from siderophores via reduction or photoreduction of Fe(III)-siderophore complexes 

(Barbeau et al., 2001; Maldonado & Price, 2001; Rose et al., 2005; Shaked et al., 2005; 

Morel et al., 2008; Hopkinson & Morel, 2009) and that siderophores contribute to 

synergistic relationships between phytoplankton and bacteria (Shaked et al., 2005).

Although much work on the identification of siderophores has been undertaken in the 

laboratory (Stintzi et al., 2000; Boukhalfa & Crumbliss, 2002; Dhungana & Crumbliss, 

2005), there have been fewer studies on siderophores undertaken in the field 

(Macrellis et al., 2001; Essen et al., 2006; Mawji et al., 2008a; Velasquez et al., 2011). 

Many different structures (>100) of siderophores produced by terrestrial 

microorganisms have been reported, nevertheless, only a few structures of marine 

siderophores are known. In a field study have reported the presence and 

concentrations of ferrioxamines (FOE and FOG) produced by marine bacteria 

throughout the North and South Atlantic Ocean have been reported (40ºN – 40ºS). 

Their study showed that some of the siderophores are released into the bulk seawater 

and making a significant contribution to the natural Fe(III) binding ligands pool, as 

suggested by Macrellis et al. (2001) and Mawji et al. (2008a) . The method which was 

used during their study (Mawji et al., 2008a) has been optimized by using

hydroxamate-type siderophores. Therefore, only two different ferrioxamine 
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siderophore compounds were detected, out of more than 30 marine siderophores 

characterised to date.

However, it is possible that a proportion of the marine siderophores characterised to 

date are undetectable using the methods currently available (Mawji et al., 2008a), 

either because they are too hydrophobic (Butler, 2004), or because their ferric 

complexes are hydrolysed at low pH (Raymond et al., 1984). Thus, understanding of 

the overall contribution of siderophores to the organic Fe(III)-binding ligands pool is 

limited both spatially and temporally, and by the range of analytical techniques 

available for their analysis. 

In this study, the presence of hydroxamate siderophores in the high latitude North 

Atlantic Ocean water has been investigated in order to extend the understanding of the 

spatial distribution of these types of siderophores. 

4.2 Methodology

Seawater was collected from stations shown in Figure 24 during two separate sampling 

campaigns on board RRS Discovery cruises D350 (April-May 2010) and D354 (July-

August 2010) in the high latitude North Atlantic Ocean. Samples were collected from 

within and just below the chlorophyll a maximum layer (Table 9) using a titanium CTD 

frame fitted with 10 L trace metal clean Teflon coated OTE (Ocean Technology 

Equipment) bottles. The seawater samples were filtered through 3.0 and 0.2 μm filters 

using cellulose nitrate membrane filters. The filtration was carried out under gentle 

vacuum, and the 0.2 µm filters were changed every 2 - 3 L in order to maintain 

filtration rates.

Dissolved siderophores in seawater were pre-concentrated onto polystyrene-

divinylbenzene solid-phase extraction (SPE) cartridges (Isolute ENV+) (Mc Cormack et 

al., 2003; Gledhill et al., 2004; Mawji et al., 2008a) with a reservoir capacity of 3 mL 

and 200 mg packing. The solid-phase extraction (SPE) technique has been described in 

detail in Chapter 2. Quantification of dissolved siderophores was performed by high-

performance liquid chromatography-inductively coupled plasma mass spectrometry 

(LC-ICP-MS) (X series, Thermo Scientific) by monitoring the 69Ga isotope (Mawji et al., 

2008a). Chromatography conditions were as described in Chapter 2. The gallium (ICP–

MS standard, VWR) with final concentration 10 µM, was added to a 200 µL sub-sample 

and allowed to equilibrate overnight at room temperature before measurement by LC-

ICP-MS. 
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Identification of types of siderophores in natural seawater was carried out by using 

high-performance liquid chromatography-electrospray ionization mass spectrometry 

(LC-ESI-MS) (Mc Cormack et al., 2003; Gledhill et al., 2004; Mawji et al., 2008a). 

Samples and standard solutions were automatically injected (25 µL volume) onto the 

separation column using an auto sampler (Accela, Thermo Scientific) and the 

chromatographic conditions were as described in Chapter 2. The mass to charge ratio 

of each type of siderophores was determined using an ion trap mass spectrometer 

(LTQ Velos, Thermo Scientific) in positive ion mode. Details of LC-ICP-MS and LC-ESI-MS 

analyses were described in Chapter 2.

Table 9: The coordinate for each station during RRS Discovery D350 and D354 cruise 

in the high latitude North Atlantic Ocean. Seawater sample at each station was filtrated 

and dissolved siderophores was extracted by SPE technique. 

Date CTD St. Lat. Long. Time Depth Extraction

No. (Nº) (Wº) (m) volume (L)

01/05/2010 T003 A1 60.56 34.52 1433 25 19

85 19

02/05/2010 T004 A2 60.02 34.57 1207 27 19

93 18

03/05/2010 T005 A3 59.59 37.55 1403 27 7.5

68 16

04/05/2010 T007 A4 59.58 29.10 1530 24 15

05/05/2010 T008 A5 59.54 26.02 1345 30 16

06/05/2010 T009 A6 60.50 21.44 1426 30 17

07/05/2010 T010 A7 61.57 20.01 1251 20 17

08/05/2010 T011 A8 63.05 19.52 1118 23 12

11/07/2010 T002 B1 60.00 19.58 1800 20 18

30 15

14/07/2010 T006 B2 60.00 23.00 850 20 18

50 15

16/07/2010 T008 B3 60.02 29.00 740 20 12

75 15

19/07/2010 T011 B4 60.02 41.00 1400 20 10

80 18

22/07/2010 T016 B5 63.00 35.00 1100 20 17

70 19

24/07/2010 T018 B6 63.00 30.00 930 20 18

60 18

26/07/2010 T019 B7 58.00 35.00 1400 40 19

30/07/2010 T021 B8 63.49 35.04 1300 20 19

31/07/2010 Towfish B9 63.30 33.23 1230 3 17

02/08/2010 T024 B10 63.25 23.35 1830 20 18

03/08/2010 T026 B11 61.47 24.27 1430 30 19

04/08/2010 Towfish B12 61.14 24.45 1600 3 18

06/08/2011 Towfish B13 61.45 24.00 1500 3 20

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


Khairul Nizam Mohamed Chapter 4 – Dissolved siderophores

79

  50°   50°

  55°   55°

  60°   60°

  65°   65°

  70°   70°

 -45°

 -45°

 -30°

 -30°

 -15°

 -15°

   0°

   0°

A1
A2

A3
A4

A5

A6

A7

A8

B1B2B3B4

B5
B6

B7

B8
B9 B10

B11

B12

B13

Iceland

Scotland

Greenland

1000 m
2000 m

Scale:  1:38962558 at Latitude 0°

Source: GEBCO.

Figure 24: Map of the high latitude North Atlantic Ocean, blue and red filled circle 

represents the stations during D350 and D354 sampling, respectively, for dissolved 

siderophores determined during this study.

4.3 Results and discussion

4.3.1 Concentration of dissolved siderophores 

The majority of siderophores are hexadentate ligands that complex with trivalent 

metals in a 1:1 ratio (Kraemer, 2004). This characteristic allows us to detect 

siderophores using ICP-MS and subsequently calculate the concentration of the 

siderophores based on an added metal concentration (Ga). By combining ICP-MS 

detection with LC separation, it is possible to separate the types of siderophores in the 

samples.

During this study, a large volume of natural seawater sample was used to concentrate 

dissolved siderophores onto a polystyrene-divinylbenzene solid-phase extraction (SPE) 

cartridge (Isolute ENV+). Then, dissolved siderophores were eluted from the column

with 5 mL mix solvent of 81:14:5:1 (v/v/v/v) acetonitrile/propan-2-ol/water/formic 

acid (Riedel-de Haen). The large sample volume is necessary due to a low concentration 

of siderophores in seawater. However, such large volumes can also affect the efficiency 

of extraction by SPE. A 40% ± 6% (n =16) extraction efficiency of 0.5 M FOB was 

reported by (Mawji et al., 2008a) for approaches identical to those applied in this 

study. The chemical characteristics and chromatographic behaviour of FOB are similar 

to the siderophores detected in this study (Mawji et al., 2008a), allowing FOB to be 
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used as a model ferrioxamine for calculation of siderophore concentrations in seawater 

throughout this study. Table 8 showed the extraction volume of natural seawater at 

each station in this study.

An example of a chromatogram for siderophores quantification obtained by LC-ICP-MS 

analysis in this study is shown in Figure 25. Three siderophore peaks were identified as 

gallium complexes in the chromatograms of the seawater sample. These siderophores 

were identified as the hydroxamate siderophores ferioxamine B (FOB), Ferrioxamine G 

(FOG) and ferrioxamine E (FOE) by LC-ESI-MS. The first peak was observed at a retention 

time (RT) ~13 minutes, similar to the retention time for FOB peak in a GaFOB standard 

solution, was identified as FOB. Ferrioxamine G eluted at a RT~14 minutes and finally

cyclic ferrioxamine FOE eluted at RT~16 minutes. FOE was retained by the polystyrene 

divinylbenzene column to a greater extent than the linear ferrioxamines (FOB and FOG) 

due to its cyclic structure. 

    

          FOB              FOG        FOE

Figure 25: Structure of ferrioxamine B (FOB), ferrioxamine G (FOG) and ferrioxamine E 

(FOE) determined during this study in the high latitude North Atlantic Ocean. 

A clear peak for FOB in the seawater sample can observe in the Fig. 26 at St.B11. 

Although the peak for each siderophore in the seawater sample at St. B13 is low (Fig. 

27), their presence in the sample was confirmed by LC-ESI-MS. In this study, a relative 

retention time (RRT) was used as suggested by Mawji et al. (2011), in order to identify 

the peaks for each siderophore present in the samples as a result of the different 

chromatographic conditions, void volumes and pumps used for both analyses. This 

relative retention time is expressed relative to the retention time of FOB peak in a 

standard solution and obtained from the equation below:
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Where t
r
is the relative retention time of peak i, t

i
is the absolute retention time of peak 

i, t
i 
is the void volume of the chromatographic system and t

GaFOB
is the retention time of 

GaFOB. The retention time for the GaFOB peak in the GaFOB standard solution was 

13.39 minutes within the LC-ICP-MS system. For the GaFOG, GaFOG and GaFOE peaks, 

the t
r
time were 1.0, 1.1 and 1.3, respectively. 

Figure 26: An example of a 69Ga chromatogram from the LC-ICP-MS analysis. This

chromatogram shows the peaks for GaFOB, GaFOG and GaFOE in the samples collected 

at St. 11 and St. 13 during RRS Discovery D354 cruise. 

The concentration of dissolved siderophores was calculated from instrument sensitivity 

obtained from a calibration curve constructed by analysis of standards at beginning of 

each day. Concentrations were corrected for 40% of SPE extraction efficiency (Mawji et 

al., 2008a). The concentration of dissolved FOB, FOG and FOE determined in the high-

latitude North Atlantic Ocean is shown in Table 10. The concentration of dissolved 

hydroxamate siderophores in the seawater high-latitude North Atlantic Ocean is very 

low (x10-18 M). Most of the seawater samples showed the presence of FOB at a 

concentration range of 0.63-135.56 x10-18 M (Table 10), with an average 16.65 x10-18 M 
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(n=17). The concentration for FOG and FOE was in the range 0.54-6.27 x10-18 M and 

1.24-2.79 x10-18 M (Table 10), respectively.

Table 10: Types of dissolved siderophores present in the seawater of high latitude 

North Atlantic Ocean during RRS Discovery cruise D350 (April-May 2010) and D354 

(July/August) cruise. Quantification and identification were carried out by LC-ICP-MS 

and LC-ESI-MS methods, respectively. Concentration for each siderophore is 

represented by the values in brackets. n/a is below the detection limit of LC-ICP-MS

Date St. Depth [dFe] Conc. of dissolved siderophores (x10-18 M)

(m) nM [FOB] [FOG] [FOE]

01/05/2010 A1 25 √ (135.56)

85 √ (1.54)

02/05/2010 A2 27 √ (1.77)

93 √ (0.63)

03/05/2010 A3 27

68

04/05/2010 A4 24 √ (7.79)

05/05/2010 A5 30 √ (44.54)

06/05/2010 A6 30 √ (13.49) √ (n/a)

07/05/2010 A7 20 √ (3.26) √ (n/a)

08/05/2010 A8 23 √ (5.96) √ (n/a)

11/07/2010 B1 20 0.27 √ (14.10)

30 0.20

14/07/2010 B2 20 0.32

50 0.15

16/07/2010 B3 20 0.11

75 0.13

19/07/2010 B4 20 0.12

80 0.21

22/07/2010 B5 20 0.14

70 0.24 √ (2.44)

24/07/2010 B6 20 0.05 √ (1.99) √ (n/a)

60 0.09 √ (7.79) √ (6.27)

26/07/2010 B7 40 0.12 √ (4.17) √ (0.90)

30/07/2010 B8 20 0.08

31/07/2010 B9 3 0.05 √ (2.64) √ (n/a)

02/08/2010 B10 20 0.09

03/08/2010 B11 30 0.10 √ (33.82) √ (n/a) √ (1.63)

04/08/2010 B12 3 0.08 √ (n/a) √ (n/a) √ (1.24)

06/08/2011 B13 3 0.07 √ (1.58) √ (0.54) √ (2.79)

4.3.2 Identification of dissolved siderophores

The combination of on-line application of LC with ESI-MS forms a powerful tool for 

identification of siderophores as it provides simultaneous information about chemical 

properties like hydrophobicity, molecular mass and structure (Feistner et al., 1993; 

Kaltashov et al., 1997; Gledhill, 2001). The retention time for the FOB standard peak 
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was 7.64 minutes (Fig. 27) by using the LC-ESI-MS method applied in this study.

Selective ion monitoring (SIM) allowed for the detection of very low concentrations of 

known individual siderophores. FOB, FOG and FOE produced singly charged protonated

ions ([M+H]+) m/z 614 at 7.53 minutes, m/z 672 at 8.11 minutes and m/z 654 at 9.86 

minutes, respectively (Fig. 28 and Fig. 29). Their identity was confirmed by comparing 

their fragmentation patterns with previously reported (Gledhill, 2001; Mawji et al., 

2008b) fragmentation patterns. 
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Figure 27: a) Chromatogram and b) mass spectra for a FOB standard solution (16 nM 

concentration) which obtained by using the LC-ESI-MS method analysis. The retention 

time for FOB peak was at 7.64 minutes. 
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b) FOG (m/z 672)
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Figure 28: Full chromatogram and mass spectra for a Fe(III) complexed siderophores

type compound for a) FOB, m/z 614 and b) FOG, m/z 672. The chromatogram spectra

were obtained from the seawater sample collected from Station B11 during RRS

Discovery 354 (D354). 
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FOE (m/z 654)
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Figure 29: Full chromatogram and mass spectra for a FOE, m/z 654. The 

chromatograms were obtained from the seawater sample collected from Station B13 

during RRS Discover 354 (D354). In the FOE mass spectra, the sodium adduct [M+Na]+

(m/z  676) was also observed.

As observed previously, the fragmentation for FOB and FOG showed similar trends (Fig. 

30) through loss of the terminal amine group (NH
3
) to produce a product ion of m/z

597 for FOB (Gledhill, 2001; Groenewold et al., 2004b) and 655 for FOG (Mawji et al., 

2008b) , respectively. Further losses produced an ion of m/z 496 (FOB) and m/z 554 

(FOG). Then followed rupturing of the 11-12 amide bond to produce ions at m/z 414 

(FOB) and 472 (FOG). Generally, the characteristic dissociation pathways observed for 

linear ferrioxamines involved a loss of NH
3

and the cleavage of the 7-8 hydroxamate 

bonds, which produced the most abundant fragment in the spectra of both FOB and 

FOG. A clear neutral loss pattern is observed of m/z 17, 100, 118 and 200.
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Figure 30: Structures and MS2 spectras of a) FOB and b) FOG from Station A9 during 

RRS Discovery 350 (D350) in the high latitude North Atlantic Ocean. Structure of FOB 

and FOG are showing the main cleavages (red line) accounting from fragments ion 

observed.

Incorrect programming of the ESI-MS meant that FOE was not detected by SIM or MS2 in 

these seawater samples. Consequently in this study, FOE in the seawater samples is 

identified by extracting mass chromatograms from the total ion chromatograms for 

both protonated and sodium adducts ([M+H]+ peak m/z 654, [M+Na]+ m/z 676) (Fig. 

31). The sodium adduct of siderophore complexes is commonly observed during the

determination of siderophores isolated from the natural environment by ESI-MS in the 

positive mode. LC-ESI-MS analysis showed that FOB, FOG and FOE had a similar 

distribution pattern to the hydroxamate siderophores determined by LC-ICP-MS 

analysis (Table 10). In this study, analysis of ferrioxamine siderophores using LC-ESI-
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MS with selective ion monitoring allowed FOB and FOG to be detected in more samples 

than analysis by LC-ICP-MS indicating that under these conditions, LC-ESI-MS was the 

more sensitive technique.
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Figure 31: Determination of FOE complex by corresponding the retention time for the 

sodium adducts and FOE peaks. The blue and red chromatogram represents the 

extracted full mass chromatogram of FOE (m/z 653.6-654.6) and sodium adduct (m/z

675.6-676.6), respectively, in the seawater sample from St. B13, showing a peak at a 

similar retention time~9.8 minutes. The peak at this retention time is identified as FOE 

(m/z 654) which showed in mass spectra in Figure 29.

4.3.3 Distribution of dissolved hydroxamate siderophores in the high latitude 

North Atlantic Ocean

The stations sampled during the D350 and D354 cruises were labelled as A1-A8 and 

B1-B13, respectively (Table 9, Fig. 24). Most of the stations were located in the Iceland 

Basin and the Irminger Basin.

Generally, FOB was found to be widespread in early May 2010. In the Irminger Basin, 

the highest concentration of dissolved FOB was in the surface waters (~30 m depth) 

135.56 x10-18 M at St. A1 (Table 10, Fig. 24). Below the chlorophyll a maximum layer, 

its concentration was 1.54 x10-18 M at St. A1 and 0.63 x10-18 M at St. A2 (Table 10).

Dissolved FOB was also detected in the chlorophyll a maximum layer (~30 m depth) in 

the Iceland Basin (St. A4, A5, A6, A7, A8) (Fig. 24) during May 2010. Its dissolved 

concentration was between 3.26–44.54 x10-18 M (Table 9). Dissolved FOG was also

detected at St. A6, A7 and A8 with LC-ESI-MS analysis, but its concentration was below 

the detection limit of LC-ICP-MS analysis. 
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During the July-August sampling campaign FOB and FOG were again detected in the 

Iceland Basin at St. B11, B12 and B13 (Table 10). The concentration of dissolved FOB in 

the chlorophyll a maximum layer was less compared to that observed in May 2010 in 

the region. Dissolved FOB concentrations were between 1.58–33.82 x10-18 M during 

early August 2010 (Table 10), while dissolved FOG was 0.54 x10-18 M at St. B13 (Table 

10). Ferrioxamine E (FOE) was also detected in the Iceland Basin with concentration 

between 1.24–2.79 x10-18 M in the chlorophyll a maximum layer (Table 10). According 

to Page & Huyer (1984) and Sevinc & Page (1992), several microbes produce more than 

one siderophore, and in many cases the siderophores may be produced by different 

bacteria. A more powerful chelator with high stability constant with Fe (FOE; log 

K´=1032.5) (Crumbliss, 1991), may only be produced when the first less powerful 

chelator (FOB; log K´=1030.6) (Kraemer, 2004), fails to provide enough Fe to the cell due 

to very low Fe condition at these stations (<0.1 nM) (Table 10). This type of 

siderophores production has been observed in Azotobacter vinelandii (Page & Huyer, 

1984; Sevinc & Page, 1992). 

The linear ferrioxamines siderophores (FOB and FOG) were also observed in the 

Irminger Basin. The concentration of dissolved FOB and FOG was between 1.99–7.79 

x10-18 M and 0.90–6.27 x10-18 M (Table 10), respectively. The high concentration of 

dissolved FOB and FOG were determined below the chlorophyll a maximum layer (60 m

depth) at St. B6. 

The concentrations observed in this study in the high latitude North Atlantic were 

much lower than those reported previously for dissolved ferrioxamine siderophore 

concentrations at lower latitudes in the Atlantic Ocean (Mawji et al., 2008a) . Mawji et 

al. (2008a) found that dissolved FOG was most abundant and ubiquitous with 

concentrations between 2.6-11.6 x10-12 M, while concentration of FOE in this region 

ranged from undetectable to 10.2x10-12 M which is 5-6 orders of magnitude higher 

than its concentrations in the high-latitude North Atlantic Ocean. The highest 

concentration for dissolved FOG and FOE was observed by Mawji and co-workers in the 

northern temperate (>35ºN) region, with concentrations between 5.7-9.2 pM and 3.1-

10.2 pM (Mawji et al., 2008a) , respectively. 

Although the concentrations of siderophores in natural seawater in the high latitude 

North Atlantic Ocean were very low (subfemtomolar level), siderophores were 

nevertheless detected in these regions and thus will be of biological significance for 

uptake for certain bacteria.  The detected siderophores are present in the dissolved 

phase and will thus form a very minor portion of the natural Fe(III) binding ligands, 

which are likely to be present at concentrations of between 0.4-0.5 nM in the surface 
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waters (see Chapter 3). Clearly, as the hydroxamates detected in this study do not 

contribute to the overall ligands pool in a major way, the organic ligands in the high 

latitude North Atlantic could be made up of other organics such as exudates (Saito & 

Moffett, 2001) and perhaps humic materials (Laglera & Van Den Berg, 2009). If so, less 

than 0.1 % of identified ferrioxamines contributed to the dFe concentration (0.2 µm 

fraction) in the high-latitude North Atlantic Ocean. In contrast, Mawji et al. (2008a)  

showed that 0.2-4.6 % of dFe was likely to be complexed by the identified 

ferrioxamines at lower latitudes in the Atlantic Ocean, despite the higher concentration 

of dFe (0.11-0.41 nM). However, this percentage is based on 0.2 µm fraction of dFe,

which is not truly soluble Fe fraction (0.02 µm) (Bergquist et al., 2007). Hydroxamate 

siderophores and the Fe complexed to them is likely present in the truly dissolved 

phase.

4.3.4 Production of dissolved hydroxamate siderophores 

Desferrioxamines B, E, and G are known to be produced by gram-negative bacteria 

such as Vibrio species (Martinez et al., 2001) and by gram-positive Actinomycetes 

species (Mucha et al., 1999; Ghanem et al., 2000). During this study, the distribution 

of specific bacteria species has not been determined. 

Previous studies (Trick, 1989; Wilhelm & Trick, 1994; Lewis et al., 1995; Neilands, 

1995; Jung & Drechsel, 1998; Cabaj & Kosakowska, 2009) have suggested that the

production of siderophores was stimulated by low concentrations of dFe. The 

measurement of surface (<150 m depth) dFe concentration (0.2 µm fraction) 

(Steigeneurger et al., unpublished data) in this region has shown the concentration was 

between 0.11-0.32 nM in the Iceland Basin (St. B1, B2 and B3) and 0.12-0.24 nM in the 

Irminger Basin (St. B4 and B5) in early July 2010 (Fig. 24, Table 10). However, due to 

the formation of the spring bloom (Ducklow & Harris, 1993) with a rapid increase in 

the chlorophyll biomass (Siegel et al., 2002; Sanders et al., 2005) in these regions, the 

dFe concentration decreased to 0.07-0.10 nM in the Iceland Basin (St. B11, B12 and 

B13) and 0.05-0.10 nM in the Irminger Basin (St. B6, B7, B8 and B9), by the end of July 

to August 2010 (Table 10). 

As a response to the Fe limited condition, it is possible that heterotrophic bacteria will 

actively produce siderophores (Vala et al., 2006) to sequester Fe from the various Fe

pools (Winkelmann, 1992) due to high Fe requirements for growth compared to the 

phytoplankton in open-ocean (Tortell et al., 1996; Tortell et al., 1999). Due to diffusion 

of siderophores away from the organisms that produced them (Hutchins et al., 1991; 

Morel et al., 1991), researchers have argued that organisms do not use siderophores 

as a means of keeping their competitors from acquiring Fe, but rather use them as a 
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means to acquire Fe from refractory sources. Thus, this study suggests that bacteria in 

the high latitude North Atlantic Ocean may be Fe deficient, as is the case for 

phytoplankton (Nielsdottir et al., 2009). Kirchman et al. (2000) has suggested that in 

the regions where phytoplankton are clearly Fe limited, heterotrophic bacteria growth 

is also likely faced with Fe limitation. 

In the Iceland Basin, siderophores were present in the surface layer at the end of July to 

August 2010, when the dissolved concentration of Fe was <0.1 nM at St. B11, B12 and 

B13 (Table 9). However, siderophores were not detected in early July 2010 in the 

Iceland Basin (St. B2 and B3), when the dissolved concentrations was more than 0.1 

nM, with the exception of St. B1. This indicated that Fe concentration could influence 

the production of siderophores in these waters. Iron concentrations between 0 to 1 µM 

have been found to induce the siderophore production by nearly all microorganisms 

(Neilands, 1995). In addition, Cabaj & Kosakowska (2009) found the highest 

concentration of FOB was produced by Micrococcus luteus and Bacillus silvestris at a 

concentration of 0.04 µM Fe in Fe-deficient low nutrient artificial sea water based liquid 

medium (IDSM). However, these levels of Fe concentration (µM level) are higher than 

the concentrations of Fe observed in the Iceland Basin. Thus, the influence of Fe 

concentrations on siderophores production in the marine environment is still unclear. 

An alternative hypothesis is that the production of siderophores is not just affected by 

Fe concentrations. Siderophores have been found in podzolic soils (Essen et al., 2006), 

which are generally not considered a low Fe environment. Siderophore production may 

be affected by other factors such as organic carbon concentrations. In podzolic soils

the highest concentration of siderophores (ferricrocin) was determined in the upper 

soils containing a high level of dissolved organic carbon (DOC). Furthermore it has 

been observed that a concentration of 0.05-0.30 M carbon produces maximum 

concentration of siderophores (Bendale et al., 2009). Bacteria may require more DOC at 

low Fe concentrations due to the effect of Fe on DOC catabolism. Thus, Fe and DOC 

may interact and co-limit the heterotrophic bacteria production (Kirchman, 1996; 

Tortell et al., 1999; Kirchman et al., 2000). In previous experiments the highest 

stimulation of bacterial production was observed when both Fe and DOC were added 

(Maldonado et al., 2006). In other studies, the addition of organic carbon but not Fe,

stimulated bacterial growth rates in the Antarctic Polar Front (Church et al., 2000), 

subArctic Pacific (Kirchman, 1990) and equatorial Pacific (Kirchman & Rich, 1997). In 

addition, the highest concentration and diversity of siderophore type chelates were 

also found in glucose amended seawater (Mawji et al., 2011). This could suggest that 

the production of siderophores and Fe uptake by heterotrophic bacteria is likely 

limited, like bacteria growth, by the supply of organic carbon in the surface ocean. 
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The low temperature of surface seawater in the high latitude in the North Atlantic 

Ocean (9.1-10.4ºC) may also play a vital role in the bacteria growth and siderophores 

production. In fact, the influence of temperature on siderophores production has been

previously observed for several bacteria (Garibald.Ja, 1972; Worsham & Konisky, 1984). 

The highest hydroxamate siderophore production by Vibrio salmonicida was found at 

temperatures of 6ºC under Fe limited conditions. However, the optimum growth rate 

for this species was reported to be 12ºC and at this temperature a very low 

siderophores production was found (Colquhoun & Sorum, 2001). In addition to the 

temperature (Thompson et al., 2004; Schets et al., 2010; Vezzulli et al., 2010), salinity, 

phytoplankton and nutrients may also influence the abundance of siderophores 

producing bacteria as suggested by Martinez-Urtaza et al. (2008) and Turner et al.

(2009). Nevertheless, investigations on the distribution of species such as Vibrio sp., 

known to produce hydroxamate siderophores, in cold water temperature (8ºC) are rare 

and to the best of my knowledge, there was no available data on abundance of this 

species in the high latitude North Atlantic Ocean, yet. That is due to fact that at low 

temperature (<10ºC), Vibrio bacteria enter a viable but non-culturable state (Ravel et 

al., 1995; Oliver, 2005). Thus, it is possible the cold temperatures (9-12ºC) in this 

region would reduce the growth of potential siderophores producing bacteria and 

thereby reduce hydroxamate siderophore production.

4.4 Conclusion

This first study on the determination of dissolved siderophores in the high latitude 

North Atlantic Ocean has confirmed the presence of dissolved hydroxamate-type 

siderophores (ferrioxamine B, ferrioxamine G and ferrioxamine E) in natural seawater 

of that region. 

The linear ferrioxamines FOB and FOG were detected on cruises in April-May 2010 and 

late July to August 2010 in these regions, but their total concentrations were lower (0 –

135.56 x10-18 M). In contrast, we did not observe dissolved ferrioxamines in early July 

2010. Less than 0.1% dFe (0.2 µm fraction) in this region could be complexed by these 

siderophores, thus they are unlikely to influence the general bioavailability of Fe in the 

chlorophyll a maximum layer in this region. The low concentration of dissolved 

siderophores detected in the high latitude of the Atlantic Ocean suggests that 

siderophore distributions are both spatially and temporally variable. 

The report of formation of Fe limited conditions in this region (Iceland Basin) might 

influence the production of siderophores by heterotrophic bacteria and release of 

siderophores into the bulk dissolved phase forming portion of the natural Fe(III) 

binding ligands pool. However, previous observations of dissolved siderophores at 
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lower latitudes in the Atlantic Ocean (Mawji et al., 2008a) resulted in concentrations 

considerably higher than the concentrations observed in the high latitude North 

Atlantic, despite higher Fe concentrations observed at lower latitudes. Moreover, 

siderophores are also found in podzolic soils (Essen et al., 2006), that are not

generally considered to be Fe stressed. Thus, the production of siderophores might 

not only be affected by Fe concentrations. The source of carbon might be a potential

factor influencing siderophore production due to the importance of organic carbon to 

the growth of heterotrophic bacteria, which produced siderophores. On the other 

hand, the low seawater temperatures in this study region may also play a role in 

decreasing a growth of heterotrophic bacteria and thereby siderophores production. 

Only three siderophores were detected in this study and they were all soluble 

hydroxamate siderophores, possibly amongst the most stable and soluble of the 

potential marine siderophores. Considering the amphiphilic character of many marine 

siderophores it is possible that siderophores are associated with the particulate phase. 

Thus, determination of siderophores in the particulate phase is needed in order to 

obtain more information about the abundance of siderophores in the seawater, and it 

is still missing in the present study. Due to the selective method for this study, it is

possible that siderophores with other functional groups (e.g., catecholate or 

carboxylate functional groups) could not be detected. In fact, more information on the 

presence and distribution on other types of siderophores, coupled with other 

parameter like Fe speciation would help us to understand the Fe biogeochemical cycle 

in the ocean.
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CHAPTER 5 - Diversity of siderophores in 

surface waters of the high latitude North 

Atlantic Ocean

5.1 Introduction

Prokaryotes are known to have higher cellular Fe:C ratios and therefore higher iron (Fe) 

requirements than phytoplankton (Tortell et al., 1999). The Fe:C ratios of eukaryotic 

phytoplankton and heterotrophic bacteria are 3.7±2.3 and 6.1±2.5 µmol Fe mol C-1, 

respectively (Tortell et al., 1996; Maldonado & Price, 1999). In response to Fe 

deficiency marine prokaryotes secrete siderophores to solubilise and facilitate 

acquisition of Fe(III) in the environment. Iron stress has been reported for the 

phytoplankton community in the high latitude North Atlantic Ocean (Nielsdottir et al., 

2009). Both cyanobacteria and heterotrophic bacteria have been found to produce 

siderophores under Fe limited conditions (Wilhelm & Trick, 1994; Ito & Butler, 2005; 

Martinez & Butler, 2007; Vraspir & Butler, 2009). However, production of siderophores 

by phytoplankton has been the subject of much research, and up until now there has 

been no evidence that phytoplankton is actively producing siderophores (Hopkinson & 

Morel, 2009; Boyd & Ellwood, 2010). In a recent study, Mawji et al. (2008a) reported a 

significant correlation between total ferrioxamine siderophores concentration and 

heterotrophic bacterial abundance (r=0.47, n=19, p<0.05) in the low latitude North 

Atlantic Ocean. On the other hand, these workers did not observe a significant 

correlation between the total ferrioxamine concentration and autotrophic bacteria or 

picoeukaryote phytoplankton (< 2 μm) abundances. 

Recently, our understanding of siderophore production by heterotrophic bacteria in the 

marine environment has been largely based on bacteria that can either be cultured in 

the laboratory (Butler, 2004, 2005a; Butler & Martinez, 2007; Butler & Theisen, 2010)

or grown successfully in nutrient enriched seawater samples (Gledhill et al., 2004; 

Mawji et al., 2008a; Mawji et al., 2011), as this allows for the production of sufficient 

quantities of siderophores for further characterisation. The influence of different 

sources of carbon (glucose, glycine and chitin) along with nitrogen (ammonium) and 

phosphorus (phosphate) on the siderophore production has been examined by Mawji 

et al. (2011). These workers found that the easily available carbon source (glucose; 

C
6
H

12
O

6
) produced the highest concentration and diversity of hydroxamate 

siderophores, compared to other carbon sources (glycine; C
2
H

5
NO

2
and chitin; 

C
8
H

13
NO

5
)
n
) (Mawji et al., 2011). The total concentration of siderophore produced in 

glucose incubations ranged between 0.2-69.0 nM with 12-14 different siderophores 
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identified in waters from the low latitude of Atlantic Ocean (43.7ºN – 31.8ºS) (Mawji et 

al., 2011). Furthermore, these workers observed a positive correlation between 

siderophore concentrations and bacterial cell abundance in the glucose incubations. In 

contrast, there was no relationship between these variables in the chitin and glycine 

incubations. A high number of siderophore type chelates (10-12) was determined in

the chitin incubation, but at low concentrations (0.1-0.6 nM) (Mawji et al., 2011). In the 

glycine incubations, a constant number of siderophore type chelates (3-8) was 

observed at low concentrations, suggesting that the lack of readily available nitrogen 

in glycine incubations might have affected siderophore production (Mawji et al., 2011), 

since glycine was used as a source of both nitrogen and carbon by the bacteria.

In this study, the influence of different sources of nitrogen and iron concentrations on 

siderophore production and types of siderophore secreted by heterotrophic bacteria 

was examined. High latitude North Atlantic seawater was enriched with sodium nitrate 

(NaNO
3
) and ammonium chloride (NH

4
Cl) as nitrogen sources, along with glucose and 

phosphate. Moreover, two different concentrations of Fe(III) (9 and 90 nM) were used.

The seawater enrichment experiments were carried out in the high latitude North 

Atlantic Ocean during RRS Discovery cruise 350 (D350) and RRS Discovery cruise 354 

(D354) in April-May 2010 and July-August 2010, respectively. 

5.2 Methodology

Seawater samples for the enrichment experiments were collected in the high latitude 

North Atlantic Ocean (Fig. 32) into 2 L polystyrene tissue culture flasks (Becton 

Dickinson, USA). 

The aliquots of unfiltered seawater (2 L) were enriched with nitrogen (200 M 

ammonium chloride, Fisher Scientific or 200 M sodium nitrate, Fisher Scientific), 

glucose (100 M, Fisher Scientific), phosphate (20 M di-sodium hydrogen 

orthophosphate, Fisher Scientific) and iron(III) (Ferric Chloride, Fisher Scientific) (Table

11). This experiment was done in duplicate, and the enriched seawater sample was 

incubated in the dark on deck in incubators at ambient seawater temperatures. Non

enriched seawater was used as a control.

The samples were incubated until the bacteria in the incubations had reached the 

stationary growth phase (4-5 days). Bacterial growth was monitored daily using 

absorption measurements (Red Tide USB 650, Ocean Optic) at a wavelength of 600 nm. 

Samples for enumeration of bacteria (flow cytometry analysis) were sampled daily into 

2 mL polypropylene low temperature freezer vial (VWR International) and stored at -
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80ºC after adding 1% paraformaldehyde (w/v) for analysis on shore. The flow cytometry 

analysis was described in detail in Chapter 2.

  50°   50°

  55°   55°

  60°   60°

  65°   65°

  70°   70°

 -45°

 -45°

 -30°

 -30°

 -15°

 -15°

   0°

   0°

Inc.1

Inc.2
Inc.3Inc.4Inc.5

Inc.6

Inc.7

Iceland

Scotland

Greenland

1000 m
2000 m

Scale:  1:38962558 at Latitude 0°

Source: GEBCO.

Figure 32: Location for enriched seawater experiments during RRS Discovery cruise 

D350 and D354 in the high latitude North Atlantic Ocean.

At the end of incubation period, samples were filtered to remove bacterial cells and the 

eluant was preconcentrated onto polystyrene-divinylbenzene solid phase extraction 

(SPE) cartridges (Isolute ENV+, 200mg x 3mL) for the extraction of siderophores. The 

extraction was carried out by using a Supelco Visiprep™ manifold coupled to a 5L 

reservoir and connected to a peristaltic vacuum pump. Cartridges loaded with 

preconcentrated siderophores sample were frozen at -20ºC until further processing 

and analysis on shore. Prior to analysis at National Oceanography Centre Southampton 

(NOCS), SPE cartridges were defrosted and eluted with 5 mL of 81:14:5:1 (v/v/v/v) 

acetonitrile: propan-2-ol: water: formic acid. The enriched seawater experiments have 

been described in detail in Chapter 2. 

The identification and quantification of siderophore type chelates in enriched samples 

were carried out as for seawater samples, except for the addition of Ga. A final 

concentration of 14 mM Ga(NO
3
)
3

(ICP–MS standard, VWR) was used in all incubation 

samples and the samples with added Ga were left overnight to equilibrate before 

analysis by LC-ICP-MS. Siderophore type compounds were identified using LC-ESI-MS 

(Mc Cormack et al., 2003; Mawji et al., 2008a; Mawji et al., 2011).
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Table 11: The enriched seawater sample treatments used during this study. All 

treatments were done in duplicate and untreated seawater was used as control.

Date Station Treatments Nutrients added

29/04/10 Inc. 1 Control -

58.34 ºN, 21.51ºW GNP 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3-

(3 m depth) GNP+Fe 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3- + 9 nM Fe(III)

GNP++Fe
100µM glucose + 200 µM NH

4

+ + 20µM PO
4

3- + 90 nM 
Fe(III)

03/05/10 Inc. 2 Control -

59.59 ºN, 37.55ºW GNP 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3-

(27 m depth) GNP+Fe 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3- + 9 nM Fe(III)

GNP++Fe
100µM glucose + 200 µM NH

4

+ + 20µM PO
4

3- + 90 nM 
Fe(III)

12/07/10 Inc. 3 Control -

60.02ºN, 19.58ºW GNP 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3-

(3 m depth) GNO
3
P 100µM glucose + 200 µM NO

3

- + 20µM PO
4

3-

G 100 µM glucose

15/07/10 Inc. 4 Control -

60.02ºN, 23.37ºW GNP 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3-

(20 m depth) GNO
3
P 100µM glucose + 200 µM NO

3

- + 20µM PO
4

3-

G 100 µM glucose

18/07/10 Inc. 5 Control -

60.02ºN, 35.00 ºW GNP 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3-

(3 m depth) GNO
3
P 100µM glucose + 200 µM NO

3

- + 20µM PO
4

3-

G 100 µM glucose

19/07/10 Inc. 6 Control -

59.59 ºN, 41.35ºW GNP 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3-

(3 m depth) GNO
3
P 100µM glucose + 200 µM NO

3

- + 20µM PO
4

3-

G 100 µM glucose

26/07/10 Inc. 7 Control -

58.13ºN, 35.02 ºW GNP 100µM glucose + 200 µM NH
4

+ + 20µM PO
4

3-

(40 m depth) GNO
3
P 100µM glucose + 200 µM NO

3

- + 20µM PO
4

3-

G 100 µM glucose

5.3 Results and discussion

5.3.1 Bacterial growth in the nutrient enrichment samples

On day 1, the bacterial abundances in each seawater enrichment varied between 0.9-

1.1 x106 cells mL-1 and 0.9-2.0 x106 cells mL-1 for Inc. 1 (Iceland Basin) and Inc. 2 

(Irminger Basin) (Fig. 34), respectively, during the cruise in April-May 2010. An initial 

bacterial abundance in the control was 0.9 x106 cells mL-1in both incubation 

experiments (Inc. 1 and Inc. 2).

In Inc. 1, the final bacterial abundance at day 5 varied with the type of nutrient 

enrichment. The highest bacterial abundance was 5.5x106 cells mL-1 in the GNP+Fe 

treatment (Table 12, Fig. 33) of Inc. 1, which is nearly three times higher than the 

bacterial abundance in the control (1.9 x106 cells mL-1). While, there were 2.4 x106 cells 

mL-1 and 2.8 x106 cells mL-1 in the GNP and GNP++Fe treatment (Table 12), respectively, 

at the end of the incubation period in the Inc. 1. 
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Table 12: Concentrations and diversity of siderophore type chelates determined in 

nutrient enriched seawater in the high latitude North Atlantic Ocean. 

Station Incubation period Nutrient Final bacteria Siderophores determined
(days) enrichment (x106 cells mL-1) Type chelates Conc. (pM)

Inc. 1 5 Control 1.9 - -
GNP 2.4 - -
GNP+Fe 5.5 - -
GNP++Fe 2.8 - -

Inc. 2 3 Control 1.6 - -
GNP 2.0 FOB -
GNP+Fe 1.6 FOB -
GNP++Fe 1.5 FOB -

5 Control 3.0 - -
GNP 4.3 FOB 2.039
GNP+Fe 3.9 FOB -
GNP++Fe 3.3 FOB -

Inc.3 4 Control 2.9 - -
GNP 14.8 FOB 0.024

FOG -
Amph. (883) -

Amph. D (885) -
Amph. E (911) -

GNO
3
P 8.4 FOB -

Amph. (883) -
Amph. E (911) -

G 3.5 FOB -
FOG -

Inc. 4 4 Control 4.7 - -
GNP 13.7 FOG 0.849

Amph. E (911) -
GNO

3
P 10.2 FOG -

Amph. E (911) -
G 6.0 Amph. E (911) -

Inc. 5 4 Control 1.7 - -
GNP 13.8 FOB -

FOG 0.072
Amph. E (911) -

GNO
3
P 7.7 FOB -

Amph. (883) -
G 3.5 FOB -

FOG -
Amph. E (911) -

Inc. 6 5 Control 3.6 - -
GNP 14.0 FOB -

FOG -
Amph. (883) -

Amph. D (885) -
Amph. E (911) -

GNO
3
P 8.5 FOB -

FOG -
Amph. E (911) -

G 4.2 FOB -
Amph. E (911) -

Inc. 7 5 Control 4.0 - -
GNP 17.6 FOB 3.814

FOG 0.133
GNO

3
P 8.0 FOB -

G 5.5 FOB -

On the other hand, there was no significant difference in the bacterial abundances in 

the treatments of Inc. 2 (Fig. 33). At the end of the incubation period (day 5), the 

bacterial abundance varied between 3.0 x106 cells mL-1 (in the control) and 4.3 x106

cells mL-1 (in the GNP treatment) in Inc. 2 (Table 12). This indicated that the addition of 

extra Fe likely did not increase the abundance of bacterial in the high latitude North 

Atlantic seawater sample. The bacterial growth in these incubations is thus likely to be 
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more strongly influenced by other factors, e.g. temperature (Wiebe et al., 1993; 

Kirchman et al., 2005; Zhao et al., 2010).

An addition of 100 µM glucose (G) to the samples was sufficient to result in a 

significant increase in the bacterial abundance (3.5-7.5 x106 cells mL-1, Table 12) at the 

end of the incubation for the cruise in July-August 2010 relative to the control (1.7-4.7 

x106 cells mL-1, Table 12, Fig. 34). The addition of other nutrients NH
4

+ and PO
4

3- or NO
3

-

and PO
4

3- along with glucose further increased the bacterial abundance in the GNP and 

GNO
3
P treatment (Fig. 34). The final bacterial abundance in the GNP and GNO

3
P 

treatments ranged between 13.8-17.6 x106 cells mL-1 and 7.7-10.2 x106 cells mL-1 (Table 

12), respectively. This suggests that the combination of nitrogen, phosphate and 

glucose (GNP or GNO
3
P) resulted in the greatest enhancement of bacterial abundance. 

These results imply that bacterial growth on glucose alone may have been less efficient 

than growth on the addition nitrogen source. Carbon-rich substrates such as glucose 

provide energy for cellular maintenance but do not provide all the essential nutrients 

needed to facilitate growth for the bacteria (Payne & Wiebe, 1978; Cherrier et al., 

1996). 

  

Figure 33: Bacterial abundance in the nutrient enriched samples during RRS Discovery

cruise D350 in the Iceland Basin (Inc. 1) and Irminger Basin (Inc.2). GNP represents the 

addition to the samples of glucose (100µM), NH
4

+ (200 µM) and PO
4

3- (20µM) to the 

samples. GNP+Fe and GNP++Fe represent addition of Fe at concentration 9 nM and 90 

nM, respectively, along with GNP. 

However, the GNP treatment produced higher bacterial abundance compared to the 

GNO
3
P treatment (Fig. 35). It indicated a high uptake of NH

4

+ compared to the NO
3

- form 

for the bacterial growth. In fact, NH
4

+ is invariably the preferred nitrogen source for 

bacterial growth, although its concentration is less than NO
3

- concentration in the 

oceans (Wheeler & Kokkinakis, 1990). Kirchman & Wheeler (1998) have reported that 

the nitrogen uptake by heterotrophic marine bacterial was 78% and 32% of the total 

NH
4

+ and NO
3

- uptake, respectively. The uptake of NO
3

- is unusual because assimilatory 
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NO
3

- reduction is thought to be too energetically expensive to be carried out by 

heterotrophic bacteria that are carbon and energy limited (Kirchman et al., 1994). 

Figure 34: Bacterial abundance in the nutrient enriched incubations during RRS 

Discovery cruise D354 in the high-latitude North Atlantic Ocean. Two different sources 

of nitrogen (GNP and GNO
3
P) were added to the sample along with glucose and 

phosphate. G represents the addition of glucose (100µM) alone to the samples. 

During this study, a higher bacterial abundance was observed in the GNP treatment 

during July-August 2010 compared to April-May 2010. In July-August 2010, the highest 

final bacterial abundance in the GNP treatment ranged between 13.7 x106 cells mL-1 and 

17.6 x106 cells mL-1 with an average 14.8 x106 cells mL-1 (n=5), while in April-May 2010, 

the highest final bacterial abundance was 4.3 x106 cells mL-1 in the Inc. 2 (Table 12). 

The different seawater temperature during both cruises D350 (7-10ºC) and D354 (8-

13ºC) in the high latitude North Atlantic Ocean may have contributed to the different of 

bacterial abundances in the nutrients enrichment samples. In addition, the bacterial 
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abundances in the nutrient enrichment samples in this region (ranged between 2.4-

17.6 x106 cells mL-1, with an average 11.5 x106 cells mL-1, n=7) were lower than 

reported for nutrient enrichment samples carried out in the low latitude North Atlantic 

Ocean (ranged between 8.4-18.0 x106 cells mL-1, with an average 13.4 x106 cells mL-1, 

n=6) (Mawji et al., 2011).

5.3.2 Diversity and concentration of siderophore type chelates

Siderophore type chelates were isolated from nutrient enriched seawaters collected in 

the high latitude North Atlantic Ocean. Five different siderophore type chelates were 

detected during this study (Table 12). The compounds comprised two groups, the 

ferrioxamines (ferrioxamine B (FOB) and ferrioxamine G (FOG)) and the amphibactins 

(amphibactin D, E and an unknown amphibactin). The two ferrioxamine siderophores 

have been detected in the seawater in this region (Chapter 4). On the other hand, the 

amphibactins D and E (Fig. 36) and the unknown amphibactin were not detected. 

However, these amphibactin siderophores have been observed in nutrient enriched 

incubations which were conducted in the open ocean (Mawji et al., 2011) and in near-

shore waters (Gledhill et al., 2004). Amphibactins and FOG have previously been 

reported to be produced by gram-negative bacteria such as Vibrio species (Martinez et 

al., 2001; Martinez et al., 2003). On the other hand, desferrioxamines B and G are 

produced by gram-positive Actinomycetes species (Mucha et al., 1999; Ghanem et al., 

2000). However, the distribution of the specific bacterial species was not been 

determined during this study.
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Figure 35: Structure of amphibactin in the high latitude North Atlantic Ocean during 

this study. For the FOB and FOG structure, please refer to Chapter 4. 
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The siderophore type chelates were identified by reanalysis of the samples using LC-

ESI-MS analysis after overnight equilibration with excess (14 mM) Ga. A peak for Ga 

complexed with FOB (GaFOB) was observed at Rt = 7.35 minute in the chromatogram 

(Fig. 36). The mass to charge ratios (m/z) of 627 and 629, which indicate protonated 

complexes of 69GaFOB and 71GaFOB, respectively, were observed at the retention time of 

7.35 min. Mass chromatograms for other Ga-siderophore complexes present in the 

samples are shown in Figure 37 for Ga-ferrioxamine G (GaFOG) and Figure 38-39 for 

Ga-amphibactin complexes.
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Figure 36: Extracted mass spectra for Ga complexed siderophore type compound (Ga-

ferrioxamine B (GaFOBH+), m/z 627/629). This siderophore was identified in the high 

latitude North Atlantic Ocean in Inc. 3 which was amended with glucose (100 µM), NH
4

+ 

(200 µM) and PO
4

3- (20µM) (GNP).
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Figure 37: Extracted mass chromatograms for Ga-ferrioxamine G complexed (GaFOGH+) 

identified in at Rt = 7.99 (m/z 685/687) obtained from Inc. 3 which was amended with 

glucose (100 µM), NH
4

+ (200 µM) and PO
4

3- (20µM) (GNP).
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Figure 38: Extracted mass chromatograms for the protonated Ga-amphibactin E 

complex in the Inc. 3 which was amended with glucose (100 µM) plus PO
4

3- (20µM) plus 

NH
4

+ (200 µM), at Rt=21.04 min (m/z 924/926). 
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Figure 39: Extracted mass chromatograms for a Ga complexed siderophores identified 

in an extract from Incubation 3 which was amended with glucose (100 µM), NH
4

+ (200 

µM) and PO
4

3- (20µM) (GNP). Peak at Rt = 19.58 min (m/z 896/898) was identified as 

the protonated Ga complex of the unknown amphibactin, and peak at Rt=20.38 min 

(m/z 898/900) was identified as the protonated Ga complex of amphibactin D.

The collision induced dissociation (CID) analysis of the selected ions confirmed the 

presence of ferrioxamine (m/z 614, 672) and amphibactin (m/z 885, 911, 883) 

siderophores in the nutrient enrichment incubation samples (Fig. 40). The amphibactin 

siderophores were characterised by a peptide head group containing the amino acids 

(L-serine, D ornithine and L-ornithine) (Martinez et al., 2003). Each amphibactin initially 

fragments through the loss of water (m/z 18), followed by fragmentation of m/z 190 

(terminal hydroxamate chelating group) and m/z 277 (Fig. 40). An identical ion of m/z 

503 in all spectra indicated a second fragmentation pathway, involving the loss of the 

third hydroxamic acid group together with the fatty acid tail. For the FOB and FOG 

fragmentation, please refer to Chapter 4.
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Figure 40: Mass spectra obtained on CID analysis of amphibactin D (m/z 885), E (m/z 

911) and unknown amphibactin (m/z 883) in Inc. 6 which was amended with glucose 

(100 µM), NH
4

+ (200 µM) and PO
4

3- (20µM) (GNP).
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Since, most of the amphibactin siderophore complexes eluted between Rt ~20-21 min 

in 100% organic solvent, this suggests that this group of siderophores is hydrophobic 

in nature. The masses of each amphibactin differed by an extension of saturated or 

unsaturated carbon chains, which ranges from C-14 to C-18 (Martinez et al., 2003). 

Thus, two peaks of amphibactin were obtained in the mass chromatogram shown in 

Figure 39. The first peak (Rt = 19.58 min) was identified as an unknown amphibactin 

(m/z 883) and second peak (Rt = 20.38 minute) was identified as amphibactin D (m/z

885). 

During this study, the number of siderophore type chelates detected by LC–ICP–MS was 

lower than that determined by LC–ESI–MS analysis due to the very low siderophore 

concentrations. Only ferrioxamine siderophores (FOB and FOG) (Fig. 41) were 

determined by LC–ICP–MS (Table 12, Fig. 41). Furthermore, FOB and FOG were only 

determined in the nutrient enriched incubations with GNP treatment. The 

concentrations for both FOB and FOG varied between 0.024–3.814 pM and 0.072–

0.849 pM (Table 12), respectively. 

Figure 41: An example of a 69Ga chromatogram from the HPLC-ICP-MS analysis. This 

chromatogram shows the peaks for the Ga-siderophore complexes in the working 

standard solution (GaFOB 100 nM) and nutrient enriched seawater sample for the GNP 

treatment (Sample 75, Inc. 7). 
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The diversity and concentrations of siderophore type chelates determined during this 

study was less than reported for the low latitude of Atlantic Ocean (43.74ºN – 31.83ºS) 

(Mawji et al., 2011) and in coastal waters (Gledhill et al., 2004). Both of these studies 

have determined more than 7 different siderophore type chelates (Gledhill et al., 2004; 

Mawji et al., 2011). Furthermore, Mawji et al. (2011)  found a higher diversity of 

siderophore type chelates in the Western Tropical Atlantic (12-14 siderophore type 

chelates). Although the concentrations (0.024-3.814 pM) and diversity (5 siderophore 

type chelates) of siderophore produced by bacteria during this study are much lower 

than previously reported (0.1- 69.0 nM) (Mawji et al., 2011), siderophores were 

nevertheless detected in the incubations carried out in the high latitude North Atlantic 

Ocean. This indicated that the bacteria capable of producing these siderophores are 

present in this region but that either they are naturally less abundant, or the 

production of siderophore type chelates was limited by a so far unidentified factor 

such as low seawater temperatures (Garibald.Ja, 1972; Worsham & Konisky, 1984; 

Colquhoun & Sorum, 2001).

5.3.3 Effect of iron and nitrogen on siderophores production in the high latitude 

North Atlantic

The effect of enhanced Fe concentrations on siderophores production was investigated 

in Inc. 1 (Iceland Basin) and Inc. 2 (Irminger Basin) (Fig. 32). There were no siderophore 

type chelates detected in any treatment conditions in Inc. 1 after 5 days (Table 11) and 

only FOB was identified in the Inc. 2 (Table 12) in all treatments after 3 days and 5 

days, except in the control (Table 12). Thus it appears that addition of extra Fe does 

not necessarily alter siderophore production in seawaters of high latitude North 

Atlantic. 

Seawater enriched with only glucose (G) produced a low diversity of siderophore type 

chelates compared to samples which were amended with GNP or GNO
3
P (Table 12).

This is consistent with the observed lower heterotrophic bacterial abundance in the 

glucose treatment when compared with treatments that include added nitrogen and 

phosphate (Fig. 34).

Samples amended with GNO
3
P produced a lower diversity of siderophore type chelates 

when compared to GNP treatments (Fig. 34, Table 11). This indicates that siderophore 

diversity is also affected by nitrogen source, with NH
4

+ being more optimal for the 

production of siderophores. It is interesting to note that uptake of NH
4

+ is reported to 

be less temperature dependent than NO
3

- uptake (Reay et al., 1999).  Thus, it is 
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possible that NH
4

+ is more important as a nitrogen source for bacterial growth and 

siderophore production in the high latitude region.

During this study, the addition of GNP to the sample produced the highest diversity 

and concentrations of siderophores type chelates, and hence is the best condition for 

siderophore type chelates production by bacteria in the marine environment. However, 

in this study region, the siderophore production may be strongly affected by the low 

temperature which reduces the production by the heterotrophic bacteria. 

5.4 Conclusion

Two types of ferrioxamine siderophores and amphibactin siderophores, produced by 

heterotrophic bacteria, were determined by HPLC-ESI-MS analysis in nutrient enriched 

seawater experiments in the high latitude North Atlantic Ocean. The siderophore type 

chelates detected in these experiments all belong to the tris-hydroxamate family and 

may reflect the selectivity of the chromatographic method used. It is thus possible that 

other siderophore type chelators may be present in the samples which were not 

detected due to methodological constraints. Since the Ga exchange analysis depends 

strongly on complexation of siderophore with Ga at low pH (~2), siderophore 

complexes that are unstable or insoluble at low pH (e.g. catecholate siderophores 

(Loomis & Raymond, 1991)) will not be detected using the conditions applied in this 

study. In addition to the pH effect, further method selectivity will be introduced by the 

preconcentration process, as a result of a loss of some hydrophilic siderophores.

The presented data showed that addition of iron did not result in a change in 

siderophore production in the high latitude North Atlantic Ocean. Furthermore, 

addition of ammonium (NH
4

+) as nitrogen source along with glucose and phosphate 

(PO
4

3-) produced highest higher diversity of siderophore type chelates compared to 

nitrate (NO
3

-). This finding shows the importance of nutrient type to the production of 

siderophores in nutrient enrichment experiments.

The diversity and concentration of siderophore type chelates detected during this 

study was low compared to previous studies in the low latitude Atlantic Ocean (Mawji

et al., 2011). Further studies are necessary in order to examine the relationship 

between siderophore production and geographical location. However it is possible that 

the low production of the siderophores detected in this study is related to the lower 

seawater temperatures in this region compared to the low latitude Atlantic Ocean.
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Conclusion and future works

The high latitude North Atlantic Ocean is seasonally iron limited (Nielsdottir et al., 

2009). In this study an investigation into the dissolved speciation of iron was 

undertaken in this study region. The low total dissolved iron concentration (dFe <0.1 

nM) in the surface waters of the high latitude North Atlantic Ocean coincided with 

excess organic Fe(III) binding ligands (0.4-0.5 nM, log K´

FeL
= 22-23) (Chapter 3) 

(Mohamed et al., 2011). Between 99.5-99.9% of dFe was organically complexed due to 

the presence of the excess ligands and the high stability of the organic Fe(III) binding 

ligands complexes (Chapter 3). The presence of organic Fe(III) binding ligands in this Fe 

limited region will work towards prevention of pronounced Fe stress in a microbial 

surface water community by maintaining Fe in the soluble phase and thereby 

enhancing the residence time of Fe in the oceanic water column (Chapter 3). The 

availability of the ligand bound Fe to the phytoplankton community is however still 

largely unclear. The low [dFe] and microbial ligand production responsible for the high 

and variable [L
T
]/[dFe] ratios in the surface waters in this region. However, in the 

deeper water (300-1000 m), the constant [L
T
]/[dFe] ratios was observed reflecting to 

the steady state between dissolved Fe and organic ligands.

Further investigations of the dissolved Fe-ligand pool were undertaken by 

characterisation of dissolved hydroxamate siderophores (Chapter 4). Very low 

concentrations of dissolved siderophores (0–135 x 10-18 M) and a relatively low 

diversity of siderophore type chelates was observed, compared to a previous study 

carried out at lower latitudes in the Atlantic Ocean (Mawji et al., 2008). The iron 

limiting conditions in this region did not therefore appear to strongly influence to the 

production of the hydroxamate siderophores. The production of siderophore type 

chelates is may thus be affected by a combination of factors, including carbon and 

nitrogen availability, rather than a single factor. Moreover, a low seawater temperature 

also potentially plays an important role in influencing siderophores production and 

growth of a potential heterotrophic bacterial producing siderophores in the high 

latitude North Atlantic Ocean.

The Fe(III) binding ligand strength determined during this study (Chapter 3) was similar 

to that measured previously (Rue & Bruland, 1997) and similar to the condition stability 

constant for marine siderophore complexes. However the extremely low concentration 

of total dissolved siderophores detected during this study, showed that they was no 

relationship between both total dissolved hydroxamate siderophore concentrations 

and natural organic Fe(III) binding ligand concentrations. Although it has been 

speculated that some or all of the Fe(III) ligands may be siderophores, the finding from 
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this study suggested that the hydroxamate siderophores determined here are not an 

important fraction (< 0.1%) of this natural organic Fe(III) binding ligand pool in the high 

latitude North Atlantic Ocean. The ligand pool in this region may therefore originate 

from other ligand sources. Such other sources may include humic substances (humic 

acid and fulvic acid) (Laglera & Van Den Berg, 2009) and exopolysaccharides and 

phytoploankton exudates and breakdown products (Hassler et al., 2011). 

Characterisation of the ligands in seawater thus requires further work.  

The restriction of siderophores production to the heterotrophic bacteria and the 

amphiphilic character of many marine siderophores (Martinez et al., 2000; Martinez et 

al., 2003; Butler, 2005) suggests that a portion of the siderophores in this region could 

be present in the colloidal or particulate phase (> 0.02 µm). In this phase, bacteria may 

be producing siderophores when attached to particles such as phytoplankton or 

zooplankton (Shaked et al., 2005; Amin et al., 2009). Although, only a few studies 

have been carried out on the distribution of organic ligands in the colloidal pool (Wu et 

al., 2001; Cullen et al., 2006; Thuroczy et al., 2010), it is probable that colloidal 

organic ligands play an important role in Fe biogeochemistry. 

This study has highlighted the importance of organic Fe(III) binding ligands for keeping 

Fe in solution in the water column of the seasonally Fe limited region of high latitude 

North Atlantic Ocean. This work also has provided valuable outcomes on the 

composition of these ligands in this region. Suggestions for future work on Fe 

speciation include: 

1.This study has highlighted the need for further work on the distribution of 

organic Fe(III) binding ligands in the colloidal fraction. This work is challenging 

as it is difficult to separate the colloidal fraction without perturbing it, however 

it will provide a valuable insight into oceanic Fe chemistry. 

2.This study has shown that it is important to determine the distribution of other 

than hydroxamate siderophores and other ligand types that have been 

proposed for Fe binding. These proposed ligands could include humic 

substance and exopolysaccharides. Further work is also required in order to 

assess whether these types of ligand are biologically available and how they 

react in the presence of competing ligands, like siderophores.

3.This study has also highlighted the need to investigate the distribution of 

potential heterotrophic bacteria producing siderophores in this high latitude 

region and the possible factors that might be influence the growth of these 

types of bacteria. 
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4.The utilisation a combination of on LC-ESI-MS and LC-ICP-MS forms a powerful 

tool for quantification and identification of very low hydroxamate siderophore 

concentrations in the seawater. However, further study is needed to improve 

the determination of other types of siderophores (catecholate or α-hydroxy 

carboxylic) hich possibly exist in the seawater. In fact, pH is an important factor 

that influences the types of siderophore which can be detected using the 

current method. The using of Ga to replace an Fe(III) in the Fe(III)-siderophore 

complex at low pH (~2) could be replaced with isotope labelled Fe (54Fe) in order 

to avoid loss of unstable or insoluble siderophore type chelates at low pH.
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Appendix

Cruises

1.RRS Discovery D328 (April 2008)
2.RRS Discovery D340 (Jun 2009)
3.RRS Discovery D354 (August-September 2010)

Conferences/ meeting attended

1."Iron biogeochemistry across marine systems at changing times" in Göteborg, 
Sweden, 14-16 May 2008.

2."Ocean challenges in the 21st century" The 14th Biennial Challenger Conference 
for Marine Science, National Oceanography Centre, Southampton, 6 - 9
September 2010.

3."Marine Biogeochemistry: Observations from near and far" Marine 
Biogeochemistry Forum and Marine Optics Group, Challenger Society for Marine 
Science, Portsmouth, 7 - Friday 9 September 2011.

Distributions

1.GEOTRACES intercalibration cruise data (Fe speciation) 2008 and 2009.
2.The speciation intercomparison data for the ASLO meeting, February 2010.
3.Iron speciation data for BODC, 2009-2010.

Publications

1. Dissolved iron(III) speciation in the high latitude North Atlantic Ocean (2011) 
Khairul N. Mohamed, Sebastian Steigenberger, Maria C. Nielsdottir, Martha 
Gledhill, Eric P. Achterberg, Deep-Sea Research I 58, 1049–1059.

2. Influence of Ocean Acidification on trace metal speciation. Eric P. Achterberg, 
Keqiang Li, Martha Gledhill, Khairul N Mohamed & Micha Rijkenber (in 
preparation).

3. Determination and identification of siderophore type chelates. Khairul N. 
Mohamed, Martha Gledhill, Eric P. Achterberg in "Ocean challenges in the 21st

century" meeting 2010. National Oceanography Centre, Southampton, 6 - 9
September 2010.

4. Determination of dissolved siderophores in the high latitude North Atlantic 
Ocean (2011). Khairul N. Mohamed, Martha Gledhill*, Eric P. Achterberg in 
"Marine Biogeochemistry: Observations from near and far" Marine 
Biogeochemistry Forum and Marine Optics Group, Challenger Society for Marine 
Science. University of Portsmouth, 7-9 September 2011.
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