Radical S-adenosylmethionine enzymes: mechanism, control and function

Challand, Martin R., Driesener, R and Roach, Peter L. (2011) Radical S-adenosylmethionine enzymes: mechanism, control and function Natural Product Reports, 28, (10), pp. 1696-1721. (doi:10.1039/C1np00036e).


Full text not available from this repository.


The radical SAM superfamily of enzymes use an iron sulfur cluster to reduce S-adenosylmethionine, which leads to the formation of a highly reactive intermediate, usually the 50-deoxyadenosyl radical. This potent oxidant is able to functionalize relatively inert substrates, including unactivated C–H bonds. This reactivity is evidently useful, as radical SAM enzymes are widely distributed throughout metabolism and catalyze some of the most complex and elegant biotransformations. In the first part of this review, the focus is on the mechanism of radical formation, including the features shared across the family, followed by a discussion of recent evidence for variations in cluster binding motifs and the mechanism of radical formation. In the second part, we survey how radical SAM chemistry has been applied to biosynthesis.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1039/C1np00036e
ISSNs: 0265-0568 (print)

Organisations: Chemistry
ePrint ID: 336608
Date :
Date Event
21 July 2011Published
Date Deposited: 30 Mar 2012 12:50
Last Modified: 17 Apr 2017 17:21
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/336608

Actions (login required)

View Item View Item