The University of Southampton
University of Southampton Institutional Repository

On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies

Record type: Article

Variable and model selection problems are fundamental to high-dimensional statistical modeling in diverse fields of sciences. Especially in health studies, many potential factors are usually introduced to determine an outcome variable. This paper deals with the problem of high-dimensional statistical modeling through the analysis of the trauma annual data in Greece for 2005. The data set is divided into the experiment and control sets and consists of 6334 observations and 112 factors that include demographic, transport and intrahospital data used to detect possible risk factors of death. In our study, different model selection techniques are applied to the experiment set and the notion of deviance is used on the control set to assess the fit of the overall selected model. The statistical methods employed in this work were the non-concave penalized likelihood methods, smoothly clipped absolute deviation, least absolute shrinkage and selection operator, and Hard, the generalized linear logistic regression, and the best subset variable selection.The way of identifying the significant variables in large medical data sets along with the performance and the pros and cons of the various statistical techniques used are discussed. The performed analysis reveals the distinct advantages of the non-concave penalized likelihood methods over the traditional model selection techniques.

Full text not available from this repository.

Citation

Karagrigoriou, A., Koukouvinos, C. and Mylona, K. (2010) On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies Journal of Applied Statistics, 37, (1), pp. 13-24. (doi:10.1080/02664760802638116).

More information

e-pub ahead of print date: 15 December 2009
Published date: 2010
Keywords: model selection, generalized linear model, non-concave penalized likelihood, high-dimensional data set, deviance, trauma
Organisations: Statistics

Identifiers

Local EPrints ID: 336771
URI: http://eprints.soton.ac.uk/id/eprint/336771
ISSN: 0266-4763
PURE UUID: ee05d7d7-4cc5-4517-a3ba-860ff984189f

Catalogue record

Date deposited: 04 Apr 2012 15:39
Last modified: 18 Jul 2017 06:06

Export record

Altmetrics

Contributors

Author: A. Karagrigoriou
Author: C. Koukouvinos
Author: K. Mylona

University divisions


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×