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ABSTRACT 
 

A two degree of freedom quarter-car model comprising a linear suspension spring in parallel with a 

non-linear damper has been investigated. The tyre damping is assumed to be negligible compared to 

the suspension damper and the tyre stiffness is represented by a linear stiffness. A cubic damping 

characteristic is of interest as an alternative to the viscous linear damping normally assumed. The 

system analysed is assumed to be under the steady-state sinusoidal base input. The analytical 

solutions obtained using the Harmonic Balance Method (HBM) have been validated with direct 

numerical integration. 

 

To facilitate a comparison with the linear system, the cubic damping coefficient is chosen such that 

the response level of the bounce mode resonance is approximately the same in each case. The effect 

of the cubic damping can then be easily distinguished for the frequencies above the bounce mode. 

The displacement transmissibility for base input at excitation frequencies above the bounce mode is 

much higher than the linear case.  

 

To this end, one can conclude that the cubic damping is not preferable for a base excited isolation 

system including a vehicle suspension system. However, to reduce the transmitted force to the 

supporting ground for an excited isolated mass, then cubic damping in an isolation system appears 

to be better than linear damping. 

 

 

 

1  INTRODUCTION 

 

The suspension system is one of the crucial systems for automotive vehicles. One of the important 

roles of the suspension system is to attenuate the vibration transmitted from the wheel-road 

interface to the car body. Damping is required to limit the resonant response of the vehicle vibrating 

rigidly on the suspension springs. A linear viscous damping model is commonly assumed to 

represent an automotive fluid damper and this is adequate for the purpose, for example,  

of illustrating the detrimental effect that damping can have in the isolation frequency region.  

One consequence of the linear model is that motion and force transmissibility are identical.  

An automotive damper is inherently non-linear due to the fluid orifice damping mechanism, and 

further complicated by the design of variable orifice valves to tune damper behaviour. The 

transmissibility of force and motion can therefore be expected to differ with associated implications 

for the efficacy of non-linear damping in components such as road suspensions and engine mounts. 

 

Fluid dampers are not only nonlinear but intentionally asymmetric, i.e. possess different 

characteristics in jounce and rebound directions. Surace et al [1], and Cui et al [2] report 
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asymmetric curves with a discontinuity owing to the friction characteristics when the relative 

velocity is equal to zero. 

 

This paper investigates the physical effects of damping non-linearity by adopting a cubic damping 

model. There have been a number of similar previous studies. Milovanovic et al [3] and Kovacic et al [4] 

investigated the effect of cubic damping on the SDOF base excited isolation system using the 

method of averaging. The absolute displacement transmissibility for such a system was plotted in 

comparison to that for linear damping. The plots showed that the transmissibility of the absolute 

displacement tends towards unity as the excitation frequency tends to infinity. From these studies, 

one can conclude that using cubic damping is not preferable for the base excited isolation system. 

Shekhar et al [5] studied the effect of cubic damping in combination with linear damping for shock 

isolation for three different input shapes. The overall results reveal that cubic damping is 

detrimental to the system response.  

 

However, the recent study of Peng et al [6] showed that the combination of linear viscous damping 

and anti-symmetric damping, including third and fifth powers of the velocity, can reduce the force 

transmissibility for the force excited isolation system. The comparison was made by keeping the 

value of linear damping ratio constant and varying the values of the non-linear damping terms, i.e. 

cubic and quintic terms. The results for the system with non-linear damping terms showed that the 

response around the resonance peak was significantly reduced with no change in the isolation 

region. 

 

This paper presents the results obtained from closed form solutions using the Harmonic Balance 

method for both a single and two degree of freedom system with cubic damping. The reason for the 

stark difference between the performance of the base and force excited systems is discussed. 

 

 

2  SYSTEM MODELS AND EQUATIONS OF MOTION 

 

In this study, three models as shown in Fig. 1 are examined, i.e. a 2-DOF quarter-car model, a 

SDOF quarter-car model (SDOF base excited isolation model) and a SDOF force excited isolation 

model. The first model is used for investigation into the effect of cubic damping on the responses of 

the sprung and unsprung masses. By extension, the second model is subsequently examined to 

discover the influence of the cubic damping on the isolated mass (sprung mass) for which the 

response of unsprung mass is eliminated. In addition the influence of cubic damping on the 

response for the force excitation case is examined as the comparison to that of the base excitation. 
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Fig. 1: Lumped parameter models for (a) the 2-DOF quarter-car model configuration,  

(b) the SDOF quarter-car which is represented by a SDOF base excited isolation system  

and (c) the SDOF force excited isolation system. 
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2.1  A 2-DOF quarter-car model 

A 2-DOF quarter-car model used in this study is shown in Fig. 1(a) for which the tyre damping is 

negligible compared to the suspension damper. Both suspension stiffness sk  and tyre stiffness tk  

are represented by linear springs and are assumed to be constant. Parameters sm , um  and 3c

represent sprung and unsprung masses and cubic damping coefficient respectively. The equation of 

motion for the model shown in Fig. 1 (a) is given by 

 

    
3

3 0s s s u s s um x c x x k x x      (1) 

and 

    
3

3 0u u u s s t u s s tm x c x x k k x k x k x       (2) 

 

Equations (1) and (2) can be written in non-dimensional form as 

 

    
3

3 0s s u s uw w w w w        (3) 

and 

  
3 2

3 0u r u s r u r s r rw M w w w M w M K w        (4) 

 

where the following substitutions have been made, i.e. 
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   and    are the first and second derivatives with respect to the  non-dimensional time  , 

which is given by st   

         0X  is the magnitude of base displacement input 

         s and u  are the sprung and unsprung mass natural frequencies for the assumed two separate 

single degree of freedom systems and are given by   
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The cubic damping term is given by 

 

 

 
 

23
3 0

3
s

s s

c
k X

m k
   (5) 

 

Note that this depends upon both the coefficient for the cubic damping term and the base input 

amplitude. 
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2.2  A SDOF quarter-car model 

To gain further insight into the effect of cubic damping, the tyre stiffness tk  is assumed to be 

infinitely stiff compared to suspension spring. Consequently the unsprung mass can be omitted. 

Then the model is simplified to be a SDOF quarter-car model or a SDOF base excited isolation 

system as shown in Fig. 1(b). The equation of motion for such a model is given by 

 

    
3

3 0 0 0s s s s sm x c x x k x x      (6) 

 

However it is more convenient to consider the relative motion between the isolated mass and the 

base input, i.e. 0sz x x  . Then equation (6) becomes 

 

 3

3 0s s sm z c z k z m x     (7) 

 

Equation (7) can be written in non-dimensional form as 

 

  
3

3 0u u u w       (8) 

where 
0

z
u

X
 .  

 

The definition of cubic damping term for the SDOF base excited isolation is identical to that for the 

2-DOF quarter-car model, i.e. 
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2.3  A SDOF force excited isolation model 

The response for the force excited isolation model is also examined, in order to compare the effect 

of cubic damping to that for the base excitation. The model is as shown in Fig. 1 (c), for which the 

equation of motion and equation of transmitted force are respectively given by 

 

  3

3mx c x kx f t    (10) 

and 

   3

3Tf t c x kx   (11) 

 

The non-dimensional forms of these equations can be written as 
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3

3w w w p      (12) 
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    
3

3Tp w w     (13) 
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with n  the natural frequency of the undamped system which is given by n k m   

        
fX  is the magnitude for the mass m which is given by  

maxfX f t k  where the assumed 

harmonic excitation is given by    cosf t F   . Therefore for the case of force excited 

isolation, the cubic damping term is given by  

 

 

 
 

2
3

3
3

f

c
kX

km
   (14) 

 

3 RESULTS AND ANALYSIS 

 

The equations of motion obtained in the previous section are integrated numerically using single 

sinusoidal frequency input with all zero initial conditions to obtain the steady-state numerical 

harmonic response. Fourier coefficients for the excitation frequency and its harmonics in the 

numerical predicted responses are determined and used to construct the frequency response 

function. For comparison, the HBM is applied to these equations to obtain the closed form solutions 

assuming just the response at the excitation frequency is to be determined. The solutions are plotted 

numerically in comparison to those from direct integration, which are in good agreement. Therefore 

the subsequent analysis and discussion in this study are based on the results obtained from HBM. 

Consequently the results and the effects of cubic damping are presented. Although the description 

of the procedures for solving these equations using the HBM are omitted, the reader is referred to 

previously published texts on the HBM method, e.g. Nayfeh [7] and Mickens [8]. 

 

To obtain a realistic set of results, the values for the cubic damping terms used are the values which 

provide a comparable amplitude of the displacement ratio at the bounce frequency in the case of a 

linear damping ratio. By doing this the responses above the bounce mode can be distinguished. The 

typical values of linear damping ratio regarding automotive suspension are around 0.25 to 0.75 [9]. 

In this study, the values of linear damping ratio are chosen to be 0.1, 0.2 and 0.3. The corresponding 

calculated values of cubic damping terms for the 2-DOF quarter-car model and the SDOF base 

excited isolation system, 3 , are 0.011, 0.101 and 0.407 respectively. For the case of force 

excitation, the same values of cubic damping are adopted for 
3  even though the amplitudes of 

force transmissibility are slightly different.  

 

It is important to note that using these cubic damping values is restricted for the specific value of 

the base input, since the cubic damping terms are input-dependent as given in equations (5) and (9). 

Whilst equation (14) is for the force input case which the values of cubic damping terms are 

restricted for the specific value of the force input. Hence the displacement ratios and the 

transmissibility for the cubic damping systems are affected by the amplitude of the input. In this 

paper, the values of cubic damping are calculated for an input amplitude of unity. However one can 

consider it the other way round, i.e. the higher value of cubic damping implies the larger amplitude 

of the input. The calculation procedure for getting the cubic term is not described in this paper. 

 

3.1  The effect of cubic damping on the 2-DOF quarter-car model 

In this section, the responses of the 2-DOF quarter-car model with cubic damping are plotted in 

comparison to the system with linear viscous damping as shown in Fig. 2(a)-(d). The displacement 

transmissibility for the non-linear system is defined by the approximate steady-state responses 

obtained from the HBM for which the responses at only the excitation frequencies are considered.  

The plots show the displacement ratio of the sprung mass to the base input for the system with 
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linear damping and cubic damping respectively. The plots reveal that cubic damping causes an 

increase in the response magnitude for excitation frequencies above the bounce mode, especially for 

higher values of the cubic damping terms. Despite the levels of the displacement ratio around the 

wheel-hop mode for the cubic damping system being similar to those for the linear viscous 

damping, the isolation ability between the bounce mode and the wheel-hop mode is worse for the 

non-linear damping. This means the cubic damping might cause the sprung mass to have high level 

of response for the intermediate excitation frequencies.  

 

 

 

  

   
 

Fig 2. The transmissibility displacement ratios for a 2-DOF quarter-car model using HBM : 

(a) sprung mass for linear damping system, (b) sprung mass for the cubic damping system,  

(c) unsprung mass for linear damping system and (d) unsprung for cubic damping system. 

 

 

The displacement ratio between unsprung mass and the base input for both linear and cubic 

damping systems are respectively shown in Fig. 2(c) and (d). One can describe the response at low 

excitation frequencies as a quasi-static system behaviour; the wheel is moving in unison with the 

base input. Theoretically, when the level of this ratio is around unity (0 dB) with no phase 

difference, the force between the wheel and the road is said to be the static load and the tyre 

deflection is constant [10]. One can say that with the higher force compressing the tyre, more grip 

will be obtained. The tyre is vibrating when either the ratio is not equal to unity or unity but with 

phase difference. If the tyre stiffness is too soft this will cause much vibration in the deflection of 

the tyre due to the undulating surface input. This can lead the wheel to vibrate against the stiffness 

of the tyre. This might result in poor quality of road holding, since to obtain good road holding the 

tyre deflection should be kept constant. However, the effect of cubic damping on the road holding is 

not discussed in this paper. 
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If the tyre stiffness is considered to be infinite, the motion of the unsprung mass and the base input 

are equal at all frequencies. This also means that there is no tyre deflection. Hence the forces arising 

from the wheel-road interface are transmitted directly to the sprung mass or isolated mass for the 

SDOF base excited isolation system. The effect of cubic damping for such a system is examined in 

the next section. 

 

3.2  The effect of cubic damping on the SDOF base excited isolation model 

By examining the SDOF base excited isolation system with cubic damping, the model for which 

illustrated in Fig. 1 (b), it is found that the displacement ratio for the isolated mass as shown in  

Fig. 3 (a) tends towards unity (0 dB) as the excitation frequency increases. Moreover, considering 

the phase information, Fig. 3 (b), reveals that in the high excitation frequency region the isolated 

mass is moving in-phase with the base input. As a result, one could hypothesise that when the 

excitation frequency is much higher than the undamped system natural frequency the damper starts 

behaving as a rigid link. This might be one culprit for the higher amplitude of the sprung mass for 

the 2-DOF quarter-car model above the bounce mode. 

 

 

   
 

Fig 3. (a) The displacement transmissibility and (b) the phase lag for a SDOF base excited isolation 

system possessing cubic damping in comparison to those of linear damping (thick grey lines)  

where the damping ratios, 1 , are 0.1, 0.2 and 0.3. 

 

 

In order to find the reason for the damper acting in such a way, the force contributions are of 

interest. Fig. 4 shows plots of the damping forces which contribute to the force acting on the 

isolated mass. One can see that the slopes of the cubic damping force with frequency above 

resonance are much steeper than those for the linear damper. This is because the damping force is 

resulting from the relative velocity of the isolated mass and the base input, which is proportional to 

the excitation frequency. Hence the higher excitation frequency causes higher damping forces 

which tend towards infinity. In the limit, motion across the damper is not possible and it acts as a 

rigid link. 

 

However, one might get the benefit from the cubic damping if the normalised relative velocity 

across the damper is restricted to be lower than a specific value for which the damping forces from 

linear viscous damping and cubic damping are equal, i.e.  0 1 32 /sw w     . Fig. 5 shows the 

comparison of the restoring force characteristic diagram for linear damping and cubic damping. One 

can see that when the normalised relative velocity is lower than a certain value, the cubic damper  
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 (a) (b) (c) 

 
Fig 4. Force contributions in the damping element which contribute to the force acting on the isolated 

mass due to base excitation for both linear and cubic damping systems. 

 

 

produces a lower damping force than that for the linear viscous damper. The force from cubic 

damping is much higher when the relative velocity exceeds a certain value as large relative velocity 

at high frequencies. This is a preferable characteristic around resonance since the relative velocity 

around resonance is very high. However, for the base excited isolation system for which the relative 

velocity is proportional to the excitation frequency, the damping force is higher for higher 

excitation frequencies. Thus there are some limitations to using the cubic damping for the base 

excited isolation system, including for the vehicle suspension system.  

 

 

 
 

Fig 5. The characteristic restoring force 

diagram for cubic damping  

compared to linear viscous damping.  

 
 

Fig 6. Force transmissibility for the force 

excited isolation systems with cubic damping in 

comparison to those with linear damping which 

the damping ratios, 1 , are 0.1, 0.2 and 0.3. 

 

3.3  The effect of cubic damping on the SDOF force excited isolation model 

In contrast to the case of base excitation, as one knows the highest relative velocity for the case of 

force excited isolation system occurs just around the resonance frequency and it is much lower for 

the excitation frequencies above resonance. As a result, higher damping forces are generated around 

resonance and much less for frequencies above resonance. In accordance with the restoring force 

characteristic diagram shown in Fig. 5, there is almost no damping force when the relative velocity 

is very low. This agrees with the principle idea for the isolation system, which needs to have less 

damping at high excitation frequencies. Thus the cubic damping is an alternative used for the force 

excited isolation system.  
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To support the preceding analysis, Fig. 6 shows the force transmissibility for the force excited 

isolation system for which the transmitted force around resonance is configured to have nearly the 

same level as those for the linear damping system. One can see that the isolation systems with cubic 

damping provide a better high frequency isolation. The decrease in the transmitted force is 

dominated by the mass line as for the undamped system, i.e. 40 dB per decade or inversely 

proportional to the excitation frequency squared. As one knows that the frequency response for the 

linear force excited isolation system at the isolation zone decreases by 40 dB per decade regardless 

the value of damping, so does the cubic damping system as shown in Fig. 7. Thus at high excitation 

frequencies, the motion of the vibrating mass appears to be very small. Hence the transmitted force 

is not influenced significantly from the stiffness component for this region whereas the linear 

damping still affects the force transmissibility. One can explain the advantage of cubic damping by 

examining the force contributed by the damper as shown in Fig. 8. The figures show the 

comparisons of the damping forces for the linear and cubic damping. One can see that the force 

contribution from the cubic damping is much lower than that from the linear damping. Then the 

transmitted force is totally influenced by the inertial force. This consequently results in the lower 

level of force transmissibility for the high frequency region. 
 

 

           
 (a) (b) (c) 

 
Fig 7. Frequency response for the force excited isolation systems with cubic damping  

in comparison to those with linear damping. 

 

 

4 CONCLUSIONS 

 

The damper element for the 2-DOF quarter-car model which is normally assumed as the linear 

viscous damping has been replaced by cubic damping as an alternative of the non-linear 

characteristic while the tyre damping is ignored. The responses for such a system were examined. 

The results show that cubic damping leads to worse response for the excitation frequencies between 

the bounce mode and wheel-hop mode. When the tyre stiffness is assumed to be infinitely stiff, the 

system was simplified to the SDOF base excited isolation system. The responses for the SDOF base 

excitation tend towards unity as the excitation frequency increases.  By contrast, the effect of cubic 

damping for the case of the force excited isolation system is investigated. One can conclude that 

cubic damping produces a much higher damping force at high excitation frequencies for the SDOF 

base excited isolation system which is due to the higher relative velocity across the damper. As a 

result, the displacement transmissibility for the system with cubic damping is worse than that for 

systems with linear damping and tends towards unity as the excitation frequency increases. This 

includes using cubic damping as a damper element for a vehicle suspension system. The cubic 

damping causes a higher displacement and acceleration of the sprung mass for a broad frequency 
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range above the bounce mode. In contrast, for the case of force excitation, there is less motion of 

the vibrating mass for higher excitation frequencies and hence less relative velocity across the 

damper and corresponding damping force. As a result cubic damping is beneficial in isolating the 

transmitted force from the vibrating mass to the supporting structure. 
 

 

          
 (a) (b) (c) 

 

Fig 8. Force contributions in the damping element which contribute to the transmitted force acting on 

the supporting structure due to the excitation force for both linear and cubic damping systems. 
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