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ABSTRACT

A two degree of freedom quarter-car model comprising a linear suspension spring in parallel with a
non-linear damper has been investigated. The tyre damping is assumed to be negligible compared to
the suspension damper and the tyre stiffness is represented by a linear stiffness. A cubic damping
characteristic is of interest as an alternative to the viscous linear damping normally assumed. The
system analysed is assumed to be under the steady-state sinusoidal base input. The analytical
solutions obtained using the Harmonic Balance Method (HBM) have been validated with direct
numerical integration.

To facilitate a comparison with the linear system, the cubic damping coefficient is chosen such that
the response level of the bounce mode resonance is approximately the same in each case. The effect
of the cubic damping can then be easily distinguished for the frequencies above the bounce mode.
The displacement transmissibility for base input at excitation frequencies above the bounce mode is
much higher than the linear case.

To this end, one can conclude that the cubic damping is not preferable for a base excited isolation
system including a vehicle suspension system. However, to reduce the transmitted force to the
supporting ground for an excited isolated mass, then cubic damping in an isolation system appears
to be better than linear damping.

1 INTRODUCTION

The suspension system is one of the crucial systems for automotive vehicles. One of the important
roles of the suspension system is to attenuate the vibration transmitted from the wheel-road
interface to the car body. Damping is required to limit the resonant response of the vehicle vibrating
rigidly on the suspension springs. A linear viscous damping model is commonly assumed to
represent an automotive fluid damper and this is adequate for the purpose, for example,
of illustrating the detrimental effect that damping can have in the isolation frequency region.
One consequence of the linear model is that motion and force transmissibility are identical.
An automotive damper is inherently non-linear due to the fluid orifice damping mechanism, and
further complicated by the design of variable orifice valves to tune damper behaviour. The
transmissibility of force and motion can therefore be expected to differ with associated implications
for the efficacy of non-linear damping in components such as road suspensions and engine mounts.

Fluid dampers are not only nonlinear but intentionally asymmetric, i.e. possess different
characteristics in jounce and rebound directions. Surace et al [1], and Cui et al [2] report



asymmetric curves with a discontinuity owing to the friction characteristics when the relative
velocity is equal to zero.

This paper investigates the physical effects of damping non-linearity by adopting a cubic damping
model. There have been a number of similar previous studies. Milovanovic et al [3] and Kovacic et al [4]
investigated the effect of cubic damping on the SDOF base excited isolation system using the
method of averaging. The absolute displacement transmissibility for such a system was plotted in
comparison to that for linear damping. The plots showed that the transmissibility of the absolute
displacement tends towards unity as the excitation frequency tends to infinity. From these studies,
one can conclude that using cubic damping is not preferable for the base excited isolation system.
Shekhar et al [5] studied the effect of cubic damping in combination with linear damping for shock
isolation for three different input shapes. The overall results reveal that cubic damping is
detrimental to the system response.

However, the recent study of Peng et al [6] showed that the combination of linear viscous damping
and anti-symmetric damping, including third and fifth powers of the velocity, can reduce the force
transmissibility for the force excited isolation system. The comparison was made by keeping the
value of linear damping ratio constant and varying the values of the non-linear damping terms, i.e.
cubic and quintic terms. The results for the system with non-linear damping terms showed that the
response around the resonance peak was significantly reduced with no change in the isolation
region.

This paper presents the results obtained from closed form solutions using the Harmonic Balance
method for both a single and two degree of freedom system with cubic damping. The reason for the
stark difference between the performance of the base and force excited systems is discussed.

2 SYSTEM MODELS AND EQUATIONS OF MOTION

In this study, three models as shown in Fig. 1 are examined, i.e. a 2-DOF quarter-car model, a
SDOF quarter-car model (SDOF base excited isolation model) and a SDOF force excited isolation
model. The first model is used for investigation into the effect of cubic damping on the responses of
the sprung and unsprung masses. By extension, the second model is subsequently examined to
discover the influence of the cubic damping on the isolated mass (sprung mass) for which the
response of unsprung mass is eliminated. In addition the influence of cubic damping on the
response for the force excitation case is examined as the comparison to that of the base excitation.

(b)

Fig. 1: Lumped parameter models for (a) the 2-DOF quarter-car model configuration,
(b) the SDOF quarter-car which is represented by a SDOF base excited isolation system
and (c) the SDOF force excited isolation system.



2.1 A 2-DOF quarter-car model
A 2-DOF quarter-car model used in this study is shown in Fig. 1(a) for which the tyre damping is
negligible compared to the suspension damper. Both suspension stiffness k. and tyre stiffness k,

are represented by linear springs and are assumed to be constant. Parameters m,, m, and c,

represent sprung and unsprung masses and cubic damping coefficient respectively. The equation of
motion for the model shown in Fig. 1 (a) is given by

mSX'S+c3(>'<3—>'<u)3+ks(xs—xu)=0 (1)
and

mu).(.u+C3(Xu_Xs)3+(ks+kt)xu_ksxs=ktX0 (2)
Equations (1) and (2) can be written in non-dimensional form as
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X, is the magnitude of base displacement input

o, and @, are the sprung and unsprung mass natural frequencies for the assumed two separate
single degree of freedom systems and are given by

o, = /ﬁ and o, = /k5+kt
mS mU

The cubic damping term is given by

Gy = (KX, )’ (5)
(mck;)

Note that this depends upon both the coefficient for the cubic damping term and the base input

amplitude.



2.2 A SDOF quarter-car model
To gain further insight into the effect of cubic damping, the tyre stiffness k, is assumed to be

infinitely stiff compared to suspension spring. Consequently the unsprung mass can be omitted.
Then the model is simplified to be a SDOF quarter-car model or a SDOF base excited isolation
system as shown in Fig. 1(b). The equation of motion for such a model is given by

mSX'S+c3(>'<s—>'<0)3+ks(xs—xo):0 (6)

However it is more convenient to consider the relative motion between the isolated mass and the
base input, i.e. z=x,—X,. Then equation (6) becomes

= -3 os
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Equation (7) can be written in non-dimensional form as

u"+.§3(u’)3+u =W (8)

z
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The definition of cubic damping term for the SDOF base excited isolation is identical to that for the
2-DOF quarter-car model, i.e.

4,3:—3(ksxo)2 )

2.3 A SDOF force excited isolation model

The response for the force excited isolation model is also examined, in order to compare the effect
of cubic damping to that for the base excitation. The model is as shown in Fig. 1 (c), for which the
equation of motion and equation of transmitted force are respectively given by

mX+¢,X° +kx = f (t) (10)
and
f(t)= ;X% +kx (11)

The non-dimensional forms of these equations can be written as

W+ & (W) +w=p(z) (12)
and
pr (1) =&a (W) +w (13)
where w=—— p(7)= 1 f(L) and p; ()= - f(L)
X, mao?X, \“ ma?X, '\



with @, the natural frequency of the undamped system which is given by o, = a/k/m
X 1s the magnitude for the mass mwhich is given by X, =|f (t)/k|max where the assumed

harmonic excitation is given by f(t)=Fcos(Qz). Therefore for the case of force excited
isolation, the cubic damping term is given by

&= ——=—(kX, ) (14)

3 RESULTS AND ANALYSIS

The equations of motion obtained in the previous section are integrated numerically using single
sinusoidal frequency input with all zero initial conditions to obtain the steady-state numerical
harmonic response. Fourier coefficients for the excitation frequency and its harmonics in the
numerical predicted responses are determined and used to construct the frequency response
function. For comparison, the HBM is applied to these equations to obtain the closed form solutions
assuming just the response at the excitation frequency is to be determined. The solutions are plotted
numerically in comparison to those from direct integration, which are in good agreement. Therefore
the subsequent analysis and discussion in this study are based on the results obtained from HBM.
Consequently the results and the effects of cubic damping are presented. Although the description
of the procedures for solving these equations using the HBM are omitted, the reader is referred to
previously published texts on the HBM method, e.g. Nayfeh [7] and Mickens [8].

To obtain a realistic set of results, the values for the cubic damping terms used are the values which
provide a comparable amplitude of the displacement ratio at the bounce frequency in the case of a
linear damping ratio. By doing this the responses above the bounce mode can be distinguished. The
typical values of linear damping ratio regarding automotive suspension are around 0.25 to 0.75 [9].
In this study, the values of linear damping ratio are chosen to be 0.1, 0.2 and 0.3. The corresponding
calculated values of cubic damping terms for the 2-DOF quarter-car model and the SDOF base

excited isolation system, ¢,, are 0.011, 0.101 and 0.407 respectively. For the case of force

excitation, the same values of cubic damping are adopted for £, even though the amplitudes of
force transmissibility are slightly different.

It is important to note that using these cubic damping values is restricted for the specific value of
the base input, since the cubic damping terms are input-dependent as given in equations (5) and (9).
Whilst equation (14) is for the force input case which the values of cubic damping terms are
restricted for the specific value of the force input. Hence the displacement ratios and the
transmissibility for the cubic damping systems are affected by the amplitude of the input. In this
paper, the values of cubic damping are calculated for an input amplitude of unity. However one can
consider it the other way round, i.e. the higher value of cubic damping implies the larger amplitude
of the input. The calculation procedure for getting the cubic term is not described in this paper.

3.1 The effect of cubic damping on the 2-DOF quarter-car model

In this section, the responses of the 2-DOF quarter-car model with cubic damping are plotted in
comparison to the system with linear viscous damping as shown in Fig. 2(a)-(d). The displacement
transmissibility for the non-linear system is defined by the approximate steady-state responses
obtained from the HBM for which the responses at only the excitation frequencies are considered.
The plots show the displacement ratio of the sprung mass to the base input for the system with



linear damping and cubic damping respectively. The plots reveal that cubic damping causes an
increase in the response magnitude for excitation frequencies above the bounce mode, especially for
higher values of the cubic damping terms. Despite the levels of the displacement ratio around the
wheel-hop mode for the cubic damping system being similar to those for the linear viscous
damping, the isolation ability between the bounce mode and the wheel-hop mode is worse for the
non-linear damping. This means the cubic damping might cause the sprung mass to have high level
of response for the intermediate excitation frequencies.
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Fig 2. The transmissibility displacement ratios for a 2-DOF quarter-car model using HBM :
(a) sprung mass for linear damping system, (b) sprung mass for the cubic damping system,
(c) unsprung mass for linear damping system and (d) unsprung for cubic damping system.

The displacement ratio between unsprung mass and the base input for both linear and cubic
damping systems are respectively shown in Fig. 2(c) and (d). One can describe the response at low
excitation frequencies as a quasi-static system behaviour; the wheel is moving in unison with the
base input. Theoretically, when the level of this ratio is around unity (0 dB) with no phase
difference, the force between the wheel and the road is said to be the static load and the tyre
deflection is constant [10]. One can say that with the higher force compressing the tyre, more grip
will be obtained. The tyre is vibrating when either the ratio is not equal to unity or unity but with
phase difference. If the tyre stiffness is too soft this will cause much vibration in the deflection of
the tyre due to the undulating surface input. This can lead the wheel to vibrate against the stiffness
of the tyre. This might result in poor quality of road holding, since to obtain good road holding the
tyre deflection should be kept constant. However, the effect of cubic damping on the road holding is

not discussed in this paper.



If the tyre stiffness is considered to be infinite, the motion of the unsprung mass and the base input
are equal at all frequencies. This also means that there is no tyre deflection. Hence the forces arising
from the wheel-road interface are transmitted directly to the sprung mass or isolated mass for the
SDOF base excited isolation system. The effect of cubic damping for such a system is examined in
the next section.

3.2 The effect of cubic damping on the SDOF base excited isolation model

By examining the SDOF base excited isolation system with cubic damping, the model for which
illustrated in Fig. 1 (b), it is found that the displacement ratio for the isolated mass as shown in
Fig. 3 (a) tends towards unity (0 dB) as the excitation frequency increases. Moreover, considering
the phase information, Fig. 3 (b), reveals that in the high excitation frequency region the isolated
mass is moving in-phase with the base input. As a result, one could hypothesise that when the
excitation frequency is much higher than the undamped system natural frequency the damper starts
behaving as a rigid link. This might be one culprit for the higher amplitude of the sprung mass for
the 2-DOF quarter-car model above the bounce mode.
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Fig 3. (a) The displacement transmissibility and (b) the phase lag for a SDOF base excited isolation
system possessing cubic damping in comparison to those of linear damping (thick grey lines)
where the damping ratios, ¢, are 0.1, 0.2 and 0.3.

In order to find the reason for the damper acting in such a way, the force contributions are of
interest. Fig. 4 shows plots of the damping forces which contribute to the force acting on the
isolated mass. One can see that the slopes of the cubic damping force with frequency above
resonance are much steeper than those for the linear damper. This is because the damping force is
resulting from the relative velocity of the isolated mass and the base input, which is proportional to
the excitation frequency. Hence the higher excitation frequency causes higher damping forces
which tend towards infinity. In the limit, motion across the damper is not possible and it acts as a
rigid link.

However, one might get the benefit from the cubic damping if the normalised relative velocity
across the damper is restricted to be lower than a specific value for which the damping forces from

linear viscous damping and cubic damping are equal, i.e. W, —w, :Q/ZQ,“l/g,“3 . Fig. 5 shows the

comparison of the restoring force characteristic diagram for linear damping and cubic damping. One
can see that when the normalised relative velocity is lower than a certain value, the cubic damper
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Fig 4. Force contributions in the damping element which contribute to the force acting on the isolated
mass due to base excitation for both linear and cubic damping systems.

produces a lower damping force than that for the linear viscous damper. The force from cubic
damping is much higher when the relative velocity exceeds a certain value as large relative velocity
at high frequencies. This is a preferable characteristic around resonance since the relative velocity
around resonance is very high. However, for the base excited isolation system for which the relative
velocity is proportional to the excitation frequency, the damping force is higher for higher
excitation frequencies. Thus there are some limitations to using the cubic damping for the base
excited isolation system, including for the vehicle suspension system.
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3.3 The effect of cubic damping on the SDOF force excited isolation model

In contrast to the case of base excitation, as one knows the highest relative velocity for the case of
force excited isolation system occurs just around the resonance frequency and it is much lower for
the excitation frequencies above resonance. As a result, higher damping forces are generated around
resonance and much less for frequencies above resonance. In accordance with the restoring force
characteristic diagram shown in Fig. 5, there is almost no damping force when the relative velocity
is very low. This agrees with the principle idea for the isolation system, which needs to have less
damping at high excitation frequencies. Thus the cubic damping is an alternative used for the force
excited isolation system.



To support the preceding analysis, Fig. 6 shows the force transmissibility for the force excited
isolation system for which the transmitted force around resonance is configured to have nearly the
same level as those for the linear damping system. One can see that the isolation systems with cubic
damping provide a better high frequency isolation. The decrease in the transmitted force is
dominated by the mass line as for the undamped system, i.e. 40 dB per decade or inversely
proportional to the excitation frequency squared. As one knows that the frequency response for the
linear force excited isolation system at the isolation zone decreases by 40 dB per decade regardless
the value of damping, so does the cubic damping system as shown in Fig. 7. Thus at high excitation
frequencies, the motion of the vibrating mass appears to be very small. Hence the transmitted force
is not influenced significantly from the stiffness component for this region whereas the linear
damping still affects the force transmissibility. One can explain the advantage of cubic damping by
examining the force contributed by the damper as shown in Fig. 8. The figures show the
comparisons of the damping forces for the linear and cubic damping. One can see that the force
contribution from the cubic damping is much lower than that from the linear damping. Then the
transmitted force is totally influenced by the inertial force. This consequently results in the lower
level of force transmissibility for the high frequency region.
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Fig 7. Frequency response for the force excited isolation systems with cubic damping
in comparison to those with linear damping.

4 CONCLUSIONS

The damper element for the 2-DOF quarter-car model which is normally assumed as the linear
viscous damping has been replaced by cubic damping as an alternative of the non-linear
characteristic while the tyre damping is ignored. The responses for such a system were examined.
The results show that cubic damping leads to worse response for the excitation frequencies between
the bounce mode and wheel-hop mode. When the tyre stiffness is assumed to be infinitely stiff, the
system was simplified to the SDOF base excited isolation system. The responses for the SDOF base
excitation tend towards unity as the excitation frequency increases. By contrast, the effect of cubic
damping for the case of the force excited isolation system is investigated. One can conclude that
cubic damping produces a much higher damping force at high excitation frequencies for the SDOF
base excited isolation system which is due to the higher relative velocity across the damper. As a
result, the displacement transmissibility for the system with cubic damping is worse than that for
systems with linear damping and tends towards unity as the excitation frequency increases. This
includes using cubic damping as a damper element for a vehicle suspension system. The cubic
damping causes a higher displacement and acceleration of the sprung mass for a broad frequency
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range above the bounce mode. In contrast, for the case of force excitation, there is less motion of
the vibrating mass for higher excitation frequencies and hence less relative velocity across the
damper and corresponding damping force. As a result cubic damping is beneficial in isolating the
transmitted force from the vibrating mass to the supporting structure.
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Fig 8. Force contributions in the damping element which contribute to the transmitted force acting on
the supporting structure due to the excitation force for both linear and cubic damping systems.
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