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Abstract

In budget–limited multi–armed bandit (MAB) problems, the
learner’s actions are costly and constrained by a fixed budget.
Consequently, an optimal exploitation policy may not be to
pull the optimal arm repeatedly, as is the case in other variants
of MAB, but rather to pull the sequence of different arms that
maximises the agent’s total reward within the budget. This
difference from existing MABs means that new approaches
to maximising the total reward are required. Given this, we
develop two pulling policies, namely: (i) KUBE; and (ii)
fractional KUBE. Whereas the former provides better per-
formance up to 40% in our experimental settings, the latter
is computationally less expensive. We also prove logarithmic
upper bounds for the regret of both policies, and show that
these bounds are asymptotically optimal (i.e. they only differ
from the best possible regret by a constant factor).

1 Introduction
The standard multi–armed bandit (MAB) problem was orig-
inally proposed by Robbins (1952), and presents one of the
clearest examples of the trade–off betweenexplorationand
exploitationin reinforcement learning. In the standard MAB
problem, there areK arms of a single machine, each of
which delivers rewards that are independently drawn from
an unknown distribution when an arm of the machine is
pulled. Given this, an agent must choose which of these
arms to pull. At each time step, it pulls one of the machine’s
arms and receives a reward or payoff. The agent’s goal is
to maximise its return; that is, the expected sum of the re-
wards its receives over a sequence of pulls. As the reward
distributions differ from arm to arm, the goal is to find the
arm with the highest expected payoff as early as possible,
and then to keep playing using that best arm. However, the
agent does not know the rewards for the arms, so it must
sample them in order to learn which is the optimal one. In
other words, in order to choose the optimal arm (exploita-
tion) the agent first has to estimate the mean rewards of all
of the arms (exploration). In the standard MAB, this trade–
off has been effectively balanced by decision–making poli-
cies such asupper confidence bound(UCB) andǫn–greedy
(Auer, Cesa-Bianchi, and Fischer 2002).

However, this MAB model gives an incomplete descrip-
tion of the sequential decision–making problem facing an
agent in many real–world scenarios. To this end, a variety

of other related models have been studied recently, and, in
particular, a number of researchers have focused on MABs
with budget constraints, where arm–pulling is costly and is
limited by a fixed budget (Bubeck, Munos, and Stoltz 2009;
Guha and Munagala 2007; Antos, Grover, and Szepesvári
2008). In these models, the agent’s exploration budget lim-
its the number of times it can sample the arms in order to
estimate their rewards, which defines an initial exploration
phase. In the subsequent cost–free exploitation phase, an
agent’s policy is then simply to pull the arm with the high-
est expected reward. However, in many settings, it is not
only the exploration phase, but the exploitation phase thatis
also limited by a cost budget. To address this limitation, a
new bandit model, thebudget–limited MAB, was introduced
(Tran-Thanhet al. 2010). In this model, pulling an arm is
again costly, but cruciallyboththe exploration and exploita-
tion phases are limited by asingle budget. This type of lim-
itation is well motivated by several real–world applications.
For example, in many wireless sensor network applications,
a sensor node’s actions, such as sampling or data forward-
ing, consume energy, and therefore the number of actions
is limited by the capacity of the sensor’s batteries (Padhy
et al. 2010). Furthermore, many of these scenarios require
that sensors learn the optimal sequence of actions that can be
performed, with the goal of maximising the long term value
of the actions they take (Tran-Thanh, Rogers, and Jennings
2011). In such settings, each action can be considered as an
arm, with a cost equal to the amount of energy needed to
perform that task. Now, because the battery is limited, both
the exploration (i.e. learning the rewards tasks) and exploita-
tion (i.e. taking the optimal actions given reward estimates)
phases are budget limited.

Against this background, Tran-Thanhet al. (2010)
showed that the budget–limited MAB cannot be derived
from any other existing MAB model, and therefore, previous
MAB learning methods are not suitable to efficiently deal
with this problem. Thus, they proposed a simple budget–
limited ε–first approach for the budget–limited MAB. This
splits the overall budgetB into two portions, the firstεB of
which is used for exploration, and the remaining (1−ε)B for
exploitation. However, this budget–limitedε–first method
suffers from a number of drawbacks. First, the performance
of ε–first approaches depend on the value ofε chosen. In
particular, high values guarantee accurate exploration but



inefficient exploitation, andvice versa. Given this, find-
ing a suitableε for a particular problem instance is a chal-
lenge, since settings with different budget limits or arm costs
(which are not known beforehand) will typically require dif-
ferent values ofε. In addition, even with a goodε value, the
method typically provides poor efficiency in terms of min-
imising its performance regret (defined as the difference be-
tween its performance and that of the optimal policy), which
is a standard measure of performance. In particular, the re-
gret bound thatε–first provides isO

(

B
2
3

)

, whereB is the
budget limit, whereas the theoretical best possible regret
bound is typically a logarithmic function of the number of
pulls1 (Lai and Robbins 1985).

To address this shortcoming, in this paper we propose two
new learning algorithms, called KUBE (for knapsack–based
upper confidence bound exploration and exploitation) and
fractionalKUBE, that do not explicitly separate exploration
from exploitation. Instead, they explore and exploit at the
same time by adaptively choosing which arm to pull next,
based on the current estimates of the arms’ rewards. In more
detail, at each time step, KUBE calculates the best set of
arms that provides the highest total upper confidence bound
of the estimated expected reward, and still fits into the resid-
ual budget, using an unbounded knapsack model to deter-
mine this best set (Kellerer, Pferschy, and Pisinger 2004).
However, since unbounded knapsack problems are known
to be NP–hard, the algorithm uses an efficient approxima-
tion method taken from the knapsack literature, called the
density–ordered greedyapproach, in order to estimate the
best set (Kohli, Krishnamurti, and Mirchandani 2004). Fol-
lowing this, KUBE then uses the frequency that each arm oc-
curs within this approximated best set as aprobability with
which to randomly choose an arm to pull in the next time
step. The reward that is received is then used to update the
estimate of the upper confidence bound of the pulled arm’s
expected reward, and the unbounded knapsack problem is
solved again. The intuition behind this algorithm is that if
we know the real value of the arms, then the budget–limited
MAB can be reduced to an unbounded knapsack problem,
where the optimal solution is to subsequently pull from the
set of arms that forms the solution of the knapsack prob-
lem. Given this, by randomly choosing the next arm from
the current best set at each time step, the agent generates an
accurate estimate of the true optimal solution (i.e. real best
set of arms), and, accordingly, the sequence of pulled arms
will converge to this optimal set. In a similar vein, frac-
tional KUBE also estimates the best set of arms that provides
the highest total upper confidence bound of the estimated
expected reward at each time step, and uses the frequency
that each arm occurs within this approximated best set as
a probability to randomly pull the arms. However, instead
of using the density–ordered greedy to solve the underlying
unbounded knapsack problem, fractional KUBE relies on a
computationally less expensive approach, namely thefrac-
tional relaxation basedalgorithm (Kellerer, Pferschy, and

1Note that in the budget–limited MAB, the budgetBdetermines
the number of pulls. Thus, a logarithmic function of the number of
pulls is also a logarithmic function of the budget.

Pisinger 2004). Given this, fractional KUBE requires less
computation than KUBE.

To analyse the performance of KUBE and its fractional
counterpart in terms of minimising the regret, we devise
proveably asymptotically optimal upper bounds on theirper-
formance regret. That is, our proposed upper bounds dif-
fer from the best possible one only with a constant fac-
tor. Following this, we numerically evaluate the perfor-
mance of the proposed algorithms against a state–of–the–
art method, namely the buget–limitedε–first approach, in
order to demonstrate that our algorithms are the first that
can achieve this optimal bound. In addition, we show that
KUBE typically outperforms its fractional counterpart by up
to 40%, however, this results in an increased computational
cost (fromO (K) to O (K ln K)). Given this, the main contri-
butions of this paper are:

• We introduce KUBE and fractional KUBE, the first
budget–limited MAB learning algorithms that proveably
achieve aO (ln B) theoretical upper bound on the regret,
whereB is the budget limit.

• We demonstrate that with an increased computational
cost, KUBE outperforms fractional KUBE in the exper-
iments. We also show that while both algorithms achieve
logarithmic regret bounds, the buget–limitedε–first ap-
proaches fail to do so.

The paper is organised as follows: Next we describe the
budget–limited MAB. We then introduce our two learning
algorithms in Section 3. In Section 4 we provide regret
bounds on the performance of the proposed algorithms. Fol-
lowing this, Section 5 presents an empirical comparison of
KUBE and its fractional counterpart with theε–first ap-
proach. Section 6 concludes.

2 Model Description
The budget–limited MAB model consists of a machine with
K arms, one of which must be pulled by the agent at each
time step. By pulling armi, the agent has to pay a pulling
cost, denoted withci , and receives a non–negative reward
drawn from a distribution associated with that specific arm.
The agent has a cost budgetB, which it cannot exceed during
its operation time (i.e. the total cost of pulling arms cannot
exceed this budget limit). Now, since reward values are typ-
ically bounded in real–world applications, we assume that
each arm’s reward distribution has bounded supports. Letµi
denote the mean value of the rewards that the agent receives
from pulling armi. Within our model, the agent’s goal is to
maximise the sum of rewards it earns from pulling the arms
of the machine, with respect to the budgetB. However, the
agent has no initial knowledge of theµi of each armi, so it
must learn these values in order to deduce a policy that max-
imises its sum of rewards. Given this, our objective is to find
the optimal pulling algorithm, which maximises the expec-
tation of the total reward that the agent can achieve, without
exceeding the cost budgetB.

Formally, letA be an arm–pulling algorithm, giving a fi-
nite sequence of pulls. LetNA

i (B) be the random variable
that represents the number of pulls of armi by A, with re-



spect to the budget limitB. Since the total cost of the se-
quenceA cannot exceedB, we have:

P















K
∑

i

NA
i (B) ci ≤ B















= 1. (1)

Let G (A) be the total reward earned by usingA to pull the
arms. The expectation ofG (A) is:

� [G (A)] =
K

∑

i

�

[

NA
i (B)

]

µi . (2)

Then, letA∗ denote an optimal solution that maximises the
expected total reward, that is:

A∗ = argmax
A

K
∑

i

�

[

NA
i (B)

]

µi . (3)

Note that in order to determineA∗, we have to know the
value of µi in advance, which does not hold in our case.
Thus,A∗ represents a theoretical optimum value, which is
unachievable in general.

Nevertheless, for any algorithmA, we can define the re-
gret forA as the difference between the expected cumulative
reward forA and that of the theoretical optimumA∗. More
precisely, lettingR(A) denote the regret, we have:

R(A) = �
[

G (A∗)
]

− � [G (A)] . (4)

Given this, our objective is to derive a method of generating
a sequence of arm pulls that minimises this regret for the
class of MAB problems defined above.

3 The Algorithms
Given the model described in the previous section, we
now introduce two learning methods, KUBE and fractional
KUBE, that efficiently deal with the challenges discussed in
Section 1. Recall that at each time step of the algorithms, we
determine the optimal set of arms that provides the best to-
tal estimated expected reward. Due to the similarities of our
MAB to unbounded knapsack problems when the rewards
are known, we use techniques taken from the unbounded
knapsack domain. Thus, in this section, we first introduce
the unbounded knapsack problem, and then show how to use
knapsack methods in our algorithms.

3.1 The Unbounded Knapsack Problem
The unbounded knapsack problem is formulated as follows.
A knapsack of weight capacityC is to be filled with some
set ofK different types of items. Each item typei ∈ K has
a corresponding valuevi and weightwi , and the problem is
to select a set that maximises the total value of items in the
knapsack, such that their total weight does not exceed the
knapsack capacityC. That is, the goal is to find the non–
negative integers{xi}

K
i=1 that maximise:

K
∑

i=1

xivi , (5)

s.t.
K

∑

i=1

xiwi ≤ C,

∀i ∈ {1, . . . ,K} : xi integer.

Note that this problem is a generalisation of the standard
knapsack problem, in whichxi ∈ {0, 1}; that is, each item
type contains only one item, and we can either choose it or
not. The unbounded knapsack problem isNP–hard. How-
ever, near–optimal approximation methods have been pro-
posed to solve it (a detailed survey can be found in (Kellerer,
Pferschy, and Pisinger 2004)). Among these approximation
methods, a simple, but efficient approach is thedensity–
ordered greedyalgorithm, and here we make use of this
method. In more detail, the density–ordered greedy algo-
rithm hasO

(

K logK
)

computational complexity, whereK
is the number of item types (Kohli, Krishnamurti, and Mir-
chandani 2004). This algorithm works as follows. Letvi/wi

denote thedensityof type i. To begin, the item types are
sorted in order of their density, which is an operation of
O

(

K logK
)

computational complexity. Next, in the first
round of this algorithm, as many units of the highest density
item are selected as is feasible without exceeding the knap-
sack capacity. Then, in the second round, the densest item of
the remaining feasible items is identified, and as many units
of it as possible are selected. This step is repeated until there
are no feasible items left (i.e. at mostK rounds).

Another way to approximate the optimal solution of
the unbounded knapsack problem is thefractional relax-
ation basedalgorithm. This relaxes the original problem
to its fractional version. In particular, within thefrac-
tional unbounded knapsack problemwe allow xi to be frac-
tional. Now, it is easy to show that the optimal solution
of the fractional unbounded knapsack is to solely choose
I ∗ = arg maxi vi/wi (i.e. I ∗ is the item type with the highest
density) (Kellerer, Pferschy, and Pisinger 2004). That is,if
x∗ = 〈x∗1, . . . , x

∗
1〉 denotes the optimal solution of the frac-

tional unbounded knapsack, thenx∗I∗ = C/wI∗ , while∀ j , I ∗,
x j = 0. Given this, within the original unbounded knap-
sack problem (wherexi are integers), the fractional relax-
ation based algorithm choosesxI∗ = ⌊C/wI∗⌋, and x j = 0,
∀ j , I ∗. It can easily shown that the complexity of this algo-
rithm is O (K), which is the cost of determining the highest
density type.

3.2 KUBE

The KUBE algorithm is depicted in Algorithm 1. Here, let
t denote the time step, andBt denote the residual budget at
time t ≥ 1, respectively. Note that at the start (i.e.t = 1),
B1 = B, whereB is the total budget limit. At each sub-
sequent time step,t, KUBE first checks that arm pulling is
feasible. That is, it is feasible only if at least one of the
arms can be pulled with the remaining budget. Specifically,
if Bt < min j c j (i.e. the residual budget is smaller than the
lowest pulling cost), then KUBE stops (steps 3− 4).

If arm pulling is still feasible, KUBE first pulls each arm
once in the initial phase (steps 6−7). Following this, at each
time stept > K, it estimates the best set of arms according
to their upper confidence bound using the density–ordered
greedy approximation method applied to the following prob-



lem:

max
K

∑

i=1

mi,t

















µ̂i,ni,t +

√

2 ln t
ni,t

















(6)

s.t.
K

∑

i=1

mi,tci ≤ Bt, ∀i, t : mi,t integer.

In the above expression, ˆµi,ni,t is the current estimate of arm
i’s expected reward (calculated as the average reward re-
ceived so far from pulling armi), ni,t is the number of pulls

of arm i until time stept, and
√

2 ln t
ni,t

is the size of the up-

per confidence interval. The goal, then, is to find integers
{mi,t}i∈K such that Equation 6 is maximised, with respect to
the residual budget limitBt (n.b. from here on, we drop the
subscripti ∈ K on this set). Since this problem is NP–hard,
we use the density–ordered greedy method to find a near–
optimal set of arms (step 9). Note that the upper confidence
bound on armi’s density is:

µ̂i,ni,t

ci
+

√

2 ln t
ni,t

ci
. (7)

Let M∗(Bt) = {m∗i,t} be this method’s solution to the problem
in Equation 6, giving us the desired set of arms, wherem∗i,t
is an index of armi that indicates how many times armi
is taken into account within the set. Using{m∗i,t}, KUBE
randomlychooses the next arm to pull,i(t), by selecting arm
i with probability (step 10):

P (i (t) = i) =
m∗i,t

∑K
k=1 m∗k,t

. (8)

After the pull, it then updates the estimated upper bound
of the chosen arm, and the residual budget limitBt (steps
12− 13).

The intuition behind KUBE is the following. By repeat-
edly drawing the next arm to pull from a distribution formed
by the current estimated approximate best set, the expected
reward of KUBE equals the average reward for following
the optimal solution to the corresponding unbounded knap-
sack problem, given the current reward estimates. If the true
values of the arms were known, then this would imply that
the average performance of KUBE efficiently converges to
the optimal solution of the unbounded knapsack problem re-
duced from the budget–limited MAB model. It is easy to
show that the optimal solution of this knapsack model forms
the theoretical optimal policy of the budget–limited MAB in
case of having full information. Put differently, if the mean
reward value of each arm is known, then the budget–limited
problem can be reduced to the unbounded knapsack prob-
lem, and thus, the optimal solution of the knapsack prob-
lem is the optimal solution of the budget–limited MAB as
well. In addition, by combining the upper confidence bound
with the estimated mean values of the arms, we guarantee
that an arm that is not yet sampled many times may be
pulled more frequently, since its upper confidence interval
is large. Thus, we explore and exploit at the same time (for
more details, see (Auer, Cesa-Bianchi, and Fischer 2002;

Algorithm 1 The KUBEAlgorithm
1: t = 1; Bt = B; γ > 0;
2: while pulling is feasibledo
3: if Bt < mini ci then
4: STOP!{pulling is not feasible}
5: end if
6: if t ≤ K then
7: Initial phase: play armi (t) = t;
8: else
9: use density–ordered greedy to calculateM∗(Bt) =

{m∗i,t}, the solution of Equation 6;

10: randomly pulli (t) with P (i (t) = i) =
m∗i,t

∑K
k=1 m∗k,t

;

11: end if
12: update the estimated upper bound of armi (t);
13: Bt+1 = Bt − ci(t); t = t + 1;
14: end while

Audibert, Munos, and Szepesvári 2009)). Note that, by us-
ing the density–ordered greedy method, KUBE achieves a
O (K ln K) computational cost per time step.

3.3 Fractional KUBE

We now turn to the fractional version of KUBE, which fol-
lows the underlying concept of KUBE. It also approximates
the underlying unbounded knapsack problem at each time
stept in order to determine the frequency of arms within the
estimated best set of arms. However, it differs from KUBE
by using the fractional relaxation based method to approx-
imate the unbounded knapsack in Step 9 of Algorithm 1.
Crucially, fractional KUBE uses the fractional relaxation
based algorithm to solve the following fractional unbounded
knapsack problem at eacht:

max
K

∑

i=1

mi,t

















µ̂i,ni,t +

√

2 ln t
ni,t

















s.t.
K

∑

i=1

mi,tci ≤ Bt. (9)

Recall that within KUBE, the frequency of arms within the
approximated solution of the unbounded knapsack forms
a probability distribution from which the agent randomly
pulls the next arm. Now, since the fractional relaxation
based algorithm solely chooses the arm (i.e. item type)
with the highest estimated confidence bound–cost ratio (i.e.
item density), fractional KUBE does not need to randomly
choose an arm. Instead, at each time stept, it pulls the arm
that maximises

(

µ̂i,ni,t/ci +

√

2 ln t
ni,t /ci

)

. That is, fractional KUBE
can also be seen as the budget–limited version of UCB (see
(Auer, Cesa-Bianchi, and Fischer 2002) for more details of
UCB).

Computation–wise, by replacing the density–ordered
greedy with the fractional relaxation based algorithm, frac-
tional KUBE decreases the computational cost toO (K) per
time step. In what follows, we show that both KUBE and its
fractional counterpart achieve asymptotically optimal regret
bounds.



4 Performance Analysis
We now focus on the analysis of the expected regret of
KUBE and fractional KUBE, defined by Equation 4. To this
end, we: (i) derive an upper bound on the regret, and (ii)
show that these bounds are asymptotically optimal.

To begin, let us state some simplifying assumptions and
define some useful terms. Without loss of generality, for
ease of exposition we assume that the reward distribution of
each arm has support in [0, 1], and that the pulling costci ≥ 1
for eachi (our result can be scaled for different size supports
and costs as appropriate). LetI ∗ = arg maxi µi/ci be the arm
with the highest true mean value density. For the sake of
simplicity, we assume thatI ∗ is unique (however, our proofs
do not exploit this fact). Letdmin = min j,I∗ {µI∗/cI∗ − µ j/c j} de-
note the minimal true mean value density difference of arm
I ∗ and that of any other armj. In addition, letcmin = min j c j

andcmax = maxj c j denote the smallest and largest pulling
costs, respectively. Then letδ j = c j − cI∗ be the difference
of arm j’s pulling cost and the minimal pulling cost. Sim-
ilarly, let ∆ j = µI∗ − µ j denote the difference of the highest
true mean value and that of armj. Note that bothδ j and∆ j
could be negative values, sinceI ∗ does not necessarily have
the highest true mean value, nor the smallest pulling cost. In
addition, letT denote the finite–time operating time of the
agent.

Now, we first analyse the performance of KUBE. In what
follows, we first estimate the number of times we pull arm
j , I ∗, instead ofI ∗. Based on this result, we estimate� [T],
the average number of pulls of KUBE. This bound guar-
antees that KUBE always pulls “enough” arms so that the
difference of the number of pulls in the theoretical optimal
solution and that of KUBE is small, compared to the size of
the budget. By using the estimated value of� [T], we then
show that KUBE achieves aO (ln (B)) worst case regret on
average. In more detail, we get:
Theorem 1 (Main result 1) For any budget size B> 0, the
performance regret ofKUBE is at most














8

d2
min

+

(

cmax

cmin

)2
































∑

∆ j>0

∆ j +

∑

δ j>0

δ j

cI∗





















ln

(

B
cmin

)

+





















∑

∆ j>0

∆ j +

∑

δ j>0

δ j

cI∗





















(

π2

3
+ 1

)

+ 1 .

It is easy to show that for eachj , I ∗, at least one be-
tween δ j and ∆ j has to be positive. This implies that
(

∑

∆ j>0∆ j +
∑

δ j>0
δ j

cI∗

)

> 0. That is, the performance regret
of KUBE (i.e. R(KUBE)) is upper–bounded byO (ln B).

In a similar vein, we can show that the regret of fractional
KUBE is bounded as follows:
Theorem 2 (Main result 2) For any budget size B> 0, the
performance regret of fractionalKUBE is at most

8

d2
min





















∑

∆ j>0

∆ j +

∑

δ j>0

δ j

cI∗





















ln

(

B

cmin

)

+





















∑

∆ j>0

∆ j +

∑

δ j>0

δ j

cI∗





















(

π2

3
+ 1

)

+ 1 .

Note that the regret bound of fractional KUBE is better
(i.e. the constant factor within the regret bound of fractional
KUBE is smaller than that of KUBE). However, this does
not indicate that fractional KUBE has better performance in
practice. This implies that these bounds are not tight. In
fact, as we will demonstrate in Section 5, KUBE typically
outperforms its fractional counterpart by up to 40%.

Having established a regret bound for the two algorithms,
we now move on to show that they produce optimal be-
haviour, in terms of minimising the regret.

Theorem 3 (Main result 3) For any arm pulling algo-
rithm, there exists a constant C≥ 0, and a particular in-
stance of the budget–limited MAB problem, such that the
regret of that algorithm within that particular problem is at
least Cln B.

Now, since the performance regret of both algorithms is
O (ln (B)), Theorem 3 indicates that their performance is
asymptotically optimal (i.e. their performance differs from
that of the optimal policy by a constant factor).

Intuitively, to prove Theorems 1 and 2, we first estimate
the expected value of the total number of pullsT, which is
a random variable (unlike in the case of standard MABs,
whereT is fixed). In addition, for each value ofT, we esti-
mate the conditional probability of pulling suboptimal arms
(conditional to the value ofT). Based on these results, we
then estimate the regret of the algorithms. To prove The-
orem 3, we reduce the standard MAB into an instance of
the budget–limited bandit model. Due to lack of space, the
proof of the abovementioned theorems are omitted, but they
are available in (Tran-Thanh et al. 2012).

The results in Theorem 1 and 2 can be interpreted to
the standard MAB domain as follows. The standard MAB
can be reduced to a budget–limited MAB by setting all the
pulling costs to be the same. Given this,B/cmin = T in
any sequence of pulls. This implies that both KUBE and
fractional KUBE achieveO (ln T) regret within the standard
MAB domain, which is optimal (Lai and Robbins 1985;
Auer, Cesa-Bianchi, and Fischer 2002).

5 Performance Evaluation
In the previous section, we showed that the two algorithms
provide asymptotically optimal regret bounds, and that the
theoretical regret bound of fractional KUBE is tighter than
that of KUBE. In addition, we also demonstrated that
fractional KUBE outperforms KUBE in terms of computa-
tional complexity. However, it might be the case that these
bounds are not tight, and thus, fractional KUBE is less prac-
tical than KUBE in real–world applications, as is the case
with the standard MAB algorithm, where simple but not
optimal methods (e.g.ε–first, or ε–greedy) typically out-
perform more advanced, theoretically optimal, algorithms
(e.g. POKER (Vermorel and Mohri 2005), or UCB). Given
this, we now evaluate the performance of both algorithms
through extensive simulations, in order to determine their
efficiency in practice. We also compare the performance
of the proposed algorithms against that of different budget–
limited ε–first approaches. In particular, we show that both
of our algorithms outperform the budget–limitedε–first al-
gorithms. In addition, we also demonstrate that KUBE typi-
cally achieves lower regret than its fractional counterpart.

Now, note that if the pulling costs are homogeneous —
that is, the pulling cost of the arms do not significantly dif-
fer from each other — then the performance of the density–
ordered greedy algorithm does not significantly differ from
that of the fractional relaxation based (Kellerer, Pferschy,
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Figure 1: Performance regret of the algorithms, divided byln
(

B
cmin

)

, for a100–armed bandit machine with homogeneous arms, moderately
diverse arms, or extremely diverse arms (left to right).

and Pisinger 2004). Indeed, since the pulling costs are sim-
ilar, it is easy to show that the density–ordered greedy ap-
proach typically stops after one round, and thus, results in
similar behaviour to the fractional relaxation based method.
On the other hand, if the pulling costs are more diverse (i.e.
the pulling costs of the arms differ from each other), then the
performance of the density–ordered greedy algorithm be-
comes more efficient than that of the fractional relaxation
based algorithm. Given this, in order to compare the perfor-
mance of KUBE and its fractional counterpart, we set three
test cases, namely: bandits with (i) homogeneous pulling
costs; (ii) moderately diverse pulling costs; and (iii) ex-
tremely diverse costs. In particular, within the homogeneous
case, the pulling costs are randomly and independently cho-
sen from the interval [5, 10]. In addition, the pulling costs
are set to be between [1, 10] within the moderately diverse
case, and between [1, 20] in the extremely diverse case, re-
spectively. The reward distribution of each armi is set to be
a truncated Gaussian, with meanµi , randomly taken from in-
terval [10, 20], varianceσ2

i =
µi

2 , and with supports [0, 2µi].
In addition, we set number of armsK to be 100.

Our results are shown in Figure 1. These plots show the
performance of each algorithm divided by lnBcmin

, and the er-
ror bars represent the 95% confidence intervals. By doing
this, we can see that the performance regret of both algo-
rithms isO

(

ln B
cmin

)

, since in each test case, their performance
converges toC ln B

cmin
(after it is divided byln B

cmin
), whereC is

some constant factor. From the numerical results, we can see
that both KUBE and fractional KUBE differ from the best
possible solution by small constant factors (i.e.C), since the
limit of their convergence is typically low (i.e. it varies be-
tween 4 and 7 in the test cases), compared to the regret value
of the algorithm. In addition, we can also see that fractional
KUBE algorithm is typically outperformed by KUBE. The
reason is that the density–ordered greedy algorithm provides
a better approximation than the fractional relaxation based
approach to the underlying unbounded knapsack problem.
This implies that KUBE converges to the optimal pulling
policy faster than its fractional counterpart. In particular,
as expected, the performance of the algorithms are similar
to each other in the homogeneous case, where the density–
ordered greedy method shows similar behaviour to the frac-
tional relaxation based approach. In contrast, KUBE clearly
achieves better performance (i.e. lower regret) within the

diverse cases. Specifically, within the moderately diverse
case, KUBE outperforms its fractional counterpart by up to
40% (i.e. the regret of KUBE is 40% lower than that of the
fractional KUBE algorithm). In addition, the performance
improvement of KUBE is typically around 30% in the ex-
tremely diverse case. This implies that, although the current
theoretical regret bounds are asymptotically optimal, they
are not tight.

Apart from this, we can also observe that both of our al-
gorithms outperform the budget–limitedε–first approaches.
In particular, KUBE and its fractional counterpart typically
achieves less regret by up to 70% and 50% than the budget–
limited ε–first approaches, respectively. Note that the per-
formance of the proposed algorithms are typically under
the lineO(B

2
3 (ln B)−1), while the budget–limitedε–first ap-

proaches achieve larger regrets. This implies that our pro-
posed algorithms are the first methods that achieve logarith-
mic regret bounds.

6 Conclusions
In this paper, we introduced two new algorithms, KUBE
and fractional KUBE, for the budget–limited MAB prob-
lem. These algorithms sample each arm in an initial phase.
Then, at each subsequent time step, they determine a best
set of arms, according to the agent’s current reward esti-
mates plus a confidence interval based on the number of
samples taken of each arm. In particular, KUBE uses the
density–ordered greedy algorithm to determine this best set
of arms. In contrast, fractional KUBE relies on the fractional
relaxation based algorithm. KUBE and its fractional coun-
terpart then use this best set as a probability distributionwith
which to randomly choose the next arm to pull. As such,
both algorithms do not explicitly separate exploration from
exploitation. We have also provided aO ln (B) theoretical
upper bound for the performance regret of both algorithms,
whereB is the budget limit. In addition, we proved that the
provided bounds are asymptotically optimal, that is, they
differ from the best possible regret by only a constant fac-
tor. Finally, through simulation, we have demonstrated that
KUBE typically outperforms its fractional counterpart up to
40%, however, with an increased computational cost. In par-
ticular, the average computational complexity of KUBE per
time step isO (K ln K), while this value isO (K) for frac-
tional KUBE.



One of the implications of the numerical results is that
although fractional KUBE has a better bound on its perfor-
mance regret than KUBE, the latter typically ourperforms
the former in practice. Given this, our future work consists
of improving the results of Theorems 1 and 2 to determine
tighter upper bounds can be found. In addition, we aim to
extend the budget–limited MAB model to settings where the
reward distributions are dynamically changing, as is the case
in a numer of real–world problems. This, however, is not
trivial, since both of our algorithms rely on the assumption
that the expected value of the rewards is static, and thus, the
estimates converge to their real value.
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