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This letter considers how a number of modern Markov chain Monte Carlo
(MCMC) methods can be applied for parameter estimation and inference
in state-space models with point process observations. We quantified the
efficiencies of these MCMC methods on synthetic data, and our results
suggest that the Reimannian manifold Hamiltonian Monte Carlo method
offers the best performance. We further compared such a method with
a previously tested variational Bayes method on two experimental data
sets. Results indicate similar performance on the large data sets and su-
perior performance on small ones. The work offers an extensive suite of
MCMC algorithms evaluated on an important class of models for physi-
ological signal analysis.

1 Introduction

Latent processes in the brain during the processing of controlled stimuli
manifest as multiple neural spike trains that are obtained via extracellu-
lar recordings, followed by some preprocessing such as spike sorting. In
several applications (e.g., brain-computer interface), it is of interest to in-
fer these latent processes from recordings of spike trains using data-driven
methods. Traditional approaches to modeling spike trains involve treating
the interspike intervals as continuous signals followed by the application of
signal processing techniques (Jolivet et al., 2008; Ivanov et al., 1996). Such
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treatment, however, ignores the obvious structure in spike train signals,
which are discrete processes in time. Smith and Brown (2003) address this
concern, formulating a state-space model with point process observations
(SSPP). In this model, an underlying first-order autoregressive process de-
fines an evolving system state that modulates an approximate Bernoulli
process using a parameterized intensity function.

In potential applications that motivate such data-driven modeling, the
inferred latent space can be viewed as an approximation to the responses in
the brain that serve to process any applied stimuli. This could potentially be
used as input to some control software in a brain-computer interface setting.
Further, parameters estimated by fitting the model to observed data may be
used as features in a statistical pattern classification setting to automatically
separate between classes of stimuli.

In introducing this model, Smith and Brown (2003) derived an approx-
imate expectation-maximization (EM) algorithm for parameter estimation
and state inference. In subsequent work, it was shown that the correspond-
ing expected log complete data likelihood (also known as the Q-function)
was unimodal and highly nongaussian (skewed) with respect to its param-
eters (Yuan & Niranjan, 2010). This nongaussian nature of the likelihood
motivates a Bayesian treatment with the objective of avoiding the mismatch
between maximum likelihood estimates and posterior means. Starting from
this, Zammit Mangion, Yuan, Kadirkamanathan, Niranjan, and Sanguinetti
(2011) proposed a variational Bayes (VB) method for an SSPP model that
provides a computationally efficient way of approximating the joint poste-
rior based on the mean-field method. A limitation of such an approach is
that it builds on an unrealistic assumption of independence between states
and parameters. The resulting posteriors, which are obtained by minimiz-
ing the Kullback-Leibler (KL) divergence between the true posterior of
the unknowns and its gaussian or other approximations within the conju-
gate exponential family, are not exact solutions to the inference task. Since
such solutions are often used to offer important insights into the under-
lying biology, it is of interest to ask how far they might be from the true
posteriors.

In this contribution, we use the more powerful Markov chain Monte
Carlo (MCMC) methods (see Neal, 1993), which offer asymptotically exact
posteriors, to explore different approximate schemes of inference for SSPP
models. For this, we consider a number of variants of MCMC methods suit-
able for SSPP models, thereby enriching the array of tools for inference and
parameter estimation. In particular, we examine two recently advanced
MCMC methods—the particle marginal Metropolis-Hastings (PMMH)
algorithm (Andrieu, Doucet, & Holenstein, 2010) and the Riemann man-
ifold Hamiltonian Monte Carlo (RMHMC) method (Girolami & Calder-
head, 2011)—as well as the traditional Hamiltonian Monte Carlo (HMC)
method (Duane, Kennedy, Pendleton, & Roweth, 1987). These methods are
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demonstrated on a synthetic data set, showing significant efficiency
improvement when compared with a commonly used a single-site up-
date Gibbs sampler. In these simulations, RMHMC outperforms the oth-
ers with high efficiency scores and comparable computational costs. We
also consider two case studies using RMHMC and VB methods, the first
being a neural representation of various taste stimuli in rat (Di Lorenzo
& Victor, 2003), and second, the response variability in marmoset parvo-
cellular neurons (Victor, Blessing, Forte, Buzás, & Martin, 2007). Our re-
sults show that posteriors obtained by RMHMC and VB are in general
quite similar; in particular, RMHMC shows an advantage when dealing
with data sets that are short time records and sparse in the number of
spikes.

2 Model Description

Consider an observation interval (0, T], where C channels of events are
recorded. We letYc(t) denote the counting function of events in each channel
c. A point-process model over those events can be fully characterized using
its conditional intensity function (CIF) (Daley & Vere-Jones, 2003), where
for each channel c, λc(t), which is also known as the instantaneous rate
function of the events, has the expression

λc(t) = lim
�→0

Pr(Yc(t + �) − Yc(t) = 1|x(t), H(t))
�

,

where x(t) denotes an underlying state variable and H(t) represents history
information. In order to obtain a discrete time model, we choose a large K
to divide (0, T] into K bins with equal widths � = T/K. For each channel
per time slot k�, let y c

k represent an observed event, such that y c
k = 1 if a

spike is present and 0 otherwise. � is sufficiently small such that there is
only one spike per interval �. Following Smith and Brown (2003), we give
the discretized CIF function a parametric form, defined as

λc
k = exp(μ + βcxk), (2.1)

where μ is a background firing rate, assumed to be the same for all channels.
The states modulate firing via the multiplicative terms βc. Note that for
different applications, the CIF can take various functional forms (Ergün,
Barbieri, Eden, Wilson, & Brown, 2007; Wang, Paiva, Prı́ncipe, & Sanchez,
2009). The probability of an event in k� in the cth channel given the hidden
system states xk and parameters is defined as an approximated Bernoulli
probability mass function (see the detailed the derivation in Brown, Barbieri,
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Eden, & Frank, 2002; Smith & Brown, 2003):

p
(
yc

k|xk, μ, βc

) = (
λc

k�
)yc

k exp
( − λc

k�
)
. (2.2)

The discretized latent state variable xk follows an AR(1) transition model,
for k = 1, . . . , K,

xk = ρxk−1 + αIk + εk, (2.3)

where εk are gaussian noise from N (0, σ 2
ε ). Ik is 1 if there is an external

stimulus at k� and 0 otherwise. We assume an initial state x0 ∼ N (0, σ 2
ε /(1 −

ρ2)). Equations 2.1 to 2.3 define a SSPP model of interest in this letter.
Further, let x0:K = {xk}K

k=0, yk = {yc
k}C

c=1 and y0:K = {yk}K
k=1, and a parameter

ensemble θ = {ρ, α, μ, β1:C}. With these, the joint likelihood of states and
observations can be written as

p(y1:K, x0:K|θ) =
K∏

k=1

C∏
c=1

p
(
yc

k|xk, μ, βc

)
p(x0)

K∏
k=1

p
(
xk|xk−1, ρ, α, σ 2

ε

)
.

The log-joint likelihood is

L(y1:K, x0:K|θ) =−K + 1
2

log 2π − (K + 1) log σ 2
ε

−
K∑

k=1

(xk − ρxk−1 − αIk)
2

2σ 2
ε

+1
2

log(1 − ρ2) − x2
0(1 − ρ2)

2σ 2
ε

+
K∑

k=1

C∑
c=1

[
yc

k(μ + βcxk + log �) − exp(μ + βcxk)�
]
.

An issue of identifiability relating to this model exists. This arises from
the fact that parameter β appears in the likelihood only via the product
βcxk, and the term α multiplies a binary stimulus that is nonzero only at
sparse points in time. This makes α and β difficult to estimate, as Smith
and Brown (2003) and Zammit Mangion et al. (2011) noted. In practice,
we fix βc and σ 2

ε to ensure a strong, identifiable model, as with previous
work.
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3 Markov Chain Monte Carlo for State-Space Models

We start with a brief presentation of MCMC in the context of general
state-space models before delving into variants we introduce for the SSPP
model. A detailed review on this subject can be found in Fearnhead (2010).
From the Bayesian perspective, inference in a general state-space model
targets the joint posterior distribution of parameters and hidden states, de-
noted as p(θ, x0:K|y1:K). A Gibbs sampler, iteratively drawing samples from
p(x0:K|y1:K, θ) and p(θ|x0:K, y1:K), is the most popular method to sample from
such a posterior distribution. In practice, sampling from p(θ|x0:K, y1:K) is of-
ten easy, whereas designing a sampler for p(x0:K|y1:K, θ) is trickier due to
the fact that the states are highly correlated and can have a large variation
in scale.

The simplest implementation of such a sampling approach is a single-
site update Gibbs sampler for both hidden states and parameters, where
the components of x0:K and θ are updated one at a time (see Geweke
& Tanizaki, 2001, for details). For sampling states, a sequential sampler
that updates each state conditioning on all the rest of the states is used.
Such an approach is easy to implement, since the conditional distribu-
tion of each state given all the others reduces to one conditioning only
on its two adjacent states: p(xk|y1:K, xk−1, xk+1, θ). However, due to the se-
vere correlation between states, such a sampler may lead to slow mixing
(such slow mixing is evident in the SSPP; empirical results are shown in
section 7).

To overcome this, Shephard and Pitt (1997) propose a block Gibbs sam-
pler in which instead of single-site updating, the states are grouped into
many blocks and updated simultaneously. In this case, the conditionals on
states change to the density of each block of states given the two neighbor-
ing states of the block: p(xk:s|y1:K, xk−1, xs+1), where k < s < K. Ideally, one
needs the block to be as large as possible; however, when the block size is
too large, it is hard to sample from the conditional in most general state-
space models. If the block is not large enough, the sampler still suffers from
state dependency issues. A balance between the extremes is often difficult
to strike.

In the case of block size set equal to the total time points in the model,
the state sequences are updated simultaneously from p(x0:K|y1:K, θ). Such
updates can be performed exactly only in the linear gaussian models using
the Kalman filter (Carter & Kohn, 1994) and discrete hidden Markov model
using the forward-backward method (Scott, 2002). However, recent devel-
opments in MCMC provide flexible means for updating the whole state
sequence for more general state-space models. In the following sections,
we introduce several such efficient sampling schemes that can be applied
to the SSPP model.
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4 Particle Marginal Metropolis-Hastings Algorithm

Andrieu et al. (2010) propose a particle marginal Metropolis-Hastings
(PMMH) algorithm that not only jointly samples states but also updates
parameters simultaneously with the states. We first review this method.

One may use a proposal mechanism joint in states and parameters as
below:

q({θ∗, x0:K
∗}|{θ, x0:K}) = q(θ∗|θ)p(x0:K

∗|y1:K, θ∗),

where the superscript ∗ denotes for proposed variables. Such a proposal
mechanism requires an efficient sampling approach for the states, so that
the proposed x∗

0:K is linked to the proposed θ∗ in a “deterministic” fashion.
The only remaining degree of freedom is in the parameter proposal process.
Thus, the MH acceptance ratio reduces to

p(x∗
0:K, θ∗|y1:K)q({θ, x0:K}|{θ∗, x∗

0:K})
p(x0:K, θ|y1:K)q({θ∗, x∗

0:K}|{θ, x0:K}) = p(y1:K|θ∗)p(θ∗)q(θ|θ∗)
p(y1:K|θ)p(θ)q(θ∗|θ)

. (4.1)

There are two key issues with this algorithm: how to directly draw sam-
ples from the smoothing distribution p(x0:K|y1:K, θ) and how to evaluate
the marginal likelihood p(y1:K|θ). For SSPP and many general state-space
models, exact computation of the marginal likelihood is not possible, and
one needs to perform approximations.

The PMMH algorithm, by employing the sequential Monte Carlo (SMC)
approach (see Doucet, de Freitas, & Gordon, 2001), provides an integrated
solution to both of the above problems. It is straightforward to use SMC for
sampling hidden states of general state-space models. Moreover, SMC also
estimates the marginal likelihood by importance sampling.

The marginal likelihood p(y1:K|θ) can be decomposed as

p(y1:K|θ) = p(y1|θ)

K∏
k=2

p(yk|y1:k−1, θ), (4.2)

where each component takes the form

p(yk|y1:k−1, θ) =
∫

p(yk|xk, θ)p(xk|y1:k−1, θ)dxk. (4.3)

With the SMC algorithm, one can simply add up the unnormalized weights
of each particle for time k to obtain an estimate of p(yk|y1:K, θ). Further,
multiplying all components yields an estimate of p(y1:K|θ).

The PMMH algorithm can be described in pseudocode as follows:
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5 Riemann Manifold Hamiltonian Monte Carlo

The PMMH provides a mathematically rigorous sampling approach. Its
computational scaling is O(NTM), where N is the number of the particles
used in SMC and T and M are the total numbers of time points and MCMC
iterations, respectively. For neural spike train modeling with SSPP models,
the length of time series is often long. Moreover, in order to achieve accept-
able performance of SMC, thousands of particles are needed. As a result,
computational considerations may be high for the PMMH algorithm.

An alternative class of efficient MCMC methods consists of gradient-
based methods, in which the gradient of the underlying distribution is
used to assist large moves. A representative of this class is the Hamiltonian
Monte Carlo (HMC) method (Duane et al., 1987). HMC employs a Hamil-
tonian dynamical system as a proposal mechanism, with the proposed
variables adjusted by a Metropolis step (see a recent review in Neal, 2010).
However, the effective use of HMC requires a high level of tuning, which
is not feasible with high-dimensional problems. Girolami and Calderhead
(2011), by considering the manifold structure of the distribution of inter-
est, propose a novel algorithm, the Riemann manifold Hamiltonian Monte
Carlo (RMHMC) method, to automatically tune HMC. We first introduce
RMHMC on a general problem setting.

Assume we are interested in sampling from a probability density func-
tion p(x), where x ∈ R

D, L(x) denotes the logarithm of p(x). By introducing
an auxiliary variable p ∈ R

D with density p(p) = N (0, G(x)), we can write
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the negative joint log density of p(x, p) as

H(x, p) = −L(x) + 1
2

log
(
(2π)D|G(x)|) + 1

2
pTG(x)−1p. (5.1)

Following Duane et al. (1987), H(x, p) can be interpreted as a Hamiltonian
in physics, which consists of the sum of a potential energy function −L(x)

at position x and a kinetic energy function 1
2 pTG(x)−1p with momentum

variable p and a mass matrix G(x). In the traditional HMC paradigm, the
mass matrix is a constant, M, which needs to be tuned for good performance,
often simply set to the identity matrix. Clearly, when the dimensionality of
x is high, tuning the elements in M is difficult, and using the identity matrix
may lead to poor performance.

In the RMHMC method, the target distribution p(x) is to be defined on
a Riemann manifold. The mass matrix G(x) becomes a metric tensor on the
manifold. Assume we have a conditional density function of data, z, given
parameters x, p(z|x). The metric tensor is the expected Fisher information
matrix:

G(x) = −Ep(z|x)

[
∂2

∂x2 log
(
p(z|x)

)] = cov
[

∂

∂x
log

(
p(z|x)

)]
. (5.2)

Such an idea was initially proposed in Rao (1945) and triggered intensive
studies on the use of Riemann geometry in statistical inference afterward
(Amari & Nagaoka, 2000; Kass, 1989).

The Hamiltonian dynamical system, based on equation 5.1, is therefore
given by

dxi

dτ
= ∂H

∂ pi
= {G(x)−1p}i

dpi

dτ
= −∂H

∂xi
= ∂L

∂xi
− 1

2
tr

(
G(x)−1 ∂G(x)

∂xi

)
+ 1

2
G(x)−1 ∂G(x)

∂xi
G(x)−1p.

(5.3)

The system of partial differential equations, equation 5.3, is solved by a gen-
eralized leapfrog integrator, such that the properties of volume preservation
and reversibility are maintained:

p
(
τ + ε

2

)
= p(τ ) − ε

2
∇xH

(
x(τ ), p

(
τ + ε

2

))
(5.4)

x(τ + ε)= x(τ ) + ε

2

(
∇pH

(
x(τ ), p

(
τ + ε

2

))

+∇pH
(

x(τ + ε), p
(
τ + ε

2

)) )
(5.5)
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p(τ + ε)= p
(
τ + ε

2

)
− ε

2
∇xH

(
x (τ + τ ) , p

(
τ + ε

2

))
. (5.6)

These properties of the Hamiltonian system leave the target distribution
invariant, thereby ensuring a correct MCMC algorithm.

Solutions to equations 5.4 to 5.6, which are obtained by fixed-point iter-
ations in practice, yield a trajectory of position variable x and momentum
variable p. Let x∗ and p∗ denote the end of the trajectory, with x∗ becoming
the newly proposed variable. Let x(i−1) and p be the starting pair of the
trajectory, with x(i−1), the previous sample. Then x∗ is accepted or rejected
according to the ratio

min
[
1, exp

( − H(x∗, p∗) + H(x(i−1), p)
)]

.

Note that when the metric tensor is not a function of the position x, the
generalized leapfrog integrator reduces to the standard leapfrog integrator
of the HMC method. In this scenario, the RMHMC is the same as an HMC
with an optimally tuned mass matrix.

For our application of sampling from the joint posterior p(x0:K, θ|y1:K)

of the SSPP model, we adopt the general Gibbs sampler paradigm, where
RMHMC is applied in states sampling (which jointly updates the whole
states sequence) and parameter sampling, respectively. The metric tensors
in the two sampling stages have two different forms, discussed in the fol-
lowing subsections.

5.1 Metric Tensor for States. For sampling the states, the metric
tensor of the likelihood is a diagonal matrix in which the entries on the
diagonal are

∑C
c=1 β2

c exp(μ + βcxk)�. The negative Hessian of the log prior
has the same form as stochastic volatility models. Therefore, the
metric tensor G is a tridiagonl matrix whose diagonal elements are[ 1

σ 2
ε

,
∑C

c=1 β2
c exp(μ + βcx1)� + 1+ρ2

σ 2
ε

, . . . ,
∑C

c=1 β2
c exp(μ + βcxK−1)�+ 1+ρ2

σ 2
ε

,∑C
c=1 β2

c exp(μ + βcxK)� + 1
σ 2

ε

]
. Elements on the superdiagonal and sub-

diagonal are − 1
σ 2

ε

.
Further, we integrate out the states, obtaining a constant metric tensor

for sampling states. Therefore, the generalized leapfrog algorithm reduces
to the standard one in HMC. The formulation of the metric tensor changes
accordingly, in particular, the likelihood terms on the diagonal changes
to

∑C
c=1 β2

c exp(μ + βcE[xk] + β2
c

2 Var[xk])�, where E[xk] and Var[xk] denote
the mean and variance of xk and are obtained by equations 5.7 and 5.8,
respectively.

5.2 Metric Tensor for Parameters. We consider only three parameters,
ρ, α, and μ, while βc and σ 2

ε are fixed to ensure strong identifiability.
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To constrain the AR process to be stable, ρ is subject to the transforma-
tion ρ = tanh(γ ). We first obtain the expected value of states E[xk] and
Var[xk]:

E[xk] = α(Ik + ρIk−1 + · · · + ρk−1I1), (5.7)

Var[xk] = σ 2
ε

1−ρ2 . (5.8)

Hence, the nonzero terms of the metric tensor, equation 5.2, can be derived
as

E

[
∂2L
∂γ 2

]
=−2ρ2 − K(1 − ρ2) − 1 − ρ2

σ 2
ε

K∑
k=1

E[xk−1]2,

E

[
∂2L
∂γ α

]
=−1 − ρ2

σ 2
ε

K∑
k=1

E[xk−1]Ik,

E

[
∂2L
∂α2

]
=−

K∑
k=1

I2
k

σ 2
ε

,

E

[
∂2L
∂μ2

]
=−

K∑
k=0

C∑
c=1

exp(μ + βcE[xk] + 1
2
β2

c Var[xk])�.

The derivatives of the above metric tensor terms with regard to each pa-
rameter, needed in the generalized leapfrog algorithm, are straightforward
to carry out.

6 Numerical Results

In this section, we compare the MCMC methods for the SSPP model on
three data sets—one synthetic and two real. The two real data sets used
were obtained from the public repository neurodatabase.org, a resource
funded by the Human Brain Project. All simulations were carried out with
Matlab on an IntelCore 2 Quad Q6600 2.40 GHZ with 4 GB RAM computer.

6.1 Synthetic Data Set. First, we examine the efficiency of the three
MCMC methods, PMMH, HMC, and RMHMC, with a benchmark method:
single-site Gibbs sampler on a synthetic data set. Later, the best method
in terms of standard efficiency measures will be compared with VB on
experimental data sets.

The parameter settings used for generating the synthetic data set are
shown in Table 1. We chose an observation length of T = 20 s, and time
resolution � = 0.01 s. The external stimulus was applied at regular intervals
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Table 1: True Parameter Setting for Generating the Synthetic Data Set.

ρ α σ 2
ε

μ β1, . . . , β10 Channels K

0.8 4 0.04 0 0.9, . . . , 1.1 10 2,000

of 1 s. To ensure strong identifiability, we fixed βc and σ 2
ε to their true values.

Hence, the inference task is focused on the states and parameters ρ, α, and
μ. In addition, each of the three parameters is assigned a flat prior.

The implementation details of the four methods are as follows:

� Single-site Gibbs uses the state transition density proposal for each
state and random walk proposals for the parameters, in particular,
N (θ (i−1), 0.012) for ρ and N (θ (i−1), 0.12) for both α and μ. (For more
details on the conditional distributions, see appendix C in Zammit
Mangion et al., 2011.)

� PMMH uses the same proposals for parameters as the single-site
Gibbs sampler. The particles of SMC algorithm are proposed by the
state transition density with a population of 1000.

� HMC uses an identity mass matrix that is further scaled by step sizes.
Specifically, in the state sampling stage, we employ 34 integration
steps with a step size of 0.03 . For the parameters, 67 integration steps
with each step size of 0.015 are chosen. On top of those settings, we
also use random integration directions to ensure reversibility.

� RMHMC uses a step size of 0.2 and 25 integration steps for the states
and a step size of 0.8 and 5 integration steps for parameters. Again, a
random integration direction is applied at each generalized leapfrog
loop.

HMC is tuned in the light of making a trade-off between acceptance rate
and number of the leapfrog steps within each Monte Carlo iteration. In
other words, we aim to integrate over a certain distance with a small num-
ber of integration steps, without rejecting too many proposals. We tuned
RMHMC in the same spirit. In addition, simulations show that, RMHMC,
benefiting from the use of local geometric structure, with the same number
of integration steps, is able to make much larger moves while maintain-
ing a high acceptance rate, consistent with the findings in Girolami and
Calderhead (2011). Based on this, one can achieve fast mixing with fewer
integration steps. With the above settings, as expected, the acceptance rates
of HMC and RMHMC shown in Table 2 are much higher than the other two
random walk proposal-based methods.

Figure 1 shows the posterior distributions obtained by each of the four
MCMC methods. While PMMH, HMC, and RMHMC faithfully capture
the posterior distributions, the single-site Gibbs sampler produces some ad
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Table 2: Acceptance Rates of All Five Methods.

Gibbs PMMH HMC RMHMC

30%−60% 40%−55% 80%−90% 85%−99%

(a) Gibbs

(c) HMC

(b) PMMH

(d) RMHMC

Figure 1: Full posterior distribution of parameters obtained by four methods,
where the true value of each parameter is indicated by a dashed line. There are
20,000 (after 1000 burn-in) posterior samples for each of the three parameters.

hoc shapes within the clouds of samples, implying that the chosen burn-in
period is not sufficiently long.

In addition to the posterior profile, by comparing the
√

R̂ statistic from
Gelman and Rubin (1992), we further assess each method on the time for
convergence to the stationary distribution in Figure 2. This test is carried
out by considering five chains with different initializations. Since we have
2004 variables, we show only the statistics for parameters that capture the
overall convergence status well. We observe that the Markov chain obtained
by a single-site Gibbs sampler is poorly mixed in ρ, whereas RMHMC
consistently shows the fastest convergence performance.

Table 3 shows relative performances of the MCMC methods in terms of
effective sample size (ESS) and processing time. The appendix (see Table 4)
gives general estimates of the comuptational complexities of the algorithms.
Such criteria (ESS and processing time) were also used in Girolami and
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Figure 2: Logarithm
√

R̂ statistics (see Gelman & Rubin, 1992) for ρ, α, and μ.

Convergence corresponds to an
√

R̂ value close to 1.

Table 3: ESS and Processing Time Comparison Based on 20,000 Posterior Sam-
ples (1000 Burn-In) of States and Parameters Obtained by Single-Site Gibbs,
PMMH, HMC, and RMHMC on Synthetic Data Set.

Methods ESS (ρ, α, μ) States ESS (Min, Median, Max) Time(s)

Gibbs 16, 94, 38 46, 98, 210 2594
PMMH 458, 939, 1055 567, 2132, 5129 11,5341
HMC 340, 1590, 930 1152, 4045, 10,979 4225
RMHMC 1072, 1593, 2326 4060, 20,000, 20,000 3136

Note: Each attribute is averaged over 10 runs.

Calderhead (2011) (Liu, 2001, for more details on ESS). In order to make a fair
assessment, each method is run 10 times on the same data set and averages
tabulated. We note that RMHHC shows the highest ESS scores for both
states and parameters and ranks second in processing speed. HMC shows
the second-highest ESS score on states, yet the parameter ESS (in ρ and μ)
is similar to PMMH. Further, all methods show significant improvement
on ESS when compared to the baseline single-site Gibbs sampler. Finally,
results on autocorrelation function (ACF) performance in Figure 3 also lend
additional supports to the findings.

In summary, from the comparisons carried out on a synthetic data set,
we conclude that RMHMC is a clear winner in terms of its sampling and
computational efficiencies. The performance of PMMH can be further im-
proved by increasing the number of particles used in the SMC stage or
adding sophisticated tricks like auxiliary variables (Pitt & Shephard, 1999)
and resample-move algorithm (Gilks & Berzuini, 2001). The computational
costs of PMMH, however, higher by a factor of three in the current setting,
make the PMMH strand less appealing. Such costs could be even higher
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Figure 3: The first 100 lags of autocorrelation values of different MCMC meth-
ods for each parameter. RMHMC outperforms other methods in ρ and μ,
whereas in α, HMC drops faster than others, indicating that a unit tensor in
α may be appropriate.

with real applications, in which the length of data records may be substan-
tial in comparison to the synthetic data we have used.

6.2 Modeling Taste Response. This section is a study of the perfor-
mance of RMHMC on a rat spike train data set in which the firing pattern of
a single cell has been measured under different taste stimuli. The details of
the experiment can be found in Di Lorenzo and Victor (2003). Briefly, four
taste stimuli are considered: NaCl, sucrose, quinine HCl, and HCl, inducing
salty, sweet, sour, and bitter tastes. Under each stimulus, recording trials
are separated by a 20 s rinsing and a 1.5 min wait, and each trial consists of
a 10 s baseline period with no stimulus, 5 s presentation of stimulus, and
5 s wait.

Recently Zammit Mangion et al. (2011) examined this data set with the
SSPP model with an online VB inference framework and showed the ability
to detect sudden changes on the model parameters in response to changes
in stimuli. The preprocessing steps follow Zammit Mangion et al. (2011),
where the 10 s baseline period is considered in the analysis and trials associ-
ated with each tastant are concatenated to form one contiguous spike train.
Due to the response latency and a linear increase on firing rate for the first
250 ms after each stimulus in the data set, which is noted in both Di Lorenzo
and Victor (2003) and Zammit Mangion et al. (2011), a temporal rectangular
window of 250 ms is applied at the beginning of each 10 s segment. The
time resolution is set to 10 ms, which resulted in a small number of bins
containing more than one spike. This was adjusted by moving the spike to
the nearest empty bin forward in time. The resulting data contained 23,000
time points in cell 9 and 16,000 time points in cells 4 and 11.

As Zammit Mangion et al. (2011) showed, the input gain α and back-
ground firing rate μ play a role as characteristic features for the classifica-
tion of different tastants. Together with the hidden states, these attributes
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Figure 4: Posterior distributions of α and μ given the observed spike trains in
cells 4, 9, and 11. The parameter space shows good separation of the four tastes.

dynamically separate the firing rate into two major contributors: back-
ground noise and underlying neural dynamics, which is driven by the
external stimulus. Such a separation makes classification easier when the
firing rate in itself cannot discriminate between the tastants. Therefore, the
inference we target is the posterior distributions of α, μ, and the underlying
states, given the observed spike train, with the other parameters fixed at :
ρ = 0.97, σ 2

ε = 0.05, and β = 0.5. Figure 4 shows results of this, and it can
be seen that the separation we aimed for is convincingly achieved by the
model.

We also assess the model goodness of fit in Figures 5 and 6 using the time-
rescaled theorem-based KS test (for details, see Brown, Barbieri, Ventura,
Kass, & Frank, 2001) and find that while RMHMC obtained a slightly better
fit in cell 4, the results are similar to VB in cells 9 and 11.

In Figure 7, we show the expected spiking probability over states and
parameter posteriors obtained from VB (online and offline) and RMHMC.
Note the increases expected probability synchronous with the appearence
of spikes. This comparison suggests that in data with a significant number
of spikes, VB appears to perform better and the MCMC approach is better
suited to data in which the spikes are sparse. Our intuition on this is that
when spike count is low, the uncertainty within the posterior is relatively
high (see Figures 4a and 4b). MCMC therefore is more flexible to handle
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Figure 5: Q-Q plot based on time rescaling theorem (Brown et al., 2001) of
inferred model by RMHMC, offline VB, and online VB. The x-axis shows the
quantiles, and the y-axis shows an empirical cumulative rate function. Ninety-
nine percent confident intervals are indicated by the dashed line in each figure.
A 45 degree line indicates a perfect match.

Figure 6: Maximum KS distance for each cell with each taste stimulus. Each
block of vertical bars corresponds to offline VB, online VB, and RMHMC, from
left to right.
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Figure 7: A 20 s segment expected spiking probability with respect to state and
parameter posteriors obtain by RMHMC, offline VB, and online VB (graphs
overlap because the differences among the methods are small). For each
panel, the x-axis denotes time with unit in seconds, and the y-axis denotes the
expected spiking probability measure. The observed spike train is also shown
in black bars.

the uncertainty. VB methods, on the other hand, often underestimate the
uncertainty within the state transition process due to the independent as-
sumption of the mean field approximation (Turner & Sahani, 2010). Note
that the number of data points is large in this data set, and given the fact
that the posteriors are unimodal, it is reasonable to expect MCMC and VB
to show similar performance.

The next section shows results from a different data set in which the data
record is much shorter in time and spiking is sparse.

6.3 Parvocellular Neuron Data Set. We now consider another data set
from Victor et al. (2007), where the response variability of marmoset parvo-
cellular neurons under drifting sinusoidal luminance gratings stimulus is
considered. Single cell spiking activities are recorded, where the luminance
modulation (LUM) stimuli are presented at 10 different ascending contrast
levels.1 Each contrast is repeated 13 times within a 3.5 s period for three

10, 0.0156, 0.0312, 0.0625, 0.0937, 0.125, 0.25, 0.375, 0.5 and 1. Data are from cell MY107.



Markov Chain Monte Carlo Methods for State-Space Models 1479

Figure 8: Joint α and μ posteriors. Clusters from right to left correspond to
contrast values of 1, 0.5 and 0.35.

trials. We treat the three trials as three parallel channels of spike trains
driven by the same stimulus. The time resolution is set to 0.002 s, which
guarantees one spike per time bin and yields 1750 time points for each
channel.

Similar to the previous example, we use RMHMC to target the posterior
distributions of α, μ, and hidden states given observed spike trains. We fix
ρ = 0.8, σ 2

ε = 0.05, and β = 1 for each channel.
As shown in Figure 8, the resulting posteriors overlap heavily and there-

fore are not easy to distinguish between trials with different stimulus types.
However, the inferred model is still able to characterize the data quite well
according to the KS test results, as shown in Figures 9 and 10. In this case,
there are significantly fewer data than in the taste response data set con-
sidered previously. RMHMC consistently outperforms both EM and VB in
terms of the model goodness of fit across each of the 10 contrast levels.
Finally, the expected spiking probabilities are consistent with the data (see
Figure 11).

7 Discussion

In this work, we study Bayesian inference and learning in a state-space
model with point process observations (SSPP) with a wide range of state-
of-the-art MCMC methods. While all methods we considered converge
and produce the correct inference, their efficiencies differ significantly, with
RMHMC outperforming the others. The reason is that by using the gradient
of the posterior and benefiting from the volume preservation properties of
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Figure 9: Q-Q plot based on time rescaling theorem. (a, b) Results on contrast
from 0 to 0.0937 and 0.125 to 1, respectively. Offline VB, EM, and RMHMC are
drawn and overlap heavily. The 99% confidence intervals are shown as dashed
lines.
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Figure 10: The mean squared maximum KS distance of each contrast level.
Contrast levels 1 to 10 denote 0.0156 to 1 in the data set. Each block of vertical
bars corresponds to EM, offline VB, and RMHMC from left to right.

Figure 11: Expected spiking probability with respect to state and parameter
posteriors obtained by RMHMC, EM, and offline VB. The left panel and right
panels correspond to contrasts of 0 and 1.

the Hamiltonian dynamic system, RMHMC is able to propose large moves
while maintaining a high acceptance rate. These moves are guided by a
metric tensor, which takes advantage of the underlying manifold structure
of the posterior distributions. As for the state-space models and SSPP in
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particular, the metric tensor takes the form of an expected Fisher informa-
tion matrix, which is analytically available. Moreover, due to the previously
noted unimodality property (Yuan & Niranjan, 2010) of the SSPP model,
such a metric tensor is guaranteed to be positive definite, which justifies the
suitability of using RMHMC.

In addition to the synthetic example, we compared the performance
of the RMHMC with variational Bayes (VB) on a rat taste stimuli data
set and monkey parvocellular neuron data set. Results on these experi-
ments suggest that the advantage gained using RMHMC is pronounced on
short-duration data sets with small numbers of observed spikes. This may
be of interest in analyzing nonstationary data using short windows in time.
For long time series, VB methods seem preferable, since they offer an at-
tractive balance between computational cost and estimation accuracy. How-
ever, one should note that the SSPP model may be customized for different
modeling tasks. Different choices for the conditional intensity function may
lead to VB being intractable. MCMC methods, on the other hand, have the
flexibility of adapting to such complex scenarios.

Relating the framework described in this letter, another popular model
for characterizing neural spike trains is the point process generalized linear
model (Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Okatan, Wilson,
& Brown, 2005), in which the stimuli are treated as canonical parameters in
a likelihood model similar to the one considered in SSPP. For inference on
this model, Paninski (2004) provides a maximum likelihood formulation,
whereas for the Bayesian perspective, both the MCMC and VB approaches
have recently been studied and shown good results on decoding the spike
trains (Ahmadian, Pillow, & Paninski, 2011; Chen, Kloosterman, Wilson,
& Brown, 2010). The SSPP differs from such a paradigm by assuming a
latent dynamic process that takes the stimuli as input sources, resulting
in a physiologically plausible parameterization. Its inference frameworks
including EM (Smith & Brown, 2003), VB (Zammit Mangion et al., 2011), and
MCMC discussed in this work, also show good performance on decoding
the spike train, while the inferred parameters may serve as discriminant
attributes of different physiological states.

For spike train classification, Salimpour, Soltanian-Zadeh, Salehi, Emadi,
and Abouzari (2011) show an interesting approach of using the likelihood
based on filtered estimates as a discriminator for spike trains responding
to various stimuli. Their model treats parameters of the CIF as states in de-
riving an extended Kalman filter estimator. This differs from the model we
considered, which has a separate underlying dynamical state process. Al-
gorithmically, Salimpour et al.’s (2011) work has similarities to the Laplace
approximation-based adaptive filters (Smith & Brown, 2003; Eden, Frank,
Barbieri, Solo, & Brown, 2004; Koyama, Castellanos Pérez-Bolde, Shalizi, &
Kass, 2010).

These adaptive filters for state estimation in the SSPP model are based
on the idea of sequentially performing Laplace approximations to the
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Table 4: General Computational Cost Comparison.

Gibbs PMMH HMC RMHMC

O((K + 1)M) O(NKM) O((L1K + L2)M) O((L∗
1K + L∗

2 )M)

filtering density. Together with other nonlinear filtering methods like un-
scented Kalman filter (UKF) (Julier & Uhlmann, 1997; Wan & Van Der
Merwe, 2000), they have the potential for constructing efficient propos-
als for state updating in PMMH. Such an idea has been explored in the
context of SMC (Ergün et al., 2007; Wang et al., 2009). Further, these filter-
ing methods can be used to obtain Laplace approximation and variational
lower bound of the marginal likelihood, resulting in approximate sampling
methods.

As another future extension, instead of the random walk proposals,
it is possible to use gradient-based proposals to improve the acceptance
rate in PMMH, for example, the Metropolis adjusted Langevin algorithm
(MALA), manifold MALA method (Girolami & Calderhead, 2011), HMC,
and RMHMC. Despite the severe computational overheads, these ideas are
algorithmically attractive, since they offer highly efficient proposal mecha-
nisms to tackle problems with high correlations between states and param-
eters. We are currently pursuing these avenues.

Appendix: Computation Complexity

Here we give estimates of the orders of computational complexities of the
different sampling algorithms used. Let K and M be the time points and
the number of Monte Carlo iterations, respectively. N denotes the number
of particles used in PMMH. L1 and L2 are the number of leapfrog steps for
states and parameters in HMC. The superscript ∗ indicates that the number
of leapfrog steps in RMHMC is different from those in HMC. In addition,
we assume the cost of each parameter updating and other inner calculations
to be 1. With these notations, Table 4 shows the estimated complexities.
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