
UNIVERSITY OF SOUTHAMPTON

Faculty of Physical and Applied Sciences

Electronics and Computer Science

Budget–Limited Multi–Armed Bandits

by Long Tran–Thanh

Supervisors: Nicholas R. Jennings and Alex Rogers

Examiners: Nicolò Cesa-Bianchi and Jörg Fliege

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

April 2012

http://www.soton.ac.uk
http://www.fpas.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ltt08r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Physical and Applied Sciences

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Long Tran–Thanh

Decision making under uncertainty is one of the most important challenges within the

research field of artificial intelligence, as they present many everyday situations that

agents have to face. Within these situations, an agent has to choose from a set of

options, whose payoff is uncertain (i.e. unknown and nondeterministic) to the agent.

Common to such decision making problems is the need of balancing between exploration

and exploitation, where the agent, in order to maximise its total payoff, must decide

whether to choose the option expected to provide the best payoff (exploitation) or to

try an alternative option for potential future benefit (exploration).

Among many decision under uncertainty abstractions, multi–armed bandits are perhaps

one of the most common and best studied, as they present one of the clearest examples of

the trade–off between exploration and exploitation. Whilst the standard bandit model

has a broad applicability, it does not completely describe a number of real–world decision

making problems. Specifically, in many cases, pulling choice of arm (i.e. making a deci-

sion) is further constrained by several costs or limitations. In this thesis, we introduce

the budget–limited bandit model, a variant of the standard bandits, in which pulling an

arm is costly, and is limited by a fixed budget. This model is motivated by a number

of real–world applications, such as wireless sensor networks, or online advertisement.

We demonstrate that our bandit model cannot be reduced to other existing bandits, as

it requires a different optimal behaviour. Given this, the main objective of this thesis

is to provide novel pulling algorithms that efficiently tackle the budget–limited bandit

problem. Such algorithms, however, have to meet a number of requirements from both

the empirical and the theoretical perspectives. The former refers to the constraints de-

sired by the motivations of real–world applications, whilst the latter aims to provide

theoretical performance guarantees.

To begin with, we propose a simple pulling algorithm, the budget–limited ε–first, that

addresses the empirical requirements. In more detail, the budget–limited ε–first algo-

rithm is an empirically efficient algorithm with low computational cost, which, however,

does not fulfil the theoretical requirements. To provide theoretical guarantees, we intro-

duce two budget–limited UCB based algorithms, namely: KUBE and fractional KUBE,

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ltt08r@ecs.soton.ac.uk

iv

that efficiently tackle the theoretical requirements. In particular, we prove that these

algorithms achieve asymptotically optimal performance regret bounds, which only dif-

fer from the best optimal bound by a constant factor. However, we demonstrate in

extensive simulations that these algorithms are typically outperformed by the budget–

limited ε–first. As a result, to efficiently trade off between theoretical and empirical

requirements, we develop two decreasing ε–greedy based approaches, namely: KDE and

fractional KDE, that achieve good performance from both the theoretical and the em-

pirical perspective. Specifically, we show that, similar to the budget–limited UCB based

algorithms, both KDE and fractional KDE achieve asymptotically optimal performance

regret bounds. In addition, we also demonstrate that these algorithms perform well,

compared to the budget–limited ε–first.

To provide a grounding for the algorithms we develop, the second part of this thesis con-

tains a running example of a wireless sensor network (WSN) scenario, in which we tackle

the problem of long–term information collection, a key research challenge within the do-

main of WSNs. In more detail, we demonstrate that by using the budget–limited bandit

algorithms, we advance the state–of–the–art within this domain. In so doing, we first de-

compose the problem of long–term information collection into two sub–problems, namely

the energy management and the maximal information throughput routing problems. We

then tackle the former with a budget–limited multi–armed bandit based approach, and

we propose an optimal decentralised algorithm for the latter. Following this, we demon-

strate that the budget–limited bandit based energy management, in conjunction with

the optimal routing algorithm, outperforms the state–of–the–art information collecting

algorithms in the domain of WSNs.

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

Declaration of Authorship xiii

Acknowledgements xv

Nomenclature xvii

1 Introduction 1

1.1 Research Requirements . 5

1.2 Application Scenario . 6

1.3 Research Contributions . 11

1.4 Thesis Outline . 17

2 Literature Review 19

2.1 The Stochastic Multi-Armed Bandit Problem 19

2.2 Stochastic Bandit Policies . 21

2.3 Bandit Variants . 27

2.3.1 Set of Arms . 27

2.3.2 Nature of Rewards . 29

2.3.3 Additional Information . 30

2.4 Bandits with Pulling Cost . 31

2.5 The Unbounded Knapsack Problem . 33

2.5.1 Knapsack Models . 34

2.5.2 Algorithms for the Unbounded Knapsack 35

2.6 Summary . 38

3 Formal Description of Budget–Limited Multi–Armed Bandits 41

4 Budget–Limited Epsilon–First based Approaches 45

4.1 The Algorithm . 45

4.2 Performance Analysis . 48

4.3 Summary . 57

v

vi CONTENTS

5 Budget–Limited Upper Confidence Bound based Approaches 59

5.1 The Algorithms . 59

5.1.1 KUBE . 60

5.1.2 Fractional KUBE . 62

5.2 Performance Analysis . 63

5.3 Summary . 73

6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 75

6.1 The Algorithms . 75

6.1.1 KDE . 76

6.1.2 Fractional KDE . 78

6.2 Performance Analysis . 79

6.3 Summary . 91

7 Long–Term Information Collection in Wireless Sensor Networks 93

7.1 Related Work . 94

7.1.1 Data Sampling . 94

7.1.2 Information Content Valuation . 96

7.1.3 Information–Centric Routing . 99

7.1.4 Energy Management . 100

7.2 System Models and Problem Definitions 102

7.2.1 The Wireless Sensor Network Model 103

7.2.2 The Long–Term Information Collection Problem 105

7.2.3 The Energy Management Problem 106

7.2.4 The Maximal Information Throughput Routing Problem 108

7.3 Multi–Armed Bandit Based Energy Management 109

7.3.1 Using Multi–Armed Bandits for Energy Management 109

7.3.2 Computational Complexity Analysis 116

7.4 Optimal Data Routing . 117

7.4.1 The Maximal Information Throughput Routing Algorithm 118

7.4.2 Performance Analysis . 121

7.4.3 Computational and Communication Cost of MITRA 122

7.4.4 Communication Round Limited MITRA 125

7.5 Performance Evaluation . 125

7.5.1 Parameter Settings . 127

7.5.2 Overall Performance Evaluation 129

7.5.3 Performance Comparison with USAC 132

7.5.4 Performance Evaluation of MITRAτ 134

7.6 Summary . 136

8 Conclusions 139

8.1 Summary of Results . 139

8.2 Future Work . 142

Bibliography 145

List of Figures

1.1 Wireless sensor nodes. 7

1.2 Typical wireless sensor network. 8

7.1 Information collection in a 100–agent wireless sensor network with (A)

static topology with λ = 0.9; (B) dynamic topology with λ = 0.9; and

(C) dynamic topology with λ = 0.5. 131

7.2 Performance comparison with USAC in a 100–agent wireless sensor net-

work with (A) static topology with λ = 0.9; (B) dynamic topology with

λ = 0.9; and (C) dynamic topology with λ = 0.5. 133

7.3 Performance comparison of MITRAτ with that of the unlimited MITRA.

The optimal performance achieved by MITRA is 100%. 135

vii

List of Tables

1.1 An overview of our contributions in terms of the research requirements

in the budget–limited MAB domain. The symbols have the following

meaning: ‘+’ (‘++’) means that the requirement is (strongly) satisfied.

In addition, ‘(*)’ indicates the best performance of the row. On the other

hand, ‘-’ means the requirement is not satisfied. 12

1.2 An overview of our contributions within the WSN domain in terms of

the research requirements. The symbols have the following meaning: ‘+’

(‘++’) means that the requirement is (strongly) satisfied, and ‘-’ means

the requirement is not satisfied, respectively. 16

2.1 An overview of the pulling policies in the bandit domain. The sym-

bols have the following meaning: ‘+’ (‘++’) means that the property

is (strongly) satisfied. In addition, ‘(*)’ indicates the best performance

within a row. On the other hand, ‘-’ means the property is not known. . . 26

7.1 Total collected information with different budget–limited MAB algorithms.129

ix

List of Algorithms

2.1 Fractional Unbounded Knapsack based Algorithm 36

2.2 Density–Ordered Greedy Algorithm . 37

4.1 Budget–Limited ε–First Algorithm . 46

5.1 The KUBE Algorithm . 61

5.2 The Fractional KUBE Algorithm . 61

6.1 The KDE Algorithm . 77

6.2 The Fractional KDE Algorithm . 77

7.1 MITRA . 119

xi

Declaration of Authorship

I, Long Tran-Thanh, declare that the thesis entitled Budget–Limited Multi–Armed Ban-

dits and the work presented in the thesis are both my own, and have been generated by

me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published in a number of conference and journal

papers (see Section 1.3 for a detailed list).

Signed:...

Date:..

xiii

Acknowledgements

Whilst writing the last sentences of the thesis, I realise that pursuing a PhD degree was

indeed a long, but very fascinating journey. It involves lots of hard work, intense focus,

and self–motivation. But it also brings joy and fun, especially when the light at the end

of the tunnel becomes visible. Therefore, I am incredibly thankful to all of the people

who encouraged and supported me to keep going on this road.

First and foremost, I would like to thank my supervisors Nick Jennings and Alex Rogers,

for their invaluable support and guidance throughout this process. They have become

my role models of research during the years at the School of Electronics and Computer

Science at University of Southampton, as they always put high standards on my work,

teaching me not to be satisfied with half–ready ideas. I am also incredibly thankful for

their time and patience in correcting my papers, and for their enlightening discussions

that brought me closer to the solution. The time and effort, that they have invested in

me, indeed really helped me on my path towards becoming a researcher.

To my co–authors, with whom I have spent wonderful times of (not only) working: Archie

Chapman for the great help in the topic of multi–armed bandits, Johnsen Kho for the

guidance into the field of wireless sensor networks, and Maria Polukarov for introducing

me the beauty of algorithmic game theory and congestion games (which unfortunately

is excluded from this thesis). Their advices have been an important influence on my

work.

To my Hungarian mentors Janos Levendovszky and Tien Van Do. Tien opened the door

of science for me when he invited me to join his research lab in my first year at the

Budapest University of Technology and Economics. Later, Janos became my advisor,

and has showed me the beauty of Maths.

To my colleagues and friends at the Intelligence, Agents, Multimedia (now Agents, Inter-

actions, Complexity) research group, for their friendship and for providing unforgettable

moments: Seb, Rama, Henry Cuong, Dong, Enrico, Valentin, Maria, Francesco, Ruben,

Muddasser, Oli, Victor, Tom, Lampros, Matteo, Sasha, Colin, Kate, James, Sid, Sam,

Till, Simon, Archie, Enrique, and Thanasis.

To Csaba Szepesvári, for the useful advices and suggestions that brought me closer to

the solutions.

To my dear friends, Attila Körösi and Gergely Kiss, for spending their time to proofread

my long and dull mathematical proofs.

To the Vietnamese Society at University of Southampton, especially to my flatmates,

who made Southampton my second home.

xv

xvi LIST OF ALGORITHMS

To my parents and my sister, for their unconditional support, love and encouragement.

Last but not least, to my love, Trang, who was my inspiration that gave me strength

and faith in challenging times of my study. This thesis would never have been written

without their love and moral support. To them I dedicate this thesis.

Nomenclature

General

A Pulling algorithm

A∗ Optimal pulling algorithm

B Budget limit of the multi–armed bandit

Bt Residual budget limit at time step t

GB (A) Total received reward of algorithm A with respect to budget limit B

I∗ Arm with highest expected reward density

K Number of arms within a multi–armed bandit

M∗ (Bt) best estimated combination of arms with respect to Bt

NB (A) Number of times algorithm A pulls arm i with respect to budget limit B

RB (A) Total regret of algorithm A with respect to budget limit B

I+ (t) Arm with highest estimated expected reward density at time step t

Î (t) Arm with highest estimated upper confidence bound density at time step t

T Total number of pulls within the multi–armed bandit

ci Pulling cost of arm i

cmin Minimal pulling cost

cmax Maximal pulling cost

di The difference between the reward density of arm i at that of I∗

dmin The lowest value of di among all di > 0

i (t) Arm pulled at time step t

m∗
i,t number of times arm i is included in the best combination M∗ (Bt)

{mi,t} Combination of arms at time step t

ni,t Number of pulls of arm i until time step t

pi (t) Probability of pulling arm i at time step t

r (t) Reward value received at time step t

t time step

∆i The difference between the expected reward of arm I∗ at that of arm i

δi The difference between the cost of arm i at that of I∗

xvii

xviii NOMENCLATURE

µi Expected reward value of arm i

µ∗ Best Expected reward value

µ̂i,ni,t
Estimated value of arm i’s expected reward at time step t, after ni,t pulls

Chapter 2

I (t) Arm with highest estimated expected reward value

L limit of number of pulls per time step in Comband

RT (A) Regret value of algorithm A until time step T

rt Single regret value at time step t

ri (t) Reward value received at time step t by pulling arm i

wi (t) Weight value of arm i at time step t in Exp3

µ̂i,t Estimated value of arm i’s expected reward at time step t

τi Starting time of τ th epoch of arm i in UCB2

Chapter 4

Auniform Uniform pulling algorithm within the exploration phase

Agreedy Density–ordered greedy based exploitation algorithm

I+ Arm with highest estimated expected reward density after exploration

Imin Arm with lowest reward density

Ni Number of times arm i is pulled in A∗

dmax The largest value of di

ni Number of times arm i is pulled within the exploration phase

β Probably approximately correct (PAC) learning factor

ε Tuning parameter for exploration

µ̂i,ni
Estimated value of arm i’s expected reward after exploration

Chapter 5

Nj (T) number of times arm i is pulled with respect to T

bt,s Confidence bound at time step t, after s pulls

Chapter 6

NOMENCLATURE xix

nR
j,t Number of times arm i is randomly chosen from the uniform distribution

to pull until time step t

γ Tuning factor

εt Exploration factor at time step t

Chapter 7

Ai set of energy budget allocation combinations of agent i

Bi Initial battery capacity of agent i

Bi (t) Residual battery capacity of agent i at time step t

BRx
i (t) Energy budget that agent i allocates to receiving

BS
i (t) Energy budget that agent i allocates to sampling

BTx
i (t) Energy budget that agent i allocates to transmission

BS Base station

Drj
(τ) Maximal number of packets that agent i can receive at communication

round τ

I Set of agents

L Number of layers

Ll Set of agents in layer l

NRx
i Receiving capacity of agent i at each time step

NS
i Sampling capacity of agent i at each time step

NTx
i Transmission capacity of agent i at each time step

Qi (t) Set of packets within the queue to send of agent i at time step t

Rei (t) Set of residual packets within the memory of agent i at time step t

Rxi (t) Set of packets that agent i receives at at time step t

Si (t) Set of packets that agent i samples at at time step t

Txi (t) Set of packets that agent i transmits at at time step t

T Total operating time

di Distance from BS (in hops)

eRx
i Energy consumption of receiving a single unit

eS
i Energy consumption of sampling a single unit

eTx
i Energy consumption of transmitting a single unit

p Data packet

ri (t) Reward value of agent i at time step t

rj Agent from a receiver layer

si Agent from a sender layer

v (p, t) information value of packet p at time step t

t time step

xx NOMENCLATURE

λ Information durability factor

τ Communication round within a single time step

Chapter 1

Introduction

In many everyday situations, an agent, or a decision maker, has to choose between

alternatives in order to achieve its goal. These situations vary from simple daily routines,

such as driving a car to work or food to buy, to complex and important problems, such as

the design of clinical trials or financial investments. In particular, in the former, a driver

aims to arrive to her workplace on time, and thus, everyday she chooses a driving route

that she believes to be the fastest. On the other hand, the latter consists of experiments

that aim to determine which medicines offer the best treatment for patients with a

certain disease. Now, the ingredient that makes such decision making difficult is the

uncertainty in the outcome of the decision. More precisely, the outcome of the decision,

which is typically a reward, or a cost, is only revealed to the agent after the decision is

made. Furthermore, this outcome is typically affected by other things, whose effects are

not known to the agent, and thus, it may be uncertain. For example, on any particular

day the driver does not know beforehand what the traffic on the chosen route will be,

and the success or failure of the chosen treatment is not guaranteed for any particular

patient. Given this, in order to maximise its performance (i.e. exploitation), the agent

has to gather information that improves knowledge of the environment by trying out

different alternative decisions (i.e. exploration). Exploitation and exploration decisions,

however, have to be carefully made. If the agent focuses solely on exploration, it will gain

accurate information about the environment, but might not be able to maximise its total

reward. On the other hand, by putting more effort on exploiting, the agent might miss a

chance to find a better alternative. Thus, one of the most crucial challenges in decision–

making under uncertainty is the problem of finding a trade–off between exploration and

exploitation.

One of the clearest examples of this trade–off is presented in the standard, or stochastic,

multi–armed bandit (MAB) problem, originally proposed by Robbins (1952). The term

“bandit” refers to the usual name of a gambling slot machine (“one–armed bandit”)

which has one arm which can be pulled. The standard MAB problem is a generalisation

1

2 Chapter 1 Introduction

of this one–armed bandit, which consists of a single machine with K arms, each of which

delivers rewards that are independently drawn from unknown distributions when each

arm is pulled. Given this, an agent must choose which of these arms to pull. At each

time step, it pulls one of the machine’s arms and receives a reward. The agent’s goal

is to maximise the expected sum of the rewards it receives over a sequence of pulls. If

the distributions were known, this goal would be equivalent to finding the arm with the

highest expected payoff, and then to keep playing using that best arm. However, the

agent does not know the rewards for the arms, so it must sample them in order to learn

which is the optimal one. In other words, in order to maximise the total reward (i.e.

exploitation) the agent first has to estimate the mean rewards of all of the arms (i.e.

exploration).

In the standard MAB, this trade–off has been widely studied from both theoretical and

empirical aspects (Agrawal, 1995b; Anderson, 2001; Auer et al., 2002; Lai and Robbins,

1985; Vermorel and Mohri, 2005) . In more detail, in the bandit settings, pulling strate-

gies are referred to as policies, and they vary from simple algorithms, such as ε–first

(Even-Dar et al., 2002) or ε–greedy (Watkins, 1989), to more advanced methods that

use more complex rules to determine the next arm to pull, such as decreasing ε–greedy

(Auer et al., 2002), POKER (Vermorel and Mohri, 2005) or upper confidence bound

(UCB) (Auer et al., 2002) 1. Now, the performance of these policies is often measured

in terms of cumulative regret, or total loss, which is the difference between the total

reward that the policy can achieve, and the total reward received if the theoretical opti-

mal pulling policy (i.e. the policy that maximises the total received reward) is followed.

From the theoretical aspect, advanced policies (e.g. UCB–based, or POKER) typically

outperform simple methods. In particular, decreasing ε–greedy, POKER, and UCB–

based policies achieve zero–regret ; that is, their average regret (i.e. cumulative regret

divided by the number of time steps) converges to 0 with probability 1 as the number

of steps tends to infinity. Intuitively, zero–regret policies guarantee optimal asymptotic

convergence. They converge to an optimal policy as time goes by. This guarantee of

asymptotic convergence, however, cannot be achieved with ε–first or ε–greedy.

However, since many real–world applications have a finite operating time interval, asymp-

totic convergence is typically not sufficient, since it only guarantees convergence as time

goes to infinity. Therefore, in addition to asymptotic convergence, there is also a need

to provide regret bounds over finite time, that uniformly guarantees for every time step

that the regret of the policy does not exceed a certain threshold (i.e. the performance

of the policy stays close to that of an optimal policy after each time step). In this sense,

UCB and decreasing ε–greedy outperform POKER, since they guarantee an efficient

regret bound, while POKER does not (for more details, see Chapter 2).

1The details of these strategies are given in Section 2.2.

Chapter 1 Introduction 3

Although theoretical results indicate the dominance of decreasing ε–greedy and UCB–

based policies, empirical experiments show that in many real–world applications, ε–first

typically outperforms the more advanced policies, even if it cannot guarantee theoretical

efficiency (Kuleshov and Precup, 2010; Vermorel and Mohri, 2005). This is especially

true when the bandit size is large; i.e. when the bandit problem contains hundreds

or thousands of arms (or even more), as is the case in many real–world scenarios (see

Chapter 7 for more details). One possible reason is that the constant factor within the

theoretical bounds depends on the number of arms, and thus, it is large if the bandit size

is large. Given this, besides decreasing ε–greedy and UCB–based policies, the ε–first

policy is also widely used in order to tackle the standard bandit problem.

While this standard model has a broad applicability, it does not completely describe a

number of real–world sequential decision–making problems. Specifically, in many cases,

pulling choice of arm is further constrained by several costs or limitations. These include

switching costs (where switching between arms is costly), pulling costs (where pulling

arms is costly), limitation of an arm’s existence (where arms have a limited life span),

or limitation in varying between arms (when the number of changes between arms is

limited). Accordingly, recent studies have introduced a variety of related models in order

to adapt to these bandit problems (Chakrabarti et al., 2008; Cicirello and Smith, 2005;

Guha and Munagala, 2009; Langford and Zhang, 2007), and in particular, a number

of researchers have focused on MABs with budget constraints, where arm–pulling is

costly and is limited by a fixed budget (Antos et al., 2008; Bubeck et al., 2009; Guha

and Munagala, 2007; Madani et al., 2004). In particular, these bandit models include

those with a budget limited exploration phase, and a cost–free exploitation phase. This

is motivated by a variety of applications. For example, in the shortest driving path

scenario, the cost of the fuel consumed by the car differs as the driver choose different

routes, or the medical treatment of a particular patient implies a certain financial cost.

In both cases, the cost of making a decision (i.e. pulling an arm) can be expressed

in terms of money, and the agent is not allowed to exceed a certain limit of expense.

Within these scenarios, the agent’s goal is to determine the best arm (i.e. decision),

but its exploration budget limits the number of times it can sample the arms in order

to estimate their rewards, which defines an initial exploration phase. In the subsequent

cost–free exploitation phase, an agent’s policy is then simply to pull the arm with the

highest expected reward.

However, in many scenarios, it is not only the exploration phase, but also the exploitation

phase, that is limited by a cost budget. This type of limitation is again well motivated

by several real–world applications. For example, consider a company that advertises

itself online. It has a limited budget for renting online advertising banners on any of

a number of web sites, each of which charges a different rental price. The company

wishes to maximise the number of total clicks on its banners, but it does not know the

4 Chapter 1 Introduction

click–through rate for banners on each site. As such the company needs to estimate the

click–through rate for each banner (exploration), and then to choose the combination of

banners that maximises the sum of clicks (exploitation). In terms of the model described

above, the price of renting an advertising banner from a website is the pulling cost of an

arm, and the click–through rate of a banner on a particular website is the true reward

for pulling that arm, which is unknown at the outset of the problem. It is obvious that

both the exploration and exploitation phases are budget limited within this example.

Another example comes from the domain of wireless sensor networks. In particular, in

many such applications, sensor nodes are deployed for collecting information over a pro-

longed period of time. However, a node’s actions (such as sampling or data forwarding)

consume energy, and furthermore, it is typically physically infeasible to replace the bat-

tery of a particular sensor. Given this, the total number of actions that a single sensor

node may make is limited by the capacity of the sensor’s batteries. Now, typical sensor

network deployments require that sensors learn the optimal combination of actions that

can be performed, with the goal of maximising the collected information over a long

term. Thus, each action can be considered as an arm, with a cost equal to the amount

of energy needed to perform that task. Given this, in order to exploit (i.e. take the

optimal actions given reward estimates), the sensor has to efficiently explore (i.e. learn

the rewards of the tasks), within the battery limit. Now, in these examples, because

the total budget (e.g. the research budget, or the advertising budget) is limited, both

exploration and exploitation phases are limited as well.

To address this limitation, within this thesis, we introduce a new bandit model. We call

this the budget–limited MAB, in which pulling an arm is again costly, but crucially both

the exploration and exploitation phases are limited by a single budget. Note that in this

case, if the expected rewards for pulling the arms are known, then the optimal solution

is not to repeatedly pull the optimal arm ad infinitum, as is in other MAB problems, but

rather to pull a finite combination of arms that maximises the reward and fully exploits

the budget, since a budget–limited MAB can be reduced to an unbounded knapsack

problem (Andonov et al., 2000). To see this, consider that pulling an arm corresponds

to placing an item into the knapsack, with the arm’s expected reward equal to the

item’s value and the pulling cost the item’s weight. The total budget is then the weight

capacity of the knapsack. Given this, the optimal combination of items for the knapsack

problem is also the optimal combination of pulls for the budget–limited MAB. This

difference in desired optimal solution from existing MAB problems means that, when

defining a decision–making policy for our problem, we must be cognizant of the fact that

an optimal policy will involve pulling a combination of arms. As such, it is not sufficient

to learn the expected reward of only the highest–value arm; we must also learn the other

arms’ rewards, because they may appear in the optimal combination. Importantly, we

cannot simply import existing bandit policies, because they concentrate on learning only

Chapter 1 Introduction 5

the value of the highest expected reward arm, and so will not work in this setting. For

example, consider a three–armed bandit, with arms X, Y and Z that have true expected

reward and pulling cost values of (80, 52), (60, 40) and (50, 31). Suppose the budget is

185. At this point, the optimal solution is to pull arms X and Y one time each, and

Z three times, giving an expected total reward of 290. However, by just focusing on

the arm with highest expected reward, as existing bandit algorithms typically do, the

resulting total reward is 240 (by pulling arm X three times). In addition, focusing on

the arm with the highest reward–cost ratio, a straightforward modification of standard

MAB policies to the budget–limited version, is not optimal either. Indeed, Z is the arm

highest reward–cost ratio, and by repeatedly pulling Z, the maximal total reward we

can get is 250 (by pulling it three times).

It is clear from the abovementioned example that existing bandit algorithms may not

be suitable for tackling the budget–limited MAB. Thus, new techniques must be devel-

oped for this new problem, which do consider the combinatorial aspect of the optimal

solution to the budget–limited MAB problem. To date, however, none of the previous

work addresses these issues within the budget–limited MAB (see Chapter 2 for more

details). Thus, this thesis seeks to start addressing this gap. Specifically, in Section

1.1, we describe the research requirements that arm pulling algorithms should satisfy, in

order to achieve efficient total payoff, with respect to a given budget. We then introduce

an application scenario for the budget–limited multi–armed bandits, namely the afore-

mentioned problem of long–term information collection in wireless sensor networks in

Section 1.2. This scenario will be used as an application environment in which we will

evaluate the performance of our proposed budget–limited MAB algorithms. Following

that, we introduce the contributions of this thesis in Section 1.3. Finally, Section 1.4

outlines the overall structure of the remainder of this thesis.

1.1 Research Requirements

The aim of the work in this thesis is to design pulling policies that maximise the total

reward, with respect to the overall budget limit. Such policies, however, have to meet

a number of requirements in order to achieve the aforementioned goal. In particular,

research requirements for a pulling policy can be divided into empirical and theoretical

requirements. The former refers to the constraints desired by real–world applications,

while the latter aims to provide theoretical performance guarantees. Note that empirical

requirements typically focus on guaranteeing the good performance of the algorithm

in average situations, while theoretical requirements guarantee good performance even

for the worse case. Given this, it might occur that an algorithm with good empirical

performance may fail in extreme (i.e. worse case) situations. In contrast, an algorithm

with theoretical guarantees may be outperformed by other, theoretically well founded,

6 Chapter 1 Introduction

algorithms, as is the case within the multi–armed bandits (see 2.2 for more details). As

a result, we consider both types of requirements in this thesis. The broad empirical

requirements that a pulling policy should satisfy are the following:

1. Experimental performance quality (Requirement 1): Since the budget–

limited MAB is motivated by many real–world applications, it is important to

design policies that achieve high performance quality (i.e. low regret) within real–

world settings. In particular, real–world applications typically have large problem

size (i.e. the number of arms is high). Given this, a pulling policy has to be able to

efficiently deal with this large problem size, and provide high performance quality.

2. Computational feasibility (Requirement 2): In many cases, the agent has

to make quick decisions, that have to be calculated in a short period of time. In

addition, many real–world applications have low computational capacity as well.

For example, wireless sensor nodes are limited in memory and computational ca-

pability. Given this, they are not suitable for computationally expensive methods.

Consequently, it is necessary to develop efficient policies that have low computa-

tional cost.

Apart from these empirical requirements, we also mentioned our theoretical research

aim in the discussion above, namely efficient finite–time regret bound :

3. Efficient finite–time regret bound (Requirement 3): Due to the finite over-

all budget, budget–limited MAB policies have to operate over a finite time interval.

Thus, it is important to guarantee that for any budget size, the regret is bounded.

That is, the performance of the proposed policy has to be efficient so that it is

always close to that of the optimal solution. In addition, a pulling policy should

be able to learn the optimal solution in the long term. Given this, it is desirable to

have policies that converge to the optimal policy with probability 1 as the budget

tends towards infinity (i.e. there is enough budget to learn the optimal behaviour).

1.2 Application Scenario

Given the research requirements above, we now consider how we can efficiently use the

budget–limited MAB model to tackle real–world challenges. In so doing, we first describe

the problem of long–term information collection in wireless sensor networks, which is one

of the real–world motivations of the budget–limited MAB model. In particular, efficient

long–term information collection is a key challenge within the domain of wireless sensor

networks (Rogers et al., 2009; Stankovic, 2004), and is gaining attention of a large

number of research studies (Dekorsy et al., 2007; Kho et al., 2010; Merrett, 2008; Ok

Chapter 1 Introduction 7

a) wireless sensor mote b) wireless cardio sensor

c) wearable sensor d) robot football

1 2

3 4

Figure 1.1: Wireless sensor nodes.

et al., 2009). We then show how the aforementioned research requirements have to be

addressed in this scenario, and we also identify additional design requirements that we

have to take into account.

In more detail, wireless sensor networks (WSNs) are now being increasingly used in a

wide variety of applications, ranging from environmental, habitat and traffic monitor-

ing, to object tracking and military field observations (Rogers et al., 2009; Romer and

Mattern, 2004). In WSNs, each wireless sensor node is typically equipped with a sensing

module for sensing data from the surrounding environment, a radio transceiver module

for wireless communication, a small microcontroller as the processing unit, an external

memory for data storage and a limited energy source (usually a battery). The size of a

single sensor node can vary from the size of a shoe box to the size of a coin (see Figure

1.1). Furthermore, their cost is similarly variable, ranging from hundreds of pounds to

a few pence, constrained by parameters such as size, energy, memory, computational

speed and communication bandwidth required of individual nodes (Romer and Mattern,

2004). These networks are typically deployed for collecting information from the envi-

ronment, which is then forwarded in data packets to a base station (BS), for further

1Taken from link http://www.npl.co.uk/server.php?show=ConWebDoc.289;
2Taken from link http://amp.osu.edu/news/article.cfm?ID=4576;
3Taken from link http://www.intelligent-systems.info/biofeedback/biofeedback.htm;
4Taken from link http://amp.osu.edu/news/article.cfm?ID=4576.

All links are checked on 08/12/2011.

8 Chapter 1 Introduction

sensor nodes

Base stations

Other networks
(e.g. Internet)

wireless communications

end-users

Figure 1.2: Typical wireless sensor network.

processing. Such systems are typically required to operate over an extended period of

time (covering months or even years). Figure 1.2 depicts a typical topology of WSNs.

Note that some real–world WSNs requires newest data only, and thus, the value of

information that is sampled in the past rapidly decays as time passes by. Such WSNs

are typically deployed for real–time target tracking or real–time object localisation (He

et al., 2006; Simon et al., 2004). Within these networks, a fundamental goal is to send

collected data to the BS as fast as possible (i.e. the data has a strict delivery time

constraint). On the other hand, other networks focus on collecting information within a

non real–time manner. That is, the deployed network continuously collects information

from the surrounding environment, without having the aforementioned strict delivery

time constraint (i.e. the collected information can be delayed for a longer time before it

is delivered to the BS). Since most of the WSN applications are deployed to fulfil the

latter type of monitoring (Chong and Kumar, 2003; Merrett, 2008; Rogers et al., 2009),

here we focus on networks where the goal is to collect information over a period of time,

in a non real–time manner.

Chapter 1 Introduction 9

Given this, the objective of this scenario is to develop policies that maximise the amount

of information collected by the WSN and delivered to the BS, over a given time interval,

in a non real–time manner. In addition, we want to avoid centralised approaches, as

this needs global information in order to achieve maximal data collection, and could

represent a significant computational bottleneck (Boukerche, 2008; Wagner and Wat-

tenhofer, 2007). For these reasons, we focus on decentralised approaches, in which there

is no central unit that coordinates the actions of the individual sensors. This approach,

however, leads to several issues. Specifically, to achieve system–wide goals, the nodes

must typically coordinate their actions with their neighbours (e.g. to forward data or

to track objects). In addition, since the nodes typically operate in a dynamically chang-

ing environment, they must be able to autonomously adapt their behaviour, without

having any global information about the system, in order to achieve long-term global

goals (e.g. maximal data collection or optimal coverage). Now, since WSNs are heav-

ily resource constrained (i.e. low energy capacity, size and computational constraints)

(Akyildiz et al., 2002; Rogers et al., 2009), this results in a number of significant and

specific research issues that have to be addressed. In particular, limited energy capacity

demands energy–awareness. That is, it is necessary to efficiently manage the energy

consumption of the nodes. Otherwise, rapid battery depletion may lead to insufficient

data collection from the network.

Against this background, the information collection problem that we address consists of

a set of sensor nodes, collecting information from their surrounding environment over

an extended period of time, without the aid of a centralised controller. Due to the

limited energy capacity of the nodes, energy efficiency is perhaps the most important

issue within the information collection problem (Chong and Kumar, 2003; Stankovic,

2004). Given this, it is important to wisely manage the energy consumption of the

nodes, such that they can decide whether to allocate more of this scarce resource to the

tasks of sampling, receiving, or transmitting data, in order to achieve maximal long–

term information collection. In addition, we also need to develop routing techniques in

order to deliver the data to the BS, and thus, to maximise the amount of information

collected in the network. Given this, in this scenario, we focus in particular on the

challenges of energy management and data routing.

Now, we show how this problem naturally maps onto a budget–limited MAB. In par-

ticular, in order to collect information from the environment, the agents can choose a

combination of data sampling, receiving, and transmission at each time step. These ac-

tions all consume energy, and different combinations (i.e. arms) need different amounts

of energy (i.e. pulling cost). Furthermore, since the capacity of the agents’ batteries is

limited, the total number of actions is limited over time as well, and thus, this limited

capacity can be seen as the budget of the bandit model. Note that the goal of the

WSN is to maximise the total amount of collected information over a prolonged period

10 Chapter 1 Introduction

of time. Given this, by considering the amount of collected information at each time

step as the reward that the agent gets by choosing a particular combination of sensory

actions, we can model the information collection problem that a sensor agent is facing

as a budget–limited MAB.

We now return to the importance of the research requirements described in Section 1.1

within this scenario as follows. Note that the set of possible combination of actions, that

an agent can choose from, is typically large (see Chapter 7 for more details). Therefore,

the proposed approach has to be efficient in terms of tackling the problem of long–term

information collection within large MAB models (performance quality). In addition,

since the sensor agents are heavily resource constrained, it is important to develop infor-

mation collecting methods that do not require high computational cost (computational

feasibility). Now, since WSNs can be deployed in a large variety of environments (see

Chapter 7), high quality empirical results might not be sufficient, since the existence of

pathological behaviour cannot be ruled out. Thus, it is important to provide theoret-

ical performance guarantee as well (finite–time regret bounds). Given this, long–term

information collection in wireless sensor networks can be seen as a suitable application

for our bandit model.

However, beside the abovementioned requirements, efficient mechanisms to maximise

long–term information collection in WSNs have to deal with a number of additional

issues related to the significant physical constraints, such as node malfunctioning, or

limited communication (see Chapter 7 for more details). Given this, to design such

mechanisms, we also have to take the following requirements into account:

4. Adaptivity (Requirement 4): Since the sensor agents are typically deployed in

a priori unknown environments, efficient performance cannot be sustained without

the ability to learn and to adapt to the (unknown) environmental characteristics.

That is, the nodes should be able to learn efficient policies on–line, based on their

own experiences. Moreover, they have to achieve an efficient trade–off between

exploration and exploitation.

5. Robustness and flexibility (Requirement 5): Due to the long operating time

of the network, node failures and lossy communication links are likely to occur.

Even in these cases, the network operation should not collapse, rather it should

degrade gracefully. Therefore, the nodes should be able to handle these situations,

by ensuring that the operation of the remaining nodes is only minimally affected.

6. Limited use of communication (Requirement 6): Since communication is

typically the most expensive task in WSNs, a good information collection approach

should avoid having significant communication cost (i.e. the energy amount allo-

cated to sending control messages), in order to achieve efficient performance in

Chapter 1 Introduction 11

information collection. In particular, by reducing the amount of energy for com-

munication, the sensor agents can allocate more energy to forwarding real data,

and thus, it can increase the amount of collected information.

Having explained the context of the research conducted within this thesis, we now detail

the specific research contributions.

1.3 Research Contributions

Given the requirements described in Section 1.1, our research aim is to develop pulling

policies for efficiently tackling the budget–limited multi–armed bandit problem. In so

doing, we contribute to the state–of–the–art and address gradually all four requirements

by developing a number of novel classes of pulling policies. More specifically, we make

four main contributions in this thesis. The first consists of a simple pulling policy that

addresses the empirical requirements, that is, Requirements 1 and 2 (Chapter 4). The

second focuses on addressing the theoretical requirement by proposing more advanced

policies (Chapter 5). These methods, however, demonstrate poor performance in the

scenario of long–term information collection of WSNs (i.e. they fail to fully satisfy the

empirical requirements). Against this background, the third group of contributions pro-

poses a trade–off between the two above, and proposes pulling algorithms that perform

well from both theoretical and empirical aspects (Chapter 6). Within the last con-

tribution group, we specifically address the research challenges within the problem of

long–term information collection in WSNs described in Section 1.2. These contributions

are summarised in Table 1.1.

Now, for each contribution, we briefly highlight their most salient properties in terms of

the requirements discussed earlier as follows.

1. Budget–limited ε–first approach (Chapter 4): The first group of contri-

butions in this thesis addresses Requirements 1 and 2 by introducing the first

pulling policy, called the budget–limited ε–first approach, that efficiently tackles

the budget–limited MAB problem.

In particular, the budget–limited ε–first approach splits the total budget B into

two portions, the first εB of which is used for exploration, and the remaining

(1 − ε)B for exploitation. In the exploration phase, the agent uniformly samples

the arms (i.e. the arms are sequentially pulled one after the other) to construct

estimates of their expected rewards. It then uses these estimates to calculate

the optimal combination of pulls to undertake in the exploitation phase. The key

benefit of this approach is that we can easily measure the accuracy of the estimates

12 Chapter 1 Introduction

Chapter 4 Chapter 5 Chapter 6

budget–
limited
ε–first

KUBE
fractional
KUBE

KDE
fractional

KDE

Experimental
performance
quality

++(*) + - ++(*) +

Computational
feasibility

++(*) + ++ + ++

Finite–time
regret bound

- ++(*) ++(*) ++ ++

Table 1.1: An overview of our contributions in terms of the research requirements in
the budget–limited MAB domain. The symbols have the following meaning: ‘+’ (‘++’)
means that the requirement is (strongly) satisfied. In addition, ‘(*)’ indicates the best
performance of the row. On the other hand, ‘-’ means the requirement is not satisfied.

associated with a particular value of ε, because all of the arms are sampled the

same number of times. Hence, we can control the performance regret as a function

of ε, which gives us a method of choosing an optimal ε for a given scenario. Given

this, our contributions within this chapter can be detailed as follows:

• We show that the computational complexity of the budget–limited ε–first

approach is O (εKB + K ln K) at each time step. That is, the policy has low

computational cost (Requirement 2).

• We provide a O (B) regret bound for the budget–limited ε–first approach,

which fails to fulfil Requirement 3, since it does not guarantee the convergence

of the budget–limited ε–first approach to the optimal solution as B tends

towards infinity.

• However, we improve the regret bound above by proving that with large

probability, the budget–limited ε–first approach can achieve a O
(

B
2
3

)

regret

bound. That is, Requirement 3 can be partially satisfied (i.e. the budget–

limited ε–first approach converges to the optimal policy with high probabil-

ity).

• We demonstrate that, despite the weak theoretical regret bound, the budget–

limited ε–first approach still achieves efficient performance in tackling the

problem of long–term information collection within WSNs (Requirement 1).

2. Budget–limited upper confidence bound based approaches (Chapter 5):

The second group of contributions extends the abovementioned results by ad-

dressing Requirement 3 (i.e. efficient finite–time regret bound). In particular,

we propose two UCB–like policies, namely: (i) the knapsack based upper confi-

dence bound exploration and exploitation (KUBE); and (ii) fractional KUBE, the

first pulling policies that achieve logarithmic regret bound within the domain of

Chapter 1 Introduction 13

budget–limited MAB. Unlike the budget–limited ε–first approach, these policies

do not explicitly separate exploration from exploitation. Instead, at each time

step, they calculate the best combination of arms that provides the highest total

upper confidence bound of the estimated expected reward, and still fits into the

residual budget, using an unbounded knapsack model to determine this best com-

bination (Andonov et al., 2000). Note that the use of these techniques is common

in the MAB domain, as they present elegant ways to efficiently tackle the trade–off

between exploration and exploitation (Agrawal, 1995b; Audibert et al., 2009; Auer

et al., 2002; Auer and Ortner, 2010). Following this, they then use the frequency

that each arm occurs within this approximated best combination as a probability

with which to randomly choose an arm to pull in the next time step. The reward

that is received is then used to update the estimate of the pulled arm’s expected

reward, and the unbounded knapsack problem is solved again.

Now, since unbounded knapsack problems are known to be NP–hard, efficient ap-

proximation methods are needed in order to fulfil our empirical research require-

ments. Given this, KUBE uses an efficient approximation method taken from the

knapsack literature, called the density–ordered greedy approach, in order to esti-

mate the best combination (Kohli et al., 2004). Conversely, fractional KUBE uses

a different approximation approach to tackle the knapsack problem. In particular,

it relaxes the unbounded knapsack to a fractional version, where fractions of items

are allowed (Kellerer et al., 2004; Marcello and Toth, 1990). Since the fractional

version is computationally less expensive than the density–ordered greedy method,

fractional KUBE clearly has lower computational cost, compared to that of KUBE.

However, this computational gain is balanced by a decreased performance qual-

ity. In particular, the specific contributions within this group can be described as

follows:

• We show that the computational complexity of KUBE is O (BK ln K) at

each time step, where K is the number of arms. In addition, we also show

that fractional KUBE has a decreased computational complexity of O (BK).

That is, both KUBE and fractional KUBE are computationally more expen-

sive, compared to the budget–limited ε–first approach, but they still have a

polynomial computational complexity (Requirement 2).

• We provide a O (ln B) upper bound for the performance regret of KUBE and

fractional KUBE respectively. This implies that these policies are also a

zero–regret policy, and thus, they satisfy Requirement 3.

• We also show that this logarithmic bound is asymptotically optimal. That

is, it only differs from the best possible regret bound by a constant factor.

However, we demonstrate that the constant factor within the lower bound

14 Chapter 1 Introduction

of fractional KUBE is larger than that of KUBE. That is, between the two,

fractional KUBE has a worse lower bound.

• We demonstrate that KUBE typically outperforms its fractional counterpart

in tackling the problem of long–term information collection within WSNs.

However, they are both outperformed by the budget–limited ε–first approach

in many cases. That is, they both fail to address research Requirement 1 (i.e.

experimental performance quality).

3. Budget–limited decreasing ε–greedy based approaches (Chapter 6): As

discussed above, the third group of contributions is dedicated to determining a

trade–off between satisfying both empirical and theoretical requirements. In so

doing, we introduce a class of ε–greedy based policies, which consists of two pulling

policies. The first is more efficient, but requires a computationally expensive algo-

rithm, namely knapsack based decreasing ε–greedy (KDE), while the second one,

called fractional KDE, is computationally less expensive, but provides weaker per-

formance, compared to that of the former. In more detail, similar to the UCB–

based algorithms, KDE and its fractional counterpart also use the unbounded

knapsack approach to determine the best combination of arms that provides the

highest total estimated expected reward at each time step t. Following this, they

randomly choose between the probability distribution created from the frequency

with which the arms occur in this best combination and the uniform distribution

with probability (1− εt) and εt, respectively. From the chosen distribution, the

algorithms then randomly draw an arm to pull in the next time step. Again, simi-

larly to the case of UCB–based policies, KDE and its fractional counterpart differs

from each other in the way they solve the unbounded knapsack. In particular,

KDE uses the density–ordered greedy, while fractional KDE uses the fractional

knapsack model. Thus, the contributions related to these policies can be detailed

as follows:

• We show that the computational complexity of KDE and its fractional coun-

terpart is O (BK ln K) and O (BK), respectively. These results are similar

to that of the UCB–based algorithms (Requirement 2).

• We provide a O (ln B) upper bound for the performance regret of KDE and

fractional KDE. This implies that these policies are asymptotically optimal

in terms of minimising the performance regret. Consequently, they satisfy

Requirement 3 (i.e. efficient finite–time regret bound). We also show that

whereas fractional KDE is computationally more efficient than KDE, it has

a worse lower bound and is less efficient within the application scenario de-

scribed in Section 1.2.

• We demonstrate that KDE achieves good performance in practice (Require-

ment 1). In particular, KDE achieves similar performance, compared to that

Chapter 1 Introduction 15

of the budget–limited ε–first approach. On the other hand, fractional KDE

is outperformed by budget–limited ε–first in many cases.

We now turn to the contributions that address the research challenges within the WSN

domain discussed in Section 1.2. In particular, as previously discussed, we focus on

the challenges of energy management and data routing. However, tackling this joint

problem of energy management and routing is hard. In particular, each agent has a

number of options to allocate amounts of energy to its sensory tasks. In addition, it

needs to decide which packet it has to send, and to whom among its neighbouring

agents. These options together result in a large task combination space (i.e. the space

of combined tasks of energy allocation and packet transmission/receiving), from which

the agent has to determine an optimal one (i.e. the task combination that leads to

the desired goal of the network). This task combination space is typically exponential,

compared to the size of the network, so the joint problem quickly becomes infeasible in

terms of complexity. Thus, to simplify the complexity of the original joint problem, we

separate the energy management and data routing problems. However, as we will show,

by using the solutions of the separated problems, efficient information collection can be

still achieved.

In more detail, the decomposition of the original problem can be described as follows.

It is based on the observation that by adaptively setting the value of the energy budgets

allocated to the various sensory tasks, the agents should achieve better performance in

dynamic environments than systems without the ability to adapt in this fashion. How-

ever, in order to determine which energy budget allocation combinations are optimal

(exploitation), the agent first has to learn the performance of all the combinations (ex-

ploration). Thus, it has to balance between exploration and exploitation. Given this,

within the energy management problem, we seek for an efficient learning method that

finds a trade–off between exploring and exploiting the energy budget allocation combi-

nations, in order to achieve optimal performance of long–term information collection.

Now, suppose that all the agents have already set their energy budget value for sam-

pling, receiving, and transmitting tasks. In this case, to maximise the value of the total

collected information, it is obvious that we need to maximise the total information value

of data sampled or relayed by agents that are one hop from the BS. The latter, however,

is equal to data that is sampled or relayed by agents that are two hops from the BS, and

so on. Thus, it is also important to maximise the information throughput (i.e. the total

transmitted information value) between neighbouring layers of agents (i.e. the group of

agents that are the same distance from the BS) by using efficient routing techniques.

This forms the routing problem we aim to solve within this application scenario. Given

this context, this work advances the–state–of–the–art in the following specific ways:

16 Chapter 1 Introduction

Chapter 7

MAB/EM MITRA MITRAτ

Adaptivity ++ - -

Robustness and flexibility ++ ++ ++

Limited use of communication ++ - ++

Table 1.2: An overview of our contributions within the WSN domain in terms of the
research requirements. The symbols have the following meaning: ‘+’ (‘++’) means that
the requirement is (strongly) satisfied, and ‘-’ means the requirement is not satisfied,

respectively.

4. Long–term information collection in WSNs (Chapter 7): Here, we pro-

pose a budget–limited MAB based energy management model for each agent within

the network, in order to solve the energy management problem. For the routing

problem, we propose two simple decentralised routing algorithms. The first is

proveably optimal, but can sometimes use a large number of communication mes-

sages to coordinate the routing. The second algorithm is near–optimal, but its

communication cost is significantly lower. By using one of the proposed routing

algorithms, our approach can calculate the total amount of information through-

put that the routing algorithm produces within that particular time step. This

amount then forms the reward value that the MAB model receives by using the

chosen energy budget allocation combination (see Section 7.4 for more details).

With this reward value, the MAB model receives feedback about the efficiency of

the chosen energy allocation combination, and thus, it can learn which combina-

tions are more efficient ones. In more detail, these contributions are summarised

in Table 1.2, and can be described as follows:

• We devise the first multi–armed bandit learning based energy budget alloca-

tion approach, called MAB/EM. Based on this, we show how efficient energy

management can be sustained in the long term, by using this approach.

• We propose two simple decentralised routing algorithms, MITRA and MITRAτ .

The former is the first to proveably maximise the total information through-

put between layers of agents, whilst the latter has a near–optimal performance

(it achieves, on average, 98% of the optimal solution), but with a reduced

communication cost.

• We empirically evaluate the performance of these algorithms through exten-

sive simulations and show that information collection is increased by up to

120%, by applying the proposed algorithms, compared to that of USAC, a

state–of–the–art method (see Section 7.1 for more details of USAC). Fur-

thermore, we show that the communication cost of our approaches are low,

compared to the cost of real data transmission.

These contributions have led to a number of peer-reviewed publications:

Chapter 1 Introduction 17

• L. Tran–Thanh, A. Chapman, J. E. Munoz De Cote Flores Luna, A. Rogers and

N. R. Jennings (2010). Epsilon–First Policies for Budget–Limited Multi–Armed

Bandits. In Proceedings of the Twenty–Fourth AAAI Conference on Artificial

Intelligence (AAAI–10), pp. 1211–1216, 2010.

• L. Tran–Thanh, A. Chapman, A. Rogers and N. R. Jennings (2012). Optimal

Policies for Budget–Limited Multi–Armed Bandits. Accepted to the Twenty–Sixth

Conference on Artificial Intelligence (AAAI–12), 2012.

• L. Tran–Thanh, A. Rogers, and N. R. Jennings (2012). Long–Term Informa-

tion Collection with Energy Harvesting Wireless Sensors: A Multi–Armed Bandit

Based Approach. Journal of Autonomous Agents and Multi-Agent Systems, Vol-

ume 25, Issue 2, pp. 352–394.

The research results presented in the above publications are summarised and expanded

upon by this thesis. To guide the reader through the remaining chapters, the following

section contains a brief outline of the thesis structure.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 analyses the state–of–the–art in the multi–armed bandit literature. In

particular, we describe the standard MAB model in more detail. Following this,

we discuss the variants of MABs that focus on pulling costs and other pulling con-

straints. We then continue with the review of the unbounded knapsack literature,

that forms the basis of our solutions in the subsequent chapters.

• Chapter 3 introduces our formal model of a budget–limited multi–armed bandit

problem. Following this, we formulate our research objectives, with respect to the

research requirements of this thesis.

• Chapter 4 discusses the budget–limited ε–first approach in more detail. In par-

ticular, we first introduce the pulling policy, then we discuss its computational

complexity. Following this, we prove that its performance regret bound is typ-

ically a linear function of the budget. However, we also show that with a high

probability, this regret bound can be improved to O
(

B
2
3

)

, where B is the budget

size.

• Chapter 5 deals with the budget–limited upper confidence bound based approaches.

Given this, we first introduce KUBE and fractional KUBE , and we discuss their

18 Chapter 1 Introduction

computational cost. We then provide upper bounds for their performance. We

also show that their regret bounds are asymptotically optimal.

• Chapter 6 analyses the budget–limited decreasing ε–greedy based approaches. In

more detail, we first discuss the pulling policies, namely KDE and fractional KUBE

. We also discuss their computational cost. We continue the analysis by providing

upper regret bounds for their performance, and showing that these bounds are

also asymptotically optimal.

• Chapter 7 then contains the application of the budget–limited MAB model to

the problem of long–term information collection problem within WSNs. We first

present related work in this area, and detail why it does not meet all our re-

quirements. Following this, we give the formal descriptions of our network model

and research objectives. We then discuss our approach for efficient long–term

data collection, which includes the budget–limited MAB learning based energy

management method, and routing algorithms, respectively. Our approach is then

empirically evaluated.

• Finally, Chapter 8 concludes and presents directions for future work to broaden

the scope of our research and increase its practical applicability to the model of

budget–limited bandits.

Chapter 2

Literature Review

In this chapter, we provide an overview of existing research studies against which our

work is positioned. In order to do so, in the first part of the chapter (Section 2.1) we

describe the standard, stochastic multi–armed bandit problem in more detail, and discuss

the existing works on this bandit model. Following this, we focus on existing pulling

policies of the standard MAB, that form the basis of our solutions in the subsequent

chapters. We compare their performance from both a theoretical and an empirical

perspective in Section 2.2, and we continue with the discussion of the variants of the

standard bandit model in Section 2.3. In particular, we focus on bandit models that

take several pulling constraints into account, and we further focus on these models

that contain pulling costs or limited pulling abilities. Furthermore, as mentioned in

Chapter 1, we use the unbounded knapsack approach in order to tackle our budget–

limited MAB problem. Given this, we give a detailed overview of the knapsack literature

in Section 2.5. More specifically, we first introduce the knapsack problem and its variants

(including the unbounded knapsack) in Section 2.5.1. We then continue with solutions

that efficiently tackle the unbounded knapsack (section 2.5.2). Finally, in Section 2.6,

we conclude this chapter by summarising our findings and relating them back to our

original research requirements (as detailed in Section 1.1).

2.1 The Stochastic Multi-Armed Bandit Problem

In this section, we describe the stochastic, or standard, MAB model (Robbins, 1952) in

detail. In the MAB problem, there is a machine with K arms, each of which delivers re-

wards, that are independently drawn from an unknown distribution, when the machine’s

arm is pulled. A gambler must choose which of these arms to play. At each time step,

he pulls one of the machine’s arms and receives a reward (or payoff). The gambler’s

purpose is to maximise his return; that is, maximise the sum of the rewards he receives

19

20 Chapter 2 Literature Review

over a sequence of pulls. As the reward distributions differ from arm to arm, the goal is

to find the arm with the highest expected payoff as early as possible, and then to keep

gambling using that best arm.

Now, to keep the terminology consistent with the multi-agent system based wireless

sensor network problem considered in Chapter 7, hereafter we refer to the gambler as an

agent. Thus, we can formulate the MAB problem as follows. Let K denote the number

of the arms that the agent can pull. At each time step t, the agent pulls arm i (t), which

delivers the reward ri(t) (t), drawn from an unknown distribution of arm i (t). Finally, let

T > 0 denote the time horizon in which the agent operates. Thus, we have the following

optimisation problem:

max
T
∑

t=1

ri(t) (t). (2.1)

Thus, the agent has to choose a policy, that is, a sequence of pulls, that may deliver the

maximal reward at each time step t in order to achieve the maximum of equation 2.1.

It is clear that if the distributions, from which the rewards are drawn, were known, the

optimal policy would be to always pull the arm with the highest expected reward in order

to maximise the cumulative rewards. Given this, in order to analyse the performance

of a pulling policy we compare its performance with this theoretical optimal policy. In

particular, we study the regret of the policy for not playing optimally. Now, let µi denote

the expected reward value of arm i, where

µ∗ = max
i

µi. (2.2)

The regret RT (A) of pulling policy A after T pulls can be defined as:

RT (A) = Tµ∗ −
T
∑

t=1

ri(t) (t). (2.3)

The MAB model, due to its clear representation of the trade–off between exploration

and exploitation (see Chapter 1), has been used in a variety of areas. The historical

motivation for this model was given by clinical trials where different treatments need

to be experimented with, while patient loss should also be minimised as well (Hardwick

and Stout, 1991). MAB models are also used to solve financial and investment problems

as well. For example, optimal, but a priori unknown, investment options can be learned

by using MAB exploration, while income maximisation is provided by MAB exploitation

(Lai and Lim, 2005; Wang and Wang, 2009). In addition, MAB can also be adopted to

the area of e–commerce, as an efficient way to identify the ranking of web documents

(Radlinski et al., 2008), or as a learning technique for optimising online advertisement

(Chakrabarti et al., 2008).

Chapter 2 Literature Review 21

2.2 Stochastic Bandit Policies

Within this section, we discuss the bandit pulling policies in more detail. Recall that

a fundamental dilemma in the MAB problem is the trade-off between exploration and

exploitation. Specifically, if the agent exclusively chooses the action that it thinks is the

best (i.e. exploitation), it may fail to discover that one of the other actions actually has

a higher expected payoff. On the other hand, if he spends too much time trying out

all the actions and gathering statistics (i.e. exploration), it may fail to choose the best

action often enough to get a high return.

Against this background, researchers have proposed a variety of approaches that tackle

this exploration-exploitation conflict from different aspects. Among these, the most sim-

ple policies are the greedy algorithm and its variants (Sutton and Barto, 1998; Vermorel

and Mohri, 2005). In particular, the simplest policy in any bandit setting is a greedy pol-

icy (Sutton and Barto, 1998), which chooses the arm with the current highest estimated

exptected reward at each time step. In most bandit problems, however, this algorithm

demonstrates low efficiency, as the agent performs insufficient exploration (Sutton and

Barto, 1998). Given this, a number of variants have been introduced in order to ex-

plicitly take exploration into account. One of the simplest approaches is the ε–greedy

policy (Watkins, 1989), in which the agent follows the greedy policy (i.e. it pulls the arm

with the highest estimate) with probability (1− ε), and it selects a random arm with

probability ε. The value of ε is selected a priori and can be interpreted as an exploration

parameter; that is, higher values correspond to more exploration and vice versa. The

exploration parameter ε guarantees that every possible arm is continuously pulled as

time goes by. This implies that ε–greedy fails to achieve asymptotic convergence to the

optimal behaviour, since it is desirable to stop exploring once the optimal arm is learnt.

Nevertheless, this policy typically performs well in finite time (i.e. when the running

time horizon is finite), in a number of applications (Kuleshov and Precup, 2010; Sutton

and Barto, 1998; Vermorel and Mohri, 2005).

Another variant of the greedy algorithm is the ε–first approach (Even-Dar et al., 2002),

which explicitly splits the exploration phase from exploitation. In particular, if the time

horizon is T , then the agent randomly chooses an arm to pull (exploration) for the first

εT time steps and then selects greedily for the remaining (1− ε) T steps. This policy

ensures that all exploration is performed at the beginning when the agent has the highest

levels of uncertainty regarding the expected rewards of each arm. Similarly to the ε–

greedy, this policy does not converge to the optimal behaviour in general, since it might

wrongly choose a suboptimal arm to pull within the exploitation phase. However, Even-

Dar et al. showed that a high probability, the ε–first approach can achieve asymptotic

convergence. This type of performance guarantee, which only holds with a certain

probability, is referred to as the probably approximately correct (PAC) analysis (Valiant,

22 Chapter 2 Literature Review

1984). Nevertheless, ε–first is found to outperform existing pulling policies in may

applications (Kuleshov and Precup, 2010; Vermorel and Mohri, 2005). This is due to

the fact that by focusing on pure exploration at the beginning, ε–first typically learns

the optimal behaviour faster than other policies, that carry the exploration throughout

the whole operating time.

To address the desire for asymptotic convergence, Auer et al. (2002) extended the pre-

vious two policies and proposed an algorithm, called decreasing ε–greedy, or εt–greedy,

where the agent explores with probability min {1, εt} at time t and otherwise selects

greedily. Here, εt = C
t for some C > 0, and is decreasing as t grows. Beside the property

of asymptotic convergence, Auer et al. also showed that decreasing ε–greedy has a strong

finite–time performance. In particular, they proposed an O (ln T) upper bound for the

performance regret of the policy, where T is the running time horizon. This performance

bound is asymptotically optimal, as it only differs from the best optimal regret bound,

that a pulling policy can achieve, by a constant factor. In fact, it can be shown that for

any pulling policy, there exists a bandit setting, in which the performance regret of that

particular policy is Ω (lnT) (i.e. it is at least logarithmic) (Anantharam et al., 1987;

Lai and Robbins, 1985). In addition, decreasing ε–greedy shows good performance in

experimental studies, compared to that of other policies (Kuleshov and Precup, 2010;

Vermorel and Mohri, 2005). Specifically, it converges to the performance of ε–first and

typically outperforms the others.

Apart from the variants of the greedy approach, other pulling techniques focus on theo-

retical guarantees. In more detail, Lai and Robbins (1985) proposed a policy, which they

called uniformly good policy. This achieves logarithmic regret bounds for some specific

families of probability distributions (including exponential families), as the time horizon

tends to infinity. The regret bound’s constant factor is based on the Kullback–Leibler di-

vergence (Lai and Robbins, 1985), and this bound guarantees that the algorithm satisfies

the property of asymptotic convergence. Their result was later improved by Anantharam

et al. (1987) and Agrawal (1995b). In particular, Anantharam et al. extended it to ban-

dit models where multiple arms can be pulled at the same time. Agrawal later proposed

a class of algorithms that is probability distribution independent; that is, it does not

contain any restriction on the distributions of the rewards. To do so, they applied a

concept called optimism in the face of uncertainty (OFU), first introduced by Kaelbling

(1993), that allows the agent to select the arms by using a combination of the estimates

of the expected reward values and the uncertainty of those reward estimates, such that

arms with high uncertainty are selected more often. By so doing, Agrawal proved that

the proposed algorithms are thus much easier to compute than Lai and Robbins’. In

addition, they can still achieve the same asymptotic optimal regret bound, but with a

significantly larger constant factor.

Chapter 2 Literature Review 23

To provide finite–time regret bounds, Auer et al. (2002) enhanced Agrawal’s technique

by designing a class of policies called upper confidence bound (UCB). These approaches

achieve bounded regret in finite time as well as having optimal asymptotic convergence.

In particular, they first proposed UCB1, which can be described as follows. UCB1 pulls

each arm once at the beginning, then at each subsequent time step t, UCB1 selects arm

i that maximises:

µ̂i,t +

√

2 ln t

ni,t
, (2.4)

where µ̂i,t is the estimate of arm i’s expected reward value, and ni,t is the number of

times UCB1 pulled arm i until time step t. This policy achieves O (ln T) finite–time

regret bound, but the constant factor of the bound is significantly larger than that of

Lai and Robbins’ method. In addition, it was found to perform poorly in finite-time

applications (Auer et al., 2002). To improve the performance of UCB1 in real–world

applications, Auer et al. modified the policy to UCB–tuned so that the latter pulls the

arm that maximises:

µ̂i,t +

√

√

√

√

2 ln t

ni,t
min

{

1

4
, Vi (ni,t)

}

, (2.5)

where

Vi (ni,t) =
1

ni,t

ni,t
∑

τ=1

r2
i (tτ)− µ̂i,t +

√

2 ln t

ni,t
. (2.6)

Here, ri (tτ) denotes the reward value we get by pulling arm i at time step tτ (i.e. the

time step in which we pull arm i the τ th time). Although UCB–tuned shows good

performance in applications, it does not have any theoretical guarantees such as finite–

time regret bound or asymptotic convergence (Auer et al., 2002).

In addition, Auer et al. (2002) also proposed UCB2, a variant of UCB1, with the purpose

of decreasing the large constant factor within the regret bound. This UCB–based policy

can be described as follows. The policy chooses an arm, and pulls it for an epoch (i.e.

a specified interval of time). In so doing, it maintains an index τi for each arm i, that

denotes the starting time of the τ th epoch in which we pull arm i. Similar to UCB1, it

pulls each arm once at the beginning, setting τi = 0 for all i. Following this, at each

epoch, the agent chooses an arm that maximises:

µ̂i,t +

√

√

√

√

(1 + α) ln
(

et
l(τi)

)

2l (τi)
, (2.7)

where

l (τi) = ⌈(1 + α)τi⌉. (2.8)

Here, the length of epoch τi (i.e. the τ th epoch in which we choose arm i to pull) is

l (τi)− l (τi − 1). In addition, e is Euler’s number and α is a tuning parameter, that has

24 Chapter 2 Literature Review

to be set a priori. Finally, at the end of epoch τi, we increase the value of τi by 1.

Note that the UCB approach is computationally less expensive than Lai and Robbins’

algorithm. However, it has a lower efficiency in terms of regret bounds. In particular,

the asymptotic constant factor within the regret bound of Lai and Robbins’ algorithm is

tighter than that of the UCB. Given this, a range of more recent research work focuses

on improving the constant factor within the logarithmic regret bound of the UCB. In

particular, Auer and Ortner (2010) revisited the UCB approach and showed that UCB

has inefficient regret bounds if the real expected reward values of the arms are close

to each other (i.e. it is hard to learn the optimal arm). They proposed an extension

of UCB that shows improvement in terms of providing tighter regret bounds than that

of the UCB. More recently, Maillard et al. (2011) derived a logarithmic regret bound

that contains a Kullback–Leibler divergence based constant factor, which is proven to

be near–optimal (i.e. it is as tight as Lai and Robbins’ regret bound). In so doing,

the authors improved the UCB based technique described in the work of Honda and

Takemura (2010). However, by improving the regret bound, the algorithm becomes

significantly more costly in terms of computational complexity.

Similar to the UCB policies, the POKER (for price of knowledge and estimated reward)

algorithm also follows the concepts of interval estimation and OFU. In particular, let

µ∗ = maxi µi denote the optimal expected reward value. Now if I (t) denotes the arm

with the highest estimated reward mean at time step t such that:

I (t) = arg max
i

µ̂i,t, (2.9)

then we have µ̂I(t) = maxi µ̂i,t. Now, let δt denote the expected reward improvement at

time step t, which can be defined as δt = E
[

µ∗ − µ̂I(t)

]

. At each time step t, the agent

chooses an arm i that maximises:

µ̂i,t + δtP
[

µi − µ̂I(t) ≥ δt

]

(T − t) , (2.10)

where P
[

µi − µ̂I(t) ≥ δt

]

is the probability that by choosing arm i, the reward improve-

ment will be higher than δt. Intuitively, the product in the second term of Equation 2.10

can be viewed as an estimate of the knowledge acquired if arm i is pulled repeatedly

until T . However, both δt and P
[

µi − µ̂I(t) ≥ δt

]

are not known a priori. Within

POKER, the agent uses heuristics in order to estimate these values. In so doing, it

first takes the decreasing order of the arm’s estimated reward mean values such that

µ̂i1,t ≥ µ̂i2,t ≥ . . . ≥ µ̂iq,t, where q is the number of arms that have been pulled at least

once until time step t. Now, the agent estimates δt by using the following approximation

technique:

δt =
µ̂i1,t − µ̂i√q ,t√

q
. (2.11)

Chapter 2 Literature Review 25

To estimate the reward improvement probability, let σ̂i,t denote the estimated standard

deviation of arm i’s reward distribution. Thus, noting that

P
[

µi − µ̂I(t) ≥ δt

]

= P
[

µi ≥ µ̂I(t) + δt

]

, (2.12)

which is estimated by
∫ ∞

µ̂I(t)+δt

N
(

x, µ̂i,t,
σ̂i,t√
ni,t

)

dx, (2.13)

where N
(

x, µ̂i,t,
σ̂i,t√
ni,t

)

denotes a normal distribution with expected value µ̂i,t and stan-

dard deviation
σ̂i,t√
ni,t

. Here, ni,t denotes the number of times the agent has pulled arm

i until time step t. By using the abovementioned heuristics, Vermorel and Mohri (2005)

proved that POKER asymptotically converges to the optimal policy as time goes by.

On the other hand, they could not provide a finite–time regret bound. More recently,

Sykulski (2011) demonstrated that POKER shows poor performance within experimen-

tal studies, compared to that of simpler policies such as ε–greedy or ε–first.

Apart from the abovementioned approaches, an alternative way to find a trade–off be-

tween exploration and exploitation is to randomly pull the arms such that the arms that

are expected to have higher rewards are selected with higher probability. This concept

is usually denoted as the probability matching technique (Vermorel and Mohri, 2005).

In particular, the first of this kind is SoftMax, proposed by Luce (1959), where at each

time step t, arm i is chosen with probability

pi (t) =
e

µ̂i,t
τ

∑K
j=1 e

µ̂j,t
τ

, (2.14)

where τ is a tuning parameter, which determines the degree of exploration. In particular,

large values of τ correspond to more equal weighting between the arms, and thus, more

exploration. On the other hand, as τ → 0, SoftMax converges to the greedy algorithm

(i.e. pure exploitation). By suitably choosing the value of τ , SoftMax can ensure that

arms that are likely to be suboptimal are less frequently selected, compared to arms

with high reward values. However, since τ does not change over time, the overall de-

gree of exploration does not change either. This leads to poor theoretical performance

of SoftMax; that is, there is no guarantee that SoftMax will satisfy the property of

asymptotic convergence (similarly to the case of ε–greedy). To address this drawback,

Cesa-Bianchi and Fischer (1998) proposed the SoftMix algorithm in which the value of

τ is decreasing over time, in a similar vein to decreasing ε–greedy (it is typically de-

creased at rate 1
t , or ln (t)

t). They also provided a O
(

ln2 (T)
)

finite–time regret bound,

which implies the asymptotic converging behaviour of SoftMix (since the regret is sub–

linear). However, this regret bound is less efficient, compared to the optimal logarithmic

bounds. Another popular method is the exponential weight algorithm for exploration

26 Chapter 2 Literature Review

Computational
Cost

Experimental
Performance

Asymptotic
Convergence

Finite–Time
Bound

Constant
Factor

ε–first ++(*) ++(*) - - -

ε–greedy ++ ++ - - -

decreasing
ε–greedy

++ ++ Yes O (ln T) large

Lai and Robbins’ + - Yes - small(*)

Agrawal’s ++ - Yes - large

UCB1 ++ + Yes O (ln T) large

UCB–tuned + ++ - - -

UCB2 ++ + Yes O (ln T) moderate

Improved UCB + - Yes O (ln T) small

Maillard et al.’s + - Yes O (ln T) small(*)

POKER + + Yes - -

SoftMax ++ ++ - - -

SoftMix ++ ++ Yes O
(

ln2 T
)

large

Exp3 + + Yes O
(√

T
)

large

Table 2.1: An overview of the pulling policies in the bandit domain. The symbols
have the following meaning: ‘+’ (‘++’) means that the property is (strongly) satisfied.
In addition, ‘(*)’ indicates the best performance within a row. On the other hand, ‘-’

means the property is not known.

and exploitation (Exp3), proposed by Auer et al. (2003). In particular, at each time

step t, pi (t) is calculated as follows:

pi (t) = (1− γ)
wi (t)

∑K
j=1 wj (t)

+
γ

K
. (2.15)

Here, γ ∈ (0, 1] is a tuning parameter, and wi (t) are the probability weights, that can

recursively be calculated as follows. For each i ∈ {1, 2, . . . ,K}, wi (1) = 1, and if arm i

is pulled at time step t, we have

wi (t + 1) = wi (t) exp

(

γ
ri (t)

pi (t)K

)

. (2.16)

Otherwise, we have wi (t + 1) = wi (t). Note that the tuning parameter γ determines

the degree of exploration. In particular, γ = 1 yields pure random exploration, and

γ → 0 brings Exp3 towards the pure exploitation approach. This algorithm, however, is

designed for tackling non–stochastic bandit problems (see Section 2.3 for more details),

and thus, shows inefficient performance in stochastic bandit settings. More specifically,

it can achieve O
(√

T
)

regret bound, which is significantly less than the optimal loga-

rithmic regret bound (Auer et al., 2003).

In summary, the comparison of the abovementioned policies is depicted in Table 2.1. In

particular, we can see that at one extreme are the simple and experimentally efficient

Chapter 2 Literature Review 27

policies such as ε–first and ε–greedy. However, these algorithms cannot guarantee the-

oretical efficiency (i.e. asymptotic convergence and finite–time regret bounds). On the

other hand, UCB–based algorithms (e.g. UCB1, UCB2, or Maillard et al.’s algorithm)

achieve efficient theoretical performance, but with poor experimental results. Other

algorithms typically show significant shortfalls, compared to the abovementioned algo-

rithms. In particular, they either have poor performance in practice, compared to that

of the ǫ–first, or they provide significantly worse theoretical guarantees, compared to

that of the UCB–based approaches. A notable exception, however, is the decreasing

ε–greedy policy. More precisely, this algorithm approaches the performance of the ǫ–

first in practice, and shows similar theoretical results, compared to that of the UCB

algorithms. Given this, it acts as a trade–off between the simple, but experimentally

efficient, approaches and the theoretically more advanced, but experimentally poorly

performing, algorithms. Since these algorithms do not take pulling cost into account,

they are not suitable to the budget–limited multi–armed bandit problem. However,

they still form the foundations on which we can rely, in order to efficiently tackle the

budget–limited MAB. In particular, within Chapters 4, 5, and 6, we will introduce three

types of budget–limited MAB algorithms, based on the ε–first, UCB, and the decreasing

ε–greedy approaches of the standard MAB.

2.3 Bandit Variants

Given the detailed description of the stochastic bandit model and its pulling policies in

the previous section, we now consider a number of variants of the MAB model. Although

these variants typically do not show similarities to the budget–limited MAB, many of

them may form the basis of our future work. The bandit model can be varied from a

number of aspects, such as varying the set of arms, the behaviour of the rewards, or

additional information that the agent can take into account. These variants are covered

in detail within this section as follows. In Section 2.3.1, we first describe the bandit

variants that consider different types of available arms to pull. We then continue with

bandit models that vary the nature of the reward values in Section 2.3.2. In addition,

Section 2.3.3 focuses on bandit models where additional information is also available

(beside the reward value that the agent receives by pulling a particular arm).

2.3.1 Set of Arms

One way to extend the multi–armed bandits is to allow infinitely many arms (i.e.

continuum–armed bandits), instead of limiting the arms to a finite set (Agrawal, 1995a;

Auer et al., 2007; Bubeck et al., 2011; Cope, 2009; Kleinberg, 2005). Such problems

can be found, for example, in control theory, where the agent has to find an optimal

28 Chapter 2 Literature Review

parameter setting from a continuous parameter space. Other examples include, but are

not limited to product pricing, transmission power controlling, and temperature optimi-

sation in chemical processes (Bubeck et al., 2011; Cope, 2009). This problem was first

discussed by Agrawal (1995a), and a pulling policy with near optimal regret bounds was

provided by Kleinberg (2005). This result was later improved by Auer et al. (2007).

More recently, Kleinberg et al. (2008) generalised the continuum–armed bandit prob-

lem to the bandit model in metric spaces. Based on this result, Bubeck et al. (2011)

extended the model so that the set of arms is allowed to be a generic measurable space

and the mean–payoff function is locally Lipschitz continuous 1. Although we focus on

the case of finite set of arms in this thesis, we consider the continuum-armed variant as

a possible way to extend our work, and thus, the aforementioned works may found the

basis of future investigations within the budget–limited MAB domain.

Another way to vary the set of arms is to allow the agent to pull more than one arm

at the same time (Anantharam et al., 1987; Cesa-Bianchi and Lugosi, 2009). More

specifically, Anantharam et al. (1987) allows the agent to pull m ≥ 1 arms at the

same time (m < K). Based on the technique introduced by Lai and Robbins (1985),

Anantharam et al. proposed a pulling policy that proveably achieves logarithmic regret

bounds (i.e. the bound is asymptotically optimal). More recently, Cesa-Bianchi and

Lugosi (2009) introduced the combinatorial bandit problem in which the agent chooses a

finite combination of arms to pull. However, the number of arms that the agent can pull

at the same time, is limited by a threshold L < K. Cesa-Bianchi and Lugosi provided

an algorithm, called ComBand, that achieves O
(

L
√

TK ln N
)

regret bound, where N

is the number of available combinations of arms that the agent can pull at each time

step. Within our settings, we only allow the agent to pull one single arm at each time

step. Given this, this variant of MAB is out of our scope.

Apart from the abovementioned variants, other research work allows the set of arms to

change over time (Chakrabarti et al., 2008; Wittle, 1981). In more detail, Wittle (1981)

studied the arm acquiring bandits, in which new arms are available to the agent during

the operating time. On the other hand, Chakrabarti et al. (2008) discussed the mortal

bandit problem that allows the arms to be deleted. These models are motivated by a

number of applications in which new options can arrive or disappear from the system

(e.g. online advertisement, or financial investments). Note that within the budget–

limited models which we focus on in this thesis, the set of feasible arms (i.e. arms that

we can pull with respect to the remaining budget) decreases over time as the pulling

budget decreases. However, within mortal bandits, it is known a priori which arm

becomes infeasible in the future, while within the budget–limited model, this is not

known in advance, since it depends on the sequence of pulls in the past. Hence, an arm

might become infeasible to be pulled at time t if we choose a particular pulling sequence,

1A function f (x) is locally Lipschitz continuous if for every x from its domain, there is a neighbour-
hood U (x) of x and a constant k such that if x1, x2 ∈ U (x), then |f (x1) − f (x2)| ≤ k |x1 − x2|.

Chapter 2 Literature Review 29

and the same arm might be still feasible, if we choose another sequence of pulls. This

indicates that both arm acquiring and mortal bandit models are not suitable to describe

our budget–limited bandit problem.

2.3.2 Nature of Rewards

In the stochastic bandit model, the rewards are randomly chosen from unknown, but

fixed distributions. However, many real–world applications require non–stationary be-

haviour; that is, the reward distributions may vary over time. This situation typically

occurs in systems where the environment is dynamic (i.e. the environmental character-

istics vary over time), such as wireless sensor networks, financial markets, or dynamic

controlling systems. In this spirit, Wittle (1988) introduced the restless bandit problem,

in which the state of each unselected arm changes over time. In more detail, the reward

distribution of the arms dynamically change as time goes by, if they are not selected

for pulling. More recently, a number of researchers focus on bandit within piece–wise

stationary environments (DaCosta et al., 2008; Hartland et al., 2006). In particular,

these models assume that the reward distributions are piece–wise stationary; that is,

they are stationary within certain time intervals. This assumption is driven by the fact

that many real–world applications follow this behaviour (i.e. temperature change, or

behaviourial changes in habits of animals). Given this, Hartland et al. (2006) proposed

Adapt–EvE (for adaptive exploration and exploitation), a pulling policy that adapts to

the environmental changes. In particular, it uses a two–level bandit model, in which the

lower level is a standard stochastic MAB, while the meta–bandit level is dedicated to

detecting the changes within the environment. If the meta–bandit finds signs of change

(e.g. by using statistical tools), it resets the standard MAB. Similarly, D-MAB (for

dynamic multi–armed bandit), proposed by DaCosta et al. (2008), also uses change de-

tection to reset the underlying bandit algorithm. Since we do not take dynamic bandits

into consideration, these works are out of our focus.

Another way to modify the reward generating mechanism is to assume that it is non–

stochastic, or adversarial (Auer et al., 2003). In more detail, within this bandit setting,

the agent plays a finite repeated game against nature, or an adversary, in which at each

time step t, the adversary generates a vector of rewards v (t) = {vi (t)}1≤i≤K ∈ R
K ,

which is unknown to the agent. Note that K is the number of arms that the agent

can pull. Following this, the agent chooses an arm i ∈ {1, . . . ,K} to pull, and receives

reward vi (t). The goal here is also to maximise the total reward that the agent can

achieve over time horizon T . We say that the adversary is oblivious if the choice of the

reward vector v (t) is independent from the previous pulls of the agent, and it is non–

oblivious if the adversary takes the pulling history into account. As the latter case forms

an extremely hard problem to tackle (Bubeck, 2010), most research work focuses on the

former. Specifically, Auer et al. (2003) proposed Exp3 to tackle this bandit problem (see

30 Chapter 2 Literature Review

Section 2.2 for more details). In particular, they provided a O
(√

T
)

regret bound for

Exp3. Note that here, analogously to the stochastic bandit, the regret is measured as

the difference between the performance of the algorithm and that of a best single arm

policy (i.e. a policy that repeatedly pulls a single arm). The results of Auer et al. were

later improved by Bubeck (2010). Although this bandit variant appears flexible, it is

not always practical, since in many applications, the environment does not behave in

an adversarial way. Within this thesis, we do not focus on the adversarial aspect of the

budget–limited MAB. However, it can be regarded as future work (see Chapter 8 for

more details).

2.3.3 Additional Information

Within the standard bandit problem, the sole feedback that the agent receives from

the system is the reward value of the chosen arm. However, in a number of real–world

applications, agents are likely to have additional side information (e.g. information from

what they have observed, or information given by other participants in the system) that

is received throughout their operating time. This side information can be regarded as

additional information (other than observed rewards) that is related to, but does not

fully reveal, the expected rewards of future pulls (Sykulski, 2011). This bandit variant

is usually referred to as bandits with covariates (Clayton, 1989; Pavlidis et al., 2008;

Rigollet and Zeevi, 2010; Woodfoofe, 1982) or contextual bandits (Beygelzimer et al.,

2011; Langford and Zhang, 2007; Lu et al., 2010). Within this bandit setting, at each

time step t, the agent observes a noisy context (or covariate) X (t) (i.e. side information),

that is randomly drawn from a known and fixed probability distribution PX . Let ri (t)

denote the reward the agent receives if arm i is pulled at t. We have:

E [ri (t) |X (t)] = f (i) (X (t)) , (2.17)

where f (i) are not revealed to the agents a priori. Within the contextual bandit setting,

Woodfoofe (1982) studied this problem in the one–armed bandit version, while Rigol-

let and Zeevi (2010) covered the two–armed bandit model. The multi–armed model

was discussed in Beygelzimer et al. (2011); Langford and Zhang (2007) and Lu et al.

(2010). In particular, Langford and Zhang (2007) proposed the epoch–greedy algorithm

that achieves O
(

T
2
3

)

regret bound. Beygelzimer et al. (2011) improved this result by

proposing Exp4 .P, a pulling policy that achieves O
(√

KT
)

regret bound with high

probability. In addition, Lu et al. (2010) extended the model to more general met-

ric spaces. Within this thesis, we do not focus on the additional information that the

agent can receive, and thus, we assume that there is no side information within the

budget–limited MAB. Given this, the abovementioned approaches are not suitable for

Chapter 2 Literature Review 31

the budget–limited bandit model, since they are mainly designed to tackle the chal-

lenges of having side information. However, the budget–limited MAB can be extended

by adding side information into the model. Thus, one of the possible future work is to

combine our results with the aforementioned methods from the domain of contextual

bandits.

Apart from the contextual bandits, another way to take additional information into

account is to reveal the reward value of arms that are not pulled as well (Cesa-Bianchi

et al., 1997). This can be seen as a finite repeated game with full information. Within

this setting, the best possible regret bound is
√

T ln K (for more details see Chapter

3 in Bubeck (2010)). A variant of this full information problem is the label efficient

prediction problem (Allenberg et al., 2006; Cesa-Bianchi et al., 2005; Ottucsák, 2007).

Here, at each time step the agent can ask to see the rewards of other arms that are

not pulled. However, the agent can ask for side information for at most than m times

over its operating time. Within this version, Cesa-Bianchi et al. (2005) proposed a

O

(

T
√

K
m

)

regret bound, which was later improved by Bubeck (2010) to O

(

T
√

ln K
m

)

.

Similarly to the contextual bandits, bandits with full information can also be extended

by adding pulling costs into the model. However, the analysis of this combination of

models remains as future work.

2.4 Bandits with Pulling Cost

A common theme in the abovementioned bandit variants is that pulling the arms is not

costly, and thus, any arm can be pulled arbitrary many times during the agent’s oper-

ating time. However, in many real–world applications, making a decision (i.e. choosing

an arm to pull) is costly (see Chapter 1 for more details). By ignoring pulling costs, the

agents can explore without limits. In contrast, when pulling costs are taken into con-

sideration, exploration has to be done more carefully, otherwise it results in inefficient

performance (Farias and Madan, 2011; Madani et al., 2004). Against this background,

several recent research works have focused on bandit versions with some costs that are

related to arm pulling (Agrawal et al., 1988; Bubeck et al., 2009; Farias and Madan,

2011; Guha and Munagala, 2009; Madani et al., 2004). In particular, Agrawal et al.

(1988) considered the bandit problem with switching costs, where the switching of arms

between subsequent pulls is costly, and the agent has to pay a fixed cost value C. Here,

the total reward regret is combined with the total switching cost in order to form the

cumulative regret. The objective of this bandit problem is then to minimise this cumu-

lative regret. In so doing, Agrawal et al. proved that the best possible regret bound

is logarithmic, and they also provided an efficient pulling policy that asymptotically

achieves this bound. More recently, Guha and Munagala (2009) extended this bandit

model so that the switching cost is measured by a metric. In more detail, if i (t) = i (i.e.

32 Chapter 2 Literature Review

the arm pulled at time step t) and i (t + 1) = j then the switching cost is a fixed value

li,j. Within this variant, Guha and Munagala proposed an efficient pulling algorithm

that approximates the optimal solution by a (3 + ε) constant factor, where ε > 0 is an

arbitrarily small number.

Similar to bandits with switching cost, the irrevocable bandit model also aims to min-

imise the cost of switching arms between subsequent pulls (Farias and Madan, 2011).

However, while bandits with switching cost allow re–switching (i.e. return to pull an

arm that has been pulled a long time ago), in the irrevocable bandit model, the agent

is not allowed to return to an arm once it switched from that arm. This restriction

is inspired by a number of financial and economical applications (e.g. retail selling, or

fashion designing), in which switching business partners causes significant loss in trust,

and thus, the option of returning to that partner is not possible (Farias and Madan,

2011).

The bandit with switching cost and irrevocable arms, however, does not share the same

issues of the budget–limited MAB, since there is no budget limit for the total pulling

cost. In particular, the algorithms designed for these bandit models may fail to achieve

good performance within the budget–limited MAB, since they might result in sequence

of pulls in which the total pulling cost exceeds the budget limit.

Another way to take pulling cost into account is to set a budget limit for the total

pulling cost. In particular, Madani et al. (2004) introduced a budgeted bandit version in

which arm pulling is costly, and different arms have different costs. In addition, the total

pulling cost cannot exceed a given budget B. This model shows similarities to our model,

however, it solely focuses on exploration, ignoring the exploitation phase. In particular,

the budgeted bandit problem consists of a budget limited exploration phase, and an

unlimited exploitation phase. Within the exploration phase, pulling arms is costly, and

the total cost of exploration cannot exceed the budget. This type of problem can be

found in many applications, such as clinical trials (i.e. we have to determine the best

medicine, but trials are costly), or transmission power optimisation between wireless

devices (i.e. we have to find the optimal value of transmission power, but each trial

consumes energy). Within their work, Madani et al. showed that this problem is NP–

hard, and they proposed an approximation algorithm with poor efficiency. This result

was then later improved by Guha and Munagala (2007), who proposed an approximation

policy with approximation factor 4. In their subsequent work, Guha and Munagala

(2009) further improved this approximation factor to (3 + ε).

More recently, Bubeck et al. (2009) addressed a variant of the budgeted bandit problem,

in which the pulling cost is considered to be the same for every arm, but the budget

is not known a priori to the agent. Given this, the authors focus on anytime policies

that have an incremental improvement in terms of finding the best arm as time goes by.

Chapter 2 Literature Review 33

Note that the anytime property is crucial here, since the budget, and thus, the stopping

time, is unknown. In so doing, Bubeck et al. introduce a new regret, called simple

regret, which can be described as follows. After the exploration budget is exceeded the

agent chooses a single arm that it assumes to be the best arm to repeatedly pull in the

exploitation phase. Let J (t) denote the arm that the agent chooses after t time steps.

The simple regret is defined as:

rt = µ∗ − µJ(t), (2.18)

where µ∗ denotes the highest expected reward. Against this background, Bubeck et al.

(2009) proposed a number of exploration algorithms and recommendation strategies (i.e.

a strategy to choose the best arm). In particular, they provided a O

(

√

K lnK
t

)

simple

regret bound, where t is the number of time steps after which the exploration phase has

to stop.

Finally, Antos et al. (2008) considered a similar model, in which they aim to estimate

the expected reward of all arms, in order to determine the best arm with high certainty.

In so doing, they introduced the concept of active learning regret, which is formalised

as:

max
i∈{1,...,K}

E
[

(µi − µ̂i,t)
2
]

, (2.19)

where µ̂i,t denotes the estimate of the expected reward of arm i at time step t. In

particular, Antos et al. proposed an algorithm that achieves O
(

T− 3
2

)

regret bound in

terms of active learning regret.

These models, although they show similarities to the budget–limited MAB, have dif-

ferent objectives; that is, to minimise the simple regret, and the active learning regret,

respectively. This indicates that the provided pulling policies are not suitable for our

model. More specifically, Bubeck et al. (2009) showed that a pulling policy that pro-

vides efficient performance in minimising the simple regret is not suitable in minimising

the total regret. However, note that these models focus on the exploration phase only,

and thus, they can be regarded as a part of our ε–first approach (Chapter 4), since

this approach explicitly separates exploration from exploitation. Given this, we can use

the aforementioned techniques to explore within the exploration phase of the ε–first ap-

proach. In particular, we indeed use the uniform pull policy, which is also recommended

by Bubeck et al. (2009), to explore in the ε–first approach (see Chapter 4 for more

details).

2.5 The Unbounded Knapsack Problem

Within the previous sections, we described the stochastic multi–armed bandit model and

its variants, and discussed their connections with the budget–limited bandit problem.

34 Chapter 2 Literature Review

We now turn to the description of the knapsack problems that form the basis of our

approach in the subsequent chapters. In particular, we first describe a number of knap-

sack models, including the unbounded knapsack, in more detail (Section 2.5.1). We then

discuss the solutions of the unbounded knapsack problem in particular in Section 2.5.2.

2.5.1 Knapsack Models

The standard knapsack problem and its variants are among the most well–known and

widely applied optimisation problems (Marcello and Toth, 1990; Skiena, 1999), and

can be defined as follows. A knapsack of weight capacity C is to be filled with some

combination of K different items. Each item i ∈ K has a corresponding value vi and

weight wi, and the problem is to select a subset of items that maximises the total value

of items in the knapsack, such that their total weight does not exceed the knapsack

capacity C. Formally, we have to solve the following optimisation problem:

maximise
K
∑

i=1

xivi, (2.20)

subject to

K
∑

i=1

xiwi ≤ C, (2.21)

∀i ∈ {1, . . . ,K} : xi ∈ {0, 1}. (2.22)

Note that each variable xi is binary, since we can either choose the item i or not.

The knapsack problem can be found in a large variety of research areas, such as task

allocation (e.g. computer job scheduling), logistics (e.g. airline cargo dispatching), and

financial investments (e.g. portfolio optimisation) (Kellerer et al., 2004; Marcello and

Toth, 1990).

In order to fit real–world applications, a variety of extensions and modifications have

been made to the standard knapsack model. In particular, these modifications include,

but are not limited to, extending (i) the domain of items (i.e. modifying Equation 2.22);

(ii) the knapsack capacity (i.e. modifying Equation 2.21), or (iii) the objective (modify-

ing Equation 2.20). Among these, one of the the most well–known knapsack variant is

the unbounded knapsack problem, where more than one identical copy from the different

item types are allowed. That is, xi can be an arbitrary (non–negative) integer. The

Chapter 2 Literature Review 35

unbounded knapsack can be formalised as follows:

maximise
K
∑

i=1

xivi, (2.23)

subject to

K
∑

i=1

xiwi ≤ C, (2.24)

∀i ∈ {1, . . . ,K} : xi ≥ 0, xi integer. (2.25)

Here, vi and wi are the value and the weight of item type i. That is, items from the

same type have the same weight and value.

Apart from the unbounded knapsack, there are a variety of other knapsack models.

This includes, but is not limited to, the following: bounded knapsack, d–dimensional

knapsack, multiple knapsack, and quadratic knapsack (Kellerer et al., 2004; Marcello

and Toth, 1990). However, these models are out of scope of this thesis, and thus, we

ignore their description (for more details of these models, see Kellerer et al. (2004)).

2.5.2 Algorithms for the Unbounded Knapsack

Given the knapsack models described in the previous section, we now focus on the un-

bounded knapsack in more detail. Thus, within this section, we discuss the algorithms

for the unbounded knapsack problem, as they form the basis of our approaches to tackle

the budget–limited MAB. As the unbounded knapsack problem is NP–hard (Andonov

et al., 2000; Kellerer et al., 2004), the algorithms can be categorised to exact or approx-

imation approaches. The former are optimal, but with increased computational costs,

while the latter provide near–optimal solutions with low computational complexity.

In more detail, the exact algorithms typically use the technique of dynamic programming

(Bellman, 1957) to exploit the observation that if a solution of the unbounded knapsack is

optimal, then by removing an item r from the optimal knapsack packing, the remaining

solution has to be optimal for the modified knapsack problem with capacity C − wr,

where C is the capacity of the original problem. Given this, the dynamic programming

technique first solves the problem for a subset of item types. Then it adds a new item

type to the subset, and checks whether the optimal solution has to be modified for the

enlarged subset. This approach, however, is typically pseudo–polynomial in terms of

computational cost, and its running time significantly depends on the sequence of item

types added to the subset (Kellerer et al., 2004; Marcello and Toth, 1990). Against this

background, a number of researchers addressed this issue by providing efficient ways

of choosing the next item to add to the subset (Andonov et al., 2000; Babayev and

Mardanov, 1994; Dudzinski, 1991; Marcello and Toth, 1990). The common approach

is to use a dominance relationship between the items. For example, a frequently used

36 Chapter 2 Literature Review

Algorithm 2.1 Fractional Unbounded Knapsack based Algorithm

1: I∗ = arg maxi∈{1,...,K} { vi

wi
};

2: while packing is feasible do
3: pack item from type I∗;
4: end while

dominance relationship is the collective dominance, which can be defined as follows:

A set of item types I collectively dominates item type i /∈ I if there exists a vector

y = 〈y1, . . . , yK〉 such that

∑

j∈I

yjwj ≤ wi and
∑

j∈I

yjvj ≥ vi. (2.26)

That is, by substituting an item of type i with the combination y of set of types I, we

can increase the total value, while the total weight is not increased (i.e. set I collectively

dominates item type i). Note that there are other types of dominance that are used in

state–of–the–art dynamic programming based algorithms, such as simple, multiple, or

threshold dominance (for more details see Andonov et al. (2000); Kellerer et al. (2004)).

Now, in order to decrease the computational complexity of the dynamic programming

approach, the next item type to be added to the subset is always the item type that is

not dominated by any other types that are still not in the subset (Andonov et al., 2000;

Babayev and Mardanov, 1994; Kellerer et al., 2004; Marcello and Toth, 1990). The exact

algorithms, however, are typically expensive in terms of computational complexity, and

thus, are not suitable to be used within the budget–limited MAB, since they may fail to

fulfil our second research requirement (computational feasibility). Given this, we do not

apply the abovementioned exact algorithms within the budget–limited bandit domain.

Another way to tackle the unbounded knapsack problem is to provide approximation

algorithms (Kellerer et al., 2004; Marcello and Toth, 1990). One of the simplest approx-

imation approaches is to relax the unbounded knapsack problem so that the value of xi

can be fractional, instead of integers. This relaxation is referred to as the fractional un-

bounded knapsack, or the linear programming relaxation of the problem (Kellerer et al.,

2004). In more detail, the fractional unbounded knapsack can be formalised as follows:

maximise

K
∑

i=1

xivi, (2.27)

subject to
K
∑

i=1

xiwi ≤ C, (2.28)

∀i ∈ {1, . . . ,K} : xi ≥ 0. (2.29)

To solve the fractional unbounded knapsack, we first define some notation. We refer

to the fraction vi

wi
as the density of item type i. Let I∗ denote the item type with the

Chapter 2 Literature Review 37

Algorithm 2.2 Density–Ordered Greedy Algorithm

1: N (1) = {1, . . . ,K}, t = 1;
2: while packing is feasible do
3: I∗ (t) = arg maxj∈N(t) { vj

wj
};

4: while packing is feasible do
5: pack item from type I∗ (t);
6: end while
7: N (t + 1) = N (t) \ {I∗ (t)};
8: t = t + 1;
9: end while

highest density. That is, we have:

I∗ = arg max
i
{ vi

wi
}

It is easy to show that the optimal solution vector xfr = 〈xfr
1 , . . . , xfr

K〉 of the fractional

relaxation problem is given by:

xfr
I∗ =

C

wI∗
,

xfr
j = 0, for j 6= I∗, j = 1, . . . ,K.

That is, the optimal solution is to solely use item type I∗, and ignore the others. Given

this, the fractional knapsack based approximation algorithm is to repeatedly pack items

from item type I∗ into the knapsack (see Algorithm 2.1). It is easy to show that this

algorithm has an approximation factor of 1
2 , and this factor is tight. Besides, the com-

putational complexity of the algorithm is O (K), since we just need to determine the

type with the highest density (Dantzig, 1957; Kellerer et al., 2004).

More recently, Kohli et al. (2004) studied an advanced version of the fractional knapsack

relaxation, called the density–ordered greedy algorithm. In particular, the algorithm can

be described as follows. First, the item types are sorted in order of their density, which

is an operation of O (K log K) computational complexity, where K is the number of item

types. Next, in the first round of this algorithm, as many units of the highest density

item are selected as is feasible without exceeding the knapsack capacity. Then, in the

second round, the densest item of the remaining feasible items is identified, and as many

units of it as possible are selected. This step is repeated until there are no feasible items

left (see Algorithm 2.2). Clearly, the maximum number of rounds is K. That is, the total

computational cost is O (K log K + K). Note that the algorithm was also studied by

Dantzig (1957). However, Kohli et al. (2004) improved the performance analysis of the

algorithm, by showing that the approximation factor of the density–ordered greedy is 2
3

on average, while Dantzig provided a tight approximation factor of 1
2 for the worst–case

performance.

38 Chapter 2 Literature Review

Both the fractional relaxation based and the density–ordered greedy algorithms are

simple in terms of computational cost, but they still achieve high performance in ex-

periments, compared to the computationally expensive exact algorithms (Kellerer et al.,

2004; Kohli et al., 2004; Marcello and Toth, 1990; Pisinger, 2005). Given this, we chose

the fractional relaxation based and the density–ordered greedy methods as the foun-

dations of our algorithms within the subsequent chapters. Note that there exist other,

more sophisticated, approximation algorithms, that also achieve high performance in

terms of low computational complexity (using the FPTAS framework). This includes,

but is not limited to, the following works: Ibarra and Kim (1975); Lawler (1979), Mar-

cello and Toth (1990), and Kellerer and Pferschy (1999). These algorithms, however,

are significantly more expensive in terms of computational complexity, compared to the

fractional relaxation based and the density–ordered greedy algorithms (for more details

see (Kellerer et al., 2004)). Thus, we ignore these algorithms within this thesis.

2.6 Summary

Within this chapter, we reviewed the literature of relevance in the topics of multi–armed

bandits and knapsack problems. In particular, we described the standard stochastic

MAB, which forms the basis of all the bandit models. Following this, we discussed

the state–of–the–art stochastic bandit pulling policies. These approaches can typically

be grouped into the following three classes: greedy based, UCB based, and probability

matching. We pointed out that the greedy based algorithms typically outperform the

others in applications, but they do not have strong theoretical performance guarantees.

On the other hand, the more sophisticated UCB based algorithms are theoretically

strong (i.e. they have efficient performance guarantees), but are typically outperformed

by simpler algorithms such as ε–first or ε–greedy, especially in large problem settings

(i.e. problems with a large number of arms). Meanwhile, the probability matching

approaches are neither good in applications (outperformed by the greedy methods) or in

theory (outperformed by the UCB based algorithms). We also pointed out the decreasing

ε–greedy algorithm is a good candidate to be an efficient trade–off between providing

good performance from both theoretical and experimental aspects. However, none of

these algorithms take pulling cost into account, and thus, they are not suitable for the

budget–limited multi–armed bandit problem. Nevertheless, they form a solid basis to

our approaches in the subsequent chapters. In more detail, we combine ε–first, UCB

and decreasing ε–greedy algorithms with unbounded knapsack techniques to tackle the

budget–limited MAB problem.

We continued the literature review with the discussion of existing variants of the bandit

model. We divided these models into four groups, based on the perspective from which

they divert from the standard model. These perspectives are the following: (i) set of

Chapter 2 Literature Review 39

arms; (ii) nature of rewards; (iii) additional information; and (iv) pulling costs. We

demonstrated that among these variants, the bandit models with pulling costs are most

related to our bandit setting. In particular, they also consider the budget limit and the

pulling costs. However, they typically focus on different objectives, such as minimising

the switching cost, the simple regret, or the active learning regret. Given this, we pointed

out that the pulling policies, that are designed to tackle these bandit problems, are not

likely to provide good performance in our budget–limited MAB. However, we can extend

the work within this thesis by taking pulling costs into consideration in many of these

models, and thus they form the basis of possible future work (as elaborated upon in

Section 8.2).

Following this, we turned to the discussion of the knapsack problems. In more detail,

we described the standard knapsack model and a number of its variants, including the

unbounded knapsack. We next focused on the exact and approximation algorithms of

the unbounded version. In particular, we pointed out that the exact algorithms are

computationally expensive, and thus, they cannot fulfil our second research requirement

(see Section 1.1 for more details). We focus on two simple, but efficient approximation

methods, namely the fractional unbounded knapsack based and the density–ordered

greedy algorithms. These methods form the foundation of our solutions in order to

tackle the budget–limited MAB. In particular, within the subsequent chapters, we will

show that the the budget–limited MAB can be efficiently tackled by combining fractional

unbounded knapsack based and the density–ordered greedy algorithms with the ε–first,

UCB and decreasing ε–greedy methods from the stochastic MAB domain.

In summary, we showed that to date, none of the state–of–the–art studies has addressed

the problem of budget–limited multi–armed bandits, and thus, no efficient pulling poli-

cies have been made within this bandit setting. Against this background, one of the main

drives of our work is to fill this gap, by designing efficient pulling algorithms that satisfy

our research requirements. In particular, our contributions can be distinguished into:

(ii) ε–first based approach, that is efficient in experimental applications, but has weak

theoretical bounds (see Chapter 4); (ii) two UCB based approaches, that are efficient in

theory, but provide poor performance in experiments (see Chapter 5); (iii) two ε–greedy

based algorithms, that provide a trade–off between the aforementioned approaches (see

Chapter 6). In addition, we will demonstrate the usefulness of the budget–limited MAB

in Chapter 7, where we apply our bandit model to the problem of long–term information

collection of wireless sensor networks.

Chapter 3

Formal Description of

Budget–Limited Multi–Armed

Bandits

Given the description of research objectives and literature of relevance in the previ-

ous chapters, we now formalise the budget–limited multi–armed bandit problem. The

budget–limited MAB model consists of a slot machine with K arms, one of which must

be pulled by the agent at each time step. By pulling arm i, the agent has to pay a pulling

cost, denoted with ci, and receives a non–negative reward drawn from a distribution as-

sociated with that specific arm. The agent has a cost budget B, which it cannot exceed

during its operation time (i.e. the total cost of pulling arms cannot exceed this budget

limit). Now, since reward values are typically bounded in real–world applications, we

assume that each arm’s reward distribution has bounded supports. Without loss of gen-

erality, for ease of exposition we assume that the reward distribution of each arm has

support in [0, 1], and that the pulling cost ci ≥ 1 for each i (our result can be scaled

for different size supports and costs as appropriate). Let µi denote the mean value of

the rewards that the agent receives from pulling arm i. Within our model, the agent’s

goal is to maximise the sum of rewards it earns from pulling the arms of the machine,

with respect to the budget B. However, the agent has no initial knowledge of the µi

of each arm i, so it must learn these values in order to deduce a policy that maximises

its sum of rewards. Given this, our objective is to find the optimal pulling algorithm,

which maximises the expectation of the total reward that the agent can achieve, without

exceeding the cost budget B.

Formally, let A be an arm–pulling algorithm, giving a finite sequence of pulls. Let

NB
i (A) be the random variable that denotes the number of pulls of arm i by A, with

respect to the budget limit B. Note that the total cost of the sequence A cannot exceed

41

42 Chapter 3 Formal Description of Budget–Limited Multi–Armed Bandits

B, that is:

P

(

K
∑

i

NB
i (A) ci ≤ B

)

= 1. (3.1)

Let GB (A) be the total reward earned by using A to pull the arms with respect to

budget limit B. The expectation of GB (A) is:

E
[

GB (A)
]

=

K
∑

i

E
[

NB
i (A)

]

µi. (3.2)

Then, let A∗ denote an optimal solution that maximises the expected total reward, that

is:

A∗ = arg max
A

K
∑

i

E
[

NB
i (A)

]

µi. (3.3)

Note that in order to determine A∗, we have to know the value of µi in advance, which

does not hold in our case. Thus, A∗ represents a theoretical optimum value, which is

unachievable in general.

Nevertheless, for any algorithm A, we can define the regret for A as the difference

between the expected cumulative reward for A and that of the theoretical optimum A∗.

More precisely, letting RB (A) denote the regret, we have:

RB (A) = E
[

GB (A∗)
]

−E
[

GB (A)
]

. (3.4)

Our objective is to derive a method of generating a sequence of arm pulls that minimises

this regret for the class of MAB problems defined above. In so doing, we define some

useful terms, that can be formalised as follows. Let I∗ denote the arm with the highest

reward mean density, that is:

I∗ = arg max
i

µi

ci
. (3.5)

For the sake of simplicity, we assume that I∗ is unique. However, this assumption does

not put restriction on any of our results. For each sub–optimal arm i (i.e. i 6= I∗), we

define di as the difference between the reward mean density of I∗ and that of i:

di =
µI∗

cI∗
− µi

ci
. (3.6)

Let dmin denote the minimum value of these:

dmin = min
di>0

di = min
i6=I∗

{

µI∗

cI∗
− µi

ci

}

, (3.7)

Chapter 3 Formal Description of Budget–Limited Multi–Armed Bandits 43

In addition, for each sub–optimal arm i, let

∆i = µI∗ − µi, (3.8)

δi = ci − cI∗ . (3.9)

Note that ∆i or δi can be negative, since it is possible that µI∗ < µi, or cI∗ > ci.

However, it is easy to show that both of ∆i and δi cannot be negative at the same time,

since µI∗
cI∗
≥ µi

ci
for all i.

Finally, let cmin and cmax denote the lowest and largest pulling cost, respectively. That

is, we get:

cmin = min
i

ci, (3.10)

cmax = max
i

ci. (3.11)

Using the formalisations described above, in what follows, we propose three classes of

algorithms to tackle the budget–limited MAB:

• an ε–first based approach (Chapter 4),

• two UCB based approaches (Chapter 5),

• and two ε–greedy based algorithms (Chapter 6).

These approaches are described in more detail in the subsequent chapters. In particular,

Chapters 4, 5, and 6 focus on the algorithms’ fulfilment of Requirements 2 (computa-

tional feasibility), and 3 (efficient finite–time regret bound), respectively. In addition,

we study the empirical efficiency of the algorithms in Chapter 7, in order to analyse

their fulfilment in Requirement 1 (empirical performance quality).

Chapter 4

Budget–Limited Epsilon–First

based Approaches

Having devised a model for budget–limited multi–armed bandits, we now outline a num-

ber of pulling algorithms to tackle this bandit problem. In this chapter, we concentrate

on the budget–limited ε–first approach, in which the first ε of the overall budget B is

dedicated to exploration, and the remaining portion is dedicated to exploitation. To this

end, in Section 4.1, we describe the algorithm in more detail. This is followed by a per-

formance analysis in Section 4.2. In particular, we study the computational complexity,

and we propose theoretical upper bounds for the performance regret of the approach.

4.1 The Algorithm

In the budget–limited ε–first approach, we first purely explore until we exceed the ex-

ploration budget εB, then we estimate the best combination of arms, based on the

estimated values of the rewards (see Algorithm 4.1), and then repeatedly pull this com-

bination. Here, let t denote the time step, and Bexpl
t denote the residual exploration

budget at time t, respectively. Note that at the start (i.e. t = 1), Bexpl
1 = εB, where B

is the total budget limit.

In more detail, within the exploration phase, we uniformly pull the arms, with respect

to the exploration budget εB. That is, we sequentially pull all of the arms, one after the

other, until the exploration budget is exceeded (steps 3− 9). In particular, at time step

t, we pull arm i (t) = t mod K (step 7). Note that since there is no arm 0, we denote

mK mod K = K for any integer m (i.e. we replace the congruency class 0 with class

K). The reason of choosing this method is that, in order to bound the regret of the

algorithm, since we do not know which arms will be pulled in the exploitation phase, we

need to treat the arms equally in the exploration phase.

45

46 Chapter 4 Budget–Limited Epsilon–First based Approaches

Algorithm 4.1 Budget–Limited ε–First Algorithm

1: Exploration phase:
2: t = 1; Bexpl

t = εB;
3: while pulling is feasible do
4: if Bexplore

t < mini ci then
5: STOP! {pulling is not feasible}
6: end if
7: pull arm i (t), where i (t) = t mod K {choose the subsequent arm to pull};
8: Bexpl

t+1 = Bexpl
t − ci(t); t = t + 1;

9: end while
10: Exploitation phase:
11: use density–ordered greedy to pull the arms;

Chapter 4 Budget–Limited Epsilon–First based Approaches 47

Following this, we focus on a pure exploitation phase. In so doing, we reduce the problem

faced by an agent in the exploitation phase to the unbounded knapsack problem (see

Section 2.5). Recall that in the exploitation phase, the agent makes use of the expected

reward estimates from the exploration phase, which can be calculated as follows. Sup-

pose that the exploration phase stops after T steps. Let r (t) denote the reward received

by pulling arm i (t) at time step t (step 7). Let ni denote the number of times the agent

pulls arm i until T . We define µ̂i,ni
as the estimate of µi after the exploration phase,

which can be calculated as follows:

µ̂i,ni
=

1

ni

T
∑

t=1

I{i=t mod K}r (t), (4.1)

where I{i=t mod K} is the indicator function of the event {i = t mod K}. That is, µ̂i,ni

is the average of rewards the agent receives by pulling arm i during the exploration

phase. Given this we aim to solve the following unbounded knapsack:

max

k
∑

i=1

xiµ̂i,ni
s.t.

k
∑

i=1

xici ≤ (1− ε)B,

where xi is the number of pulls of arm i in the exploitation phase. In this case, the ratio

of an arm’s reward estimate to its pulling cost,
µ̂i,ni

ci
, is analogous to the “density” of

an item, because it represents the reward for consuming one unit of the budget, or one

unit of the carrying capacity of the knapsack. As such, the problem is equivalent to the

knapsack problem above, and in order to solve it, we can use a density–ordered greedy

algorithm at step 11 (see Section 2.5.2 for more details).

Intuitively, this approach is motivated by the fact that the theoretical optimal solution

of the budget–limited MAB is a combination of pulls that might contain a variety of

different arms (see Chapter 1 for more detail). Thus, by estimating the expected reward

value of all the arms in the exploration phase, the budget–limited ε–first approach can

efficiently estimate the optimal combination of pulls within the exploitation phase. In

more detail, by explicitly splitting exploration from exploitation, we can easily measure

the accuracy of the estimates associated with a particular value of ε, because all of the

arms are sampled the same number of times. Hence, we can control the performance

regret as a function of ε, which gives us a method of choosing an optimal ε for a given

scenario.

48 Chapter 4 Budget–Limited Epsilon–First based Approaches

4.2 Performance Analysis

We now turn to the performance analysis of the budget–limited ε–first approach. In

particular, we first derive a linear upper bound for the performance regret of budget–

limited ε–first. This bound, however, does not satisfy Requirement 3; that is, it does not

follow the concept of asymptotic optimal convergence (see Section 1.1 for more details).

Following this, we improve this result by providing a probably approximately correct

(PAC) regret bound (see Section 2.2) for any exploration policy and the density–ordered

greedy algorithm (i.e. the upper bound is independent of the choice of the exploration

algorithm). In particular, a PAC bound holds with a certain probability, while it might

be violated in a small amount of cases. We then refine this bound for the specific

case of uniform pull exploration, and we show that by optimally tuning the value of ε,

the PAC regret bound is improved to be O
(

B
2
3

)

. We show that the improved result

guarantees Requirement 3 within the PAC manner (i.e. it holds with high probability).

Finally, we study the computational cost of the approach, in order to verify whether the

budget–limited ε–first approach satisfies Requirement 2.

Our first result regarding the performance regret of the approach is described as follows:

Theorem 4.1. For any budget size B > 0, the performance regret of the budget–limited

ε–first approach is at most

εB

(

µI∗

cI∗
−
∑K

j µj
∑K

j cj

)

+ 2 (1− ε) B
∑

j 6=I∗

dj exp

{

−c2
mind

2
min

2
∑K

j cj

εB

}

exp

{

c2
mind

2
min

2

}

+ K + 1,

where dj = µI∗

cI∗
− µj

cj
for earch arm j.

To prove this theorem, recall that µ̂i,ni
denotes the estimated value of the expected

reward of arm i, where ni is the number of pulls of that arm in the exploration phase.

Hereafter, for the sake of simplicity, we refer to µ̂i,ni
as µ̂i (i.e. we leave ni from the

subscript). Let Auniform denote the the uniform pull exploration policy. In addition, let

Aarb denote an arbitrary exploration policy (which can be uniform as well), and Agreedy

denote the density–ordered greedy exploitation algorithm, respectively.

Within this section (and in the subsequent chapters as well), we will make use of the

following version of the Chernoff–Hoeffding concentration inequality for bounded random

variables:

Theorem 4.2 (Chernoff–Hoeffding inequality (Hoeffding, 1963)). Let X1,X2, . . . ,Xn

denote the sequence of random variables with common range [0, 1], such that for any

1 ≤ t ≤ n, we have E [Xt|X1, . . . ,Xt−1] = µ. Let Sn = 1
n

∑n
t=1 Xt. Given this, for any

Chapter 4 Budget–Limited Epsilon–First based Approaches 49

δ ≥ 0, we have:

P (Sn ≥ µ + δ) ≤ e−2nδ2
, (4.2)

P (Sn ≤ µ− δ) ≤ e−2nδ2
. (4.3)

The proof can be found, for example, in Hoeffding (1963). Using this, we prove Theo-

rem 4.1 as follows:

Proof of Theorem 4.1. To estimate the regret of the budget–limited ε–first approach, we

separately estimate the regret of the uniform exploration and density–ordered greedy

exploitation policies. In particular, recall that Auniform sequentially pulls each arm i

until it exceeds the exploration budget εB. That is, the expected total reward that the

agent receives with this exploration policy is

E
[

GεB (Auniform)
]

=

K
∑

i=1

niµi. (4.4)

It is easy to show that for each arm i:

⌊

εB
∑K

j=1 cj

⌋

≤ ni ≤
⌊

εB
∑K

j=1 cj

⌋

+

∑K
j=1 cj

cmin
, (4.5)

where ni denotes the number of times Auniform pulls arm i. Using Equation 4.5, we have:

E
[

GεB (Auniform)
]

≥
K
∑

i=1

µi

⌊

εB
∑K

j=1 cj

⌋

≥
K
∑

i=1

µi

(

εB
∑K

j=1 cj

− 1

)

≥
K
∑

i=1

µi
εB

∑K
j=1 cj

−K. (4.6)

The last inequality is obtained from the fact that 0 ≤ µi ≤ 1 for all arms i (see Chap-

ter 3 for more details). Now, it is easy to show that within the exploration phase, the

theoretical optimal total expected reward that any policy can receive is εB
cI∗

µI∗; that

is, by repeatedly pull the arm with the best expected reward density. This implies the

following:

RεB (Auniform) ≤ εB

cI∗
µI∗ −

K
∑

i=1

µi
εB

∑K
j=1 cj

−K = εB

(

µI∗

cI∗
−
∑K

j=1 µj
∑K

j=1 cj

)

+ K. (4.7)

Now we turn to estimate R(1−ε)B (Agreedy) as follows. Recall that Agreedy first repeatedly

pulls I+, the arm with the highest estimated expected reward density after exploration,

50 Chapter 4 Budget–Limited Epsilon–First based Approaches

until it is not feasible with respect to the residual budget (1− ε) B. Thus, we have:

E
[

G(1−ε)B (Agreedy) |I+
]

≥
⌊

(1− ε) B

cI+

⌋

µI+

≥
(

(1− ε) B

cI+

− 1

)

µI+

≥ (1− ε) B
µI+

cI+
− 1. (4.8)

Similar to the exploration phase, the theoretical optimal total expected reward that any

policy can receive within the exploitation phase is to repeatedly pulling the arm with

the best expected reward density; that is, (1−ε)B
cI∗

µI∗ . This implies that for a particular

I+, we have:

R(1−ε)B
(

Agreedy|I+
)

≤ (1− ε) B

(

µI∗

cI∗
− µI+

cI+

)

+ 1, (4.9)

where R(1−ε)B (Agreedy|I+) denotes the regret of Agreedy conditional to I+. By summing

up over all the possible values of I+, we get:

R(1−ε)B (Agreedy) ≤
K
∑

j=1

((1− ε) Bdj + 1) P
(

I+ = j
)

.

The right hand side can be reformalised as:

R(1−ε)B (Agreedy) ≤ (1− ε) B
∑

j 6=I∗

djP
(

I+ = j, I∗ 6= j
)

+ 1. (4.10)

Here, P (I+ = j, I∗ 6= j) denotes the probability that the arm with the best estimated

expected reward density is not equal to I∗. In what follows, we provide an upper bound

for P (I+ = j, I∗ 6= j), in order to estimate Equation 4.10. Note that the following holds:

P
(

I+ = j, I∗ 6= j
)

≤ P

(

µ̂j

cj
≥ µ̂I∗

cI∗

)

.

This can be further bound by noting the following: Let X,Y ∈ R be independent random

variables, and c ∈ R. Thus, P (X ≥ Y) ≤ P (X ≥ c) + P (Y ≤ c), because

P (X ≥ Y) ≤ P (X ≥ Y |X ≥ c) + P (X ≥ Y |X ≤ c)

≤ P (X ≥ c) + P (Y ≤ c|X ≤ c) = P (X ≥ c) + P (Y ≤ c) .

Given this, we have:

P
(

I+ = j, I∗ 6= j
)

≤ P

(

µ̂j

cj
≥ µj

cj
+

dj

2

)

+ P

(

µ̂I∗

cI∗
≤ µI∗

cI∗
− dj

2

)

. (4.11)

Chapter 4 Budget–Limited Epsilon–First based Approaches 51

Note that by definition of dj , we have
µj

cj
+

dj

2 = µI∗

cI∗
− dj

2 . Using the Chernoff–Hoeffding

inequality for both terms on the right hand side of Equation 4.11, we get:

P

(

µ̂j

cj
≥ µj

cj
+

dj

2

)

= P

(

µ̂j ≥ µj +
cjdj

2

)

≤ exp

{

−
c2
jd

2
jnj

2

}

. (4.12)

where nj denotes the number of times Auniform (i.e. the uniform exploration policy)

pulls arm j. From Equation 4.5 we can show that nj ≥ εB
cj
− 1. Combining this with

Equation 4.12, we obtain:

P

(

µ̂j

cj
≥ µj

cj
+

dj

2

)

≤ exp

{

−
c2
jd

2
jεB

2
∑K

i=1 ci

}

exp

{

c2
jd

2
j

2

}

. (4.13)

In a similar vein, we can show that:

P

(

µ̂I∗

cI∗
≤ µI∗

cI∗
− dj

2

)

≤ exp

{

−
c2
jd

2
jεB

2
∑K

i=1 ci

}

exp

{

c2
jd

2
j

2

}

. (4.14)

Substituting Equations 4.13 and 4.14 into Equation 4.11 we get:

P
(

I+ = j, I∗ 6= j
)

≤ 2 exp

{

−
c2
jd

2
jεB

2
∑K

i=1 ci

}

exp

{

c2
jd

2
j

2

}

. (4.15)

This implies that:

R(1−ε)B (Agreedy) ≤ 2 (1− ε) B
∑

j 6=I∗

dj exp

{

−
c2
jd

2
jεB

2
∑K

i=1 ci

}

exp

{

c2
jd

2
j

2

}

+ 1. (4.16)

Since RB (ε−first) = RεB (Auniform)+R(1−ε)B (Agreedy), we conclude the proof by adding

Equations 4.7 and 4.16 together.

Note that this bound depends on the value of ε. Thus, we can further improve the bound

by choosing an optimal ε value. However, by using elementary techniques, it can be

easily to proven that the optimal value of ε that minimises the equation in Theorem 4.1

is either ε = 0 or ε = 1. In both cases, we can see that the regret bound is O (B) (i.e.

a linear function of budget B). That is, the upper bound of the budget–limited ε–first

approach given in Theorem 4.1 can be improved to be O (B) in the best case. This

implies that the regret bound is in fact not efficient. In more detail, it can be easily

shown that this bound does not follow the concept of optimal asymptotic convergence;

that is, it does not guarantee that the average regret converges to 0 with probability 1

as the number of time steps tends to infinity. Given this, this regret bound does not

meet Requirement 3.

52 Chapter 4 Budget–Limited Epsilon–First based Approaches

Nevertheless, we can improve the regret bound if we allow the bound to be violated in a

small number of cases. Thus, in what follows, we focus on PAC (probably approximately

correct) type bounds. Let I+ denote the arm with the highest estimated density after

the exploration phase:

I+ = arg max
j

{

µ̂j,nj

cj

}

. (4.17)

In addition, we define dmax as follows:

dmax = max
j

{

µI∗

cI∗
− µj

cj

}

. (4.18)

That is, dmax denotes the largest difference between the expected reward density of the

arms. Finally, we say that an exploration policy exploits the budget dedicated to the

exploration phase if and only if after the exploration stops, none of the arms can be

additionally pulled without exceeding the exploration budget. As a result, we have the

following:

Theorem 4.3. Consider a budget–limited ε–first approach with an arbitrary exploration

policy that exploits the exploration budget. In addition, suppose that all the arms are

pulled at least once within this exploration phase. For any B > 0, and 0 < ε, β < 1,

with at least (1− β)K probability, the performance regret of the budget–limited ε–first

approach is at most

2 + εBdmax + B





√

− ln β
2

2nI∗
+

√

− ln β
2

2nI+



 ,

where nI∗ and nI+ are the number of pulls of arms I∗ and I+ within the exploration

phase, respectively.

To prove this theorem, we define Imin as the arm with minimal expected reward density.

That is,

Imin = arg min
j

µj

cj
. (4.19)

We rely on the following auxiliary lemmas:

Lemma 4.4. Suppose that Aarb is an arbitrary exploration policy that exploits its ex-

ploration budget. Within this policy, each arm i is pulled ni times. Thus, we have

k
∑

i=1

niµi ≥
εBµImin

cImin

− 1.

Lemma 4.5. For the density-ordered greedy exploitation algorithm Agreedy, we have:

E
[

G(1−ε)B (Agreedy)
]

≥ (1− ε)
BµI+

cI+

− 1.

Chapter 4 Budget–Limited Epsilon–First based Approaches 53

Lemma 4.6. If A∗ is the optimal solution of the budget–limited MAB, then

E
[

GB (A∗)
]

≤ BµI∗

cI∗
.

Lemma 4.7. If |a− b| ≤ δ1, |c− d| ≤ δ2, a ≥ c, then d ≤ b + δ1 + δ2.

Proof of Lemma 4.4. If Aarb exploits the budget for exploration, it is true that for any

cj :
K
∑

i=1

nici ≥ εB − cj

since none of the arms can be pulled after the stop of Aarb, without exceeding εB.

Furthermore, µi = ci

(

µi

ci

)

≥ ci

(

µ
Imin

c
Imin

)

. Since µi ≤ 1, we have:

K
∑

i=1

niµi ≥
(

K
∑

i=1

nici

)

µImin

cImin

≥ (εB − cImin)
µImin

cImin

≥ εBµImin

cImin

− 1.

Proof of Lemma 4.5. By just pulling arm I+ in the exploitation phase, which is the

first round of Agreedy, the expected reward we can get there is

⌊

(1−ε)B
cI+

⌋

µI+ . Since

⌊

(1−ε)B
cI+

⌋

>
(

(1−ε)B
cI+

− 1
)

, we have:

E
[

G(1−ε)B (Agreedy)
]

≥
(

(1− ε) B

cI+

− 1

)

µI+ ≥ (1− ε)
BµI+

cI+

− 1,

since µi ≤ 1 for ∀i.

Proof of Lemma 4.6. Suppose that in the optimal solution, Ni is the total number of

pulls of arm i. Thus, the cost constraint can be formulated as:

K
∑

i=1

Nici ≤ B.

Given this, we have:

E
[

GB (A∗)
]

=

k
∑

i=1

Niµi =

k
∑

i=1

Nici
µi

ci
≤
(

k
∑

i=1

Nici

)

µI∗

cI∗
≤ BµI∗

cI∗
.

54 Chapter 4 Budget–Limited Epsilon–First based Approaches

Proof of Lemma 4.7. Since |a− b| ≤ δ1, we have a ≤ b+δ1. Similarly, we have d ≤ c+δ2.

Since a ≥ c, we have the following: d ≤ c + δ2 ≤ a + δ2 ≤ b + δ1 + δ2.

Given the aforementioned lemmas, we now turn to prove Theorem 4.3 as follows:

Proof of Theorem 4.3. Using the Chernoff–Hoeffding inequality for each arm i, and for

any positive δi, we have:

P (|µ̂i − µi| ≥ δi) ≤ 2 exp {−2niδ
2
i },

that is, dividing by ci, we have:

P

(∣

∣

∣

∣

µ̂i

ci
− µi

ci

∣

∣

∣

∣

≥ δi

ci

)

≤ 2 exp {−2niδ
2
i },

which is equivalent to the following:

P

(∣

∣

∣

∣

µ̂i

ci
− µi

ci

∣

∣

∣

∣

≥ δi

)

≤ 2 exp {−2niδ
2
i c2

i }. (4.20)

By setting δi =

√

− ln β
2

2nic2i
, Equation (4.20) can be reformulated as follows:

P

(∣

∣

∣

∣

µ̂i

ci
− µi

ci

∣

∣

∣

∣

≥ δi

)

≤ β.

Thus, with at least (1− β)K probability, for each arm i, we have

∣

∣

∣

∣

µ̂i

ci
− µi

ci

∣

∣

∣

∣

≤ δi (4.21)

holds for each arm i. Hereafter, we stricly focus on this case. Given this, the reward

collected in the exploration phase can be calculated as follows:

E
[

GεB (Aarb)
]

=
K
∑

i=1

niµi ≥
εBµImin

cImin

− 1. (4.22)

The right side of Equation 4.22 holds, due to Lemma 4.4. Using Lemma 4.5 and Equa-

tion 4.22, we get the following:

E
[

GB (ε−first)
]

= E
[

GεB (Aarb)
]

+ E
[

G(1−ε)B (Agreedy)
]

≥ εBµImin

cImin

+ (1− ε)
BµI+

cI+

− 2, (4.23)

Chapter 4 Budget–Limited Epsilon–First based Approaches 55

where GB (ε−first) denotes the total reward that the budget–limited ε–first approach

receives. By denifition, we have
µI∗

cI∗
≥ µI+

cI+

,

and
µ̂I+

cI+

≥ µ̂I∗

cI∗
.

Furthermore,
∣

∣

∣

µ̂i

ci
− µi

ci

∣

∣

∣
≤ δi holds for each arm i. Thus, according to Lemma 4.7, we

have
µI+

cI+

≥ µI∗

cI∗
− δI∗ − δI+ . (4.24)

Substituting this into Equation 4.23, we have:

E
[

GB (ε−first)
]

≥ εBµImin

cImin

+ B
µI∗

cI∗
− εBµI∗

cI∗
−

− (1− ε) B (δI∗ + δI+)− 2. (4.25)

According to Lemma 4.6, E
[

GB (A∗)
]

≤ BµI∗
cI∗

. Thus, by substituting it into Equa-

tion 4.25, and using the definition of regret in Equation 3.4, we have:

RB (ε−first) ≤ 2 + εBdmax + B (δI∗ + δI+) ,

where dmax = µI∗
cI∗
− µ

Imin

c
Imin

. Note that here we used the fact that (1− ε) < 1. Thus, by

replacing δi =

√

− ln β
2

2nic2i
for i = I∗ and i = I+, and using the fact that ci ≥ 1 for each i,

we get the requested formula.

Note that the aforementioned bound holds for any arbitrary exploration policy. We now

refine this upper bound for the case of uniform pull exploration as follows:

Corollary 4.8. Let 0 < ε, β < 1. Suppose that εB ≥ ∑K
j=1 cj . With probability

(1− β)K , the performance regret of the budget–limited ε–first approach with uniform

pull exploration is at most

2 + εBdmax + 2

√

√

√

√

B
(

− ln β
2

)

∑K
j=1 cj

ε
. (4.26)

Proof. Recall that within Auniform (i.e. the uniform exploration policy), for each arm i,

we have:
⌊

εB
∑K

j=1 cj

⌋

≤ ni ≤
⌊

εB
∑K

j=1 cj

⌋

+

∑K
j=1 cj

cmin
. (4.27)

56 Chapter 4 Budget–Limited Epsilon–First based Approaches

This implies that by using Auniform in the budget–limited ε–first approach, we have:

RB (ε−first) ≤ 2 + εBdmax + 2B









√

√

√

√

√

− ln β
2

2

⌊

εB
PK

j=1 cj

⌋









. (4.28)

Now, if εB ≥∑K
j=1 cj, we can show that:

⌊

εB
∑K

j=1 cj

⌋

≥ εB

2
∑K

j=1 cj

.

The proof is elementary, and thus, is omitted. Substituting this into Equation 4.28

results in the following:

RB (ε−first) ≤ 2 + εBdmax + 2

√

√

√

√

B
(

− ln β
2

)

∑K
j=1 cj

ε
, (4.29)

which concludes the proof.

Setting the value of ε to be the minimal point of Equation 4.26 (i.e. the point that

minimises this equation) implies the following result:

Corollary 4.9. For any 0 < β < 1, suppose that B ≥∑K
j=1 cj max

{
q

2(− ln β
2)

dmax
,

2(− ln β
2)

d2
max

}

.

With probability (1− β)K , the performance regret of the budget–limited ε–first approach

with uniform pull exploration is at most

2 + 3B
2
3





(

− ln
β

2

) K
∑

j=1

cjdmax





1
3

if the value of ε is set to be:

ε =





(

− ln β
2

)

∑K
j=1 cj

Bd2
max





1
3

≤ 1.

Proof. It is easy to see that if we consider Equation 4.26 as a function of ε, then the

global minimum point is set at

εopt =





2
(

− ln β
2

)

∑K
j=1 cj

Bd2
max





1
3

.

Chapter 4 Budget–Limited Epsilon–First based Approaches 57

Note that we have to guarantee that both εopt ≤ 1 and εoptB ≥
∑K

j=1 cj hold. The

former holds if B ≥ ∑K
j=1 cj

2(− ln β
2)

d2
max

, and the latter holds if B ≥ ∑K
j=1 cj

q

2(− ln β
2)

dmax
.

Thus, by setting B ≥ ∑K
j=1 cj max

{
q

2(− ln β
2)

dmax
,

2(− ln β
2)

d2
max

}

, both εopt ≤ 1 and εoptB ≥
∑K

j=1 cj hold. Substituting εopt into Equation 4.26, we get the required upper bound.

That is, with a properly tuned value of ε, the budget–limited ε–first approach achieves

a PAC upper bound of O
(

B
2
3

)

. This implies that the budget–limited ε–first approach

satisfies Requirement 3 with high probability, since the O
(

B
2
3

)

upper bound guarantees

the optimal asymptotic convergence property within a PAC manner.

From the perspective of computational cost, recall that the uniform exploration policy

has linear computational cost (i.e. O (εKB)), since it sequentially pulls the arms. If T

is the total number of pulls T within the exploration phase, from Equation 4.5 we get:

K

⌊

εB
∑K

j=1 cj

⌋

≤ T ≤ K

⌊

εB
∑K

j=1 cj

⌋

+ K

∑K
j=1 cj

cmin
.

After the exploration phase, the budget–limited ε–first approach uses the density–

ordered greedy algorithm once to estimate the best combination of pulls. Note this

algorithm has a computational cost of O (K ln K) (see Section 2.5.2 for more details).

This implies that the total computational cost within the exploitation phase is also

O (K ln K). Given this, the total computational cost is O

(

K

⌊

εB
PK

j=1 cj

⌋

+ K
PK

j=1 cj

cmin
+ K ln K

)

In other words, the budget–limited ε–first approach satisfies Requirement 2, since it has

low computational cost, compared to the size of the budget B and the number of arms

K.

4.3 Summary

In this chapter, we developed a novel pulling algorithm, the budget–limited ǫ–first, for

the budget–limited multi–armed bandit problem. In particular, this algorithm takes the

first ε portion of the budget B to estimate the expected reward value of the arms (i.e.

exploration), using the uniform pull policy. Based on these estimates, it approximates an

unbounded knapsack problem in order to determine the best combination of arms that

maximises the total expected reward, with respect to the residual budget (1− ε) B (i.e.

exploitation). To approximate this unbounded knapsack, the algorithm uses a density–

ordered greedy algorithm to approximate the best combination of arms. We showed

that the budget–limited ǫ–first approach achieves linear regret bound with any value of

ε (Theorem 4.1. This, however, is not efficient, and thus, does not satisfy Requirement

58 Chapter 4 Budget–Limited Epsilon–First based Approaches

3 (i.e. efficient finite–time regret bound). In order to improve this result, we analysed

the performance of the budget–limited ǫ–first approach from the PAC perspective. In

more detail, we proved that within the PAC manner, the regret bound of the budget–

limited ǫ–first approach with any exploration policy can be improved to be 2+εBdmax+

B

(
√

− ln β
2

nI∗
+

√

− ln β
2

nI+

)

(Theorem 4.3). We refined this result in the case of uniform

exploration policy (Corollary 4.8). In addition, we showed that the latter PAC bound

can be further improved to be O
(

B
2
3

)

if an optimal ε is chosen (Corollary 4.9).

Computation–wise, we demonstrated that the budget–limited ǫ–first approach typically

has low computational cost. In particular, we showed that it has O (εKB + K ln K)

computational complexity. This implies that the budget–limited ǫ–first approach fully

satisfies Requirement 2 (i.e. computational feasibility). In addition, we will demonstrate

later in Chapter 7 that the budget–limited ǫ–first approach provides efficient performance

in the problem of longterm information collection of WSNs. That is, it is efficient in

terms of fulfilling Requirement 1 (i.e. efficient experimental performance quality).

However, the performance regret bound O
(

B
2
3

)

of the budget–limited ε–first approach

is only guaranteed with a certain probability, and thus, it might not hold for a number

of cases. From this perspective, the budget–limited ε–first approach fails to satisfy

Requirement 3. Given this, in the next chapters, we address this research requirement

in terms of focusing on pulling algorithms with efficient theoretical regret bounds that

guarantee the asymptotic optimal convergence. In particular, we provide two UCB–

based pulling algorithms in Chapter 5, and two decreasing ε–greedy based algorithms

in Chapter 6.

Chapter 5

Budget–Limited Upper

Confidence Bound based

Approaches

We now turn our attention to pulling algorithms that efficiently fulfil our Requirement 3,

that is, they are designed to provide low theoretical regret bounds. Within this chapter,

we focus on two upper confidence bound (UCB) based approaches, the knapsack based

upper confidence bound exploration and exploitation (KUBE), and the fractional KUBE.

To this end, we first introduce the algorithms in Section 5.1. We then provide logarithmic

regret bounds for both algorithms in Section 5.2. In addition, we also show that these

regret bounds are asymptotically optimal; that is, they only differ from the best possible

bound with a constant factor.

5.1 The Algorithms

In this section, we thoroughly describe KUBE and its fractional counterpart. As men-

tioned in Chapter 1, the algorithms differ in the way they approximate the underlying

unbounded knapsack problem at each time step. Given this, we first start with the dis-

cussion of KUBE, detailing how the algorithm is defined by combining the UCB based

pulling policy with the density–ordered greedy algorithm (Section 5.1.1). Following this,

we turn to describe the fractional KUBE, focusing on how it is different from KUBE

(Section 5.1.2).

59

60 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

5.1.1 KUBE

To begin, consider the KUBE algorithm depicted in Algorithm 5.1. At each time step

t, it first checks whether arm pulling is feasible (steps 3 − 4). If the arm pulling is still

feasible, KUBE first pulls each arm once in the initial phase (steps 6 − 7). Following

this, at each time step t > K, it estimates the best combination of arms according to

their upper confidence bound using the density–ordered greedy approximation method

applied to the following problem:

max

K
∑

i=1

mi,t

(

µ̂i,ni,t
+

√

2 ln t

ni,t

)

s.t.

K
∑

i=1

mi,tci ≤ Bt, ∀i, t : mi,t integer. (5.1)

In the above expression, ni,t is the number of pulls of arm i until time step t,
√

2 ln t
ni,t

is

the size of the upper confidence interval, and µ̂i,ni,t
is the current estimate of arm i’s

expected reward, calculated as the average reward received so far from pulling arm i.

More specifically, let i (τ) and r (τ) denote the arm chosen to be pulled and the received

reward value at time step τ , respectively. Given this, µ̂i,ni,t
can be calculated as:

µ̂i,ni,t
=

1

ni,t

t
∑

τ=1

I{i(τ)=i}r (τ), (5.2)

where I{i(τ)=i} is the indicator function of the event {i (τ) = i} (i.e. the arm is pulled

at time step τ is i). The goal, then, is to find integers {mi,t}i∈K such that Equation 5.1

is maximised, with respect to the residual budget limit Bt (for the sake of simplicity,

from here on, we drop the subscript i ∈ K on this set). Since this problem is NP–hard,

we use the density–ordered greedy method to find a near–optimal combination of arms

(step 9). Note that the upper confidence bound on arm i’s expected reward density is:

µ̂i,ni,t

ci
+

√

2 ln t
ni,t

ci
.

Let M∗(Bt) = {m∗
i,t} be this method’s solution to the problem in Equation 5.1, giving

us the desired combination of arms, where m∗
i,t is the number of arm i’s pulls in the

combination. Using {m∗
i,t}, KUBE randomly chooses the next arm to pull, i(t), by

selecting arm i with probability (step 10):

P (i (t) = i) =
m∗

i,t
∑K

k=1 m∗
k,t

.

After the pull, it then updates the estimated upper bound of the chosen arm, and the

residual budget limit Bt (steps 12− 13).

Chapter 5 Budget–Limited Upper Confidence Bound based Approaches 61

Algorithm 5.1 The KUBE Algorithm

1: t = 1; Bt = B;
2: while pulling is feasible do
3: if Bt < mini ci then
4: STOP! {pulling is not feasible}
5: end if
6: if t ≤ K then
7: Initial phase: play arm i (t) = t;
8: else
9: use density–ordered greedy to calculate M∗(Bt) = {m∗

i,t}, the solution of Equa-
tion 5.1;

10: randomly pull i (t) with P (i (t) = i) =
m∗

i,t
PK

k=1 m∗
k,t

;

11: end if
12: update the estimated upper bound of arm i (t);
13: Bt+1 = Bt − ci(t); t = t + 1;
14: end while

Algorithm 5.2 The Fractional KUBE Algorithm

1: t = 1; Bt = B;
2: while pulling is feasible do
3: if Bt < mini ci then
4: STOP! {pulling is not feasible}
5: end if
6: if t ≤ K then
7: Initial phase: play arm i (t) = t;
8: else
9: pull arm i (t) = Î (t), where Î (t) is defined in Equation 5.4;

10: end if
11: update the estimated upper bound of arm i (t);
12: Bt+1 = Bt − ci(t); t = t + 1;
13: end while

62 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

The intuition behind KUBE is the following: By repeatedly drawing the next arm to pull

from a distribution formed by the current estimated approximate best combination, the

expected reward of KUBE equals the average reward for following the optimal solution

to the corresponding unbounded knapsack problem, given the current reward estimates.

If the true values of the arms were known, then this would imply that the average

performance of KUBE efficiently converges to the optimal solution of the unbounded

knapsack problem reduced from the budget–limited MAB model. It is easy to show

that the optimal solution of this knapsack model forms the theoretical optimal policy of

the budget–limited MAB. In particular, if the mean reward value of each arm is known,

then the budget–limited problem can be reduced to the unbounded knapsack problem,

and thus, the optimal solution of the knapsack problem is the optimal solution of the

budget–limited MAB as well. In addition, by combining the upper confidence bound

with the estimated mean values of the arms, we guarantee that an arm that is not yet

sampled many times may be pulled more frequently, since its upper confidence interval

is large. Thus, we explore and exploit at the same time (for more details, see (Agrawal,

1995b; Audibert et al., 2009; Auer et al., 2002; Auer and Ortner, 2010)). By using the

density–ordered greedy method at each time step, KUBE achieves an efficiently low

regret bound by converging to the theoretical optimal solution, as detailed in the next

section.

5.1.2 Fractional KUBE

We now turn to the fractional version of KUBE, which follows the underlying concept

of KUBE. It also approximates the underlying unbounded knapsack problem at each

time step t in order to determine the frequency of arms within the estimated best

combination of arms. However, it differs from KUBE by using the fractional relaxation

(see Section 2.5.2) to approximate the unbounded knapsack in Step 9 of Algorithm 5.1.

Crucially, fractional KUBE uses the fractional relaxation based algorithm to solve the

following fractional unbounded knapsack problem at each t:

max

K
∑

i=1

mi,t

(

µ̂i,ni,t
+

√

2 ln t

ni,t

)

s.t.

K
∑

i=1

mi,tci ≤ Bt. (5.3)

Recall that within KUBE, the frequency of arms within the approximated solution of the

unbounded knapsack forms a probability distribution from which the agent randomly

pulls the next arm. Now, since the fractional relaxation based algorithm solely chooses

the arm (i.e. item type) with the highest estimated confidence bound–cost ratio (i.e.

item density), fractional KUBE does not need to randomly choose an arm. Instead, at

each time step t, it pulls the arm that maximises





µ̂i,ni,t

ci
+

r

2 ln t
ni,t

ci



. That is, at each

Chapter 5 Budget–Limited Upper Confidence Bound based Approaches 63

time step i, fractional KUBE pulls arm Î (t), such that:

Î (t) = arg max
j







µ̂j,t

cj
+

√

2 ln t
nj,t

cj







. (5.4)

The fractional KUBE is depicted in Algorithm 5.2. Note that fractional KUBE can also

be seen as the budget–limited version of UCB (see Section 2.2 for more details of UCB).

In the next section, we show that both KUBE and its fractional counterpart achieve

asymptotically optimal regret bounds. That is, we first show that both algorithms

achieve logarithmic regret bounds. Then we prove that these bounds only differ from

the best possible one by a constant factor.

5.2 Performance Analysis

In this section, we first focus on the performance analysis of KUBE. To this end,

we introduce some further notation. Let T denote the number of pulls of KUBE. In

addition, let Nj (T) denote the number of times KUBE pulls arm j up to time step T .

In what follows, we first devise an upper bound for Nj (T) for all j 6= I∗. That is, we

estimate the number of times we pull arm j 6= I∗, instead of I∗. Based on this result, we

estimate the average number of pulls of KUBE (i.e. E [T]). This bound guarantees that

KUBE always pulls “enough” arms so that the difference between the number of pulls

in the theoretical optimal solution and that of KUBE is small, compared to the size of

the budget. By using the estimated value of E [T], we then show that KUBE achieves a

O (ln (B)) worst case regret on average. We now state the following:

Lemma 5.1. Suppose that KUBE pulls the arms T times. If j 6= I∗, then:

E [Nj (T) |T] ≤
(

8

d2
min

+

(

cmax

cmin

)2
)

ln (T) +
π2

3
+ 1.

That is, the number of times KUBE pulls an arm j 6= I∗ is at most O (ln (T)). To

prove this lemma, let us first refresh some of the terms that are used: i (t) is the arm

pulled by KUBE at time t; when refering to a combination of arms {mj,t}, mj,t is the

number times arm j is involved within this combination at time t; M∗(Bt) = {m∗
i,t}

is the density–ordered greedy approximate solution to unbounded knapsack problem

in Equation 5.1, where m∗
i,t is the number of arm i’s pulls in this combination; and

I∗ = arg maxi
µi

ci
is the arm with the highest true mean value density. In addition, Î (t) =

arg maxj







µ̂j,nj,t

cj
+

r

2 ln t
nj,t

cj







is the arm with the highest estimated density confidence

bound at time step t. In order to prove Lemma 5.1, we rely on the following lemmas:

64 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

Lemma 5.2. Suppose that the total number of pulls KUBE makes of the arms is T ,

and that at each time step t, the residual budget is Bt (note that here B1 = B). For any

0 < t ≤ T , we have:
cmin

Bt
≤ 1

T − t + 1
.

Lemma 5.3. Suppose that the total number of pulls KUBE makes of the arms is T .

For any 0 < t ≤ T , we have:

P (i (t) = j|T) ≤ P
(

Î (t) = j|T
)

+

(

cmax

cmin

)2 1

T − t + 1
.

Proof of Lemma 5.2. At the beginning of time step t, the residual budget is Bt. Since

the total number of pulls is T , with respect to Bt, KUBE can still make T − t + 1 pulls

(including the pull at time step t). This indicates that:

Bt ≥ ci(t) + ci(t+1) + · · ·+ ci(T) ≥ (T − t + 1) cmin.

which directly implies the inequality in Lemma 5.2.

Proof of Lemma 5.3. We assume that the value of T is given. For the slight abuse

of notation, we drop the conditional of T notation to simplify the proof (i.e. all the

probabilities are considered to be conditional to T), and we will explicitly denote it

when necessary. First, we consider a particular value of Bt. Thus, we have:

P (i (t) = j|Bt) =
∑

{mi,t}
P (i (t) = j|M∗ (Bt) = {mi,t}) P (M∗ (Bt) = {mi,t}). (5.5)

Recall that the density–ordered greedy approach first repeatedly adds arm Î (t) to com-

bination {mi,t} until it is not feasible. It is easy to show that after adding arm Î (t) as

many times as possible (i.e. mÎ(t),t times) to the combination, the residual budget is at

most cÎ(t) (or otherwise we could still add arm Î (t) one more time). Therefore:

∑

i6=Î(t)

mi,t ≤
cÎ(t)

cmin
. (5.6)

That is, the total count of arm pulls other than Î (t) in the combination is at most
c
Î(t)

cmin
. This inequality comes from the fact that we can construct a combination with the

greatest number of arm pulls by only adding the arm with the smallest cost. Similarly,

we have:
K
∑

k=1

mk,t ≥
Bt

cmax
, (5.7)

Chapter 5 Budget–Limited Upper Confidence Bound based Approaches 65

because we can construct a combination with the smallest number of arm pulls by only

adding the arm with the greatest cost. Combining Equations 5.6 and 5.7 gives:

∑

i6=Î(t) mi,t
∑K

k=1 mk,t

≤
c
Î(t)

cmin

Bt

cmax

≤
(

cmax

cmin

)2 cmin

Bt
. (5.8)

The last inequality is obtained from the fact that cÎ(t) ≤ cmax. Now, recall that KUBE

chooses arm j to pull with probability
mj,t

PK
k=1 mk,t

. This implies that:

P (i (t) = j|M∗ (Bt) = {mi,t})

= P
(

i (t) = j, Î (t) = j|M∗ (Bt) = {mi,t}
)

+ P
(

i (t) = j, Î (t) 6= j|M∗ (Bt) = {mi,t}
)

.

This can be bounded by:

P (i (t) = j|M∗ (Bt) = {mi,t})

≤
mÎ(t),t

∑K
k=1 mk,t

P
(

Î (t) = j|M∗ (Bt) = {mi,t}
)

(5.9)

+

∑

i6=Î(t) mi,t
∑K

k=1 mk,t

P
(

Î (t) 6= j|M∗ (Bt) = {mi,t}
)

.

The right hand side can be further bounded as follows:

P (i (t) = j|M∗ (Bt) = {mi,t})

≤ P
(

Î (t) = j|M∗ (Bt) = {mi,t}
)

+

∑

i6=Î(t) mi,t
∑K

k=1 mk,t

≤ P
(

Î (t) = j|M∗ (Bt) = {mi,t}
)

+

(

cmax

cmin

)2 cmin

Bt
. (5.10)

The last inequality is obtained from Equation 5.8. Substituting Equation 5.10 into

Equation 5.5 gives:

P (i (t) = j|Bt) ≤
∑

{mi,t}

(

P
(

Î (t) = j|M∗ (Bt) = {mi,t}
)

+

(

cmax

cmin

)2
cmin

Bt

)

P (M∗ (Bt) = {mi,t})

≤ P
(

Î (t) = j|Bt

)

+

(

cmax

cmin

)2
cmin

Bt

≤ P
(

Î (t) = j|Bt

)

+

(

cmax

cmin

)2
1

T − t + 1
. (5.11)

66 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

The last inequality is obtained from Lemma 5.2. Now we study the general case, where

Bt is not fixed. By summing up Equation 5.11 over all possible value of Bt, we have:

P (i (t) = j|T) =
∑

Bt

P (i (t) = j|T, Bt)P (Bt|T)

≤
∑

Bt

(

P
(

Î (t) = j|T, Bt

)

+

(

cmax

cmin

)2
1

T − t + 1

)

P (Bt|T)

≤ P
(

Î (t) = j|T
)

+

(

cmax

cmin

)2
1

T − t + 1
. (5.12)

which concludes the proof.

Based on Lemmas 5.2 and 5.3, Lemma 5.1 can be proved as follows:

Proof of Lemma 5.1. We assume that the value of T is already given. Again, for the

slight abuse of notation, we drop the conditional of T notation to simplify the proof,

and we will explicitly denote it when necessary. In this case, the proof of the theorem

for that particular value of T is along the same lines as that of Theorem 1 of Auer et al.

(2002). In particular, recall that Nj (T) denotes the expectation of number of times

KUBE pulls an arm j 6= I∗ until time step T . Given this, we have the following:

E [Nj (T)] = 1 +

T
∑

t=K+1

P (i (t) = j)

≤ 1 +

T
∑

t=K+1

P
(

Î (t) = j
)

+

T
∑

t=K+1

(

cmax

cmin

)2 1

T − t + 1

≤ l +

T
∑

t=K+1

P
(

Î (t) = j,Nj (t) ≥ l
)

+

T
∑

t=K+1

(

cmax

cmin

)2 1

T − t + 1
(5.13)

for any l ≥ 1. Now, let bt,s =
√

2 ln t
s . Considering the second term on the right hand

side of Equation 5.13, we have:

T
∑

t=K+1

P
(

Î (t) = j, Nj (t) ≥ l
)

=

T
∑

t=K+1

P

(

µ̂I∗,NI∗(t)

cI∗
+

bt,NI∗(t)

cI∗
≤ µ̂j,Nj(t)

cj

+
bt,Nj(t)

cj

, Nj (t) ≥ l

)

≤
T
∑

t=K+1

P

(

min
1≤s≤t

{

µ̂I∗,s

cI∗
+

bt,s

cI∗

}

≤ max
l≤sj≤t

{

µ̂j,sj

cj

+
bt,sj

cj

})

≤
T
∑

t=1

t
∑

s=1

t
∑

sj=1

P

(

µ̂I∗,s

cI∗
+

bt,s

cI∗
≤ µ̂j,sj

cj

+
bt,sj

cj

)

. (5.14)

If it is true that
µ̂I∗,s

cI∗
+

bt,s

cI∗
≤ µ̂j,sj

cj
+

bt,sj

cj
, then at least one of the following three

statements must also hold:
µ̂I∗,s

cI∗
+

bt,s

cI∗
≤ µI∗

cI∗
, (5.15)

Chapter 5 Budget–Limited Upper Confidence Bound based Approaches 67

µj

cj
≤ µ̂j,sj

cj
+

bt,sj

cj
, (5.16)

µI∗

cI∗
≤ µj

cj
+

2bt,sj

cj
. (5.17)

That is, we get:

P

(

µ̂I∗,s

cI∗
+

bt,s

cI∗
≤ µ̂j,sj

cj
+

bt,sj

cj

)

≤P

(

µ̂I∗,s

cI∗
+

bt,s

cI∗
≤ µI∗

cI∗

)

+

+ P

(

µj

cj
≤ µ̂j,sj

cj
+

bt,sj

cj

)

+ P

(

µI∗

cI∗
≤ µj

cj
+

2bt,sj

cj

)

.

(5.18)

Applying the Chernoff–Hoeffding inequalities to the first two terms on the right hand

side of Equation 5.18 gives:

P

(

µ̂I∗,s

cI∗
+

bt,s

cI∗
≤ µI∗

cI∗

)

= P (µ̂I∗,s + bt,s ≤ µI∗) ≤ exp
{

−2b2
t,ss
}

= exp {−4 ln t} = t−4

(5.19)

P

(

µj

cj
≤ µ̂j,sj

cj
+

bt,sj

cj

)

= P
(

µj ≤ µ̂j,sj
+ bt,sj

)

≤ exp
{

−2b2
t,sj

sj

}

= exp {−4 ln t} = t−4.

(5.20)

On the other hand, for l ≥ 8 lnT
d2
min

, Equation 5.17 is false, since:

µI∗

cI∗
− µj

cj
− 2bt,sj

cj
≥ µI∗

cI∗
− µj

cj
− 2bt,sj

≥ µI∗

cI∗
− µj

cj
− 2

√

2 ln t

l

≥ µI∗

cI∗
− µj

cj
− 2

√

√

√

√

2 ln t
8 lnT
d2
min

≥ µI∗

cI∗
− µj

cj
− dmin

≥ µI∗

cI∗
− µj

cj
− dj = 0. (5.21)

Here note that cj ≥ 1, sj ≥ l ≥ 8 ln T
d2
min

, and t ≤ T . If l ≥ 8 lnT
d2
min

, then P
(

µI∗
cI∗
≤ µj

cj
+

2bt,sj

cj

)

=

0. Substituting this and Equations 5.18, 5.19 and 5.20 into Equation 5.14 gives:

T
∑

t=K+1

P
(

Î (t) = j,Nj (t) ≥ l
)

≤
T
∑

t=1

t
∑

s=1

t
∑

sj=1

2t−4 ≤ π2

3
, (5.22)

for any l ≥
⌈

8 ln T
d2
min

⌉

. Note that the last inequality is obtained from the Riemann Zeta

Function for value of 2 (i.e.
∑∞

t=1 t−2 = π2

6) (Ivic, 1985).

68 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

Now, consider the third term on the right hand side of Equation 5.13. By using

Lemma 5.2, we get:

T
∑

t=1

(

cmax

cmin

)2 1

T − t + 1
≤
(

cmax

cmin

)2

ln (T). (5.23)

We now combine Equations 5.22 and 5.23 together, and we set l = 8 ln T
d2
min

+1, which gives:

E [Nj (T)] ≤ 8 ln T

d2
min

+ 1 +
π2

3
+

(

cmax

cmin

)2

ln (T)

for any given value of T , which concludes the proof.

From Lemma 5.1, we can show the following:

Lemma 5.4. Suppose that the total budget size is B. If T denotes the total number of

pulls of KUBE then we have:

E [T] ≥ B

cI∗
−
(

8

d2
min

+

(

cmax

cmin

)2
)

∑

δj>0

δj

cI∗
ln

(

B

cmin

)

−
∑

δj>0

δj

cI∗

(

π2

3
+ 1

)

− 1

where E [T] is the expected number of pulls using KUBE.

That is, the difference between B
cI∗

and the number of pulls of KUBE is at most

O
(

ln
(

B
cmin

))

.

Proof of Lemma 5.4. Since KUBE pulls arms until none are feasible, by definition:

P

(

T
∑

t=1

ci(t) ≤ B − cmin

)

= 1.

Taking the expectation of
∑T

t=1 ci(t) over T and {mj,t} (i.e. the set of i (t)) gives:

B − cmin ≤ ET,{i(t)}

[

T
∑

t=1

ci(t)

]

= ET

[

T
∑

t=1

Ei(t)

[

ci(t)

]

]

≤ ET





T
∑

t=1

K
∑

j=1

cjP (i (t) = j|T)





≤ ET





T
∑

t=1



cI∗ +
∑

δj>0

δjP (i (t) = j|T)









Chapter 5 Budget–Limited Upper Confidence Bound based Approaches 69

≤ ET [T] cI∗ + ET





∑

δj>0

δj

(

T
∑

t=1

P (i (t) = j|T)

)





≤ ET [T] cI∗ + ET





∑

δj>0

δj

((

8

d2
min

+

(

cmax

cmin

)2
)

ln (T) +
π2

3
+ 1

)



 (5.24)

≤ ET [T] cI∗ +
∑

δj>0

δj

((

8

d2
min

+

(

cmax

cmin

)2
)

ln

(

B

cmin

)

+
π2

3
+ 1

)

. (5.25)

Equation 5.24 is obtained from Lemma 5.1, while Equation 5.25 comes from the fact

that T ≤ B
cmin

with probability 1. In addition, the third inequality is obtained from the

fact that δj can be smaller than 0 for some j, and thus, we can further upper bound by

only summing up δjP (i (t) = j|T) over arms that have δj > 0. Now, by dividing both

sides with cI∗ , we obtain:

B

cI∗
− cmin

cI∗
−
∑

δj>0

δj

cI∗

((

8

d2
min

+

(

cmax

cmin

)2
)

ln

(

B

cmin

)

+
π2

3
+ 1

)

≤ ET [T] .

By using the fact that cmin
cI∗
≤ 1, we obtain the stated formula.

Note that if we relax the budget–limited MAB problem so that the number of pulls

can be fractional, then it is easy to show that the optimal pulling policy of this relaxed

model is to repeatedly pull arm I∗ only. In this case, B
cI∗

is the number of pulls of this

optimal policy. Lemma 5.4 indicates that the number of pulls that KUBE produces does

not significantly differ from that of the optimal policy of the fractional budget–limited

MAB (i.e. the difference is a logarithmic function of the number of pulls). We can now

derive the regret bound of KUBE from Lemma 5.4 as follows:

Theorem 5.5. For any budget size B > 0, the performance regret of KUBE is at most:

(

8

d2
min

+

(

cmax

cmin

)2
)





∑

∆j>0

∆j +
∑

δj>0

δj

cI∗



 ln

(

B

cmin

)

+





∑

∆j>0

∆j +
∑

δj>0

δj

cI∗





(

π2

3
+ 1

)

+ 1 .

Note that since for each j 6= I∗, at least one between δj and ∆j has to be positive

(see Chapter 3 for more details), we can easily show that
(

∑

∆j>0 ∆j +
∑

δj>0
δj

cI∗

)

>

0. That is, the performance regret of KUBE (i.e. RB (KUBE)) is upper–bounded by

O
(

ln
(

B
cmin

))

.

Proof of Theorem 5.5. Recall that E
[

GB (A∗)
]

denotes the expected performance of the

theoretical optimal policy. It is obvious that E
[

GB (A∗)
]

≤ BµI∗
cI∗

, since the latter is the

70 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

optimal solution of the fractional budget–limited MAB problem. This indicates that:

RB (KUBE) = E
[

GB (A∗)
]

−E
[

GB (KUBE)
]

≤ BµI∗

cI∗
−ET,{i(t)}

[

T
∑

t=1

µi(t)

]

≤ BµI∗

cI∗
−ET

[

T
∑

t=1

Ei(t)

[

µi(t)

]

]

≤ ET

[

BµI∗

cI∗
−

T
∑

t=1

Ei(t)

[

µi(t)

]

]

≤ ET





BµI∗

cI∗
−

T
∑

t=1

K
∑

j

µjP (i (t) = j|T)





≤ ET





(

B

cI∗
− T

)

µI∗ +
T
∑

t=1



µI∗ −
K
∑

j

µjP (i (t) = j|T)









≤ ET

[

B

cI∗
− T

]

µI∗ + ET





T
∑

t=1

∑

∆j>0

∆jP (i (t) = j|T)





≤ ET

[

B

cI∗
− T

]

µI∗ + ET





∑

∆j>0

∆jE [Nj (T) |T]



 . (5.26)

Note that since ∆j can be smaller than 0 for some arm j, we can further upper bound

RB (KUBE) by only summing up ∆jE [Nj (T) |T] over arms with ∆j > 0 (see the last

two inequalities). Applying Lemma 5.4 to the first term and Lemma 5.1 to the second

term on the right hand side of Equation 5.26 gives:

RB (KUBE) ≤





(

8

d2
min

+

(

cmax

cmin

)2
)

∑

δj>0

δj

cI∗
ln

(

B

cmin

)

+
∑

δj>0

δj

cI∗

(

π2

3
+ 1

)

+ 1



µI∗+

+ ET





∑

∆j>0

∆j

((

8

d2
min

+

(

cmax

cmin

)2
)

ln (T) +
π2

3
+ 1

)





≤
(

8

d2
min

+

(

cmax

cmin

)2
)

∑

δj>0

δj

cI∗
ln

(

B

cmin

)

+
∑

δj>0

δj

cI∗

(

π2

3
+ 1

)

+ 1+

+
∑

∆j>0

∆j

((

8

d2
min

+

(

cmax

cmin

)2
)

ln

(

B

cmin

)

+
π2

3
+ 1

)

which concludes the proof. Note that the last equation is obtained from the facts that

µI∗ ≤ 1 and T ≤ B
cmin

with probability 1.

In a similar vein, we can show that the regret of fractional KUBE is bounded as follows:

Chapter 5 Budget–Limited Upper Confidence Bound based Approaches 71

Theorem 5.6. For any budget size B > 0, the performance regret of fractional KUBE

is at most

8

d2
min





∑

∆j>0

∆j +
∑

δj>0

δj

cI∗



 ln

(

B

cmin

)

+





∑

∆j>0

∆j +
∑

δj>0

δj

cI∗





(

π2

3
+ 1

)

+ 1 .

Proof. We follow the concept that is similar to the proof of Theorem 5.5. Given this,

we only highlight the steps that are different from the previous proofs. For the sake

of simplicity, we use the notations previously introduced for the performance analysis

of KUBE. In particular, let T denote the random variable that represents the number

of pulls that fractional KUBE uses. Let Nj (T) denote the number of times that the

corresponding pulling algorithm pulls arm j up to time step T . Similar to Lemma 5.1,

we first show that within the fractional KUBE algorithm, we have:

E [Nj (T) |T] ≤ 8

d2
min

ln (T) +
π2

3
+ 1. (5.27)

In so doing, note that

E [Nj (T) |T] = 1 +
T
∑

t=K+1

P (i (t) = j|T) ≤ l +
T
∑

t=K+1

P (i (t) = j,Nj (t) ≥ l|T) (5.28)

for any l ≥ 1. Now, using similar techniques from the proof of Lemma 5.1, we can easily

show that
T
∑

t=K+1

P (i (t) = j,Nj (t) ≥ l|T) ≤
T
∑

t=1

t
∑

s=1

t
∑

sj=1

2t−4 ≤ π2

3
,

for any l ≥
⌈

8 lnT
d2
min

⌉

. By substituting this into Equation 5.28, we obtain Equation 5.27.

Next, we show that

E [T] ≥ B

cI∗
− 8

d2
min

∑

δj>0

δj

cI∗
ln

(

B

cmin

)

−
∑

δj>0

δj

cI∗

(

π2

3
+ 1

)

− 1. (5.29)

This can be derived from Equation 5.27 by using techniques similar to the proof of

Lemma 5.4. This implies that

RB (KUBE) = E
[

GB (A∗)
]

−E
[

GB (KUBE)
]

≤ BµI∗

cI∗
−ET,{i(t)}

[

T
∑

t=1

µi(t)

]

≤ BµI∗

cI∗
−ET

[

T
∑

t=1

Ei(t)

[

µi(t)

]

]

≤ ET

[

BµI∗

cI∗
−

T
∑

t=1

Ei(t)

[

µi(t)

]

]

72 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

≤ ET





BµI∗

cI∗
−

T
∑

t=1

K
∑

j

µjP (i (t) = j|T)





≤ ET





(

B

cI∗
− T

)

µI∗ +

T
∑

t=1



µI∗ −
K
∑

j

µjP (i (t) = j|T)









≤ ET

[

B

cI∗
− T

]

µI∗ + ET





T
∑

t=1

∑

∆j>0

∆jP (i (t) = j|T)





≤ ET

[

B

cI∗
− T

]

µI∗ + ET





∑

∆j>0

∆jE [Nj (T) |T]



 . (5.30)

By substituting Equations 5.28 and 5.29 into this, we obtain

RB (KUBE) ≤ 8

d2
min

∑

δj>0

δj

cI∗
ln

(

B

cmin

)

+
∑

δj>0

δj

cI∗

(

π2

3
+ 1

)

+ 1+

+
∑

∆j>0

∆j

(

8

d2
min

ln

(

B

cmin

)

+
π2

3
+ 1

)

which concludes the proof.

Having established a regret bound for the two algorithms, we now move on to show that

they produce optimal behaviour, in terms of minimising the regret.

Theorem 5.7. For any arm pulling algorithm, there exists a constant C ≥ 0, and

a particular instance of the budget–limited MAB problem, such that the regret of that

algorithm within that particular problem is at least C ln B
cmin

.

Proof. By setting all of the arms’ pulling costs equal to c ≥ 0, any standard MAB

problem can be reduced to a budget–limited MAB. This implies that the number of pulls

within this MAB is guaranteed to be B
c = T (i.e. T is deterministic). According to Lai

and Robbins (1985), the best possible regret that an arm pulling algorithm can achieve

within the domain of standard MABs is C ln (T). Therefore, if there is an algorithm

within the domain of budget–limited that provides better regret than C ln
(

B
cmin

)

=

C ln T , then it also provides better regret bounds for standard MABs.

Now, since the performance regret of both algorithms is O
(

ln
(

B
cmin

))

, Theorem 5.7

indicates that their performance is asymptotically optimal (i.e. their performance differs

from that of the optimal policy by a constant factor). That is, it is easy to show that

both KUBE and its fractional counterpart follow the concept of asymptotic optimal

convergence, and thus, they fulfil Requirement 3.

Chapter 5 Budget–Limited Upper Confidence Bound based Approaches 73

Computation–wise, at each time step t, KUBE uses a density–ordered greedy algorithm

to approximate the solution of the underlying unbounded knapsack problem. This in-

dicates that at each time step, the computational cost of KUBE is O (K ln K) (see

Section 2.5.2 for more details). Recall that T is random variable that represents the

number of pulls of KUBE. It is easy to show that:

T ≤ B

cmin

with probability 1. Note the right hand side is the number of pulls when we repeatedly

pull the arm with the lowest pulling cost. Thus, the number of pulls is always bounded

by B
cmin

, since we can achieve the maximal number of pulls if we only choose to pull the

arm with cmin pulling cost. This implies that the total computational cost of KUBE

is O
(

BK ln K
cmin

)

, which is low, compared to the budget size B and number of arms K.

Thus, KUBE satisfies Requirement 2.

By replacing the density–ordered greedy with the fractional relaxation based algorithm,

fractional KUBE decreases the computational cost to O (K) per time step. More pre-

cisely, at each time step, fractional KUBE calculates Î (t), that is arm with the highest

confidence bound density (see Equation 5.4 for more detail). This can be evaluated with

O (K) computational cost. That is, the total computational cost of fractional KUBE is

O (BK), which is lower than that of KUBE. This implies that while both algorithms

satisfy Requirement 2 (i.e. low computational complexity), KUBE is outperformed by

its fractional counterpart.

5.3 Summary

In this chapter, we focused on developing pulling algorithms that fulfil Requirement 3

(i.e. efficient finite–time regret bound). To this end, we proposed two algorithms, KUBE

and fractional KUBE, that combine the UCB based pulling technique with unbounded

knapsack approximation methods. In particular, KUBE uses the current estimates of

the expected reward values to form an underlying unbounded knapsack problem at each

time step t. To solve this knapsack problem, it relies on a density–ordered greedy ap-

proximation approach. Similarly, fractional KUBE also solves an unbounded knapsack

problem at each time step. However, it uses a fractional relaxation technique to ap-

proach the optimal solution of this knapsack problem. We showed that these algorithms

provide efficient theoretical regret bounds that follow the concept of asymptotic optimal

convergence; that is, they both efficiently satisfy Requirement 3. In more detail, we first

proved that KUBE has a O (ln B) regret bound (Theorem 5.5). In so doing, we provided

an upper bound for the number of times we pull a sub–optimal arm i (i.e. the arm that

differs from I∗) in Lemma 5.1. Using this result, we then provided a lower bound for the

74 Chapter 5 Budget–Limited Upper Confidence Bound based Approaches

value of T , the number of pulls within KUBE (Lemma 5.4). These lemmas provide a

basis to prove Theorem 5.5, which guarantees a logarithmic upper bound for the regret

of KUBE. In a similar vein, we also showed that fractional KUBE achieves a logarithmic

upper bound (Theorem 5.6). Following this, we proved that the aforementioned upper

bounds are asymptotically optimal; that is, they only differ from the best possible by a

constant factor (Theorem 5.7).

From the perspective of computational complexity, we pointed out that while KUBE

has a O (B (K + ln K)) computational cost, its fractional counterpart achieves a reduced

cost of O (BK). That is, both algorithms have low computational cost, compared to

the budget size B, and the number of arms K. This indicates that the algorithms fulfil

Requirement 2 (i.e. computational feasibility).

Although both KUBE and its fractional counterpart outperform the budget–limited

ε–first approach in terms of fulfilling Requirement 3, as we will show later in Chap-

ter 7, these algorithms typically provide poor performance in the scenario of long–term

information collection of WSNs (i.e. they are significantly outperformed by the budget–

limited ε–first approach), and thus, fail to satisfy Requirement 1 (i.e. efficient experi-

mental performance quality). Against this background, in the next chapter, we propose a

trade–off between the budget–limited ε–first and UCB based approaches, that performs

well from both a theoretical and an empirical aspect.

Chapter 6

Budget–Limited Decreasing

Epsilon–Greedy based

Approaches

So far, we have developed pulling algorithms that follow the concepts of ε–first and

UCB in order to find a trade–off between exploration and exploitation within budget–

limited MABs. However, the budget–limited ε–first approach cannot guarantee efficient

theoretical regret bounds, and thus, it fails to fulfil Requirement 3 (i.e. efficient finite–

time regret bound). In contrast, both KUBE and fractional KUBE achieve asymptotic

optimal regret bounds, but as we will show later in Chapter 7, they are outperformed

by the budget–limited ε–first approach in real–world settings.

Hence, we identify a need for a pulling algorithm that shows good performance from both

theoretical and experimental perspectives. To this end, within this chapter, we propose

two decreasing ε–greedy based algorithms: (i) the knapsack based decreasing ε–greedy

(KDE); and (ii) the fractional KDE. In so doing, we first describe the algorithms in

Section 6.1. This is followed, in Section 6.2, by the performance analysis of KDE and its

fractional counterpart. More precisely, we provide theoretical bounds on the performance

regret of the algorithms, and we study their computational cost.

6.1 The Algorithms

In this section, we focus on the description of KDE and its fractional counterpart.

Similar to the case of the UCB based algorithm in the previous chapter, these algorithms

differ from each other in the way they approximate the underlying unbounded knapsack

problem at each time step. Given this, we first start with the discussion of KDE, detailing

75

76 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

how the algorithm is defined by combining the decreasing ε–greedy based pulling policy

with the density–ordered greedy algorithm (Section 6.1.1). Following this, we turn to

the fractional KDE, focusing on how it is different from KDE (Section 6.1.2).

6.1.1 KDE

Consider the KDE algorithm depicted in Algorithm 6.1. Here, similarly to the previous

chapters, t also denotes the time step. Furthermore, let Bt denote the residual budget

at time t. Note that at the start (i.e. t = 1), B1 = B, where B is the total budget limit.

At each subsequent time step, t, KDE first checks whether arm pulling is no longer

feasible. Note that it is infeasible if and only if none of the arms can be pulled, with

the remaining budget. Specifically, if Bt < minj cj (i.e. the residual budget is smaller

than the lowest pulling cost), then KDE stops (steps 3 − 4). If the arm pulling is still

feasible, KDE then estimates the best combination of arms, denoted with M∗ (Bt), by

using the aforementioned density–ordered greedy approximation method (step 6). This

method provides an approximation of the best combination with greatest estimated total

expected reward, that does not exceed the residual budget limit Bt at t. In particular,

at each time step t, the algorithm solves the unbounded knapsack problem by using the

density–ordered greedy approximation method as follows. Similar to the case of KUBE

in Section 5.1.1, KDE solves the following knapsack problem at each time step t:

max

K
∑

i=1

mi,tµ̂i,ni,t
s.t.

K
∑

i=1

mi,tci ≤ Bt, ∀i, t : mi,t integer. (6.1)

where ni,t denotes the number of times up to t when KDE pulls arm i, and µ̂i,ni,t
is the

estimated value of arm i’s expected reward, which is calculated as the average reward

received so far for pulling arm i. More precisely, this estimate can be calculated as

described in Equation 5.2 (see Section 5.1.1 for more detail). At each time step, KDE

aims to find integers {mi,t} such that Equation 6.1 is maximised, with respect to the

residual budget limit Bt. Since this problem is NP–hard, by using the density–ordered

greedy method, we can achieve a near–optimal combination of arms. Let {m∗
i,t} be the

solution of this method to the knapsack problem in Equation 6.1. Thus, M∗ (Bt) =

{m∗
i,t} gives us the desired combination of arms, where m∗

i,t denotes the number of arm

i’s pulls within the combination. Next, let

εt = min {1, γ

t
}, (6.2)

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 77

Algorithm 6.1 The KDE Algorithm

1: t = 1; Bt = B; γ > 0;
2: while pulling is feasible do
3: if Bt < mini ci then
4: STOP! {pulling is not feasible}
5: end if
6: use density–ordered greedy to calculate M∗ (Bt) = {m∗

i,t} {approximated best
combination of arms by estimated values};

7: εt = min {1, γ/t};
8: randomly pull i (t) with P (i (t) = i) = (1− εt)

m∗
i,t

PK
k=1 m∗

k,t

+ εt

K ;

9: Bt+1 = Bt − ci(t); t = t + 1;
10: end while

Algorithm 6.2 The Fractional KDE Algorithm

1: t = 1; Bt = B; γ > 0;
2: while pulling is feasible do
3: if Bt < mini ci then
4: STOP! {pulling is not feasible}
5: end if
6: εt = min {1, γ/t};
7: let P (i (t) = I+ (t)) = (1− εt) and P (i (t) = j, j 6= I+ (t)) = εt

K ;
8: randomly pull i (t) with regard to P (i (t) = j);
9: Bt+1 = Bt − ci(t); t = t + 1;

10: end while

78 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

where γ > 0 is a constant value. Note that εt cannot be greater than 1. By using

M∗ (Bt) and εt, KDE randomly selects the next arm to pull by choosing arm i with

probability

P (i (t) = i) = (1− εt)
m∗

i,t
∑K

k=1 m∗
k,t

+
εt

K
. (6.3)

The reason of using εt is that KDE can also randomly choose from the other arms, that

are not involved in M∗ (Bt). By doing so, we can guarantee that the algorithm explores

all the arms. However, the value of εt is decreased after each step, since as time passes

by, we have more accurate estimation of arms, and thus, random exploration becomes

less important. After the pull, it then updates the residual budget limit Bt (step 9).

The intuition behind KDE is the following: By repeatedly pulling an arm from the

distribution formed by the current approximated best combination, the expected reward

value that KDE receives at each time step follows the distribution of the approximated

best combination of arms, that solves the corresponding unbounded knapsack problem.

This indicates that the average performance of KDE efficiently converges to the optimal

solution of the unbounded knapsack problem reduced from the budget–limited MAB

model if the real value of the arms are known. It is easy to show that the optimal

solution of this knapsack model forms the theoretical optimal policy of the budget–

limited MAB. Given this, by using the density–ordered greedy method at each time

step, KDE can achieve efficiently low regret bound, by converging to this theoretical

optimal solution (see next section for more details).

6.1.2 Fractional KDE

Similar to KDE, fractional KDE also approximates the underlying unbounded knapsack

problem at each time step t in order to determine the frequency of arms within the esti-

mated best combination of arms. However, instead of using the density–ordered greedy

algorithm, it uses a fractional relaxation based method to approximate the optimal so-

lution of the unbounded knapsack. That is, similar to the case of the fractional KUBE,

the following fractional unbounded knapsack is formed at each time step t:

max

K
∑

i=1

mi,tµ̂i,ni,t
s.t.

K
∑

i=1

mi,tci ≤ Bt. (6.4)

The optimal solution of this fractional problem is solely choosing arm I+ (t), such that:

I+ (t) = arg max
j

µ̂j,nj,t

cj
.

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 79

In other words, I+ (t) denotes the arm with the highest expected reward density estimate.

Given this, fractional KDE, depicted in Algorithm 6.2, can be described as follows:

Similar to KDE, it first sets the value of εt (step 6). It then randomly chooses an arm

to pull such that I+ (t) is chosen with probability (1− εt), and the others are chosen

with probability εt

K (steps 7− 8). Note that the fractional KDE can be regarded as the

budget–limited version of the decreasing ε–greedy (see Section 2.2 for more details).

In what follows, we show that both KDE and its fractional counterpart achieve asymptot-

ically optimal regret bounds. That is, we show that both algorithms achieve logarithmic

regret bounds. According to Theorem 5.7, this implies that the regret bounds of the

algorithm only differ from the best possible with a constant factor.

6.2 Performance Analysis

To provide an upper bound for the performance regret of KDE, we first state the fol-

lowing:

Lemma 6.1. Let 0 < d < dmin, γ ≥ 56K
3d2 , and C = γ+γ2

K + 4γe
1
2

d2 , where K is the number

of arms. Suppose that the total budget size is B. Given this, if T denotes the total

number of pulls of KDE then we have:

E [T] ≥ B

cI∗
− C

cI∗

∑

δj>0

δj ln

(

B

cmin

)

− γ

∑

j cj

KcI∗
− C

cI∗

∑

δj>0

δj − 1,

where E [T] is the expected number of pulls using KDE.

That is, the difference between B
cI∗

and the number of pulls of KDE is at most O
(

ln
(

B
cmin

))

.

Let us first refresh some of the terms that are used: i (t) is the arm pulled by KDE at

time t, and when referring to a combination of arms {mj,t}, mj,t is the number of pulls

of arm j. In addition, recall that I+ (t) = arg maxj
µ̂j,nj,t

cj
denotes the arm with the

highest estimated mean value density at time step t. In order to prove Lemma 6.1, we

rely on the following lemmas:

Lemma 6.2. Let 0 < d < dmin, γ ≥ 56K
3d2 , where K is the number of arms. For any

t ≥ γ, we get:

P
(

I+ (t) = j, j 6= I∗
)

≤
(

γ + γ2

K
+

4γe
1
2

d2

)

1

t
.

That is, the probability that the arm with the highest estimated mean value density is

in fact suboptimal (i.e. it is not equal to I∗) at time step t is at most O
(

1
t

)

.

80 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

Lemma 6.3. Suppose that at time t, the residual budget is Bt, and M∗ (Bt) = {mi,t}.
Then:

∑

j mj,tcj
∑

j mj,t
≤ cI+(t) .

That is, the weighted average cost of combination {mi,t} is at most cI+(t).

Now, to prove Lemma 6.2, we will make use of the following version of the Bernstein’s

inequality for bounded random variables:

Theorem 6.4 (Bernstein’s inequality - Theorem 10.2, Bubeck (2010)). Let X1,X2, . . . ,Xt

denote the sequence of random variables with common range [0, 1], such that for any

1 ≤ τ ≤ t, we have E [Xτ |X1, . . . ,Xτ−1] = µ, and
∑t

τ=1 Var [Xτ |X1, . . . ,Xτ−1] ≤ v for

some v > 0. Given this, for any δ ≥ 0, we have:

P

(

t
∑

τ=1

Xτ ≥ E

[

t
∑

τ=1

Xτ

]

+ δ

)

≤ exp

{

− δ2

2v + 2δ
3

}

, (6.5)

P

(

t
∑

τ=1

Xτ ≤ E

[

t
∑

τ=1

Xτ

]

− δ

)

≤ exp

{

− δ2

2v + 2δ
3

}

. (6.6)

The proof can be found, for example, in Bubeck (2010).

Proof of Lemma 6.2. Let:

xt =
1

2K

t
∑

τ=1

ετ .

Now, we first show that:

P
(

I+ (t) = j, j 6= I∗
)

≤ εt

K
+ 2xt exp

{

−3xt

14

}

+
4

d2
exp

{

−d2 ⌊xt⌋
2

}

. (6.7)

This inequality can be proved by a standard application of the Chernoff–Hoeffding (The-

orem 4.2) and Bernstein’s inequality, as for Theorem 3 in Auer et al. (2002). In partic-

ular, we have:

P
(

I+ (t) = j, j 6= I∗
)

≤ εt

K
+ P

(

µ̂j,nj,t

cj
≥

µ̂I∗,nI∗,t

cI∗

)

. (6.8)

Similar to the proof of Equation 4.11 in Chapter 4, we bound the second term of the

right hand side of Equation 6.8 as follows:

P

(

µ̂j,nj,t

cj

≥
µ̂I∗,nI∗,t

cI∗

)

≤ P

(

µ̂j,nj,t

cj

≥ µj,nj,t

cj

+
dj

2

)

+P

(

µ̂I∗,nI∗,t

cI∗
≤

µI∗,nI∗,t

cI∗
− dj

2

)

. (6.9)

The analysis for both terms on the right hand side is the same. Thus, from now on

we focus on the first term. Let nR
j,t denote the number of time steps in which arm j

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 81

was randomly chosen from the uniform distribution (and not from the current estimated

best combination {m∗
j,t}) in the first t time steps. Given this, we have:

P

(

µ̂j,nj,t

cj
≥ µj,nj,t

cj
+

dj

2

)

=
t
∑

n=1

P

(

nj,t = n,
µ̂j,n

cj
≥ µj,n

cj
+

dj

2

)

=
t
∑

n=1

P

(

nj,t = n

∣

∣

∣

∣

∣

µ̂j,n

cj
≥ µj,n

cj
+

dj

2

)

P

(

µ̂j,n

cj
≥ µj,n

cj
+

dj

2

)

≤
t
∑

n=1

P

(

nj,t = n

∣

∣

∣

∣

∣

µ̂j,n

cj
≥ µj,n

cj
+

dj

2

)

e
−nd2

j
2 . (6.10)

The last inequality is obtained from the Chernoff–Hoeffding inequallity (Theorem 4.2).

By using elementary algebra, it is easy to prove that for any κ > 0:

∞
∑

n=x+1

e−nκ ≤ 1

κ
e−κx.

Substituting this into Equation 6.10 we obtain:

P

(

µ̂j,nj,t

cj

≥ µj,nj,t

cj

+
dj

2

)

≤

≤
⌊xt⌋
∑

n=1

P

(

nj,t = n

∣

∣

∣

∣

∣

µ̂j,n

cj

≥ µj,n

cj

+
dj

2

)

+
2

d2
j

exp

{

−d2
j⌊xt⌋
2

}

≤
⌊xt⌋
∑

n=1

P

(

nR
j,t ≤ n

∣

∣

∣

∣

∣

µ̂j,n

cj

≥ µj,n

cj

+
dj

2

)

+
2

d2
j

exp

{

−d2
j⌊xt⌋
2

}

≤
⌊xt⌋
∑

n=1

P
(

nR
j,t ≤ n

)

+
2

d2
j

exp

{

−d2
j⌊xt⌋
2

}

≤ xtP
(

nR
j,t ≤ xt

)

+
2

d2
j

exp

{

−d2
j⌊xt⌋
2

}

. (6.11)

Note that in the last two inequalities, we drop the conditioning to
µ̂j,n

cj
≥ µj,n

cj
+

dj

2 , since

nR
j,t only considers the cases when arm j is randomly chosen to be pulled from a uniform

distribution, independently from the previous choices of the KDE algorithm. We now

estimate P
(

nR
j,t ≤ xt

)

as follows:

E
[

nR
j,t

]

=
1

K

t
∑

τ=1

εt = 2xt,

and

Var
[

nR
j,t

]

=

t
∑

τ=1

εt

K

(

1− εt

K

)

≤ 1

K

t
∑

τ=1

εt = 2xt.

82 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

As a result, from Bernstein’s inequality (Equation 6.6 from Theorem 6.4) we get:

P
(

nR
j,t ≤ xt

)

= P
(

nR
j,t ≤ E

[

nR
j,t

]

− xt

)

≤ exp

{

−3xt

14

}

. (6.12)

Substituting this into Equation 6.11, and combining with Equations 6.8 and 6.9, we

obtain Equation 6.7 (note that a similar analysis has to be done for the second term on

the right hand side of Equation 6.9).

Now, since the right hand side of Equation 6.7 is a monotone decreasing function, we

lower bound the value of xt, in order to upper bound P (I+ (t) = j, j 6= I∗). Recall that

ετ = min {1, γ
τ }, so we can write:

xt =
1

2K

t
∑

τ=1

ετ ≥
t
∑

τ=⌊γ⌋+1

ετ ≥
γ

2K
ln

(

t

γ

)

.

Regarding the second term on the right–hand side of Equation 6.7, along with the above,

note that γ ≥ 56K
3d2 and d ≤ 1, so

(γ
t

)
3γ

28K ≤
(γ

t

)2
. Therefore:

2xt exp

{

−3xt

14

}

≤ γ

K
ln

(

t

γ

)

(γ

t

)
3γ

28K ≤ γ

K
ln

(

t

γ

)

(γ

t

)2
≤ γ2

K

1

t
. (6.13)

Similarly, for the third term on the on the right–hand side of Equation 6.7, we have:

4

d2
exp

{

−d2 ⌊xt⌋
2

}

≤ 4

d2
exp

(

d2

2

)

(γ

t

)
d2γ
4K ≤ 4γ

d2
e

1
2
1

t
. (6.14)

In addition, since t ≥ γ, we have εt = γ
t . By using this and Equations 6.13 and 6.14, we

get:

P
(

I+ (t) = j, j 6= I∗
)

≤ γ2

K

1

t
+

(

γ

K
+

4γe
1
2

d2

)

1

t
, (6.15)

which concludes the proof.

Proof of Lemma 6.3. Here, we consider two cases. In the first one, suppose that the

combination of arms that the density–ordered greedy algorithm returns contains only

one arm, namely I+ (t) (i.e. {mi,t} is >0 for mI+(t),t only). In this case,
∑

j mj,tcj =

mI+(t),tcI+(t) and
∑

j mj,t = mI+(t),t. Thus:

∑

j mj,tcj
∑

j mj,t
=

mI+(t),tcI+(t)

mI+(t),t
= cI+(t) .

Now consider the second case where {mi,t} is > 0 for more than one arm. Recall that

the density–ordered greedy algorithm repeatedly adds arm I+ (t) into the combination

until it is no longer feasible, and then it adds the feasible arm with the next highest

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 83

estimated density. This implies that:

∑

j

mj,t ≥ mI+(t) + 1 =

⌊

Bt

cI+(t)

⌋

+ 1 ≥ Bt

cI+(t)
. (6.16)

By definition
∑

j mj,tcj ≤ Bt. From this and Equation 6.16, we get:

∑

j mj,tcj
∑

j mj,t
≤ Bt

Bt

cI+(t)

= cI+(t) .

Thus we have proved the two cases of the combination of arms containing a single arm

or two or more arms.

Based on Lemmas 6.2 and 6.3, Lemma 6.1 can be proved as follows:

Proof of Lemma 6.1. Since KDE pulls arms until none are feasible, by definition:

P

(

T
∑

t=1

ci(t) > B − cmin

)

= 1.

Given this, taking the expectation of
∑T

t=1 ci(t) over T and {mj,t} (i.e. the set of i (t))

gives:

ET,{i(t)}

[

T
∑

t=1

ci(t)

]

= ET

[

T
∑

t=1

Ei(t)

[

ci(t)

]

]

> B − cmin . (6.17)

Now, for all 0 < t ≤ T , we have:

Ei(t)

[

ci(t)

]

=
∑

{mj,t}

∑

j mjcj
∑

j mj

P (M∗ (Bt) = {mj,t}) ≤
∑

{mj,t}

cI+(t)P (M∗ (Bt) = {mj,t}) .

(6.18)

where the second inequality comes from Lemma 6.3.

Now consider two cases of t ≤ ⌊γ⌋ and t > ⌊γ⌋. First, for t ≤ ⌊γ⌋, we have:

Ei(t)

[

ci(t)

]

=

∑

j cj

K
. (6.19)

because in the first ⌊γ⌋ steps, KDE randomly pulls each arm j with probability 1
K (see

Algorithm 6.1 for more details).

Second, suppose that t > ⌊γ⌋. Recall that the density–ordered greedy algorithm first

adds the arm with the highest density estimate (i.e. I+ (t)) into the combination of arms.

Given this, we can group the possible combinations together so that combinations that

have the same value of I+ (t) are in the same group. By doing this, Equation 6.18 can

84 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

be restated as follows:

Ei(t)

[

ci(t)

]

≤
∑

{mj,t}
cI(t)P (M∗ (Bt) = {mj,t}) =

∑

j

cjP
(

I+ (t) = j
)

≤

≤ cI∗ +
∑

δj>0

δj

(

γ + γ2

K
+

4γe
1
2

d2

)

1

t
. (6.20)

Note that the last inequality comes from Lemma 6.2. In addition, since δj can be smaller

than 0 for some arm j, we can further upper bound by only considering arms with δj > 0.

Substituting Equations 6.19 and 6.20 into Equation 6.17, and using C = γ+γ2

K + 4γe
1
2

d2 ,

gives:

B − cmin <

⌊γ⌋
∑

t=1

∑

j cj

K
+ ET





T
∑

t=⌊γ⌋+1



cI∗ +
∑

δj>0

δjC
1

t









≤ γ

∑

j cj

K
+ cI∗E [T] +

∑

δj>0

δjCET

[

T
∑

t=1

1

t

]

≤ γ

∑

j cj

K
+ cI∗E [T] + C

∑

δj>0

δjET [ln (T) + 1]

≤ γ

∑

j cj

K
+ cI∗E [T] + C

∑

δj>0

δj

(

ln

(

B

cmin

)

+ 1

)

. (6.21)

The last two inequalities come from the fact that
∑T

t=1
1
t ≤ ln (T)+1 and that T ≤ B

cmin

for any possible T . Keeping cI∗E [T] only on the right hand side of Equation 6.21 and

dividing the both sides with cI∗ gives the stated inequality (n.b. cmin
cI∗
≤ 1).

Note that if we relax the budget–limited MAB problem so that the number of pulls can

be fractional, then it is easy to show that the optimal pulling policy of this relaxed model

is to repeatedly pull arm I∗ only. In this case, B
cI∗

is the number of pulls of this optimal

policy. Given this, Theorem 6.1 indicates that the number of pulls that KDE produces

does not significantly differ from that of the optimal policy of the fractional budget–

limited MAB (i.e. the difference is a logarithmic function of the number of pulls). From

Lemma 6.1, we get:

Theorem 6.5. Let 0 < d < dmin, γ ≥ 56K
3d2 , and C = γ+γ2

K + 4γe
1
2

d2 , where K is the

number of arms. Given this, for any budget size B > 0, the performance regret of KDE

is at most


C
∑

∆j>0

∆j + C

∑

δj>0 δj

cI∗
+

γ

K

∑

∆j>0

∆j +

(

cmax

cmin

)2

+ 1



 ln

(

B

cmin

)

+γ

(

∑

j cj

KcI∗
+

∑

∆i>0 ∆i

K

)

+ C
∑

∆j>0

∆j +

(

cmax

cmin

)2

+ 2 .

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 85

To prove this theorem, we first prove the following lemmas:

Lemma 6.6. Suppose that at time step t, the residual budget is Bt, and M∗ (Bt) =

{mi,t}. That is, the density–ordered greedy approach that KDE uses returns {mi,t} as

the best combination of arms. Given this, we get:

µI∗ −
∑

j mj,tµj
∑

j mj,t
≤ ∆I+(t) +

(

(

cmax

cmin

)2

+ 1

)

cmin

Bt
.

Lemma 6.7. Suppose that KDE pulls the arms T times, and that at each time step t,

the residual budget is Bt (note that here B1 = B). Given this, for any 0 < t ≤ T , we

have:
cmin

Bt
≤ 1

T − t + 1
.

Proof of Lemma 6.6. Without loss of generality, we assume that the density–ordered

greedy approach adds the arms into combination {mi,t} in the order of {1, 2, . . . ,K}.
That is, here I+ (t) = 1. Due to the nature of the density–ordered greedy method, it is

easy to show that m1,t =
⌊

Bt

c1

⌋

. It is also easy to show that
∑K

j=1 mj,t ≤ Bt

cmin
, since we

can achieve the maximal number of pulls by repeatedly pulling the arm with minimal

cost. Given this, we get:

∑

j mj,tµj
∑

j mj,t
≥

⌊

Bt

c1

⌋

µ1
∑

j mj,t
≥

Bt

c1
µ1 − 1

∑

j mj,t
≥

Bt

c1
µ1

∑

j mj,t
− cmin

Bt
. (6.22)

Recall that after repeatedly adding arm 1 to {mi,t}, the residual budget is Bt−m1,tc1 <

c1, otherwise we can still add arm 1 at least once to {mi,t}. It is easy to see that the

maximum number of arms we can add to {mi,t} with respect to this residual budget is

when we add only the arm with the smallest pulling cost. Given this, we have:

K
∑

j=2

mj,t ≤
c1

cmin
≤ cmax

cmin
.

That is, we get:
Bt

c1
µ1

∑

j mj,t
≥

Bt

c1
µ1

Bt

c1
+ cmax

cmin

= σ. (6.23)

By using Equations 6.22 and 6.23, and that µ1 ≤ 1, we obtain the following:

µI∗ −
∑

j mj,tµj
∑

j mj,t

≤ µI∗ − σ +
cmin

Bt

= µI∗ − µ1 +
cmax

cmin

Bt

c1
+ cmax

cmin

µ1 +
cmin

Bt

≤ ∆1 +

cmax

cmin

Bt

c1

+
cmin

Bt

≤ ∆I+(t) +

c2
max

cmin

Bt

+
cmin

Bt

86 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

where the last inequality is obtained from c1 ≤ cmax and I+ (t) = 1. This concludes the

proof.

Proof of Lemma 6.7. At the beginning of time step t, the residual budget is Bt. Since

the total number of pulls is T , with respect to Bt, KDE can still achieves T − t+1 pulls

(including the pull at time step t). Given this, we have:

Bt ≥ ci(t) + ci(t+1) + · · ·+ ci(T) ≥ (T − t + 1) cmin.

which directly implies the inequality in Lemma 6.7.

Now we prove Theorem 6.5 as follows:

Proof of Theorem 6.5. Recall that E
[

GB (A∗)
]

denotes the expected performance of the

theoretical optimal policy. It is obvious that E
[

GB (A∗)
]

≤ BµI∗
cI∗

, since the latter is the

optimal solution of the fractional budget–limited MAB problem. Given this, we have

the following:

RB (KDE) = E
[

GB (A∗)
]

−E
[

GB (KDE)
]

≤ BµI∗

cI∗
−ET,{i(t)}

[

T
∑

t=1

µi(t)

]

⇒

⇒ RB (KDE) ≤ BµI∗

cI∗
−ET

[

T
∑

t=1

Ei(t)

[

µi(t)

]

]

= ET

[

BµI∗

cI∗
−

T
∑

t=1

Ei(t)

[

µi(t)

]

]

. (6.24)

Now, consider Ei(t)

[

µi(t)

]

. According to the definition of KDE in Section 6.1.1, we get:

Ei(t)

[

µi(t)

]

= (1− εt)
∑

{mj,t}

∑

j mj,tµj
∑

j mj,t

P (M∗ (Bt) = {mj,t}) +
εt

∑

i µi

K
.

Substituting this into Equation 6.24, we have:

RB (KDE) ≤ ET





BµI∗

cI∗
−

T
∑

t=1



(1− εt)
∑

{mj,t}

∑

j mj,tµj
∑

j mj,t

P (M∗ (Bt) = {mj,t}) +
εt

∑

i µi

K









≤ ET

[

BµI∗

cI∗
− TµI∗ +

T
∑

t=1

{

(1− εt)



µI∗ −
∑

{mj,t}

∑

j mj,tµj
∑

j mj,t

P (M∗ (Bt) = {mj,t})



+

+ εt

(

µI∗ −
∑

i µi

K

)

}]

≤ ET

[

BµI∗

cI∗
− TµI∗

]

+ ET





T
∑

t=⌊γ⌋+1



µI∗ −
∑

{mj,t}

∑

j mj,tµj
∑

j mj,t

P (M∗ (Bt) = {mj,t})







+

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 87

+

∑

i (µI∗ − µi)

K
ET

[

T
∑

t=1

εt

]

≤ ET

[

B

cI∗
− T

]

µI∗ + ET





T
∑

t=⌊γ⌋+1

∑

{mj,t}

(

µI∗ −
∑

j mj,tµj
∑

j mj,t

)

P (M∗ (Bt) = {mj,t})



+

+

∑

∆i>0 ∆i

K
ET

[

T
∑

t=1

εt

]

. (6.25)

The third inequality is obtained from the fact that εt = 1 if t ≤ ⌊γ⌋ and εt < 1 otherwise.

The last inequality also holds since
∑

i (µI∗ − µi) ≤
∑

∆i>0 ∆i. Note that here ∆j can

be smaller than 0 for some arm j, thus, we can further upper bound by only considering

arms with ∆j > 0.

In what follows, we provide upper bounds for each of the three terms on the right hand

side of Equation 6.25. In so doing, we first use Lemma 6.1 to obtain the following:

ET

[

B

cI∗
− T

]

µI∗ ≤
C

cI∗

∑

δj>0

δj ln

(

B

cmin

)

+ γ

∑

j cj

KcI∗
+

C

cI∗

∑

δj>0

δj + 1 . (6.26)

Here we exploit the fact that µI∗ ≤ 1. Now we turn to bound the second term on the

right hand side of Equation 6.25. From Lemma 6.6 we have:

µI∗ −
∑

j mj,tµj
∑

j mj,t
≤ ∆I+(t) +

(

(

cmax

cmin

)2

+ 1

)

cmin

Bt
.

This implies the following:

ET





T
∑

t=⌊γ⌋+1

∑

{mj,t}

(

µI∗ −
∑

j mj,tµj
∑

j mj,t

)

P (M∗ (Bt) = {mj,t})



 ≤

≤ ET





T
∑

t=⌊γ⌋+1







∑

{mj,t}

∆I+(t)P (M∗ (Bt) = {mj,t}) +

(

(

cmax

cmin

)2

+ 1

)

cmin

Bt









 . (6.27)

Now, by grouping the possible sets of {mj,t} together so that the combinations with the

same I+ (t) belongs to the same group, we can reformalise Equation 6.27 as follows:

ET





T
∑

t=⌊γ⌋+1

∑

{mj,t}

(

µI∗ −
∑

j mj,tµj
∑

j mj,t

)

P (M∗ (Bt) = {mj,t})



 ≤

≤ ET





T
∑

t=⌊γ⌋+1

K
∑

j=1

∆jP
(

I+ (t) = j
)



+ ET





T
∑

t=⌊γ⌋+1

(

(

cmax

cmin

)2

+ 1

)

cmin

Bt



 . (6.28)

88 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

Let C = γ+γ2

K + 4γe
1
2

d2 . From Lemma 6.2, we have:

ET





T
∑

t=⌊γ⌋+1

K
∑

j=1

∆jP
(

I+ (t) = j
)



 ≤ ET





T
∑

t=⌊γ⌋+1

K
∑

j=1

∆jC
1

t





≤ C

K
∑

j=1

∆jET [ln (T) + 1] ≤ C

K
∑

j=1

∆j

(

ln

(

B

cmin

)

+ 1

)

.

(6.29)

The last inequality holds since T ≤ B
cmin

with probability 1. Next, by Lemma 6.7:

ET





T
∑

t=⌊γ⌋+1

(

(

cmax

cmin

)2

+ 1

)

cmin

Bt



 ≤
(

(

cmax

cmin

)2

+ 1

)

ET





T
∑

t=⌊γ⌋+1

1

T − t + 1





≤
(

(

cmax

cmin

)2

+ 1

)

(ET [ln (T)] + 1)

≤
(

(

cmax

cmin

)2

+ 1

)

(

ln

(

B

cmin

)

+ 1

)

. (6.30)

The second inequality is obtained from the fact that
∑T

t=⌊γ⌋+1
1
t ≤ ln (T)+1. Subtituting

Equations 6.29 and 6.30 into Equation 6.28 implies that:

ET





T
∑

t=⌊γ⌋+1

∑

{mj,t}

(

µI∗ −
∑

j mj,tµj
∑

j mj,t

)

P (M∗ (Bt) = {mj,t})



 ≤

≤



C
K
∑

j=1

∆j +

(

cmax

cmin

)2

+ 1





(

ln

(

B

cmin

)

+ 1

)

. (6.31)

As the last step of the proof, we now bound the third term on the right hand side of

Equation 6.25. Recall that εt = 1 if t ≤ ⌊γ⌋ and εt = γ
t otherwise. Given this, we have:

∑

∆i>0 ∆i

K
ET

[

T
∑

t=1

εt

]

≤
∑

∆i>0 ∆i

K
γ +

∑

∆i>0 ∆i

K
ET





T
∑

t=⌊γ⌋+1

γ

t





≤
∑

∆i>0 ∆i

K
γ +

∑

∆i>0 ∆i

K
γET [ln (T)]

≤
∑

∆i>0 ∆i

K
γ +

∑

∆i>0 ∆i

K
γ ln

(

B

cmin

)

. (6.32)

Now, by subtituting Equations 6.26, 6.31, and 6.32 into Equation 6.25, we get the stated

bound for the performance regret of KDE .

Similarly, the regret of fractional KDE is bounded as follows:

Theorem 6.8. Let 0 < d < dmin, γ ≥ 56K
3d2 , and C = γ+γ2

K + 4γe
1
2

d2 , where K is the

number of arms. Given this, for any budget size B > 0, the performance regret of the

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 89

fractional KDE is at most



C
∑

∆j>0

∆j + C

∑

δj>0 δj

cI∗
+

γ

K

∑

∆j>0

∆j



 ln

(

B

cmin

)

+γ

(

∑

j cj

KcI∗
+

∑

∆i>0 ∆i

K

)

+ C
∑

∆j>0

∆j + 1 .

We now turn to prove Theorem 6.33, which provides a theoretical upper bound for the

regret of the fractional KDE.

Proof of Theorem 6.33. We follow the concept that is similar to the proof of Theo-

rem 6.5. In particular, analogous to Lemma 6.2, we can easily show that if 0 < d < dmin,

and γ ≥ 56K
3d2 , where K is the number of arms, for any t ≥ γ, we get:

P
(

I+ (t) = j, j 6= I∗
)

≤
(

γ + γ2

K
+

4γe
1
2

d2

)

1

t
. (6.33)

In the next step, we calculate E [T], where T is the number of pulls within the fractional

KDE. In so doing, consider two cases of t ≤ ⌊γ⌋ and t > ⌊γ⌋. First, for t ≤ ⌊γ⌋, we

have:

Ei(t)

[

ci(t)

]

=

∑

j cj

K
. (6.34)

because in the first ⌊γ⌋ steps, fractional KDE randomly pulls each arm j with probability
1
K (see Algorithm 6.2 for more details).

Second, suppose that t > ⌊γ⌋. From Equation 6.33, we have:

Ei(t)

[

ci(t)

]

=
∑

j

cjP
(

I+ (t) = j
)

≤ cI∗ +
∑

δj>0

δj

(

γ + γ2

K
+

4γe
1
2

d2

)

1

t
. (6.35)

Since fractional KDE runs until it is not feasible to pull any arms, Equation 6.17 also

holds:

ET,{i(t)}

[

T
∑

t=1

ci(t)

]

= ET

[

T
∑

t=1

Ei(t)

[

ci(t)

]

]

> B − cmin . (6.36)

Similar to the case of KDE, from Equations 6.34, 6.35, and 6.36, we get:

E [T] ≥ B

cI∗
− C

cI∗

∑

δj>0

δj ln

(

B

cmin

)

− γ

∑

j cj

KcI∗
− C

cI∗

∑

δj>0

δj − 1. (6.37)

90 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

Note that this equation is analogous to Lemma 6.1. We now estimate the performance

regret of the fractional KDE as follows. It is easy to show that

RB (fractionalKDE) ≤ BµI∗

cI∗
−ET,{i(t)}

[

T
∑

t=1

µi(t)

]

⇒

⇒ RB (fractionalKDE) ≤ BµI∗

cI∗
−ET

[

T
∑

t=1

Ei(t)

[

µi(t)

]

]

= ET

[

BµI∗

cI∗
−

T
∑

t=1

Ei(t)

[

µi(t)

]

]

.

(6.38)

Consider Ei(t)

[

µi(t)

]

. According to the definition of fractional KDE in Section 6.1.2, we

get:

Ei(t)

[

µi(t)

]

= (1− εt)

K
∑

j=1

µjP
(

I+ (t) = j
)

+
εt

∑

i µi

K
. (6.39)

Substituting this into Equation 6.38, we have:

RB (fractionalKDE) ≤ ET





BµI∗

cI∗
−

T
∑

t=1



(1− εt)

K
∑

j=1

µjP
(

I+ (t) = j
)

+
εt

∑

i µi

K









≤ ET

[

BµI∗

cI∗
− TµI∗ +

T
∑

t=1

{

(1− εt)



µI∗ −
K
∑

j=1

µjP
(

I+ (t) = j
)



+

+ εt

(

µI∗ −
∑

i µi

K

)

}]

≤ ET

[

BµI∗

cI∗
− TµI∗

]

+ ET





T
∑

t=⌊γ⌋+1



µI∗ −
K
∑

j=1

µjP
(

I+ (t) = j
)







+

+

∑

i (µI∗ − µi)

K
ET

[

T
∑

t=1

εt

]

≤ ET

[

B

cI∗
− T

]

µI∗ + ET





T
∑

t=⌊γ⌋+1

K
∑

j=1

∆jP
(

I+ (t) = j
)



+

+

∑

∆i>0 ∆i

K
ET

[

T
∑

t=1

εt

]

. (6.40)

The third inequality is obtained from the fact that εt = 1 if t ≤ ⌊γ⌋ and εt < 1

otherwise. In addition, the last inequality holds since
∑

i (µI∗ − µi) ≤
∑

∆i>0 ∆i. In

what follows, we provide upper bounds for each of the three terms on the right hand

side of Equation 6.40. In particular, from Equation 6.37, we have:

ET

[

B

cI∗
− T

]

µI∗ ≤
C

cI∗

∑

δj>0

δj ln

(

B

cmin

)

+ γ

∑

j cj

KcI∗
+

C

cI∗

∑

δj>0

δj + 1 . (6.41)

Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches 91

Here we exploit the fact that µI∗ ≤ 1. In addition, from Equation 6.33 we have:

ET





T
∑

t=⌊γ⌋+1

K
∑

j=1

∆jP
(

I+ (t) = j
)



 ≤ ET





T
∑

t=⌊γ⌋+1

K
∑

j=1

∆jC
1

t





≤ C

K
∑

j=1

∆jET [ln (T) + 1]

≤ C
K
∑

j=1

∆j

(

ln

(

B

cmin

)

+ 1

)

, (6.42)

where C = γ+γ2

K + 4γe
1
2

d2 . Finally, recall that εt = 1 if t ≤ ⌊γ⌋ and εt = γ
t otherwise.

Given this, we have:

∑

∆i>0 ∆i

K
ET

[

T
∑

t=1

εt

]

≤
∑

∆i>0 ∆i

K
γ +

∑

∆i>0 ∆i

K
ET





T
∑

t=⌊γ⌋+1

γ

t





≤
∑

∆i>0 ∆i

K
γ +

∑

∆i>0 ∆i

K
γET [ln (T)]

≤
∑

∆i>0 ∆i

K
γ +

∑

∆i>0 ∆i

K
γ ln

(

B

cmin

)

. (6.43)

Combining Equations 6.41, 6.42, and 6.43, we get the requested upper bound.

Theorems 6.5 and 6.8 imply that the performance regret of both KDE and its fractional

counterpart is bounded by O
(

ln
(

B
cmin

))

. Theorem 5.7 indicates that both algorithms

follow the concept of asymptotic optimal convergence, and thus, they both satisfy Re-

quirement 3.

From the computational aspect, since the underlying unbounded knapsack problem is

the same as in the case of KUBE and fractional KUBE, it can easily be shown that the

computational cost of KDE and its fractional counterpart is O
(

BK lnK
cmin

)

and O (BK),

respectively. This implies that both algorithms satisfy Requirement 2 (i.e. low com-

putational complexity). In addition, similar to the case of the UCB based approaches,

fractional KDE outperforms KDE in terms of computational efficiency.

6.3 Summary

In this chapter, we focused on developing pulling algorithms that fulfil both the theo-

retical and empirical research requirements, providing a trade–off between the budget–

limited ε–first and the KUBE approaches. To this end, we proposed two algorithms,

KDE and fractional KDE, that combine the decreasing ε–greedy pulling policies with

unbounded knapsack approximation methods. Similar to the KUBE approaches pre-

sented in the previous chapter, both KDE and fractional KDE use the current estimates

92 Chapter 6 Budget–Limited Decreasing Epsilon–Greedy based Approaches

of the expected reward values to form an underlying unbounded knapsack problem at

each time step t. To solve this knapsack problem, KDE uses a density–ordered greedy

approximation approach, while fractional KUBE relies on a fractional relaxation tech-

nique. We showed that these algorithms provide efficient theoretical regret bounds that

follow the concept of asymptotic optimal convergence; that is, they both efficiently sat-

isfy Requirement 3. In more detail, we first provided a lower bound for the value of T ,

the number of pulls within KDE (Lemma 6.1). We then provided an O (ln B) upper

bound for the regret of KDE (Theorem 6.5). In a similar vein, we also showed that

fractional KDE achieves a logarithmic upper bound (Theorem 6.8). From Theorem 5.7,

we can easily show that both algorithms achieve asymptotic optimal bounds, and thus,

they satisfy Requirement 3.

In addition, since the KDE approaches follow the concept that is similar to the KUBE ap-

proaches in tackling the underlying unbounded knapsack, the computational complexity

of the KDE approaches are similar to that of the KUBE algorithms. In particular, KDE

has a O (B (K + ln K)) computational cost, and its fractional counterpart achieves a re-

duced cost of O (BK). That is, both algorithms have low computational cost, compared

to the budget size B, and the number of arms K. This indicates that the algorithms

fulfil Requirement 2 (i.e. computational feasibility).

So far, we have only analysed the proposed algorithms from the theoretical perspective,

focusing on their fulfilment of Requirements 2 and 3. In the next chapter, we investigate

the empirical efficiency of the algorithms by carrying out an experimental study within

the domain of wireless sensor networks. With this study, we will demonstrate that the

budget–limited ε–first approach shows efficient performance, and the KUBE algorithms

perform poorly. Meanwhile, we will show that the KDE algorithms provide good per-

formance, compared to that of the budget–limited ε–first approach. Thus, the KDE

algorithms act as a good trade–off between the budget–limited ε–first and KUBE ap-

proaches by achieving good performance from both the theoretical and the experimental

perspectives.

Chapter 7

Long–Term Information

Collection in Wireless Sensor

Networks

In each of the previous three chapters we have considered pulling algorithms, namely:

budget–limited ε–first, KUBE, fractional KUBE, KDE, and fractional KDE, that are

designed for budget–limited multi–armed bandits. In more detail, we have focused on the

development of these algorithms against Requirements 2 and 3. That is, whether they

are computationally feasible (Requirement 2), and achieve efficient finite–time regret

bounds (Requirement 3). Within this chapter, we study the experimental performance

quality (Requirement 1) of the algorithms, in order to investigate whether they fulfil

this aspect of the research. In so doing, we apply the algorithms to the problem of long–

term information collection in wireless sensor networks, which is one of the key research

challenges within the WSN domain (see Section 1.2 for more detail). In addition, we

show that by using the budget–limited MAB algorithms, we extend the state–of–the–

art in terms of efficient long–term information collection within WSNs. In particular,

we demonstrate that our budget–limited MAB approach outperforms USAC, a state–

of–the–art method within the domain of information collection in WSNs (Padhy et al.,

2010).

To this end, we first revise the related work within the research domain of information

collection in WSNs (Section 7.1), and we then formalise the problem of long–term in-

formation collection in Section 7.2. In particular, we decompose this problem into two

sub–problems, namely (i) energy management; and (ii) maximal information through-

put routing (see Section 1.3 for more detail). We then provide a budget–limited MAB

approach for the former in Section 7.3, and an optimal decentralised routing algorithm

93

94 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

for the latter in Section 7.4. The empirical performance of the aforementioned budget–

limited MAB algorithms are then evaluated in Section 7.5. In addition, we also compare

their performance with that of USAC.

7.1 Related Work

In this section, we provide an overview of existing research studies against which this

application of our work is positioned. In order to do so, in the first part of the section

(Sections 7.1.1– 7.1.4) we discuss previous work on data collection of WSNs from four

different aspects, namely: data sampling, information content valuation, information–

centric routing, and energy management. Within these areas, we highlight the limi-

tations of each of the proposed methods, motivating the solution we present in this

chapter.

In more detail, in Section 7.1.1, we first describe some of the most commonly used

adaptive sampling methods that have been developed for WSNs. In Section 7.1.2, we

provide a background review on information content valuation techniques. Following

this, we discuss existing adaptive routing algorithms in Section 7.1.3. Then, we focus

on efficient energy management schemes for WSNs in Section 7.1.4.

7.1.1 Data Sampling

In this section, we focus on data sampling algorithms within the WSN domain. Here, it

is typically insufficient to have sensors deployed with a fixed sampling rate. In partic-

ular, due to the limited energy capacity of each individual sensor, it is crucial to avoid

sampling unnecessary data (e.g. data that does not contain any new information). Since

different environments provide different characteristics, the sensors need to learn an effi-

cient sampling rate, that fits their surroundings, in order to avoid sampling unnecessary

data, and thus, to improve their performance in information collection. As a result, it

is necessary to use some form of adaptive sampling approach on each sensor in the net-

work. Generally speaking, adaptive sampling is often described as “intelligent sampling”

(Guestrin et al., 2005; Krause et al., 2006), since it is adaptive to the unknown environ-

mental characteristics. In particular, an adaptive sampling algorithm is here defined as

a protocol (i.e. a set of policies) that is responsible for adaptively setting the sampling

rate (i.e. how often a node is required to sample during a particular time interval) and

the schedule (i.e. when a node is required to sample) of each of the individual nodes in

a network.

Existing algorithms can be classified as to whether they use temporal or spatial corre-

lations (or both) in order to make effective sampling decisions. With respect to spatial

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 95

correlations between sensors, the challenge of calculating informative locations has been

thoroughly studied by Guestrin et al. (2005). In this approach, the spatial correlations

within the monitored environment are assumed to be known. These correlations are

modelled by using a multi–variate Gaussian and are learnt during the initial deploy-

ment of the network. Based on this information, an informative subset of the sensors

is then selected to provide information to a base station (i.e. BS), while the rest of

the nodes are removed in order to reduce cost. Krause et al. (2006) extend this work

by taking communication cost into account, making an explicit trade–off between the

energy consumption of sampling and communication of each sensor. Finally, Willett

et al. (2004) have studied the backcasting adaptive sampling method in which multiple

nodes that are spatially correlated form small subsets of nodes that then communicate

their information to a local data aggregation coordinator. Based upon this informa-

tion, the coordinator then selectively activates additional nodes (by instructing them to

take samples) in order to reduce uncertainty below a specified target level. While the

first two techniques are decentralised, the third method uses a centralised coordination

mechanism, that contains all the drawbacks of the centralised regime (as discussed in

Section 1.2).

To handle temporal correlations, the utility based sensing and communication (USAC)

algorithm was proposed by Padhy et al. (2010). This is a decentralised control pro-

tocol for adaptive sampling, designed for an environmental WSN, known as Glacsweb,

intended to measure subglacial movement (Martinez et al., 2004). In this approach,

temporal variations in the environmental parameter being sensed are modelled as a

piece–wise linear function, and then the algorithm uses a pre–specified confidence inter-

val parameter in order to make real–time decisions regarding the sampling rate of the

sensor nodes. Moreover, linear regression is used to predict the value of future mea-

surements, and if the actual sensor reading exceeds the confidence interval parameter,

the sensor starts sampling at an increased rate. However, since the algorithm does not

explicitly perform any forward planning, the sensor can rapidly deplete its battery if the

increased sampling rate is constantly re–triggered by data that is far from linear.

Furthermore, in ab application where sensor networks are tasked to monitor tidal sea

level, Kho et al. (2009) proposed a decentralised algorithm using an information metric

that represents the temporal variation in the environmental parameter being sensed.

This algorithm, in contrast to USAC, takes energy harvesting into account, and thus,

enables the sensors to make long–term plans. In particular, this algorithm aims to

maximise the information that a sensor collects over a particular time interval subject

to energy constraints, and this involves planning exactly when, within the specified time

interval, to take a constrained number of samples. The algorithm takes the information

provided by the information metric into account when creating a sampling schedule at

the beginning of each day. This algorithm also considers the amount of residual energy

96 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

left in the sensor’s battery, and the amount of information that can be collected at

different times of the day, based on past experience.

In addition, Jain and Chang (2004) used a similar prediction technique to set the sam-

pling rate adaptively. Their approach employs a Kalman filter (KF) based estimation

technique wherein the sensor can use the KF estimation error to adaptively adjust its

sampling rate within a given range, autonomously. When the desired sampling rate

violates the range, a new sampling rate is requested from a control server. The server

allocates new sampling rates under the constraint of available resources such that the

KF estimation error over all the active streaming sensors is minimised. However, the

main drawback of this technique is that it is centralised, and thus, it is not feasible to

operate it in a decentralised setting (see the requirements of our research in Section 1.1).

Finally, the algorithm proposed by Osborne et al. (2008) uses a multi–output Gaussian

process (GP) to explicitly model both temporal and spatial correlations between a small

number of sensors. The GP is used for adaptive sampling whereby it can determine both

the time, and the sensor from which the next sample should be taken, to ensure that the

uncertainty regarding the environmental parameter being measured at each sensor loca-

tion stays below a pre–specified threshold. However, the algorithm is centralised, since

it requires information from all of the sensors in order to model the spatial correlations

between them, and it is relatively computationally expensive.

In this chapter, we assume that our sampling protocol is a generic adaptive sampling

protocol. We have only one restriction; that is, the algorithm should be decentralised.

Each agent should be able to autonomously and independently set its own sampling rate

and schedule (for more details see Section 7.2). Given this, decentralised techniques, such

as the sampling protocol of USAC, or the algorithms proposed by Guestrin et al. (2005),

Krause et al. (2006), and Kho et al. (2009), can be used here. On the other hand, due

to their centralised manner, the algorithms proposed by Willett et al. (2004), Jain and

Chang (2004) and Osborne et al. (2008) are not suitable for our model.

7.1.2 Information Content Valuation

In order to distinguish important and unimportant data from each other, and thus, to

achieve a more efficient information collection in terms of maximising the total infor-

mation delilvered to the BS, an efficient information metric is required to determine

the information content of the collected or transmitted data. In our case, this metric is

provided by an information content valuation function.

Within the tracking literature, where spatially correlated sensor readings typically rep-

resent the estimated position of a target, there are a number of standard techniques for

defining this function. Most of the works use Fisher information, whereby the estimated

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 97

position of the target is represented as a multidimensional probability distribution, and

Fisher information is used to quantify the uncertainty represented by this distribution

(Bar-Shalom et al., 2001; Chu et al., 2002; Frieden, 2004; Zhao and Guibasn, 2004). For

example, Chu et al. (2002) used acoustic sensors to localise a target. To quantify the

information gain of the measured data provided by each sensor, they used the Fisher

information matrix as follows. Let x = {x1,x2, . . . } denote the set of unknown parame-

ters of the target, and z = {z1, z2, . . . , zN} ∈ R
N denote the set of sensor measurements,

where N is the number of the sensors. Thus, the ijth component of the Fisher informa-

tion matrix is:

Fij (x) =

∫

RN

p (z|x)
∂

∂xi
ln p (z|x)

∂

∂xj
ln p (z|x) dz.

Other approaches have used mutual information as a criteria for sampling. For example,

Krause et al. (2006) modeled the spatial correlations of locations, in order to determine

efficient sensor placements, whereby a maximal information value can be collected by

data sampling. In their model, V denotes the set of possible locations, A denotes the

set of observable locations and s is an unobservable location. Let XA denote the set

of observable random variables associated with the locations A, and Xs be the random

variable associated with location s. In order to make predictions at a location S (i.e.

to calculate conditional distributions p (Xs = xs|XA = xA)), they used the following

conditional entropy:

H (Xs|XA) = −
∫

xs,xA

p (xs,xA) log p (xs|xA) dxs dxA.

Intuitively, this quantity expresses how “peaked” the conditional distribution of Xs

is, given XA is around the most likely value, averaging over all possible observations

XA = xA the sensors can make. To quantify how informative the set of data collected

from locations A is, they used the criterion of mutual information (MI):

F (A) = I
(

XA,XV/A

)

= H
(

XV/A

)

−H
(

XV/AXA

)

.

This criterion expresses the expected reduction of entropy of all locations V/A where sen-

sors were not placed, after taking into account the measurements of sensors at locations

in set A.

Similarly, Osborne et al. (2008) used a Gaussian process (GP) to model both the spatial

and temporal correlations and delays between nodes, using Bayesian Monte Carlo tech-

niques to marginalise over the unknown hyper–parameters that describe the correlations

and delays. They then use the variance of the GP’s predictions in order to perform ac-

tive data selection, which is a decision problem concerning which observations should

be taken, deciding when and where to take samples to maintain this variance below

98 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

a prescribed target level. Their algorithm is computationally efficient as the samples

are learned from the data in an online fashion, and thus, it is capable of performing

real–time information processing.

Several other techniques for valuing information include Shannon entropy, which is

mainly used in signal compression (or coding), target tracking, and information fu-

sion techniques in WSNs (Cover and Thomas, 2006; Hwang et al., 2004). For instance,

Hwang et al. (2004) used a belief vector to probabilistically represent the identity of a

target. In their work, they considered the problem of combining two belief vectors of

the same target from two different sensors (i.e. data fusion). Here, information fusion

can be formulated as an optimisation problem such that the fused information is the

one that minimises a cost function which represents a performance criterion. This cost

function is modelled by the Shannon entropy. More precisely, let b1 and b2 denote the

belief vectors before data fusion, and b
′
denote the information value of the fused packet.

Furthermore, let

b
′
= wb1 + (1− w) b2

be the fusion strategy. The goal is to determine w such that it minimises the Shannon

entropy defined as:

H
(

b
′
)

= −
n
∑

i=1

b
′
(i) log b

′
(i),

where b
′
(i) denote the probability that the target is in belief state i. Informally, Shannon

entropy characterises the average amount of information which is gained from a certain

set of events. The entropy is maximal when all the events’ outcomes are equally likely

and, therefore, we are uncertain which event is going to happen. When one of the

events has a much higher chance of happening than the others, then the uncertainty (or

entropy) decreases. Information value can thus be quantified as the difference between

the probabilities of the random event.

In addition, Padhy et al. (2010) use the Kullback–Leibler (KL) divergence to model

the information value of collected data in USAC. Here, KL divergence is a measure

of the information gain between a prior and a posterior probability distribution (i.e.

the distribution over possible measurements before and after a new item of data has

been received). The larger this measure, the less the previous model was capable of

explaining the value of the new data, and thus, the more it has to be updated. More

recently, Kho et al. (2009) use the mean Fisher information over a period as a measure

that is proportional to the value of information. In this thesis, we assume that our model

is capable of using any of these techniques, and thus, we do not specify any restrictions

on the information valuation technique in use (for more details see Section 7.2).

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 99

7.1.3 Information–Centric Routing

Routing is the process of delivering a message from a source node to a BS inside the

same network. A routing algorithm determines actions that a node can use to forward

data towards the BS, namely (i) transmitting (i.e. which data packets the node should

choose to transmit, and to which node), and (ii) receiving (i.e. how many packets a

node is required to receive from the other nodes during a transmission period). Since

routing is responsible for transporting the data collected by the network to the BS, the

efficiency of the routing algorithm significantly affects the overall performance of the

network. In fact, routing is one of the most studied areas within the WSN domain,

and thus, a large number of algorithms have been proposed for adaptive and efficient

data routing in WSNs from many different perspectives. These include, but are not

limited to, algorithms that address: energy efficiency, delay sensitiveness, security, and

reliability (Ahdi et al., 2007; Akkaya and Younis, 2005; Al-Karaki and Kamal, 2004;

Singh et al., 1998). However, these algorithms typically do not distinguish important

packets from unimportant ones. Thus, this may lead to inefficient performance in terms

of information collection, since it may occur that less important data is delivered to

the BS, while the more important packets are not forwarded at all. Given this, in

this section, we focus on routing approaches that are information–centric (Braginsky

and Estrin, 2002; Merrett, 2008). In particular, these approaches aim to maximise the

total information value delivered to the BS. In so doing, they typically use information

content valuation techniques in order to determine more important data packets.

One of these algorithms, directed diffusion (DD), has been developed by Intanagonwiwat

et al. (2003). In DD, the BS sends out a data collection query description by flooding the

query to the entire network. That is, data collection happens only when the BS needs

a certain type of data. However, since data collection applications (e.g environmental

monitoring or area surveillance) typically require continuous data delivery to the BS, a

significant number of queries will be sent to the network. In this case, the communication

cost of DD caused by query floodings is high, meaning DD is not suitable for long–term

information collection. To avoid flooding, the rumor routing (RR) protocol routes the

queries to the nodes that have observed a particular event to retrieve information about

the occurrence of the event, and thus, it reduces the total communication cost (Braginsky

and Estrin, 2002). However, rumor routing performs well only when the number of

events is small. For a large number of events, the algorithm becomes infeasible due to

the increase in the cost of maintaining node–event tables in each node.

Apart from the aforementioned approaches, in which information is collected by sending

explicit queries from the BS, other methods focus on continuous information collection.

That is, they provide information collection, without the need of sending any queries,

during the whole operation of the network. For instance, USAC (see Section 7.1.1),

considers the remaining battery power of the communicating nodes and the importance

100 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

of the data being transmitted, in order to determine the appropriate routing path for the

packet. In a similar vein, the adaptive routing algorithm (ARA), that has been developed

by Zhou and de Roure (2007), in addition to the battery level and the importance of data,

takes the link cost (assumed to be proportional to the distance) between the nodes into

account when routing packets. However, these protocols are not designed for solving the

maximal information throughput routing problem, but rather to identify optimal paths

between each node and the BS, that can be used for forwarding data (see Section 7.2.4

for more detail).

Finally, an interesting last class of information–centric routing protocols are those that

use a market–based control (MBC) paradigm. The use of MBC in WSN allows the

use of tools from general equilibrium theory to analyse the behaviour and correctness

of a decentralised system. The main market–based protocol includes self organised

routing (SOR), proposed by Rogers et al. (2005), and self organising resource allocation

(SORA), proposed by Mainland et al. (2005). In more detail, SOR is a mechanism–

design based distributed protocol that aims to maximise the network’s lifetime. Each

node is designed to follow locally selfish strategies which, in turn, result in the self

organisation of a routing network with desirable global properties. The protocol consists

of a communication protocol, equipping nodes with the ability to find and select a

node that is willing to act as a mediator for data relaying, and a payment scheme,

whereby a node is rewarded for forwarding messages to the destination. Specifically, the

communication scheme identifies potential mediators, the payment scheme allows the

sensors to make local selfish decisions which result in good system–wide performance.

In contrast, SORA defines a virtual market in which nodes sell goods (e.g. data sampling,

data relaying, data listening, or data aggregation) in response to global price information

that is established by the end–user. However, this approach again involves an external

coordinator to determine the price and it is not clear how this price determination should

actually be done in practice. In sum, although these algorithms are based on the multi–

agent systems approach, which is clearly related to our model, we do not follow their

perspective. In contrast, within this chapter, we concentrate on networks where sensors

maximally cooperate with each other.

7.1.4 Energy Management

An energy management policy is responsible for allocating energy budgets to sensory

tasks, such as sampling and routing data. Most of these policies, however, are typically

integrated into the routing algorithm, ignoring the task of sampling. In particular,

these methods assume that the data are already sampled, and thus, they focus only

on delivering data towards the BS. Furthermore, they typically follow the concept of

energy–awareness; that is, they aim to minimise the energy consumption of each node,

while data forwarding is still to be done.

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 101

Given this, a number of energy–aware algorithms use clustering techniques to minimise

energy consumption in sensor networks through the rotation of cluster–heads such that

the high energy consumption in communicating with the BS is spread across all nodes.

These algorithms include low energy adaptive clustering hierarchy (LEACH), proposed

by Heinzelman et al. (2000), and power efficient gathering in sensor information systems

(PEGASIS), proposed by Lindsey and Raghavendra (2002). In general, these methods

make good effort on minimising the energy consumption by electing cluster–heads, each

of which is responsible for relaying the data from a subset of nodes back to the BS

in an intelligent way. These cluster–heads all need to be placed inside the BS’s radio

range as they communicate with it directly. Thus, this assumption limits the size of the

monitoring environment, since the wireless radio range of the BS is limited. Moreover,

these single cluster–heads can become a communication bottleneck of the network, since

in each round the cluster–heads need to communicate with a large number of nodes

within their cluster. Hence, this aspect contains some of the drawbacks of the centralised

control regime.

The life span of the network can also be lengthened by reducing the total energy con-

sumption needed to deliver the packets to the BS. From this perspective, Dekorsy et al.

(2007) proposed an approach that jointly controls the routing and energy management,

in order to achieve efficient data forwarding. In particular, their approach aims to min-

imise the total energy consumption of each node, while the collected data has to be

delivered to the BS using multipath routing (i.e. there can be multiple routing paths

between a node and the BS). In so doing, the approach considers each node’s resid-

ual energy level, the transmission power level, and maximal communication bandwidth.

This approach, however, assumes that the data is already sampled, and that future data

is not taken into consideration when optimal routing paths are calculated. This implies

that this approach is designed for single–shot optimisation (i.e. it only considers one

time step), rather than long–term performance maximisation, in which more than one

time step is taken into account. For long–term optimisation, it has to recalculate the

optimal paths at each time step, and this requires significant computational resources.

In addition, another way to to lengthen the life span of the network is to perform energy

balancing (Dinga et al., 2004). That is, to maximise the residual energy level of the bot-

tleneck node (i.e. the node with the least energy level) in the network during the routing.

In this vein, Ok et al. (2009) used a metric to take the energy cost of transmission, as

well as the sensors’ remaining energies into account. This metric gives rise to the design

of the distributed energy balanced routing (DEBR) algorithm, to balance the data traffic

of sensor networks in a decentralised manner. Furthermore, Li et al. (2007) proposed a

global–energy balancing routing scheme (GEBR) for real–time traffic. Now, while both

of these algorithms perform well in prolonging the lifetime of the WSN, similar to the

102 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

approach of Dekorsy et al. (2007), they assume that the data has already been sampled.

Thus, they are not designed for long–term information collection.

More recently, Merrett (2008) developed the information managed energy aware algo-

rithm for sensor networks (IDEALS) protocol, which aims to extend the network lifetime

of WSNs. IDEALS is an application specific heuristic protocol as it requires that every

sensor node decides its individual network involvement based on its own energy state

and the importance of information contained in each message. In particular, IDEALS

groups the packets into levels of packet priority (PP), according to their importance. It

also maintains a set of different energy levels, most likely in simulation, for a particular

sensor node, which it classifies as energy priority levels (EP). Now, if the EP of a par-

ticular sensor node is higher than the PP level of a packet within the sensor’s memory,

the sensor will not forward that packet. This results in a trade–off between sending im-

portant data and balancing the energy consumption of the network. However, since the

EP levels have to be set a priori before the deployment of the network, it is necessary to

finely tune these levels in order to achieve a good performance in different environments.

Thus, IDEALS fails to fulfil Requirement 4 (adaptivity).

Finally, similar to IDEALS, USAC uses the opportunity cost of the energy used by each

sensor to balance the energy consumption of the tasks of sampling and forwarding. That

is, by evaluating its own opportunity cost, each sensor can decide whether it should

spend energy on sampling or forwarding, depending on which is the more preferable

opportunity for the sensor. Moreover, USAC also considers the total energy consumption

required to transmit a packet along a particular path as well. This method, since it can

vary the energy budgets allocated to the sensory tasks, is most related to our work. As

a result, we will compare our approach against the performance of USAC within our

empirical evaluations.

7.2 System Models and Problem Definitions

Having described the literature of relevance in the previous section, we now introduce a

formalisation of the long–term information collection problem for WSNs. To this end,

we first provide a formal description of the WSN system in Section 7.2.1. In particular,

we describe the models of adaptive sampling, information content valuation, data rout-

ing, and energy management policies that play fundamental roles in efficient information

collection of WSNs. Here, we also discuss the assumptions, on which the model formal-

isation is based. Following this, in Section 7.2.2, we formulate the main objective of our

research: that is, to achieve efficient long-term information collection in WSNs. Finally,

we decompose the information collection problem into the two separate sub–problems

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 103

described in Section 1.3: (i) energy management; and (ii) maximal information through-

put routing, which we introduce in Sections 7.2.3, and 7.2.4, respectively.

7.2.1 The Wireless Sensor Network Model

In order to formalise the long–term information collection challenge introduced earlier,

we first need to introduce a suitable WSN model. Given this, we now present our WSN

model, that covers the energy management, sampling, information content valuation,

and routing components, respectively.

Recall that we here pursue a decentralised control model. This, however, implies that

in order to achieve system–wide goals, the nodes must typically coordinate their actions

with their neighbours (e.g. to forward data or to track objects). In addition, we also

require that the nodes must be able to autonomously adapt their behaviour, without

having global information about the system. Such requirements naturally lend them-

selves to a multi–agent system (MAS) perspective (Lesser et al., 2003; Pechoucek and

Marik, 2008; Soh and Tsatsoulis, 2005), in which each sensor is represented by an agent,

which autonomously and cooperatively acts, in order to achieve system-wide objectives

(Jennings, 2001). As a result, we also pursue a multi–agent system model, whereby

sensor nodes are represented as agents.

Now, since our main focus is on the control side of the WSN, we make the following

assumptions about the physical world of the network, in order to simplify the complexity

of the model:

• The network that we are studying is not a mobile network (i.e. the agents cannot

change their location), however, link failures, node failures and node additions are

taken into account. That is, the network can be topologically dynamic, but not

mobile.

• In our model, the energy consumption of memory management (i.e. reading from

memory and writing to memory) is negligible compared to the energy consumption

of data sampling and forwarding. This assumption is reasonable according to the

experimental studies reported in Mathur et al. (2006) and Anastasi et al. (2004).

• We also assume that once the communication channel is set between two nodes,

data transmission between these nodes is perfect (i.e. no data loss occurs). This

assumption is reasonable, especially in networks where there is a demand of high

quality of service (QoS) (Younis et al., 2004). In particular, if the ratio of suc-

cessful transmission of a communication channel is low (i.e. the QoS is low), then

that communication channel cannot be established. In order to guarantee high

104 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

QoS within WSNs, efficient techniques can be used, such as time synchronisation

policies (Degesys and Nagpal, 2008; Elson and Estrin, 2001; Sundararaman et al.,

2005), or medium access control (MAC) protocols that control the data transmis-

sion of each node (Demirkol et al., 2006; Wu and Biswas, 2007). By using the

aforementioned techniques, we can guarantee that no data loss occurs during data

transmission.

Given this, we can formulate the WSN model as follows. Let I = 1, 2, . . . , N be the set

of agents in the network, which contains one base station, denoted BS1. We assume

that each agent knows its distance in hops from the BS. This can be achieved by using

any of the standard shortest path algorithms (e.g. distributed breadth-first search or

distributed Bellman–Ford). Furthermore, each agent can only communicate with those

that are inside its communication range, and different agents may have different ranges.

For the sake of simplicity, we split the time line into steps. That is, hereafter we assume

that time is discrete, and can be denoted with the sequence of t = 0, 1, 2,

We consider three specific kinds of energy consumption for each agent in the network,

namely: the energy required to (i) acquire (i.e. sample); (ii) receive; and (iii) transmit

a single data packet (we assume that each packet has the same size in bytes). Given

this, let eS
i , eRx

i , and eTx
i denote the energy consumption that agent i has to spend

for sampling, receiving, and transmitting a single data packet, respectively. We only

consider the aforementioned energy consumptions, and we disregard the energy required

for other types of processing since it is negligible in comparison (Mathur et al., 2006;

Merrett, 2008).

Let Bi denote the initial battery capacity, and let Bi (t) denote the residual battery

capacity of agent i at time step t, respectively. Note that Bi (1) = Bi. At each time step

t, the energy consumption of agent i cannot exceed Bi (t) in our settings. In addition,

since the length of a time step is finite, and the physical time needed to execute a sensory

action is non–zero, there is a threshold on the maximal number of packets an agent can

sample, transmit, or receive (Anastasi et al., 2004; Mathur et al., 2006). As a result,

let NS
i , NRx

i , and NTx
i denote the maximal number of packets that agent i can sample,

receive, and transmit within a time step, respectively.

For data sampling, since our goal is not to develop new sampling techniques, we use

existing sampling techniques from the literature. Specifically, we focus on adaptive data

sampling techniques. Such policies have been advocated as the way to achieve accurate

estimates of the environmental conditions, whilst minimising redundant sampling of

the environment. Relevant examples can be found in Section 7.1.1. To calculate the

importance of sampled data, we use information content valuation methods. Similar to

the sampling case, any existing technique from the literature can be used for this (see

1Our model can easily be extended to cover systems with multiple base stations.

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 105

Section 7.1.2 for more details). Furthermore, we also assume that the information value

of the collected data is discounted over time by a durability factor λ ∈ (0, 1] (i.e. it

loses value as time passes by), if it is not delivered to the BS yet. This assumption is

justified by the fact that in many applications, more up to date information is preferable

to older information. Since our main focus is on networks without real–time delivery

constraints (see Section 1.2 for more details), we assume that the information durability

factor is typically high (i.e. λ > 0.5). The intuition of this assumption is that with a

higher information durability factor, the collected information can then be delayed for

a longer time, without losing much of its value, before it is delivered to the BS. Note

that within our model, the information value of non–collected data (i.e. data that are

not sampled yet by the agents) may also decay over time. However, we assume that the

underlying sampling method can efficiently sample data so that important data can be

collected earlier than less important data.

In existing routing protocols, agents typically forward data to other agents, which are

closer to the BS, either in terms of physical distance or number of hops. Thus, following

this concept, we assume that in our model, agents can send data to those which are closer

to the BS in terms of number of hops. Finally, we assume that data sampled or received

at each agent i at step t can only be forwarded from step (t + 1). This assumption

is also reasonable, since without it, newly sampled data could be delivered to the BS

instantaneously.

7.2.2 The Long–Term Information Collection Problem

Given the model that considers adaptive sampling, routing, information valuation and

energy management of WSNs, we now give a formal description of the research objective.

That is, to maximise the total collected information in WSNs, in a given finite time

interval. In more detail, let Si (t), Rxi (t) and Txi (t) denote the set of sampled, received

and transmitted data packets of agent i at time step t. Let p denote a single data packet,

whose information value at time step t is v (p, t). Furthermore, we assume that the WSN

operates in the finite time interval [0, T]. Given this, our objective is to maximise the

total information value delivered to the BS over the time interval [0, T], which can be

formulated as follows:

max

T
∑

t=0

{

∑

p∈RxBS(t)

v (p, t)

}

. (7.1)

Here, RxBS (t) denotes the set of packets that the BS receives at time step t. We have

to take the following constraints into account:

Txi (t) ⊆ Qi (t) (7.2)

for each agent i and time step t, where Qi (t) is the set of total transmittable data

packets in the memory. That is, the set of transmitted data is the subset of the total

106 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

data that are ready to be transmitted (packets that were sampled or arrived until the

previous time step) of each agent i. Furthermore,

Qi (t + 1) = (Qi (t) /Txi (t)) ∪ Si (t) ∪Rxi (t) (7.3)

for each agent i. Note that Qi (t) /Txi (t) denotes the set of packets that is in Qi (t) but

not in Txi (t) (i.e. exclusion). That is, the set of transmittable data of agent i at time

step (t + 1) is the union of the sets of residual data (i.e. (Qi (t) /Txi (t))), the received

data and the sampled data at time step t. Taking the energy constraints into account,

we have the following:

|Si (t)| ≤ NS
i ,

|Rxi (t)| ≤ NRx
i , (7.4)

|Txi (t)| ≤ NTx
i

for each agent i, where |{.}| denotes the size of set {.}.

Furthermore, for each p ∈ Si (k)∪Rxi (t) (i.e. received data or sampled data of agent i

at time step t), that is not delivered to the BS before time step t:

v (p, t + 1) = λv (p, t) , (7.5)

where λ ∈ (0, 1] is the durability coefficient. That is, the information value of packet p

is decayed with the durability factor λ, as time goes by.

As mentioned in Section 1.3, to efficiently solve the problem formulated in Equation 7.1,

we separate the study of the energy management and routing of the WSN, whilst we

assume that efficient sampling and information content valuation can be achieved by

using existing techniques. Given this, Section 7.2.3 discusses the energy management

problem in more detail, whilst Section 7.2.4 focuses on the routing problem.

7.2.3 The Energy Management Problem

As mentioned in Section 1.3, the definition of the energy management problem is based

on the observation that since each agent can sample, receive or transmit data, it is

necessary for the agents to vary the energy budget they associate with each of these

action types, so that their overall performance can effectively adapt to environmental

changes. That is, by adaptively setting the value of the energy budgets assigned to the

sensory tasks, the agents can decide whether to put more effort on sampling (e.g. when

significant events are occurring in the monitored area), receiving important data from

the others (e.g. when they have collected high value information that has to be delivered

to the BS), or transmitting data (e.g. when the delivery of data cannot be delayed too

long). With such capabilities, our hypothesis is that the agents should achieve better

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 107

performance than systems without the ability to adapt in this fashion. However, the

agent here has to deal with the problem of exploration versus exploration as follows.

In order to find the optimal combination of budget allocation (exploitation), the agents

first have to learn the efficiency of each combination (exploration). As a result, if the

agent only focuses on learning the optimal combination, the total collected information

of that agent over the operation time might not be maximal, since the agents has to

try out all the combinations (including those with low efficiency). On the other hand,

if the agent decides to focus on the best combination so far, it may miss the chance to

find a better combination that results in better overall performance (i.e. better collected

information over a long term).

Consequently, the energy management problem, that we are faced with, is a sequen-

tial decision making problem where at each time step t, each agent i has to choose a

combination of energy budget allocations for sampling, receiving, and transmitting, re-

spectively. Following this, agent i evaluates the efficiency of the chosen combination by

measuring the amount of sampled, received, and transmitted information within that

time step, with respect to the chosen energy budgets. The goal of each agent i is to

find a sequence of decisions (i.e. learning method) that efficiently tackles the trade–off

between exploration and exploitation, and the dynamic behaviour of the environment,

leading the overall system to achieve maximal long–term information collection.

More precisely, let BS
i (t), BRx

i (t), and BTx
i (t) denote the energy budgets that agent i

allocates to sampling, receiving and transmitting at time step t, respectively. That is,

at each time step, agent I makes a decision of choosing values for BS
i (t), BRx

i (t), and

BTx
i (t). In so doing, beside the constraints given in Section 7.2.2, it has to take into

account the following:

eS
i |Si (t)| ≤ BS

i (t) ,

eRx
i |Rxi (t)| ≤ BRx

i (t) , (7.6)

eTx
i |Txi (t)| ≤ BTx

i (t) .

These constraints demonstrate that the energy consumption of each action made by

agent i cannot exceed the residual energy budget of each task (Equation 7.6), and the

action thresholds (Equation 7.4) given in time step t. Furthermore, we have:

BS
i (t) + BRx

i (t) + BTx
i (t) ≤ Bi (t) . (7.7)

This constraint demonstrates that the total energy consumption of the actions taken

by agent i cannot exceed the energy budget given in time step t. The residual energy

budget of the next time step then can be calculated as:

Bi (t + 1) = Bi (t)−
(

BS
i (t) + BRx

i (t) + BTx
i (t)

)

. (7.8)

That is, we assume that the total amount of the allocated energy has to be used within

each time step. This assumption is reasonable, since in real–world WSNs, energy budget

108 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

allocation in fact means that the node turns on the corresponding sensory module for a

certain time interval. Within this interval, the module consumes energy. By setting the

length of this interval (in which the module is turned on), the node can set the size of

the energy budget. Given all this, the energy management problem can be formalised

as follows:

Definition 7.1. Within the energy management problem, each agent i has to sequen-

tially choose a sequence of 3–tuples 〈BS
i (t) , BRx

i (t) , BTx
i (t)〉 at time step t in order

to maximise the objective given in Equation 7.1. A tuple 〈BS
i (t) , BRx

i (t) , BTx
i (t)〉

represents the energy budgets allocated to data sampling, receiving, and transmission,

respectively. Each of these 3–tuples has to satisfy the following constraints:

• The number of sampled, received, and transmitted packets cannot exceed the

allocated budgets (see Equation 7.6).

• The total energy budget allocation cannot exceed the residual energy budget (see

Equation 7.7).

• The next residual energy budget is the difference between the previous residual

energy budget and the allocated energy budgets within the previous time step (see

Equation 7.8).

In Section 7.3, we propose a budget–limited MAB learning approach, in order to effi-

ciently tackle this problem.

7.2.4 The Maximal Information Throughput Routing Problem

Having described the energy management problem, we now discuss the maximal infor-

mation throughput routing problem, which aims to maximise the total information that

can be forwarded between neighbouring layers (i.e. the group of agents that are the same

distance from the BS) of agents. Given this, we group the agents within the network

into layers, such that Ll denotes the set of agents that are l hops from the BS. Let L

denote the number of layers in the network. Note that the BS itself is layer 0. Thus,

we have the following:

Definition 7.2. The maximal information throughput problem is the optimisation prob-

lem where agents in layer Ll have to perform the maximal total information throughput

to layer Ll−1 in time step t, with respect to the energy budgets of each agent.

The formulation of the problem can be described as follows:

max

{

∑

i∈Ll

∑

p∈Txi(k)

v (p, t)

}

, (7.9)

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 109

with respect to the following constraints:

ETx
i |Txi (t)| ≤ BTx

i (t) (7.10)

for each i ∈ Ll, where Txi (t) is the set of transmitted data of node i at time step t, and

v (p, t) is the information value of packet p at t. That is, each sender agent cannot exceed

its transmitting energy budget during its data transmission operation. Furthermore,

ERx
j |Rxj (t)| ≤ BRx

j (t) (7.11)

for each j ∈ L(l−1), where Rxj (t) is the set of received data of node i at time step t. Thus,

each receiver agent cannot exceed its receiving budget during data receiving. Finally,

constraints described in Equations 7.2, 7.3, and 7.5, that express the conservation of

information within our setting, have to be taken into account as well.

In order to solve this problem, we propose two decentralised algorithms, one is optimal,

but with significant communication costs, whilst the other is near–optimal, but with

reduced costs. We describe these algorithms in more details in Section 7.4. Moreover,

we will show that the proposed algorithm, in conjunction with the budget–limited MAB

algorithms described in the previous three chapters, outperform information collecting

state–of–the–art algorithms in WSNs.

7.3 Multi–Armed Bandit Based Energy Management

Given the problem definitions described above, we now concentrate on the energy man-

agement problem presented in Definition 7.1. Therefore, we first describe the MAB

learning based energy management approach in Section 7.3.1. Then we analyse the

computational complexity of this approach in Section 7.3.2. In particular, we show

that our approach has linear running time, and linear memory usage, compared to the

number of each agent’s available options of energy budget allocation.

7.3.1 Using Multi–Armed Bandits for Energy Management

Within this section, we show how to apply the budget–limited MAB model to the en-

ergy management problem described in Section 7.2.3. In so doing, consider the formal

model we introduced in Section 7.2. Recall that within this model, each agent i has a

residual energy budget Bi (t) for each time slot t, such that Bi (1) = Bi is the initial

battery capacity of agent i. Furthermore, agent i has to allocate budgets BS
i (t), BRx

i (t),

and BTx
i (t) to sampling, receiving and transmitting, respectively. The energy budget

allocation, however, has to satisfy Equation 7.7.

110 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

Given this, we can formulate the energy management problem of a single agent as a

budget–limited MAB as follows. We first define the set of arms, the pulling cost of

each arm, and the budget of the agents. Then we determine the reward function of each

action. The latter is the mechanism that assigns reward values to the action of the agent

at each time slot.

In so doing, let us consider a decision given in Definition 7.1 that agent i makes at time

slot t. Recall that the number of packets that agent i can sample, receive, and transmit

is limited (see Equation 7.4). Thus, we assume that the following holds:

BS
i (t) ≤ eS

i NS
i ,

BRx
i (t) ≤ eRx

i NRx
i , (7.12)

BTx
i (t) ≤ eTx

i NTx
i .

This assumption is reasonable, since it indicates that since the number of sampled,

received, and transmitted packets are all limited due to physical constraints (see Sec-

tion 7.2.2 for more detail), it is inefficient to allocate more energy than that the physical

constraints allow. As a result, for each agent i, consider the following set of 3–tuples:

Ai :=

{

〈

nS
i eS

i , nRx
i eRx

i , nTx
i eTx

i

〉

}

, (7.13)

with respect to:

0 ≤ nS
i ≤ NS

i ,

0 ≤ nRx
i ≤ NRx

i , (7.14)

0 ≤ nTx
i ≤ NTx

i ,

0 < nS
i + nRx

i + nTx
i . (7.15)

The last inequality guarantees that the tuple 〈0, 0, 0〉 is excluded from the set (i.e. the

agent is not allowed to not allocate any energy budget to the sensory actions). Each

agent i is then faced with a budget–limited MAB such that the arms of the MAB are

associated with the elements of Ai (i.e. Ai is the set of arms within the MAB model).

For a particular arm a :=
〈

nS
i e

S
i , n

Rx
i eRx

i , nTx
i eTx

i

〉

, the pulling cost of that arm is defined

as c := nS
i e

S
i + nRx

i eRx
i + nTx

i eTx
i . In addition, let Bi (i.e. the initial energy budget of

agent i) be the budget of the budget–limited MAB. That is, within the MAB model,

by choosing a particular action a :=
〈

nS
i e

S
i , n

Rx
i eRx

i , nTx
i eTx

i

〉

at time step t, agent i

allocates energy budgets BS
i (t) = nS

i e
S
i , BRx

i (t) = nRx
i eRx

i , and BTx
i (t) = nTx

i eTx
i to

data sampling, receiving, and transmission, respectively.

In contrast with the action set above, the definition of a single agent’s reward function

is not obvious. In particular, the reward function has to satisfy the requirement that if

each agent maximises its own total rewards, then the agents together also maximise the

total information collected in the network. However, in so doing, each agent has to take

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 111

into account the behaviour of other agents within the network as well. Thus, the reward

function has to capture the affect of other agents’ behaviour on the performance of a

single agent. Given this, we develop a reward function for each agent i as follows. Recall

that Si (t), Rxi (t) and Txi (t) are the set of sampled, received and transmitted data

packets of agent i at time slot t. Furthermore, Qi (t) is the set of total transmittable

data packets in the memory (see Section 7.2.2 for more details). Let Rei (t) denote

agent i’s set of residual packets from slot (t− 1) that are not transmitted until slot t.

That is,

Rei (t) = Qi (t) /Txi (t) . (7.16)

Given this, before we determine the reward function, let us consider the following infor-

mative case, where λ = 1; that is, there is no information decay as time passes by. Given

this, throughout the operational time T of the network, the total information that is

delivered to the BS is equal to the difference in the total information sampled by the

agents in the network until time slot (T − 1), and the total amount of information that

remains in the memory of the agents in the network at time slot T . In particular, since

we assume that there is no data loss in our model, data sampled until time slot (T − 1)

is either successfully delivered to the BS or still remains as residual data in the network

at time slot T . Note that data sampled in time slot T is not considered here, since we

assume that it cannot be delivered immediately to the BS, and as defined in Equations

7.16 and 7.3, Rei (T) does not contain data that are sampled in time slot T . Thus, for

each t ∈ [1, T], let r (t) denote the following function:

ri (t) =
∑

p∈Si(t−1)

v (p, t− 1)−
∑

p∈Rei(t)

v (p, t) +
∑

p∈Rei(t−1)

v (p, t− 1). (7.17)

Note that the first term on the right hand side of this equation is the total amount

of sampled information of agent i at time slot (t− 1). The second term is the total

information value of the residual data on agent i at time slot t, whilst the third term

is the total information value of the residual data on agent i at time slot (t− 1). The

intuition behind Equation 7.17 can be explained as follows. From the definitions given

in Equations 7.3 and 7.16, the sum of the first and the third terms form the total amount

of information that agent i can transmit in time slot t. In more detail, as we mentioned

in Section 7.2.1, data sampled in time slot (t− 1) can only be transmitted from time

slot t, and not earlier. Thus, the first term represents the total information content

of this sampled data. The third term represents the amount of information that is not

transmitted until time slot (t− 1). Both the sampled data and residual data, however, is

available at time slot t for transmission. On the other hand, the second term represents

the information value of data that is not sent by the end of time slot t, and thus, by

subtracting it from the set of transmittable data (i.e. sum of previously sampled data

and residual data from (t− 1)), we get the throughput of agent i within time slot t.

Given this, by using ri (t) as the reward function within the case of λ = 1, each part

of agent i’s chosen action (i.e. the chosen energy budgets) will effect the value of ri (t).

In particular, the size of BS
i (t) affects the total amount of sampled information, while

BRx
i (t) and BTx

i (t) affect the size of residual data.

112 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

Now, we show that by maximising the sum of ri (t) over all t and i does indeed lead

to the maximisation of the total amount of collected information within the network,

in the case of λ = 1. In so doing, recall that
∑

p∈Rei(t−1) v (p, 0) = 0 for each agent i,

since there is no residual data at all at the beginning. Given this, it is easy to see that

if we sum up ri (t) by t from 1 to T , what we get as a result is exactly the difference

of the total information collected by the network and the total amount of information

that remains in the memory of the agents in the network. More precisely, we have

T
∑

t=1

ri (t) =

T−1
∑

t=0

∑

p∈Si(t)

v (p, t)−
T
∑

t=1

∑

p∈Rei(t)

v (p, t) +

T−1
∑

t=0

∑

p∈Rei(t)

v (p, t)

=

T−1
∑

t=0

∑

p∈Si(t)

v (p, t)−
∑

p∈Rei(T)

v (p, T) +
∑

p∈Rei(0)

v (p, 0)

=

T−1
∑

t=0

∑

p∈Si(t)

v (p, t)−
∑

p∈Rei(T)

v (p, T).

Recall that this value is equal to the total information that is succesfully delivered to

the BS throughout the operation time of the network. Thus, ri (t) could be a possible

reward function for agent i, since by maximising the total reward on interval [0, T], the

agents together also maximise the total amount of collected information value that is

delivered to the BS as well.

Note that the definition of ri (t) in Equation 7.17 guarantees that in order to max-

imise the total amount of collected information, agent i cannot either ignore sampling,

receiving or transmitting. In particular, for example, suppose that agent i ignores trans-

mitting, and only focuses on just sampling/or receiving. In this case, the set of residual

data at the end of time slot t is equal to the accumulated set of sampled data and

residual data at time slot (t− 1), and thus, the value of the reward is 0. Now, it is easy

to see that if the transmitting capacity is greater than 0 (i.e. nTx
i (t) > 0), the reward

value is definitely higher than 0 as well. In a similar vein, we can easily see that agent

i cannot get high reward values in the long term if it ignores the other sensory tasks as

well.

Now, to generalise Equation 7.17 to the case of λ 6= 1, consider the following:

Ri (t) = λdi−1

{

∑

p∈Si(t−1)

v (p, t− 1)−
∑

p∈Rei(t)

v (p, t) + λ
∑

p∈Rei(t−1)

v (p, t− 1)

}

, (7.18)

where di is the distance of agent i from the BS (in hops), and λ is the information

durability coefficient. This equation differs from Equation 7.17 in two places. First, it is

weighted by the factor λdi−1. The intuition behind using this factor is that since agent i

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 113

is di hops away from the BS, the information value that agent i transmits is decreased

by a factor λdi−1 when the BS receives that data. The second difference is that the

third term of Equation 7.18 is weighted with λ. The reason here is that since the third

term represents the set of packets that are not sent by the end of time slot (t− 1), the

information value of those packets is decreased in the next time slot. Note that in the

case of λ = 1, this equation is reduced to Equation 7.17. To show that this reward

function is suitable for maximising the total collected information of the network in the

long term, we state the following:

Theorem 7.3. Using the reward function defined in Equation 7.18, the total reward

value that the agents in the WSN achieve together over the interval [0, T] is equal to the

total information content value delivered to the BS over that time interval.

That is, Theorem 7.3 states that by maximising each agent’s total reward over interval

[0, T], where the reward function is defined as in Equation 7.18, we can achieve the

maximal information collected and delivered to the BS. We prove the theorem as

follows:

Proof of Theorem 7.3. For the sake of simplicity, let Lj denote the set of agents that are

j hops from the BS. That is,

di = j,∀i ∈ Lj. (7.19)

Now, consider Equation 7.1 in Section 7.2.2. Note that since no data can be sampled

and forwarded, or received and forwarded at the same time slot (see Section 7.2.1), no

data packets are transmitted or received at time slot 0 in the whole WSN. Thus, using

the notation of Section 7.2, the main objective can be rewritten as follows.

max

T
∑

t=1

{

∑

p∈RxBS(t)

v (p, t)

}

. (7.20)

Consider a particular member of Equation 7.20, which is
∑

p∈RxBS(1) v (p, 1). This equa-

tion determines the total information value that arrives to the BS at time slot 1. Ac-

cording to our assumptions in Section 7.2.1, no data loss occurs during any transmission.

Thus, the amount of received information at the BS is equal to the total amount of in-

formation that is transmitted from agents that are 1–hop from the BS at time slot 1.

That is,

∑

p∈RxBS(1)

v (p, 1) =
∑

j∈L1

∑

p∈Txj(1)

v (p, 1). (7.21)

Note that the set of transmitted data of L1 at time slot 1 is equal to the set of sampled

data at time slot 0, excluding the set of residual data at time slot 1 (since there is no

received data and the residual set is still empty at time slot 0). Since newly sampled

data does not suffer from information value discounting, the right side of Equation 7.21

114 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

can be rewritten as the following:

∑

j∈L1

∑

p∈Txj(1)

v (p, 1) =
∑

i∈L1

∑

p∈Si(0)

v (p, 0)−
∑

i∈L1

∑

p∈Rei(1)

v (p, 1). (7.22)

Now, let us consider the second member of Equation 7.20, which is
∑

p∈RxBS(2) v (p, 2).

Similarly, this can be rewritten as follows.

∑

p∈RxBS(2)

v (p, 2) =
∑

j∈L1

∑

p∈Txj(2)

v (p, 2). (7.23)

However, this is equal to the union of the set of received data, the set of sampled data,

and the set of residual data at time slot 1, excluding the set of residual data of layer 1

at time slot 2. Furthermore, any of these sets may not be empty. The packets in the

sets of received and residual data suffer from value discounting, thus, Equation 7.23 is

equal to the following:

∑

p∈RxBS(2)

v (p, 2) =
∑

j∈L1

∑

p∈Txj(2)

v (p, 2) =

=
∑

i∈L1

∑

p∈Si(1)

v (p, 1) + λ
∑

i∈L1

∑

p∈Rei(1)

v (p, 1) +

+ λ
∑

i∈L1

∑

p∈Rxi(1)

v (p, 1)−
∑

i∈L1

∑

p∈Rei(2)

v (p, 2), (7.24)

where λ is the durability coefficient of the network. Now let us consider
∑

i∈L1

∑

p∈Rxi(1)
v (p, 1).

Similar to Equation 7.21, this can be written as:

λ
∑

i∈L1

∑

p∈Rxi(1)

v (p, 1) = λ
∑

i∈L2

∑

p∈Txi(1)

v (p, 1). (7.25)

Using Equations 7.24 and 7.25, and replacing L1 with L2 in Equation 7.22, we obtain

the following:

∑

p∈RxBS(2)

v (p, 2) =
∑

i∈L1

∑

p∈Si(1)

v (p, 1)−

−
∑

i∈L1

∑

p∈Rei(2)

v (p, 2) + λ
∑

i∈L1

∑

p∈Rei(1)

v (p, 1) +

+ λ
∑

i∈L2

∑

p∈Si(0)

v (p, 0)− λ
∑

i∈L2

∑

p∈Rei(1)

v (p, 1). (7.26)

In general, if we take the tth member of Equation 7.20, then it can be decomposed as

follows. If t ≤ L, where L is the number of the layers in the network, then:

∑

p∈RxBS(t)

v (p, t) =

t
∑

j=1

λj−1
∑

i∈Lj

∑

p∈Si(t−j)

v (p, t− j)−

−
t
∑

j=1

λj−1
∑

i∈Lj+1

∑

p∈Rei(t−j+1)

v (p, t− j + 1)+

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 115

+

t
∑

j=1

λj
∑

i∈Lj

∑

p∈Rei(t−j)

v (p, t− j). (7.27)

Let us note that here
∑

i∈Lj

∑

p∈Rei(0)
v (p, 0) = 0 for any layer j. That is, we can say

that the amount of information that arrives to the BS at time slot t can be decomposed

into the sum of data on layer 1 at time slot (t− 1), on layer 2 at time slot (t− 2),

and so on. If t > L, however, the equation for this case is slightly different, since the

decomposition stops at the last layer of agents. Thus, we have:

∑

p∈RxBS(k)

v (p, k) =

L
∑

j=1

λj−1
∑

i∈Lj

∑

p∈Si(t−j)

v (p, t− j)−

−
L
∑

j=1

λj−1
∑

i∈Lj+1

∑

p∈Rei(t−j+1)

v (p, t− j + 1) +

+

L
∑

j=1

λj
∑

i∈Lj

∑

p∈Rei(t−j)

v (p, t− j). (7.28)

Given this, combining Equations 7.27 and 7.28, and taking each t into account, we can
reformulate our main objective to the following:

T
X

t =1

(

X

p ∈RxBS(t)

v (p, t)

)

=
T

X

t=1

min (t,L)
X

j=1

λj−1
X

i∈Lj

(

X

p∈Si(t−j)

v (p, t − j) −
X

p∈Rei(k−j+1)

v (p, t − j + 1) + λ
X

p∈Rei(k−j)

v (p, t − j)

)

.

(7.29)

Consider the core part of Equation 7.29 in the braces. Now, using the definition of the

reward function in Equation 7.18 to replace that part, and recall that the distance of

agent i is defined in Equation 7.19, we can reformulate 7.29 as follows:

max

min (T,L)
∑

j=1

T−j
∑

t=0

∑

i∈Lj

Ri (t). (7.30)

That is, the original objective can be decomposed to the sum of reward functions of

agents on each layer j, from time slot 0 to time slot T − j.

Now, using the aforementioned definitions of set of arms, pulling costs, budgets, and

reward functions, the energy management problem of each agent i can be reduced to a

budget–limited MAB problem. Thus, the multi–armed bandit based energy management

algorithm works as follows. Each agent i uses a budget–limited MAB pulling algorithm

in order to maximise its total reward over time. This can be done by using one of the

pulling algorithms described in the previous three chapters of this thesis. Let us hereafter

refer to this approach (i.e. using budget–limited MAB techniques for allocating energy

budgets) as the multi-armed bandit based energy management (MAB/EM).

116 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

Note that within MAB/EM, the agents do not explicitly coordinate with each other

(i.e. they do not use coordination messages). In more detail, our approach uses explicit

communication messages within the routing part (for more details, see Section 7.4), but

not within the energy budget allocation phase. However, these communication messages

are only for evaluating the reward value of the chosen action (i.e. the chosen combination

of energy budget allocations). Given this, the agents do not need to coordinate when

they take an action. Despite the lack of explicit coordination within MAB/EM, the

agents can still achieve coordination by only observing the reward value they get. In

more detail, consider the definition of the reward function (Equation 7.18). Note that

this reward function is affected by the agent’s current chosen action (i.e. the energy

amounts allocated to sampling, receiving and transmission). In particular, according to

Equations 7.3 and 7.16, Rei (t) (i.e. the list of residual packets) depends on the lists of

sent and received packets, respectively. Thus, in order to achieve higher rewards, each

agent aims to find actions that result in better reward values. However, the effectiveness

of a chosen action also depends on other agents’ action as well. Indeed, the effectiveness

of data receiving (or transmitting) depends on the allocated budget to transmitting

(or receiving) of other neighbouring agents. For example, it is not efficient for agent

i to allocate a large amount of energy to receiving if its neighbours are only willing

to send a small amount of data. Similarly, it is not efficient either for agent i to set

large amount of energy to transmission when its neighbours can only receive a low

number of packets. Note that in the latter case, by using MITRA (see Section 7.4

for more details), data loss will not occur. However, the amount of energy that agent

i allocates to its data transmission will be lost (see Equation 7.8 in Section 7.2.3 for

more detail). As a result, by only observing which actions result in higher rewards,

the agents also learn to cooperate with the others as well. This implies that MAB/EM

does not require large communication cost, and thus it satisfies Requirement 6 (i.e.

limited use of communication). It also efficiently fulfils Requirements 5 (robustness and

flexibility), since the agents do not depend on the size of the network. In addition, since

this approach uses the budget–limited approach to learn the optimal energy allocation

settings that maximise the long–term information collection, it fulfil Requirement 4

(adaptivity) as well.

7.3.2 Computational Complexity Analysis

Since WSNs are heavily resource constrained (i.e. the low energy capacity, small size

and tight computational constraints), algorithms that are implemented for such networks

need to take into consideration the limited computational capacity and memory space

(Akyildiz et al., 2002; Rogers et al., 2009). Thus, in order to ensure that MAB/EM is

suitable for WSNs (i.e. it can be installed to real sensors), we have to guarantee that

it has low computational complexity and low memory demand. Given this, we study

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 117

the performance of the MAB/EM in terms of computational complexity in this section.

More precisely, we investigate the number of computational steps (i.e. running time

cost) and the memory usage that MAB/EM uses at each time slot.

From the aspect of computational cost, by using the budget–limited MAB algorithms

from the previous three chapters, each agent i can have the following total computational

complexity: (i) O (ε |Ai|Bi + |Ai| ln |Ai|) (by using the budget–limited ε–first approach);

(ii) O (Bi |Ai|) (by using fractional KUBE or fractional KDE); and (iii) O (Bi |Ai| ln |Ai|)
(by using KUBE or KDE). Note that |Ai| is the number of arms within the budget–

limited MAB model of agent i. Since the size of the operating time interval is propor-

tional to the budget size Bi, it is easy to show that the average computational cost (i.e.

cost per time step) of agent i is: (i) O (ε |Ai|); (ii) O (|Ai|); and (iii) O (|Ai| ln |Ai|). Note

that |Ai| typically has the value of at most few thousands. This can be easily calcu-

lated by using the typical sensory parameter values, which can be found, for example,

in Kansal and Srivastava (2003). This implies that the computational cost is low in all

the aforementioned cases.

In terms of memory usage, MAB/EM is also efficient. In particular, recall that each

agent i either uses the density–ordered greedy algorithm or the fractional relaxation

method to estimate the best combination of arms at each time step. We can efficiently

run both methods with at most O (|Ai|) memory place (Cormen et al., 2001). They also

need O (|Ai|) to maintain the parameters of each arm (i.e. mean value, number of pulls,

or its ranking). Given this, the memory usage of MAB/EM is O (|Ai|). To demonstrate

that the memory usage is indeed low, compared to the size of data packets, consider the

following example. Suppose that to store a number, each agent uses 4 bytes of memory.

Using the fact that |Ai| is typically at most few thousands, the total memory usage (i.e.

to store the arrays of probability and weight parameters) is at most few kilobytes. This

is small, compared to the total size of real data that the agents typically have to forward

in many applications (e.g. in wireless visual sensor networks) the average size of a single

data packet is likely to be 10− 100 kBytes (Kho et al., 2010).

7.4 Optimal Data Routing

Given the energy management approach described in the previous section, we now focus

on the maximal information throughput problem presented in Section 7.2.4. Thus, this

section outlines the work undertaken towards addressing this routing problem. Specifi-

cally, here we describe two decentralised algorithms that allow agents to achieve maxi-

mal information throughput between neighbouring layers, with respect to their energy

constraints. In particular, the first algorithm, called MITRA (for maximal informa-

tion throughput routing algorithm), achieves optimal performance in terms of solving

118 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

the maximal information throughput problem. However, it can have significant com-

putational and communication costs in some settings. On the other hand, the second

algorithm, called MITRAτ , produces near–optimal performance (approximately 98% of

the optimal performance), but with reduced communication and computational costs.

To this end, we first introduce MITRA in more detail in Section 7.4.1. Following this, we

show that this approach is optimal in terms of maximising the information throughput in

Section 7.4.2. Furthermore, we provide a theoretical upper bound for the computational

and communication costs of MITRA in Section 7.4.3. Finally, we propose MITRAτ , a

modified version of MITRA with reduced communication and computational costs in

Section 7.4.4.

7.4.1 The Maximal Information Throughput Routing Algorithm

Recall that at each time slot t, all the agents within the system run the MAB/EM in

order to set up the energy budgets for that current time slot. Then, their next step is

to maximise the amount of forwarded information value conditional on the budgets in

that given time slot. That is, the agents aim to maximise the total information value

forwarded between neighbouring layers of agents (see definition 7.2 for more details).

Now, let Ll and Ll−1 denote the corresponding layers. The pseudocode of the MITRA

run by the agents within these layers is depicted in Algorithm 7.1.

In more detail, we refer to the agents in layers Ll and Ll−1 as senders, and receivers,

respectively. The algorithm can be outlined as follows:

• Step 3: First, each sender si broadcasts a message that contains the list of 2–

tuples to each of its neighbouring receivers. The first element of the tuple contains

the packet ID, whilst the second element contains the information value of sender

si’s transmittable packets (i.e. the list of Qsi
(t), see Section 7.2.2 for more details).

Then, whilst data transmission is still feasible, the algorithm repeatedly executes

steps 5− 10 as follows.

• Step 5: Based on the received information lists from the neighbouring senders,

each receiver rj chooses the best packets (i.e. packets with the highest informa-

tion value) it can receive, with respect to its residual receiving capacity (i.e. the

maximal number of packets it can still receive without exceeding its total receiving

capacity NRx
rj

). Note that NRx
rj

is set by the MAB/EM (see Section 7.3.1 for more

details). In so doing, it needs to wait until it receives all the broadcast information

from its neighbouring senders. However, since node failures may occur, agent rj

does not exactly know which of its neighbours is available within the current time

slot t, and thus, will send to rj a broadcast message. In such cases, rj does not

know when to stop waiting for the broadcast messages, and thus, it cannot move

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 119

Algorithm 7.1 MITRA

1: for all pair of layers Ll and Ll−1 do
2: agents in layer Ll ← senders, agents in layer Ll−1 ← receivers;
3: ∀i sender si broadcasts list of information values;
4: while data transmission is feasible do
5: ∀j: when receiver rj receives all the broadcast information (or time threshold

expires), it identifies best packets it can receive;
6: ∀j receiver rj sends REQUEST messages to senders;
7: ∀i when sender si receives all the REQUEST messages (or time threshold expires),

it sends data to receiver with best offer;
8: if ∃ sender si has not exceed transmission budget then
9: sender si broadcasts a SEND message to receivers;

10: end if
11: end while
12: end for

120 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

on to the next step of MITRA. In order to avoid this situation, we set a time

threshold, so that if this threshold expires, the sender stops waiting for further

broadcast messages. Following this, rj chooses the best packets it can receive as

follows. It first sorts the received lists of 2–tuples in decreasing order of the value

of information, then it merges these lists into a joint list, also with the decreasing

order of the information value. From this joint list, it chooses the best packets it

can receive.

• Step 6: Following this, receiver rj propagates REQUEST messages to each of its

neighbouring senders. In particular, each REQUEST message contains the number

of packets that rj requests from that sender. This number is calculated in step 5

of the algorithm.

• Step 7: When si receives all the REQUESTmessages from its neighbouring receivers,

it chooses the best offer; that is, the one with the highest number of requested

packets. However, similarly to step 5 of the algorithm, it may occur that si does

not know when to stop waiting for all the REQUEST messages, due to node failure.

Thus, to prevent it from waiting indefinitely for the messages, we also use a time

threshold here. Given this, after all the REQUEST messages arrive to si, or the

time threshold expires, si sends the requested packets to the receiver with the best

offer. If the receiver with the best offer is not unique, then si randomly chooses

one among them.

• Steps 8–10: After data transmission in the previous step, if sender si still has

the capacity to transmit data (i.e. nTx
si

(t) is not exceeded), then it broadcasts

a SEND message to each of its neighbouring receivers. This message contains the

number of packets that it transmitted in step 7. Based on this message, all the

receivers can update the list of packets they can request from si (i.e. they update

the joint list described in step 3). Furthermore, they also update the value of their

remaining receiving capacity.

Now, to detect whether data transmission is still feasible, the participating agents do the

following. From the sender side, when sender si does not receive any REQUEST messages

in step 7, it considers data transmission as not feasible. From the receiver side, when

receiver rj does not receive any broadcast messages (e.g. the list of information value,

or the SEND messages) in step 5, then it also considers data transmission as not feasi-

ble. Given this, if an agent sees that it cannot receive and transmit data anymore (i.e.

receiving and transmission is not feasible), it stops running MITRA for that time slot.

That is, the agents rerun MITRA at each time slot t. Note that the time thresholds in

steps 5 and 7 are for only communication messages (i.e. REQUEST and broadcast mes-

sages). Once the agent receives one of these messages from its corresponding neighbour,

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 121

it sets up a communication channel, in which data packets are assumed to be successfully

forwarded, without any loss.

7.4.2 Performance Analysis

Given the description of MITRA above, we now show this algorithm provides the optimal

solution to the maximal information throughput routing problem presented in Definition

7.2. In so doing, we state the following:

Theorem 7.4. Assuming that the communication between senders and receivers is per-

fect, that is, none of the messages arrive after the timeout, the MITRA algorithm results

in an optimal solution for the maximal information throughput routing problem (i.e. the

solution that gives the maximal throughput of information value between the sender and

receiver layers).

Proof. Here we use the contradiction technique. Let us assume that the MITRA algo-

rithm given in the previous section is not optimal. That is, the output solution does not

maximise the total transmitted information value between the two layers. Let O denote

the output solution of the MITRA algorithm and OOPT be one of the optimal solutions.

Since we assume that O is not optimal, there should be p1 and p2 packets such that only

one of them is allocated in O and the other one is allocated in OOPT . Without loss of

generality, we can assume that p1 is allocated in O and p2 is allocated in OOPT . We

can also assume that both p1 and p2 are sent to the same receiver rj. It is easy to prove

that if O 6= OOPT then there exist two packets such that these assumptions hold.

In particular, there are two cases to investigate. In the first, both p1 and p2 are from

the same sender. Note that it is easy to show that v (p1, k) ≥ v (p2, k). That is, p1 has

a higher information value than p2, since the corollary states that those data which are

sent from the sender must be the packets with the highest values in the set of packets

of that sender.

In the second case, p1 and p2 are from different senders. Since in MITRA, the receiver

uses a greedy approach to allocate possible arriving packets, when p1 is accepted and p2

is not at rJ , the only explanation is that v (p1, k) ≥ v (p2, k).

One can see that in both cases p1 has a higher, or at least the same value, as p2. If p1

has a higher value than that of p2, then by replacing p2 in OOPT with p1, we would have

a better solution than OOPT . However, this is a contradiction, since OOPT is assumed

to be optimal. If p1 has the same value as p2, then by replacing all the possible pi-s that

are in O but not in OOPT (since they all have the same value, otherwise we would be

faced with the former case), we would have that O is also an optimal solution, which

122 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

would also contradict our assumption at the beginning. Therefore one can see that the

original assumption, that is, O is not optimal, is not true.

7.4.3 Computational and Communication Cost of MITRA

In the previous section, we showed that MITRA achieves an optimal solution for the

maximal information throughput problem. Given this, here we continue the analysis of

MITRA by studying its computational and communication cost. In particular, similarly

to the case of MAB/EM, we need to analyse whether MITRA is efficient in terms of

computational and communication complexity. In so doing, recall that at each time slot

t, each agent i within the network repeatedly runs steps 4 − 11 of Algorithm 7.1 until

data transmission is not feasible at that time slot. For the sake of simplicity, hereafter we

refer to this cycle as the communication round of MITRA (since the agents communicate

with each other during this cycle in order to find the maximal information throughput).

Note that since MITRA is rerun at every time slot, each time slot t contains a number

of communication rounds. Thus, the number of communication rounds that MITRA

uses within a particular time slot cannot be larger in time, compared to the length of a

single time slot. Given this, here we aim to analyse whether we can upper bound the

number of communication rounds. Furthermore, note that both the computational and

communication costs of agent i depend on the number of communication rounds that the

agent needs to run. Thus, in order to guarantee low computational and communication

costs of a single agent, we also need to ensure that the number of communication rounds

that an agent uses within the MITRA is also low. In more detail, each receiver determines

the best packets (i.e. packets with highest information value) it can receive by sorting the

list of receivable packets at each communication round (step 5 of Algorithm 7.1). Since

this list typically has a size at most of few thousands, sorting it is simple and fast (e.g.

by quicksort). However, since the sorting is repeatedly executed at each communication

round, if the number of those rounds is high, then the total computational cost can be

significant. Now, note that the communication cost of a single agent consists of the cost

of sending REQUEST messages and the cost of sending a SEND broadcast message at each

communication round. Thus, again, if the number of communication rounds is high,

then the total communication cost can also be significant.

Against this background, we provide a worst–case upper bound (i.e. an upper bound

that holds for all the cases) for the number of communication rounds that MITRA uses.

More precisely, we state the following:

Theorem 7.5. Consider neighbouring layers Ll and Ll−1. At each time slot t, let

Tcom (t) denote the total number of communication rounds, that MITRA needs to run

until data transmission is not feasible between layers Ll and Ll−1 within time slot t.

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 123

Given this, we have:

Tcom (t) ≤
ln
(

∑

rj∈Ll−1
NRx

rj

)

ln |Ll−1| − ln (|Ll−1| − 1)
,

where |Ll−1| denote the size of layer Ll−1 (i.e. layer of receivers).

Proof. Recall that, at each communication round, each receiver rj chooses the best

packets it can receive, conditional to the value of its residual receiving capacity (see

step 5 of algorithm 7.1). Let Drj
(τ) denote the maximal number of packets rj can

receive from its neighbouring senders at communication round τ . It is easy to see that

for each rj , Drj
(τ) is monotone decreasing function of τ , within time slot t. In more

detail, recall that the senders cannot forward information that are sampled or received

at time slot t. Given this, Drj
(τ) only contains data that are sampled/or received until

time slot (t− 1). This set of data, however, is already given at the beginning of time

slot t, and thus, during the communication rounds, the size of these data cannot be

increased. Furthermore, at each communication round (within time slot t), receiver rj

receives a non–negative number of packets. Given this, the value of Drj
(τ) is monotone

decreasing.

Given this, we first show that at each communication round τ , the total number of

successfully received packets within MITRA is at least Dmax (τ), where

Dmax (τ) = max
rj

Drj
(τ).

Indeed, according to algorithm 7.1, each receiver rj send REQUEST messages to its neigh-

bours at each communication round τ , requesting Drj
(τ) packets in total. Some of these

requests will be accepted by the senders, whilst the others will be rejected. However,

a sender only rejects a request, if it gets a better request (or a same request) of total

amount of information value from another receiver. This implies that the number of

packets of the better request is not lower than the number of packets rj requests from

that sender. Given this, it is easy to see that the total amount of transmitted (received)

packets is at least Drj
(τ) for any rj (i.e. it is also at least Dmax (τ)). Therefore, we

have the following inequality:

(7.31)
∑

rj

Drj
(τ + 1) ≤

∑

rj

Drj
(τ)−Dmax (τ) .

Now, note that at each communication round τ , we have:

(7.32)Dmax (τ) ≥
∑

rj
Drj

(τ)

|Ll−1|
.

124 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

That is, Dmax (τ) is not lower than the average value of Drj
(τ). Using Equations 7.31

and 7.32, we get:

∑

rj

Drj
(τ + 1) ≤ |Ll−1| − 1

|Ll−1|
∑

rj

Drj
(τ).

That is, we can show by induction that the following holds for each τ :

(7.33)
∑

rj

Drj
(τ + 1) ≤

(|Ll−1| − 1

|Ll−1|

)τ
∑

rj

Drj
(1).

Note that Drj
(1) ≤ NRx

rj
; that is, the maximal number of packets that rj can receive at

the first communication round is not greater than the receiving capacity of rj. Given

this, from Equation 7.33 we get:

(7.34)
∑

rj

Drj
(τ + 1) ≤

(|Ll−1| − 1

|Ll−1|

)τ
∑

rj

NRx
rj

.

Now, note that MITRA stops after τ communication rounds if and only if

∑

rj

Drj
(τ + 1) < 1.

That is, no more packets can be sent to the receivers. Given this, MITRA still runs

after τ communication rounds if

(7.35)

(|Ll−1| − 1

|Ll−1|

)τ
∑

rj

NRx
rj
≥ 1.

This can be reformulated as:

(7.36)
∑

rj

NRx
rj
≥
(|Ll−1|
|Ll−1| − 1

)τ

.

Taking the logarithmic function of both sides, we get:

(7.37)ln





∑

rj

NRx
rj



 ≥ τ (ln |Ll−1| − ln (|Ll−1| − 1)) .

Substituting Tcom (t) into this inequality concludes the proof.

Note that from the proof, it is easy to show that this upper bound is tight. Thus,

Tcom (t) = O
(

ln
(

∑

rj∈Ll−1
NRx

rj

))

; that is, the upper bound of Tcom is the logarithm of

the total number of packets that need to be forwarded within each time slot t.

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 125

7.4.4 Communication Round Limited MITRA

In the previous section, we provided an upper bound for the number of communication

rounds that MITRA uses. In particular, we demonstrated that the number of these com-

munication rounds is low, compared to the total size of data to be forwarded at a single

time slot. However, since this upper bound is tight, the total number of communication

rounds that MITRA uses in the worst case scenario (i.e. when the bound is tight) is

still significant in terms of total time length. For example, consider a WSN, where each

layer has 10 agents on average, and each agent can receive 100 packets per time slot.

Given this, according to Theorem 7.5, the upper bound of the number of communication

rounds is around 66. Note that each communication round consumes a certain amount

of time, and thus, 66 communication rounds together may not fit into the length of a

single time slot (since MITRA has to terminate within the same time slot).

In order to address this shortcoming, we can either shorten the time length of a com-

munication round, risking the higher rate of data loss in WSNs (i.e. not all of the SEND

and REQUEST messages arrive on time), or limit the number of communication rounds

that MITRA can use. We show that by using the latter solution, we can significantly

reduce the number of communication rounds, whilst the reduction in the performance of

the algorithm is not significant. We denote the communication round limited MITRA

with MITRAτ , where τ is the threshold value of the number of communication rounds.

Given this, the algorithm for MITRAτ is similar to that of MITRA, except that it stops

executing steps 4 − 11 after exactly τ rounds (see Algorithm 7.1 for more details). In

Section 7.5.4, we will demonstrate that with low τ values (e.g. τ = 8), MITRAτ can

still achieve 98% of MITRA’s performance.

7.5 Performance Evaluation

Having calculated the computational and communication complexity of MAB/EM and

MITRA in the previous sections, we now demonstrate that by using MAB/EM for energy

management and MITRAτ for data routing, our proposed algorithms together signifi-

cantly outperform the state–of–the–art. In particular, we first compare the performance

of different MAB/EM techniques, that uses the budget–limited MAB algorithms from

the previous chapters to tackle the energy management problem. With this comparison,

we study which of the algorithms efficiently fulfil Requirement 1 (i.e. good experimental

performance quality). The reason we choose MITRAτ instead of MITRA to route data

is that the communication cost of MITRAτ is guaranteed to be low (see Section 7.4.4

for more details). However, as we will show later, it achieves, on average, 98% of the

performance of MITRA.

126 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

Following this, we present empirical results against state–of–the–art algorithms that

demonstrates the efficiency of using budget–limited MAB in long–term information col-

lection within the WSN domain. In so doing, we need to choose a benchmark algorithm

that has to fulfil the following requirements:

• It must be capable of using efficient adaptive sampling methods for collecting data

from the environment.

• It must use information content valuation, in order to distinguish important data

from unimportant data.

• It must contain an energy management policy, which allocates energy budgets to

different sensory tasks of sampling, receiving, and transmitting.

In particular, as we discussed in Section 7.1, algorithms that guarantee these require-

ments may perform well in WSNs with dynamic environments for efficient long–term

information collection. On the other hand, those which fail to fulfil the aforementioned

requirements are not suitable for long–term information collection in our settings (see

Section 7.1 for more details). As we demonstrated within Section 7.1, USAC is the most

appropriate state–of–the–art method that fulfils these criteria. Given this, we choose

USAC as a benchmark for our performance evaluation. In more detail, we compare the

performance of our approach to USAC through extensive simulations, and we show that

our approach typically outperforms USAC by around 120% on average in terms of long–

term information collection. Furthermore, we also benchmark the performance of our

approach against a non–learning approach, that solely uses MITRA for routing. In par-

ticular, within this benchmark approach, each agent randomly chooses an energy budget

allocation combination, that it uses throughout its operating time (i.e. the budgets are

fixed over time). Here, MITRA with fixed budgets represents a benchmark algorithm

that does not intelligently set the budgets of the sensory tasks to adapt to the environ-

mental changes. With this comparison, we demonstrate that by using adaptive learning

(i.e. the MAB/EM), we can also achieve 100% improvement of collected information in

the long term.

In addition, we also benchmark the performance of our approach against a centralised

algorithm, that has the perfect knowledge of the environment, such as: the real value of

any possible data in the future, the current energy level of each agent node, and whether

they are out of order (i.e. suffering from node failure). Since this approach has perfect

information of the future, we can This benchmark aims to provide a theoretical upper

bound of the performance that we can achieve within long–term information collection

in WSNs. In particular, in order to determine the optimal performance of the network,

we need global information about each agent’s sampled information values at each time

slot. However, to gather this global information, a centralised control mechanism is

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 127

needed, which is not feasible in our settings (as outlined in Section 1.2). Thus this is a

benchmark algorithm only; not a feasible solution to our information collection problem.

Finally, we demonstrate that by using MITRAτ with small values of τ , we can still

achieve near–optimal routing performance, while the number of communication rounds

needed is significantly reduced (compared to that of the MITRA).

To this end, in Section 7.5.1, we first set the parameters that will be used through-

out our simulations. We continue with the performance comparison between different

budget–limited MAB approaches for the energy management problem (Section 7.5.2).

Following this, to demonstrate the efficiency of MAB/EM combined with MITRAτ , we

analyse simulation results in detail in Section 7.5.3. Here, we compare the performance

of our approach to that of USAC, and the centralised optimal algorithm. Finally, in

Section 7.5.4, we show that by using a small value of τ , MITRAτ achieves near optimal

performance (e.g. 98% of the optimal solution can be achieved with τ = 8).

7.5.1 Parameter Settings

To compare the performance of the algorithms, we measure the overall amount of in-

formation collected by each algorithm over time. To this end, we run each algorithm

on several networks with different topologies and environmental characteristics (e.g. the

occurrence frequency of the events, or the expected value of information of each event).

Then, we take the average of the specific results of the networks. In order to do this, we

have to create a number of networks that may differ from each other in both topology

and environmental characteristics. Given this, we now describe the parameter settings,

that are used throughout our simulations, in order to create these networks and their

environments.

In our model, a data packet that agent i samples from the environment has the infor-

mation value randomly chosen from a normal distribution with mean mi, variance vi.

To ensure positive information value, the distribution is truncated at 0 and 2mi. The

value of each (mi, vi) pair is randomly and independently chosen from intervals 1 − 5,

and 1− 3, respectively. These values are set to be fixed over each simulation round. In

addition, we tune these values such that nodes that are closer to the BS has lower mean

values. This assumption is reasonable, since it reflects the fact that events farther from

the BS are typically more important to the system.

Now, we set the energy settings of each agent node as follows. Each sensor’s transmission,

receiving and sampling energy consumption is uniformly and randomly chosen from

intervals of 30−42, 20−34, and 15−25 per packet, respectively. At each time step, the

threshold values for the maximal number of packets, that agent i can sample, receive,

and transmit, are set to be between 5 and 15. In addition, the battery capacity of each

128 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

agent node varies between 1.5 ·106 and 1.8 ·106. Note that these values are proportional

to real–world sensor values as reported in Kansal and Srivastava (2003) and Torah et al.

(2008). Given this, in our simulations, we use these values to set the parameters, such as

eS
i , eTx

i , eRx
i , and Bi, of the agents. We assume that the network contains 100 agents, and

we randomly set the number of nodes in the layers such that each layer cannot contain

more than 10 nodes. The communication edges of the network are randomly generated

with probability 0.5 (i.e. two nodes within neighbouring layers can communicate with

each other with probability 0.5). Note that we randomly set the corresponding values

of the agents at the beginning of each simulation round, we set them to be fixed over

that simulation round.

Now, note that within this chapter, we focus on long–term information collection, and

thus, we do not have strict constraints on the delivery time of each collected piece of

information (see Section 1.2 for more details). Given this, the information durability

factor that we consider here is typically close to 1 (see Section 7.2.1). However, it would

be also interesting to study the performance of our approach in systems where real–

time information collection is desired. Within these systems, the real–time monitoring

typically requires newest data only, and thus, the value of sampled information rapidly

decreases as time passes by. This indicates that the durability factor is significantly

lower within such systems. Now, note that MITRA does not have any guarantee that it

will deliver the sampled data to the BS within a certain time threshold (which is a key

requirement in real–time monitoring systems). Given this, our hypothesis is that our

approach may not perform well in systems that demand low durability factors. In order

to evaluate this hypothesis in more detail, we vary the value of λ during our simulations.

In particular, we set the information durability coefficient λ = 0.9, and 0.5, respectively.

The former represents the durability factor of non real–time systems, while the latter is

a typical value for real–time WSNs.

In addition, we allow node failures during the operation of the WSN. In particular, each

agent node may stop functioning at each time step with probability 0.2, independently

from other nodes. Nodes with failures may be functioning again in the next time step. By

allowing node failure, our hypothesis is that the performance of EM/MAB is significantly

decreased, since the proposed budget–limited MAB algorithms cannot deal with non-

stationary (i.e. dynamic) environments. As a result, we set up three simulation scenarios

as follows:

1. Static topology (i.e. there is no node failure), and the information durability

coefficient λ = 0.9.

2. Dynamic topology (i.e. node failure is allowed within the network), and λ = 0.9.

3. Dynamic topology (i.e. node failure is allowed within the network), but λ = 0.5.

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 129

Algorithms
Static topology

(λ = 0.9)
Dynamic topology

(λ = 0.9)
Dynamic topology

(λ = 0.5)

Budget–limited
ε–first (ε = 0.05)

14.2(±0.77) · 105 6.56(±0.43) · 105 2.31(±0.26) · 105

Budget–limited
ε–first (ε = 0.10)

12.2(±0.85) · 105 6.03(±0.61) · 105 2.34(±0.39) · 105

Budget–limited
ε–first (ε = 0.15)

9.84(±0.91) · 105 5.87(±0.47) · 105 1.93(±0.47) · 105

KUBE 8.35(±0.91) · 105 4.26(±0.36) · 105 1.67(±0.22) · 105

Fractional KUBE 5.35(±0.77) · 105 2.84(±0.3) · 105 1.46(±0.18) · 105

KDE (γ = 50) 8.99(±0.99) · 105 5.18(±0.58) · 105 1.78(±0.27) · 105

KDE (γ = 100) 10.9(±1.05) · 105 5.49(±0.42) · 105 2.06(±0.33) · 105

KDE (γ = 150) 9.3(±0.85) · 105 5.62(±0.44) · 105 1.99(±0.34) · 105

Fractional KDE
(γ = 50)

8.77(±0.94) · 105 3.17(±0.45) · 105 1.69(±0.31) · 105

Fractional KDE
(γ = 100)

7.48(±1.01) · 105 3.53(±0.39) · 105 1.83(±0.25) · 105

Fractional KDE
(γ = 150)

6.88(±0.75) · 105 4.23(±0.45) · 105 1.81(±0.29) · 105

Table 7.1: Total collected information with different budget–limited MAB algorithms.

In more detail, within the first scenario, MAB/EM has to deal with a static environment,

while in the second scenario, it has to take the varying topology into account as well.

In addition, within the third scenario, the system is forced to deliver the packets to the

BS as fast as possible, since the information value of the packets rapidly converges to 0.

Finally, we run the simulations until the network cannot collect any further data (i.e.

data that are collected and delivered to the BS).

7.5.2 Overall Performance Evaluation

Given the parameter settings above, we now discuss the numerical results of the simu-

lations in more detail. In particular, we first study the performance of MAB/EM with

different budget–limited MAB algorithms, combined with MITRA8 (i.e. τ = 8). As we

will show later in Section 7.5.4, the choice of τ = 8 results in both low performance loss

and low number of communication rounds within MITRA.

Within the simulations, we set the budget–limited ε–first approach with different values

of ε, namely 0.05, 0.1, and 0.15, respectively. We also vary the value of γ to be 50, 100,

and 150 within KDE and its fractional counterpart. The results are depicted in Table 7.1

130 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

and Figure 7.1. In particular, Table 7.1 depicts the average total amount of collected

information within the WSN by using different budget–limited MAB techniques. We

highlight the best performance of algorithms that were run with different tuning pa-

rameter values (e.g. ε or γ). For the sake of better comparison, we also highlight the

performance of KUBE and that of its fractional counterpart. It can be clearly seen that

the budget–limited ε–first approach has a significantly better performance, compared to

that of the others. In particular, it outperforms KUBE and fractional KUBE by up to

70% and 160%,while it is typically better than KDE and fractional KDE by up to 30%

and 85%, respectively. In contrast, KUBE and its fractional counterpart provides the

lowest performance in general. As a result, in terms of satisfying Requirement 1 (good

experimental performance quality), the budget–limited ε–first approach has the high-

est performance, while KUBE and fractional KUBE performs the worst. That is, the

decreasing ε–greedy based algorithms (i.e. KDE and fractional KDE) can be regarded

as a trade–off approach that efficiently balances theoretical requirements with empirical

criteria. In particular, as we showed in the previous chapters, KDE and fractional KDE

achieves asymptotically optimal regret bounds. In addition, it provides adequately close

empirical performance to that of the budget–limited ε–first approach.

Note that by using the density–ordered greedy approach to solve the underlying knapsack

problem at each time step, we can improve the performance of the UCB based and the

decreasing ε–greedy based algorithms, compared to the case when we use the fractional

relaxation approach. In particular, this improvement is typically 70% in the case of

KDE, and is approximately 50% in the case of KUBE, respectively.

To better understand the behaviour of each budget–limited MAB algorithm, we depict

their performance over time in Figure 7.1. In more detail, we depict the performance

of the KUBE, fractional KUBE, the budget–limited ε–first with ε = 0.05, and KDE

and its fractional counterpart, both with γ = 100. The reason behind the choice of

these values is that they typically outperform other choices of ε, and γ, respectively

(see Table 7.1 for more details). The performance of the algorithms are measured in

networks with: (i) static topology and λ = 0.9 (Figure 7.1a); (ii) dynamic topology and

λ = 0.9 (Figure 7.1b); and (iii) dynamic topology and λ = 0.5 (Figure 7.1c). It can

be clearly seen from this figures that as more and more agents stop functioning due to

battery depletion, the improvement of the total collected information value decreases.

We can also observe that by adding node failures into the system, the performance of the

algorithms significantly drops down. In particular, in the case of dynamic topology with

λ = 0.9 (Figure 7.1b), the performance of the algorithms is decreased by more than 50%,

compared to the case of static topology (Figure 7.1a). One reason would be the fact

that, as the environment becomes more dynamic, the budget–limited MAB algorithms

cannot efficiently follow the change of the environment, and thus, they produce poor

performance.

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 131

0 2000 4000 6000 8000 10000
0

5

10

15

x 10
5

C
ol

le
ct

ed
 in

fo
rm

at
io

n
va

lu
e

0 2000 4000 6000 8000 10000
0

2

4

6

8

10
x 10

5

C
ol

le
ct

ed
 in

fo
rm

at
io

n
va

lu
e

0 2000 4000 6000 8000 10000
0

1

2

3

4

5
x 10

5

C
ol

le
ct

ed
 in

fo
rm

at
io

n
va

lu
e

(a)

(b)

(c)

Budget–limited ε–first (ε = 0.05)

Budget–limited ε–first (ε = 0.05)

Budget–limited ε–first (ε = 0.05)

KDE (γ = 100)

KDE (γ = 100)

KDE (γ = 100)

Fractional KDE (γ = 100)

Fractional KDE (γ = 100)

Fractional KDE (γ = 100)

KUBE

KUBE

KUBE

Fractional KUBE

Fractional KUBE

Fractional KUBE

Time steps

Time steps

Time steps

Figure 7.1: Information collection in a 100–agent wireless sensor network with (A)
static topology with λ = 0.9; (B) dynamic topology with λ = 0.9; and (C) dynamic

topology with λ = 0.5.

132 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

Note that by modifying the value of λ to be 0.5, the performance of the algorithms is

decreased even more. This is due to the fact that in this case, MITRA provides poor

performance, since it is not designed for rapid data delivery. We will discuss this issue

in more detail in the next section.

7.5.3 Performance Comparison with USAC

Having analysed the performance of MAB/EM using different budget–limited MAB

algorithms, we now compare its performance with other state–of–the–art information

collecting algorithms within the domain of WSNs. Similar to the previous section,

here we also combine MAB/EM with MITRA8 (i.e. τ = 8). Recall that we use the

following benchmark algorithms: (i) USAC; (ii) MITRA without MAB/EM; and (iii) a

centralised algorithm with perfect knowledge. The first algorithm represents a state–

of–the–art approach within the domain of information collection in WSNs. The second

algorithm measures the performance of a non–learning algorithm. Finally, the third

algorithm provides a theoretical upper bound.

For the sake of simplicity, we assume that at each time step, USAC can perfectly detect

each agent’s neighbours (i.e. within our simulation, USAC does not have to deal with

topology detection). Note that USAC can intelligently allocate each agent’s budget to

the tasks it thinks are most important (see Padhy et al. (2010) for more details). This

behaviour makes USAC similar to our approach, and thus, is one of the reasons we

choose USAC as a benchmark algorithm.

The empirical results are depicted in Figure 7.2. Apart from the benchmark algo-

rithms, we also depict the performance of MAB/EM using the budget–limited ε–first

with ε = 0.05, and MAB/EM with KDE where γ = 100. The reason of these choices is

that they typically outperform the other budget–limited MAB algorithms (see Table 7.1

for more details). Similar to the empirical evaluation within the previous section, the

performance of the algorithms are measured in networks with: (i) static topology and

λ = 0.9 (Figure 7.2a); (ii) dynamic topology and λ = 0.9 (Figure 7.2b); and (iii) dy-

namic topology and λ = 0.5 (Figure 7.2c). As we can see from the figures, MAB/EM

approaches, in conjunction with MITRA8, can achieve up to 70% of the performance

of the centralised algorithm within the first scenario (i.e. networks with static topol-

ogy). However, as the nodes failures are taken into account, this ratio is significantly

decreased (see Figures 7.2b and 7.2c). Note that the centralised algorithm becomes

computationally infeasible after a certain point. In contrast, our approaches requires

low computational complexity, and thus, are computationally feasible.

In addition, note that MITRA with a fixed budget only achieves 50% of the performance

of the MAB/EM, illustrating that MITRA itself cannot efficiently collect the information

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 133

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

C
ol

le
ct

ed
 in

fo
rm

at
io

n
va

lu
e

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

x 10
6

C
ol

le
ct

ed
 in

fo
rm

at
io

n
va

lu
e

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

x 10
6

C
ol

le
ct

ed
 in

fo
rm

at
io

n
va

lu
e

(a)

(b)

(c)

Centralised algorithm with perfect knowledge

Centralised algorithm with perfect knowledge

Centralised algorithm with perfect knowledge

MITRA with fixed energy budget allocation

MITRA with fixed energy budget allocation

MITRA with fixed energy budget allocation

USAC

USAC

USAC

Budget–limited ε–first (ε = 0.05) with MITRA8

Budget–limited ε–first (ε = 0.05) with MITRA8

Budget–limited ε–first (ε = 0.05) with MITRA8

KDE (γ = 100) with MITRA8

KDE (γ = 100) with MITRA8

KDE (γ = 100) with MITRA8

Time steps

Time steps

Time steps

Figure 7.2: Performance comparison with USAC in a 100–agent wireless sensor net-
work with (A) static topology with λ = 0.9; (B) dynamic topology with λ = 0.9; and

(C) dynamic topology with λ = 0.5.

134 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

from the environment, compared to state–of–the–art algorithms, such as USAC. Rather,

it must be combined with an adaptive method to allocate the energy budget.

It can also be observed that both the budget–limited ε–first and KDE, in conjunction

with MITRA8, outperform USAC by up to 90% in non real–time systems (see Fig-

ures 7.2a and 7.2b). However, within real–time systems, where the information value of

the packets rapidly decreases over time, our approaches do not outperform USAC. In-

stead, MITRA shows a significant decrease in terms of performance, that also affects on

the performance of the budget–limited ε–first with MITRA8, and KDE with MITRA8,

respectively. The reason here is that the routing phase of USAC can guarantee the

delivery of packets towards the BS within a time threshold by choosing a full routing

path (see Padhy et al. (2010) for more details). In contrast, such guarantees do not

hold within MITRA. Therefore, within MITRA, a large portion of collected packets

are delayed within the network, and thus, their information value is typically close to 0

when the BS receives them. As a result, we can conclude that within real–time systems,

MAB/EM in conjunction with MITRA8 cannot outperform USAC, since they are not

designed for such systems.

In summary, we can say that by combining MAB/EM with MITRA8, we can outperform

state–of–the–art algorithms, such as USAC in systems with low information durability

factor. In addition, we also demonstrated that without efficient energy management,

MITRA cannot achieve efficient performance, compared to that of USAC.

7.5.4 Performance Evaluation of MITRAτ

Given the simulation results in the previous section, we can see that MITRAτ , together

with MAB/EM, performs well with τ = 8. As mentioned in Secton 7.4.4, the advantage

of using MITRAτ instead of MITRA is that the former has limited communication cost.

This limitation implies that the performance of MITRAτ is decreased, compared to that

of MITRA, which is proveably optimal. However, we shall now show that MITRAτ

still achieves near–optimal performance, even with small values of τ , by studying the

performance of MITRAτ with different values of τ . The performance of these MITRAτ

algorithms is compared to that of MITRA with an unlimited number of communication

rounds. Note that MITRA may use tens of rounds in order to achieve optimal routing

performance (as outlined in Section 7.4.4).

Given this, the numerical results are depicted in Figure 7.3. In particular, the figure

shows the performance of MITRAτ with τ = {1, 2, 4, 8} 2. From Figure 7.3, we can

see that MITRA1 achieves the lowest performance (it performs 60% less well than the

optimal solution in the case of networks with 100 agents). With τ = 2, and τ = 4,

2Note that we also have evaluated the performance of MITRAτ with higher values of τ , but their
improvement is not significant, compared to that of MITRA8.

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 135

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of nodes

Pe
rf

or
m

an
ce

 p
er

ce
nt

ag
e

Comparison of Performance

MITRAτ with τ = 1
MITRAτ with τ = 2
MITRAτ with τ = 4
MITRAτ with τ = 8

Figure 7.3: Performance comparison of MITRAτ with that of the unlimited MITRA.
The optimal performance achieved by MITRA is 100%.

MITRAτ achieves better results, but their performance loss (i.e. the difference between

their performance and that of the optimal solution) is still significant. In particular,

MITRA2 performs, on average, 60%, whilst MITRA4 achieves around 80% of the optimal

solution in the case of 100 agents. In contrast, we can see that with τ = 8, even in the

case of networks with 100 agents, the performance of MITRAτ is around 98% of the

optimal unlimited MITRA. That is, by limiting the number of communication rounds

that MITRA can use to τ = 8, our approach still achieves near–optimal solution with

around 2% performance loss. On the other hand, according to Theorem 7.5, MITRA

without a communication round limit may use up to 66 rounds in order to achieve

optimal routing performance. That is, by limiting the communication rounds to τ = 8,

we can reduce the number of communication rounds by 87.5%. Given this, by using

MITRA8, the number of used communication rounds is small enough so that the total

time needed for coordination will not exceed the size of the time slot. This, in particular,

justifies our choice of MITRA8 in Section 7.5.2.

136 Chapter 7 Long–Term Information Collection in Wireless Sensor Networks

7.6 Summary

In contrast to the previous chapters, where the focus was on the theoretical analysis of the

proposed budget–limited MAB algorithms, within this chapter, we studied the empirical

efficiency of the algorithms. In so doing, we introduced an application scenario for the

budget–limited bandits; the problem of long–term information collection in WSNs. Since

this problem is a key research challenge within the domain of WSNs, we also aimed to

investigate whether our approaches would outperform the state–of–the–art.

Against this background, we first described the literature of relevance of information

collection within WSNs. In particular, we considered the related work from the domains

of data sampling, information content valuation, data routing, and energy management.

We demonstrated that these methods, especially the routing and energy management

algorithms, typically fail to fulfil our research requirements given in Section 1.2, specif-

ically: (i) adaptivity; (ii) robustness and flexibility; and (iii) limited use of commu-

nication. Given this, we focused on advancing the state–of–the–art from the routing

and energy management perspectives. This yielded in the formalisation of the long–

term information collection problem. This problem was later decomposed into two sub–

problems: (i) energy management; and (ii) maximal information throughput routing.

After formalising both sub–problems, we used the budget–limited MAB approach to

tackle the former. In particular, we first transformed the energy management problem,

that an agent node has to face, into a budget–limited bandit model. In so doing, we

defined the arms and the corresponding pulling costs. We also defined a reward function,

and we proved that by maximising the total reward over time, the agents together

maximise the total amount of collected information that are also delivered to the BS

(Theorem 7.3). Thus, by using the proposed budget–limited MAB algorithms, we tackled

this bandit model. We denoted this bandit based energy management approach as

MAB/EM.

For the maximal information throughput routing problem, we devised two decentralised

routing algorithms, MITRA (for maximal information throughput routing algorithm),

and MITRAτ , respectively. We proved that MITRA provides the optimal solution for

the maximal information throughput routing problem (Theorem 7.4). Furthermore, we

also provided an upper bound for the number of communication rounds that MITRA

needs to use within a time slot (Theorem 7.5). Since the total number of communication

rounds that MITRA uses may be large, we modified MITRA so that the number of

communication rounds is reduced. The modification resulted in the introduction of

MITRAτ .

Next, we empirically evaluated the performance of MAB/EM together with MITRAτ .

In particular, we first showed that, among the different budget–limited MAB algorithms,

Chapter 7 Long–Term Information Collection in Wireless Sensor Networks 137

the budget–limited ε–first achieves the best performance in terms of fulfilling Require-

ment 1 (i.e. experimental performance quality), while KUBE and fractional KUBE

performs the worst. We also demonstrated that by using MAB/EM in conjunction

with MITRA8 in non real–time systems, we could outperform USAC, a state–of–the–

art information collecting algorithm. However, we also showed that as the information

durability factor is decreased (i.e. real–time requirements have to be guaranteed), the

performance of our approaches decreases. In addition, we also empirically showed that

by choosing small values of τ , near–optimal routing performance can still be achieved,

whilst the number of communication rounds in MITRA is significantly reduced. Given

this, the integrated model and the proposed algorithms are particularly useful for non

real–time monitoring systems (i.e. the information durability factor is high), in which

the environment has to be monitored over a prolonged time interval, and unpredicted,

important events should be distinguished from the other events.

Chapter 8

Conclusions

In this chapter, we present a global view on the contributions of this thesis towards the

research aim of budget–limited multi–armed bandits. To begin, in Section 8.1, we first

summarise the research carried out within each chapter in order to achieve this goal.

In so doing, we also explain how we satisfied each of the research requirements that we

initially set out at the beginning of this report. Then, in Section 8.2, we outline some

general areas of future work that follow from this thesis.

8.1 Summary of Results

Multi–armed bandits are becoming an important tool for intelligent agents faced with

the challenge of making decisions under uncertainty, as they present one of the clearest

examples of the trade–off between exploration and exploitation. Whilst the standard

bandit model does not consider pulling costs, there is an increasing need, driven by real–

world applications (e.g. costly medical treatments or the shortest driving path scenario),

to develop bandit models that take pulling costs into account. To date, bandit models

with such cost constraints typically focus on the case when only the arm pulling within

the exploration phase is costly, and is limited by a budget, while arm pulling within the

exploration phase is cost–free. However, in many other real–world scenarios, it is not

only the exploration phase, but also the exploitation phase, that is limited by a cost

budget (e.g. wireless sensors or online advertising).

To address this limitation, we introduced a new bandit model, the budget–limited MAB,

in which pulling an arm is costly in both the exploration and exploitation phases, and

crucially is limited by a single common budget. As a result, the central problem we

addressed in this thesis is to design arm pulling algorithms that efficiently tackle this

bandit model. In so doing, we first defined the research requirements, that a pulling

139

140 Chapter 8 Conclusions

algorithm has to fulfil to achieve high performance. These requirements are: (i) effi-

cient experimental performance quality (Requirement 1); (ii) computational feasibility

(Requirement 2); and (iii) efficient finite–time regret bound (Requirement 3). We then

formalised the budget–limited bandit model, and we defined its objective to maximise

the expected value of the total pay–off.

In light of the aforementioned research requirements, we developed a number of pulling

algorithms. First, in Chapter 4, we proposed the budget–limited ε–first algorithm.

Next, we developed two UCB based algorithms in Chapter 5, namely: (i) KUBE; and

(ii) fractional KUBE. We then introduced two decreasing ε–greedy based algorithms,

KDE and fractional KDE, in Chapter 6. The budget–limited ε–first algorithm is an

empirically and computationally efficient algorithm, which, however, does not satisfy

the theoretical requirement (i.e. Requirement 3). In contrast, UCB based algorithms

efficiently satisfy the theoretical requirement, but they fail to produce good empirical

performance. Finally, the decreasing ε–greedy based algorithms form a trade–off between

theoretical and empirical requirements.

In more detail, in Chapter 4, we first described the budget–limited ε–first algorithm.

We then provided a linear regret bound for this algorithm. This bound does not guar-

antee the fulfilment of Requirement 3. However, by analysing the problem from a PAC

manner, we improved the regret bound to be O
(

B
2
3

)

. That is, the budget–limited

ε–first algorithm can only fulfil Requirement 3 with a certain (but high) probability.

Computation–wise, we showed that the computational complexity of the budget–limited

ε–first is a linear function of B and ε. That is, the algorithm satisfies Requirement 2.

We started Chapter 5 by describing KUBE and its fractional counterpart in more detail.

We provided regret bounds for these algorithms, both are logarithmic functions of the

budget size. Following this, we proved that these bounds are asymptotically optimal;

that is, they only differ from the best possible with a constant factor. Thus, they satisfy

Requirement 3. Similar to the case of the budget–limited ε–first, we also showed that

KUBE and fractional KUBE have efficient computational cost, and thus, they both fulfil

Requirement 2.

We continued with Chapter 6 in which we described KDE and fractional KDE. We

proved that, similar to the UCB based algorithms, these algorithms also provide asymp-

totically optimal regret bounds. Hence, they are both efficient in the fulfilment of

Requirement 3. In addition, we also studied the computational complexity of KDE and

its fractional counterpart, which were shown to be as efficient as that of the UCB based

algorithms. Thus, both KDE and fractional KDE satisfy Requirement 2.

In order to measure the fulfilment towards Requirement 1 (i.e. empirical performance)

of the proposed algorithms, we implemented these algorithms in the domain of wireless

Chapter 8 Conclusions 141

sensor networks in Chapter 7. In particular, we tackled the problem of long–term in-

formation collection in WSNs. Since this problem is one of the key research challenges

within the WSN domain, we further considered three additional research requirements:

(i) adaptivity (Requirement 4); (ii) robustness and flexibility (Requirement 5); and (iii)

limited use of communication (Requirement 6). To tackle the long–term information col-

lection problem, we first introduced its formal description and then decomposed it into

two sub–problems, namely energy management and maximal information throughput

routing.

Against this background, we proposed a budget–limited multi–armed bandit based ap-

proach called MAB/EM for the energy management problem. In particular, we reduced

the energy management problem to a MAB problem, by defining the arms, the costs,

and the reward functions for the agents. Thus, by using our proposed budget–limited

MAB algorithms, we could efficiently tackle the energy management problem. We also

showed that MAB/EM efficiently fulfils Requirements 4, 5, and 6, respectively.

For the maximal information throughput routing problem, we devised two decentralised

routing algorithms, MITRA (for maximal information throughput routing algorithm),

and MITRAτ , respectively. We proved that MITRA provides the optimal solution for

the maximal information throughput routing problem. Furthermore, we also provided

an upper bound for the number of communication rounds that MITRA needs to use

within a time slot. Although MITRA can efficiently satisfy Requirements 4 and 5, in

some cases it may fail to achieve good performance in terms of fulfiling Requirement 6.

In more detail, the total number of communication rounds that MITRA uses may be a

large number. As a result, we modified MITRA so that the number of communication

rounds is reduced. The modification resulted in the introduction of MITRAτ . Thus,

MITRAτ satisfies Requirement 6.

Next, by empirical evaluation, we measured the efficiency of the proposed budget–limited

MAB algorithms in terms of fulfiling Requirement 1 (i.e. efficient empirical perfor-

mance). As a result, we demonstrated that the budget–limited ε–first algorithm sig-

nificantly outperforms the others, while KUBE and its fractional counterpart show the

worst performance. This verified our hypothesis that the decreasing ε–greedy methods

(i.e. KDE and fractional KDE) efficiently trade off between theoretical and empirical

research requirements.

Following this, we demonstrated the efficiency of MAB/EM in conjunction with MITRAτ

(τ = 8) against the state–of–the–art information collecting algorithms in the domain of

WSNs. In particular, to measure the efficiency of our approach, we compared its perfor-

mance with that of USAC, a state–of–the–art information collecting algorithm within

the domain of WSNs. Moreover, to measure the performance surplus that MAB/EM

adds to our approach, we also used a non–learning algorithm, that solely uses MITRA,

142 Chapter 8 Conclusions

as a benchmark method. Both comparisons showed that MAB/EM with MITRAτ to-

gether are efficient in terms of long–term information collection, since it can adapt to the

environmental changes. In particular, we demonstrated that, within systems with high

values of information durability factor, our approach outperforms USAC. However, we

also showed that as the durability factor is decreased, the performance of our approach

also decreases. In addition, we showed that by choosing small values of τ , near–optimal

routing performance can still be achieved, whilst the number of communication rounds

is significantly reduced. Given this, the integrated model and the proposed algorithms

are particularly useful for non–real time monitoring systems (i.e. the information dura-

bility factor is high), in which the environment has to be monitored over a prolonged

time interval, and unpredicted, important events should be distinguished from the other

events.

Thus, when taken together, the contributions presented in this thesis represent a signif-

icant advance in the state–of–the–art of both budget–limited multi–armed bandits and

long–term information collection in wireless sensor networks. Despite these advances,

however, many open problems remain. Given this, in the following section, we examine

a number of promising directions for future research.

8.2 Future Work

As we demonstrated in Chapter 7, budget–limited MAB algorithms perform well when

the network topology is static. However, as node failure occurs within the network, their

performance is significantly decreased. Indeed, all of the proposed MAB algorithms

assume that the reward values are stationary, and thus, they cannot currently deal with

dynamic environments, where the stationarity of the reward values does not hold. To

this end, one immediate area of further research is the development of pulling algorithms

that take non–stationarity into consideration. Within this direction, we identify three

specific lines of investigation to extend the scope of our work:

• Piece–wise stationary rewards: One direct extension of our bandit model is to

assume that the reward distributions are stationary within certain time intervals,

but not in the whole operating time of the agent. Following the work of DaCosta

et al. (2008) and Hartland et al. (2006), a possible solution would be to detect

the change points of the environment, and reset the MAB algorithm at those

change points. However, the performance analysis of this approach is not obvious,

since the performance of the algorithm also depends on the correctness of the

change detection. Given this, the key challenge here is to combine the performance

analysis of change detection and that of the budget–limited MAB algorithms to

provide efficient regret bounds.

Chapter 8 Conclusions 143

• Well–behaved changes of rewards: Apart from piece–wise stationarity, an-

other way to extend our model is to add some assumptions on the change of

the reward distributions over time, such that the change itself can be defined by

some well–behaved properties. For example, one typical assumption is that re-

ward values that are sampled close to each other in time are chosen from similar

distributions; that is, the change of the environment is a rather slow and smooth

process. Another assumption is to have converging reward distributions over time.

In both cases, instead of reseting the MAB algorithm, we can still use the some of

the estimated values from the past to approximate the best current combination

of arms. Given this, the challenge here is to exploit the behaviour of the change

so that efficient performance analysis can be carried out.

• Adversarial rewards: Within this extension, nature can be regarded as an op-

ponent of the agent, and thus, whenever an arm is pulled, the reward value is

not randomly chosen from a distribution, but is deterministically provided by na-

ture (Auer et al., 2003). Within this setting, concentration inequalities, such as

Chernoff–Hoeffding or Bernstein, cannot be used to analyse the theoretical per-

formance. As a result, new techniques are needed in order to efficiently tackle the

adversarial budget–limited MAB.

Other possible extensions can be achieved by combining other MAB variants with the

budget–limited bandit model (see Section 2.3 for more details). In particular, we aim

to address the problems of budget–limited bandits with: (i) side information; and (ii)

continnum arms. It is easy to see that the algorithms proposed within this thesis are

not suitable to solve these problems. This implies that new techniques are needed to be

developed.

Apart from this, we also aim to extend our focus to the more general models of decision

making under uncertainty, such as Markov decision processes (MDP) (Sutton and Barto,

1998), or partially observable MDPs (PoMDP) (Cassandra, 1998). The former can be

regarded as an extension of the bandit model, since it allows the agent to modify the

state of the system by pulling an arm (the MAB model can described as a one–state,

or stateless, MDP). The latter is an MDP in which some of the information (e.g. state

change of the system or the received reward value) is not avialable to the agent. The

main challenge within these models is that by modifying the state of the system, the set

of available arms, and thus, the corresponding pulling cost, may change as well. Recall

that the underlying knapsack based approach of the budget–limited MAB relies on the

fact that the set of arms, and thus, the pulling costs are fixed over time. This implies

that the knapsack based techniques, which form the basis of our approaches within this

thesis, do not fit to these extensions. This makes the extensions more complex, and

thus, non–trivial.

144 Chapter 8 Conclusions

By meeting these challenges, the results related to the budget–limited multi–armed

bandits developed in this thesis can be further increased, which will bring a wider ap-

plicability of the budget–limited bandit model in many real–world applications.

Bibliography

R. Agrawal. The continuum–armed bandit problem. SIAM Journal on Control and

Optimization, 33:1926–1951, 1995a.

R. Agrawal. Sample mean based index policies with o(log n) regret for the multi-armed

bandit problem. Advances in Applied Probability, 27:1054–1078, 1995b.

R. Agrawal, M. Hegde, and D. Teneketzis. Asymptotically efficient allocations rules for

multi–armed bandit problem with switching cost. In the Proceeding of the Twnety–

Sixth IEEE Transactions on Automatic Control, AC–32:968–982, 1988.

F. Ahdi, V. Srinivasan, and K.-C. Chua. Topology control for delay sensitive applications

in wireless sensor networks. Mobile Networks and Applications, 12(5):406–421, 2007.

K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor networks.

Ad Hoc Networks, 3(3):325–349, 2005.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

a survey. Computer Networks, 38:393–422, 2002.

J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks: A

survey. IEEE Wireless Communications, 11(6):6–28, 2004.

C. Allenberg, P. Auer, L. Györfi, and Gy. Ottucsák. Hannan consistency in on-line learn-

ing in case of unbounded losses under partial monitoring. Lecture Notes in Computer

Science, 4264:229–243, 2006.

V. Anantharam, P. Varaiya, and J. Walrand. Asymptotically efficient allocation rules

for the multiarmed bandit problem with multiple plays-part i: I.i.d. rewards. IEEE

Transactions on Aumatic Control, 32(11):977–982, 1987.

G. Anastasi, M. Conti, A. Falchi, E. Gregori, and A. Passarella. Performance mea-

surements of mote sensor networks. Proceedings of the ACM/IEEE International

Symposium on Modeling, Analysis and Simulation of Wireless and Mobile System,

pages 174–181, 2004.

C. M. Anderson. Behaviorial Models of Strategies in Multi–Armed Bandit Problems.

PhD thesis, California Institute of Technology, Pasadena, California USA, 2001.

145

146 BIBLIOGRAPHY

R. Andonov, V. Poirriez, and S Rajopadhye. Unbounded knapsack problem: dynamic

programming revisited. European Journal of Operational Research, 123(2):394–407,

2000.

A. Antos, V. Grover, and Cs. Szepesvári. Active learning in multi-armed bandits. In

Proceedings of the Nineteenth International Conference on Algorithmic Learning The-

ory, pages 287–302, 2008.

J-Y. Audibert, R. Munos, and Cs. Szepesvári. Exploration-exploitation trade-off using

variance estimates in multi-armed bandits. Theoretical Computer Science, 410:1876–

1902, 2009.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite–time analysis of the multiarmed bandit

problem. Machine Learning, 47:235–256, 2002.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed

bandit problem. The Society for Industrial and Applied Mathematics Journal on

Computing, 32(1):48–77, 2003.

P. Auer and R. Ortner. Ucb revisited: Improved regret bounds for the stochastic multi-

armed bandit problem. Periodica Mathematica Hungarica, 61(1–2):55–65, 2010.

P. Auer, R. Ortner, and Cs. Szepesvári. Improved rates for the stochastic continuum–

armed bandit problem. In the Proceedings of the Twentieth Conference on Learning

Theory, pages 454–468, 2007.

D. A. Babayev and S. Mardanov. Reducing the number of variables in integer and

linear programming problems. Computational Optimization and Applications, 3:99–

109, 1994.

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to Tracking

and Navigation. Wiley Interscience, 2001. ISBN 047141655X.

R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R.E. Schapire. Contextual bandit

algorithms with supervised learning guarantees. In the Proceeding of the Forteenth

International Conference on Artificial Intelligence and Statistics, 2011.

A. Boukerche. Algorithms and Protocols for Wireless Sensor Networks. WileyBlackwell,

2008. ISBN : 0471798134.

D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Proceed-

ings of the ACM International Workshop on Wireless Sensor Networks and Applica-

tions, pages 22–31, 2002.

BIBLIOGRAPHY 147

S. Bubeck. Bandits Games and Clustering Foundations. PhD thesis, Universit Lille 1,

Lille, France, 2010.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration for multi-armed bandit problems.

In Proceedings of the Twentieth international conference on Algorithmic Learning

Theory, pages 23–37, 2009.

S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvári. X-armed bandits. Journal of

Machine Learning Research, 12:1587–1627, 2011.

A. R. Cassandra. Exact and Approximate Algorithms for Partially Observable Markov

Decision Processes. PhD thesis, Brown University, Department of Computer Science,

Providence, RI, USA, 1998.

N. Cesa-Bianchi and P. Fischer. Finite-time regret bounds for the multiarmed bandit

problem. In the Proceedings of the Fifteenth International Conference on Machine

Learning, pages 100–108, 1998.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K.

Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. In the Proceedings of the Twenty-

Second Annual Conference on Learning Theory, pages 1–34, 2009.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient pre-

diction. IEEE: Transactions on Information Theory, 51:2152–2162, 2005.

D. Chakrabarti, R. Kumar, F. Radlinski, and E. Upfal. Mortal multi-armed bandits.

In Proceedings of the Twenty-Second Annual Conference on Neural Information Pro-

cessing Systems, pages 273–280, 2008.

C.-Y. Chong and S. P. Kumar. Sensor networks: Evolution, opportunities and challenges.

Proceedings of IEEE, 91(8):1247–1256, 2003.

M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying and

routing for ad hoc heterogeneous sensor networks. International Journal of High

Performance Computing Applications, 16(3):293–313, 2002.

V. A. Cicirello and S. F. Smith. The max k–armed bandit: a new model of exploration

applied to search heuristic selection. In Proceedings of the Nineteenth Conference on

Artificial Intelligence, pages 1355–1361, 2005.

M. K. Clayton. Covariate models for bernoulli bandits. Sequential Analysis, 8(4):405–

426, 1989.

E. Cope. Regret and convergence bounds for immediate–reward reinforcement learning

with continuous action spaces. IEEE Transactions on Automatic Control, 54(6):1243–

1253, 2009.

148 BIBLIOGRAPHY

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, editors. Introduction to

Algorithms (second edition). MIT Press and McGraw-Hill, 2001. ISBN 0262032937.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons,

2006. ISBN 0471241954.

L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selection with

dynamic multi–armed bandits. In Proceedings of the Tenth Annual Conference on

Genetic and Evolutionary Computation, pages 913–920, 2008.

G. B. Dantzig. Discrete variable extremum problems. Operations Research, 5:266–277,

1957.

J. Degesys and R. Nagpal. Towards desynchronization of multi-hop topologies. In

Proceedings of the 2008 Second IEEE International Conference on Self-Adaptive and

Self-Organizing Systems, pages 129–138, 2008.

A. Dekorsy, J. Fliege, and M. Ś’ollner. Optimal distributed routing and power con-

trol decomposition for wireless networks. In Proceedings of the Fiftieth IEEE Global

Telecommunications Conference, pages 4920–4924, 2007.

I. Demirkol, C. Ersoy, and F. Alagoz. Mac protocols for wireless sensor networks: a

survey. IEEE Communications Magazine, 44(4):115–121, 2006.

W. Dinga, S.S. Iyengara, R. Kannana, and W. Rummler. Energy equivalence routing in

wireless sensor networks. Microprocessors and Microsystems, 28:467–475, 2004.

K. Dudzinski. A note on dominance relation in unbounded knapsack problems. Opera-

tions Research Letters, 10:417–419, 1991.

J. Elson and D. Estrin. Time synchronization forwireless sensor networks. Proceedings

of the 2001 International Parallel and Distributed Processing Symposium (IPDPS),

Workshop on Parallel and Distributed Computing Issues in Wireless Networks and

Mobile Computing, 2001.

E. Even-Dar, S. Mannor, and Y. Mansour. Pac bounds for multi–armed bandit and

markov decision processes. In the Proceedings of the Fifteenth Annual Conference on

Computational Learning Theory, pages 255–270, 2002.

V. F. Farias and R. Madan. The irrevocable multi-armed bandit problem. Operations

Research, 59(2), 2011.

B. R. Frieden. Science from Fisher Information: A Unification. Cambridge University

Press, 2004. ISBN 0521009111.

C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor placements in gaussian

processes. In Proceedings of the Twenty-second International Conference on Machine

Learning, pages 265–272, 2005.

BIBLIOGRAPHY 149

S. Guha and K. Munagala. Approximation algorithms for budgeted learning problems.

In Proceedings of the Thirty-Ninth Annual ACM symposium on Theory of Computing,

pages 104–113, 2007.

S. Guha and K. Munagala. Multi-armed bandits with metric switching costs. In Su-

sanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and

Wolfgang Thomas, editors, Automata, Languages and Programming, volume 5556 of

Lecture Notes in Computer Science, pages 496–507. Springer Berlin / Heidelberg,

2009.

J. P. Hardwick and Q. F. Stout. Bandit strategies for ethical sequential allocation.

Computing Science and Statistics, 23:421–424, 1991.

C. Hartland, S. Gelly, N. Baskiotis, O. Teytaud, and M. Sebag. Multiarmed bandit,

dynamic environments and meta–bandits. Online Trading of Exploration and Ex-

ploitation Workshop, NIPS, 2006.

T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru, Q. Cao, J.A. Stankovic,

and T. Abdelzaher. Achieving real-time target tracking using wireless sensor net-

works. In Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 37–48, 2006.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient commu-

nication protocol for wireless microsensor networks. In Proceedings of the Hawaii

International Conference on System Sciences, pages 1–10, 2000.

W. Hoeffding. Probability inequalities for sums of bounded random variables. ournal of

the American Statistical Association, 58:13–30, 1963.

J. Honda and A. Takemura. An asymptotically optimal bandit algorithm for bounded

support models. In the Proceedings of the Twenty–Third Annual Conference on Learn-

ing Theory, pages 67–79, 2010.

I. S. Hwang, K. Roy, H. Balakrishnan, and C. Tomlin. A distributed multiple-target

identity management algorithm in sensor networks. In Proceedings of the Fourty-Third

IEEE Conference on Decision and Control, pages 728–734, 2004.

O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum

of subset problems. Journal of the ACM, 4:197–204, 1975.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion for wireless sensor

networking. IEEE/ACM Transactions on Networking, 11(1):2–16, 2003.

A. Ivic, editor. The Riemann Zeta Function. John Wiley & Sons, 1985. ISBN 0-471-

80634-X.

150 BIBLIOGRAPHY

A. Jain and E. Y. Chang. Adaptive sampling for sensor networks. In Proceedings of the

First Workshop on Data Management for Sensor Networks, pages 10–16, 2004.

N. R. Jennings. An agent-based approach for building complex software systems. Com-

munications of the ACM, 44(4):35–41, 2001.

L. P. Kaelbling, editor. Learning in embedded systems. MIT Press, 1993.

A. Kansal and M. B Srivastava. An environmental energy harvesting framework for

sensor networks. In Proceedings of the 2003 International Symposium on Low Power

Electronics and Design, pages 481–486, 2003.

H. Kellerer and U. Pferschy. A new fully polynomial time approximation scheme for the

knapsack problem. Journal of Combinatorial Optimization, 3:59–71, 1999.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

J. Kho, Long L. Tran-Thanh, A. Rogers, and N. R. Jennings. An agent-based distributed

coordination mechanism for wireless visual sensor nodes using dynamic programming.

The Computer Journal, 53(8):1277–1290, 2010.

J. Kho, A. Rogers, and N. R. Jennings. Decentralised adaptive sampling of wireless

sensor networks. ACM Transactions on Sensor Networks, 5(3):19–53, 2009.

R. Kleinberg. Nearly tight bounds for the continuum–armed bandit problem. Advances

in Neural Information Processing Systems, 17:697–704, 2005.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi–armed bandits in metric spaces. In the

Proceedings of the Fortieth ACM Symposium on Theory of Computing, 2008.

R. Kohli, R. Krishnamurti, and P. Mirchandani. Average performance of greedy heuris-

tics for the integer knapsack problem. European Journal of Operational Research,

154(1):36–45, 2004.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor place-

ments:maximizing information while minimizing communication cost. In Proceedings

of the Fifth International Conference on Information Processing in Sensor Networks,

pages 2–10, 2006.

V. Kuleshov and D. Precup. Algorithms for the multi-armed bandit problem. Unpub-

lished, 2010.

T. L. Lai and T. W. Lim. Optimal stopping for brownian motion with applications to

sequential analysis and option pricing. Journal of Statistical Planning and Inference,

130(1-2):21–47, 2005.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances

in Applied Mathemathics, 6(1):4–22, 1985.

BIBLIOGRAPHY 151

J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed

bandits. In Proceedings of the Twenty–First Annual Conference on Neural Information

Processing Systems, 2007.

E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 4:339–356, 1979.

V. Lesser, C. Ortiz, and M. Tambe, editors. Distributed sensor networks: a multiagent

perspective. Kluwer Publishing, 2003. ISBN 1402074999.

P. Li, Y. Gu, and B. Zhao. A global-energy-balancing real-time routing in wireless sensor

networks. In Proceedings of the IEEE Asia-Pacific Services Computing Conference,

pages 89–93, 2007.

S. Lindsey and C. S. Raghavendra. Pegasis: Power efficient gathering in sensor infor-

mation systems. In Proceedings of the IEEE Aerospace Conference, 3:3.1125–3.1130,

2002.

T. Lu, D. Pál, and M. Pál. Contextual multi–armed bandits. In the Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, pages

485–492, 2010.

R. D. Luce, editor. Individual choice behavior. Wiley New York, 1959.

O. Madani, D. J. Lizotte, and R. Greiner. The budgeted multi–armed bandit problem.

In Proceedings of the Seventeenth Annual Conference on Learning Theory, pages 643–

645, 2004.

O.-A. Maillard, R. Munos, and G. Stoltz. A finite-time analysis of multi-armed bandits

problems with kullback-leibler divergences. In the Proceedings of the Twenty–Fourth

Annual Conference on Learning Theory, 2011.

G. Mainland, D. C. Parkes, and M.Welsh. Decentralised, adaptive resource allocation

for sensor networks. In Proceedings of the Second USENIX/ACM Symposium on

Networked Systems Design and Implementation, pages 315–328, 2005.

S. Marcello and M. Toth. Knapsack Problems: Algorithms and Computer Implementa-

tions. Wiley, 1990.

K. Martinez, J. Hart, and R. Ong. Environmental sensor networks. Computer, 37(8):

50–56, 2004.

G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power data storage

for sensor networks. Proceedings of the Fifth international conference on Information

processing in sensor networks, pages 374–381, 2006.

152 BIBLIOGRAPHY

G. V. Merrett. Energy- and Information-Managed Wireless Sensor Networks: Modelling

and Simulation. PhD thesis, University of Southampton, School of Electronics and

Computer Science, Southampton UK, 2008.

C. Ok, S. Lee, P. Mitra, and S. Kumara. Distributed energy balanced routing for wireless

sensor networks. Computers & Industrial Engineering, 57:125–135, 2009.

M. A. Osborne, A. Rogers, S. Ramchurn, S. J. Roberts, and N. R. Jennings. Towards

real-time information processing of sensor network data using computationally effi-

cient multi-output gaussian processes. In Proceedings of the Seventh International

Conference on Information Processing in Sensor Networks, pages 109–120, 2008.

Gy. Ottucsák. Machine–Learning for Infocommunication Systems. PhD thesis, Budapest

University of Technology and Economics, Budapest, Hungary, 2007.

P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings. A utility-based adaptive

sensing and multihop communication protocol for wireless sensor networks. ACM

Transactions on Sensor Networks, 6(3):1–39, 2010.

N.G. Pavlidis, D.K. Tasoulis, and D.J. Hand. Simulation studies of multi–armed bandits

with covariates. In Proceedings of the Tenth International Conference on Computer

Modeling and Simulation, pages 493–498, 2008.

M. Pechoucek and V. Marik. Industrial deployment of multi-agent technologies: review

and selected case studies. Journal of Autonomous Agents and Multi-Agent Systems

(JAAMAS), 17(3):397–431, 2008.

D. Pisinger. Where are the hard knapsack problems? Computers and Operations

Research, 32(9):2271–2284, 2005.

F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-

armed bandits. In the Proceedings of the Twenty-Fifth International Conference on

Machine Learning, pages 784–791, 2008.

P. Rigollet and A. Zeevi. Nonparametric bandits with covariates. In the Proceedings of

the Twenty–Third Conference on Learning Theory, pages 54–66, 2010.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the AMS,

55:527–535, 1952.

A. Rogers, D. D. Corkill, and N. R. Jennings. Agent technologies for sensor networks.

IEEE Intelligent Systems, 24(2):13–17, 2009.

A. Rogers, E. David, and N. R. Jennings. Self-organised routing for wireless microsensor

networks. IEEE Transactions on Systems, Man, and Cybernetics (Part A), 35(3):349–

359, 2005.

BIBLIOGRAPHY 153

K. Romer and F. Mattern. The design space of wireless sensor networks. IEEE Wireless

Communications, 11(6):54–61, 2004.

G. Simon, A. Ledeczi, and M. Maroti. Sensor network-based countersniper system. In

Proceedings of the Second International Conference on Embedded Networked Sensor

Systems, pages 1–12, 2004.

S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in mobile ad hoc

networks. In Proceedings of the Fourth annual ACM/IEEE International Conference

on Mobile Computing and Networking, pages 181–190, 1998.

S. S. Skiena. Who is interested in algorithms and why?: lessons from the stony brook

algorithms repository. SIGACT News, 30(3):65–74, 1999.

L.-K. Soh and C. Tsatsoulis. A real-time negotiation model and a multi-agent sensor

network implementation. Journal of Autonomous Agents and Multi-Agent Systems

(JAAMAS), 11(3):215–271, 2005.

J. A. Stankovic. Research challenges for wireless sensor networks. ACM SIGBED Review,

1(2):9–12, 2004.

B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchronization for wireless

sensor networks: a survey. Ad Hoc Networks, 3(3):281–323, 2005.

R. S. Sutton and A. G. Barto, editors. Reinforcement Learning: An Introduction. MIT

Press, 1998. ISBN 0-262-19398-1.

A. M. Sykulski. The Exploration-Exploitation Trade-Off in Sequential Decision Making

Problems. PhD thesis, Imperial College London, London, UK, 2011.

R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, and S. Beeby. Self-powered

autonomous wireless sensor node using vibration energy harvesting. Measurement

Science and Technology, pages 125202.1–125202.8, 2008.

L. Tran-Thanh, A. Chapman, J. E. Munoz de Cote, A. Rogers, and N. R. Jennings.

Epsilon–first policies for budget–limited multi–armed bandits. In Proceedings of the

Twenty-Fourth Conference on Artificial Intelligence, pages 1211–1216, 2010.

L. Tran-Thanh, A. Rogers, and N. R. Jennings. Long–term information collection with

energy harvesting wireless sensors: A multiarmed bandit based approach. Journal of

Autonomous Agents and Multi-Agent Systems, 2011.

L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134 – 1142,

1984.

J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical evaluation.

European Conference on Machine Learning, pages 437–448, 2005.

154 BIBLIOGRAPHY

D. Wagner and R. Wattenhofer. Algorithms for Sensor and Ad Hoc Networks: Advanced

Lectures. Springer, 2007. ISBN : 354074990X.

X. Wang and Y. Wang. Optimal investment and consumption with stochastic dividends.

Applied Stochastic Models in Business and Industry, page doi:10.1002/asmb.823, 2009.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, Cambridge University,

Cambridge, UK, 1989.

R. Willett, A. Martin, and R. Nowak. Backcasting: Adaptive sampling for sensor net-

works. In Proceedings of the Third International Symposium on Information Process-

ing in Sensor Networks, pages 124–156, 2004.

P. Wittle. Arm–acquiring bandits. The Annals of Probability, 9(2):284–292, 1981.

P. Wittle. Restless bandits: Activity allocation in a changing world. Journal of Applied

Probability, 25A:287–298, 1988.

M. Woodfoofe. Sequential allocation with covariates. The Indian Journal of Statistics,

44(3):403–414, 1982.

T. Wu and S. Biswas. Minimizing inter-cluster interference by self-reorganizing mac

allocation in sensor networks. Wireless Networks, 13(5):691–703, 2007.

Mohamed Younis, Kemal Akkaya, Mohamed Eltoweissy, and Ashraf Wadaa. On han-

dling qos traffic in wireless sensor networks. Hawaii International Conference on

System Sciences, 9:90292a, 2004.

F. Zhao and L. J. Guibasn. Wireless Sensor Networks: An Information Processing

Approach. Morgan Kaufmann, 2004. ISBN 1558609148.

J. Zhou and D. de Roure. Floodnet: Coupling adaptive sampling with energy aware

routing in a flood warning system. Journal of Computer Science and Technology,

22(1):121–130, 2007.

	List of Figures
	List of Tables
	List of Algorithms
	Declaration of Authorship
	Acknowledgements
	Nomenclature
	1 Introduction
	1.1 Research Requirements
	1.2 Application Scenario
	1.3 Research Contributions
	1.4 Thesis Outline

	2 Literature Review
	2.1 The Stochastic Multi-Armed Bandit Problem
	2.2 Stochastic Bandit Policies
	2.3 Bandit Variants
	2.3.1 Set of Arms
	2.3.2 Nature of Rewards
	2.3.3 Additional Information

	2.4 Bandits with Pulling Cost
	2.5 The Unbounded Knapsack Problem
	2.5.1 Knapsack Models
	2.5.2 Algorithms for the Unbounded Knapsack

	2.6 Summary

	3 Formal Description of Budget--Limited Multi--Armed Bandits
	4 Budget--Limited Epsilon--First based Approaches
	4.1 The Algorithm
	4.2 Performance Analysis
	4.3 Summary

	5 Budget--Limited Upper Confidence Bound based Approaches
	5.1 The Algorithms
	5.1.1 KUBE
	5.1.2 Fractional KUBE

	5.2 Performance Analysis
	5.3 Summary

	6 Budget--Limited Decreasing Epsilon--Greedy based Approaches
	6.1 The Algorithms
	6.1.1 KDE
	6.1.2 Fractional KDE

	6.2 Performance Analysis
	6.3 Summary

	7 Long--Term Information Collection in Wireless Sensor Networks
	7.1 Related Work
	7.1.1 Data Sampling
	7.1.2 Information Content Valuation
	7.1.3 Information--Centric Routing
	7.1.4 Energy Management

	7.2 System Models and Problem Definitions
	7.2.1 The Wireless Sensor Network Model
	7.2.2 The Long--Term Information Collection Problem
	7.2.3 The Energy Management Problem
	7.2.4 The Maximal Information Throughput Routing Problem

	7.3 Multi--Armed Bandit Based Energy Management
	7.3.1 Using Multi--Armed Bandits for Energy Management
	7.3.2 Computational Complexity Analysis

	7.4 Optimal Data Routing
	7.4.1 The Maximal Information Throughput Routing Algorithm
	7.4.2 Performance Analysis
	7.4.3 Computational and Communication Cost of MITRA
	7.4.4 Communication Round Limited MITRA

	7.5 Performance Evaluation
	7.5.1 Parameter Settings
	7.5.2 Overall Performance Evaluation
	7.5.3 Performance Comparison with USAC
	7.5.4 Performance Evaluation of MITRA_"711C

	7.6 Summary

	8 Conclusions
	8.1 Summary of Results
	8.2 Future Work

	Bibliography

