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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

Faculty of Physical and Applied Sciences
ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Long Tran—Thanh

Decision making under uncertainty is one of the most important challenges within the
research field of artificial intelligence, as they present many everyday situations that
agents have to face. Within these situations, an agent has to choose from a set of
options, whose payoff is uncertain (i.e. unknown and nondeterministic) to the agent.
Common to such decision making problems is the need of balancing between exploration
and exploitation, where the agent, in order to maximise its total payoff, must decide
whether to choose the option expected to provide the best payoff (exploitation) or to

try an alternative option for potential future benefit (exploration).

Among many decision under uncertainty abstractions, multi—-armed bandits are perhaps
one of the most common and best studied, as they present one of the clearest examples of
the trade—off between exploration and exploitation. Whilst the standard bandit model
has a broad applicability, it does not completely describe a number of real-world decision
making problems. Specifically, in many cases, pulling choice of arm (i.e. making a deci-
sion) is further constrained by several costs or limitations. In this thesis, we introduce
the budget-limited bandit model, a variant of the standard bandits, in which pulling an
arm is costly, and is limited by a fixed budget. This model is motivated by a number
of real-world applications, such as wireless sensor networks, or online advertisement.
We demonstrate that our bandit model cannot be reduced to other existing bandits, as
it requires a different optimal behaviour. Given this, the main objective of this thesis
is to provide novel pulling algorithms that efficiently tackle the budget—limited bandit
problem. Such algorithms, however, have to meet a number of requirements from both
the empirical and the theoretical perspectives. The former refers to the constraints de-
sired by the motivations of real-world applications, whilst the latter aims to provide

theoretical performance guarantees.

To begin with, we propose a simple pulling algorithm, the budget—limited e—first, that
addresses the empirical requirements. In more detail, the budget-limited e—first algo-
rithm is an empirically efficient algorithm with low computational cost, which, however,
does not fulfil the theoretical requirements. To provide theoretical guarantees, we intro-
duce two budget—limited UCB based algorithms, namely: KUBE and fractional KUBE;,
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that efficiently tackle the theoretical requirements. In particular, we prove that these
algorithms achieve asymptotically optimal performance regret bounds, which only dif-
fer from the best optimal bound by a constant factor. However, we demonstrate in
extensive simulations that these algorithms are typically outperformed by the budget—
limited e—first. As a result, to efficiently trade off between theoretical and empirical
requirements, we develop two decreasing e—greedy based approaches, namely: KDE and
fractional KDE, that achieve good performance from both the theoretical and the em-
pirical perspective. Specifically, we show that, similar to the budget-limited UCB based
algorithms, both KDE and fractional KDE achieve asymptotically optimal performance
regret bounds. In addition, we also demonstrate that these algorithms perform well,

compared to the budget—limited e—first.

To provide a grounding for the algorithms we develop, the second part of this thesis con-
tains a running example of a wireless sensor network (WSN) scenario, in which we tackle
the problem of long—term information collection, a key research challenge within the do-
main of WSNs. In more detail, we demonstrate that by using the budget-limited bandit
algorithms, we advance the state—of—the—art within this domain. In so doing, we first de-
compose the problem of long—term information collection into two sub—problems, namely
the energy management and the maximal information throughput routing problems. We
then tackle the former with a budget—limited multi-armed bandit based approach, and
we propose an optimal decentralised algorithm for the latter. Following this, we demon-
strate that the budget-limited bandit based energy management, in conjunction with
the optimal routing algorithm, outperforms the state—of-the—art information collecting

algorithms in the domain of WSNs.
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Chapter 1

Introduction

In many everyday situations, an agent, or a decision maker, has to choose between
alternatives in order to achieve its goal. These situations vary from simple daily routines,
such as driving a car to work or food to buy, to complex and important problems, such as
the design of clinical trials or financial investments. In particular, in the former, a driver
aims to arrive to her workplace on time, and thus, everyday she chooses a driving route
that she believes to be the fastest. On the other hand, the latter consists of experiments
that aim to determine which medicines offer the best treatment for patients with a
certain disease. Now, the ingredient that makes such decision making difficult is the
uncertainty in the outcome of the decision. More precisely, the outcome of the decision,
which is typically a reward, or a cost, is only revealed to the agent after the decision is
made. Furthermore, this outcome is typically affected by other things, whose effects are
not known to the agent, and thus, it may be uncertain. For example, on any particular
day the driver does not know beforehand what the traffic on the chosen route will be,
and the success or failure of the chosen treatment is not guaranteed for any particular
patient. Given this, in order to maximise its performance (i.e. exploitation), the agent
has to gather information that improves knowledge of the environment by trying out
different alternative decisions (i.e. ezploration). Exploitation and exploration decisions,
however, have to be carefully made. If the agent focuses solely on exploration, it will gain
accurate information about the environment, but might not be able to maximise its total
reward. On the other hand, by putting more effort on exploiting, the agent might miss a
chance to find a better alternative. Thus, one of the most crucial challenges in decision—
making under uncertainty is the problem of finding a trade—off between exploration and

exploitation.

One of the clearest examples of this trade—off is presented in the standard, or stochastic,
multi—-armed bandit (MAB) problem, originally proposed by Robbins (1952). The term
“bandit” refers to the usual name of a gambling slot machine (“one-armed bandit”)

which has one arm which can be pulled. The standard MAB problem is a generalisation

1



2 Chapter 1 Introduction

of this one—armed bandit, which consists of a single machine with K arms, each of which
delivers rewards that are independently drawn from unknown distributions when each
arm is pulled. Given this, an agent must choose which of these arms to pull. At each
time step, it pulls one of the machine’s arms and receives a reward. The agent’s goal
is to maximise the expected sum of the rewards it receives over a sequence of pulls. If
the distributions were known, this goal would be equivalent to finding the arm with the
highest expected payoff, and then to keep playing using that best arm. However, the
agent does not know the rewards for the arms, so it must sample them in order to learn
which is the optimal one. In other words, in order to maximise the total reward (i.e.
exploitation) the agent first has to estimate the mean rewards of all of the arms (i.e.

exploration).

In the standard MAB, this trade—off has been widely studied from both theoretical and
empirical aspects (Agrawal, 1995b; Anderson, 2001; Auer et al., 2002; Lai and Robbins,
1985; Vermorel and Mohri, 2005) . In more detail, in the bandit settings, pulling strate-
gies are referred to as policies, and they vary from simple algorithms, such as efirst
(Even-Dar et al., 2002) or e-greedy (Watkins, 1989), to more advanced methods that
use more complex rules to determine the next arm to pull, such as decreasing e—greedy
(Auer et al., 2002), POKER (Vermorel and Mohri, 2005) or upper confidence bound
(UCB) (Auer et al., 2002) !. Now, the performance of these policies is often measured
in terms of cumulative regret, or total loss, which is the difference between the total
reward that the policy can achieve, and the total reward received if the theoretical opti-
mal pulling policy (i.e. the policy that maximises the total received reward) is followed.
From the theoretical aspect, advanced policies (e.g. UCB-based, or POKER) typically
outperform simple methods. In particular, decreasing e—greedy, POKER, and UCB-
based policies achieve zero-regret; that is, their average regret (i.e. cumulative regret
divided by the number of time steps) converges to 0 with probability 1 as the number
of steps tends to infinity. Intuitively, zero—regret policies guarantee optimal asymptotic
convergence. They converge to an optimal policy as time goes by. This guarantee of

asymptotic convergence, however, cannot be achieved with e—first or e—greedy.

However, since many real-world applications have a finite operating time interval, asymp-
totic convergence is typically not sufficient, since it only guarantees convergence as time
goes to infinity. Therefore, in addition to asymptotic convergence, there is also a need
to provide regret bounds over finite time, that uniformly guarantees for every time step
that the regret of the policy does not exceed a certain threshold (i.e. the performance
of the policy stays close to that of an optimal policy after each time step). In this sense,
UCB and decreasing e—greedy outperform POKER, since they guarantee an efficient
regret bound, while POKER does not (for more details, see Chapter 2).

!The details of these strategies are given in Section 2.2.
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Although theoretical results indicate the dominance of decreasing e—greedy and UCB-
based policies, empirical experiments show that in many real-world applications, e—first
typically outperforms the more advanced policies, even if it cannot guarantee theoretical
efficiency (Kuleshov and Precup, 2010; Vermorel and Mohri, 2005). This is especially
true when the bandit size is large; i.e. when the bandit problem contains hundreds
or thousands of arms (or even more), as is the case in many real-world scenarios (see
Chapter 7 for more details). One possible reason is that the constant factor within the
theoretical bounds depends on the number of arms, and thus, it is large if the bandit size
is large. Given this, besides decreasing e—greedy and UCB-based policies, the efirst

policy is also widely used in order to tackle the standard bandit problem.

While this standard model has a broad applicability, it does not completely describe a
number of real-world sequential decision—making problems. Specifically, in many cases,
pulling choice of arm is further constrained by several costs or limitations. These include
switching costs (where switching between arms is costly), pulling costs (where pulling
arms is costly), limitation of an arm’s existence (where arms have a limited life span),
or limitation in varying between arms (when the number of changes between arms is
limited). Accordingly, recent studies have introduced a variety of related models in order
to adapt to these bandit problems (Chakrabarti et al., 2008; Cicirello and Smith, 2005;
Guha and Munagala, 2009; Langford and Zhang, 2007), and in particular, a number
of researchers have focused on MABs with budget constraints, where arm—pulling is
costly and is limited by a fixed budget (Antos et al., 2008; Bubeck et al., 2009; Guha
and Munagala, 2007; Madani et al., 2004). In particular, these bandit models include
those with a budget limited exploration phase, and a cost—free exploitation phase. This
is motivated by a variety of applications. For example, in the shortest driving path
scenario, the cost of the fuel consumed by the car differs as the driver choose different
routes, or the medical treatment of a particular patient implies a certain financial cost.
In both cases, the cost of making a decision (i.e. pulling an arm) can be expressed
in terms of money, and the agent is not allowed to exceed a certain limit of expense.
Within these scenarios, the agent’s goal is to determine the best arm (i.e. decision),
but its exploration budget limits the number of times it can sample the arms in order
to estimate their rewards, which defines an initial exploration phase. In the subsequent
cost—free exploitation phase, an agent’s policy is then simply to pull the arm with the

highest expected reward.

However, in many scenarios, it is not only the exploration phase, but also the exploitation
phase, that is limited by a cost budget. This type of limitation is again well motivated
by several real-world applications. For example, consider a company that advertises
itself online. It has a limited budget for renting online advertising banners on any of
a number of web sites, each of which charges a different rental price. The company

wishes to maximise the number of total clicks on its banners, but it does not know the
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click—through rate for banners on each site. As such the company needs to estimate the
click-through rate for each banner (exploration), and then to choose the combination of
banners that maximises the sum of clicks (exploitation). In terms of the model described
above, the price of renting an advertising banner from a website is the pulling cost of an
arm, and the click—through rate of a banner on a particular website is the true reward
for pulling that arm, which is unknown at the outset of the problem. It is obvious that

both the exploration and exploitation phases are budget limited within this example.

Another example comes from the domain of wireless sensor networks. In particular, in
many such applications, sensor nodes are deployed for collecting information over a pro-
longed period of time. However, a node’s actions (such as sampling or data forwarding)
consume energy, and furthermore, it is typically physically infeasible to replace the bat-
tery of a particular sensor. Given this, the total number of actions that a single sensor
node may make is limited by the capacity of the sensor’s batteries. Now, typical sensor
network deployments require that sensors learn the optimal combination of actions that
can be performed, with the goal of maximising the collected information over a long
term. Thus, each action can be considered as an arm, with a cost equal to the amount
of energy needed to perform that task. Given this, in order to exploit (i.e. take the
optimal actions given reward estimates), the sensor has to efficiently explore (i.e. learn
the rewards of the tasks), within the battery limit. Now, in these examples, because
the total budget (e.g. the research budget, or the advertising budget) is limited, both

exploration and exploitation phases are limited as well.

To address this limitation, within this thesis, we introduce a new bandit model. We call
this the budget-limited MAB, in which pulling an arm is again costly, but crucially both
the exploration and exploitation phases are limited by a single budget. Note that in this
case, if the expected rewards for pulling the arms are known, then the optimal solution
is not to repeatedly pull the optimal arm ad infinitum, as is in other MAB problems, but
rather to pull a finite combination of arms that maximises the reward and fully exploits
the budget, since a budget-limited MAB can be reduced to an unbounded knapsack
problem (Andonov et al., 2000). To see this, consider that pulling an arm corresponds
to placing an item into the knapsack, with the arm’s expected reward equal to the
item’s value and the pulling cost the item’s weight. The total budget is then the weight
capacity of the knapsack. Given this, the optimal combination of items for the knapsack
problem is also the optimal combination of pulls for the budget—limited MAB. This
difference in desired optimal solution from existing MAB problems means that, when
defining a decision—making policy for our problem, we must be cognizant of the fact that
an optimal policy will involve pulling a combination of arms. As such, it is not sufficient
to learn the expected reward of only the highest—value arm; we must also learn the other
arms’ rewards, because they may appear in the optimal combination. Importantly, we

cannot simply import existing bandit policies, because they concentrate on learning only
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the value of the highest expected reward arm, and so will not work in this setting. For
example, consider a three—armed bandit, with arms X, Y and Z that have true expected
reward and pulling cost values of (80,52), (60,40) and (50,31). Suppose the budget is
185. At this point, the optimal solution is to pull arms X and Y one time each, and
Z three times, giving an expected total reward of 290. However, by just focusing on
the arm with highest expected reward, as existing bandit algorithms typically do, the
resulting total reward is 240 (by pulling arm X three times). In addition, focusing on
the arm with the highest reward—cost ratio, a straightforward modification of standard
MAB policies to the budget—limited version, is not optimal either. Indeed, Z is the arm
highest reward—cost ratio, and by repeatedly pulling Z, the maximal total reward we

can get is 250 (by pulling it three times).

It is clear from the abovementioned example that existing bandit algorithms may not
be suitable for tackling the budget—limited MAB. Thus, new techniques must be devel-
oped for this new problem, which do consider the combinatorial aspect of the optimal
solution to the budget-limited MAB problem. To date, however, none of the previous
work addresses these issues within the budget-limited MAB (see Chapter 2 for more
details). Thus, this thesis seeks to start addressing this gap. Specifically, in Section
1.1, we describe the research requirements that arm pulling algorithms should satisfy, in
order to achieve efficient total payoff, with respect to a given budget. We then introduce
an application scenario for the budget—limited multi—armed bandits, namely the afore-
mentioned problem of long—term information collection in wireless sensor networks in
Section 1.2. This scenario will be used as an application environment in which we will
evaluate the performance of our proposed budget—limited MAB algorithms. Following
that, we introduce the contributions of this thesis in Section 1.3. Finally, Section 1.4

outlines the overall structure of the remainder of this thesis.

1.1 Research Requirements

The aim of the work in this thesis is to design pulling policies that maximise the total
reward, with respect to the overall budget limit. Such policies, however, have to meet
a number of requirements in order to achieve the aforementioned goal. In particular,
research requirements for a pulling policy can be divided into empirical and theoretical
requirements. The former refers to the constraints desired by real-world applications,
while the latter aims to provide theoretical performance guarantees. Note that empirical
requirements typically focus on guaranteeing the good performance of the algorithm
in average situations, while theoretical requirements guarantee good performance even
for the worse case. Given this, it might occur that an algorithm with good empirical
performance may fail in extreme (i.e. worse case) situations. In contrast, an algorithm

with theoretical guarantees may be outperformed by other, theoretically well founded,
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algorithms, as is the case within the multi-armed bandits (see 2.2 for more details). As
a result, we consider both types of requirements in this thesis. The broad empirical

requirements that a pulling policy should satisfy are the following:

1. Experimental performance quality (Requirement 1): Since the budget—
limited MAB is motivated by many real-world applications, it is important to
design policies that achieve high performance quality (i.e. low regret) within real—
world settings. In particular, real-world applications typically have large problem
size (i.e. the number of arms is high). Given this, a pulling policy has to be able to

efficiently deal with this large problem size, and provide high performance quality.

2. Computational feasibility (Requirement 2): In many cases, the agent has
to make quick decisions, that have to be calculated in a short period of time. In
addition, many real-world applications have low computational capacity as well.
For example, wireless sensor nodes are limited in memory and computational ca-
pability. Given this, they are not suitable for computationally expensive methods.
Consequently, it is necessary to develop efficient policies that have low computa-

tional cost.

Apart from these empirical requirements, we also mentioned our theoretical research

aim in the discussion above, namely efficient finite—time regret bound:

3. Efficient finite—time regret bound (Requirement 3): Due to the finite over-
all budget, budget—limited MAB policies have to operate over a finite time interval.
Thus, it is important to guarantee that for any budget size, the regret is bounded.
That is, the performance of the proposed policy has to be efficient so that it is
always close to that of the optimal solution. In addition, a pulling policy should
be able to learn the optimal solution in the long term. Given this, it is desirable to
have policies that converge to the optimal policy with probability 1 as the budget

tends towards infinity (i.e. there is enough budget to learn the optimal behaviour).

1.2 Application Scenario

Given the research requirements above, we now consider how we can efficiently use the
budget—limited MAB model to tackle real-world challenges. In so doing, we first describe
the problem of long—term information collection in wireless sensor networks, which is one
of the real-world motivations of the budget-limited MAB model. In particular, efficient
long—term information collection is a key challenge within the domain of wireless sensor
networks (Rogers et al.,, 2009; Stankovic, 2004), and is gaining attention of a large
number of research studies (Dekorsy et al., 2007; Kho et al., 2010; Merrett, 2008; Ok
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FIGURE 1.1: Wireless sensor nodes.

et al., 2009). We then show how the aforementioned research requirements have to be
addressed in this scenario, and we also identify additional design requirements that we

have to take into account.

In more detail, wireless sensor networks (WSNs) are now being increasingly used in a
wide variety of applications, ranging from environmental, habitat and traffic monitor-
ing, to object tracking and military field observations (Rogers et al., 2009; Romer and
Mattern, 2004). In WSNs, each wireless sensor node is typically equipped with a sensing
module for sensing data from the surrounding environment, a radio transceiver module
for wireless communication, a small microcontroller as the processing unit, an external
memory for data storage and a limited energy source (usually a battery). The size of a
single sensor node can vary from the size of a shoe box to the size of a coin (see Figure
1.1). Furthermore, their cost is similarly variable, ranging from hundreds of pounds to
a few pence, constrained by parameters such as size, energy, memory, computational
speed and communication bandwidth required of individual nodes (Romer and Mattern,
2004). These networks are typically deployed for collecting information from the envi-

ronment, which is then forwarded in data packets to a base station (B.S), for further

!Taken from link http://www.npl.co.uk/server.php?show=ConWebDoc . 289;
2Taken from link http://amp.osu.edu/news/article.cfm?ID=4576;
3Taken from link http://www.intelligent-systems.info/biofeedback/biofeedback.htm;
“Taken from link http://amp.osu.edu/news/article.cfm?ID=4576.
All links are checked on 08/12/2011.
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FIGURE 1.2: Typical wireless sensor network.

processing. Such systems are typically required to operate over an extended period of

time (covering months or even years). Figure 1.2 depicts a typical topology of WSNs.

Note that some real-world WSNs requires newest data only, and thus, the value of
information that is sampled in the past rapidly decays as time passes by. Such WSNs
are typically deployed for real-time target tracking or real-time object localisation (He
et al., 2006; Simon et al., 2004). Within these networks, a fundamental goal is to send
collected data to the BS as fast as possible (i.e. the data has a strict delivery time
constraint). On the other hand, other networks focus on collecting information within a
non real-time manner. That is, the deployed network continuously collects information
from the surrounding environment, without having the aforementioned strict delivery
time constraint (i.e. the collected information can be delayed for a longer time before it
is delivered to the BS). Since most of the WSN applications are deployed to fulfil the
latter type of monitoring (Chong and Kumar, 2003; Merrett, 2008; Rogers et al., 2009),
here we focus on networks where the goal is to collect information over a period of time,

in a non real-time manner.
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Given this, the objective of this scenario is to develop policies that maximise the amount
of information collected by the WSN and delivered to the BS, over a given time interval,
m a non real-time manner. In addition, we want to avoid centralised approaches, as
this needs global information in order to achieve maximal data collection, and could
represent a significant computational bottleneck (Boukerche, 2008; Wagner and Wat-
tenhofer, 2007). For these reasons, we focus on decentralised approaches, in which there
is no central unit that coordinates the actions of the individual sensors. This approach,
however, leads to several issues. Specifically, to achieve system—wide goals, the nodes
must typically coordinate their actions with their neighbours (e.g. to forward data or
to track objects). In addition, since the nodes typically operate in a dynamically chang-
ing environment, they must be able to autonomously adapt their behaviour, without
having any global information about the system, in order to achieve long-term global
goals (e.g. maximal data collection or optimal coverage). Now, since WSNs are heav-
ily resource constrained (i.e. low energy capacity, size and computational constraints)
(Akyildiz et al., 2002; Rogers et al., 2009), this results in a number of significant and
specific research issues that have to be addressed. In particular, limited energy capacity
demands energy—awareness. That is, it is necessary to efficiently manage the energy
consumption of the nodes. Otherwise, rapid battery depletion may lead to insufficient

data collection from the network.

Against this background, the information collection problem that we address consists of
a set of sensor nodes, collecting information from their surrounding environment over
an extended period of time, without the aid of a centralised controller. Due to the
limited energy capacity of the nodes, energy efficiency is perhaps the most important
issue within the information collection problem (Chong and Kumar, 2003; Stankovic,
2004). Given this, it is important to wisely manage the energy consumption of the
nodes, such that they can decide whether to allocate more of this scarce resource to the
tasks of sampling, receiving, or transmitting data, in order to achieve maximal long—
term information collection. In addition, we also need to develop routing techniques in
order to deliver the data to the BS, and thus, to maximise the amount of information
collected in the network. Given this, in this scenario, we focus in particular on the

challenges of energy management and data routing.

Now, we show how this problem naturally maps onto a budget—limited MAB. In par-
ticular, in order to collect information from the environment, the agents can choose a
combination of data sampling, receiving, and transmission at each time step. These ac-
tions all consume energy, and different combinations (i.e. arms) need different amounts
of energy (i.e. pulling cost). Furthermore, since the capacity of the agents’ batteries is
limited, the total number of actions is limited over time as well, and thus, this limited
capacity can be seen as the budget of the bandit model. Note that the goal of the

WSN is to maximise the total amount of collected information over a prolonged period
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of time. Given this, by considering the amount of collected information at each time
step as the reward that the agent gets by choosing a particular combination of sensory
actions, we can model the information collection problem that a sensor agent is facing
as a budget—limited MAB.

We now return to the importance of the research requirements described in Section 1.1
within this scenario as follows. Note that the set of possible combination of actions, that
an agent can choose from, is typically large (see Chapter 7 for more details). Therefore,
the proposed approach has to be efficient in terms of tackling the problem of long—term
information collection within large MAB models (performance quality). In addition,
since the sensor agents are heavily resource constrained, it is important to develop infor-
mation collecting methods that do not require high computational cost (computational
feasibility). Now, since WSNs can be deployed in a large variety of environments (see
Chapter 7), high quality empirical results might not be sufficient, since the existence of
pathological behaviour cannot be ruled out. Thus, it is important to provide theoret-
ical performance guarantee as well (finite-time regret bounds). Given this, long—term
information collection in wireless sensor networks can be seen as a suitable application

for our bandit model.

However, beside the abovementioned requirements, efficient mechanisms to maximise
long—term information collection in WSNs have to deal with a number of additional
issues related to the significant physical constraints, such as node malfunctioning, or
limited communication (see Chapter 7 for more details). Given this, to design such

mechanisms, we also have to take the following requirements into account:

4. Adaptivity (Requirement 4): Since the sensor agents are typically deployed in
a priori unknown environments, efficient performance cannot be sustained without
the ability to learn and to adapt to the (unknown) environmental characteristics.
That is, the nodes should be able to learn efficient policies on-line, based on their
own experiences. Moreover, they have to achieve an efficient trade—off between

exploration and exploitation.

5. Robustness and flexibility (Requirement 5): Due to the long operating time
of the network, node failures and lossy communication links are likely to occur.
Even in these cases, the network operation should not collapse, rather it should
degrade gracefully. Therefore, the nodes should be able to handle these situations,

by ensuring that the operation of the remaining nodes is only minimally affected.

6. Limited use of communication (Requirement 6): Since communication is
typically the most expensive task in WSNs, a good information collection approach
should avoid having significant communication cost (i.e. the energy amount allo-

cated to sending control messages), in order to achieve efficient performance in
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information collection. In particular, by reducing the amount of energy for com-
munication, the sensor agents can allocate more energy to forwarding real data,

and thus, it can increase the amount of collected information.

Having explained the context of the research conducted within this thesis, we now detail

the specific research contributions.

1.3 Research Contributions

Given the requirements described in Section 1.1, our research aim is to develop pulling
policies for efficiently tackling the budget—limited multi-armed bandit problem. In so
doing, we contribute to the state—of-the—art and address gradually all four requirements
by developing a number of novel classes of pulling policies. More specifically, we make
four main contributions in this thesis. The first consists of a simple pulling policy that
addresses the empirical requirements, that is, Requirements 1 and 2 (Chapter 4). The
second focuses on addressing the theoretical requirement by proposing more advanced
policies (Chapter 5). These methods, however, demonstrate poor performance in the
scenario of long—term information collection of WSNs (i.e. they fail to fully satisfy the
empirical requirements). Against this background, the third group of contributions pro-
poses a trade—off between the two above, and proposes pulling algorithms that perform
well from both theoretical and empirical aspects (Chapter 6). Within the last con-
tribution group, we specifically address the research challenges within the problem of
long—term information collection in WSNs described in Section 1.2. These contributions

are summarised in Table 1.1.

Now, for each contribution, we briefly highlight their most salient properties in terms of

the requirements discussed earlier as follows.

1. Budget—limited e—first approach (Chapter 4): The first group of contri-
butions in this thesis addresses Requirements 1 and 2 by introducing the first
pulling policy, called the budget-limited e—first approach, that efficiently tackles
the budget—limited MAB problem.

In particular, the budget-limited e—first approach splits the total budget B into
two portions, the first €B of which is used for exploration, and the remaining
(1 — €)B for exploitation. In the exploration phase, the agent uniformly samples
the arms (i.e. the arms are sequentially pulled one after the other) to construct
estimates of their expected rewards. It then uses these estimates to calculate
the optimal combination of pulls to undertake in the exploitation phase. The key

benefit of this approach is that we can easily measure the accuracy of the estimates
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Chapter 4 Chapter 5 Chapter 6
budget— . .
. fractional fractional
limited KUBE KUBE KDE KDE
e—first
Experimental
performance +4(*) + - ++(%) +
quality
Computational () n 4t n i
feasibility
Finite-time % %
regret bound i ++() ++() T T

TABLE 1.1: An overview of our contributions in terms of the research requirements in
the budget-limited MAB domain. The symbols have the following meaning: ‘+’ (‘++’)
means that the requirement is (strongly) satisfied. In addition, ‘(*)’ indicates the best
performance of the row. On the other hand, ‘-> means the requirement is not satisfied.

associated with a particular value of €, because all of the arms are sampled the
same number of times. Hence, we can control the performance regret as a function
of e, which gives us a method of choosing an optimal ¢ for a given scenario. Given

this, our contributions within this chapter can be detailed as follows:

We show that the computational complexity of the budget—limited e—first
approach is O (¢K B + K In K) at each time step. That is, the policy has low

computational cost (Requirement 2).

We provide a O (B) regret bound for the budget-limited efirst approach,
which fails to fulfil Requirement 3, since it does not guarantee the convergence
of the budget-limited e—first approach to the optimal solution as B tends

towards infinity.

However, we improve the regret bound above by proving that with large
probability, the budget—limited e—first approach can achieve a O (B %) regret
bound. That is, Requirement 3 can be partially satisfied (i.e. the budget—
limited e—first approach converges to the optimal policy with high probabil-
ity).

We demonstrate that, despite the weak theoretical regret bound, the budget—
limited e—first approach still achieves efficient performance in tackling the

problem of long—term information collection within WSNs (Requirement 1).

2. Budget—limited upper confidence bound based approaches (Chapter 5):
The second group of contributions extends the abovementioned results by ad-
dressing Requirement 3 (i.e. efficient finite-time regret bound). In particular,
we propose two UCB-like policies, namely: (i) the knapsack based upper confi-
dence bound exploration and exploitation (KUBE); and (ii) fractional KUBE, the

first pulling policies that achieve logarithmic regret bound within the domain of
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budget—limited MAB. Unlike the budget—limited efirst approach, these policies
do not explicitly separate exploration from exploitation. Instead, at each time
step, they calculate the best combination of arms that provides the highest total
upper confidence bound of the estimated expected reward, and still fits into the
residual budget, using an unbounded knapsack model to determine this best com-
bination (Andonov et al., 2000). Note that the use of these techniques is common
in the MAB domain, as they present elegant ways to efficiently tackle the trade—off
between exploration and exploitation (Agrawal, 1995b; Audibert et al., 2009; Auer
et al., 2002; Auer and Ortner, 2010). Following this, they then use the frequency
that each arm occurs within this approximated best combination as a probability
with which to randomly choose an arm to pull in the next time step. The reward
that is received is then used to update the estimate of the pulled arm’s expected

reward, and the unbounded knapsack problem is solved again.

Now, since unbounded knapsack problems are known to be NP-hard, efficient ap-
proximation methods are needed in order to fulfil our empirical research require-
ments. Given this, KUBE uses an efficient approximation method taken from the
knapsack literature, called the density—ordered greedy approach, in order to esti-
mate the best combination (Kohli et al., 2004). Conversely, fractional KUBE uses
a different approximation approach to tackle the knapsack problem. In particular,
it relaxes the unbounded knapsack to a fractional version, where fractions of items
are allowed (Kellerer et al., 2004; Marcello and Toth, 1990). Since the fractional
version is computationally less expensive than the density—ordered greedy method,
fractional KUBE clearly has lower computational cost, compared to that of KUBE.
However, this computational gain is balanced by a decreased performance qual-
ity. In particular, the specific contributions within this group can be described as

follows:

e We show that the computational complexity of KUBE is O (BKInK) at
each time step, where K is the number of arms. In addition, we also show
that fractional KUBE has a decreased computational complexity of O (BK).
That is, both KUBE and fractional KUBE are computationally more expen-
sive, compared to the budget-limited e—first approach, but they still have a

polynomial computational complexity (Requirement 2).

e We provide a O (In B) upper bound for the performance regret of KUBE and
fractional KUBE respectively. This implies that these policies are also a

zero-regret policy, and thus, they satisfy Requirement 3.

e We also show that this logarithmic bound is asymptotically optimal. That
is, it only differs from the best possible regret bound by a constant factor.

However, we demonstrate that the constant factor within the lower bound
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of fractional KUBE is larger than that of KUBE. That is, between the two,

fractional KUBE has a worse lower bound.

e We demonstrate that KUBE typically outperforms its fractional counterpart
in tackling the problem of long—term information collection within WSNs.
However, they are both outperformed by the budget—limited e—first approach
in many cases. That is, they both fail to address research Requirement 1 (i.e.

experimental performance quality).

3. Budget—limited decreasing e—greedy based approaches (Chapter 6): As

discussed above, the third group of contributions is dedicated to determining a
trade—off between satisfying both empirical and theoretical requirements. In so
doing, we introduce a class of e—greedy based policies, which consists of two pulling
policies. The first is more efficient, but requires a computationally expensive algo-
rithm, namely knapsack based decreasing e—greedy (KDE), while the second one,
called fractional KDE, is computationally less expensive, but provides weaker per-
formance, compared to that of the former. In more detail, similar to the UCB-
based algorithms, KDE and its fractional counterpart also use the unbounded
knapsack approach to determine the best combination of arms that provides the
highest total estimated expected reward at each time step t. Following this, they
randomly choose between the probability distribution created from the frequency
with which the arms occur in this best combination and the uniform distribution
with probability (1 —e;) and ey, respectively. From the chosen distribution, the
algorithms then randomly draw an arm to pull in the next time step. Again, simi-
larly to the case of UCB-based policies, KDE and its fractional counterpart differs
from each other in the way they solve the unbounded knapsack. In particular,
KDE uses the density—ordered greedy, while fractional KDE uses the fractional
knapsack model. Thus, the contributions related to these policies can be detailed

as follows:

e We show that the computational complexity of KDE and its fractional coun-
terpart is O (BK In K) and O (BK), respectively. These results are similar
to that of the UCB-based algorithms (Requirement 2).

e We provide a O (In B) upper bound for the performance regret of KDE and
fractional KDE. This implies that these policies are asymptotically optimal
in terms of minimising the performance regret. Consequently, they satisfy
Requirement 3 (i.e. efficient finite-time regret bound). We also show that
whereas fractional KDE is computationally more efficient than KDE, it has
a worse lower bound and is less efficient within the application scenario de-

scribed in Section 1.2.

e We demonstrate that KDE achieves good performance in practice (Require-

ment 1). In particular, KDE achieves similar performance, compared to that



Chapter 1 Introduction 15

of the budget—limited e—first approach. On the other hand, fractional KDE

is outperformed by budget-limited e—first in many cases.

We now turn to the contributions that address the research challenges within the WSN
domain discussed in Section 1.2. In particular, as previously discussed, we focus on
the challenges of energy management and data routing. However, tackling this joint
problem of energy management and routing is hard. In particular, each agent has a
number of options to allocate amounts of energy to its sensory tasks. In addition, it
needs to decide which packet it has to send, and to whom among its neighbouring
agents. These options together result in a large task combination space (i.e. the space
of combined tasks of energy allocation and packet transmission/receiving), from which
the agent has to determine an optimal one (i.e. the task combination that leads to
the desired goal of the network). This task combination space is typically exponential,
compared to the size of the network, so the joint problem quickly becomes infeasible in
terms of complexity. Thus, to simplify the complexity of the original joint problem, we
separate the energy management and data routing problems. However, as we will show,
by using the solutions of the separated problems, efficient information collection can be

still achieved.

In more detail, the decomposition of the original problem can be described as follows.
It is based on the observation that by adaptively setting the value of the energy budgets
allocated to the various sensory tasks, the agents should achieve better performance in
dynamic environments than systems without the ability to adapt in this fashion. How-
ever, in order to determine which energy budget allocation combinations are optimal
(exploitation), the agent first has to learn the performance of all the combinations (ex-
ploration). Thus, it has to balance between exploration and exploitation. Given this,
within the energy management problem, we seek for an efficient learning method that
finds a trade—off between exploring and exploiting the energy budget allocation combi-
nations, in order to achieve optimal performance of long—term information collection.
Now, suppose that all the agents have already set their energy budget value for sam-
pling, receiving, and transmitting tasks. In this case, to maximise the value of the total
collected information, it is obvious that we need to maximise the total information value
of data sampled or relayed by agents that are one hop from the BS. The latter, however,
is equal to data that is sampled or relayed by agents that are two hops from the BS, and
so on. Thus, it is also important to maximise the information throughput (i.e. the total
transmitted information value) between neighbouring layers of agents (i.e. the group of
agents that are the same distance from the BS) by using efficient routing techniques.
This forms the routing problem we aim to solve within this application scenario. Given

this context, this work advances the—state—of-the—art in the following specific ways:
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Chapter 7
MAB/EM MITRA MITRA ;
Adaptivity ++ - -
Robustness and flexibility ++ ++ ++
Limited use of communication ++ - ++

TABLE 1.2: An overview of our contributions within the WSN domain in terms of the

research requirements. The symbols have the following meaning: ‘+’ (‘++’) means that

the requirement is (strongly) satisfied, and ‘-’ means the requirement is not satisfied,
respectively.

4. Long—term information collection in WSNs (Chapter 7): Here, we pro-
pose a budget—limited MAB based energy management model for each agent within
the network, in order to solve the energy management problem. For the routing
problem, we propose two simple decentralised routing algorithms. The first is
proveably optimal, but can sometimes use a large number of communication mes-
sages to coordinate the routing. The second algorithm is near—optimal, but its
communication cost is significantly lower. By using one of the proposed routing
algorithms, our approach can calculate the total amount of information through-
put that the routing algorithm produces within that particular time step. This
amount then forms the reward value that the MAB model receives by using the
chosen energy budget allocation combination (see Section 7.4 for more details).
With this reward value, the MAB model receives feedback about the efficiency of
the chosen energy allocation combination, and thus, it can learn which combina-
tions are more efficient ones. In more detail, these contributions are summarised

in Table 1.2, and can be described as follows:

e We devise the first multi-armed bandit learning based energy budget alloca-
tion approach, called MAB/EM. Based on this, we show how efficient energy

management can be sustained in the long term, by using this approach.

e We propose two simple decentralised routing algorithms, MITRA and MITRA .
The former is the first to proveably maximise the total information through-
put between layers of agents, whilst the latter has a near—optimal performance
(it achieves, on average, 98% of the optimal solution), but with a reduced

communication cost.

e We empirically evaluate the performance of these algorithms through exten-
sive simulations and show that information collection is increased by up to
120%, by applying the proposed algorithms, compared to that of USAC, a
state-of-the—art method (see Section 7.1 for more details of USAC). Fur-
thermore, we show that the communication cost of our approaches are low,

compared to the cost of real data transmission.

These contributions have led to a number of peer-reviewed publications:
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e L. Tran—Thanh, A. Chapman, J. E. Munoz De Cote Flores Luna, A. Rogers and
N. R. Jennings (2010). Epsilon—First Policies for Budget—Limited Multi-Armed
Bandits. In Proceedings of the Twenty—Fourth AAAI Conference on Artificial
Intelligence (AAAI-10), pp. 1211-1216, 2010.

e L. Tran-Thanh, A. Chapman, A. Rogers and N. R. Jennings (2012). Optimal
Policies for Budget—Limited Multi-Armed Bandits. Accepted to the Twenty-Sixth
Conference on Artificial Intelligence (AAAI-12), 2012.

e L. Tran—Thanh, A. Rogers, and N. R. Jennings (2012). Long—Term Informa-
tion Collection with Energy Harvesting Wireless Sensors: A Multi-Armed Bandit
Based Approach. Journal of Autonomous Agents and Multi-Agent Systems, Vol-
ume 25, Issue 2, pp. 352-394.

The research results presented in the above publications are summarised and expanded
upon by this thesis. To guide the reader through the remaining chapters, the following

section contains a brief outline of the thesis structure.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

e Chapter 2 analyses the state—of-the—art in the multi—armed bandit literature. In
particular, we describe the standard MAB model in more detail. Following this,
we discuss the variants of MABs that focus on pulling costs and other pulling con-
straints. We then continue with the review of the unbounded knapsack literature,

that forms the basis of our solutions in the subsequent chapters.

e Chapter 3 introduces our formal model of a budget-limited multi-armed bandit
problem. Following this, we formulate our research objectives, with respect to the

research requirements of this thesis.

e Chapter 4 discusses the budget-limited e—first approach in more detail. In par-
ticular, we first introduce the pulling policy, then we discuss its computational
complexity. Following this, we prove that its performance regret bound is typ-
ically a linear function of the budget. However, we also show that with a high
probability, this regret bound can be improved to O (B §>, where B is the budget

size.

e Chapter 5 deals with the budget—limited upper confidence bound based approaches.
Given this, we first introduce KUBE and fractional KUBE , and we discuss their
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computational cost. We then provide upper bounds for their performance. We

also show that their regret bounds are asymptotically optimal.

Chapter 6 analyses the budget—limited decreasing e—greedy based approaches. In
more detail, we first discuss the pulling policies, namely KDE and fractional KUBE
. We also discuss their computational cost. We continue the analysis by providing
upper regret bounds for their performance, and showing that these bounds are

also asymptotically optimal.

Chapter 7 then contains the application of the budget—limited MAB model to
the problem of long—term information collection problem within WSNs. We first
present related work in this area, and detail why it does not meet all our re-
quirements. Following this, we give the formal descriptions of our network model
and research objectives. We then discuss our approach for efficient long—term
data collection, which includes the budget—limited MAB learning based energy
management method, and routing algorithms, respectively. Our approach is then

empirically evaluated.

Finally, Chapter 8 concludes and presents directions for future work to broaden
the scope of our research and increase its practical applicability to the model of
budget—limited bandits.



Chapter 2

Literature Review

In this chapter, we provide an overview of existing research studies against which our
work is positioned. In order to do so, in the first part of the chapter (Section 2.1) we
describe the standard, stochastic multi—-armed bandit problem in more detail, and discuss
the existing works on this bandit model. Following this, we focus on existing pulling
policies of the standard MAB, that form the basis of our solutions in the subsequent
chapters. We compare their performance from both a theoretical and an empirical
perspective in Section 2.2, and we continue with the discussion of the variants of the
standard bandit model in Section 2.3. In particular, we focus on bandit models that
take several pulling constraints into account, and we further focus on these models
that contain pulling costs or limited pulling abilities. Furthermore, as mentioned in
Chapter 1, we use the unbounded knapsack approach in order to tackle our budget—
limited MAB problem. Given this, we give a detailed overview of the knapsack literature
in Section 2.5. More specifically, we first introduce the knapsack problem and its variants
(including the unbounded knapsack) in Section 2.5.1. We then continue with solutions
that efficiently tackle the unbounded knapsack (section 2.5.2). Finally, in Section 2.6,
we conclude this chapter by summarising our findings and relating them back to our

original research requirements (as detailed in Section 1.1).

2.1 The Stochastic Multi-Armed Bandit Problem

In this section, we describe the stochastic, or standard, MAB model (Robbins, 1952) in
detail. In the MAB problem, there is a machine with K arms, each of which delivers re-
wards, that are independently drawn from an unknown distribution, when the machine’s
arm is pulled. A gambler must choose which of these arms to play. At each time step,
he pulls one of the machine’s arms and receives a reward (or payoff). The gambler’s

purpose is to maximise his return; that is, maximise the sum of the rewards he receives
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over a sequence of pulls. As the reward distributions differ from arm to arm, the goal is
to find the arm with the highest expected payoff as early as possible, and then to keep

gambling using that best arm.

Now, to keep the terminology consistent with the multi-agent system based wireless
sensor network problem considered in Chapter 7, hereafter we refer to the gambler as an
agent. Thus, we can formulate the MAB problem as follows. Let K denote the number
of the arms that the agent can pull. At each time step ¢, the agent pulls arm i (¢), which
delivers the reward 7;(4) (t), drawn from an unknown distribution of arm 7 (¢). Finally, let
T > 0 denote the time horizon in which the agent operates. Thus, we have the following

optimisation problem:
T
max » i (t). (2.1)
t=1

Thus, the agent has to choose a policy, that is, a sequence of pulls, that may deliver the
maximal reward at each time step t in order to achieve the maximum of equation 2.1.
It is clear that if the distributions, from which the rewards are drawn, were known, the
optimal policy would be to always pull the arm with the highest expected reward in order
to maximise the cumulative rewards. Given this, in order to analyse the performance
of a pulling policy we compare its performance with this theoretical optimal policy. In
particular, we study the regret of the policy for not playing optimally. Now, let u; denote

the expected reward value of arm ¢, where
©" = max ;. (2.2)
7

The regret RT (A) of pulling policy A after T pulls can be defined as:

T
RT (A) =T =Y rigy (1). (2:3)

=1
The MAB model, due to its clear representation of the trade—off between exploration
and exploitation (see Chapter 1), has been used in a variety of areas. The historical
motivation for this model was given by clinical trials where different treatments need
to be experimented with, while patient loss should also be minimised as well (Hardwick
and Stout, 1991). MAB models are also used to solve financial and investment problems
as well. For example, optimal, but a priori unknown, investment options can be learned
by using MAB exploration, while income maximisation is provided by MAB exploitation
(Lai and Lim, 2005; Wang and Wang, 2009). In addition, MAB can also be adopted to
the area of e-commerce, as an efficient way to identify the ranking of web documents

(Radlinski et al., 2008), or as a learning technique for optimising online advertisement
(Chakrabarti et al., 2008).
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2.2 Stochastic Bandit Policies

Within this section, we discuss the bandit pulling policies in more detail. Recall that
a fundamental dilemma in the MAB problem is the trade-off between exploration and
exploitation. Specifically, if the agent exclusively chooses the action that it thinks is the
best (i.e. exploitation), it may fail to discover that one of the other actions actually has
a higher expected payoff. On the other hand, if he spends too much time trying out
all the actions and gathering statistics (i.e. exploration), it may fail to choose the best

action often enough to get a high return.

Against this background, researchers have proposed a variety of approaches that tackle
this exploration-exploitation conflict from different aspects. Among these, the most sim-
ple policies are the greedy algorithm and its variants (Sutton and Barto, 1998; Vermorel
and Mohri, 2005). In particular, the simplest policy in any bandit setting is a greedy pol-
icy (Sutton and Barto, 1998), which chooses the arm with the current highest estimated
exptected reward at each time step. In most bandit problems, however, this algorithm
demonstrates low efficiency, as the agent performs insufficient exploration (Sutton and
Barto, 1998). Given this, a number of variants have been introduced in order to ex-
plicitly take exploration into account. One of the simplest approaches is the e—greedy
policy (Watkins, 1989), in which the agent follows the greedy policy (i.e. it pulls the arm
with the highest estimate) with probability (1 —¢), and it selects a random arm with
probability €. The value of ¢ is selected a priori and can be interpreted as an exploration
parameter; that is, higher values correspond to more exploration and wice versa. The
exploration parameter € guarantees that every possible arm is continuously pulled as
time goes by. This implies that e—greedy fails to achieve asymptotic convergence to the
optimal behaviour, since it is desirable to stop exploring once the optimal arm is learnt.
Nevertheless, this policy typically performs well in finite time (i.e. when the running
time horizon is finite), in a number of applications (Kuleshov and Precup, 2010; Sutton
and Barto, 1998; Vermorel and Mohri, 2005).

Another variant of the greedy algorithm is the e—first approach (Even-Dar et al., 2002),
which explicitly splits the exploration phase from exploitation. In particular, if the time
horizon is T, then the agent randomly chooses an arm to pull (exploration) for the first
eT time steps and then selects greedily for the remaining (1 — )T steps. This policy
ensures that all exploration is performed at the beginning when the agent has the highest
levels of uncertainty regarding the expected rewards of each arm. Similarly to the e-
greedy, this policy does not converge to the optimal behaviour in general, since it might
wrongly choose a suboptimal arm to pull within the exploitation phase. However, Even-
Dar et al. showed that a high probability, the e—first approach can achieve asymptotic
convergence. This type of performance guarantee, which only holds with a certain

probability, is referred to as the probably approximately correct (PAC) analysis (Valiant,
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1984). Nevertheless, e-first is found to outperform existing pulling policies in may
applications (Kuleshov and Precup, 2010; Vermorel and Mohri, 2005). This is due to
the fact that by focusing on pure exploration at the beginning, e—first typically learns
the optimal behaviour faster than other policies, that carry the exploration throughout

the whole operating time.

To address the desire for asymptotic convergence, Auer et al. (2002) extended the pre-
vious two policies and proposed an algorithm, called decreasing e—greedy, or e;—greedy,
where the agent explores with probability min{1,e;} at time ¢ and otherwise selects
greedily. Here, ¢, = % for some C > 0, and is decreasing as t grows. Beside the property
of asymptotic convergence, Auer et al. also showed that decreasing e—greedy has a strong
finite-time performance. In particular, they proposed an O (InT") upper bound for the
performance regret of the policy, where T is the running time horizon. This performance
bound is asymptotically optimal, as it only differs from the best optimal regret bound,
that a pulling policy can achieve, by a constant factor. In fact, it can be shown that for
any pulling policy, there exists a bandit setting, in which the performance regret of that
particular policy is Q (InT) (i.e. it is at least logarithmic) (Anantharam et al., 1987;
Lai and Robbins, 1985). In addition, decreasing e-greedy shows good performance in
experimental studies, compared to that of other policies (Kuleshov and Precup, 2010;
Vermorel and Mohri, 2005). Specifically, it converges to the performance of e—first and

typically outperforms the others.

Apart from the variants of the greedy approach, other pulling techniques focus on theo-
retical guarantees. In more detail, Lai and Robbins (1985) proposed a policy, which they
called uniformly good policy. This achieves logarithmic regret bounds for some specific
families of probability distributions (including exponential families), as the time horizon
tends to infinity. The regret bound’s constant factor is based on the Kullback—Leibler di-
vergence (Lai and Robbins, 1985), and this bound guarantees that the algorithm satisfies
the property of asymptotic convergence. Their result was later improved by Anantharam
et al. (1987) and Agrawal (1995b). In particular, Anantharam et al. extended it to ban-
dit models where multiple arms can be pulled at the same time. Agrawal later proposed
a class of algorithms that is probability distribution independent; that is, it does not
contain any restriction on the distributions of the rewards. To do so, they applied a
concept called optimism in the face of uncertainty (OFU), first introduced by Kaelbling
(1993), that allows the agent to select the arms by using a combination of the estimates
of the expected reward values and the uncertainty of those reward estimates, such that
arms with high uncertainty are selected more often. By so doing, Agrawal proved that
the proposed algorithms are thus much easier to compute than Lai and Robbins’. In
addition, they can still achieve the same asymptotic optimal regret bound, but with a

significantly larger constant factor.
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To provide finite-time regret bounds, Auer et al. (2002) enhanced Agrawal’s technique
by designing a class of policies called upper confidence bound (UCB). These approaches
achieve bounded regret in finite time as well as having optimal asymptotic convergence.
In particular, they first proposed UCB1, which can be described as follows. UCB1 pulls
each arm once at the beginning, then at each subsequent time step t, UCB1 selects arm

7 that maximises:

R 2Int
Hit + ) (24)
Nt

where fi;; is the estimate of arm i’s expected reward value, and n;; is the number of
times UCBI1 pulled arm ¢ until time step ¢. This policy achieves O (InT') finite-time
regret bound, but the constant factor of the bound is significantly larger than that of
Lai and Robbins’ method. In addition, it was found to perform poorly in finite-time
applications (Auer et al., 2002). To improve the performance of UCBI in real-world
applications, Auer et al. modified the policy to UCB-tuned so that the latter pulls the

arm that maximises:

R 2Int . 1
Hit + g min {17 Vi (nit) }7 (2.5)
where
1 & 21nt
Vi (niy) = 2 (ty) — fu : 2.6
i (nit) e ;n (tr) — iz + s (2.6)

Here, r; (t;) denotes the reward value we get by pulling arm ¢ at time step ¢, (i.e. the
time step in which we pull arm i the 7% time). Although UCB-tuned shows good
performance in applications, it does not have any theoretical guarantees such as finite—

time regret bound or asymptotic convergence (Auer et al., 2002).

In addition, Auer et al. (2002) also proposed UCB2, a variant of UCB1, with the purpose
of decreasing the large constant factor within the regret bound. This UCB-based policy
can be described as follows. The policy chooses an arm, and pulls it for an epoch (i.e.
a specified interval of time). In so doing, it maintains an index 7; for each arm ¢, that
denotes the starting time of the 7% epoch in which we pull arm i. Similar to UCBI, it
pulls each arm once at the beginning, setting 7; = 0 for all . Following this, at each

epoch, the agent chooses an arm that maximises:

(1+a)ln (ﬁb)
20 () ’

ﬂi,t + (27)

where
() =T(14+a)™]. (2.8)

Here, the length of epoch 7; (i.e. the 7% epoch in which we choose arm i to pull) is

[(r) —1(m; — 1). In addition, e is Euler’s number and « is a tuning parameter, that has



24 Chapter 2 Literature Review

to be set a priori. Finally, at the end of epoch 7;, we increase the value of 7; by 1.

Note that the UCB approach is computationally less expensive than Lai and Robbins’
algorithm. However, it has a lower efficiency in terms of regret bounds. In particular,
the asymptotic constant factor within the regret bound of Lai and Robbins’ algorithm is
tighter than that of the UCB. Given this, a range of more recent research work focuses
on improving the constant factor within the logarithmic regret bound of the UCB. In
particular, Auer and Ortner (2010) revisited the UCB approach and showed that UCB
has inefficient regret bounds if the real expected reward values of the arms are close
to each other (i.e. it is hard to learn the optimal arm). They proposed an extension
of UCB that shows improvement in terms of providing tighter regret bounds than that
of the UCB. More recently, Maillard et al. (2011) derived a logarithmic regret bound
that contains a Kullback—Leibler divergence based constant factor, which is proven to
be near-optimal (i.e. it is as tight as Lai and Robbins’ regret bound). In so doing,
the authors improved the UCB based technique described in the work of Honda and
Takemura (2010). However, by improving the regret bound, the algorithm becomes

significantly more costly in terms of computational complexity.

Similar to the UCB policies, the POKER (for price of knowledge and estimated reward)
algorithm also follows the concepts of interval estimation and OFU. In particular, let
*

©* = max; u; denote the optimal expected reward value. Now if I (¢) denotes the arm

with the highest estimated reward mean at time step ¢ such that:
I (t) = arg max fl4, (2.9)
(2

then we have fir;) = max; fi;;. Now, let §; denote the expected reward improvement at
time step t, which can be defined as §; = E [u* — ﬂ[(t)]- At each time step ¢, the agent

chooses an arm 7 that maximises:

flit + o0t P [Mz‘ — [l = 5t] (T —1), (2.10)

where P [ui — B = 5,:] is the probability that by choosing arm ¢, the reward improve-
ment will be higher than J;. Intuitively, the product in the second term of Equation 2.10
can be viewed as an estimate of the knowledge acquired if arm 4 is pulled repeatedly
until 7. However, both §; and P [ui — Br@y > (5,5] are not known a priori. Within
POKER, the agent uses heuristics in order to estimate these values. In so doing, it
first takes the decreasing order of the arm’s estimated reward mean values such that
iy ¢ 2 fligt > .- = fli,t, where g is the number of arms that have been pulled at least
once until time step t. Now, the agent estimates d; by using the following approximation

technique:
_ Hiyt — Hi gt

== (2.11)



Chapter 2 Literature Review 25

To estimate the reward improvement probability, let ;; denote the estimated standard

deviation of arm ¢’s reward distribution. Thus, noting that

P lpi — i@y = 0 = P [pi > ey + 04 (2.12)

which is estimated by

/ ./\/’(:c,ﬂi,t, = ) dx, (2.13)
Ay +ot it
Git

where N (:1:, [t \/ﬁ) denotes a normal distribution with expected value jfi; ; and stan-
Git ’
N
i until time step ¢. By using the abovementioned heuristics, Vermorel and Mohri (2005)

dard deviation . Here, n;; denotes the number of times the agent has pulled arm
proved that POKER, asymptotically converges to the optimal policy as time goes by.
On the other hand, they could not provide a finite-time regret bound. More recently,
Sykulski (2011) demonstrated that POKER shows poor performance within experimen-

tal studies, compared to that of simpler policies such as e—greedy or efirst.

Apart from the abovementioned approaches, an alternative way to find a trade—off be-
tween exploration and exploitation is to randomly pull the arms such that the arms that
are expected to have higher rewards are selected with higher probability. This concept
is usually denoted as the probability matching technique (Vermorel and Mohri, 2005).
In particular, the first of this kind is SoftMax, proposed by Luce (1959), where at each
time step t, arm ¢ is chosen with probability

Bt

pi(t) = ————, (2.14)

gt

K iyt
Zj:le T

where 7 is a tuning parameter, which determines the degree of exploration. In particular,
large values of 7 correspond to more equal weighting between the arms, and thus, more
exploration. On the other hand, as 7 — 0, SoftMax converges to the greedy algorithm
(i.e. pure exploitation). By suitably choosing the value of 7, SoftMax can ensure that
arms that are likely to be suboptimal are less frequently selected, compared to arms
with high reward values. However, since 7 does not change over time, the overall de-
gree of exploration does not change either. This leads to poor theoretical performance
of SoftMax; that is, there is no guarantee that SoftMax will satisfy the property of
asymptotic convergence (similarly to the case of e—greedy). To address this drawback,
Cesa-Bianchi and Fischer (1998) proposed the SoftMiz algorithm in which the value of
7 is decreasing over time, in a similar vein to decreasing e—greedy (it is typically de-
creased at rate %, or @) They also provided a O (ln2 (T)) finite-time regret bound,
which implies the asymptotic converging behaviour of SoftMix (since the regret is sub—
linear). However, this regret bound is less efficient, compared to the optimal logarithmic

bounds. Another popular method is the exponential weight algorithm for exploration



26 Chapter 2 Literature Review
Computational Experimental | Asymptotic Finite-Time Constant
Cost Performance | Convergence Bound Factor
efirst +4(*) +4(*) - - -
e—greedy ++ +-+ - - -
decreasing ++ ++ Yes O(InT) large
e—greedy
Lai and Robbins’ + - Yes - small(*)
Agrawal’s ++ - Yes - large
UCBL1 ++ + Yes O(InT) large
UCB-tuned + ++ - - -
UCB2 ++ + Yes O(InT) moderate
Improved UCB + - Yes O(InT) small
Maillard et al.’s + - Yes O(InT) small(*)
POKER + + Yes - -
SoftMax +4 +4 - - -
SoftMix ++ ++ Yes 0] (ln2 T) large
Exp3 + + Yes O (\/T) large

TABLE 2.1: An overview of the pulling policies in the bandit domain. The symbols

have the following meaning: ‘+’ (‘++’) means that the property is (strongly) satisfied.

In addition, ‘(*)’ indicates the best performance within a row. On the other hand, ‘-’
means the property is not known.

and ezploitation (Exp3), proposed by Auer et al. (2003). In particular, at each time

step t, p; (t) is calculated as follows:

pi(t) = (1— ) i

2.15
Zj:l wj (t) ( )

|-

Here, v € (0,1] is a tuning parameter, and wj (t) are the probability weights, that can
recursively be calculated as follows. For each i € {1,2,..., K}, w; (1) = 1, and if arm 4

is pulled at time step t, we have

wi (£ + 1) = w; (£) exp <ypr(t(;}(> (2.16)

Otherwise, we have w; (t+ 1) = w; (t).

the degree of exploration. In particular, v = 1 yields pure random exploration, and

Note that the tuning parameter v determines

~ — 0 brings Exp3 towards the pure exploitation approach. This algorithm, however, is
designed for tackling non—stochastic bandit problems (see Section 2.3 for more details),
and thus, shows inefficient performance in stochastic bandit settings. More specifically,
it can achieve O (\/T ) regret bound, which is significantly less than the optimal loga-
rithmic regret bound (Auer et al., 2003).

In summary, the comparison of the abovementioned policies is depicted in Table 2.1. In

particular, we can see that at one extreme are the simple and experimentally efficient
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policies such as efirst and e—greedy. However, these algorithms cannot guarantee the-
oretical efficiency (i.e. asymptotic convergence and finite-time regret bounds). On the
other hand, UCB-based algorithms (e.g. UCB1, UCB2, or Maillard et al.’s algorithm)
achieve efficient theoretical performance, but with poor experimental results. Other
algorithms typically show significant shortfalls, compared to the abovementioned algo-
rithms. In particular, they either have poor performance in practice, compared to that
of the efirst, or they provide significantly worse theoretical guarantees, compared to
that of the UCB-based approaches. A notable exception, however, is the decreasing
e—greedy policy. More precisely, this algorithm approaches the performance of the e-
first in practice, and shows similar theoretical results, compared to that of the UCB
algorithms. Given this, it acts as a trade—off between the simple, but experimentally
efficient, approaches and the theoretically more advanced, but experimentally poorly
performing, algorithms. Since these algorithms do not take pulling cost into account,
they are not suitable to the budget—limited multi-armed bandit problem. However,
they still form the foundations on which we can rely, in order to efficiently tackle the
budget—limited MAB. In particular, within Chapters 4, 5, and 6, we will introduce three
types of budget—limited MAB algorithms, based on the e—first, UCB, and the decreasing
e—greedy approaches of the standard MAB.

2.3 Bandit Variants

Given the detailed description of the stochastic bandit model and its pulling policies in
the previous section, we now consider a number of variants of the MAB model. Although
these variants typically do not show similarities to the budget—limited MAB, many of
them may form the basis of our future work. The bandit model can be varied from a
number of aspects, such as varying the set of arms, the behaviour of the rewards, or
additional information that the agent can take into account. These variants are covered
in detail within this section as follows. In Section 2.3.1, we first describe the bandit
variants that consider different types of available arms to pull. We then continue with
bandit models that vary the nature of the reward values in Section 2.3.2. In addition,
Section 2.3.3 focuses on bandit models where additional information is also available

(beside the reward value that the agent receives by pulling a particular arm).

2.3.1 Set of Arms

One way to extend the multi-armed bandits is to allow infinitely many arms (i.e.
continuum—armed bandits), instead of limiting the arms to a finite set (Agrawal, 1995a;
Auver et al., 2007; Bubeck et al., 2011; Cope, 2009; Kleinberg, 2005). Such problems

can be found, for example, in control theory, where the agent has to find an optimal
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parameter setting from a continuous parameter space. Other examples include, but are
not limited to product pricing, transmission power controlling, and temperature optimi-
sation in chemical processes (Bubeck et al., 2011; Cope, 2009). This problem was first
discussed by Agrawal (1995a), and a pulling policy with near optimal regret bounds was
provided by Kleinberg (2005). This result was later improved by Auer et al. (2007).
More recently, Kleinberg et al. (2008) generalised the continuum-armed bandit prob-
lem to the bandit model in metric spaces. Based on this result, Bubeck et al. (2011)
extended the model so that the set of arms is allowed to be a generic measurable space
and the mean-—payoff function is locally Lipschitz continuous '. Although we focus on
the case of finite set of arms in this thesis, we consider the continuum-armed variant as
a possible way to extend our work, and thus, the aforementioned works may found the

basis of future investigations within the budget—limited MAB domain.

Another way to vary the set of arms is to allow the agent to pull more than one arm
at the same time (Anantharam et al., 1987; Cesa-Bianchi and Lugosi, 2009). More
specifically, Anantharam et al. (1987) allows the agent to pull m > 1 arms at the
same time (m < K). Based on the technique introduced by Lai and Robbins (1985),
Anantharam et al. proposed a pulling policy that proveably achieves logarithmic regret
bounds (i.e. the bound is asymptotically optimal). More recently, Cesa-Bianchi and
Lugosi (2009) introduced the combinatorial bandit problem in which the agent chooses a
finite combination of arms to pull. However, the number of arms that the agent can pull
at the same time, is limited by a threshold L < K. Cesa-Bianchi and Lugosi provided
an algorithm, called ComBand, that achieves O (L\/m ) regret bound, where N
is the number of available combinations of arms that the agent can pull at each time
step. Within our settings, we only allow the agent to pull one single arm at each time

step. Given this, this variant of MAB is out of our scope.

Apart from the abovementioned variants, other research work allows the set of arms to
change over time (Chakrabarti et al., 2008; Wittle, 1981). In more detail, Wittle (1981)
studied the arm acquiring bandits, in which new arms are available to the agent during
the operating time. On the other hand, Chakrabarti et al. (2008) discussed the mortal
bandit problem that allows the arms to be deleted. These models are motivated by a
number of applications in which new options can arrive or disappear from the system
(e.g. online advertisement, or financial investments). Note that within the budget—
limited models which we focus on in this thesis, the set of feasible arms (i.e. arms that
we can pull with respect to the remaining budget) decreases over time as the pulling
budget decreases. However, within mortal bandits, it is known a priori which arm
becomes infeasible in the future, while within the budget-limited model, this is not
known in advance, since it depends on the sequence of pulls in the past. Hence, an arm

might become infeasible to be pulled at time ¢ if we choose a particular pulling sequence,

'A function f () is locally Lipschitz continuous if for every  from its domain, there is a neighbour-
hood U (z) of z and a constant k such that if 1,22 € U (), then |f (z1) — f (z2)] < k|z1 — z2].
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and the same arm might be still feasible, if we choose another sequence of pulls. This
indicates that both arm acquiring and mortal bandit models are not suitable to describe

our budget-limited bandit problem.

2.3.2 Nature of Rewards

In the stochastic bandit model, the rewards are randomly chosen from unknown, but
fixed distributions. However, many real-world applications require non—stationary be-
haviour; that is, the reward distributions may vary over time. This situation typically
occurs in systems where the environment is dynamic (i.e. the environmental character-
istics vary over time), such as wireless sensor networks, financial markets, or dynamic
controlling systems. In this spirit, Wittle (1988) introduced the restless bandit problem,
in which the state of each unselected arm changes over time. In more detail, the reward
distribution of the arms dynamically change as time goes by, if they are not selected
for pulling. More recently, a number of researchers focus on bandit within piece-wise
stationary environments (DaCosta et al., 2008; Hartland et al., 2006). In particular,
these models assume that the reward distributions are piece—wise stationary; that is,
they are stationary within certain time intervals. This assumption is driven by the fact
that many real-world applications follow this behaviour (i.e. temperature change, or
behaviourial changes in habits of animals). Given this, Hartland et al. (2006) proposed
Adapt-EvE (for adaptive exploration and exploitation), a pulling policy that adapts to
the environmental changes. In particular, it uses a two—level bandit model, in which the
lower level is a standard stochastic MAB, while the meta—bandit level is dedicated to
detecting the changes within the environment. If the meta—bandit finds signs of change
(e.g. by using statistical tools), it resets the standard MAB. Similarly, D-MAB (for
dynamic multi-armed bandit), proposed by DaCosta et al. (2008), also uses change de-
tection to reset the underlying bandit algorithm. Since we do not take dynamic bandits

into consideration, these works are out of our focus.

Another way to modify the reward generating mechanism is to assume that it is non-
stochastic, or adversarial (Auer et al., 2003). In more detail, within this bandit setting,
the agent plays a finite repeated game against nature, or an adversary, in which at each
time step ¢, the adversary generates a vector of rewards v (t) = {v; (t)}1<i<x € RE,
which is unknown to the agent. Note that K is the number of arms that the agent
can pull. Following this, the agent chooses an arm i € {1,..., K} to pull, and receives
reward v; (t). The goal here is also to maximise the total reward that the agent can
achieve over time horizon T'. We say that the adversary is oblivious if the choice of the
reward vector v (t) is independent from the previous pulls of the agent, and it is non—
oblivious if the adversary takes the pulling history into account. As the latter case forms
an extremely hard problem to tackle (Bubeck, 2010), most research work focuses on the

former. Specifically, Auer et al. (2003) proposed Exp3 to tackle this bandit problem (see
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Section 2.2 for more details). In particular, they provided a O (\/T) regret bound for
Exp3. Note that here, analogously to the stochastic bandit, the regret is measured as
the difference between the performance of the algorithm and that of a best single arm
policy (i.e. a policy that repeatedly pulls a single arm). The results of Auer et al. were
later improved by Bubeck (2010). Although this bandit variant appears flexible, it is
not always practical, since in many applications, the environment does not behave in
an adversarial way. Within this thesis, we do not focus on the adversarial aspect of the
budget-limited MAB. However, it can be regarded as future work (see Chapter 8 for

more details).

2.3.3 Additional Information

Within the standard bandit problem, the sole feedback that the agent receives from
the system is the reward value of the chosen arm. However, in a number of real-world
applications, agents are likely to have additional side information (e.g. information from
what they have observed, or information given by other participants in the system) that
is received throughout their operating time. This side information can be regarded as
additional information (other than observed rewards) that is related to, but does not
fully reveal, the expected rewards of future pulls (Sykulski, 2011). This bandit variant
is usually referred to as bandits with covariates (Clayton, 1989; Pavlidis et al., 2008;
Rigollet and Zeevi, 2010; Woodfoofe, 1982) or contextual bandits (Beygelzimer et al.,
2011; Langford and Zhang, 2007; Lu et al., 2010). Within this bandit setting, at each
time step t, the agent observes a noisy context (or covariate) X (¢) (i.e. side information),
that is randomly drawn from a known and fixed probability distribution Px. Let r; (t)

denote the reward the agent receives if arm ¢ is pulled at t. We have:
Elr; (t)|X (1) = f9 (X (1)), (2.17)

where £ are not revealed to the agents a priori. Within the contextual bandit setting,
Woodfoofe (1982) studied this problem in the one-armed bandit version, while Rigol-
let and Zeevi (2010) covered the two-armed bandit model. The multi-armed model
was discussed in Beygelzimer et al. (2011); Langford and Zhang (2007) and Lu et al.
(2010). In particular, Langford and Zhang (2007) proposed the epoch—greedy algorithm
that achieves O (T %) regret bound. Beygelzimer et al. (2011) improved this result by

proposing Ezp4.P, a pulling policy that achieves O (\/ﬁ ) regret bound with high
probability. In addition, Lu et al. (2010) extended the model to more general met-
ric spaces. Within this thesis, we do not focus on the additional information that the
agent can receive, and thus, we assume that there is no side information within the

budget—limited MAB. Given this, the abovementioned approaches are not suitable for
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the budget—limited bandit model, since they are mainly designed to tackle the chal-
lenges of having side information. However, the budget—limited MAB can be extended
by adding side information into the model. Thus, one of the possible future work is to
combine our results with the aforementioned methods from the domain of contextual
bandits.

Apart from the contextual bandits, another way to take additional information into
account is to reveal the reward value of arms that are not pulled as well (Cesa-Bianchi
et al., 1997). This can be seen as a finite repeated game with full information. Within
this setting, the best possible regret bound is vT'In K (for more details see Chapter
3 in Bubeck (2010)). A variant of this full information problem is the label efficient
prediction problem (Allenberg et al., 2006; Cesa-Bianchi et al., 2005; Ottucsdk, 2007).
Here, at each time step the agent can ask to see the rewards of other arms that are
not pulled. However, the agent can ask for side information for at most than m times

over its operating time. Within this version, Cesa-Bianchi et al. (2005) proposed a
0] (T \/ %) regret bound, which was later improved by Bubeck (2010) to O (T IHTK)

Similarly to the contextual bandits, bandits with full information can also be extended
by adding pulling costs into the model. However, the analysis of this combination of

models remains as future work.

2.4 Bandits with Pulling Cost

A common theme in the abovementioned bandit variants is that pulling the arms is not
costly, and thus, any arm can be pulled arbitrary many times during the agent’s oper-
ating time. However, in many real-world applications, making a decision (i.e. choosing
an arm to pull) is costly (see Chapter 1 for more details). By ignoring pulling costs, the
agents can explore without limits. In contrast, when pulling costs are taken into con-
sideration, exploration has to be done more carefully, otherwise it results in inefficient
performance (Farias and Madan, 2011; Madani et al., 2004). Against this background,
several recent research works have focused on bandit versions with some costs that are
related to arm pulling (Agrawal et al.,, 1988; Bubeck et al., 2009; Farias and Madan,
2011; Guha and Munagala, 2009; Madani et al., 2004). In particular, Agrawal et al.
(1988) considered the bandit problem with switching costs, where the switching of arms
between subsequent pulls is costly, and the agent has to pay a fixed cost value C. Here,
the total reward regret is combined with the total switching cost in order to form the
cumulative regret. The objective of this bandit problem is then to minimise this cumu-
lative regret. In so doing, Agrawal et al. proved that the best possible regret bound
is logarithmic, and they also provided an efficient pulling policy that asymptotically
achieves this bound. More recently, Guha and Munagala (2009) extended this bandit

model so that the switching cost is measured by a metric. In more detail, if i () = i (i.e.
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the arm pulled at time step ¢) and i (¢ + 1) = j then the switching cost is a fixed value
l;;j. Within this variant, Guha and Munagala proposed an efficient pulling algorithm
that approximates the optimal solution by a (3 + &) constant factor, where e > 0 is an

arbitrarily small number.

Similar to bandits with switching cost, the irrevocable bandit model also aims to min-
imise the cost of switching arms between subsequent pulls (Farias and Madan, 2011).
However, while bandits with switching cost allow re-switching (i.e. return to pull an
arm that has been pulled a long time ago), in the irrevocable bandit model, the agent
is not allowed to return to an arm once it switched from that arm. This restriction
is inspired by a number of financial and economical applications (e.g. retail selling, or
fashion designing), in which switching business partners causes significant loss in trust,
and thus, the option of returning to that partner is not possible (Farias and Madan,
2011).

The bandit with switching cost and irrevocable arms, however, does not share the same
issues of the budget-limited MAB, since there is no budget limit for the total pulling
cost. In particular, the algorithms designed for these bandit models may fail to achieve
good performance within the budget-limited MAB, since they might result in sequence

of pulls in which the total pulling cost exceeds the budget limit.

Another way to take pulling cost into account is to set a budget limit for the total
pulling cost. In particular, Madani et al. (2004) introduced a budgeted bandit version in
which arm pulling is costly, and different arms have different costs. In addition, the total
pulling cost cannot exceed a given budget B. This model shows similarities to our model,
however, it solely focuses on exploration, ignoring the exploitation phase. In particular,
the budgeted bandit problem consists of a budget limited exploration phase, and an
unlimited exploitation phase. Within the exploration phase, pulling arms is costly, and
the total cost of exploration cannot exceed the budget. This type of problem can be
found in many applications, such as clinical trials (i.e. we have to determine the best
medicine, but trials are costly), or transmission power optimisation between wireless
devices (i.e. we have to find the optimal value of transmission power, but each trial
consumes energy). Within their work, Madani et al. showed that this problem is NP—
hard, and they proposed an approximation algorithm with poor efficiency. This result
was then later improved by Guha and Munagala (2007), who proposed an approximation
policy with approximation factor 4. In their subsequent work, Guha and Munagala

(2009) further improved this approximation factor to (3 + ¢).

More recently, Bubeck et al. (2009) addressed a variant of the budgeted bandit problem,
in which the pulling cost is considered to be the same for every arm, but the budget
is not known a priori to the agent. Given this, the authors focus on anytime policies

that have an incremental improvement in terms of finding the best arm as time goes by.
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Note that the anytime property is crucial here, since the budget, and thus, the stopping
time, is unknown. In so doing, Bubeck et al. introduce a new regret, called simple
regret, which can be described as follows. After the exploration budget is exceeded the
agent chooses a single arm that it assumes to be the best arm to repeatedly pull in the
exploitation phase. Let J (¢) denote the arm that the agent chooses after ¢ time steps.

The simple regret is defined as:

T =t — NIOE (2.18)

where p* denotes the highest expected reward. Against this background, Bubeck et al.

(2009) proposed a number of exploration algorithms and recommendation strategies (i.e.
a strategy to choose the best arm). In particular, they provided a O ( @) simple

regret bound, where ¢ is the number of time steps after which the exploration phase has

to stop.

Finally, Antos et al. (2008) considered a similar model, in which they aim to estimate
the expected reward of all arms, in order to determine the best arm with high certainty.
In so doing, they introduced the concept of active learning regret, which is formalised

as:

E |(ui — fiie)?], 2.19
e [(u u,t)] (2.19)

where fi;; denotes the estimate of the expected reward of arm 4 at time step ¢. In

particular, Antos et al. proposed an algorithm that achieves O (T 73) regret bound in

terms of active learning regret.

These models, although they show similarities to the budget—limited MAB, have dif-
ferent objectives; that is, to minimise the simple regret, and the active learning regret,
respectively. This indicates that the provided pulling policies are not suitable for our
model. More specifically, Bubeck et al. (2009) showed that a pulling policy that pro-
vides efficient performance in minimising the simple regret is not suitable in minimising
the total regret. However, note that these models focus on the exploration phase only,
and thus, they can be regarded as a part of our e—first approach (Chapter 4), since
this approach explicitly separates exploration from exploitation. Given this, we can use
the aforementioned techniques to explore within the exploration phase of the e—first ap-
proach. In particular, we indeed use the uniform pull policy, which is also recommended
by Bubeck et al. (2009), to explore in the e—first approach (see Chapter 4 for more
details).

2.5 The Unbounded Knapsack Problem

Within the previous sections, we described the stochastic multi-armed bandit model and

its variants, and discussed their connections with the budget-limited bandit problem.
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We now turn to the description of the knapsack problems that form the basis of our
approach in the subsequent chapters. In particular, we first describe a number of knap-
sack models, including the unbounded knapsack, in more detail (Section 2.5.1). We then

discuss the solutions of the unbounded knapsack problem in particular in Section 2.5.2.

2.5.1 Knapsack Models

The standard knapsack problem and its variants are among the most well-known and
widely applied optimisation problems (Marcello and Toth, 1990; Skiena, 1999), and
can be defined as follows. A knapsack of weight capacity C is to be filled with some
combination of K different items. Each item i € K has a corresponding value v; and
weight w;, and the problem is to select a subset of items that maximises the total value
of items in the knapsack, such that their total weight does not exceed the knapsack

capacity C. Formally, we have to solve the following optimisation problem:

K
maximise invi, (2.20)
i=1
K
subject to inwi <C, (2.21)
i=1
Vie{l,...,K}: a; € {0,1}. (2.22)

Note that each variable x; is binary, since we can either choose the item 7 or not.
The knapsack problem can be found in a large variety of research areas, such as task
allocation (e.g. computer job scheduling), logistics (e.g. airline cargo dispatching), and
financial investments (e.g. portfolio optimisation) (Kellerer et al., 2004; Marcello and
Toth, 1990).

In order to fit real-world applications, a variety of extensions and modifications have
been made to the standard knapsack model. In particular, these modifications include,
but are not limited to, extending (i) the domain of items (i.e. modifying Equation 2.22);
(ii) the knapsack capacity (i.e. modifying Equation 2.21), or (iii) the objective (modify-
ing Equation 2.20). Among these, one of the the most well-known knapsack variant is
the unbounded knapsack problem, where more than one identical copy from the different

item types are allowed. That is, z; can be an arbitrary (non-negative) integer. The
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unbounded knapsack can be formalised as follows:

K
maximise Z v, (2.23)
i=1
K
subject to inwi <C, (2.24)
i=1
Vie{l,...,K}: z; >0, x; integer. (2.25)

Here, v; and w; are the value and the weight of item type ¢. That is, items from the

same type have the same weight and value.

Apart from the unbounded knapsack, there are a variety of other knapsack models.
This includes, but is not limited to, the following: bounded knapsack, d—dimensional
knapsack, multiple knapsack, and quadratic knapsack (Kellerer et al., 2004; Marcello
and Toth, 1990). However, these models are out of scope of this thesis, and thus, we

ignore their description (for more details of these models, see Kellerer et al. (2004)).

2.5.2 Algorithms for the Unbounded Knapsack

Given the knapsack models described in the previous section, we now focus on the un-
bounded knapsack in more detail. Thus, within this section, we discuss the algorithms
for the unbounded knapsack problem, as they form the basis of our approaches to tackle
the budget—limited MAB. As the unbounded knapsack problem is NP-hard (Andonov
et al., 2000; Kellerer et al., 2004), the algorithms can be categorised to ezact or approx-
imation approaches. The former are optimal, but with increased computational costs,

while the latter provide near—optimal solutions with low computational complexity.

In more detail, the exact algorithms typically use the technique of dynamic programming
(Bellman, 1957) to exploit the observation that if a solution of the unbounded knapsack is
optimal, then by removing an item r from the optimal knapsack packing, the remaining
solution has to be optimal for the modified knapsack problem with capacity C' — w,.,
where C is the capacity of the original problem. Given this, the dynamic programming
technique first solves the problem for a subset of item types. Then it adds a new item
type to the subset, and checks whether the optimal solution has to be modified for the
enlarged subset. This approach, however, is typically pseudo—polynomial in terms of
computational cost, and its running time significantly depends on the sequence of item
types added to the subset (Kellerer et al., 2004; Marcello and Toth, 1990). Against this
background, a number of researchers addressed this issue by providing efficient ways
of choosing the next item to add to the subset (Andonov et al., 2000; Babayev and
Mardanov, 1994; Dudzinski, 1991; Marcello and Toth, 1990). The common approach

is to use a dominance relationship between the items. For example, a frequently used
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Algorithm 2.1 Fractional Unbounded Knapsack based Algorithm
L I" = argmax;e(; . k) {it}
2: while packing is feasible do
3:  pack item from type I*;
4: end while

dominance relationship is the collective dominance, which can be defined as follows:
A set of item types I collectively dominates item type i ¢ I if there exists a vector

y = (y1,...,yK) such that

Zijj <w; and Zijj > ;. (2.26)

jel jer
That is, by substituting an item of type ¢ with the combination y of set of types I, we
can increase the total value, while the total weight is not increased (i.e. set I collectively
dominates item type 7). Note that there are other types of dominance that are used in
state—of-the—art dynamic programming based algorithms, such as simple, multiple, or
threshold dominance (for more details see Andonov et al. (2000); Kellerer et al. (2004)).
Now, in order to decrease the computational complexity of the dynamic programming
approach, the next item type to be added to the subset is always the item type that is
not dominated by any other types that are still not in the subset (Andonov et al., 2000;
Babayev and Mardanov, 1994; Kellerer et al., 2004; Marcello and Toth, 1990). The exact
algorithms, however, are typically expensive in terms of computational complexity, and
thus, are not suitable to be used within the budget—limited MAB, since they may fail to
fulfil our second research requirement (computational feasibility). Given this, we do not

apply the abovementioned exact algorithms within the budget—-limited bandit domain.

Another way to tackle the unbounded knapsack problem is to provide approximation
algorithms (Kellerer et al., 2004; Marcello and Toth, 1990). One of the simplest approx-
imation approaches is to relax the unbounded knapsack problem so that the value of x;
can be fractional, instead of integers. This relaxation is referred to as the fractional un-
bounded knapsack, or the linear programming relaxation of the problem (Kellerer et al.,

2004). In more detail, the fractional unbounded knapsack can be formalised as follows:

K
maximise Z Tiv;, (2.27)
i=1
K
subject to Zmiwi <C, (2.28)
=1
Vie{l,...,K}: z; > 0. (2.29)

To solve the fractional unbounded knapsack, we first define some notation. We refer

i

to the fraction o as the density of item type i. Let I* denote the item type with the
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Algorithm 2.2 Density—Ordered Greedy Algorithm
LN(1)={1,....,K}, t=1;
2: while packing is feasible do
3 I"(t) = argmax;en( {%}7
4:  while packing is feasible do
5 pack item from type I* (t);
6: end while
7
8
9:

N({t+1)=N@\{I" 1)}
t=1t+1;
end while

highest density. That is, we have:

" U;
I = —
arg m?x { w0 }

It is easy to show that the optimal solution vector x™ = (:):ff, . ,xi@ of the fractional

relaxation problem is given by:

fr C

T+ =

w[*7
af =0, forj AT, j=1,...,K.

That is, the optimal solution is to solely use item type I*, and ignore the others. Given
this, the fractional knapsack based approximation algorithm is to repeatedly pack items
from item type I* into the knapsack (see Algorithm 2.1). It is easy to show that this
algorithm has an approximation factor of %, and this factor is tight. Besides, the com-
putational complexity of the algorithm is O (K), since we just need to determine the
type with the highest density (Dantzig, 1957; Kellerer et al., 2004).

More recently, Kohli et al. (2004) studied an advanced version of the fractional knapsack
relaxation, called the density—ordered greedy algorithm. In particular, the algorithm can
be described as follows. First, the item types are sorted in order of their density, which
is an operation of O (K log K') computational complexity, where K is the number of item
types. Next, in the first round of this algorithm, as many units of the highest density
item are selected as is feasible without exceeding the knapsack capacity. Then, in the
second round, the densest item of the remaining feasible items is identified, and as many
units of it as possible are selected. This step is repeated until there are no feasible items
left (see Algorithm 2.2). Clearly, the maximum number of rounds is K. That is, the total
computational cost is O (K log K + K). Note that the algorithm was also studied by
Dantzig (1957). However, Kohli et al. (2004) improved the performance analysis of the
algorithm, by showing that the approximation factor of the density—ordered greedy is %
on average, while Dantzig provided a tight approximation factor of % for the worst—case

performance.
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Both the fractional relaxation based and the density—ordered greedy algorithms are
simple in terms of computational cost, but they still achieve high performance in ex-
periments, compared to the computationally expensive exact algorithms (Kellerer et al.,
2004; Kohli et al., 2004; Marcello and Toth, 1990; Pisinger, 2005). Given this, we chose
the fractional relaxation based and the density—ordered greedy methods as the foun-
dations of our algorithms within the subsequent chapters. Note that there exist other,
more sophisticated, approximation algorithms, that also achieve high performance in
terms of low computational complexity (using the FPTAS framework). This includes,
but is not limited to, the following works: Ibarra and Kim (1975); Lawler (1979), Mar-
cello and Toth (1990), and Kellerer and Pferschy (1999). These algorithms, however,
are significantly more expensive in terms of computational complexity, compared to the
fractional relaxation based and the density—ordered greedy algorithms (for more details

see (Kellerer et al., 2004)). Thus, we ignore these algorithms within this thesis.

2.6 Summary

Within this chapter, we reviewed the literature of relevance in the topics of multi—armed
bandits and knapsack problems. In particular, we described the standard stochastic
MAB, which forms the basis of all the bandit models. Following this, we discussed
the state—of—the—art stochastic bandit pulling policies. These approaches can typically
be grouped into the following three classes: greedy based, UCB based, and probability
matching. We pointed out that the greedy based algorithms typically outperform the
others in applications, but they do not have strong theoretical performance guarantees.
On the other hand, the more sophisticated UCB based algorithms are theoretically
strong (i.e. they have efficient performance guarantees), but are typically outperformed
by simpler algorithms such as efirst or e—greedy, especially in large problem settings
(i.e. problems with a large number of arms). Meanwhile, the probability matching
approaches are neither good in applications (outperformed by the greedy methods) or in
theory (outperformed by the UCB based algorithms). We also pointed out the decreasing
e—greedy algorithm is a good candidate to be an efficient trade—off between providing
good performance from both theoretical and experimental aspects. However, none of
these algorithms take pulling cost into account, and thus, they are not suitable for the
budget—limited multi—armed bandit problem. Nevertheless, they form a solid basis to
our approaches in the subsequent chapters. In more detail, we combine efirst, UCB
and decreasing e—greedy algorithms with unbounded knapsack techniques to tackle the
budget—limited MAB problem.

We continued the literature review with the discussion of existing variants of the bandit
model. We divided these models into four groups, based on the perspective from which

they divert from the standard model. These perspectives are the following: (i) set of
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arms; (i) nature of rewards; (iii) additional information; and (iv) pulling costs. We
demonstrated that among these variants, the bandit models with pulling costs are most
related to our bandit setting. In particular, they also consider the budget limit and the
pulling costs. However, they typically focus on different objectives, such as minimising
the switching cost, the simple regret, or the active learning regret. Given this, we pointed
out that the pulling policies, that are designed to tackle these bandit problems, are not
likely to provide good performance in our budget—limited MAB. However, we can extend
the work within this thesis by taking pulling costs into consideration in many of these
models, and thus they form the basis of possible future work (as elaborated upon in
Section 8.2).

Following this, we turned to the discussion of the knapsack problems. In more detail,
we described the standard knapsack model and a number of its variants, including the
unbounded knapsack. We next focused on the exact and approximation algorithms of
the unbounded version. In particular, we pointed out that the exact algorithms are
computationally expensive, and thus, they cannot fulfil our second research requirement
(see Section 1.1 for more details). We focus on two simple, but efficient approximation
methods, namely the fractional unbounded knapsack based and the density—ordered
greedy algorithms. These methods form the foundation of our solutions in order to
tackle the budget—limited MAB. In particular, within the subsequent chapters, we will
show that the the budget-limited MAB can be efficiently tackled by combining fractional
unbounded knapsack based and the density—ordered greedy algorithms with the efirst,
UCB and decreasing e—greedy methods from the stochastic MAB domain.

In summary, we showed that to date, none of the state—of-the—art studies has addressed
the problem of budget—limited multi—armed bandits, and thus, no efficient pulling poli-
cies have been made within this bandit setting. Against this background, one of the main
drives of our work is to fill this gap, by designing efficient pulling algorithms that satisfy
our research requirements. In particular, our contributions can be distinguished into:
(ii) e-first based approach, that is efficient in experimental applications, but has weak
theoretical bounds (see Chapter 4); (ii) two UCB based approaches, that are efficient in
theory, but provide poor performance in experiments (see Chapter 5); (iii) two e—greedy
based algorithms, that provide a trade—off between the aforementioned approaches (see
Chapter 6). In addition, we will demonstrate the usefulness of the budget-limited MAB
in Chapter 7, where we apply our bandit model to the problem of long—term information

collection of wireless sensor networks.






Chapter 3

Formal Description of
Budget—Limited Multi—Armed

Bandits

Given the description of research objectives and literature of relevance in the previ-
ous chapters, we now formalise the budget-limited multi-armed bandit problem. The
budget—limited MAB model consists of a slot machine with K arms, one of which must
be pulled by the agent at each time step. By pulling arm ¢, the agent has to pay a pulling
cost, denoted with c¢;, and receives a non—negative reward drawn from a distribution as-
sociated with that specific arm. The agent has a cost budget B, which it cannot exceed
during its operation time (i.e. the total cost of pulling arms cannot exceed this budget
limit). Now, since reward values are typically bounded in real-world applications, we
assume that each arm’s reward distribution has bounded supports. Without loss of gen-
erality, for ease of exposition we assume that the reward distribution of each arm has
support in [0,1], and that the pulling cost ¢; > 1 for each i (our result can be scaled
for different size supports and costs as appropriate). Let p; denote the mean value of
the rewards that the agent receives from pulling arm ¢. Within our model, the agent’s
goal is to maximise the sum of rewards it earns from pulling the arms of the machine,
with respect to the budget B. However, the agent has no initial knowledge of the pu;
of each arm ¢, so it must learn these values in order to deduce a policy that maximises
its sum of rewards. Given this, our objective is to find the optimal pulling algorithm,
which maximises the expectation of the total reward that the agent can achieve, without

exceeding the cost budget B.

Formally, let A be an arm—pulling algorithm, giving a finite sequence of pulls. Let
NP (A) be the random variable that denotes the number of pulls of arm i by A, with
respect to the budget limit B. Note that the total cost of the sequence A cannot exceed

41
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B, that is:
K
P<ZM?MM§B>_L (3.1)

Let GP (A) be the total reward earned by using A to pull the arms with respect to
budget limit B. The expectation of GB (A) is:

E[GP(4)] = 3 B[N (4)] (3.2)

Then, let A* denote an optimal solution that maximises the expected total reward, that
is:

K

Note that in order to determine A*, we have to know the value of y; in advance, which
does not hold in our case. Thus, A* represents a theoretical optimum value, which is

unachievable in general.

Nevertheless, for any algorithm A, we can define the regret for A as the difference
between the expected cumulative reward for A and that of the theoretical optimum A*.

More precisely, letting Rp (A) denote the regret, we have:
RP(A) =E[G” (4")] —E [G” (4)]. (3.4)

Our objective is to derive a method of generating a sequence of arm pulls that minimises
this regret for the class of MAB problems defined above. In so doing, we define some
useful terms, that can be formalised as follows. Let I* denote the arm with the highest
reward mean density, that is:

I" = argmax i (3.5)
2

Ci
For the sake of simplicity, we assume that I* is unique. However, this assumption does
not put restriction on any of our results. For each sub—optimal arm i (i.e. i # I*), we

define d; as the difference between the reward mean density of I* and that of ¢:

4 = B K (3.6)
Cr* C;

Let dpin denote the minimum value of these:

. . I* j
dnin = min d; = min { ﬁl* - ﬁ—:} (3.7)
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In addition, for each sub—optimal arm i, let

Ai = pr— (3.8)
5@' = C; —Cr*. (3'9)

Note that A; or §; can be negative, since it is possible that up« < p;, or ¢+ > ¢.
However, it is easy to show that both of A; and §; cannot be negative at the same time,

since B > Hi for all j.
Crx — C;

Finally, let cpin and cpax denote the lowest and largest pulling cost, respectively. That
is, we get:
Cmin = ming;, (3.10)
(2
Cmax = Maxc;. (3.11)
2

Using the formalisations described above, in what follows, we propose three classes of
algorithms to tackle the budget—limited MAB:

e an e-first based approach (Chapter 4),
e two UCB based approaches (Chapter 5),

e and two e—greedy based algorithms (Chapter 6).

These approaches are described in more detail in the subsequent chapters. In particular,
Chapters 4, 5, and 6 focus on the algorithms’ fulfilment of Requirements 2 (computa-
tional feasibility), and 3 (efficient finite—time regret bound), respectively. In addition,
we study the empirical efficiency of the algorithms in Chapter 7, in order to analyse

their fulfilment in Requirement 1 (empirical performance quality).






Chapter 4

Budget—Limited Epsilon—First
based Approaches

Having devised a model for budget—limited multi—armed bandits, we now outline a num-
ber of pulling algorithms to tackle this bandit problem. In this chapter, we concentrate
on the budget-limited e-first approach, in which the first € of the overall budget B is
dedicated to exploration, and the remaining portion is dedicated to exploitation. To this
end, in Section 4.1, we describe the algorithm in more detail. This is followed by a per-
formance analysis in Section 4.2. In particular, we study the computational complexity,

and we propose theoretical upper bounds for the performance regret of the approach.

4.1 The Algorithm

In the budget—limited e—first approach, we first purely explore until we exceed the ex-
ploration budget €B, then we estimate the best combination of arms, based on the
estimated values of the rewards (see Algorithm 4.1), and then repeatedly pull this com-
bination. Here, let ¢ denote the time step, and B denote the residual exploration
budget at time ¢, respectively. Note that at the start (i.e. ¢ = 1), Bprl = ¢B, where B
is the total budget limit.

In more detail, within the exploration phase, we uniformly pull the arms, with respect
to the exploration budget eB. That is, we sequentially pull all of the arms, one after the
other, until the exploration budget is exceeded (steps 3 —9). In particular, at time step
t, we pull arm i (t) =t mod K (step 7). Note that since there is no arm 0, we denote
mK mod K = K for any integer m (i.e. we replace the congruency class 0 with class
K). The reason of choosing this method is that, in order to bound the regret of the
algorithm, since we do not know which arms will be pulled in the exploitation phase, we

need to treat the arms equally in the exploration phase.

45
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Algorithm 4.1 Budget—Limited e—First Algorithm

1: Exploration phase:

2 t=1; Bprl = eB;

3: while pulling is feasible do

4: if Bprlore < min,; ¢; then

5: STOP! {pulling is not feasible}

6: end if

7. pull arm i (), where i (t) =t mod K {choose the subsequent arm to pull};
8

9

: end while
10: Exploitation phase:
11: use density—ordered greedy to pull the arms;
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Following this, we focus on a pure exploitation phase. In so doing, we reduce the problem
faced by an agent in the exploitation phase to the unbounded knapsack problem (see
Section 2.5). Recall that in the exploitation phase, the agent makes use of the expected
reward estimates from the exploration phase, which can be calculated as follows. Sup-
pose that the exploration phase stops after 7" steps. Let 7 (¢) denote the reward received
by pulling arm i (¢) at time step ¢ (step 7). Let n; denote the number of times the agent
pulls arm ¢ until 7. We define fi; ,, as the estimate of p; after the exploration phase,

which can be calculated as follows:
1 T
/li,ni = n_ Z I{i:t mod K}7 (t)v (41)
t=1

where I;—; moq iy is the indicator function of the event {i =¢ mod K}. That is, fi;,
is the average of rewards the agent receives by pulling arm ¢ during the exploration

phase. Given this we aim to solve the following unbounded knapsack:

k k
max Z Tiflin, St Z zic; < (1—¢)B,
i=1 i=1

where z; is the number of pulls of arm 7 in the exploitation phase. In this case, the ratio
/li,ni

Cq

of an arm’s reward estimate to its pulling cost, , is analogous to the “density” of
an item, because it represents the reward for consuming one unit of the budget, or one
unit of the carrying capacity of the knapsack. As such, the problem is equivalent to the
knapsack problem above, and in order to solve it, we can use a density—ordered greedy

algorithm at step 11 (see Section 2.5.2 for more details).

Intuitively, this approach is motivated by the fact that the theoretical optimal solution
of the budget—limited MAB is a combination of pulls that might contain a variety of
different arms (see Chapter 1 for more detail). Thus, by estimating the expected reward
value of all the arms in the exploration phase, the budget—limited e—first approach can
efficiently estimate the optimal combination of pulls within the exploitation phase. In
more detail, by explicitly splitting exploration from exploitation, we can easily measure
the accuracy of the estimates associated with a particular value of &, because all of the
arms are sampled the same number of times. Hence, we can control the performance
regret as a function of €, which gives us a method of choosing an optimal ¢ for a given

scenario.
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4.2 Performance Analysis

We now turn to the performance analysis of the budget-limited e—first approach. In
particular, we first derive a linear upper bound for the performance regret of budget—
limited e—first. This bound, however, does not satisfy Requirement 3; that is, it does not
follow the concept of asymptotic optimal convergence (see Section 1.1 for more details).
Following this, we improve this result by providing a probably approximately correct
(PAC) regret bound (see Section 2.2) for any exploration policy and the density—ordered
greedy algorithm (i.e. the upper bound is independent of the choice of the exploration
algorithm). In particular, a PAC bound holds with a certain probability, while it might
be violated in a small amount of cases. We then refine this bound for the specific
case of uniform pull exploration, and we show that by optimally tuning the value of ¢,
the PAC regret bound is improved to be O (B §> We show that the improved result
guarantees Requirement 3 within the PAC manner (i.e. it holds with high probability).
Finally, we study the computational cost of the approach, in order to verify whether the

budget—limited e—first approach satisfies Requirement 2.
Our first result regarding the performance regret of the approach is described as follows:

Theorem 4.1. For any budget size B > 0, the performance regret of the budget—limited

e—first approach is at most

K
M+ Z M] C?nind?nin CIQHind?nin
eB (—_]T> +2(1—5)B E d]exp{—FeB exp T +K+].,

Cr* S Cs A
I Z] Cj JAI* 7 Cj

where dj = ‘C‘% — ’;—JJ for earch arm j.
To prove this theorem, recall that fi;,, denotes the estimated value of the expected
reward of arm ¢, where n; is the number of pulls of that arm in the exploration phase.
Hereafter, for the sake of simplicity, we refer to fi;,, as fi; (i.e. we leave n; from the
subscript). Let Aupniform denote the the uniform pull exploration policy. In addition, let
A, denote an arbitrary exploration policy (which can be uniform as well), and Agreedy

denote the density—ordered greedy exploitation algorithm, respectively.

Within this section (and in the subsequent chapters as well), we will make use of the
following version of the Chernoff-Hoeffding concentration inequality for bounded random

variables:

Theorem 4.2 (Chernoff-Hoeffding inequality (Hoeffding, 1963)). Let X1, Xo,..., X,
denote the sequence of random wvariables with common range [0,1], such that for any
1 <t<n, we have E[X;|X1,...,X¢—1] = p. Let S, = L3S0 | X;. Given this, for any
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6 >0, we have:

P(Sp > p+0) <e 20, (4.2)
P(Sy < p—05)<e 2 (4.3)

| /\

The proof can be found, for example, in Hoeffding (1963). Using this, we prove Theo-

rem 4.1 as follows:

Proof of Theorem 4.1. To estimate the regret of the budget—limited e—first approach, we
separately estimate the regret of the uniform exploration and density—ordered greedy
exploitation policies. In particular, recall that Auniform sequentially pulls each arm i
until it exceeds the exploration budget e B. That is, the expected total reward that the

agent receives with this exploration policy is

E [GaB unlform Z Tl (44)

It is easy to show that for each arm i:

K
B B L Cy
{TJ Snis{ = J+Zf—1 / (4.5)
> 16 > =16 Cmin
where n; denotes the number of times Auniform pulls arm 7. Using Equation 4.5, we have:
Z s
{Z j=16€j J

ZHZ(ijch 1)
> Zuz - K. (4.6)

] 1€

v

E [GEB (Auniform)]

Y

The last inequality is obtained from the fact that 0 < p; < 1 for all arms i (see Chap-
ter 3 for more details). Now, it is easy to show that within the exploration phase, the
theoretical optimal total expected reward that any policy can receive is 5— wr+; that
is, by repeatedly pull the arm with the best expected reward density. This implies the

following;:

D DAY

R (Auniform) < § hisR —Kng A2l ) LR (47)
A DAY
J 1€ J=1J

Now we turn to estimate R(1—¢)B (Agreedy) as follows. Recall that Ageedy first repeatedly

pulls I, the arm with the highest estimated expected reward density after exploration,
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until it is not feasible with respect to the residual budget (1 — ¢) B. Thus, we have:

E [G(I_S)B (Agreedy) U+] > {%J o+
> (7(1 ;Ii) b 1> M+
> (1-e)BE 1. (4.8)
Cr+

Similar to the exploration phase, the theoretical optimal total expected reward that any

policy can receive within the exploitation phase is to repeatedly pulling the arm with
(1—e)B
Cr*

the best expected reward density; that is, wr+. This implies that for a particular

I, we have:

R(lfs)B (Agreedqur) < (1 . 5) B (HI H1+) 41, (4.9)

Cr* C[Jr

where RU=9)5 (Agceay|IT) denotes the regret of Ageedy conditional to IT. By summing

up over all the possible values of IT, we get:
K
R (Agreeay) <O ((1—€)Bd; + 1) P (I = ).
j=1

The right hand side can be reformalised as:

RITIB (Agreeay) (1 =) B Y d;P (IT =4, I" # j) + 1. (4.10)
AT

Here, P (I = j,I* # j) denotes the probability that the arm with the best estimated
expected reward density is not equal to I*. In what follows, we provide an upper bound
for P (I = j, I* # j), in order to estimate Equation 4.10. Note that the following holds:

P (It =1 #) sp(ﬂz@)

C]' Cr*

This can be further bound by noting the following: Let X,Y € R be independent random
variables, and ¢ € R. Thus, P (X >Y) < P(X >¢)+ P (Y < c¢), because

P(X>Y) < PX>Y[X2>c)+P(X>Y|X <o)
< PX>20)+P(Y <X <¢)=P(X>c)+P(Y <o).

Given this, we have:

PU*ZJ’J*#J’)§P<”—72&+EJ>+P(“I _”—I—EJ>- (4.11)

C] Cj Cr* Cr*
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Note that by definition of d;, we have By % = b %. Using the Chernoff-Hoeffding
J

c Crx*

inequality for both terms on the right hand side of Equation 4.11, we get:
P o ds d.
P<“—72“—7+EJ> - P(ﬂjzujJrchJ)

Cj Cj
2 12
cidin;
< exp {—%ﬂ} (4.12)

where n; denotes the number of times Aypiform (i-e. the uniform exploration policy)
pulls arm j. From Equation 4.5 we can show that n; > % — 1. Combining this with

Equation 4.12, we obtain:

. 2 72 2 12
iy o dj cidseB cids
P (C—J >+ é) < exp {—# exp § 5 o (4.13)
i G D iz Ci
In a similar vein, we can show that:
. 2 72 2 72
P ('ul* < B _ ﬁ) < exp —M exp ﬁ . (4.14)
Cr* - Cr* 2 B 22{;1 C; 2
Substituting Equations 4.13 and 4.14 into Equation 4.11 we get:
c2d%eB c2d?
P(I*=j,I*#j) <2exp{ ——2— pexp % . (4.15)
23 i G

This implies that:

2d%eB Ad?
BRI (Ageeay) S2(1=2) BY | djexpy —e— pexpy == o +1. (416)

Since RP (e—first) = R*® (Aunitorm) + R ™98 (Agreedy ), we conclude the proof by adding
Equations 4.7 and 4.16 together. O

Note that this bound depends on the value of €. Thus, we can further improve the bound
by choosing an optimal € value. However, by using elementary techniques, it can be
easily to proven that the optimal value of € that minimises the equation in Theorem 4.1
is either ¢ = 0 or € = 1. In both cases, we can see that the regret bound is O (B) (i.e.
a linear function of budget B). That is, the upper bound of the budget-limited e-first
approach given in Theorem 4.1 can be improved to be O (B) in the best case. This
implies that the regret bound is in fact not efficient. In more detail, it can be easily
shown that this bound does not follow the concept of optimal asymptotic convergence;
that is, it does not guarantee that the average regret converges to 0 with probability 1
as the number of time steps tends to infinity. Given this, this regret bound does not

meet Requirement 3.
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Nevertheless, we can improve the regret bound if we allow the bound to be violated in a
small number of cases. Thus, in what follows, we focus on PAC (probably approximately
correct) type bounds. Let I denote the arm with the highest estimated density after

the exploration phase:

I+:argmax{w}. (4.17)
J ¢

In addition, we define dy,,x as follows:

dmax = Max {E - &} (4.18)
7 Cr* Cj

That is, dmax denotes the largest difference between the expected reward density of the

arms. Finally, we say that an exploration policy exploits the budget dedicated to the

exploration phase if and only if after the exploration stops, none of the arms can be

additionally pulled without exceeding the exploration budget. As a result, we have the

following:

Theorem 4.3. Consider a budget—limited e—first approach with an arbitrary exploration
policy that exploits the exploration budget. In addition, suppose that all the arms are
pulled at least once within this exploration phase. For any B > 0, and 0 < ¢,8 < 1,
with at least (1 — ﬂ)K probability, the performance regret of the budget—limited e—first

—lng —lng
24+ eBdn.x + B + ,
2n1* 2n[+

where ny« and ny+ are the number of pulls of arms I* and I within the exploration

approach is at most

phase, respectively.

To prove this theorem, we define ™™ as the arm with minimal expected reward density.

That is,
= arg min b (4.19)
J G

]min

We rely on the following auxiliary lemmas:

Lemma 4.4. Suppose that A,y is an arbitrary exploration policy that exploits its ex-

ploration budget. Within this policy, each arm t is pulled n; times. Thus, we have

EB min
E nifl; > ey
i—1 Clmin

Lemma 4.5. For the density-ordered greedy exploitation algorithm Agrecdy, we have:

B+
Cr+

— 1.

E [G(lis)B (Agreedy)} > (1-¢)
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Lemma 4.6. If A* is the optimal solution of the budget-limited MAB, then

B~
cre

B (7 (4%)] <
Lemma 4.7. If |a — b| < 61, |c —d| < 2, a > ¢, then d < b+ 61 + da.

Proof of Lemma 4.4. If A exploits the budget for exploration, it is true that for any
Cji

K

Z nic; > eB —¢;j

i=1
since none of the arms can be pulled after the stop of A1, without exceeding eB.
Furthermore, p; = ¢; (ﬂ) > ¢ (m) Since p; < 1, we have:

Ci Crmin

K K . . eB .
Zniui > (Z nicl-> Hipmin > (€B — CImin) Hipmin > Hipmin — 1.
i=1

—1 CImin CImin CImin
1=

O

Proof of Lemma 4.5. By just pulling arm IT in the exploitation phase, which is the

first round of Agreeqy, the expected reward we can get there is \‘%J wr+. Since

\‘wJ > (w — 1)’ we have:
Cr+ Cr+

E [G(lfs)B (Agreedy)} > (7

since p; < 1 for Vi. O

Proof of Lemma 4.6. Suppose that in the optimal solution, NN; is the total number of

pulls of arm ¢. Thus, the cost constraint can be formulated as:
K
i=1

Given this, we have:

k k k
i=1 i=1 v i=1 *

Cr*
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Proof of Lemma 4.7. Since |a — b| < 61, we have a < b+07. Similarly, we have d < c+0ds.
Since a > ¢, we have the following: d < c+ds < a+ by < b+ 61 + s. O

Given the aforementioned lemmas, we now turn to prove Theorem 4.3 as follows:

Proof of Theorem 4.3. Using the Chernoff-Hoeffding inequality for each arm ¢, and for

any positive d;, we have:
P (|fui — pal > 6i) < 2exp {=2n;67},

that is, dividing by ¢;, we have:

y 4 5
P ( Be Al —’) < 2exp {—2m0?},
C; C; C;
which is equivalent to the following:
P < A pil 5) < 2exp {—2n;62¢2}. (4.20)
C; C;

[~ 8
By setting ¢; = 4/ 5 o 2 , Equation (4.20) can be reformulated as follows:

>5) <P

Thus, with at least (1 — 3)* probability, for each arm i, we have

ﬂi_,uz

p (|2

& &

fii

< §; 4.21
el (4.21)

holds for each arm ¢. Hereafter, we stricly focus on this case. Given this, the reward

collected in the exploration phase can be calculated as follows:

€B mln
E [GF (Aun)] Zmuz_ i L (4.22)

CImln

The right side of Equation 4.22 holds, due to Lemma 4.4. Using Lemma 4.5 and Equa-
tion 4.22; we get the following:

E[GP (c—fist)] = E[GB (Aarb)]+E[G<1—€>B (Agreedy)]

EB min
EPHmn 1 g
CImin CI+

B+

v

—2, (4.23)
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where GB (e—first) denotes the total reward that the budget-limited e-first approach

receives. By denifition, we have

bC > BIE
Cr* Cr+
and . .
Kt > K-
Cr+ Cr*
Furthermore, ’C‘—f — ’C‘—f < 6; holds for each arm 4. Thus, according to Lemma 4.7, we
have
Bre S BT s — 6y (4.24)
Cr+ Cr*

Substituting this into Equation 4.23, we have:

B min * B *
CImin Cr* Cr*

—(1—€)B((5[* —|—(5[+)—2. (425)

According to Lemma 4.6, E [GP (4%)] < %. Thus, by substituting it into Equa-

tion 4.25, and using the definition of regret in Equation 3.4, we have:

REB (e—first) < 2+ eBdmax + B (01 + 01+ ) ,

where dyax = 4= — £t - Note that here we used the fact that (1 — e) < 1. Thus, by

Cr* Crmin
~In % ‘ ‘ . ‘
"2 for i = I* and i = I'*, and using the fact that ¢; > 1 for each i,

2
2n;c;

we get the requested formula. O

replacing §; =

e

Note that the aforementioned bound holds for any arbitrary exploration policy. We now

refine this upper bound for the case of uniform pull exploration as follows:

Corollary 4.8. Let 0 < ¢,8 < 1. Suppose that ¢B > Z]K:1 cj.  With probability
(1-— ﬁ)K, the performance regret of the budget—limited e—first approach with uniform

pull exploration is at most

B (— In g) ZJK:1 cj

9

2+ eBdmax + 2

(4.26)

Proof. Recall that within Aypiform (i-e. the uniform exploration policy), for each arm 4,

K .
ol B b ik (127)

J=1

we have:
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This implies that by using Auniform in the budget—limited e—first approach, we have:

RB (e—first) < 2 + eBdpax + 2B (4.28)

Now, if eB > Zszl ¢;, we can show that:

{ eB J S eB
K — K :
Zj:l Cj 2 Zj:l Cj

The proof is elementary, and thus, is omitted. Substituting this into Equation 4.28

results in the following:

RP (e—first) < 2 4 eBdyax + 2 —, (4.29)

which concludes the proof. ]

Setting the value of € to be the minimal point of Equation 4.26 (i.e. the point that

minimises this equation) implies the following result:

dmax d2

max

2(—n 2 _1nB
Corollary 4.9. For any0 < 8 < 1, suppose that B > Zszl c;j max{ ( 2), 2cng) }

With probability (1 — ﬂ)K, the performance regret of the budget-limited e—first approach

with uniform pull exploration is at most

wl=

2 B\ &
2+ 3Bs <—1H§> chdmax

j=1
if the value of € is set to be:

1
K 3
(-m8)Tiie _,
Bd? -

max

E =

Proof. 1t is easy to see that if we consider Equation 4.26 as a function of ¢, then the

global minimum point is set at

1
2 (— In g) ZJK:1 cj :
Copt = Bd2 '

max
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Note that we have to guarantee that both eopr < 1 and eqp B > 25(21 c; hold. The
2(fln§)

dmax

. K 2(-m%) . K
former holds if B > ZFI ¢j—m—=%, and the latter holds if B > ZFI c;

dIQIlaX
2(—1n & —né&
Thus, bysettingBEZflcjmax{ g n2)’2(2n2)

max max

}, both eqpt < 1 and gope B >

ZJK:1 c; hold. Substituting £,,¢ into Equation 4.26, we get the required upper bound. [

That is, with a properly tuned value of ¢, the budget-limited e—first approach achieves
a PAC upper bound of O (Bg) This implies that the budget-limited e—first approach

satisfies Requirement 3 with high probability, since the O (B%) upper bound guarantees

the optimal asymptotic convergence property within a PAC manner.

From the perspective of computational cost, recall that the uniform exploration policy
has linear computational cost (i.e. O (¢KB)), since it sequentially pulls the arms. If T’

is the total number of pulls 7" within the exploration phase, from Equation 4.5 we get:

K .
K {7223 J <T<K {723 J +K—Zj:1cj.

. . Crmi
j=1 Cj j=1 Cj min

After the exploration phase, the budget-limited e—first approach uses the density—
ordered greedy algorithm once to estimate the best combination of pulls. Note this
algorithm has a computational cost of O (K In K) (see Section 2.5.2 for more details).
This implies that the total computational cost within the exploitation phase is also

K
21:1 Ci

O (K In K). Given this, the total computational cost is O <K { B J +K==—=+4+KIn K>

K -
D=1 6

len
In other words, the budget-limited e—first approach satisfies Requirement 2, since it has
low computational cost, compared to the size of the budget B and the number of arms
K.

4.3 Summary

In this chapter, we developed a novel pulling algorithm, the budget—limited efirst, for
the budget—-limited multi—armed bandit problem. In particular, this algorithm takes the
first € portion of the budget B to estimate the expected reward value of the arms (i.e.
exploration), using the uniform pull policy. Based on these estimates, it approximates an
unbounded knapsack problem in order to determine the best combination of arms that
maximises the total expected reward, with respect to the residual budget (1 —¢) B (i.e.
exploitation). To approximate this unbounded knapsack, the algorithm uses a density—
ordered greedy algorithm to approximate the best combination of arms. We showed
that the budget—limited efirst approach achieves linear regret bound with any value of

¢ (Theorem 4.1. This, however, is not efficient, and thus, does not satisfy Requirement
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3 (i.e. efficient finite-time regret bound). In order to improve this result, we analysed
the performance of the budget—limited e—first approach from the PAC perspective. In
more detail, we proved that within the PAC manner, the regret bound of the budget—
limited efirst approach with any exploration policy can be improved to be 2+cBdpyax +

w8 N

B <\/ nll*g + \/ nl — (Theorem 4.3). We refined this result in the case of uniform
I

exploration policy (Corollary 4.8). In addition, we showed that the latter PAC bound

can be further improved to be O (B %> if an optimal ¢ is chosen (Corollary 4.9).

Computation—wise, we demonstrated that the budget-limited e-first approach typically
has low computational cost. In particular, we showed that it has O (¢KB + K In K)
computational complexity. This implies that the budget—limited efirst approach fully
satisfies Requirement 2 (i.e. computational feasibility). In addition, we will demonstrate
later in Chapter 7 that the budget—limited e—first approach provides efficient performance
in the problem of longterm information collection of WSNs. That is, it is efficient in

terms of fulfilling Requirement 1 (i.e. efficient experimental performance quality).

However, the performance regret bound O (Bg) of the budget—limited e—first approach
is only guaranteed with a certain probability, and thus, it might not hold for a number
of cases. From this perspective, the budget—limited e—first approach fails to satisfy
Requirement 3. Given this, in the next chapters, we address this research requirement
in terms of focusing on pulling algorithms with efficient theoretical regret bounds that
guarantee the asymptotic optimal convergence. In particular, we provide two UCB-
based pulling algorithms in Chapter 5, and two decreasing e—greedy based algorithms
in Chapter 6.



Chapter 5

Budget—Limited Upper
Confidence Bound based
Approaches

We now turn our attention to pulling algorithms that efficiently fulfil our Requirement 3,
that is, they are designed to provide low theoretical regret bounds. Within this chapter,
we focus on two upper confidence bound (UCB) based approaches, the knapsack based
upper confidence bound exploration and exploitation (KUBE), and the fractional KUBE.
To this end, we first introduce the algorithms in Section 5.1. We then provide logarithmic
regret bounds for both algorithms in Section 5.2. In addition, we also show that these
regret bounds are asymptotically optimal; that is, they only differ from the best possible

bound with a constant factor.

5.1 The Algorithms

In this section, we thoroughly describe KUBE and its fractional counterpart. As men-
tioned in Chapter 1, the algorithms differ in the way they approximate the underlying
unbounded knapsack problem at each time step. Given this, we first start with the dis-
cussion of KUBE, detailing how the algorithm is defined by combining the UCB based
pulling policy with the density—ordered greedy algorithm (Section 5.1.1). Following this,
we turn to describe the fractional KUBE, focusing on how it is different from KUBE
(Section 5.1.2).

59
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5.1.1 KUBE

To begin, consider the KUBE algorithm depicted in Algorithm 5.1. At each time step
t, it first checks whether arm pulling is feasible (steps 3 —4). If the arm pulling is still
feasible, KUBE first pulls each arm once in the initial phase (steps 6 — 7). Following
this, at each time step t > K, it estimates the best combination of arms according to
their upper confidence bound using the density—ordered greedy approximation method

applied to the following problem:

K K

2Int

max E Mt (ﬂi,ni,t -+ n—> s.t. E mici < By, Yi,t: m; integer. (5.1)
i=1 g i=1

2Int

is
Nt

In the above expression, n;; is the number of pulls of arm ¢ until time step ¢,
the size of the upper confidence interval, and fi;,, is the current estimate of arm i’s
expected reward, calculated as the average reward received so far from pulling arm i.
More specifically, let i (7) and r (7) denote the arm chosen to be pulled and the received

reward value at time step 7, respectively. Given this, fi;,, can be calculated as:

t

. 1
i = Z Liitn=iyr (1), (5.2)
bt r=1

where I;(;—; is the indicator function of the event {i(7) = i} (i.e. the arm is pulled
at time step 7 is 7). The goal, then, is to find integers {m;}icx such that Equation 5.1
is maximised, with respect to the residual budget limit B; (for the sake of simplicity,
from here on, we drop the subscript i € K on this set). Since this problem is NP-hard,
we use the density—ordered greedy method to find a near—optimal combination of arms

(step 9). Note that the upper confidence bound on arm ¢’s expected reward density is:

R 2Int
,Ufi,m,t + nit
Ci Ci

Let M*(B;) = {m;,} be this method’s solution to the problem in Equation 5.1, giving
us the desired combination of arms, where m;, is the number of arm ¢’s pulls in the
combination. Using {m;,}, KUBE randomly chooses the next arm to pull, i(t), by
selecting arm 7 with probability (step 10):

P(i(t)=1) = Z:Ki*
k=1 ¢

After the pull, it then updates the estimated upper bound of the chosen arm, and the
residual budget limit B; (steps 12 — 13).
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Algorithm 5.1 The KUBE Algorithm

1: t=1; By = B;
2: while pulling is feasible do

3:

10:

11:
12:
13:

if B; < min; ¢; then
STOP! {pulling is not feasible}
end if
if t < K then
Initial phase: play arm i (t) = t;
else
use density-ordered greedy to calculate M*(B;) = {m],}, the solution of Equa-
tion 5.1; ’
randomly pull 7 (t) with P (i () = 1)

end if
update the estimated upper bound of arm i (t);
Bipy =B —cipys t =t + 15

X
m; ¢

= K ;
2 k=1 mp

14: end while

Algorithm 5.2 The Fractional KUBE Algorithm

1: t=1; B, = B;
2: while pulling is feasible do

3:

10:
11:
12:

if B; < min; ¢; then
STOP! {pulling is not feasible}
end if
if t < K then
Initial phase: play arm i (t) = t;
else
pull arm i (¢) = I (t), where I (t) is defined in Equation 5.4;
end if
update the estimated upper bound of arm i (t);
Bip1 =B — ¢y t =1+ 1

13: end while
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The intuition behind KUBE is the following: By repeatedly drawing the next arm to pull
from a distribution formed by the current estimated approximate best combination, the
expected reward of KUBE equals the average reward for following the optimal solution
to the corresponding unbounded knapsack problem, given the current reward estimates.
If the true values of the arms were known, then this would imply that the average
performance of KUBE efficiently converges to the optimal solution of the unbounded
knapsack problem reduced from the budget-limited MAB model. It is easy to show
that the optimal solution of this knapsack model forms the theoretical optimal policy of
the budget-limited MAB. In particular, if the mean reward value of each arm is known,
then the budget—limited problem can be reduced to the unbounded knapsack problem,
and thus, the optimal solution of the knapsack problem is the optimal solution of the
budget—limited MAB as well. In addition, by combining the upper confidence bound
with the estimated mean values of the arms, we guarantee that an arm that is not yet
sampled many times may be pulled more frequently, since its upper confidence interval
is large. Thus, we explore and exploit at the same time (for more details, see (Agrawal,
1995b; Audibert et al., 2009; Auer et al., 2002; Auer and Ortner, 2010)). By using the
density—ordered greedy method at each time step, KUBE achieves an efficiently low
regret bound by converging to the theoretical optimal solution, as detailed in the next

section.

5.1.2 Fractional KUBE

We now turn to the fractional version of KUBE, which follows the underlying concept
of KUBE. It also approximates the underlying unbounded knapsack problem at each
time step ¢ in order to determine the frequency of arms within the estimated best
combination of arms. However, it differs from KUBE by using the fractional relaxation
(see Section 2.5.2) to approximate the unbounded knapsack in Step 9 of Algorithm 5.1.
Crucially, fractional KUBE uses the fractional relaxation based algorithm to solve the

following fractional unbounded knapsack problem at each t¢:

K K
. 2Int
maXZmi,t <Ni,m,t + -~ ) s.t. mecl- < B;y. (5.3)
b i=1

i=1

Recall that within KUBE, the frequency of arms within the approximated solution of the

unbounded knapsack forms a probability distribution from which the agent randomly

pulls the next arm. Now, since the fractional relaxation based algorithm solely chooses

the arm (i.e. item type) with the highest estimated confidence bound—cost ratio (i.e.

item density), fractional KUBE does not need to randomly choose an arm. Instead, at
2Int

Fimiy + E . That is, at each

each time step t, it pulls the arm that maximises » =
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time step 4, fractional KUBE pulls arm I (¢), such that:

. 2Int
I(t) = argmax{ 22t ¢ Ve L (5.4)
J C]' C]'

The fractional KUBE is depicted in Algorithm 5.2. Note that fractional KUBE can also
be seen as the budget-limited version of UCB (see Section 2.2 for more details of UCB).

In the next section, we show that both KUBE and its fractional counterpart achieve
asymptotically optimal regret bounds. That is, we first show that both algorithms
achieve logarithmic regret bounds. Then we prove that these bounds only differ from

the best possible one by a constant factor.

5.2 Performance Analysis

In this section, we first focus on the performance analysis of KUBE. To this end,
we introduce some further notation. Let T denote the number of pulls of KUBE. In
addition, let N; (T") denote the number of times KUBE pulls arm j up to time step 7.
In what follows, we first devise an upper bound for N; (T') for all j # I*. That is, we
estimate the number of times we pull arm j # I*, instead of I*. Based on this result, we
estimate the average number of pulls of KUBE (i.e. E[T]). This bound guarantees that
KUBE always pulls “enough” arms so that the difference between the number of pulls
in the theoretical optimal solution and that of KUBE is small, compared to the size of
the budget. By using the estimated value of E [T], we then show that KUBE achieves a

O (In (B)) worst case regret on average. We now state the following:

Lemma 5.1. Suppose that KUBE pulls the arms T times. If j # I*, then:

8 c 2 2
E[N; (T)|T] < (dT + (;i’:) > In(T)+ = +1.
min
That is, the number of times KUBE pulls an arm j # I* is at most O (In (7). To
prove this lemma, let us first refresh some of the terms that are used: i (¢) is the arm
pulled by KUBE at time ¢; when refering to a combination of arms {m;}, m; is the
number times arm j is involved within this combination at time ¢; M*(B:) = {m],}
is the density—ordered greedy approximate solution to unbounded knapsack problem
in Equation 5.1, where mj, is the number of arm ¢’s pulls in this combination; and

I'* = arg max; ‘CL—: is the arm with the highest true mean value density. In addition, (t) =

2Int
arg max; % + # is the arm with the highest estimated density confidence
J J

bound at time step ¢t. In order to prove Lemma 5.1, we rely on the following lemmas:
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Lemma 5.2. Suppose that the total number of pulls KUBE makes of the arms is T,
and that at each time step t, the residual budget is By (note that here By = B). For any
0<t<T, we have:

Cmin < 1

B, —T—t+1

Lemma 5.3. Suppose that the total number of pulls KUBE makes of the arms is T.
For any 0 <t < T, we have:

1
—t+1

2
P =il < P (10 =ir) + (&)
Cmin T
Proof of Lemma 5.2. At the beginning of time step ¢, the residual budget is B;. Since
the total number of pulls is T', with respect to B;, KUBE can still make T'— t + 1 pulls
(including the pull at time step ¢). This indicates that:

B, > Cit) t Cigyry - ey 2 (T —t+1) cin.

which directly implies the inequality in Lemma 5.2. U

Proof of Lemma 5.3. We assume that the value of T is given. For the slight abuse
of notation, we drop the conditional of T notation to simplify the proof (i.e. all the
probabilities are considered to be conditional to T'), and we will explicitly denote it

when necessary. First, we consider a particular value of B;. Thus, we have:

P(i(t)=j|B) = Y P(i(t)=jIM* (By) = {mis}) P (M* (B) = {mis}). (5.5)
{mis}

Recall that the density—ordered greedy approach first repeatedly adds arm I (t) to com-
bination {m,;} until it is not feasible. It is easy to show that after adding arm I (t) as
many times as possible (i.e. m i)t times) to the combination, the residual budget is at

most ¢, (or otherwise we could still add arm I (¢) one more time). Therefore:
C/\
3 my < 19 (5.6)

That is, the total count of arm pulls other than I (t) in the combination is at most
fiw)

Cmin

. This inequality comes from the fact that we can construct a combination with the
greatest number of arm pulls by only adding the arm with the smallest cost. Similarly,

we have:

B
> e > ——, (5.7)
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because we can construct a combination with the smallest number of arm pulls by only

adding the arm with the greatest cost. Combining Equations 5.6 and 5.7 gives:

< < . 5.8
Zszl Mt Cf;x By ( )

Cmin

. ) I(t) 2
Zi;ﬁ[(t) mit < Lmin <Cmax> Cmin

The last inequality is obtained from the fact that i) < Cmax- Now, recall that KUBE
chooses arm j to pull with probability —z=2——. This implies that:
Zk 1Mkt

P(i(t) = jIM" (B) = {mis})
= P (i(t) = .1 (&) = JIM" (By) = {mi})
+ P (i(0) = 3,1 () # J1M* (Br) = {mis})

This can be bounded by:

P(i(t) = j|M" (Bt) = {mzt})

O p (7 ) — A (B — (s |
_Zszlmk,tP<I(t) JIMT (By) = { }> (5.9)
St ™t (50
+ Zlemk,tp<l(t)#j|M (B) = { m})'

The right hand side can be further bounded as follows:

P(i(t) = jIM" (By) = {mi} )

< (10 = a5 (80 = () + 2RO
=1 )t
< P (10 =M (B) = {mig}) + (‘jﬁz)%gtn. (5.10)

The last inequality is obtained from Equation 5.8. Substituting Equation 5.10 into
Equation 5.5 gives:

P(i(t)=4B) < Y <P (f (t) = j|M* (By) = {mi,t}) + (Cm‘“>2 Ca) P (M* (By) = {mi.})

Cmin
{mi+}

<P(It)=4B) + (Cmejx)Q Cuie

len

2
7 Cmax 1
< =7 . .
<P(fo=dle) + (22) 7 (5.11)
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The last inequality is obtained from Lemma 5.2. Now we study the general case, where
B; is not fixed. By summing up Equation 5.11 over all possible value of B;, we have:

P(i(t)=4IT) = ZP t) =Jj|T, By) P (B|T)
c 2 1
<z( (10 =) + (222) =i ) P
3 |
gP(I(t):j|T)+ (CZ:> T (5.12)
which concludes the proof. ]

Based on Lemmas 5.2 and 5.3, Lemma 5.1 can be proved as follows:

Proof of Lemma 5.1. We assume that the value of T is already given. Again, for the
slight abuse of notation, we drop the conditional of 1" notation to simplify the proof,
and we will explicitly denote it when necessary. In this case, the proof of the theorem
for that particular value of T' is along the same lines as that of Theorem 1 of Auer et al.
(2002). In particular, recall that N; (7') denotes the expectation of number of times
KUBE pulls an arm j # I* until time step T. Given this, we have the following:

E[N;(T)] =1+ Y P(i(t)=

t=K+1
T T c 2 1
<1 P(i(t) =) max
s > P(fw=i)+ 3 (E) 5
t=K+1 t=K+1
T L c 2 1
<1 P(i t) = j,N; (t >l) max 5.13
<i+ (t) = 4, N; (t) > +Z(Cmin —ir1 13
t=K+1 t=K+1

for any [ > 1. Now, let by s = \/%. Considering the second term on the right hand
side of Equation 5.13, we have:

[ A N« by, by x
Z P<I(t)_j’Nj (t)zl) = Z P<MI Nix (1) + t,Nr+(t) < Hj,N;(t) n t,NJ(t)7Nj( )>Z>
— - Cr* Cr* Cj Cj
t=K+1 Wy
T . ) i ,
S Z P<mln {MI 8—|— t8}< max{ 7584 t97}>
—RK1 1<s<t Ccr cr 1<s; <t cj ¢
T t

If it is true that 2% 4
Crx*

statements must also hold:

, then at least one of the following three

ﬂ[*,s bt,s M+
Rle g e I
Cr* Cr* Cr*

(5.15)
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bt Sj

& < ﬂj,sj-

— 5.16
Cj - Cj + Cj ’ ( )
* ; 2by .
Hir o B 276 (5.17)
Cr* Cj Cj

That is, we get:

P(ﬂ[*,s _1_% < ﬂjvsj + bt,s]') SP (ﬂ[*,s +% < &) +
J

Cr* Cr* Cj Cj Cr* Cr* Cr*
+P (ﬂ < Moy —bt’sj) +P (’”* <By —%t’sj) :
C]' C]' C]' Cr* Cj Cj

(5.18)

Applying the Chernoff-Hoeffding inequalities to the first two terms on the right hand
side of Equation 5.18 gives:

(L 7+ b *
P ('UCI 2+ ; < ’lC” ) = P (fur=,s + bes < pr=) < exp {27 s} = exp{—4Int} = t=4
I* I I*

(5.19)
; (js.  brs,
P (% < % + %) = P (uj < fijs; +brs;) < exp {—Qbf,sjsj} = exp {—4lnt} =17"
J J J

(5.20)

On the other hand, for [ > E;IQHT, Equation 5.17 is false, since:

min

pre pg 2bes;

R B
Cr* Cj Cj Cr*

v

Rr- _ Hj
Cr*

v

Rre _ Hj
Cr*

v

Rr- M

AV

AV

(5.21)

2bt,s ;
Here note that c; > 1,s; > 1 > SlnT candt < T. If1 > ZlnT then P (M* < By T ) _

min -G ¢j

0. Substituting this and Equatlons 5.18, 5.19 and 5.20 into Equation 5.14 gives:

T T t
3 P(f(t):j, > )gZZZ2t—4<—2, (5.22)
t=K+1 t=1 s=1 5,=1 3

d2

min

Function for value of 2 (i.e. Y52, t72 = ) (Ivic, 1985).

for any [ > {SIHT—‘. Note that the last inequality is obtained from the Riemann Zeta
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Now, consider the third term on the right hand side of Equation 5.13. By using

Lemma 5.2, we get:

i (Cma")Q L (Cma">21n(T) (5.23)
i1 Cmin T—t+1" \ Cuin

We now combine Equations 5.22 and 5.23 together, and we set [ = ZQH_T + 1, which gives:
8InT 2 Cmax 2
for any given value of T', which concludes the proof. O

From Lemma 5.1, we can show the following:

Lemma 5.4. Suppose that the total budget size is B. If T denotes the total number of
pulls of KUBE then we have:

B> 2 (B ma ) Zﬁl Z 1
Tocrx d2 Cmin Cr+ " Cmin
min 5,50 5,0

where E [T] is the expected number of pulls using KUBE.

That is, the difference between CI% and the number of pulls of KUBE is at most
0 (m ().

Proof of Lemma 5.4. Since KUBE pulls arms until none are feasible, by definition:

T
P (Z Cit) < B — Cmm> =1.
t=1

Taking the expectation of ZtT:1 cit) over T and {my} (i.e. the set of i(t)) gives:

T
B — cnin < ET,{z(t )} [Z Ci(t) =Er ZEl(t Ci(t) ]
t=1
[T K
<Er ZZC]P t) =j|T)
t:1 j=1

IA
=

!

M=

e+ S 6P (i (1) = JIT)

t:1 5]' >0
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[ T
<Er[T]er +Ep 253' <ZP —]|T)>

_5j >0 t=1

<Er[T]cr+ +Er Z d; << 28 <0m§X>2> In (T) + %2 + 1> (5.24)

C
| 6;>0 mn

2 2
o B
<Er(Tler + 5(( <Zé>>ln<c.>+%+l>. (5.25)
3,0 m1n min min

Equation 5.24 is obtained from Lemma 5.1, while Equation 5.25 comes from the fact
that 7' < £

min

with probability 1. In addition, the third inequality is obtained from the
fact that d; can be smaller than 0 for some j, and thus, we can further upper bound by
only summing up 6;P (i (t) = j|T') over arms that have §; > 0. Now, by dividing both

sides with cy«, we obtain:

B min 6 8 max 2 B 2
_min NS +(Ca> ln( >+7T—+1 <Er|[T].
cre e e dzin Cmin Cmin 3

By using the fact that CC“% < 1, we obtain the stated formula. O

Note that if we relax the budget—limited MAB problem so that the number of pulls
can be fractional, then it is easy to show that the optimal pulling policy of this relaxed
model is to repeatedly pull arm I* only. In this case, C% is the number of pulls of this
optimal policy. Lemma 5.4 indicates that the number of pulls that KUBE produces does
not significantly differ from that of the optimal policy of the fractional budget—limited
MAB (i.e. the difference is a logarithmic function of the number of pulls). We can now

derive the regret bound of KUBE from Lemma 5.4 as follows:

Theorem 5.5. For any budget size B > 0, the performance regret of KUBE is at most:

(2 (=)) (5o 5 2)s(2) (Zar s a) (5o

Note that since for each j # I*, at least one between J; and A; has to be positive
. . o
(see Chapter 3 for more details), we can easily show that (Z A0 85+ 25j>0 i) >

0. That is, the performance regret of KUBE (i.e. R® (KUBE)) is upper-bounded by

o (m(:£)).

Proof of Theorem 5.5. Recall that E [GP (4*)] denotes the expected performance of the
theoretical optimal policy. It is obvious that E [GB (A*)] B“ I* " since the latter is the
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optimal solution of the fractional budget—limited MAB problem. This indicates that:

RP (KUBE) = E [G” (4*)] — E [G” (KUBE)]

Bpur d
< —E7 i Zui(t)
cr t=1
T
B~
< -~ —Er ZEz’(t) [Mz’(t)]]
=1
B,u[*
<Er ZEz(t Mz(t)
By~
< | 23S e - i)
t=1 j
T K
< Er —T) prs+ Y | e = P (i () = §|T)
=1 j
s
“E [ —T} pr+Br |37 AP (i) = 4IT)
_t:l A;>0
B
<Br | 21| B | T AR (7] (5:26)
cr+ A]'>0

Note that since A; can be smaller than 0 for some arm j, we can further upper bound
RB (KUBE) by only summing up A;E[N; (T)|T] over arms with A; > 0 (see the last
two inequalities). Applying Lemma 5.4 to the first term and Lemma 5.1 to the second
term on the right hand side of Equation 5.26 gives:

R (KUBE) < <di + (Cma">2> 3y

min Cmin
C 2 71'2
+Er | ) A (ma"> In(T)+ = +1
A;>0 m1n Cmin 3
2 2
0j ,
() () B G
dmln Cmin 5.50 Cr+ Cmin 5 Cr* 3
Jj

Cmax 2 B w2
+ ) A ( ) In ( ) +—+1
Cmin Cmin 3
A;>0 din

which concludes the proof. Note that the last equation is obtained from the facts that
pr- <land T < % with probability 1. O

In a similar vein, we can show that the regret of fractional KUBE is bounded as follows:
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Theorem 5.6. For any budget size B > 0, the performance regret of fractional KUBE
18 at most

NAN SR

Proof. We follow the concept that is similar to the proof of Theorem 5.5. Given this,

we only highlight the steps that are different from the previous proofs. For the sake
of simplicity, we use the notations previously introduced for the performance analysis
of KUBE. In particular, let T" denote the random variable that represents the number
of pulls that fractional KUBE uses. Let N; (T') denote the number of times that the
corresponding pulling algorithm pulls arm j up to time step 7. Similar to Lemma 5.1,

we first show that within the fractional KUBE algorithm, we have:

8 2
B[N; (1) |T) < 5—In(T) + % +1. (5.27)
In so doing, note that
T
E[N; (T)|T] =1+ Z t)=4T) <1+ > P(i(t)=4N, () >UT) (5.28)
t=K+1 t=K+1

for any [ > 1. Now, using similar techniques from the proof of Lemma 5.1, we can easily

show that
T

T t
" P(i(t)=4.N; () > U|T) < ZZZ g%

t=K+1 t=1 s=1s

d2

min

Next, we show that

for any [ > {M—‘ By substituting this into Equation 5.28, we obtain Equation 5.27.

o= f () EA(E ) e

6;>0

This can be derived from Equation 5.27 by using techniques similar to the proof of

Lemma 5.4. This implies that

RP (KUBE) =E [G” (4")] - E [GB (KUBE)]

Bur-
< o Er {i(t) Z Hi(t)
Bpr-
< o Er ZEi(t) [Ni(t)]]
< Er B'ul* ZE [1ie) ]
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< By | D1 —ZZM ) = §IT)
J

Cr*

K
<E; (CI*_T>M*+Z pr = > wiP i (1) = jIT)
J

t=1
B [T
SET[ —T] pre+ B |03 AP (i(t) = j|T)
er | =1 2,50
B
< Er [ - T] pr+ + Ep AGE[N; (T) T - (5.30)
el | 2,50

By substituting Equations 5.28 and 5.29 into this, we obtain

8 5 B §; (2
RB(KUBE)ng—Z Jln( '>+Zi<%+1)+1+

min §,>0 cr Cmin §;>0
B 2
+ ) A ( ( > + =+ 1)
Cmin 3
A;>0 min
which concludes the proof. ]

Having established a regret bound for the two algorithms, we now move on to show that

they produce optimal behaviour, in terms of minimising the regret.

Theorem 5.7. For any arm pulling algorithm, there exists a constant C' > 0, and

a particular instance of the budget-limited MAB problem such that the regret of that

algorithm within that particular problem is at least C'ln _

min

Proof. By setting all of the arms’ pulling costs equal to ¢ > 0, any standard MAB
problem can be reduced to a budget-limited MAB. This implies that the number of pulls
within this MAB is guaranteed to be % =T (i.e. T is deterministic). According to Lai
and Robbins (1985), the best possible regret that an arm pulling algorithm can achieve
within the domain of standard MABs is C'In (7). Therefore, if there is an algorithm
within the domain of budget-limited that provides better regret than C'ln (%) =
C'InT, then it also provides better regret bounds for standard MABs.

Now, since the performance regret of both algorithms is O (111 (Cfi n)), Theorem 5.7
indicates that their performance is asymptotically optimal (i.e. their performance differs
from that of the optimal policy by a constant factor). That is, it is easy to show that
both KUBE and its fractional counterpart follow the concept of asymptotic optimal

convergence, and thus, they fulfil Requirement 3.
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Computation—wise, at each time step t, KUBE uses a density—ordered greedy algorithm
to approximate the solution of the underlying unbounded knapsack problem. This in-
dicates that at each time step, the computational cost of KUBE is O (K InK) (see
Section 2.5.2 for more details). Recall that T is random variable that represents the
number of pulls of KUBE. It is easy to show that:

B

Cmin

T<

with probability 1. Note the right hand side is the number of pulls when we repeatedly

pull the arm with the lowest pulling cost. Thus, the number of pulls is always bounded

by CB , since we can achieve the maximal number of pulls if we only choose to pull the
arm with cpi, pulling cost. This implies that the total computational cost of KUBE
is O (W), which is low, compared to the budget size B and number of arms K.

Thus, KUBE satisfies Requirement 2.

By replacing the density—ordered greedy with the fractional relaxation based algorithm,
fractional KUBE decreases the computational cost to O (K) per time step. More pre-
cisely, at each time step, fractional KUBE calculates I (t), that is arm with the highest
confidence bound density (see Equation 5.4 for more detail). This can be evaluated with
O (K) computational cost. That is, the total computational cost of fractional KUBE is
O (BK), which is lower than that of KUBE. This implies that while both algorithms
satisfy Requirement 2 (i.e. low computational complexity), KUBE is outperformed by

its fractional counterpart.

5.3 Summary

In this chapter, we focused on developing pulling algorithms that fulfil Requirement 3
(i.e. efficient finite-time regret bound). To this end, we proposed two algorithms, KUBE
and fractional KUBE, that combine the UCB based pulling technique with unbounded
knapsack approximation methods. In particular, KUBE uses the current estimates of
the expected reward values to form an underlying unbounded knapsack problem at each
time step t. To solve this knapsack problem, it relies on a density—ordered greedy ap-
proximation approach. Similarly, fractional KUBE also solves an unbounded knapsack
problem at each time step. However, it uses a fractional relaxation technique to ap-
proach the optimal solution of this knapsack problem. We showed that these algorithms
provide efficient theoretical regret bounds that follow the concept of asymptotic optimal
convergence; that is, they both efficiently satisfy Requirement 3. In more detail, we first
proved that KUBE has a O (In B) regret bound (Theorem 5.5). In so doing, we provided
an upper bound for the number of times we pull a sub—optimal arm i ( i.e. the arm that

differs from I*) in Lemma 5.1. Using this result, we then provided a lower bound for the
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value of T, the number of pulls within KUBE (Lemma 5.4). These lemmas provide a
basis to prove Theorem 5.5, which guarantees a logarithmic upper bound for the regret
of KUBE. In a similar vein, we also showed that fractional KUBE achieves a logarithmic
upper bound (Theorem 5.6). Following this, we proved that the aforementioned upper
bounds are asymptotically optimal; that is, they only differ from the best possible by a

constant factor (Theorem 5.7).

From the perspective of computational complexity, we pointed out that while KUBE
has a O (B (K + In K)) computational cost, its fractional counterpart achieves a reduced
cost of O (BK). That is, both algorithms have low computational cost, compared to
the budget size B, and the number of arms K. This indicates that the algorithms fulfil

Requirement 2 (i.e. computational feasibility).

Although both KUBE and its fractional counterpart outperform the budget—limited
e—first approach in terms of fulfilling Requirement 3, as we will show later in Chap-
ter 7, these algorithms typically provide poor performance in the scenario of long—term
information collection of WSNs (i.e. they are significantly outperformed by the budget—
limited e—first approach), and thus, fail to satisfy Requirement 1 (i.e. efficient experi-
mental performance quality). Against this background, in the next chapter, we propose a
trade—off between the budget—limited e—first and UCB based approaches, that performs

well from both a theoretical and an empirical aspect.



Chapter 6

Budget—Limited Decreasing
Epsilon—Greedy based
Approaches

So far, we have developed pulling algorithms that follow the concepts of e—first and
UCB in order to find a trade—off between exploration and exploitation within budget—
limited MABs. However, the budget—limited e—first approach cannot guarantee efficient
theoretical regret bounds, and thus, it fails to fulfil Requirement 3 (i.e. efficient finite—
time regret bound). In contrast, both KUBE and fractional KUBE achieve asymptotic
optimal regret bounds, but as we will show later in Chapter 7, they are outperformed

by the budget-limited e—first approach in real-world settings.

Hence, we identify a need for a pulling algorithm that shows good performance from both
theoretical and experimental perspectives. To this end, within this chapter, we propose
two decreasing e—greedy based algorithms: (i) the knapsack based decreasing e—greedy
(KDE); and (ii) the fractional KDE. In so doing, we first describe the algorithms in
Section 6.1. This is followed, in Section 6.2, by the performance analysis of KDE and its
fractional counterpart. More precisely, we provide theoretical bounds on the performance

regret of the algorithms, and we study their computational cost.

6.1 The Algorithms

In this section, we focus on the description of KDE and its fractional counterpart.
Similar to the case of the UCB based algorithm in the previous chapter, these algorithms
differ from each other in the way they approximate the underlying unbounded knapsack

problem at each time step. Given this, we first start with the discussion of KDE, detailing

75
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how the algorithm is defined by combining the decreasing e—greedy based pulling policy
with the density—ordered greedy algorithm (Section 6.1.1). Following this, we turn to
the fractional KDE, focusing on how it is different from KDE (Section 6.1.2).

6.1.1 KDE

Consider the KDE algorithm depicted in Algorithm 6.1. Here, similarly to the previous
chapters, ¢ also denotes the time step. Furthermore, let B; denote the residual budget
at time ¢t. Note that at the start (i.e. t = 1), B = B, where B is the total budget limit.
At each subsequent time step, t, KDE first checks whether arm pulling is no longer
feasible. Note that it is infeasible if and only if none of the arms can be pulled, with
the remaining budget. Specifically, if B; < minjc; (i.e. the residual budget is smaller
than the lowest pulling cost), then KDE stops (steps 3 — 4). If the arm pulling is still
feasible, KDE then estimates the best combination of arms, denoted with M* (By), by
using the aforementioned density—ordered greedy approximation method (step 6). This
method provides an approximation of the best combination with greatest estimated total
expected reward, that does not exceed the residual budget limit B; at ¢t. In particular,
at each time step ¢, the algorithm solves the unbounded knapsack problem by using the
density—ordered greedy approximation method as follows. Similar to the case of KUBE

in Section 5.1.1, KDE solves the following knapsack problem at each time step ¢:

K K
mamemﬂi,ni’t s.t. Zmivtci < By, Vi,t : m; integer. (6.1)

i=1 i=1
where n; ¢ denotes the number of times up to ¢ when KDE pulls arm 4, and fi; , , is the
estimated value of arm i’s expected reward, which is calculated as the average reward
received so far for pulling arm i. More precisely, this estimate can be calculated as
described in Equation 5.2 (see Section 5.1.1 for more detail). At each time step, KDE
aims to find integers {m;.} such that Equation 6.1 is maximised, with respect to the
residual budget limit B;. Since this problem is NP-hard, by using the density—ordered
greedy method, we can achieve a near—optimal combination of arms. Let {m;,} be the
solution of this method to the knapsack problem in Equation 6.1. Thus, M* (B;) =
{m;} gives us the desired combination of arms, where m;, denotes the number of arm

i’s pulls within the combination. Next, let

e, = min {1, %}, (6.2)
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Algorithm 6.1 The KDE Algorithm
1: t=1;, B = B;v>0;
2: while pulling is feasible do
3: if B; < min; ¢; then
4 STOP! {pulling is not feasible}
5.  end if
6:  use density-ordered greedy to calculate M* (B;) = {m;,} {approximated best
combination of arms by estimated values};
7. g =min{l,7/t};
8:  randomly pull i (¢) with P (i (t) =14) = (1 — &)
9: B :Bt—cl-(t); t=1t+1;
10: end while

Algorithm 6.2 The Fractional KDE Algorithm
1:t=1;, By=B; v >0
2: while pulling is feasible do
3: if By < min; ¢; then
4 STOP! {pulling is not feasible}
5:  end if
6: & =min{l,7/t};
7
8

let P(i(t)=1"(t)) = (1—&)and P(i(t)=j.j # 1" (t)) = 3:
: randomly pull i (¢) with regard to P (i (t) = j);
9: B :Bt—ci(t); t=1t+1;
10: end while
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where v > 0 is a constant value. Note that e; cannot be greater than 1. By using
M* (By) and ¢;, KDE randomly selects the next arm to pull by choosing arm i with
probability

*
Myt

Pi@)=i)=0-&) g

€
— + . (6.3)
k=14

The reason of using &; is that KDE can also randomly choose from the other arms, that
are not involved in M* (B;). By doing so, we can guarantee that the algorithm explores
all the arms. However, the value of ¢; is decreased after each step, since as time passes
by, we have more accurate estimation of arms, and thus, random exploration becomes

less important. After the pull, it then updates the residual budget limit B, (step 9).

The intuition behind KDE is the following: By repeatedly pulling an arm from the
distribution formed by the current approximated best combination, the expected reward
value that KDE receives at each time step follows the distribution of the approximated
best combination of arms, that solves the corresponding unbounded knapsack problem.
This indicates that the average performance of KDE efficiently converges to the optimal
solution of the unbounded knapsack problem reduced from the budget—limited MAB
model if the real value of the arms are known. It is easy to show that the optimal
solution of this knapsack model forms the theoretical optimal policy of the budget—
limited MAB. Given this, by using the density—ordered greedy method at each time
step, KDE can achieve efficiently low regret bound, by converging to this theoretical

optimal solution (see next section for more details).

6.1.2 Fractional KDE

Similar to KDE, fractional KDE also approximates the underlying unbounded knapsack
problem at each time step ¢ in order to determine the frequency of arms within the esti-
mated best combination of arms. However, instead of using the density—ordered greedy
algorithm, it uses a fractional relaxation based method to approximate the optimal so-
lution of the unbounded knapsack. That is, similar to the case of the fractional KUBE,

the following fractional unbounded knapsack is formed at each time step t:
K K
max Z M tflin;, St Z m; ¢ < By. (6.4)
i=1 i=1
The optimal solution of this fractional problem is solely choosing arm I (¢), such that:

It(t) = argmaxm.
J Cj
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In other words, I'" (t) denotes the arm with the highest expected reward density estimate.
Given this, fractional KDE, depicted in Algorithm 6.2, can be described as follows:
Similar to KDE, it first sets the value of &; (step 6). It then randomly chooses an arm
to pull such that It (¢) is chosen with probability (1 —¢&;), and the others are chosen
with probability £t (steps 7 — 8). Note that the fractional KDE can be regarded as the

budget—limited version of the decreasing e—greedy (see Section 2.2 for more details).

In what follows, we show that both KDE and its fractional counterpart achieve asymptot-
ically optimal regret bounds. That is, we show that both algorithms achieve logarithmic
regret bounds. According to Theorem 5.7, this implies that the regret bounds of the

algorithm only differ from the best possible with a constant factor.

6.2 Performance Analysis

To provide an upper bound for the performance regret of KDE, we first state the fol-
lowing:

1
Lemma 6.1. Let 0 < d < dpjn, v > %%(, and C = 7}}—72 + 42;2 , where K is the number
of arms. Suppose that the total budget size is B. Given this, if T denotes the total
number of pulls of KDE then we have:

Zdln( b >— ]Z(ij— Za 1,

C
;>0 min

E[T] > P

where E [T is the expected number of pulls using KDE.

That is, the difference between = and the number of pulls of KDE is at most O (ln (C )) .
Let us first refresh some of the terms that are used: i (t) is the arm pulled by KDE at
time ¢, and when referring to a combination of arms {m;}, m;; is the number of pulls

of arm j. In addition, recall that IT (t) = argmax; 975t denotes the arm with the

highest estimated mean value density at time step ¢. In order to prove Lemma 6.1, we

rely on the following lemmas:

Lemma 6.2. Let 0 < d < dyjn, v > 28K
t > v, we get:

S0z, where K is the number of arms. For any

2 1
AN 5 < v+ 4ye? 1
P(I (t) j,j#[) < < e + Z .

t

That is, the probability that the arm with the highest estimated mean value density is

in fact suboptimal (i.e. it is not equal to I*) at time step ¢ is at most O (%)
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Lemma 6.3. Suppose that at time t, the residual budget is By, and M* (B;) = {m;+}.
Then: 5
M 4C
g eatt <
== < crigp -
> Myt ©
That is, the weighted average cost of combination {m;;} is at most cr+ ).

Now, to prove Lemma 6.2, we will make use of the following version of the Bernstein’s

inequality for bounded random variables:

Theorem 6.4 (Bernstein’s inequality - Theorem 10.2, Bubeck (2010)). Let X, Xs, ..., X;
denote the sequence of random wvariables with common range [0,1], such that for any
1 <7<t we have E[X-|X1,...,X;—1] = p, and Zf—:l Var [ X |X1,...,X;—1] < v for

some v > 0. Given this, for any § > 0, we have:
t t 52
P(TZIXTZE ;XT +5>§exp{—m}, (6.5)
52
ZX]—5><eXp{ 2v+25} (6.6)

(Z X, <E
The proof can be found, for example, in Bubeck (2010).

Proof of Lemma 6.2. Let:

Now, we first show that:

P(IT@t)=jj#17) < %—i—theXp{ 3xt}+% {—dQLT"”J}. (6.7)

This inequality can be proved by a standard application of the Chernoff-Hoeffding (The-
orem 4.2) and Bernstein’s inequality, as for Theorem 3 in Auer et al. (2002). In partic-

ular, we have:

L. €t /:Lj,n-t ﬂf*v"[* ¢
P(It@) = ') < =4+P o> L), 6.8
(1) =g #1) < v p (M B (6.9

Similar to the proof of Equation 4.11 in Chapter 4, we bound the second term of the
right hand side of Equation 6.8 as follows:

P (,Ufj,nj,t > /’LI*an*J) <P (Mj;n],t > Hjng e + ﬁ) +P (ﬂ]*,nl*,t < MI*’nI*vt _ %) . (69)
cj cr+ cj cj 2 Cr+ cr+ 2

The analysis for both terms on the right hand side is the same. Thus, from now on

we focus on the first term. Let ngft denote the number of time steps in which arm j



Chapter 6 Budget—Limited Decreasing Epsilon—Greedy based Approaches

81

was randomly chosen from the uniform distribution (and not from the current estimated

best combination {m},}) in the first ¢ time steps. Given this, we have:

P <ﬂj7nj,t >

€

Hj7nj,t

_|_

Cj

3)

(1 . d
- Zp@t n i 5 tan )
€

Cj

y . d (] . d
R O e I CEL ey
Cj J J J
fijn M d; —nd3
< ZP<ngt nlfan > g]”+2> 3 (6.10)

The last inequality is obtained from the Chernoff-Hoeffding inequallity (Theorem 4.2).

By using elementary algebra, it is easy to prove that for any x > 0:

00
Z e < le—mc
K

n=x+1

Substituting this into Equation 6.10 we obtain:

¢

/J/jvnj,f, >

P(*

ijnj,t

G

[z:] . )
fjn o Pin | dj 2 —d; £
P = P AL il
=2 ( IR 2>+d3-“‘p{ >
[z¢] . )
,ZP n?t<n'uj’ ZML_F_] +—26Xp ]LtJ
= s Cj Cj 2 dj 2

2 —d?|x
<x P (nfft < @)+ = eXp{ JQL d } (6.11)

Note that in the last two inequalities, we drop the conditioning to Ay > “g—" + =, since
J

Tt

estimate P (n

and

R only considers the cases when arm j is randomly chosen to be pulled from a uniform

distribution, independently from the previous choices of the KDE algorithm. We now

?,t < :):t) as follows:

1 t
R = ?;Q = 214,
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As a result, from Bernstein’s inequality (Equation 6.6 from Theorem 6.4) we get:

-3
P a) = P SB[ ) < n{ (612

Substituting this into Equation 6.11, and combining with Equations 6.8 and 6.9, we
obtain Equation 6.7 (note that a similar analysis has to be done for the second term on
the right hand side of Equation 6.9).

Now, since the right hand side of Equation 6.7 is a monotone decreasing function, we
lower bound the value of z;, in order to upper bound P (I (t) = j,j # I*). Recall that

er = min {1, 1}, so we can write:
1 < é 0 t
nmgpderz 3 ez ﬁln@.

Regarding the second term on the right—-hand side of Equation 6.7, along with the above,

3
note that v > % and d < 1, so (%) BK < (%)2 Therefore:

31, Yot e _ v (E (2 L 2

Similarly, for the third term on the on the right-hand side of Equation 6.7, we have:

4 2 4 2 I |
For{ - < oo (T) (1) < By (6.14)

In addition, since t > 7, we have e; = 7. By using this and Equations 6.13 and 6.14, we
get:

2 1
. v41 v o dyez \ 1
P(IT ()= "y < -4+ |4 - 1
(IF ) =3, # )_Kt+<K+ d2>t, (6.15)
which concludes the proof. ]

Proof of Lemma 6.3. Here, we consider two cases. In the first one, suppose that the
combination of arms that the density—ordered greedy algorithm returns contains only
one arm, namely It (t) (i.e. {m;;} is >0 for m+(, only). In this case, > myec; =

M+ (p) aCr (e and 30 mje = mr+ (. Thus:

Zj MjtCj M+ (1),tCI+(t)
T = Crt(e) -
Zj mjz mr+(t)t

Now consider the second case where {m;;} is > 0 for more than one arm. Recall that
the density—ordered greedy algorithm repeatedly adds arm It (¢) into the combination

until it is no longer feasible, and then it adds the feasible arm with the next highest



Chapter 6 Budget—Limited Decreasing Epsilon—Greedy based Approaches 83

estimated density. This implies that:

B,
iji > m1+(t) +1=

j Cr+(t)

B
J +1>— (6.16)
C[Jr(t)

By definition Zj mjc; < By. From this and Equation 6.16, we get:

MM 1Cl B
Z] VL) < t

Sy B O
¢ re )

Thus we have proved the two cases of the combination of arms containing a single arm

or two or more arms. O

Based on Lemmas 6.2 and 6.3, Lemma 6.1 can be proved as follows:

Proof of Lemma 6.1. Since KDE pulls arms until none are feasible, by definition:

T
P (Z Ci(t) > B — Cmin) = 1.

t=1

Given this, taking the expectation of ZtT:1 cipy over T and {m;} (i.e. the set of i(t))
gives:

T
> Eiw [ciw)]

t=1

=Er > B — ¢nin - (617)

T
Er i) [Z Ci(t)

t=1

Now, for all 0 < t < T, we have:

Ez(t Ci( t) Z Z P(M*(Bt) ={m}) < Z cr+ny P (M™ (By) = {mj}) .

{mj} {mj,}
(6.18)
where the second inequality comes from Lemma 6.3.
Now consider two cases of t < |v] and t > |7]. First, for t < |7v], we have:
20
Ei) [ein] = =5 (6.19)

because in the first [7y] steps, KDE randomly pulls each arm j with probability % (see
Algorithm 6.1 for more details).

Second, suppose that ¢ > |v]|. Recall that the density—ordered greedy algorithm first
adds the arm with the highest density estimate (i.e. I (¢)) into the combination of arms.
Given this, we can group the possible combinations together so that combinations that

have the same value of I* () are in the same group. By doing this, Equation 6.18 can
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be restated as follows:

Eiq [ci] < Z criyP (M (By) = {mj}) = ZCJP (It@t)=j) <
{myj} J

1
v+ 2 4765
<cr+ Y 0 ( - )Z' (6.20)

0;>0

Note that the last inequality comes from Lemma 6.2. In addition, since J; can be smaller

than 0 for some arm j, we can further upper bound by only considering arms with 6; > 0.

1
2

Substituting Equations 6.19 and 6.20 into Equation 6.17, and using C' = 7?2 =+ 42; ,

gives:

LVJ T 1
— Cmin < Z Z cr+ + Z 5JC¥

t=|v]|+1 5;>0

>

. Ci
< ’y% +CI*E[T] + Z 5jCET

8;>0 t=1
<7 ;{, +er-B[T]+C Y §;BEr In(T) +1]

6;>0
<72 +e-EB[T]+C Y 6 (In : (6.21)
- K Cmin

6;>0

The last two inequalities come from the fact that Zt 11 <In(T)+1 and that T <

- Cnnn

for any possible T'. Keeping c7«E [T] only on the right hand side of Equation 6.21 and
dividing the both sides with ¢y« gives the stated inequality (n.b. CC';“*“ <1). O

Note that if we relax the budget-limited MAB problem so that the number of pulls can
be fractional, then it is easy to show that the optimal pulling policy of this relaxed model
is to repeatedly pull arm I* only. In this case, % is the number of pulls of this optimal
policy. Given this, Theorem 6.1 indicates that the number of pulls that KDE produces
does not significantly differ from that of the optimal policy of the fractional budget—
limited MAB (i.e. the difference is a logarithmic function of the number of pulls). From

Lemma 6.1, we get:

1
Theorem 6.5. Let 0 < d < duyin, 7 > 5%(, and C = # + 4232, where K is the

number of arms. Given this, for any budget size B > 0, the performance regret of KDE

18 at most
Es->o 0j y c 2 B
j : A j e 2 : A max 111
(C ]+C Cr+ +K J+(Cmin> * n(cmin>
Aj>0 AJ>0
Ej Cj ZA‘>0A Cmax 2
‘ A 2.
+7<KCI* + =2 >+C > +<Cmm> +

A;>0
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To prove this theorem, we first prove the following lemmas:

Lemma 6.6. Suppose that at time step t, the residual budget is By, and M* (B;) =
{m;+}. That is, the density—ordered greedy approach that KDE uses returns {m;.} as

the best combination of arms. Given this, we get:

Z] My el Cmax 2 Cmin
g — 2 N ( >+1 .
Z] My @ Cmin Bt
Lemma 6.7. Suppose that KDE pulls the arms T times, and that at each time step t,

the residual budget is By (note that here By = B). Given this, for any 0 < t < T, we

have:

Cmin < 1

By —T—t+1

Proof of Lemma 6.6. Without loss of generality, we assume that the density—ordered
greedy approach adds the arms into combination {m;;} in the order of {1,2,...,K}.
That is, here I"™ (t) = 1. Due to the nature of the density—ordered greedy method, it is
easy to show that my; = L%J It is also easy to show that Zle mj < %, since we

can achieve the maximal number of pulls by repeatedly pulling the arm with minimal

cost. Given this, we get:

B B B
Zj TRT % > \JﬁJ H1 > C_lt,ul —1 > C_lt,ul _ Cmin
Zj Mt Zj Mt Zj Myt Zj mjt By

(6.22)

Recall that after repeatedly adding arm 1 to {m; .}, the residual budget is B; —m; 1c; <
c1, otherwise we can still add arm 1 at least once to {m;+}. It is easy to see that the
maximum number of arms we can add to {m;} with respect to this residual budget is

when we add only the arm with the smallest pulling cost. Given this, we have:

K C C
ij,tg 1 S max.

= Cmin Cmin

That is, we get:
B B
P! - T
>jmyg Bty max

C1 Cmin

= 0. (6.23)

By using Equations 6.22 and 6.23, and that p; < 1, we obtain the following:

Zj Myt g Cmin ir::: Cmin
pre — —=—" < pr-—o+ = pur~ —p1+ p1 +
Z'm't Bt By Cmax Bt
7 c1 Cmin
Cmax c C'rznax c
Cmin min Cmin min
< Ay ey < Apry + 2

By By By

C1
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where the last inequality is obtained from ¢; < cpax and I (t) = 1. This concludes the

proof. O

Proof of Lemma 6.7. At the beginning of time step ¢, the residual budget is B;. Since
the total number of pulls is T, with respect to By, KDE can still achieves T'— ¢+ 1 pulls
(including the pull at time step ¢). Given this, we have:

Bt > Ci(t) + Ci(t+1) + -+ Ci(T) > (T —t+ 1) Cmin-

which directly implies the inequality in Lemma 6.7. U

Now we prove Theorem 6.5 as follows:

Proof of Theorem 6.5. Recall that E [GP (A*)] denotes the expected performance of the
theoretical optimal policy. It is obvious that E [GB (A*)] B’; = | since the latter is the
optimal solution of the fractional budget—limited MAB problem. Given this, we have
the following:

RP (KDE) = E [G” (4%)] - E [GP (KDE)] < BL = Er (i)

Zm t>]

t=1

B/j/[*

= RP (KDE) <
Cr=

_ET

T
> B (i)
t=1

Cr+

Bpuy+
24 ZEz(t /-lz(t)‘| (624)

Now, consider E; [ui(t)]. According to the definition of KDE in Section 6.1.1, we get:

225y, i b g ¢ D i Wi
B [miw] = =) 3 S e P(M*(By) = {mj.}) + tT’
{mj,e}

Substituting this into Equation 6.24, we have:

Bl a E my, fﬂj " . €D Mi
clf -> |« ( "D . P(M* (By) = {mj.}) + T)}

t=1 {mi.e}

RB (KDE) < Er

< Er

B/"L + Z{ (1—ey) (MI - Z sznj@tuj (M*(By) = {mj,t})) +
{mj.} »
+ &t (MI* - %) }

< By | 2 —TM*]+ET[ > (m - Y R por <Bt>={mj,t}>>] +

t=|v]+1 {mj.}
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> (pre — i)
7}3
+ K T

< By [g - T} jre + Ep [ DY <u1 - %) P(M*(B,) = {mj,t})] +

t=y)+1 {mye}
Zet] . (6.25)

The third inequality is obtained from the fact that &, = 1if ¢ < |v] and &; < 1 otherwise.
The last inequality also holds since > ; (s« — i) < D a,50 Q- Note that here A; can
be smaller than 0 for some arm j, thus, we can further upper bound by only considering
arms with A; > 0.

ZA >0

In what follows, we provide upper bounds for each of the three terms on the right hand
side of Equation 6.25. In so doing, we first use Lemma 6.1 to obtain the following:

B C B
Er|—-T o < — ] 1. 2
T |:CI* ]M S Z djln (Cmin) + ch* o Z 0; + (6.26)

8;>0

Here we exploit the fact that u;+ < 1. Now we turn to bound the second term on the

right hand side of Equation 6.25. From Lemma 6.6 we have:

s L 2 .
pre — LZJ: MY < A+ ((Cma"> + 1> Conin

j mjt Cmin Bt

This implies the following:

t=Lv]+1{m;+}

T 2 |
<Er [ Z { Z ApvyP (M* (By) = {mj}) + <(%) i 1) CEI:}

t=lv]+1 ({mj.+}

[ > <m —ZTf‘f)mM* <Bt>={mj,t}>] <

(6.27)

Now, by grouping the possible sets of {m;} together so that the combinations with the
same I (t) belongs to the same group, we can reformalise Equation 6.27 as follows:

T Mgty
> > (uz*—zzf—m’j‘:)P<M*<Bt>—{mj,t}>} <

{t: I_'YJJFl {Tn’],t}
T K T . 2 o
P Sarerm =g 3 ((E) ) g e
= L’yJ—‘,—l min

t=|y]+15=1

+Er
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1
Let C = 'HV + 2€2  From Lemma 6. 2, we have:

IN

ET: EK:A]»P (I (t) = j)}

t=[y]+1 =1

T K 1
| £ Sl
t=|y]+1j=1

K = B
oS amm ey < e$oa (n (L) 1)

J=1

IN

(6.29)

The last inequality holds since T' < % with probability 1. Next, by Lemma 6.7:

) c 2 c c 2 ) 1
Er Z <<cmin) +1> B; <<cmin) +1>ET Z T—t+1
t=|v]+1 t=[y]+1

((?:1—:)2 + 1) (Er [In (7)) + 1)
(=) o) (m(2) ) om

The second inequality is obtained from the fact that ZtT: ] +1 % <In (T)+1. Subtituting
Equations 6.29 and 6.30 into Equation 6.28 implies that:

IN

[ > (m —ﬁ)P(M*(Btb{mﬁ})] <

t=[v]+1{m; .}

c 2 B
< A, max 1) (1 1) . .31
- ngl +(Cmm) " (n(cmin>+ ) (6.31)

As the last step of the proof, we now bound the third term on the right hand side of
Equation 6.25. Recall that e, = 1 if t < |y] and ¢, = 7 otherwise. Given this, we have:
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Now, by subtituting Equations 6.26, 6.31, and 6.32 into Equation 6.25, we get the stated
bound for the performance regret of KDE . O

Similarly, the regret of fractional KDE is bounded as follows:

1
Theorem 6.8. Let 0 < d < dyin, 7 > 5%(, and C' = # + 4'232 , where K is the

number of arms. Given this, for any budget size B > 0, the performance regret of the
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fractional KDE is at most
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We now turn to prove Theorem 6.33, which provides a theoretical upper bound for the
regret of the fractional KDE.

Proof of Theorem 6.33. We follow the concept that is similar to the proof of Theo-
rem 6.5. In particular, analogous to Lemma 6.2, we can easily show that if 0 < d < dpin,

and v > 2K where K is the number of arms, for any ¢ > ~, we get:

d2’

1
o +9%  dyez | 1
P(It(t)=j4j£I") < (7; + 22 >¥. (6.33)

In the next step, we calculate E [T'], where T is the number of pulls within the fractional
KDE. In so doing, consider two cases of t < [v] and ¢t > |v]. First, for ¢t < |v], we

have:
Zj Cj
7

because in the first |y] steps, fractional KDE randomly pulls each arm j with probability

% (see Algorithm 6.2 for more details).

Ei [ciy] = (6.34)

Second, suppose that t > |v]. From Equation 6.33, we have:

1
v+ 4765
Ei( [cio)] ch )=j) <er + Z d; < 7 > 7 (6.35)
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Since fractional KDE runs until it is not feasible to pull any arms, Equation 6.17 also

holds:
T

=Er | Y Eiy [
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Similar to the case of KDE, from Equations 6.34, 6.35, and 6.36, we get:

251 (?)— Zcff— > 6 -1 (6.37)

c
5;>0 mm 6 >0

E[T] >

g C[*



90 Chapter 6 Budget—Limited Decreasing Epsilon—Greedy based Approaches

Note that this equation is analogous to Lemma 6.1. We now estimate the performance
regret of the fractional KDE as follows. It is easy to show that

T
. B«
R? (fractional KDE) < —Er g i | =
( )<~ ~Ergomy ?iﬂ(t)}
Bu a Bu
= RP (fractional KDE) < = _E Ei() [ r § E
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(6.38)

Consider E;;) [,ul-(t)]. According to the definition of fractional KDE in Section 6.1.2, we
get:

K
Ei) i) = (1 —e) Y P (IT(t) =) + tZT“ (6.39)

Substituting this into Equation 6.38, we have:
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The third inequality is obtained from the fact that ¢, = 1 if ¢t < |y] and g < 1
otherwise. In addition, the last inequality holds since ), (ur+ — pi) < 35,0 In
what follows, we provide upper bounds for each of the three terms on the right hand
side of Equation 6.40. In particular, from Equation 6.37, we have:
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Here we exploit the fact that pur« < 1. In addition, from Equation 6.33 we have:
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where C' = %LW + 4762. Finally, recall that ¢; = 1 if ¢ < |y] and &; =  otherwise.
Given this, we have.
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Combining Equations 6.41, 6.42, and 6.43, we get the requested upper bound. ]

Theorems 6.5 and 6.8 imply that the performance regret of both KDE and its fractional
counterpart is bounded by O (111 (%)) Theorem 5.7 indicates that both algorithms
follow the concept of asymptotic optimal convergence, and thus, they both satisfy Re-

quirement 3.

From the computational aspect, since the underlying unbounded knapsack problem is
the same as in the case of KUBE and fractional KUBE, it can easily be shown that the
computational cost of KDE and its fractional counterpart is O (%) and O (BK),
respectively. This implies that both algorithms satisfy Requirement 2 (i.e. low com-
putational complexity). In addition, similar to the case of the UCB based approaches,

fractional KDE outperforms KDE in terms of computational efficiency.

6.3 Summary

In this chapter, we focused on developing pulling algorithms that fulfil both the theo-
retical and empirical research requirements, providing a trade—off between the budget—
limited e—first and the KUBE approaches. To this end, we proposed two algorithms,
KDE and fractional KDE, that combine the decreasing e—greedy pulling policies with
unbounded knapsack approximation methods. Similar to the KUBE approaches pre-

sented in the previous chapter, both KDE and fractional KDE use the current estimates
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of the expected reward values to form an underlying unbounded knapsack problem at
each time step t. To solve this knapsack problem, KDE uses a density—ordered greedy
approximation approach, while fractional KUBE relies on a fractional relaxation tech-
nique. We showed that these algorithms provide efficient theoretical regret bounds that
follow the concept of asymptotic optimal convergence; that is, they both efficiently sat-
isfy Requirement 3. In more detail, we first provided a lower bound for the value of T,
the number of pulls within KDE (Lemma 6.1). We then provided an O (In B) upper
bound for the regret of KDE (Theorem 6.5). In a similar vein, we also showed that
fractional KDE achieves a logarithmic upper bound (Theorem 6.8). From Theorem 5.7,
we can easily show that both algorithms achieve asymptotic optimal bounds, and thus,

they satisfy Requirement 3.

In addition, since the KDE approaches follow the concept that is similar to the KUBE ap-
proaches in tackling the underlying unbounded knapsack, the computational complexity
of the KDE approaches are similar to that of the KUBE algorithms. In particular, KDE
has a O (B (K + In K)) computational cost, and its fractional counterpart achieves a re-
duced cost of O (BK). That is, both algorithms have low computational cost, compared
to the budget size B, and the number of arms K. This indicates that the algorithms

fulfil Requirement 2 (i.e. computational feasibility).

So far, we have only analysed the proposed algorithms from the theoretical perspective,
focusing on their fulfilment of Requirements 2 and 3. In the next chapter, we investigate
the empirical efficiency of the algorithms by carrying out an experimental study within
the domain of wireless sensor networks. With this study, we will demonstrate that the
budget—limited e—first approach shows efficient performance, and the KUBE algorithms
perform poorly. Meanwhile, we will show that the KDE algorithms provide good per-
formance, compared to that of the budget—limited efirst approach. Thus, the KDE
algorithms act as a good trade—off between the budget-limited e—first and KUBE ap-
proaches by achieving good performance from both the theoretical and the experimental

perspectives.



Chapter 7

Long—Term Information
Collection in Wireless Sensor
Networks

In each of the previous three chapters we have considered pulling algorithms, namely:
budget-limited e—first, KUBE, fractional KUBE, KDE, and fractional KDE, that are
designed for budget—limited multi—armed bandits. In more detail, we have focused on the
development of these algorithms against Requirements 2 and 3. That is, whether they
are computationally feasible (Requirement 2), and achieve efficient finite-time regret
bounds (Requirement 3). Within this chapter, we study the experimental performance
quality (Requirement 1) of the algorithms, in order to investigate whether they fulfil
this aspect of the research. In so doing, we apply the algorithms to the problem of long—
term information collection in wireless sensor networks, which is one of the key research
challenges within the WSN domain (see Section 1.2 for more detail). In addition, we
show that by using the budget-limited MAB algorithms, we extend the state—of-the—
art in terms of efficient long—term information collection within WSNs. In particular,
we demonstrate that our budget-limited MAB approach outperforms USAC, a state—
of-the—art method within the domain of information collection in WSNs (Padhy et al.,
2010).

To this end, we first revise the related work within the research domain of information
collection in WSNs (Section 7.1), and we then formalise the problem of long-term in-
formation collection in Section 7.2. In particular, we decompose this problem into two
sub—problems, namely (i) energy management; and (ii) maximal information through-
put routing (see Section 1.3 for more detail). We then provide a budget-limited MAB

approach for the former in Section 7.3, and an optimal decentralised routing algorithm
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for the latter in Section 7.4. The empirical performance of the aforementioned budget—
limited MAB algorithms are then evaluated in Section 7.5. In addition, we also compare
their performance with that of USAC.

7.1 Related Work

In this section, we provide an overview of existing research studies against which this
application of our work is positioned. In order to do so, in the first part of the section
(Sections 7.1.1- 7.1.4) we discuss previous work on data collection of WSNs from four
different aspects, namely: data sampling, information content valuation, information—
centric routing, and energy management. Within these areas, we highlight the limi-
tations of each of the proposed methods, motivating the solution we present in this

chapter.

In more detail, in Section 7.1.1, we first describe some of the most commonly used
adaptive sampling methods that have been developed for WSNs. In Section 7.1.2, we
provide a background review on information content valuation techniques. Following
this, we discuss existing adaptive routing algorithms in Section 7.1.3. Then, we focus

on efficient energy management schemes for WSNs in Section 7.1.4.

7.1.1 Data Sampling

In this section, we focus on data sampling algorithms within the WSN domain. Here, it
is typically insufficient to have sensors deployed with a fixed sampling rate. In partic-
ular, due to the limited energy capacity of each individual sensor, it is crucial to avoid
sampling unnecessary data (e.g. data that does not contain any new information). Since
different environments provide different characteristics, the sensors need to learn an effi-
cient sampling rate, that fits their surroundings, in order to avoid sampling unnecessary
data, and thus, to improve their performance in information collection. As a result, it
is necessary to use some form of adaptive sampling approach on each sensor in the net-
work. Generally speaking, adaptive sampling is often described as “intelligent sampling”
(Guestrin et al., 2005; Krause et al., 2006), since it is adaptive to the unknown environ-
mental characteristics. In particular, an adaptive sampling algorithm is here defined as
a protocol (i.e. a set of policies) that is responsible for adaptively setting the sampling
rate (i.e. how often a node is required to sample during a particular time interval) and
the schedule (i.e. when a node is required to sample) of each of the individual nodes in

a network.

Existing algorithms can be classified as to whether they use temporal or spatial corre-

lations (or both) in order to make effective sampling decisions. With respect to spatial
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correlations between sensors, the challenge of calculating informative locations has been
thoroughly studied by Guestrin et al. (2005). In this approach, the spatial correlations
within the monitored environment are assumed to be known. These correlations are
modelled by using a multi-variate Gaussian and are learnt during the initial deploy-
ment of the network. Based on this information, an informative subset of the sensors
is then selected to provide information to a base station (i.e. BS), while the rest of
the nodes are removed in order to reduce cost. Krause et al. (2006) extend this work
by taking communication cost into account, making an explicit trade—off between the
energy consumption of sampling and communication of each sensor. Finally, Willett
et al. (2004) have studied the backcasting adaptive sampling method in which multiple
nodes that are spatially correlated form small subsets of nodes that then communicate
their information to a local data aggregation coordinator. Based upon this informa-
tion, the coordinator then selectively activates additional nodes (by instructing them to
take samples) in order to reduce uncertainty below a specified target level. While the
first two techniques are decentralised, the third method uses a centralised coordination
mechanism, that contains all the drawbacks of the centralised regime (as discussed in
Section 1.2).

To handle temporal correlations, the utility based sensing and communication (USAC)
algorithm was proposed by Padhy et al. (2010). This is a decentralised control pro-
tocol for adaptive sampling, designed for an environmental WSN, known as Glacsweb,
intended to measure subglacial movement (Martinez et al., 2004). In this approach,
temporal variations in the environmental parameter being sensed are modelled as a
piece—wise linear function, and then the algorithm uses a pre-specified confidence inter-
val parameter in order to make real-time decisions regarding the sampling rate of the
sensor nodes. Moreover, linear regression is used to predict the value of future mea-
surements, and if the actual sensor reading exceeds the confidence interval parameter,
the sensor starts sampling at an increased rate. However, since the algorithm does not
explicitly perform any forward planning, the sensor can rapidly deplete its battery if the

increased sampling rate is constantly re-triggered by data that is far from linear.

Furthermore, in ab application where sensor networks are tasked to monitor tidal sea
level, Kho et al. (2009) proposed a decentralised algorithm using an information metric
that represents the temporal variation in the environmental parameter being sensed.
This algorithm, in contrast to USAC, takes energy harvesting into account, and thus,
enables the sensors to make long—term plans. In particular, this algorithm aims to
maximise the information that a sensor collects over a particular time interval subject
to energy constraints, and this involves planning exactly when, within the specified time
interval, to take a constrained number of samples. The algorithm takes the information
provided by the information metric into account when creating a sampling schedule at

the beginning of each day. This algorithm also considers the amount of residual energy
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left in the sensor’s battery, and the amount of information that can be collected at

different times of the day, based on past experience.

In addition, Jain and Chang (2004) used a similar prediction technique to set the sam-
pling rate adaptively. Their approach employs a Kalman filter (KF) based estimation
technique wherein the sensor can use the KF estimation error to adaptively adjust its
sampling rate within a given range, autonomously. When the desired sampling rate
violates the range, a new sampling rate is requested from a control server. The server
allocates new sampling rates under the constraint of available resources such that the
KF estimation error over all the active streaming sensors is minimised. However, the
main drawback of this technique is that it is centralised, and thus, it is not feasible to

operate it in a decentralised setting (see the requirements of our research in Section 1.1).

Finally, the algorithm proposed by Osborne et al. (2008) uses a multi-output Gaussian
process (GP) to explicitly model both temporal and spatial correlations between a small
number of sensors. The GP is used for adaptive sampling whereby it can determine both
the time, and the sensor from which the next sample should be taken, to ensure that the
uncertainty regarding the environmental parameter being measured at each sensor loca-
tion stays below a pre—specified threshold. However, the algorithm is centralised, since
it requires information from all of the sensors in order to model the spatial correlations

between them, and it is relatively computationally expensive.

In this chapter, we assume that our sampling protocol is a generic adaptive sampling
protocol. We have only one restriction; that is, the algorithm should be decentralised.
Each agent should be able to autonomously and independently set its own sampling rate
and schedule (for more details see Section 7.2). Given this, decentralised techniques, such
as the sampling protocol of USAC, or the algorithms proposed by Guestrin et al. (2005),
Krause et al. (2006), and Kho et al. (2009), can be used here. On the other hand, due
to their centralised manner, the algorithms proposed by Willett et al. (2004), Jain and
Chang (2004) and Osborne et al. (2008) are not suitable for our model.

7.1.2 Information Content Valuation

In order to distinguish important and unimportant data from each other, and thus, to
achieve a more efficient information collection in terms of maximising the total infor-
mation delilvered to the BS, an efficient information metric is required to determine
the information content of the collected or transmitted data. In our case, this metric is

provided by an information content valuation function.

Within the tracking literature, where spatially correlated sensor readings typically rep-
resent the estimated position of a target, there are a number of standard techniques for

defining this function. Most of the works use Fisher information, whereby the estimated
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position of the target is represented as a multidimensional probability distribution, and
Fisher information is used to quantify the uncertainty represented by this distribution
(Bar-Shalom et al., 2001; Chu et al., 2002; Frieden, 2004; Zhao and Guibasn, 2004). For
example, Chu et al. (2002) used acoustic sensors to localise a target. To quantify the
information gain of the measured data provided by each sensor, they used the Fisher
information matrix as follows. Let x = {x1,X2,...} denote the set of unknown parame-
ters of the target, and z = {z1,29,...,2N} € RY denote the set of sensor measurements,
where N is the number of the sensors. Thus, the ij*" component of the Fisher informa-

tion matrix is:

Fj(x)= /RNp(Z\X) 61 lnp(z]x)% Inp (z|x) dz.

Other approaches have used mutual information as a criteria for sampling. For example,
Krause et al. (2006) modeled the spatial correlations of locations, in order to determine
efficient sensor placements, whereby a maximal information value can be collected by
data sampling. In their model, V' denotes the set of possible locations, A denotes the
set of observable locations and s is an unobservable location. Let X 4 denote the set
of observable random variables associated with the locations A, and X, be the random
variable associated with location s. In order to make predictions at a location S (i.e.
to calculate conditional distributions p (Xs = z4|X4 = x4)), they used the following

conditional entropy:

HOGX) == [ ploxa)logp(eix) dao, dxa.
Ts,XA

Intuitively, this quantity expresses how “peaked” the conditional distribution of Xj

is, given X 4 is around the most likely value, averaging over all possible observations

X4 = x4 the sensors can make. To quantify how informative the set of data collected

from locations A is, they used the criterion of mutual information (MI):
F(A) =1(Xa,Xy/a)=H (Xy/a)—H (Xv/aXa).

This criterion expresses the expected reduction of entropy of all locations V//A where sen-
sors were not placed, after taking into account the measurements of sensors at locations
in set A.

Similarly, Osborne et al. (2008) used a Gaussian process (GP) to model both the spatial
and temporal correlations and delays between nodes, using Bayesian Monte Carlo tech-
niques to marginalise over the unknown hyper—parameters that describe the correlations
and delays. They then use the variance of the GP’s predictions in order to perform ac-
tive data selection, which is a decision problem concerning which observations should

be taken, deciding when and where to take samples to maintain this variance below
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a prescribed target level. Their algorithm is computationally efficient as the samples
are learned from the data in an online fashion, and thus, it is capable of performing

real-time information processing.

Several other techniques for valuing information include Shannon entropy, which is
mainly used in signal compression (or coding), target tracking, and information fu-
sion techniques in WSNs (Cover and Thomas, 2006; Hwang et al., 2004). For instance,
Hwang et al. (2004) used a belief vector to probabilistically represent the identity of a
target. In their work, they considered the problem of combining two belief vectors of
the same target from two different sensors (i.e. data fusion). Here, information fusion
can be formulated as an optimisation problem such that the fused information is the
one that minimises a cost function which represents a performance criterion. This cost
function is modelled by the Shannon entropy. More precisely, let b; and by denote the
belief vectors before data fusion, and b denote the information value of the fused packet.
Furthermore, let
b =wby + (1 —w) by

be the fusion strategy. The goal is to determine w such that it minimises the Shannon

( ) Zb )logh (i

where b’ (i) denote the probability that the target is in belief state i. Informally, Shannon

entropy defined as:

entropy characterises the average amount of information which is gained from a certain
set of events. The entropy is maximal when all the events’ outcomes are equally likely
and, therefore, we are uncertain which event is going to happen. When one of the
events has a much higher chance of happening than the others, then the uncertainty (or
entropy) decreases. Information value can thus be quantified as the difference between

the probabilities of the random event.

In addition, Padhy et al. (2010) use the Kullback—Leibler (KL) divergence to model
the information value of collected data in USAC. Here, KL divergence is a measure
of the information gain between a prior and a posterior probability distribution (i.e.
the distribution over possible measurements before and after a new item of data has
been received). The larger this measure, the less the previous model was capable of
explaining the value of the new data, and thus, the more it has to be updated. More
recently, Kho et al. (2009) use the mean Fisher information over a period as a measure
that is proportional to the value of information. In this thesis, we assume that our model
is capable of using any of these techniques, and thus, we do not specify any restrictions

on the information valuation technique in use (for more details see Section 7.2).
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7.1.3 Information—Centric Routing

Routing is the process of delivering a message from a source node to a BS inside the
same network. A routing algorithm determines actions that a node can use to forward
data towards the BS, namely (i) transmitting (i.e. which data packets the node should
choose to transmit, and to which node), and (ii) receiving (i.e. how many packets a
node is required to receive from the other nodes during a transmission period). Since
routing is responsible for transporting the data collected by the network to the BS, the
efficiency of the routing algorithm significantly affects the overall performance of the
network. In fact, routing is one of the most studied areas within the WSN domain,
and thus, a large number of algorithms have been proposed for adaptive and efficient
data routing in WSNs from many different perspectives. These include, but are not
limited to, algorithms that address: energy efficiency, delay sensitiveness, security, and
reliability (Ahdi et al., 2007; Akkaya and Younis, 2005; Al-Karaki and Kamal, 2004;
Singh et al., 1998). However, these algorithms typically do not distinguish important
packets from unimportant ones. Thus, this may lead to inefficient performance in terms
of information collection, since it may occur that less important data is delivered to
the BS, while the more important packets are not forwarded at all. Given this, in
this section, we focus on routing approaches that are information—centric (Braginsky
and Estrin, 2002; Merrett, 2008). In particular, these approaches aim to maximise the
total information value delivered to the BS. In so doing, they typically use information

content valuation techniques in order to determine more important data packets.

One of these algorithms, directed diffusion (DD), has been developed by Intanagonwiwat
et al. (2003). In DD, the BS sends out a data collection query description by flooding the
query to the entire network. That is, data collection happens only when the B.S needs
a certain type of data. However, since data collection applications (e.g environmental
monitoring or area surveillance) typically require continuous data delivery to the BS, a
significant number of queries will be sent to the network. In this case, the communication
cost of DD caused by query floodings is high, meaning DD is not suitable for long—term
information collection. To avoid flooding, the rumor routing (RR) protocol routes the
queries to the nodes that have observed a particular event to retrieve information about
the occurrence of the event, and thus, it reduces the total communication cost (Braginsky
and Estrin, 2002). However, rumor routing performs well only when the number of
events is small. For a large number of events, the algorithm becomes infeasible due to

the increase in the cost of maintaining node—event tables in each node.

Apart from the aforementioned approaches, in which information is collected by sending
explicit queries from the B.S, other methods focus on continuous information collection.
That is, they provide information collection, without the need of sending any queries,
during the whole operation of the network. For instance, USAC (see Section 7.1.1),

considers the remaining battery power of the communicating nodes and the importance
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of the data being transmitted, in order to determine the appropriate routing path for the
packet. In a similar vein, the adaptive routing algorithm (ARA), that has been developed
by Zhou and de Roure (2007), in addition to the battery level and the importance of data,
takes the link cost (assumed to be proportional to the distance) between the nodes into
account when routing packets. However, these protocols are not designed for solving the
maximal information throughput routing problem, but rather to identify optimal paths
between each node and the BS, that can be used for forwarding data (see Section 7.2.4

for more detail).

Finally, an interesting last class of information—centric routing protocols are those that
use a market-based control (MBC) paradigm. The use of MBC in WSN allows the
use of tools from general equilibrium theory to analyse the behaviour and correctness
of a decentralised system. The main market—based protocol includes self organised
routing (SOR), proposed by Rogers et al. (2005), and self organising resource allocation
(SORA), proposed by Mainland et al. (2005). In more detail, SOR is a mechanism—
design based distributed protocol that aims to maximise the network’s lifetime. Each
node is designed to follow locally selfish strategies which, in turn, result in the self
organisation of a routing network with desirable global properties. The protocol consists
of a communication protocol, equipping nodes with the ability to find and select a
node that is willing to act as a mediator for data relaying, and a payment scheme,
whereby a node is rewarded for forwarding messages to the destination. Specifically, the
communication scheme identifies potential mediators, the payment scheme allows the
sensors to make local selfish decisions which result in good system—wide performance.
In contrast, SORA defines a virtual market in which nodes sell goods (e.g. data sampling,
data relaying, data listening, or data aggregation) in response to global price information
that is established by the end—user. However, this approach again involves an external
coordinator to determine the price and it is not clear how this price determination should
actually be done in practice. In sum, although these algorithms are based on the multi—
agent systems approach, which is clearly related to our model, we do not follow their
perspective. In contrast, within this chapter, we concentrate on networks where sensors

maximally cooperate with each other.

7.1.4 Energy Management

An energy management policy is responsible for allocating energy budgets to sensory
tasks, such as sampling and routing data. Most of these policies, however, are typically
integrated into the routing algorithm, ignoring the task of sampling. In particular,
these methods assume that the data are already sampled, and thus, they focus only
on delivering data towards the BS. Furthermore, they typically follow the concept of
energy—awareness; that is, they aim to minimise the energy consumption of each node,

while data forwarding is still to be done.
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Given this, a number of energy—aware algorithms use clustering techniques to minimise
energy consumption in sensor networks through the rotation of cluster—heads such that
the high energy consumption in communicating with the BS is spread across all nodes.
These algorithms include low energy adaptive clustering hierarchy (LEACH), proposed
by Heinzelman et al. (2000), and power efficient gathering in sensor information systems
(PEGASIS), proposed by Lindsey and Raghavendra (2002). In general, these methods
make good effort on minimising the energy consumption by electing cluster—heads, each
of which is responsible for relaying the data from a subset of nodes back to the BS
in an intelligent way. These cluster—heads all need to be placed inside the BS’s radio
range as they communicate with it directly. Thus, this assumption limits the size of the
monitoring environment, since the wireless radio range of the B.S is limited. Moreover,
these single cluster—heads can become a communication bottleneck of the network, since
in each round the cluster-heads need to communicate with a large number of nodes
within their cluster. Hence, this aspect contains some of the drawbacks of the centralised

control regime.

The life span of the network can also be lengthened by reducing the total energy con-
sumption needed to deliver the packets to the B.S. From this perspective, Dekorsy et al.
(2007) proposed an approach that jointly controls the routing and energy management,
in order to achieve efficient data forwarding. In particular, their approach aims to min-
imise the total energy consumption of each node, while the collected data has to be
delivered to the BS using multipath routing (i.e. there can be multiple routing paths
between a node and the BS). In so doing, the approach considers each node’s resid-
ual energy level, the transmission power level, and maximal communication bandwidth.
This approach, however, assumes that the data is already sampled, and that future data
is not taken into consideration when optimal routing paths are calculated. This implies
that this approach is designed for single—shot optimisation (i.e. it only considers one
time step), rather than long—term performance maximisation, in which more than one
time step is taken into account. For long—term optimisation, it has to recalculate the

optimal paths at each time step, and this requires significant computational resources.

In addition, another way to to lengthen the life span of the network is to perform energy
balancing (Dinga et al., 2004). That is, to maximise the residual energy level of the bot-
tleneck node (i.e. the node with the least energy level) in the network during the routing.
In this vein, Ok et al. (2009) used a metric to take the energy cost of transmission, as
well as the sensors’ remaining energies into account. This metric gives rise to the design
of the distributed energy balanced routing (DEBR) algorithm, to balance the data traffic
of sensor networks in a decentralised manner. Furthermore, Li et al. (2007) proposed a
global-energy balancing routing scheme (GEBR) for real-time traffic. Now, while both
of these algorithms perform well in prolonging the lifetime of the WSN, similar to the
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approach of Dekorsy et al. (2007), they assume that the data has already been sampled.

Thus, they are not designed for long—term information collection.

More recently, Merrett (2008) developed the information managed energy aware algo-
rithm for sensor networks (IDEALS) protocol, which aims to extend the network lifetime
of WSNs. IDEALS is an application specific heuristic protocol as it requires that every
sensor node decides its individual network involvement based on its own energy state
and the importance of information contained in each message. In particular, IDEALS
groups the packets into levels of packet priority (PP), according to their importance. It
also maintains a set of different energy levels, most likely in simulation, for a particular
sensor node, which it classifies as energy priority levels (EP). Now, if the EP of a par-
ticular sensor node is higher than the PP level of a packet within the sensor’s memory,
the sensor will not forward that packet. This results in a trade—off between sending im-
portant data and balancing the energy consumption of the network. However, since the
EP levels have to be set a prior: before the deployment of the network, it is necessary to
finely tune these levels in order to achieve a good performance in different environments.
Thus, IDEALS fails to fulfil Requirement 4 (adaptivity).

Finally, similar to IDEALS, USAC uses the opportunity cost of the energy used by each
sensor to balance the energy consumption of the tasks of sampling and forwarding. That
is, by evaluating its own opportunity cost, each sensor can decide whether it should
spend energy on sampling or forwarding, depending on which is the more preferable
opportunity for the sensor. Moreover, USAC also considers the total energy consumption
required to transmit a packet along a particular path as well. This method, since it can
vary the energy budgets allocated to the sensory tasks, is most related to our work. As
a result, we will compare our approach against the performance of USAC within our

empirical evaluations.

7.2 System Models and Problem Definitions

Having described the literature of relevance in the previous section, we now introduce a
formalisation of the long-term information collection problem for WSNs. To this end,
we first provide a formal description of the WSN system in Section 7.2.1. In particular,
we describe the models of adaptive sampling, information content valuation, data rout-
ing, and energy management policies that play fundamental roles in efficient information
collection of WSNs. Here, we also discuss the assumptions, on which the model formal-
isation is based. Following this, in Section 7.2.2, we formulate the main objective of our
research: that is, to achieve efficient long-term information collection in WSNs. Finally,

we decompose the information collection problem into the two separate sub—problems
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described in Section 1.3: (i) energy management; and (ii) maximal information through-

put routing, which we introduce in Sections 7.2.3, and 7.2.4, respectively.

7.2.1 The Wireless Sensor Network Model

In order to formalise the long—term information collection challenge introduced earlier,
we first need to introduce a suitable WSN model. Given this, we now present our WSN
model, that covers the energy management, sampling, information content valuation,

and routing components, respectively.

Recall that we here pursue a decentralised control model. This, however, implies that
in order to achieve system—wide goals, the nodes must typically coordinate their actions
with their neighbours (e.g. to forward data or to track objects). In addition, we also
require that the nodes must be able to autonomously adapt their behaviour, without
having global information about the system. Such requirements naturally lend them-
selves to a multi—agent system (MAS) perspective (Lesser et al., 2003; Pechoucek and
Marik, 2008; Soh and Tsatsoulis, 2005), in which each sensor is represented by an agent,
which autonomously and cooperatively acts, in order to achieve system-wide objectives
(Jennings, 2001). As a result, we also pursue a multi-agent system model, whereby

sensor nodes are represented as agents.

Now, since our main focus is on the control side of the WSN, we make the following
assumptions about the physical world of the network, in order to simplify the complexity
of the model:

e The network that we are studying is not a mobile network (i.e. the agents cannot
change their location), however, link failures, node failures and node additions are
taken into account. That is, the network can be topologically dynamic, but not

mobile.

e In our model, the energy consumption of memory management (i.e. reading from
memory and writing to memory) is negligible compared to the energy consumption
of data sampling and forwarding. This assumption is reasonable according to the
experimental studies reported in Mathur et al. (2006) and Anastasi et al. (2004).

e We also assume that once the communication channel is set between two nodes,
data transmission between these nodes is perfect (i.e. no data loss occurs). This
assumption is reasonable, especially in networks where there is a demand of high
quality of service (QoS) (Younis et al., 2004). In particular, if the ratio of suc-
cessful transmission of a communication channel is low (i.e. the QoS is low), then

that communication channel cannot be established. In order to guarantee high
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QoS within WSNs, efficient techniques can be used, such as time synchronisation
policies (Degesys and Nagpal, 2008; Elson and Estrin, 2001; Sundararaman et al.,
2005), or medium access control (MAC) protocols that control the data transmis-
sion of each node (Demirkol et al., 2006; Wu and Biswas, 2007). By using the
aforementioned techniques, we can guarantee that no data loss occurs during data

transmission.

Given this, we can formulate the WSN model as follows. Let I = 1,2,..., N be the set
of agents in the network, which contains one base station, denoted BS'. We assume
that each agent knows its distance in hops from the BS. This can be achieved by using
any of the standard shortest path algorithms (e.g. distributed breadth-first search or
distributed Bellman—Ford). Furthermore, each agent can only communicate with those
that are inside its communication range, and different agents may have different ranges.
For the sake of simplicity, we split the time line into steps. That is, hereafter we assume

that time is discrete, and can be denoted with the sequence of t =0,1,2,....

We consider three specific kinds of energy consumption for each agent in the network,
namely: the energy required to (i) acquire (i.e. sample); (ii) receive; and (iii) transmit
a single data packet (we assume that each packet has the same size in bytes). Given
this, let ef’, e?x, and eiTx denote the energy consumption that agent ¢ has to spend
for sampling, receiving, and transmitting a single data packet, respectively. We only
consider the aforementioned energy consumptions, and we disregard the energy required
for other types of processing since it is negligible in comparison (Mathur et al., 2006;

Merrett, 2008).

Let B; denote the initial battery capacity, and let B; () denote the residual battery
capacity of agent 7 at time step ¢, respectively. Note that B; (1) = B;. At each time step
t, the energy consumption of agent i cannot exceed B; (t) in our settings. In addition,
since the length of a time step is finite, and the physical time needed to execute a sensory
action is non—zero, there is a threshold on the maximal number of packets an agent can
sample, transmit, or receive (Anastasi et al., 2004; Mathur et al., 2006). As a result,
let NZ-S, NZRX, and NiT * denote the maximal number of packets that agent ¢ can sample,

receive, and transmit within a time step, respectively.

For data sampling, since our goal is not to develop new sampling techniques, we use
existing sampling techniques from the literature. Specifically, we focus on adaptive data
sampling techniques. Such policies have been advocated as the way to achieve accurate
estimates of the environmental conditions, whilst minimising redundant sampling of
the environment. Relevant examples can be found in Section 7.1.1. To calculate the
importance of sampled data, we use information content valuation methods. Similar to

the sampling case, any existing technique from the literature can be used for this (see

1Our model can easily be extended to cover systems with multiple base stations.
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Section 7.1.2 for more details). Furthermore, we also assume that the information value
of the collected data is discounted over time by a durability factor A € (0,1] (i.e. it
loses value as time passes by), if it is not delivered to the BS yet. This assumption is
justified by the fact that in many applications, more up to date information is preferable
to older information. Since our main focus is on networks without real-time delivery
constraints (see Section 1.2 for more details), we assume that the information durability
factor is typically high (i.e. A > 0.5). The intuition of this assumption is that with a
higher information durability factor, the collected information can then be delayed for
a longer time, without losing much of its value, before it is delivered to the BS. Note
that within our model, the information value of non—collected data (i.e. data that are
not sampled yet by the agents) may also decay over time. However, we assume that the
underlying sampling method can efficiently sample data so that important data can be

collected earlier than less important data.

In existing routing protocols, agents typically forward data to other agents, which are
closer to the B.S, either in terms of physical distance or number of hops. Thus, following
this concept, we assume that in our model, agents can send data to those which are closer
to the BS in terms of number of hops. Finally, we assume that data sampled or received
at each agent i at step t can only be forwarded from step (¢t + 1). This assumption
is also reasonable, since without it, newly sampled data could be delivered to the BS

instantaneously.

7.2.2 The Long—Term Information Collection Problem

Given the model that considers adaptive sampling, routing, information valuation and
energy management of WSNs, we now give a formal description of the research objective.
That is, to maximise the total collected information in WSNs, in a given finite time
interval. In more detail, let S; (¢), Rx; (t) and Tx; () denote the set of sampled, received
and transmitted data packets of agent 7 at time step ¢t. Let p denote a single data packet,
whose information value at time step t is v (p, t). Furthermore, we assume that the WSN
operates in the finite time interval [0,7]. Given this, our objective is to maximise the
total information value delivered to the BS over the time interval [0, 7], which can be

max { Z v (p, t)} (7.1)
)

t=0 pERxps (t

formulated as follows:

Here, Rxpg (t) denotes the set of packets that the B.S receives at time step ¢. We have
to take the following constraints into account:

Tx; (1) € Qi (1) (7.2)

for each agent ¢ and time step t, where Q; (t) is the set of total transmittable data
packets in the memory. That is, the set of transmitted data is the subset of the total
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data that are ready to be transmitted (packets that were sampled or arrived until the
previous time step) of each agent i. Furthermore,

Qi (t+1) = (Qi () /Tx; (1)) USi (t) URX; (1) (7.3)

for each agent i. Note that Q; (t) /Tx; (t) denotes the set of packets that is in Q; (t) but
not in Tx; (¢) (i.e. exclusion). That is, the set of transmittable data of agent i at time
step (t 4 1) is the union of the sets of residual data (i.e. (Q; (t) /Tx; (t))), the received
data and the sampled data at time step ¢t. Taking the energy constraints into account,
we have the following:

IA

1S: (1) NP,
[Rx; ()] N, (7.4)

Tx; (1) < NI

3

IA

for each agent i, where [{.}| denotes the size of set {.}.

Furthermore, for each p € S; (k) URX; (t) (i.e. received data or sampled data of agent 4
at time step t), that is not delivered to the B.S before time step ¢:

U(pat"i'l) = v (pvt)a (75)

where A\ € (0, 1] is the durability coefficient. That is, the information value of packet p
is decayed with the durability factor A, as time goes by.

As mentioned in Section 1.3, to efficiently solve the problem formulated in Equation 7.1,
we separate the study of the energy management and routing of the WSN, whilst we
assume that efficient sampling and information content valuation can be achieved by
using existing techniques. Given this, Section 7.2.3 discusses the energy management

problem in more detail, whilst Section 7.2.4 focuses on the routing problem.

7.2.3 The Energy Management Problem

As mentioned in Section 1.3, the definition of the energy management problem is based
on the observation that since each agent can sample, receive or transmit data, it is
necessary for the agents to vary the energy budget they associate with each of these
action types, so that their overall performance can effectively adapt to environmental
changes. That is, by adaptively setting the value of the energy budgets assigned to the
sensory tasks, the agents can decide whether to put more effort on sampling (e.g. when
significant events are occurring in the monitored area), receiving important data from
the others (e.g. when they have collected high value information that has to be delivered
to the BS), or transmitting data (e.g. when the delivery of data cannot be delayed too
long). With such capabilities, our hypothesis is that the agents should achieve better
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performance than systems without the ability to adapt in this fashion. However, the
agent here has to deal with the problem of exploration versus exploration as follows.
In order to find the optimal combination of budget allocation (exploitation), the agents
first have to learn the efficiency of each combination (exploration). As a result, if the
agent only focuses on learning the optimal combination, the total collected information
of that agent over the operation time might not be maximal, since the agents has to
try out all the combinations (including those with low efficiency). On the other hand,
if the agent decides to focus on the best combination so far, it may miss the chance to
find a better combination that results in better overall performance (i.e. better collected

information over a long term).

Consequently, the energy management problem, that we are faced with, is a sequen-
tial decision making problem where at each time step t, each agent ¢ has to choose a
combination of energy budget allocations for sampling, receiving, and transmitting, re-
spectively. Following this, agent ¢ evaluates the efficiency of the chosen combination by
measuring the amount of sampled, received, and transmitted information within that
time step, with respect to the chosen energy budgets. The goal of each agent i is to
find a sequence of decisions (i.e. learning method) that efficiently tackles the trade—off
between exploration and exploitation, and the dynamic behaviour of the environment,

leading the overall system to achieve maximal long—term information collection.

More precisely, let BY (t), BR* (¢), and BI* (t) denote the energy budgets that agent i
allocates to sampling, receiving and transmitting at time step ¢, respectively. That is,
at each time step, agent I makes a decision of choosing values for B (t), BR*(¢), and
BiTX (t). In so doing, beside the constraints given in Section 7.2.2, it has to take into
account the following:

g 1Si ()] < BP(t)
e Rx; (t)] < B (1), (7.6)
e | Tx; (t)] < B(1).

These constraints demonstrate that the energy consumption of each action made by
agent i cannot exceed the residual energy budget of each task (Equation 7.6), and the
action thresholds (Equation 7.4) given in time step ¢. Furthermore, we have:

BP (t) + B* (t) + B™ (t) < B; (t). (7.7)

This constraint demonstrates that the total energy consumption of the actions taken
by agent ¢ cannot exceed the energy budget given in time step ¢. The residual energy
budget of the next time step then can be calculated as:

Bi(t+1) = B (t) — (B} (t) + B{* (t) + B (1)) . (7.8)

That is, we assume that the total amount of the allocated energy has to be used within

each time step. This assumption is reasonable, since in real-world WSNs, energy budget
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allocation in fact means that the node turns on the corresponding sensory module for a
certain time interval. Within this interval, the module consumes energy. By setting the
length of this interval (in which the module is turned on), the node can set the size of
the energy budget. Given all this, the energy management problem can be formalised

as follows:

Definition 7.1. Within the energy management problem, each agent ¢ has to sequen-
tially choose a sequence of 3-tuples (B (t), BR*(t), BI*(t)) at time step ¢ in order
to maximise the objective given in Equation 7.1. A tuple (BP (t),BE*(¢), BI*(t))
represents the energy budgets allocated to data sampling, receiving, and transmission,

respectively. Each of these 3—tuples has to satisfy the following constraints:

e The number of sampled, received, and transmitted packets cannot exceed the

allocated budgets (see Equation 7.6).

e The total energy budget allocation cannot exceed the residual energy budget (see
Equation 7.7).

e The next residual energy budget is the difference between the previous residual
energy budget and the allocated energy budgets within the previous time step (see
Equation 7.8).

In Section 7.3, we propose a budget—limited MAB learning approach, in order to effi-
ciently tackle this problem.

7.2.4 The Maximal Information Throughput Routing Problem

Having described the energy management problem, we now discuss the maximal infor-
mation throughput routing problem, which aims to maximise the total information that
can be forwarded between neighbouring layers (i.e. the group of agents that are the same
distance from the BS) of agents. Given this, we group the agents within the network
into layers, such that £; denotes the set of agents that are [ hops from the BS. Let L
denote the number of layers in the network. Note that the B.S itself is layer 0. Thus,

we have the following:

Definition 7.2. The mazimal information throughput problem is the optimisation prob-
lem where agents in layer £; have to perform the maximal total information throughput

to layer £;_1 in time step ¢, with respect to the energy budgets of each agent.

The formulation of the problem can be described as follows:

max{z Z v(p,t)}, (7.9)

1€L; peTx; (k)
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with respect to the following constraints:
E|Tx; (t)| < B (t) (7.10)

for each i € £, where Tx; (t) is the set of transmitted data of node i at time step ¢, and
v (p, t) is the information value of packet p at t. That is, each sender agent cannot exceed

its transmitting energy budget during its data transmission operation. Furthermore,

E™ [Rx; (1)) < B™ (1) (7.11)

for each j € £;_1), where Rx; (t) is the set of received data of node 7 at time step t. Thus,
each receiver agent cannot exceed its receiving budget during data receiving. Finally,
constraints described in Equations 7.2, 7.3, and 7.5, that express the conservation of

information within our setting, have to be taken into account as well.

In order to solve this problem, we propose two decentralised algorithms, one is optimal,
but with significant communication costs, whilst the other is near—optimal, but with
reduced costs. We describe these algorithms in more details in Section 7.4. Moreover,
we will show that the proposed algorithm, in conjunction with the budget-limited MAB
algorithms described in the previous three chapters, outperform information collecting
state-of-the—art algorithms in WSNs.

7.3 Multi-Armed Bandit Based Energy Management

Given the problem definitions described above, we now concentrate on the energy man-
agement problem presented in Definition 7.1. Therefore, we first describe the MAB
learning based energy management approach in Section 7.3.1. Then we analyse the
computational complexity of this approach in Section 7.3.2. In particular, we show
that our approach has linear running time, and linear memory usage, compared to the

number of each agent’s available options of energy budget allocation.

7.3.1 Using Multi-Armed Bandits for Energy Management

Within this section, we show how to apply the budget—limited MAB model to the en-
ergy management problem described in Section 7.2.3. In so doing, consider the formal
model we introduced in Section 7.2. Recall that within this model, each agent ¢ has a
residual energy budget B; (t) for each time slot ¢, such that B; (1) = B; is the initial
battery capacity of agent 4. Furthermore, agent 7 has to allocate budgets B (t), BR* (¢),
and BiTX (t) to sampling, receiving and transmitting, respectively. The energy budget

allocation, however, has to satisfy Equation 7.7.



110 Chapter 7 Long—Term Information Collection in Wireless Sensor Networks

Given this, we can formulate the energy management problem of a single agent as a
budget—limited MAB as follows. We first define the set of arms, the pulling cost of
each arm, and the budget of the agents. Then we determine the reward function of each
action. The latter is the mechanism that assigns reward values to the action of the agent

at each time slot.

In so doing, let us consider a decision given in Definition 7.1 that agent ¢ makes at time
slot . Recall that the number of packets that agent i can sample, receive, and transmit
is limited (see Equation 7.4). Thus, we assume that the following holds:

B (t) NP,

B () < ef*NPx (7.12)
B (t) < e*NI~.

IA

This assumption is reasonable, since it indicates that since the number of sampled,
received, and transmitted packets are all limited due to physical constraints (see Sec-
tion 7.2.2 for more detail), it is inefficient to allocate more energy than that the physical
constraints allow. As a result, for each agent i, consider the following set of 3—tuples:

A = { (nfef, ni¥el™ ni*el™) }, (7.13)
with respect to:
0 < nf <NP,
0 < ni*< NP (7.14)
0 < n/* <N
0 < nf+n™+n™ (7.15)

The last inequality guarantees that the tuple (0,0,0) is excluded from the set (i.e. the
agent is not allowed to not allocate any energy budget to the sensory actions). Each
agent 4 is then faced with a budget—limited MAB such that the arms of the MAB are

associated with the elements of 2; (i.e. 2; is the set of arms within the MAB model).

For a particular arm a := <nl e; ,nRXeRX, nZTX Tx

as ¢ := nS S + nRX RX + nTX TX. In addition, let B; (i.e. the initial energy budget of

agent i) be the budget of the budget-limited MAB. That is, within the MAB model,

by choosing a particular action a := <nf’e§,nRX Rx nf¥el*) at time step ¢, agent i

allocates energy budgets BY (t) = nfed, BR*(t) = n?xeﬁx, and BI*(t) = nl*el* to

710

> the pulling cost of that arm is defined

data sampling, receiving, and transmission, respectively.

In contrast with the action set above, the definition of a single agent’s reward function
is not obvious. In particular, the reward function has to satisfy the requirement that if
each agent maximises its own total rewards, then the agents together also maximise the
total information collected in the network. However, in so doing, each agent has to take



Chapter 7 Long—Term Information Collection in Wireless Sensor Networks 111

into account the behaviour of other agents within the network as well. Thus, the reward
function has to capture the affect of other agents’ behaviour on the performance of a
single agent. Given this, we develop a reward function for each agent ¢ as follows. Recall
that S; (t), Rx; (t) and Tx; (t) are the set of sampled, received and transmitted data
packets of agent ¢ at time slot ¢. Furthermore, Q; (¢) is the set of total transmittable
data packets in the memory (see Section 7.2.2 for more details). Let Re; () denote
agent i’s set of residual packets from slot (t — 1) that are not transmitted until slot t.
That is,

Re; (1) = Q; (t) /Tx; (t) . (7.16)
Given this, before we determine the reward function, let us consider the following infor-
mative case, where A = 1; that is, there is no information decay as time passes by. Given
this, throughout the operational time 7" of the network, the total information that is
delivered to the BS is equal to the difference in the total information sampled by the
agents in the network until time slot (7" — 1), and the total amount of information that
remains in the memory of the agents in the network at time slot 7. In particular, since
we assume that there is no data loss in our model, data sampled until time slot (7" — 1)
is either successfully delivered to the BS or still remains as residual data in the network
at time slot T'. Note that data sampled in time slot 1" is not considered here, since we
assume that it cannot be delivered immediately to the BS, and as defined in Equations
7.16 and 7.3, Re; (T') does not contain data that are sampled in time slot 7. Thus, for
each t € [1,T], let r (t) denote the following function:

i)=Y vpt-1)- > vpt+ Y. vipt—1). (7.17)
peSi(t—1) pERe; (t) pERe; (t—1)

Note that the first term on the right hand side of this equation is the total amount
of sampled information of agent i at time slot (¢t —1). The second term is the total
information value of the residual data on agent ¢ at time slot ¢, whilst the third term
is the total information value of the residual data on agent i at time slot (¢t — 1). The
intuition behind Equation 7.17 can be explained as follows. From the definitions given
in Equations 7.3 and 7.16, the sum of the first and the third terms form the total amount
of information that agent ¢ can transmit in time slot . In more detail, as we mentioned
in Section 7.2.1, data sampled in time slot (¢ — 1) can only be transmitted from time
slot ¢, and not earlier. Thus, the first term represents the total information content
of this sampled data. The third term represents the amount of information that is not
transmitted until time slot (¢ — 1). Both the sampled data and residual data, however, is
available at time slot ¢ for transmission. On the other hand, the second term represents
the information value of data that is not sent by the end of time slot ¢, and thus, by
subtracting it from the set of transmittable data (i.e. sum of previously sampled data
and residual data from (f — 1)), we get the throughput of agent i within time slot t.
Given this, by using r; (¢) as the reward function within the case of A = 1, each part
of agent i’s chosen action (i.e. the chosen energy budgets) will effect the value of r; (t).
In particular, the size of BZ-S (t) affects the total amount of sampled information, while
BRx(t) and BI* (t) affect the size of residual data.
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Now, we show that by maximising the sum of 7; (¢) over all ¢ and ¢ does indeed lead
to the maximisation of the total amount of collected information within the network,
in the case of A = 1. In so doing, recall that ZpeRei(tfl) v (p,0) = 0 for each agent i,
since there is no residual data at all at the beginning. Given this, it is easy to see that
if we sum up r; (¢t) by ¢ from 1 to T', what we get as a result is exactly the difference
of the total information collected by the network and the total amount of information

that remains in the memory of the agents in the network. More precisely, we have

St - MU DD SRR NS S ST

~
Ju

t=0 pesi(t) t=1 peRe; (1) =0 pERei(t)
T-1

= X X vl Y o@D+ Y vm0)
t=0 peS;(t) pERe;(T) pERe; (0)
T—1

= ’U(p,t) - Z U(paT)
t=0 pesS,(t) pERe; (T)

Recall that this value is equal to the total information that is succesfully delivered to
the BS throughout the operation time of the network. Thus, r; (¢) could be a possible
reward function for agent 7, since by maximising the total reward on interval [0, 7], the
agents together also maximise the total amount of collected information value that is
delivered to the BS as well.

Note that the definition of r; (¢) in Equation 7.17 guarantees that in order to max-
imise the total amount of collected information, agent ¢ cannot either ignore sampling,
receiving or transmitting. In particular, for example, suppose that agent ¢ ignores trans-
mitting, and only focuses on just sampling/or receiving. In this case, the set of residual
data at the end of time slot ¢ is equal to the accumulated set of sampled data and
residual data at time slot (¢ — 1), and thus, the value of the reward is 0. Now, it is easy
to see that if the transmitting capacity is greater than 0 (i.e. nj*(¢) > 0), the reward
value is definitely higher than 0 as well. In a similar vein, we can easily see that agent
i cannot get high reward values in the long term if it ignores the other sensory tasks as

well.

Now, to generalise Equation 7.17 to the case of A # 1, consider the following:

Ri(t):/\d"'_l{ Z v(p,t—1)— Z v(p,t)+ A Z v(p,t—l)}, (7.18)
peS;(t—1) pERe; (t) pERe; (t—1)

where d; is the distance of agent i from the BS (in hops), and A is the information
durability coefficient. This equation differs from Equation 7.17 in two places. First, it is

weighted by the factor A%~!. The intuition behind using this factor is that since agent i
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is d; hops away from the BS, the information value that agent ¢ transmits is decreased
by a factor A%~! when the BS receives that data. The second difference is that the
third term of Equation 7.18 is weighted with A. The reason here is that since the third
term represents the set of packets that are not sent by the end of time slot (¢ — 1), the
information value of those packets is decreased in the next time slot. Note that in the
case of A = 1, this equation is reduced to Equation 7.17. To show that this reward
function is suitable for maximising the total collected information of the network in the

long term, we state the following:

Theorem 7.3. Using the reward function defined in Equation 7.18, the total reward
value that the agents in the WSN achieve together over the interval [0,T] is equal to the

total information content value delivered to the BS over that time interval.

That is, Theorem 7.3 states that by maximising each agent’s total reward over interval
[0,T], where the reward function is defined as in Equation 7.18, we can achieve the
maximal information collected and delivered to the BS. We prove the theorem as

follows:

Proof of Theorem 7.5. For the sake of simplicity, let £; denote the set of agents that are
j hops from the BS. That is,

Now, consider Equation 7.1 in Section 7.2.2. Note that since no data can be sampled
and forwarded, or received and forwarded at the same time slot (see Section 7.2.1), no
data packets are transmitted or received at time slot 0 in the whole WSN. Thus, using
the notation of Section 7.2, the main objective can be rewritten as follows.

T
max { Z v(p,t) } (7.20)

t=1 \ pcRxps(t)

Consider a particular member of Equation 7.20, which is Zpe Rapg(1) ¥ (p,1). This equa-
tion determines the total information value that arrives to the BS at time slot 1. Ac-
cording to our assumptions in Section 7.2.1, no data loss occurs during any transmission.
Thus, the amount of received information at the B.S is equal to the total amount of in-
formation that is transmitted from agents that are 1-hop from the BS at time slot 1.

That is,

o) = D D wvip). (7.21)

pERzps(1) JEL1 peTx;(1)

Note that the set of transmitted data of £ at time slot 1 is equal to the set of sampled
data at time slot 0, excluding the set of residual data at time slot 1 (since there is no
received data and the residual set is still empty at time slot 0). Since newly sampled
data does not suffer from information value discounting, the right side of Equation 7.21
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can be rewritten as the following:

SOY e = X Y em0-Y Y v (7.22)

JEL1 peT;(1) i€£1 peS;i(0) i€£1 pERe; (1)

Now, let us consider the second member of Equation 7.20, which is 3~ cp, o) v (p,2).
Similarly, this can be rewritten as follows.

Yo ovp2 = Y. Y vip2). (7.23)

pERxps(2) JEL1 peTx,;(2)

However, this is equal to the union of the set of received data, the set of sampled data,
and the set of residual data at time slot 1, excluding the set of residual data of layer 1
at time slot 2. Furthermore, any of these sets may not be empty. The packets in the
sets of received and residual data suffer from value discounting, thus, Equation 7.23 is
equal to the following:

> w2

2. 2

pERzps(2) JEL1 peTx;(2)
= D > v+ Y v
1€L1 peS;(1) 1€L1 pERe; (1)
tAY D v )= D> vip2), (7.24)
i€L1 peRx; (1) i€L1 pERe; (2)

where A is the durability coefficient of the network. Now let us consider } ;o 2= e gz, 1) v (P 1)-
Similar to Equation 7.21, this can be written as:

/\Z Z v(p,1) = )\Z Z v(p,1). (7.25)

i€L1 peRx; (1) 1€Lo peTx;(1)

Using Equations 7.24 and 7.25, and replacing £; with £9 in Equation 7.22, we obtain
the following:

> vp2)

2. 2

pERzps(2) i€£1 peSi(1)
- D 2 ve)EAY Y v
1€£1 pERe;(2) i€L1 pERe; (1)
A D w0 =AY D v ). (7.26)
1€L2 peS;(0) 1€L2 pERe; (1)

tth

In general, if we take the member of Equation 7.20, then it can be decomposed as

follows. If ¢ < L, where L is the number of the layers in the network, then:

D ZA“Z > vpt=i)-

pERzps(t) i€L; peS;(t—j)

Z/\J Y Y wlpt—i+ D+

i€L 41 pERe; (t—j+1)
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+ Z/\Jz S wlpt—j). (7.27)

Jj=1 1€L; pERe; (t—j)

Let us note that here ZZ@: > peRes(0)
that the amount of mformatlon that arrlves to the BS at time slot ¢ can be decomposed

v (p,0) = 0 for any layer j. That is, we can say

into the sum of data on layer 1 at time slot (¢ — 1), on layer 2 at time slot (¢t —2),
and so on. If t > L, however, the equation for this case is slightly different, since the
decomposition stops at the last layer of agents. Thus, we have:

>, vk = ZAJ O vt—4) -

pERzps (k) J=1 i€L; peS; (t—j)

- Z/\J Y Y vpt—j+D)+

i€L 1 pERe; (t—j+1)

+ ZAJZ > vpt—y). (7.28)

j=1 1€L; peRe; (t—j)

Given this, combining Equations 7.27 and 7.28, and taking each ¢ into account, we can
reformulate our main objective to the following:

T min (t,L)
=> Aj—lz{ doovlt—i— D>, vmt—j+D+A > v(p,t—j)}.

=1 j=1 ieg; \pes;(t—3) pERe; (k—j+1) pERe; (k—j)
(7.29)

Consider the core part of Equation 7.29 in the braces. Now, using the definition of the
reward function in Equation 7.18 to replace that part, and recall that the distance of
agent ¢ is defined in Equation 7.19, we can reformulate 7.29 as follows:

min (T,L) T—
Z Z > Ri( (7.30)
j=1 t=0 i€L;

That is, the original objective can be decomposed to the sum of reward functions of

agents on each layer j, from time slot 0 to time slot T" — j. U

Now, using the aforementioned definitions of set of arms, pulling costs, budgets, and
reward functions, the energy management problem of each agent ¢ can be reduced to a
budget—limited MAB problem. Thus, the multi-armed bandit based energy management
algorithm works as follows. Each agent ¢ uses a budget—limited MAB pulling algorithm
in order to maximise its total reward over time. This can be done by using one of the
pulling algorithms described in the previous three chapters of this thesis. Let us hereafter
refer to this approach (i.e. using budget-limited MAB techniques for allocating energy
budgets) as the multi-armed bandit based energy management (MAB/EM).
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Note that within MAB/EM, the agents do not explicitly coordinate with each other
(i.e. they do not use coordination messages). In more detail, our approach uses explicit
communication messages within the routing part (for more details, see Section 7.4), but
not within the energy budget allocation phase. However, these communication messages
are only for evaluating the reward value of the chosen action (i.e. the chosen combination
of energy budget allocations). Given this, the agents do not need to coordinate when
they take an action. Despite the lack of explicit coordination within MAB/EM, the
agents can still achieve coordination by only observing the reward value they get. In
more detail, consider the definition of the reward function (Equation 7.18). Note that
this reward function is affected by the agent’s current chosen action (i.e. the energy
amounts allocated to sampling, receiving and transmission). In particular, according to
Equations 7.3 and 7.16, Re; (t) (i.e. the list of residual packets) depends on the lists of
sent and received packets, respectively. Thus, in order to achieve higher rewards, each
agent aims to find actions that result in better reward values. However, the effectiveness
of a chosen action also depends on other agents’ action as well. Indeed, the effectiveness
of data receiving (or transmitting) depends on the allocated budget to transmitting
(or receiving) of other neighbouring agents. For example, it is not efficient for agent
i to allocate a large amount of energy to receiving if its neighbours are only willing
to send a small amount of data. Similarly, it is not efficient either for agent i to set
large amount of energy to transmission when its neighbours can only receive a low
number of packets. Note that in the latter case, by using MITRA (see Section 7.4
for more details), data loss will not occur. However, the amount of energy that agent
i allocates to its data transmission will be lost (see Equation 7.8 in Section 7.2.3 for
more detail). As a result, by only observing which actions result in higher rewards,
the agents also learn to cooperate with the others as well. This implies that MAB/EM
does not require large communication cost, and thus it satisfies Requirement 6 (i.e.
limited use of communication). It also efficiently fulfils Requirements 5 (robustness and
flexibility), since the agents do not depend on the size of the network. In addition, since
this approach uses the budget—limited approach to learn the optimal energy allocation
settings that maximise the long—term information collection, it fulfil Requirement 4

(adaptivity) as well.

7.3.2 Computational Complexity Analysis

Since WSNs are heavily resource constrained (i.e. the low energy capacity, small size
and tight computational constraints), algorithms that are implemented for such networks
need to take into consideration the limited computational capacity and memory space
(Akyildiz et al., 2002; Rogers et al., 2009). Thus, in order to ensure that MAB/EM is
suitable for WSNs (i.e. it can be installed to real sensors), we have to guarantee that

it has low computational complexity and low memory demand. Given this, we study
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the performance of the MAB/EM in terms of computational complexity in this section.
More precisely, we investigate the number of computational steps (i.e. running time

cost) and the memory usage that MAB/EM uses at each time slot.

From the aspect of computational cost, by using the budget-limited MAB algorithms
from the previous three chapters, each agent ¢ can have the following total computational
complexity: (i) O (e |20;| B; + |2;|In|2;|) (by using the budget-limited efirst approach);
(i1) O (B; |;]) (by using fractional KUBE or fractional KDE); and (iii) O (B; |2;] In [24;])
(by using KUBE or KDE). Note that |2;| is the number of arms within the budget—
limited MAB model of agent i. Since the size of the operating time interval is propor-
tional to the budget size B;, it is easy to show that the average computational cost (i.e.
cost per time step) of agent i is: (1) O (¢ |4;]); (ii) O (|2]); and (iii) O (|20]1n|A;]). Note
that |2(;| typically has the value of at most few thousands. This can be easily calcu-
lated by using the typical sensory parameter values, which can be found, for example,
in Kansal and Srivastava (2003). This implies that the computational cost is low in all

the aforementioned cases.

In terms of memory usage, MAB/EM is also efficient. In particular, recall that each
agent ¢ either uses the density—ordered greedy algorithm or the fractional relaxation
method to estimate the best combination of arms at each time step. We can efficiently
run both methods with at most O (|2;|) memory place (Cormen et al., 2001). They also
need O (|2;|) to maintain the parameters of each arm (i.e. mean value, number of pulls,
or its ranking). Given this, the memory usage of MAB/EM is O (|2;|). To demonstrate
that the memory usage is indeed low, compared to the size of data packets, consider the
following example. Suppose that to store a number, each agent uses 4 bytes of memory.
Using the fact that |2(;| is typically at most few thousands, the total memory usage (i.e.
to store the arrays of probability and weight parameters) is at most few kilobytes. This
is small, compared to the total size of real data that the agents typically have to forward
in many applications (e.g. in wireless visual sensor networks) the average size of a single
data packet is likely to be 10 — 100 kBytes (Kho et al., 2010).

7.4 Optimal Data Routing

Given the energy management approach described in the previous section, we now focus
on the maximal information throughput problem presented in Section 7.2.4. Thus, this
section outlines the work undertaken towards addressing this routing problem. Specifi-
cally, here we describe two decentralised algorithms that allow agents to achieve maxi-
mal information throughput between neighbouring layers, with respect to their energy
constraints. In particular, the first algorithm, called MITRA (for maximal informa-

tion throughput routing algorithm), achieves optimal performance in terms of solving
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the maximal information throughput problem. However, it can have significant com-
putational and communication costs in some settings. On the other hand, the second
algorithm, called MITRA, produces near-optimal performance (approximately 98% of
the optimal performance), but with reduced communication and computational costs.
To this end, we first introduce MITRA in more detail in Section 7.4.1. Following this, we
show that this approach is optimal in terms of maximising the information throughput in
Section 7.4.2. Furthermore, we provide a theoretical upper bound for the computational
and communication costs of MITRA in Section 7.4.3. Finally, we propose MITRA,, a
modified version of MITRA with reduced communication and computational costs in
Section 7.4.4.

7.4.1 The Maximal Information Throughput Routing Algorithm

Recall that at each time slot ¢, all the agents within the system run the MAB/EM in
order to set up the energy budgets for that current time slot. Then, their next step is
to maximise the amount of forwarded information value conditional on the budgets in
that given time slot. That is, the agents aim to maximise the total information value
forwarded between neighbouring layers of agents (see definition 7.2 for more details).
Now, let £; and £;_1 denote the corresponding layers. The pseudocode of the MITRA
run by the agents within these layers is depicted in Algorithm 7.1.

In more detail, we refer to the agents in layers £; and £;_1 as senders, and receivers,

respectively. The algorithm can be outlined as follows:

e Step 3: First, each sender s; broadcasts a message that contains the list of 2—
tuples to each of its neighbouring receivers. The first element of the tuple contains
the packet ID, whilst the second element contains the information value of sender
s;’s transmittable packets (i.e. the list of Qg, (t), see Section 7.2.2 for more details).
Then, whilst data transmission is still feasible, the algorithm repeatedly executes

steps 5 — 10 as follows.

e Step 5: Based on the received information lists from the neighbouring senders,
each receiver 7; chooses the best packets (i.e. packets with the highest informa-
tion value) it can receive, with respect to its residual receiving capacity (i.e. the
maximal number of packets it can still receive without exceeding its total receiving
capacity NTIJ{_X). Note that N},jx is set by the MAB/EM (see Section 7.3.1 for more
details). In so doing, it needs to wait until it receives all the broadcast information
from its neighbouring senders. However, since node failures may occur, agent r;
does not exactly know which of its neighbours is available within the current time
slot ¢, and thus, will send to r; a broadcast message. In such cases, r; does not

know when to stop waiting for the broadcast messages, and thus, it cannot move
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Algorithm 7.1 MITRA
1: for all pair of layers £; and £;_1 do
2 agents in layer £; < senders, agents in layer £; 1 < receivers;
3 Vi sender s; broadcasts list of information values;
4:  while data transmission is feasible do
5 Vj: when receiver r; receives all the broadcast information (or time threshold
expires), it identifies best packets it can receive;

6: Vj receiver r; sends REQUEST messages to senders;

7 Vi when sender s; receives all the REQUEST messages (or time threshold expires),
it sends data to receiver with best offer;

8: if d sender s; has not exceed transmission budget then

9: sender s; broadcasts a SEND message to receivers;

10: end if

11: end while
12: end for
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on to the next step of MITRA. In order to avoid this situation, we set a time
threshold, so that if this threshold expires, the sender stops waiting for further
broadcast messages. Following this, r; chooses the best packets it can receive as
follows. It first sorts the received lists of 2—tuples in decreasing order of the value
of information, then it merges these lists into a joint list, also with the decreasing
order of the information value. From this joint list, it chooses the best packets it

can receive.

e Step 6: Following this, receiver r; propagates REQUEST messages to each of its
neighbouring senders. In particular, each REQUEST message contains the number
of packets that r; requests from that sender. This number is calculated in step 5

of the algorithm.

e Step 7: When s; receives all the REQUEST messages from its neighbouring receivers,
it chooses the best offer; that is, the one with the highest number of requested
packets. However, similarly to step 5 of the algorithm, it may occur that s; does
not know when to stop waiting for all the REQUEST messages, due to node failure.
Thus, to prevent it from waiting indefinitely for the messages, we also use a time
threshold here. Given this, after all the REQUEST messages arrive to s;, or the
time threshold expires, s; sends the requested packets to the receiver with the best
offer. If the receiver with the best offer is not unique, then s; randomly chooses

one among them.

e Steps 8-10: After data transmission in the previous step, if sender s; still has

the capacity to transmit data (i.e. ni*(t) is not exceeded), then it broadcasts
a SEND message to each of its neighbouring receivers. This message contains the
number of packets that it transmitted in step 7. Based on this message, all the
receivers can update the list of packets they can request from s; (i.e. they update
the joint list described in step 3). Furthermore, they also update the value of their

remaining receiving capacity.

Now, to detect whether data transmission is still feasible, the participating agents do the
following. From the sender side, when sender s; does not receive any REQUEST messages
in step 7, it considers data transmission as not feasible. From the receiver side, when
receiver r; does not receive any broadcast messages (e.g. the list of information value,
or the SEND messages) in step 5, then it also considers data transmission as not feasi-
ble. Given this, if an agent sees that it cannot receive and transmit data anymore (i.e.
receiving and transmission is not feasible), it stops running MITRA for that time slot.
That is, the agents rerun MITRA at each time slot . Note that the time thresholds in
steps 5 and 7 are for only communication messages (i.e. REQUEST and broadcast mes-

sages). Once the agent receives one of these messages from its corresponding neighbour,
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it sets up a communication channel, in which data packets are assumed to be successfully

forwarded, without any loss.

7.4.2 Performance Analysis

Given the description of MITRA above, we now show this algorithm provides the optimal
solution to the maximal information throughput routing problem presented in Definition

7.2. In so doing, we state the following:

Theorem 7.4. Assuming that the communication between senders and receivers is per-
fect, that is, none of the messages arrive after the timeout, the MITRA algorithm results
in an optimal solution for the mazximal information throughput routing problem (i.e. the
solution that gives the maximal throughput of information value between the sender and

receiver layers).

Proof. Here we use the contradiction technique. Let us assume that the MITRA algo-
rithm given in the previous section is not optimal. That is, the output solution does not
maximise the total transmitted information value between the two layers. Let © denote
the output solution of the MITRA algorithm and Do pr be one of the optimal solutions.
Since we assume that £ is not optimal, there should be p; and ps packets such that only
one of them is allocated in © and the other one is allocated in Oppr. Without loss of
generality, we can assume that p; is allocated in © and ps is allocated in Dpopr. We
can also assume that both p; and ps are sent to the same receiver r;. It is easy to prove

that if © # Dopr then there exist two packets such that these assumptions hold.

In particular, there are two cases to investigate. In the first, both p; and po are from
the same sender. Note that it is easy to show that v (p1,k) > v (p2, k). That is, p; has
a higher information value than po, since the corollary states that those data which are
sent from the sender must be the packets with the highest values in the set of packets
of that sender.

In the second case, p; and ps are from different senders. Since in MITRA, the receiver
uses a greedy approach to allocate possible arriving packets, when p; is accepted and ps

is not at rs, the only explanation is that v (p1,k) > v (p2, k).

One can see that in both cases p; has a higher, or at least the same value, as po. If py
has a higher value than that of ps, then by replacing ps in Oppr with p1, we would have
a better solution than Oopr. However, this is a contradiction, since Oppr is assumed
to be optimal. If p; has the same value as po, then by replacing all the possible p;-s that
are in © but not in Oppr (since they all have the same value, otherwise we would be

faced with the former case), we would have that O is also an optimal solution, which
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would also contradict our assumption at the beginning. Therefore one can see that the

original assumption, that is, £ is not optimal, is not true. U

7.4.3 Computational and Communication Cost of MITRA

In the previous section, we showed that MITRA achieves an optimal solution for the
maximal information throughput problem. Given this, here we continue the analysis of
MITRA by studying its computational and communication cost. In particular, similarly
to the case of MAB/EM, we need to analyse whether MITRA is efficient in terms of
computational and communication complexity. In so doing, recall that at each time slot
t, each agent i within the network repeatedly runs steps 4 — 11 of Algorithm 7.1 until
data transmission is not feasible at that time slot. For the sake of simplicity, hereafter we
refer to this cycle as the communication round of MITRA (since the agents communicate
with each other during this cycle in order to find the maximal information throughput).
Note that since MITRA is rerun at every time slot, each time slot ¢ contains a number
of communication rounds. Thus, the number of communication rounds that MITRA
uses within a particular time slot cannot be larger in time, compared to the length of a
single time slot. Given this, here we aim to analyse whether we can upper bound the
number of communication rounds. Furthermore, note that both the computational and
communication costs of agent ¢ depend on the number of communication rounds that the
agent needs to run. Thus, in order to guarantee low computational and communication
costs of a single agent, we also need to ensure that the number of communication rounds
that an agent uses within the MITRA is also low. In more detail, each receiver determines
the best packets (i.e. packets with highest information value) it can receive by sorting the
list of receivable packets at each communication round (step 5 of Algorithm 7.1). Since
this list typically has a size at most of few thousands, sorting it is simple and fast (e.g.
by quicksort). However, since the sorting is repeatedly executed at each communication
round, if the number of those rounds is high, then the total computational cost can be
significant. Now, note that the communication cost of a single agent consists of the cost
of sending REQUEST messages and the cost of sending a SEND broadcast message at each
communication round. Thus, again, if the number of communication rounds is high,

then the total communication cost can also be significant.

Against this background, we provide a worst—case upper bound (i.e. an upper bound
that holds for all the cases) for the number of communication rounds that MITRA uses.

More precisely, we state the following:

Theorem 7.5. Consider neighbouring layers £; and £,_1. At each time slot t, let
Teom (t) denote the total number of communication rounds, that MITRA needs to run

until data transmission is not feasible between layers £; and £;_1 within time slot t.
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Given this, we have:

In (er€21,1 NEJ{X)

Teom (1) < )
on (0 S T T (1€ - 1)

where |£;_1| denote the size of layer £,_1 (i.e. layer of receivers).

Proof. Recall that, at each communication round, each receiver r; chooses the best
packets it can receive, conditional to the value of its residual receiving capacity (see
step 5 of algorithm 7.1). Let D, (7) denote the maximal number of packets r; can
receive from its neighbouring senders at communication round 7. It is easy to see that
for each 7;, D, (7) is monotone decreasing function of 7, within time slot ¢. In more
detail, recall that the senders cannot forward information that are sampled or received
at time slot ¢. Given this, D, (7) only contains data that are sampled/or received until
time slot (¢ — 1). This set of data, however, is already given at the beginning of time
slot ¢, and thus, during the communication rounds, the size of these data cannot be
increased. Furthermore, at each communication round (within time slot ¢), receiver r;
receives a non-negative number of packets. Given this, the value of D, (7) is monotone

decreasing.

Given this, we first show that at each communication round 7, the total number of

successfully received packets within MITRA is at least Dyax (7), where

Dinax (1) = max D, (7).
7j

Indeed, according to algorithm 7.1, each receiver r; send REQUEST messages to its neigh-
bours at each communication round 7, requesting D, (7) packets in total. Some of these
requests will be accepted by the senders, whilst the others will be rejected. However,
a sender only rejects a request, if it gets a better request (or a same request) of total
amount of information value from another receiver. This implies that the number of
packets of the better request is not lower than the number of packets r; requests from
that sender. Given this, it is easy to see that the total amount of transmitted (received)
packets is at least D, (7) for any r; (i.e. it is also at least Dyax (7)). Therefore, we

have the following inequality:

Y Dp (7+1) <) Dy, (1) = Dinax (7). (7.31)

Now, note that at each communication round 7, we have:

er Drj (1)

7.32

Dmax (T) >
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That is, Dmax (7) is not lower than the average value of D, (7). Using Equations 7.31
and 7.32, we get:

That is, we can show by induction that the following holds for each 7:

ZD (r41) ('ngl”l_'l) > "Dy, (D). (7.33)

rj

Note that D, (1) < Ngx; that is, the maximal number of packets that r; can receive at
the first communication round is not greater than the receiving capacity of r;. Given

this, from Equation 7.33 we get:
L4 —1
S D, (r+1 <‘ Sl ) Z Ny, (7.34)
p» 1€1-1]
J
Now, note that MITRA stops after 7 communication rounds if and only if

ZDTJ. (r+1)<1
T

That is, no more packets can be sent to the receivers. Given this, MITRA still runs

after 7 communication rounds if

|£l—1| - 1Y Rx
_— > 1. .
< |£l_1| E Nrj >1 (7 35)

L]

This can be reformulated as:
Li-1] )T
NRx > (|7 . 7.36
Z i |£l 1| -1 ( )

Taking the logarithmic function of both sides, we get:

I (> N =7 (€] —In (€] - 1)). (7.37)
rj
Substituting Tcom (¢) into this inequality concludes the proof. O

Note that from the proof, it is easy to show that this upper bound is tight. Thus,
Teom (t) = O (111 (er621_1 N%")); that is, the upper bound of Ty, is the logarithm of

r

the total number of packets that need to be forwarded within each time slot .
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7.4.4 Communication Round Limited MITRA

In the previous section, we provided an upper bound for the number of communication
rounds that MITRA uses. In particular, we demonstrated that the number of these com-
munication rounds is low, compared to the total size of data to be forwarded at a single
time slot. However, since this upper bound is tight, the total number of communication
rounds that MITRA uses in the worst case scenario (i.e. when the bound is tight) is
still significant in terms of total time length. For example, consider a WSN, where each
layer has 10 agents on average, and each agent can receive 100 packets per time slot.
Given this, according to Theorem 7.5, the upper bound of the number of communication
rounds is around 66. Note that each communication round consumes a certain amount
of time, and thus, 66 communication rounds together may not fit into the length of a

single time slot (since MITRA has to terminate within the same time slot).

In order to address this shortcoming, we can either shorten the time length of a com-
munication round, risking the higher rate of data loss in WSNs (i.e. not all of the SEND
and REQUEST messages arrive on time), or limit the number of communication rounds
that MITRA can use. We show that by using the latter solution, we can significantly
reduce the number of communication rounds, whilst the reduction in the performance of
the algorithm is not significant. We denote the communication round limited MITRA
with MITRA ., where 7 is the threshold value of the number of communication rounds.
Given this, the algorithm for MITRA.; is similar to that of MITRA, except that it stops
executing steps 4 — 11 after exactly 7 rounds (see Algorithm 7.1 for more details). In
Section 7.5.4, we will demonstrate that with low 7 values (e.g. 7 = 8), MITRA, can
still achieve 98% of MITRA’s performance.

7.5 Performance Evaluation

Having calculated the computational and communication complexity of MAB/EM and
MITRA in the previous sections, we now demonstrate that by using MAB/EM for energy
management and MITRA, for data routing, our proposed algorithms together signifi-
cantly outperform the state—of-the—art. In particular, we first compare the performance
of different MAB/EM techniques, that uses the budget-limited MAB algorithms from
the previous chapters to tackle the energy management problem. With this comparison,
we study which of the algorithms efficiently fulfil Requirement 1 (i.e. good experimental
performance quality). The reason we choose MITRA, instead of MITRA to route data
is that the communication cost of MITRA; is guaranteed to be low (see Section 7.4.4
for more details). However, as we will show later, it achieves, on average, 98% of the
performance of MITRA.
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Following this, we present empirical results against state-of-the—art algorithms that
demonstrates the efficiency of using budget—limited MAB in long—term information col-
lection within the WSN domain. In so doing, we need to choose a benchmark algorithm

that has to fulfil the following requirements:

e It must be capable of using efficient adaptive sampling methods for collecting data

from the environment.

e It must use information content valuation, in order to distinguish important data

from unimportant data.

e It must contain an energy management policy, which allocates energy budgets to

different sensory tasks of sampling, receiving, and transmitting.

In particular, as we discussed in Section 7.1, algorithms that guarantee these require-
ments may perform well in WSNs with dynamic environments for efficient long—term
information collection. On the other hand, those which fail to fulfil the aforementioned
requirements are not suitable for long-term information collection in our settings (see
Section 7.1 for more details). As we demonstrated within Section 7.1, USAC is the most
appropriate state—of-the—art method that fulfils these criteria. Given this, we choose
USAC as a benchmark for our performance evaluation. In more detail, we compare the
performance of our approach to USAC through extensive simulations, and we show that
our approach typically outperforms USAC by around 120% on average in terms of long—
term information collection. Furthermore, we also benchmark the performance of our
approach against a non—learning approach, that solely uses MITRA for routing. In par-
ticular, within this benchmark approach, each agent randomly chooses an energy budget
allocation combination, that it uses throughout its operating time (i.e. the budgets are
fixed over time). Here, MITRA with fixed budgets represents a benchmark algorithm
that does not intelligently set the budgets of the sensory tasks to adapt to the environ-
mental changes. With this comparison, we demonstrate that by using adaptive learning
(i.e. the MAB/EM), we can also achieve 100% improvement of collected information in

the long term.

In addition, we also benchmark the performance of our approach against a centralised
algorithm, that has the perfect knowledge of the environment, such as: the real value of
any possible data in the future, the current energy level of each agent node, and whether
they are out of order (i.e. suffering from node failure). Since this approach has perfect
information of the future, we can This benchmark aims to provide a theoretical upper
bound of the performance that we can achieve within long—term information collection
in WSNs. In particular, in order to determine the optimal performance of the network,
we need global information about each agent’s sampled information values at each time

slot. However, to gather this global information, a centralised control mechanism is



Chapter 7 Long—Term Information Collection in Wireless Sensor Networks 127

needed, which is not feasible in our settings (as outlined in Section 1.2). Thus this is a

benchmark algorithm only; not a feasible solution to our information collection problem.

Finally, we demonstrate that by using MITRA, with small values of 7, we can still
achieve near—optimal routing performance, while the number of communication rounds
needed is significantly reduced (compared to that of the MITRA).

To this end, in Section 7.5.1, we first set the parameters that will be used through-
out our simulations. We continue with the performance comparison between different
budget-limited MAB approaches for the energy management problem (Section 7.5.2).
Following this, to demonstrate the efficiency of MAB/EM combined with MITRA;, we
analyse simulation results in detail in Section 7.5.3. Here, we compare the performance
of our approach to that of USAC, and the centralised optimal algorithm. Finally, in
Section 7.5.4, we show that by using a small value of 7, MITRA, achieves near optimal

performance (e.g. 98% of the optimal solution can be achieved with 7 = 8).

7.5.1 Parameter Settings

To compare the performance of the algorithms, we measure the overall amount of in-
formation collected by each algorithm over time. To this end, we run each algorithm
on several networks with different topologies and environmental characteristics (e.g. the
occurrence frequency of the events, or the expected value of information of each event).
Then, we take the average of the specific results of the networks. In order to do this, we
have to create a number of networks that may differ from each other in both topology
and environmental characteristics. Given this, we now describe the parameter settings,
that are used throughout our simulations, in order to create these networks and their

environments.

In our model, a data packet that agent ¢ samples from the environment has the infor-
mation value randomly chosen from a normal distribution with mean m;, variance v;.
To ensure positive information value, the distribution is truncated at 0 and 2m;. The
value of each (m;,v;) pair is randomly and independently chosen from intervals 1 — 5,
and 1 — 3, respectively. These values are set to be fixed over each simulation round. In
addition, we tune these values such that nodes that are closer to the BS has lower mean
values. This assumption is reasonable, since it reflects the fact that events farther from

the BS are typically more important to the system.

Now, we set the energy settings of each agent node as follows. Each sensor’s transmission,
receiving and sampling energy consumption is uniformly and randomly chosen from
intervals of 30 —42, 20 — 34, and 15 — 25 per packet, respectively. At each time step, the
threshold values for the maximal number of packets, that agent ¢ can sample, receive,

and transmit, are set to be between 5 and 15. In addition, the battery capacity of each
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agent node varies between 1.5-10% and 1.8-10°. Note that these values are proportional
to real-world sensor values as reported in Kansal and Srivastava (2003) and Torah et al.
(2008). Given this, in our simulations, we use these values to set the parameters, such as

S _Tx _Rx

i) 6 6

e and B;, of the agents. We assume that the network contains 100 agents, and
we randomly set the number of nodes in the layers such that each layer cannot contain
more than 10 nodes. The communication edges of the network are randomly generated
with probability 0.5 (i.e. two nodes within neighbouring layers can communicate with
each other with probability 0.5). Note that we randomly set the corresponding values
of the agents at the beginning of each simulation round, we set them to be fixed over

that simulation round.

Now, note that within this chapter, we focus on long—term information collection, and
thus, we do not have strict constraints on the delivery time of each collected piece of
information (see Section 1.2 for more details). Given this, the information durability
factor that we consider here is typically close to 1 (see Section 7.2.1). However, it would
be also interesting to study the performance of our approach in systems where real—
time information collection is desired. Within these systems, the real-time monitoring
typically requires newest data only, and thus, the value of sampled information rapidly
decreases as time passes by. This indicates that the durability factor is significantly
lower within such systems. Now, note that MITRA does not have any guarantee that it
will deliver the sampled data to the BS within a certain time threshold (which is a key
requirement in real-time monitoring systems). Given this, our hypothesis is that our
approach may not perform well in systems that demand low durability factors. In order
to evaluate this hypothesis in more detail, we vary the value of A during our simulations.
In particular, we set the information durability coefficient A = 0.9, and 0.5, respectively.
The former represents the durability factor of non real-time systems, while the latter is

a typical value for real-time WSNs.

In addition, we allow node failures during the operation of the WSN. In particular, each
agent node may stop functioning at each time step with probability 0.2, independently
from other nodes. Nodes with failures may be functioning again in the next time step. By
allowing node failure, our hypothesis is that the performance of EM/MAB is significantly
decreased, since the proposed budget-limited MAB algorithms cannot deal with non-
stationary (i.e. dynamic) environments. As a result, we set up three simulation scenarios

as follows:

1. Static topology (i.e. there is no node failure), and the information durability
coefficient A = 0.9.

2. Dynamic topology (i.e. node failure is allowed within the network), and A = 0.9.

3. Dynamic topology (i.e. node failure is allowed within the network), but A = 0.5.



Chapter 7 Long—Term Information Collection in Wireless Sensor Networks 129

Algorithms

Static topology
(A=0.9)

Dynamic topology
(A=0.9)

Dynamic topology
(A=10.5)

Budget—limited
e-first (¢ = 0.05)
Budget-limited
e-first (¢ = 0.10)
Budget-limited
e-first (¢ = 0.15)

14.2(£0.77) - 105 | 6.56(4+0.43) - 10% | 2.31(+0.26) - 10°

12.2(£0.85) - 103 6.03(40.61) - 10> | 2.34(+0.39) - 10°

9.84(40.91) - 10° 5.87(40.47) - 10° 1.93(£0.47) - 105

8.35(£0.91) - 10° | 4.26(+0.36) - 10° | 1.67(+0.22) - 10°

KUBE

5.35(+£0.77) - 10° | 2.84(4+0.3)-10° | 1.46(+0.18)-10°

Fractional KUBE

8.99(+0.99) - 10° 5.18(+0.58) - 10° 1.78(40.27) - 10°

KDE (v = 50)
5 5 5
KDE (v — 100) 10.9(£1.05) - 10% | 5.49(+0.42) -10° | 2.06(+0.33) - 10
5 5 5
KDE (- — 150) 0.3(+£0.85) - 10° | 5.62(£0.44) -10% | 1.99(£0.34) - 10
gaftg)of;al KDE 8.77(£0.94) - 105 | 3.17(£0.45) - 10° | 1.69(£0.31) - 10°
333“1%%6;1 KDE 7A8(£1.01)-10° | 3.53(0.39) - 10° | 1.83(0.25) - 10°
‘(Fiaitllogga;l KDE 6.88(£0.75) - 10° | 4.23(£0.45) - 105 | 1.81(%0.29) - 10°

TABLE 7.1: Total collected information with different budget—limited MAB algorithms.

In more detail, within the first scenario, MAB/EM has to deal with a static environment,
while in the second scenario, it has to take the varying topology into account as well.
In addition, within the third scenario, the system is forced to deliver the packets to the

BS as fast as possible, since the information value of the packets rapidly converges to 0.

Finally, we run the simulations until the network cannot collect any further data (i.e.
data that are collected and delivered to the BS).

7.5.2 Overall Performance Evaluation

Given the parameter settings above, we now discuss the numerical results of the simu-
lations in more detail. In particular, we first study the performance of MAB/EM with
different budget-limited MAB algorithms, combined with MITRAg (i.e. 7 =8). As we
will show later in Section 7.5.4, the choice of 7 = 8 results in both low performance loss

and low number of communication rounds within MITRA.

Within the simulations, we set the budget—limited e—first approach with different values
of &, namely 0.05,0.1, and 0.15, respectively. We also vary the value of v to be 50, 100,
and 150 within KDE and its fractional counterpart. The results are depicted in Table 7.1



130 Chapter 7 Long—Term Information Collection in Wireless Sensor Networks

and Figure 7.1. In particular, Table 7.1 depicts the average total amount of collected
information within the WSN by using different budget—limited MAB techniques. We
highlight the best performance of algorithms that were run with different tuning pa-
rameter values (e.g. € or ). For the sake of better comparison, we also highlight the
performance of KUBE and that of its fractional counterpart. It can be clearly seen that
the budget-limited e—first approach has a significantly better performance, compared to
that of the others. In particular, it outperforms KUBE and fractional KUBE by up to
70% and 160%,while it is typically better than KDE and fractional KDE by up to 30%
and 85%, respectively. In contrast, KUBE and its fractional counterpart provides the
lowest performance in general. As a result, in terms of satisfying Requirement 1 (good
experimental performance quality), the budget-limited e-first approach has the high-
est performance, while KUBE and fractional KUBE performs the worst. That is, the
decreasing e-greedy based algorithms (i.e. KDE and fractional KDE) can be regarded
as a trade—off approach that efficiently balances theoretical requirements with empirical
criteria. In particular, as we showed in the previous chapters, KDE and fractional KDE
achieves asymptotically optimal regret bounds. In addition, it provides adequately close

empirical performance to that of the budget—limited e—first approach.

Note that by using the density—ordered greedy approach to solve the underlying knapsack
problem at each time step, we can improve the performance of the UCB based and the
decreasing e—greedy based algorithms, compared to the case when we use the fractional
relaxation approach. In particular, this improvement is typically 70% in the case of

KDE, and is approximately 50% in the case of KUBE, respectively.

To better understand the behaviour of each budget—limited MAB algorithm, we depict
their performance over time in Figure 7.1. In more detail, we depict the performance
of the KUBE, fractional KUBE, the budget-limited e—first with ¢ = 0.05, and KDE
and its fractional counterpart, both with v = 100. The reason behind the choice of
these values is that they typically outperform other choices of €, and -, respectively
(see Table 7.1 for more details). The performance of the algorithms are measured in
networks with: (i) static topology and A = 0.9 (Figure 7.1a); (ii) dynamic topology and
A = 0.9 (Figure 7.1b); and (iii) dynamic topology and A = 0.5 (Figure 7.1c). It can
be clearly seen from this figures that as more and more agents stop functioning due to
battery depletion, the improvement of the total collected information value decreases.
We can also observe that by adding node failures into the system, the performance of the
algorithms significantly drops down. In particular, in the case of dynamic topology with
A = 0.9 (Figure 7.1b), the performance of the algorithms is decreased by more than 50%,
compared to the case of static topology (Figure 7.1a). One reason would be the fact
that, as the environment becomes more dynamic, the budget—limited MAB algorithms
cannot efficiently follow the change of the environment, and thus, they produce poor

performance.
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FIGURE 7.1: Information collection in a 100-agent wireless sensor network with (A)
static topology with A = 0.9; (B) dynamic topology with A = 0.9; and (C) dynamic

topology with A = 0.5.
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Note that by modifying the value of A to be 0.5, the performance of the algorithms is
decreased even more. This is due to the fact that in this case, MITRA provides poor
performance, since it is not designed for rapid data delivery. We will discuss this issue

in more detail in the next section.

7.5.3 Performance Comparison with USAC

Having analysed the performance of MAB/EM using different budget-limited MAB
algorithms, we now compare its performance with other state—of-the—art information
collecting algorithms within the domain of WSNs. Similar to the previous section,
here we also combine MAB/EM with MITRAg (i.e. 7 = 8). Recall that we use the
following benchmark algorithms: (i) USAC; (ii) MITRA without MAB/EM; and (iii) a
centralised algorithm with perfect knowledge. The first algorithm represents a state—
of-the—art approach within the domain of information collection in WSNs. The second
algorithm measures the performance of a non—learning algorithm. Finally, the third

algorithm provides a theoretical upper bound.

For the sake of simplicity, we assume that at each time step, USAC can perfectly detect
each agent’s neighbours (i.e. within our simulation, USAC does not have to deal with
topology detection). Note that USAC can intelligently allocate each agent’s budget to
the tasks it thinks are most important (see Padhy et al. (2010) for more details). This
behaviour makes USAC similar to our approach, and thus, is one of the reasons we

choose USAC as a benchmark algorithm.

The empirical results are depicted in Figure 7.2. Apart from the benchmark algo-
rithms, we also depict the performance of MAB/EM using the budget-limited e—first
with ¢ = 0.05, and MAB/EM with KDE where v = 100. The reason of these choices is
that they typically outperform the other budget-limited MAB algorithms (see Table 7.1
for more details). Similar to the empirical evaluation within the previous section, the
performance of the algorithms are measured in networks with: (i) static topology and
A = 0.9 (Figure 7.2a); (ii) dynamic topology and A = 0.9 (Figure 7.2b); and (iii) dy-
namic topology and A = 0.5 (Figure 7.2c). As we can see from the figures, MAB/EM
approaches, in conjunction with MITRAg, can achieve up to 70% of the performance
of the centralised algorithm within the first scenario (i.e. networks with static topol-
ogy). However, as the nodes failures are taken into account, this ratio is significantly
decreased (see Figures 7.2b and 7.2c). Note that the centralised algorithm becomes
computationally infeasible after a certain point. In contrast, our approaches requires

low computational complexity, and thus, are computationally feasible.

In addition, note that MITRA with a fixed budget only achieves 50% of the performance
of the MAB/EM, illustrating that MITRA itself cannot efficiently collect the information
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from the environment, compared to state—of—the—art algorithms, such as USAC. Rather,

it must be combined with an adaptive method to allocate the energy budget.

It can also be observed that both the budget—limited e—first and KDE, in conjunction
with MITRAg, outperform USAC by up to 90% in non real-time systems (see Fig-
ures 7.2a and 7.2b). However, within real-time systems, where the information value of
the packets rapidly decreases over time, our approaches do not outperform USAC. In-
stead, MITRA shows a significant decrease in terms of performance, that also affects on
the performance of the budget—limited e—first with MITRAg, and KDE with MITRAg,
respectively. The reason here is that the routing phase of USAC can guarantee the
delivery of packets towards the BS within a time threshold by choosing a full routing
path (see Padhy et al. (2010) for more details). In contrast, such guarantees do not
hold within MITRA. Therefore, within MITRA, a large portion of collected packets
are delayed within the network, and thus, their information value is typically close to 0
when the BS receives them. As a result, we can conclude that within real-time systems,
MAB/EM in conjunction with MITRAg cannot outperform USAC, since they are not

designed for such systems.

In summary, we can say that by combining MAB/EM with MITRAg, we can outperform
state—of—the—art algorithms, such as USAC in systems with low information durability
factor. In addition, we also demonstrated that without efficient energy management,

MITRA cannot achieve efficient performance, compared to that of USAC.

7.5.4 Performance Evaluation of MITRA .

Given the simulation results in the previous section, we can see that MITRA ., together
with MAB/EM, performs well with 7 = 8. As mentioned in Secton 7.4.4, the advantage
of using MITRA ; instead of MITRA is that the former has limited communication cost.
This limitation implies that the performance of MITRA ; is decreased, compared to that
of MITRA, which is proveably optimal. However, we shall now show that MITRA,
still achieves near—optimal performance, even with small values of 7, by studying the
performance of MITRA, with different values of 7. The performance of these MITRA ;
algorithms is compared to that of MITRA with an unlimited number of communication
rounds. Note that MITRA may use tens of rounds in order to achieve optimal routing

performance (as outlined in Section 7.4.4).

Given this, the numerical results are depicted in Figure 7.3. In particular, the figure
shows the performance of MITRA, with 7 = {1,2,4,8} 2. From Figure 7.3, we can
see that MITRA; achieves the lowest performance (it performs 60% less well than the

optimal solution in the case of networks with 100 agents). With 7 = 2, and 7 = 4,

ZNote that we also have evaluated the performance of MITRA, with higher values of 7, but their
improvement is not significant, compared to that of MITRAs.
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FIGURE 7.3: Performance comparison of MITRA ; with that of the unlimited MITRA.
The optimal performance achieved by MITRA is 100%.

MITRA ; achieves better results, but their performance loss (i.e. the difference between
their performance and that of the optimal solution) is still significant. In particular,
MITRA; performs, on average, 60%, whilst MITRA,4 achieves around 80% of the optimal
solution in the case of 100 agents. In contrast, we can see that with 7 = 8, even in the
case of networks with 100 agents, the performance of MITRA, is around 98% of the
optimal unlimited MITRA. That is, by limiting the number of communication rounds
that MITRA can use to 7 = 8, our approach still achieves near—optimal solution with
around 2% performance loss. On the other hand, according to Theorem 7.5, MITRA
without a communication round limit may use up to 66 rounds in order to achieve
optimal routing performance. That is, by limiting the communication rounds to 7 = 8,
we can reduce the number of communication rounds by 87.5%. Given this, by using
MITRAg, the number of used communication rounds is small enough so that the total
time needed for coordination will not exceed the size of the time slot. This, in particular,
justifies our choice of MITRAg in Section 7.5.2.
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7.6 Summary

In contrast to the previous chapters, where the focus was on the theoretical analysis of the
proposed budget—limited MAB algorithms, within this chapter, we studied the empirical
efficiency of the algorithms. In so doing, we introduced an application scenario for the
budget-limited bandits; the problem of long—term information collection in WSNs. Since
this problem is a key research challenge within the domain of WSNs, we also aimed to

investigate whether our approaches would outperform the state—of-the-art.

Against this background, we first described the literature of relevance of information
collection within WSNs. In particular, we considered the related work from the domains
of data sampling, information content valuation, data routing, and energy management.
We demonstrated that these methods, especially the routing and energy management
algorithms, typically fail to fulfil our research requirements given in Section 1.2, specif-
ically: (i) adaptivity; (ii) robustness and flexibility; and (iii) limited use of commu-
nication. Given this, we focused on advancing the state—of-the—art from the routing
and energy management perspectives. This yielded in the formalisation of the long—
term information collection problem. This problem was later decomposed into two sub—

problems: (i) energy management; and (ii) maximal information throughput routing.

After formalising both sub—problems, we used the budget-limited MAB approach to
tackle the former. In particular, we first transformed the energy management problem,
that an agent node has to face, into a budget—limited bandit model. In so doing, we
defined the arms and the corresponding pulling costs. We also defined a reward function,
and we proved that by maximising the total reward over time, the agents together
maximise the total amount of collected information that are also delivered to the BS
(Theorem 7.3). Thus, by using the proposed budget—limited MAB algorithms, we tackled
this bandit model. We denoted this bandit based energy management approach as
MAB/EM.

For the maximal information throughput routing problem, we devised two decentralised
routing algorithms, MITRA (for maximal information throughput routing algorithm),
and MITRA , respectively. We proved that MITRA provides the optimal solution for
the maximal information throughput routing problem (Theorem 7.4). Furthermore, we
also provided an upper bound for the number of communication rounds that MITRA
needs to use within a time slot (Theorem 7.5). Since the total number of communication
rounds that MITRA uses may be large, we modified MITRA so that the number of
communication rounds is reduced. The modification resulted in the introduction of
MITRA.

Next, we empirically evaluated the performance of MAB/EM together with MITRA .
In particular, we first showed that, among the different budget—limited MAB algorithms,
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the budget—limited e—first achieves the best performance in terms of fulfilling Require-
ment 1 (i.e. experimental performance quality), while KUBE and fractional KUBE
performs the worst. We also demonstrated that by using MAB/EM in conjunction
with MITRAg in non real-time systems, we could outperform USAC, a state—of-the—
art information collecting algorithm. However, we also showed that as the information
durability factor is decreased (i.e. real-time requirements have to be guaranteed), the
performance of our approaches decreases. In addition, we also empirically showed that
by choosing small values of 7, near—optimal routing performance can still be achieved,
whilst the number of communication rounds in MITRA is significantly reduced. Given
this, the integrated model and the proposed algorithms are particularly useful for non
real-time monitoring systems (i.e. the information durability factor is high), in which
the environment has to be monitored over a prolonged time interval, and unpredicted,

important events should be distinguished from the other events.






Chapter 8

Conclusions

In this chapter, we present a global view on the contributions of this thesis towards the
research aim of budget-limited multi-armed bandits. To begin, in Section 8.1, we first
summarise the research carried out within each chapter in order to achieve this goal.
In so doing, we also explain how we satisfied each of the research requirements that we
initially set out at the beginning of this report. Then, in Section 8.2, we outline some

general areas of future work that follow from this thesis.

8.1 Summary of Results

Multi—armed bandits are becoming an important tool for intelligent agents faced with
the challenge of making decisions under uncertainty, as they present one of the clearest
examples of the trade—off between exploration and exploitation. Whilst the standard
bandit model does not consider pulling costs, there is an increasing need, driven by real—
world applications (e.g. costly medical treatments or the shortest driving path scenario),
to develop bandit models that take pulling costs into account. To date, bandit models
with such cost constraints typically focus on the case when only the arm pulling within
the exploration phase is costly, and is limited by a budget, while arm pulling within the
exploration phase is cost—free. However, in many other real-world scenarios, it is not
only the exploration phase, but also the exploitation phase, that is limited by a cost

budget (e.g. wireless sensors or online advertising).

To address this limitation, we introduced a new bandit model, the budget—limited MAB,
in which pulling an arm is costly in both the exploration and exploitation phases, and
crucially is limited by a single common budget. As a result, the central problem we
addressed in this thesis is to design arm pulling algorithms that efficiently tackle this

bandit model. In so doing, we first defined the research requirements, that a pulling
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algorithm has to fulfil to achieve high performance. These requirements are: (i) effi-
cient experimental performance quality (Requirement 1); (ii) computational feasibility
(Requirement 2); and (iii) efficient finite-time regret bound (Requirement 3). We then
formalised the budget—limited bandit model, and we defined its objective to maximise

the expected value of the total pay—off.

In light of the aforementioned research requirements, we developed a number of pulling
algorithms. First, in Chapter 4, we proposed the budget—limited e—first algorithm.
Next, we developed two UCB based algorithms in Chapter 5, namely: (i) KUBE; and
(ii) fractional KUBE. We then introduced two decreasing e—greedy based algorithms,
KDE and fractional KDE, in Chapter 6. The budget-limited efirst algorithm is an
empirically and computationally efficient algorithm, which, however, does not satisfy
the theoretical requirement (i.e. Requirement 3). In contrast, UCB based algorithms
efficiently satisfy the theoretical requirement, but they fail to produce good empirical
performance. Finally, the decreasing e—greedy based algorithms form a trade—off between

theoretical and empirical requirements.

In more detail, in Chapter 4, we first described the budget-limited e—first algorithm.
We then provided a linear regret bound for this algorithm. This bound does not guar-
antee the fulfilment of Requirement 3. However, by analysing the problem from a PAC
manner, we improved the regret bound to be O (B %) That is, the budget-limited
efirst algorithm can only fulfil Requirement 3 with a certain (but high) probability.
Computation—wise, we showed that the computational complexity of the budget—limited

e—first is a linear function of B and €. That is, the algorithm satisfies Requirement 2.

We started Chapter 5 by describing KUBE and its fractional counterpart in more detail.
We provided regret bounds for these algorithms, both are logarithmic functions of the
budget size. Following this, we proved that these bounds are asymptotically optimal;
that is, they only differ from the best possible with a constant factor. Thus, they satisfy
Requirement 3. Similar to the case of the budget-limited e—first, we also showed that
KUBE and fractional KUBE have efficient computational cost, and thus, they both fulfil

Requirement 2.

We continued with Chapter 6 in which we described KDE and fractional KDE. We
proved that, similar to the UCB based algorithms, these algorithms also provide asymp-
totically optimal regret bounds. Hence, they are both efficient in the fulfilment of
Requirement 3. In addition, we also studied the computational complexity of KDE and
its fractional counterpart, which were shown to be as efficient as that of the UCB based
algorithms. Thus, both KDE and fractional KDE satisfy Requirement 2.

In order to measure the fulfilment towards Requirement 1 (i.e. empirical performance)

of the proposed algorithms, we implemented these algorithms in the domain of wireless
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sensor networks in Chapter 7. In particular, we tackled the problem of long—term in-
formation collection in WSNs. Since this problem is one of the key research challenges
within the WSN domain, we further considered three additional research requirements:
(i) adaptivity (Requirement 4); (ii) robustness and flexibility (Requirement 5); and (iii)
limited use of communication (Requirement 6). To tackle the long—term information col-
lection problem, we first introduced its formal description and then decomposed it into
two sub—problems, namely energy management and maximal information throughput

routing.

Against this background, we proposed a budget—limited multi-armed bandit based ap-
proach called MAB/EM for the energy management problem. In particular, we reduced
the energy management problem to a MAB problem, by defining the arms, the costs,
and the reward functions for the agents. Thus, by using our proposed budget—limited
MARB algorithms, we could efficiently tackle the energy management problem. We also
showed that MAB/EM efficiently fulfils Requirements 4, 5, and 6, respectively.

For the maximal information throughput routing problem, we devised two decentralised
routing algorithms, MITRA (for maximal information throughput routing algorithm),
and MITRA ., respectively. We proved that MITRA provides the optimal solution for
the maximal information throughput routing problem. Furthermore, we also provided
an upper bound for the number of communication rounds that MITRA needs to use
within a time slot. Although MITRA can efficiently satisfy Requirements 4 and 5, in
some cases it may fail to achieve good performance in terms of fulfiling Requirement 6.
In more detail, the total number of communication rounds that MITRA uses may be a
large number. As a result, we modified MITRA so that the number of communication
rounds is reduced. The modification resulted in the introduction of MITRA,. Thus,
MITRA ; satisfies Requirement 6.

Next, by empirical evaluation, we measured the efficiency of the proposed budget—limited
MAB algorithms in terms of fulfiling Requirement 1 (i.e. efficient empirical perfor-
mance). As a result, we demonstrated that the budget—limited e—first algorithm sig-
nificantly outperforms the others, while KUBE and its fractional counterpart show the
worst performance. This verified our hypothesis that the decreasing e—greedy methods
(i.e. KDE and fractional KDE) efficiently trade off between theoretical and empirical

research requirements.

Following this, we demonstrated the efficiency of MAB/EM in conjunction with MITRA
(7 = 8) against the state-of-the—art information collecting algorithms in the domain of
WSNs. In particular, to measure the efficiency of our approach, we compared its perfor-
mance with that of USAC, a state—of-the—art information collecting algorithm within
the domain of WSNs. Moreover, to measure the performance surplus that MAB/EM

adds to our approach, we also used a non—learning algorithm, that solely uses MITRA,
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as a benchmark method. Both comparisons showed that MAB/EM with MITRA . to-
gether are efficient in terms of long—term information collection, since it can adapt to the
environmental changes. In particular, we demonstrated that, within systems with high
values of information durability factor, our approach outperforms USAC. However, we
also showed that as the durability factor is decreased, the performance of our approach
also decreases. In addition, we showed that by choosing small values of 7, near—optimal
routing performance can still be achieved, whilst the number of communication rounds
is significantly reduced. Given this, the integrated model and the proposed algorithms
are particularly useful for non-real time monitoring systems (i.e. the information dura-
bility factor is high), in which the environment has to be monitored over a prolonged
time interval, and unpredicted, important events should be distinguished from the other

events.

Thus, when taken together, the contributions presented in this thesis represent a signif-
icant advance in the state—of-the—art of both budget—limited multi—-armed bandits and
long—term information collection in wireless sensor networks. Despite these advances,
however, many open problems remain. Given this, in the following section, we examine

a number of promising directions for future research.

8.2 Future Work

As we demonstrated in Chapter 7, budget-limited MAB algorithms perform well when
the network topology is static. However, as node failure occurs within the network, their
performance is significantly decreased. Indeed, all of the proposed MAB algorithms
assume that the reward values are stationary, and thus, they cannot currently deal with
dynamic environments, where the stationarity of the reward values does not hold. To
this end, one immediate area of further research is the development of pulling algorithms
that take non—stationarity into consideration. Within this direction, we identify three

specific lines of investigation to extend the scope of our work:

e Piece—wise stationary rewards: One direct extension of our bandit model is to
assume that the reward distributions are stationary within certain time intervals,
but not in the whole operating time of the agent. Following the work of DaCosta
et al. (2008) and Hartland et al. (2006), a possible solution would be to detect
the change points of the environment, and reset the MAB algorithm at those
change points. However, the performance analysis of this approach is not obvious,
since the performance of the algorithm also depends on the correctness of the
change detection. Given this, the key challenge here is to combine the performance
analysis of change detection and that of the budget-limited MAB algorithms to

provide efficient regret bounds.
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e Well-behaved changes of rewards: Apart from piece—wise stationarity, an-
other way to extend our model is to add some assumptions on the change of
the reward distributions over time, such that the change itself can be defined by
some well-behaved properties. For example, one typical assumption is that re-
ward values that are sampled close to each other in time are chosen from similar
distributions; that is, the change of the environment is a rather slow and smooth
process. Another assumption is to have converging reward distributions over time.
In both cases, instead of reseting the MAB algorithm, we can still use the some of
the estimated values from the past to approximate the best current combination
of arms. Given this, the challenge here is to exploit the behaviour of the change

so that efficient performance analysis can be carried out.

e Adversarial rewards: Within this extension, nature can be regarded as an op-
ponent of the agent, and thus, whenever an arm is pulled, the reward value is
not randomly chosen from a distribution, but is deterministically provided by na-
ture (Auer et al., 2003). Within this setting, concentration inequalities, such as
Chernoff-Hoeffding or Bernstein, cannot be used to analyse the theoretical per-
formance. As a result, new techniques are needed in order to efficiently tackle the
adversarial budget—limited MAB.

Other possible extensions can be achieved by combining other MAB variants with the
budget-limited bandit model (see Section 2.3 for more details). In particular, we aim
to address the problems of budget—limited bandits with: (i) side information; and (ii)
continnum arms. It is easy to see that the algorithms proposed within this thesis are
not suitable to solve these problems. This implies that new techniques are needed to be

developed.

Apart from this, we also aim to extend our focus to the more general models of decision
making under uncertainty, such as Markov decision processes (MDP) (Sutton and Barto,
1998), or partially observable MDPs (PoMDP) (Cassandra, 1998). The former can be
regarded as an extension of the bandit model, since it allows the agent to modify the
state of the system by pulling an arm (the MAB model can described as a one—state,
or stateless, MDP). The latter is an MDP in which some of the information (e.g. state
change of the system or the received reward value) is not avialable to the agent. The
main challenge within these models is that by modifying the state of the system, the set
of available arms, and thus, the corresponding pulling cost, may change as well. Recall
that the underlying knapsack based approach of the budget—limited MAB relies on the
fact that the set of arms, and thus, the pulling costs are fixed over time. This implies
that the knapsack based techniques, which form the basis of our approaches within this
thesis, do not fit to these extensions. This makes the extensions more complex, and

thus, non—trivial.
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By meeting these challenges, the results related to the budget-limited multi-armed
bandits developed in this thesis can be further increased, which will bring a wider ap-

plicability of the budget—limited bandit model in many real-world applications.
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