
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Tracing Fine-Grained Provenance in

Stream Processing Systems

using A Reverse Mapping Method

by

Watsawee Sansrimahachai

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

April 2012

http://www.soton.ac.uk
mccb bbailto:ws07r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Tracing Fine-Grained Provenance in Stream Processing Systems using

A Reverse Mapping Method

by Watsawee Sansrimahachai

Applications that require continuous processing of high-volume data streams have grown in

prevalence and importance. These kinds of system often process streaming data in real-time or

near real-time and provide instantaneous responses in order to support a precise and on time

decision. In such systems it is difficult to know exactly how a particular result is generated.

However, such information is extremely important for the validation and verification of stream

processing results. Therefore, it is crucial that stream processing systems have a mechanism for

tracking provenance - the information pertaining to the process that produced result data - at

the level of individual stream elements which we refer to as fine-grained provenance tracking for

streams. The traceability of stream processing systems allows for users to validate individual

stream elements, to verify the computation that took place and to understand the chain of

reasoning that was used in the production of a stream processing result.

Several recent solutions to provenance tracking in stream processing systems mainly focus on

coarse-grained stream provenance in which the level of granularity for capturing provenance infor-

mation is not detailed enough to address our problem. This thesis proposes a novel fine-grained

provenance solution for streams that exploits a reverse mapping method to precisely capture

dependency relationships for every individual stream element. It is also designed to support a

stream-specific provenance query mechanism, which performs provenance queries dynamically

over streams of provenance assertions without requiring the assertions to be stored persistently.

The dissertation makes four major contributions to the state of the art. First is a provenance

model for streams that allows for the provenance of individual stream elements to be obtained.

Second is a provenance query method which utilizes a reverse mapping method - stream ancestor

functions - in order to obtain the provenance of a particular stream processing result. The third

contribution is a stream-specific provenance query mechanism that enables provenance queries

to be computed on-the-fly without requiring provenance assertions to be stored persistently. The

fourth contribution is the performance characteristics of our stream provenance solution. It is

shown that the storage overhead for provenance collection can be reduced significantly by using

our storage reduction technique and the marginal cost of storage consumption is constant based

on the number of input stream events. A 4% overhead for the persistent provenance approach and

a 7% overhead for the stream-specific query approach are observed as the impact of provenance

recording on system performance. In addition, our stream-specific query approach offers low-

latency processing (0.3 ms per additional component) with reasonable memory consumption.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mccb bbailto:ws07r@ecs.soton.ac.uk

Contents

Declaration of Authorship ix

Acknowledgements xi

1 Introduction 1

1.1 A problem of traceability . 2

1.2 The importance of provenance . 3

1.3 Requirements for stream provenance tracking 4

1.3.1 A disaster management scenario 4

1.3.2 Provenance use-cases . 5

1.4 Thesis statement and contributions . 7

1.5 Presentation Overview . 9

2 Background 11

2.1 Stream processing systems . 12

2.1.1 Definition of data streams . 12

2.1.2 Characteristics of stream processing systems 12

2.1.3 Comparison with traditional database management systems 13

2.2 Provenance . 14

2.2.1 A definition of provenance . 14

2.2.2 Provenance in computer systems 15

2.2.3 The open provenance model . 16

2.3 Provenance systems . 17

2.3.1 Provenance in GIS and application specific systems 18

2.3.2 Provenance in database systems 19

2.3.3 Scientific workflow provenance systems 22

2.4 Provenance in stream processing systems 26

2.4.1 Coarse-grained stream provenance 26

2.4.2 Fine-grained stream provenance . 27

2.5 Analysis Conclusions . 30

2.6 Summary . 33

3 A provenance model for streams 35

3.1 Fine-grained stream provenance model . 36

3.1.1 Basic assumptions for fine-grained stream provenance model 36

3.1.2 Fundamental concepts for fine-grained stream provenance tracking 37

3.1.3 A provenance data model . 39

3.2 Provenance architecture for stream processing systems 42

v

vi CONTENTS

3.3 Primitive stream processing operations . 45

3.3.1 The basic notation of a data stream 45

3.3.2 Shared functions . 46

3.3.3 Map . 47

3.3.4 Filter . 49

3.3.5 Windowed operations . 50

3.3.5.1 Abstract functions for the windowed operations 50

3.3.5.2 Sliding time windows . 51

3.3.5.3 Length windows . 54

3.3.6 Join operations . 56

3.3.6.1 Abstract functions for the window-based join operations . 56

3.3.6.2 Time-window join . 59

3.3.6.3 Length-window join . 60

3.4 Stream ancestor functions . 61

3.4.1 Additional shared functions . 61

3.4.2 The stream ancestor function for a map operation 62

3.4.3 The stream ancestor function for a filter operation 64

3.4.4 The stream ancestor function for a sliding time window 66

3.4.5 The stream ancestor function for a length window 67

3.4.6 The stream ancestor function for a time-window join operation . . 69

3.4.7 The stream ancestor function for a length-window join operation . 72

3.5 Summary . 75

4 Provenance queries for streams 77

4.1 Fine-grained provenance queries . 78

4.1.1 Composition of stream ancestor functions 78

4.1.2 Algorithm for a fine-grained provenance query 82

4.2 Replay execution . 85

4.3 A case study for provenance queries . 88

4.4 Summary . 93

5 Stream-specific provenance query 95

5.1 On-the-fly provenance query mechanism 96

5.1.1 Basic assumptions for on-the-fly provenance query 96

5.1.2 Fundamental concept of on-the-fly provenance query 97

5.2 Property stream ancestor functions . 102

5.2.1 Data types for representing a provenance assertion 103

5.2.2 Shared functions . 103

5.2.3 Abstract functions for property stream ancestor functions 104

5.2.4 The property stream ancestor function for a map operation 105

5.2.5 The property stream ancestor function for a filter operation 106

5.2.6 The property stream ancestor function for a sliding time window . 106

5.2.7 The property stream ancestor function for a length window 107

5.2.8 The property stream ancestor function for a time-window join . . . 108

5.2.9 The property stream ancestor function for a length-window join . . 109

5.3 Algorithm for on-the-fly provenance queries 109

5.4 A case study for on-the-fly provenance queries 114

CONTENTS vii

5.5 Summary . 119

6 Evaluation 121

6.1 Implementation design . 122

6.1.1 The provenance service . 122

6.1.2 Technologies used . 126

6.2 Evaluation environment . 127

6.3 Storage overheads for provenance collection 128

6.4 Provenance recording impact . 135

6.5 Memory consumption for a provenance service 140

6.6 Time latency for on-the-fly query processing 145

6.7 Analysis . 147

6.7.1 Replay execution and multiple queries vs. storage space 148

6.7.2 Storage space and real-time response vs. processing overheads and
memory space . 148

6.7.3 Throughput vs. processing overheads 149

6.8 Summary . 150

7 Conclusion 153

7.1 Contributions . 154

7.1.1 A stream provenance model and stream ancestor functions 154

7.1.2 Provenance query and replay execution methods 155

7.1.3 Stream-specific provenance query 156

7.2 Future work . 157

7.2.1 Interoperability with stream optimization techniques 157

7.2.2 Integration with stream processing engine architectures 158

7.2.3 Integration with the W3C provenance standard 159

A Utility functions for the replay execution algorithm 161

B SML code for the provenance query case study 165

B.1 An example provenance query . 165

B.2 Example stream replay execution . 167

C Utility functions for the on-the-fly provenance query algorithm 169

D SML code for the on-the-fly provenance query case study 175

Bibliography 179

Declaration of Authorship

I, Watsawee Sansrimahachai, declare that the thesis entitled Tracing Fine-Grained Prove-

nance in Stream Processing Systems using A Reverse Mapping Method and the work

presented in the thesis are both my own, and have been generated by me as the result

of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as:

– Watsawee Sansrimahachai, Luc Moreau and Mark J. Weal. “Fine-Grained

Provenance Tracking in Stream Processing Systems,” in UK e-Science All

Hands Meeting 2009, Oxford, UK, December 2009.

– Watsawee Sansrimahachai, Mark J. Weal and Luc Moreau. “Stream Ancestor

Function: A Mechanism for Fine-Grained Provenance in Stream Processing

Systems,” in Proceedings of the 6th IEEE International Conference on Re-

search Challenges in Information Science, Valencia, Spain, May 2012.

Signed:

Date:

ix

Acknowledgements

I would like to thank all of the people who encouraged and supported me over the past

four years of my research.

First and foremost, I would like to thank my supervisors Luc Moreau and Mark Weal

for giving me the benefit of their experience. I am also truly indebted for their great

support and guidance throughout my PhD study.

I would also like to thank my friends and colleagues at the Intelligence, Agents, Multi-

media (IAM) group for their support and friendship. My thanks also go to Thai friends,

especially Thai PhD students, for their warm welcome, friendship and help during my

time in Southampton.

I gratefully acknowledge financial support from the University of the Thai Chamber of

Commerce.

Finally, I would like to thank my family - my parents and my sister - for giving me fully

support. Without all of their love and their moral support, this dissertation would never

have come into existence. Special thanks to my beloved wife, Kay, who gave me great

encouragement and wonderful support.

xi

Chapter 1

Introduction

The use of data-intensive applications that require continuous processing of real-time

data streams has grown in prevalence and importance. A data stream is a real-time, con-

tinuous, ordered sequence of data items which can be submitted from different kinds of

data source [60]. The size of data streams is usually unbounded and once each individual

stream element has been processed it is eventually discarded or archived [10]. Because

of the unique characteristics of data streams, the scientific community is adopting the

data streaming technique for various kinds of applications that need an instantaneous

response in order to support precise and on-time decisions. Examples of stream-based

applications include sensor network applications [63, 69, 6], real-time location-based

systems (GIS) [18], radio frequency identification (RFID) [74, 93], traffic management

systems [52, 43], financial (stock) tickers [30, 137], and performance measurements in

network traffic management [36, 35].

Major changes in daily life have been caused by recent advancements in micro-sensor

and wireless communication technologies. The functionality and usability of sensor tech-

nologies enables several kinds of sensors to be deployed in a wide variety of environments

(e.g. sensors embedded in a personal smartphone). The price of these devices is becom-

ing cheaper and sensors are increasingly considered as commodity products that anyone

can afford to buy. Although radio frequency identification (RFID) is one of the most

important emerging technologies in this area, there are a variety of other technologies

with various capabilities and costs (e.g. mote [103], SunSpot [123], and Lojack [89]).

With the growth of sensor technologies, the time may come in the near future that

every real-world object is tracked by several kinds of sensors which report its status or

location in real-time. This will lead to a significant increase of wide range environment

monitoring and control applications that operate over streaming data with high-volume

and real-time processing requirements.

1

2 Chapter 1 Introduction

In all of the stream-based applications mentioned above, there are a number of significant

requirements that these kinds of systems need to satisfy [120]. The first is that a stream

processing system needs to process data streams in real-time or near real-time, and

provide an instantaneous response in order to support a precise and on time decision.

The second requirement is that a stream system must be able to process stream events

on the fly without any requirement to store them. The third requirement for a stream

system is that it needs to provide a mechanism to handle stream imperfections since

stream data are often missing, delayed, or intentionally omitted for processing reasons.

With these requirements, traceability of stream processing systems - the ability to verify

and investigate the source of a particular output element - is extremely important.

Stream processing systems that do not provide provenance information - the information

pertaining to the process that led to result data [65] - can suffer from problems of

traceability.

1.1 A problem of traceability

Imagine that in a radioactivity leak incident [115], an operator relies on a real-time

mapping application (GIS) in order to manage and control the disaster. The information

displayed on the GIS application is submitted by several sensors located near the scene

of the incident in real-time at a rate of an event per second. At some point during the

incident the operator found an anomaly in a number of results displayed in the GIS

application. The operator anticipates that this problem has resulted from damage to,

or malfunction of, sensors. The operator queries to find out which raw observations

caused this anomaly and which sensors are responsible for sending the observations.

Unfortunately for the operator, currently there is no provenance information available

from the real-time GIS application. Therefore, the operator cannot easily determine why

the unusual information is generated, which were the raw observations that led to the

unusual information and which sensors contributed to that information being displayed

in the GIS application. He would like to solve this problem as quickly as possible before

something terrible happens.

This simple story illustrates the need for tracing individual results produced by existing

stream processing systems. In such systems that require low-latency processing and

instantaneous response, a mechanism for tracking provenance at the level of individual

stream elements, which we refer to as fine-grained provenance, is very important. The

existence of such functionality would allow users to be able to perform fault-diagnosis in

the case of anomalies, to validate processing steps and to reproduce a particular result

in the case of stream imperfections. By understanding the process that led to each

individual result produced by a stream processing system, users can have confidence in

the data that is the output from the system.

Chapter 1 Introduction 3

1.2 The importance of provenance

According to the Oxford English Dictionary, provenance is defined as: the history or

pedigree of a work of art, manuscript, rare book, etc.; concretely, a record of the ultimate

derivation and passage of an item through its various owners.

In the context of fine art, the term “provenance” refers to the documented history and

chain of ownership of art objects. Provenance plays a strong and important role in the

art community because museums, galleries, and collectors wish to avoid handling stolen

art and wish to confirm that their art is genuine. Knowing the provenance of an artwork

also allows collectors and curators to understand and appreciate its importance, and to

verify and evaluate the history of that artwork for estimating its value. The provenance

for a painting, namely Roses, by Vincent van Gogh is demonstrated in Figure 1.1. In

this figure, provenance is presented in the form of its creation and history of ownership

which can be used as a crucial part of understanding the importance of the painting and

also verifying and investigating derivation history to guarantee that it is the original

painting.

Roses, 1890

Vincent van Gogh (Dutch, 1853 – 1890)

1

Paul Gallimard [1850-1929], Paris, 1905.[1]

In the private collection of Bernheim-Jeune, Paris,

from at least 1917;[2] sold 1929 to (Alex Reid

& Lefevre, London).[3] acquired 1929 by W. Averell

Harriman;[4] Mr.and Mrs. W. Averell Harriman,

New York; gift 1991 to NGA.

[1] According to J.B. de la Faille, The works of Vincent van Gogh,

rev. ed., Amsterdam, 1970, no. F681. The painting is not described

in Louis Vauxcelles, “Collection M.P. Gallimard,” Les Arts (Septem-

ber 1908): 1-32.

[2] Lent by Bernheim-Jeune to a 1917 exhibition in Zurich.

[3] Letter dated 7 February 1929 from Reid & Lefevre to Bernheim-

Jeune (Lefevre archives, Hyman Kreitman Research Centre, Tate

Britain, TGA 2002/11, Box 228). Exhibited at Alex Reid & Lefevre

in Glasgow in 1929 as from a great private collection.

[4] Lent by Marie Harriman Gallery to 1930 exhibition in Buffalo.

In that same year the painting was exhibited at the Marie Harriman

Gallery itself.

Figure 1.1: Provenance of the painting Roses by Vincent van Gogh [104]

The same idea of provenance can be applied to data items or result data generated

within computer systems. In computer systems, applications generally produce result

data during their execution time. To determine the provenance of result data, it is im-

portant to know details of the actual process responsible for the result data’s generation.

By recording and utilizing the documentation (documented history) of the process (or

execution) that produced result data, users would be able to understand how a stream

processing result was derived from a complex stream processing analysis, why critical

4 Chapter 1 Introduction

decisions were made by a decision support system or how simulation results were deter-

mined by scientific simulation model. Therefore, in the context of computer systems,

the provenance of a data item can be conceptually defined as the process that led to that

data item [65, 97]. For the concrete view, the provenance of a data item is represented

by suitable documentation of the process that led to the data.

Provenance provides benefits to computer systems in a number of ways [111, 112]. Prove-

nance about a data product can be used to evaluate and estimate its quality for appli-

cations. It can serve as basic information (metadata description) for data discovery, so

that users can search to find datasets based on their source data and the processing steps

used to generate them. In addition, detailed provenance information (e.g. parameters,

source data and operations used) can be utilized for supporting the reproduction of data

products or analytical results in data analysis systems. Beside these beneficial uses of

provenance, one of the most significant uses of provenance is that it can be utilized

to trace the audit trail of result data. This use-case directly supports the requirement

for traceability in computational systems. Provenance, in this context, offers detailed

information that allows users to verify execution that took place in data generation; in-

vestigate the validity of intermediate data generated during execution time; and diagnose

processing steps that are potentially the cause of errors.

1.3 Requirements for stream provenance tracking

We now present requirement use-cases for addressing fine-grained provenance tracking

over data streams. We build upon the previous example using streaming data in the area

of disaster management. The provenance use-cases regarding the disaster management

scenario are described in order to explain provenance problems commonly found in

this kind of context. Besides this scenario, other example applications such as weather

monitoring [80] and sensor network [13] can also be used to illustrate our requirements.

1.3.1 A disaster management scenario

We consider a disaster management scenario such as the Port of Southampton off-site

reactor emergency plan [115]. In this scenario a nuclear-powered submarine is docked at

a port, the nuclear reactor of the submarine leaks and then finally explodes, spreading

highly toxic radioactive material. Workers living in the vicinity of the explosion are in-

jured and a wind-borne plume of radioactivity begins to spread out across a metropolitan

region.

Following the radioactivity leak incident, emergency services operators rely on a real-

time GIS application for disaster management to confine radioactive material, evacuate

Chapter 1 Introduction 5

residents from a contaminated or hazardous area, and prepare to treat and decontami-

nate victims. In this incident, radiation and atmospheric sensors located near the scene

of the explosion are automatically activated and other sensors in the surrounding areas

are immediately activated as well. All sensors feed streams of their measurements to

the real-time GIS application residing in a central server, which processes them auto-

matically, integrates them with several kinds of geospatial data and finally graphically

displays sensor locations, their readings, and radioactivity propagation prediction, in

real-time in order to support emergency decisions. Furthermore, the sensor measure-

ments received by the GIS application are further forwarded to an early warning system

where predictions of a possible ‘dirty bomb” event are made automatically based on sen-

sor readings in real-time. The prediction results are used to control automatic reactor

protection systems in order to prevent a further catastrophic explosion.

1.3.2 Provenance use-cases

Use-Case #1: Ability to trace individual stream events.

During the radioactivity leak incident a system operator pays particular attention to

monitoring the occurrence of events in the GIS application. At some point the system

operator observes an anomaly on the map display, where the level of predicted radioactiv-

ity displayed at a location significantly differs from its neighbours. The system operator

questions whether he can trust individual stream events that display on the GIS ap-

plication or not, considering the unexpected result. To understand this anomaly the

operator would like to identify the raw measurements that caused this anomaly, verify

the computation and processing steps that took place to produce the displayed result,

and determine all the sensors and measurements involved in the event, to ascertain the

validity of the prediction. This comprehensive and detailed analysis would allow the sys-

tem operator to understand whether the predictive model or individual measurements

could be the cause of an incorrect anomaly.

The above situation illustrates a common problem pertaining to the traceability of an

individual stream event in stream processing systems. The first requirement use-case is

identified as follows:

The ability to precisely trace individual stream events is necessary for stream process-

ing systems in order to validate stream processing results. This ability allows users of

stream processing systems to understand the computation that took place and the chain

of reasoning that was used in the production of a stream processing result.

6 Chapter 1 Introduction

Use-Case #2: Ability to reproduce stream events.

At some point, due to a temporary loss of network connection of some atmospheric

sensors deployed in the vicinity of the radioactivity leak incident, some sensors cannot

submit their measurements to the real-time GIS application for a while. During this

network outage period, a number of streaming events (sensor measurements) were sensed

and stored locally at the sensors. However, after restoration of the network connection,

these locally stored stream events were re-submitted. The system operator has detected

a significant anomaly on the map display, where the average atmospheric temperature at

a region close to the explosion area significantly differs from its neighbours. This anomaly

affects the correctness of a prediction result produced by the radioactivity propagation

prediction model as well. After receiving a report of the temporary network outage, the

operator anticipates that this anomaly results from the absence of some stream events.

To handle such a stream imperfection, the operator would like to replay stream execution

for the period of missing stream events (the network outage period) in order to obtain

accurate stream processing results and use these results to continue further processing

for radioactivity propagation predictions. If provenance information pertaining to the

past execution of the GIS application is provided, it would allow the operator to easily

reproduce stream processing results by utilizing the provenance information together

with a set of stream events that were suspended during network outage period. The

ability to reproduce stream processing results would also allow the system operator to

replay a portion of the past stream execution with new or modified values (input stream

events) to obtain up-to-date stream processing results. In addition, it allows the original

results generated by stream processing systems to be validated in order that the system

operator can have confidence in the results.

This situation illustrates the need for this kind of system to reproduce stream events.

Therefore, the second requirement use-case is identified as follows:

The ability to reproduce stream events or replay stream execution is required for stream

processing systems to handle stream imperfections and also to validate the original results

produced in this kind of system.

Use-Case #3: Ability to perform provenance tracking on-the-fly.

Because of extreme weather conditions and component degradation, some sensors de-

ployed in the vicinity of the radioactivity leak incidence were damaged. This results in

some malfunctioning sensors continuously submitting their faulty measurements into the

GIS system. At some point during the radioactivity leak incidence, a system operator

has received a report indicating that there is a second explosion in the nuclear reactor.

The operator questions why this following explosion was not automatically detected by

the early warning system and why the level of radioactive material shown on the map

display was not classified as being potentially dangerous radioactive intensity levels. If

the stream systems have support for a stream-specific provenance functionality that can

Chapter 1 Introduction 7

be operated dynamically in real-time or near real-time, this would allow the operator

to validate stream processing results (e.g. predicted events) in a timely manner, trace

back incorrect information to its origin (raw sensor measurements) before particular

critical decisions are made, and also continuously verify and display sequence of stream

processing steps (processing paths) used to produce those results in near real-time.

This situation illustrates a common problem generally found in stream processing sys-

tems and more particularly in stream systems where their results are used for supporting

on-time and critical decision making. Therefore, the third requirement use-case is iden-

tified as follows:

The ability to perform provenance tracking or execute provenance queries on-the-fly is

necessary for stream processing systems in order to validate stream processing results in

real-time or near real-time and deliver provenance query results instantaneously.

The three provenance use-cases described above illustrate problems generally found in

stream processing systems. These use-cases introduce research challenges related to

provenance tracking in this kind of system. We derive a strong requirement for precisely

tracing the stream events that caused a given output stream event, which we refer to

as fine-grained stream provenance tracking. The existence of such functionality would

allow raw measurements (stream events) to be checked and stream processing steps to

be reproduced, verified and validated.

1.4 Thesis statement and contributions

Our solution to the requirements of fine-grained provenance tracking in stream process-

ing systems can be summarized in the following thesis statement.

A provenance model with a reverse mapping method that precisely cap-

tures dependency relationships for every individual stream element enables

the problem of provenance tracking in stream processing systems to be ad-

dressed. It is designed to support a stream-specific provenance query mecha-

nism, which performs provenance queries dynamically over streams of prove-

nance assertions without requiring the assertions to be stored persistently.

This dissertation makes the following contributions to the state of the art:

1. A stream provenance model that allows for the provenance of individual stream

elements, which we refer to as fine-grained stream provenance, to be obtained.

This provenance model is based on the following key principles:

• Dependencies between input and output events of stream operations can be

expressed by means of a stream ancestor function that is defined for each

8 Chapter 1 Introduction

stream operation. The key idea is that for a given reference to a particular

output element, the stream ancestor function identifies which references to

input events are involved in the production of that output. By composing all

stream ancestor functions in a stream system, the complete provenance of an

individual stream element can be determined.

• The stream provenance model defines the key elements and the structure of

information that form the representation of provenance for individual stream

elements. These include a provenance assertion - an assertion pertaining to

provenance recorded by a stream operation for an individual stream element

during processing time - and auxiliary information (e.g. stream topology,

configuration parameters, stream operation parameters).

2. A provenance query method which utilizes the stream ancestor functions to obtain

the provenance of a particular stream processing result. We demonstrate the ex-

pressiveness of the provenance query method by establishing that its query results

can be used to reproduce the original stream processing results through the use of

a replay execution method.

3. A stream-specific provenance query mechanism based on the idea of using the

provenance service as a stream component. This query mechanism enables prove-

nance queries to be computed on-the-fly without requiring provenance assertions

to be stored persistently in a provenance store.

4. The performance characteristics of our provenance solution for streams.

• It is shown that the storage overhead for provenance collection can be reduced

significantly by using our storage reduction technique and the marginal cost of

storage consumption is constant based on the number of input stream events

(about 5 MB per component for 100,000 events).

• Our provenance solution does not have a significant effect on the normal pro-

cessing of stream systems given a 4% overhead for the store provenance as-

sertions approach and a 7% overhead for the stream-specific query approach.

• The amount of memory consumed for our stream-specific query approach

depends upon the types of stream operations used and the size of data win-

dows specified for each stream operation and the average time latency for the

stream-specific query approach is about 0.3 ms per additional component.

Chapter 1 Introduction 9

1.5 Presentation Overview

This document is organized as follows.

Chapter 2 discusses the nature of stream processing systems and the characteristics of

stream processing systems that differ from traditional data management systems. It also

analyzes the state of the art for tracking provenance in different kinds of computational

systems. In addition, based on this analysis, techniques used by our stream provenance

solution are discussed and conclusions are drawn about the key attributes required for

fine-grained provenance tracking in stream processing systems.

Chapter 3 defines a fine-grained provenance model including a data model and stream

ancestor functions and a provenance architecture, designed to address fine-grained prove-

nance tracking in stream processing systems. The stream ancestor functions - reverse

mapping functions used to express dependencies among individual stream elements - are

formalized using the Standard ML notation and thus are not bound to any particular

technology or implementation.

Chapter 4 introduces the fundamental concepts of a provenance query mechanism for

streams inspired by function composition. The definition of the provenance query mech-

anism is defined through the generic provenance query algorithm. Additionally, the

chapter presents how accurate the provenance query mechanism is and how to validate

the query results by establishing that the provenance query results can be utilized to

reproduce original stream processing results using a replay execution method.

Chapter 5 introduces a stream-specific provenance query mechanism designed to address

the practical challenges related to the unique characteristics of data streams. The key

concepts and a programmatic specification of the stream ancestor functions designed

for utilization with this kind of query mechanism are detailed. In addition, an example

case study is presented to demonstrate how to apply the design of the stream-specific

provenance query mechanism in a practical stream-based application.

Chapter 6 presents an evaluation of an implementation of our approach. It considers

four different aspects of performance evaluation. Firstly, the storage overhead of the im-

plementation when provenance assertions are stored persistently in a provenance store

as the number of stream components increases. Secondly, the impact of provenance

collection (system throughput) in a controlled environment. Thirdly, the memory con-

sumption for a provenance service and finally the time latency for the stream-specific

provenance query mechanism. Recommendations on the use of the implementation in

applications are given.

Chapter 7 outlines various directions for future work and concludes the dissertation.

Chapter 2

Background

In this chapter we provide a review of the state of the art for determining provenance

in different kinds of computational systems.

We begin this chapter by presenting essential background knowledge that supports our

investigation into the problem of provenance tracking in stream processing systems. This

background knowledge can be divided into two main parts. The first part describes the

basic definition of data streams and the nature of stream processing systems - computa-

tional systems that continuously process transient streaming data and provide real-time

or near real-time responses. We also discuss the characteristics of stream processing

systems that differ from traditional data management systems. This discussion aims

to give a clear overview of how stream processing systems work and what the unique

requirements for this kind of systems are. The second part of the background knowledge

presents the fundamental concepts of provenance and how the idea of provenance can

be applied to computer systems.

After presenting the background knowledge, a review is given of various systems that

provide provenance information and offer mechanisms to determine the provenance of

data products. These systems are divided into three main categories: provenance in

GIS and application specific systems, provenance in database systems and scientific

workflow provenance systems. This division is based on the application domain that

much research into provenance has been conducted. We also provide a discussion about

whether techniques proposed in these previous research studies are suitable to address

the requirements for fine-grained provenance tracking in stream processing systems. Fur-

thermore, the related work that investigates and provides the solutions for tackling the

problem of provenance tracking in stream processing systems is discussed. This discus-

sion is given with respect to their effectiveness for addressing fine-grained provenance

for streams.

The rest of the chapter is organized as follows. First we describe the basic concept

of stream processing systems including the definition of data streams and the nature

11

12 Chapter 2 Background

of stream processing systems. Next the fundamental concept of provenance as applied

to computer systems is presented. After that a review of various provenance systems is

given. We then discuss the related work in the context of provenance in stream processing

systems. Finally the analysis conclusions are drawn and the chapter is summarized.

2.1 Stream processing systems

2.1.1 Definition of data streams

A data stream generally refers to information that naturally occurs in the form of a

sequence of messages or data values. However, there are several precise and concrete

definitions of data streams. Golab and Ozsu [60] define a data stream as a real-time,

continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of

items. It is unfeasible to store a stream in its entirety. Babcock et al. [10] add that a data

stream consists of four characteristics that differ from a traditional data model. First,

the stream elements naturally arrive online, and second, for each stream element there

has been no control over the order in which data element arrives at the system. Third,

the size of data streams is usually unbounded, and finally, once an individual stream

element has been processed it is eventually discarded or archived. We will consider a data

stream as a continuous, ordered sequence of data items associated with a timestamp.

2.1.2 Characteristics of stream processing systems

There are many characteristics of stream processing systems that differ from traditional

data management systems [10, 59, 60, 120]. These significant characteristics are sum-

marized as follows.

1. Straight-through processing - In order to achieve low latency, a stream processing

system must be able to process stream events without any requirement to store

them. Because a storage operation such as committing a database record naturally

causes a massive overhead, these kinds of operation should be avoided in order to

minimize overhead in stream processing.

2. Process and respond instantaneously - To process high volumes of streaming data

with low latency, stream processing systems must have an optimized engine that ef-

ficiently processes streaming data and generates output instantaneously. The exe-

cution produced by the stream engine must produce a minimal overhead. Enabling

the tasks processed by a stream system to be completed by deadlines, satisfying

the real-time processing constraint and guaranteeing predictable outcomes.

Chapter 2 Background 13

3. Continuous and long-running query - In stream processing systems, queries typi-

cally run over a period of time (the query life time). First, the queries are pre-

defined or registered during an initialization period. After the data streams have

begun, the queries are executed continuously by the stream processing system

until the end of each queries life time. Furthermore, a modern stream process-

ing system usually supports a high-level stream processing language - StreamSQL

[12, 32, 9, 73]. StreamSQL generally extends the semantics of standard SQL by

adding stream-specific operators.

4. Order based and time based operation - Stream systems have to provide stream-

specific operations which are created especially for dealing with data streams.

These operations are usually divided into two categories: order-based and time-

based operations. An example of time-based operations is to perform queries over

a five-minute time window. The use of order based and time based operation is

an important mechanism to handle stream imperfection including delayed, missing

and out-of-order data.

2.1.3 Comparison with traditional database management systems

Database management systems (DBMSs) are designed for supporting queries over fi-

nite stored datasets. Stream processing systems, e.g. Aurora [28], TelegraphCQ [29],

STREAM [8], Borealis [1], are a new class of data management systems which have

emerged to specifically support continuous and infinite streaming data. The important

distinctions between traditional database management systems and stream processing

systems have been widely summarized [10, 12, 59, 60, 120].

The first distinction is the data management model. Traditional DBMSs are designed

for applications that require persistent data storage and support non real-time response.

The DBMSs are generally used to store and manage large collections of data elements.

Input data is stored persistently on the database, indexed, and then a variety of com-

plex user queries may be executed. The results of queries reflect the current state of

the database and contain a set of relative information that answers the user’s queries

directly. In contrast, stream processing systems are appropriate for applications that

process transient streaming data and support real-time or near real-time response. It

is impractical to operate on large portions of data or to process entire data elements

multiple times like DBMSs. Stream processing systems generally process small portions

of data stream elements over a period of time. Once an individual stream event has

been processed, it is discarded or archived in order to achieve low latency. Moreover,

queries in this kind of system are generally registered during an initialization period.

The queries are executed when data arrives at the system and are also continuously

executed until the queries expire.

14 Chapter 2 Background

The second distinction involves the kind of queries that each system supports. In a

DBMS, only one-time queries are supported; queries that are evaluated once at a point-

in time of the current state of the database [127, 10]. Stream processing systems support

both one-time queries and stream-specific queries namely, continuous queries. Contin-

uous queries are designed especially for processing streaming data. They are usually

pre-defined during system initialization time. When stream elements are fed to the sys-

tem, this kind of query is evaluated and executed. The result of a continuous query is

produced over time and always reflects the streaming data feed to the system. Contin-

uous query answers may be stored and updated as new data arrives, or they may be

produced as data streams themselves.

The last important distinction is time-series information support. Because traditional

DBMSs are not directly designed to support time-series information, it is very difficult

to implement data stream applications which generally process high volumes of time-

series data. Although there are some techniques in DBMSs that can be used to store

this kind of information, these normally cause very expensive overheads and thereby

dramatically slow performance. Examples of such database techniques include encoding

the time-series information as data in normal tables and encoding time-series informa-

tion in binary large objects (BLOBs). Stream processing systems are naturally designed

for supporting time-series information. Several basic mechanisms of stream processing

systems such as time-based operations and continuous stream queries have been espe-

cially designed for dealing with time-series information. Therefore, the stream system

is more suitable for managing time-series information than DBMSs.

2.2 Provenance

2.2.1 A definition of provenance

Provenance - sometimes called “lineage” - is a term that has been well recognized in the

study of fine art. It generally refers to the documented history or pedigree of a work of

art. It is also used to describe the chain of ownership of an artifact. However, provenance

can be described in various terms depending on the domain where it is applied. The

Oxford English Dictionary defines provenance as: “the history or pedigree of a work

of art, manuscript, rare book, etc.; concretely, a record of the ultimate derivation

and passage of an item through its various owners.” We will consider provenance

as the history or derivation of an object which is coming from a particular source to a

specific state of an object.

Chapter 2 Background 15

In computer systems, the term “provenance” is defined and characterized by several

research studies. Lanter [82], who developed the system for tracking provenance in

GIS, characterizes lineage as information describing materials and transformations that

are applied in order to produce the result data. In that work, lineage or provenance

information is used in order to track how the analytical results in GIS were created.

Besides data products, that study states that lineage information includes the associated

processes that create the result data. In the context of databases, Buneman et al. [25]

define provenance information as the description of the sources of data and the process

by which it arrived in a database. They claim understanding provenance is crucial to the

accuracy and currency of data in scientific databases. Moreau et al. [97] first propose a

definition of provenance as a conceptual view. They then say within a computer system

the provenance of a data item is represented by suitable documentation of the process

that led to the data.

2.2.2 Provenance in computer systems

To make provenance information available in computer systems, the study conducted

by Moreau et al. [97] recommends that computer applications need to be transformed

into the new applications, called provenance-aware applications. Provenance-aware ap-

plications generally create particular data - process documentation - at execution time,

in order to use the data to perform provenance querying, analysis and reasoning over

provenance information. The provenance lifecycle begins when a provenance-aware ap-

plication creates process documentation and stores it in a provenance store (a central

storage component that offers a long-term persistent, secure storage of process docu-

mentation). Once process documentation has been recorded, the provenance of data

results can be retrieved by querying the provenance store in the area of user interest.

Finally, the provenance store and its contents can be managed and maintained by a

system administrator.

Because many applications cannot create their whole process documentation at a single

time, they normally generate them interleaved continuously with execution. The idea of

decomposing process documentation has been proposed by Groth et al. [65] in order to

record process documentation efficiently. The process documentation consists of a group

of assertions, called p-assertions, asserted by the components of an application (actors).

There are three types of p-assertion: Interaction P-Assertion is a description of the con-

tents of a message which has been sent or received by an actor; Relationship P-Assertion

is a description of how an actor obtained output data sent in an interaction by applying

some function to input data from other interactions; and Actor State P-Assertion is a

description of the internal state of an actor in the context of a specific interaction [97].

By recording these kinds of p-assertion, the flow of data in a process and input-output

dependencies can be explicitly described. Furthermore, these p-assertions constitute a

16 Chapter 2 Background

directed acyclic graph (DAG) which is a core element of provenance representation. For

a specific data item, the DAG is used to indicate how a particular data item is produced

and used.

In order to make applications provenance-aware, a software engineering methodology,

Provenance Incorporating Methodology (PrIMe), has been developed [102, 101]. This

methodology enables software developers to ensure that sufficient process documentation

is captured so that queries on this documentation can satisfyingly answer users’ prove-

nance questions. Moreover, with PrIMe, developers can analyze and adapt applications

systematically in order that the functionality offered by the provenance architecture can

be fully exploited. The methodology is divided into three different phases: provenance

question capture and analysis, actor-based decomposition, and adapting the application.

2.2.3 The open provenance model

Interest for provenance in computer systems is growing because provenance is recog-

nized as a crucial tool for validating results produced in several kinds of applications

(especially in database systems and scientific workflow systems). However, provenance

representations utilized in various provenance systems are generally designed especially

for specific purpose, and thus they can not be exchanged or shared with other systems.

As a result, the Open Provenance Model (OPM) [98, 99] - a generic provenance model

that is designed for supporting interoperability between provenance systems - has been

proposed. OPM allows provenance information to be shared and exchanged between

disparate systems and it also allows developers to develop software tools for operating

on such provenance information. In addition, OPM is not only designed for supporting

provenance of digital objects in computer systems but also for provenance of any “thing”

(real-world objects).

In OPM, provenance of objects is represented by a causality graph which is a directed

acyclic graph that is added with annotations (extra information) to provide a mean-

ingful description of processes. Three types of nodes are provided: Artifacts denote an

immutable piece of state that may have a physical embodiment in a physical object or

a digital representation in a computer system (e.g. data items that input to or out-

put from a particular application module); Processes represent an action or series of

actions that are performed on artifacts and their execution results in new artifacts; and

Agents represent contextual entities that enable, facilitate, control, or affect the process

execution (e.g. a user who controls the execution of a workflow system).

To capture the causal dependencies between nodes (artifacts,processes and agents), five

primitive categories of edges are classified in OPM. The causal dependencies expressed

by OPM’s edges include a process that used an artifact, an artifact was generated by a

process, a process was controlled by an agent, a process was triggered by another process

Chapter 2 Background 17

and an artifact was derived from another artifact. Each edge represents a causal depen-

dency from its source (the effect) to its destination (the cause). In addition, edges can

be further subtyped from these five categories by using annotations. This feature allows

for OPM to express causal dependencies for specific contexts and provide meaningful

exchange of provenance information. It is important to note that a provenance graph

defined in OPM is designed to explain the derivation of artifacts in the past; it is not

intended to describe processes or activities that will happen in the future.

Our stream provenance solution that will be presented in later chapters is also compatible

with OPM, though it proposes a compact representation of it was-derived from edges.

Using this type of dependency, we can assert that for each stream transformation (stream

processing operation), a particular stream element E2 was derived from another stream

element E1, and thus the input-output data dependencies (dataflow) inside a processing

flow of a stream processing system can be captured.

2.3 Provenance systems

Depending on the domain where provenance is applied, different techniques and vari-

ous types of mechanisms are used to capture and determine the provenance of result

data produced in computational systems. The majority of work on provenance has

been undertaken by the database and e-science communities. Provenance systems and

techniques utilized in the context of databases have been described in several surveys

[124, 125, 31]. In the domain of e-science, a comprehensive overview of provenance sys-

tems - system that provide lineage retrieval for scientific data products - is presented

by Bose and Frew [21]. Similarly, two surveys of provenance related systems focus-

ing primarily on scientific workflow systems are conducted by Simmhan et al. [111] and

Davidson et al. [41]. In this section, we aim to review various systems that provide prove-

nance information and offer mechanisms to determine the provenance of data products.

We also discuss whether the techniques used by these systems adequately address the

requirements for fine-grained provenance tracking in stream processing systems. These

systems are divided into the following categories:

• GIS and application specific systems

• Database systems

• Scientific workflow systems

We will give a detailed review for each category of systems and then at the end of

each category a discussion about provenance techniques used and conclusions will be

provided.

18 Chapter 2 Background

2.3.1 Provenance in GIS and application specific systems

The study of lineage in Geographic Information Systems (GIS) was some of the first

research in provenance. Lanter [82] investigated tracking the lineage of result data in

GIS. Based on a layer-based GIS model, this study defines the lineage information of

GIS data as the transformation of GIS layers from original to final products. Lineage

information in this context includes the relationship between map layers and GIS oper-

ations applied to each layer. By developing the lineage information program (LIP) [83],

command line GIS operations are intercepted and provenance of data can be retrieved

by performing queries over lineage information stored in the meta-database (a storage

for lineage information).

Another GIS system that introduces a mechanism for tracking provenance is Geo-Opera

[4]. Geo-Opera is an extension of OPERA (Open Process Engine for Reliable Activities)

[5] that provides a workflow management system for distributed geoprocessing. A process

in Geo-Opera consists of a collection of geo-processing tasks linked by connectors used

to establish the order of execution. To allow the system to keep track of provenance

of data items, all input, output and intermediate data items resulting from executing

a task need to be stored. Many of the ideas in Geo-Opera are extended from GOOSE

[3] which uses data attributes of a system object to define dependencies between source

and output data items. By querying the dependency of tasks, lineage information - a

derivation of geo-processing results – can be obtained.

Spery et al. [117] investigated the use of lineage to manage the propagation of geograph-

ical updates in the context of corporate GIS databases. A lineage metadata model was

proposed that describes the transformation of geographical objects [118]. In the model

the transformation of geographical objects (i.e., create, modify or delete) is described by

defining relationships, called filiation links, between geographical objects over different

time periods. For example, a land parcel object which is divided into new parcels is

defined as a parent object connected by filiation links to its child objects. Filiation links

of all transformations are combined in order to construct a filiation tree which can be

used to describe the derivation of individual geographical objects. This filiation tree

enables users to perform historical queries and obtain lineage information pertaining to

the transformation of geographical objects.

In the satellite image processing domain, the Earth System Science Workbench (ESSW)

[48] was developed to track the processing of locally received satellite imagery. In or-

der to track the lineage information of the output data products, Lab Notebook and

Notebook tools are provided. The Lab Notebook collects metadata including processing

steps, relationships between data objects and processing scripts from a researcher’s work-

station and records them into the database in XML format. After that, Notebook tools

are used to generate directed graphs of experiment workflow and display the metadata

for image processing data products. To address the challenge of data aggregation, Bose

Chapter 2 Background 19

and Frew [20] extends the lineage concept presented in ESSW by introducing a solution

for composing lineage information for custom satellite-derived data products. In this

solution every data product and data transformation is paired with a lineage object, so

lineage or provenance for a particular workflow invocation can be reconstructed by using

parent/child relationships between lineage objects (lineage objects are used as a proxy

for the relationships between actual data products). Furthermore, the Earth System

Science Server (ES3) is proposed as the new version of ESSW [49]. ES3 introduces a

novel approach to provenance capture and management that instead of explicitly spec-

ifying provenance together with workflow configuration model, automatically extracts

provenance information from application’s interactions at execution time. This prove-

nance collection technique is similar to the techniques used in provenance systems that

capture provenance information at operating system level [100, 130].

The Job Provenance service (JP) [44, 81] is designed to automatically track the prove-

nance of the computations (jobs) that take place in large scale Grids. JP captures a

permanent record of each registered grid job - complete information that is necessary

to re-run the job (e.g. job description (JDL) and miscellaneous input files). Then,

this record is utilized as information to support re-running jobs functionality. Users are

allowed to add user-defined annotations (in the form of name-value pairs) to each job

record. To obtain the provenance of grid jobs, JP provides a query interface that allows

users to retrieve the provenance of grid jobs according to criteria specified on job records

or user annotations.

Lineage studies in the area of GIS are mainly designed for dealing with specific purposes.

The detail of the lineage metadata model and the architecture of the filiation tree [117,

118], for example, is based on a land-use cadastre case study. ESSW [48, 20] identifies

some important issues that can be used as a guidance for the design of generic provenance

systems such as the concept of how lineage information is composed for dissemination of

data products. However, the techniques proposed in ESSW are still designed especially

for capturing the processing steps of satellite imagery. Similarly, in Grid computing

domain, the Job Provenance service (gLite Job Provenance) [44, 81] is tied solely to

its computing environment (the gLite Workload Management System [45]). Therefore,

they are not general enough to be applied to applications in other domains including

stream-based applications.

2.3.2 Provenance in database systems

Considerable research efforts have been made by the database community to address the

data provenance (sometimes called lineage) problem. This problem can be summarized

as: given a specific tuple in an output database, identify tuples in a source database that

contributed to it. Tan [124, 125] classifies research studies on data provenance into two

distinct approaches: in the lazy (or non-annotation) approach, provenance information

20 Chapter 2 Background

is generated on demand, by means of a query, only when requested [136, 37, 38], whereas

in the eager (or annotation-based) approach provenance information is propagated at

runtime [26, 33, 17, 50, 51, 61, 62, 57, 58]. We now discuss them in turn.

To solve data lineage problem and improve database visualization systems, Woodruff

and Stonebraker [136] proposed a data lineage technique called weak inversion. Given a

particular output item, weak inversion functions are used to regenerate input data items

that produced the output. However, the answer returned by this function is not guar-

anteed to be perfectly accurate. Therefore, a separate verification function is required

to examine the answers produced by weak inversion. The drawback of this technique

is that in several cases it is not possible to define inversion functions due to fact that

particular functions cannot be invertible. Moreover, weak inversion functions and their

corresponding verification functions need to be registered by a user who creates a new

database. A subsequent research study conducted by Cui and Widom [37, 38] overcomes

this limitation by introducing a lineage tracing algorithm. This generic algorithm au-

tomatically generate lineage data through analyzing the view definitions and algebraic

structure of queries. Based on the tracing algorithm, several schemes for storing aux-

iliary information are also presented to improve the performance of lineage tracing in

data warehouses. The purpose of this study is to provide an infrastructure for data

warehousing systems that enables users to “drill through” the lineage of a data item in

order to see the original source data that contributed to the data item.

Bunemann et al. [25] formalize the data lineage problem and draw a distinction be-

tween two types of provenance: “why-provenance” and “where-provenance”. The type

of provenance studied by Woodruff and Stonebraker [136] and Cui and Widom [37] is

essentially why-provenance, which tries to determine what tuples in the source database

contributed to an output data item. Where-provenance, on the other hand, aims to

identify locations in the source database from which the data item was extracted. Based

on these types of provenance an annotation-based approach called propagation rules [26]

has been proposed to address where-provenance. In this approach, annotations associ-

ated with tuples in the source database can be propagated to the output database based

on where data is copied from. The forward propagation rules for each relational operator

are defined to determine how annotations are carried from source to output database.

With this technique dependency relationships between locations of data in the input

and output database can be expressed.

The idea of annotation propagation is further extended by DBNotes [33, 17] - an annota-

tion management system for relational database systems. In DBNotes, an extension of a

fragment of SQL, namely pSQL, was introduced. The use of pSQL allows users to specify

how annotations should propagate from source to output databases. DBNotes provides

three different types of annotation propagation scheme which support different propa-

gation purposes. In its “default” propagation mode, annotations are propagated based

on where data is copied from (where-provenance). By examining the annotations auto-

Chapter 2 Background 21

matically propagated through a SQL query, the provenance of a piece of data through

a sequence of query transformation steps can be easily determined. However, in both

DBNotes [33, 17] and propagation rules [26], each provenance-related annotation can

only be attached to a particular value of specific attribute. To overcome such a limita-

tion, Geerts and Van Den Bussche [51] proposed an extension mechanism called “Colors

and Blocks” that allows each provenance-related annotation to be associated with both

a single value of attributes and a set of values (or multiple values of attributes). This

mechanism is based on the idea that annotations are treated as first-class citizens of the

database along with tuples and attribute values. In this study, a new algebra - namely

color algebra - that includes common relational operators (e.g. projection and selection)

properly re-defined and new operators designed to account for the colors and blocks

approach is introduced to query both attribute values and annotations. MONDRAIN

[50] - a prototype implementation of this annotation mechanism in relational DBMSs

- is also presented. This study claimed that using the colors and blocks approach, the

existing schema of the database is not required to be re-structured (only extra tables for

storing annotations need to be added).

Building on the ideas from [37, 38, 25], Trio [135, 2] - a database system that manages

data, accuracy and lineage - proposed an integrated technique (combining both lazy

and eager approaches) to capture lineage information in database systems. In Trio,

lineage is recorded at the granularity of tuple level. Lineage information is generated

automatically whenever a TriQL [16] - an extension of SQL introduced especially for

dealing with uncertainty and lineage information - is executed. The idea similar to

annotation propagation in DBNotes [17] is applied to propagate tuple identifiers from

source tables to an output table. However, because Trio stores only one level of lineage

for each database tuple (it means only direct ancestors are recorded for each tuple), in

order to obtain the complete provenance of a particular tuple, Trio provides recursive

traversing lineage algorithm as part of TriQL. So users can utilize build-in functions

of TriQL to perform queries over lineage information in order to obtain the complete

provenance of particular tuples they are interested in.

Another study proposed a technique to capture provenance in database systems called

provenance semirings [62]. This study not only tries to address the “why-provenance”

problem, but also identifies the need to understand “how-provenance” which describes

how the input data leads to the existence of the output data. In this technique,

provenance-related annotations in the form of variables are attached to relational tu-

ples in the source database. When a query is executed, variables of relevant tuples are

propagated and form polynomials with integer coefficients for the output tuples. In

[61], an application that applied the technique of provenance semirings is described in

the context of collaborative data sharing. Using a semiring of polynomials, provenance

representation of output data items in database systems can be captured and thus the

problem of how-provenance can be addressed.

22 Chapter 2 Background

Glavic and Alonso [58] demonstrate the disadvantages of non-relational provenance rep-

resentation used by existing approaches [37, 38, 135, 50]. In these previous approaches

provenance information is recorded and accessed using a different data model than the

actual data (relational data items used as the input and the output of SQL queries in the

database). To tackle this limitation, the solution called Perm system [57] (Provenance

Extension of the Relational Model) which represents provenance as a single data model

(relation) containing both original query result tuples and contributing tuples (tuples

used in the production of the original query result tuples) is introduced. Perm trans-

forms an original query (SQL query) q into a provenance-related query q′ by rewriting

relational operators of q in order to propagate provenance information alongside query

results. The advantages of using the same data model and query rewriting mechanism is

that rewriting SQL query can be operated and optimized by standard relational database

techniques. The Perm system focuses on “why-provenance” problem as it is claimed that

it better addresses their user requirements than “where-provenance”.

Advances in provenance tracing for database systems encourage applications in other

domains to adopt provenance techniques used in this context. Several database prove-

nance solutions [136, 37, 38, 57, 58] are mainly focused on the why-provenance problem,

which tries to answer the question: “why is a piece of data in the query output”. Recent

studies in this area [33, 17, 135, 2, 50, 51, 61, 62] extend the previous studies by in-

troducing enhanced solutions for where- and how-provenance in order to provide better

understanding of query results. Although research studies in this area mainly focus on

capturing SQL-based transformations, which is different from our intention that tries to

describe general stream transformations, some fundamental provenance tracing concepts

can be applied into our provenance solution.

Based on literature in the context of database systems, our provenance solution for

streams aims to address a form of “why-provenance” for stream processing systems

since it aims to identify a minimal set of input stream elements used in the production

of a particular output stream element. Our provenance approach combines both eager

and lazy techniques, eagerly propagating minimum provenance-related information at

runtime, and relying on provenance queries to extract fine-grained provenance, lazily,

on demand. Instead of using a simple or non-structural annotation, our provenance

solution for streams uses a structural annotation (event key). We show that this type of

provenance-related annotation is more suitable for expressing dependency relationships

between input and output stream elements.

2.3.3 Scientific workflow provenance systems

Much of the research into provenance has come in the context of domain specific and

scientific workflow management systems. A workflow management system (e.g. my-

Grid/Taverna [105, 71], Vistrail [47], and Kepler [22]) is a computer system that man-

Chapter 2 Background 23

ages and defines a series of independent tasks within scientific data-intensive analyses

in order to produce a final output (data product). In such systems, tasks are chained

together and each task takes input data from previous tasks. A workflow specification is

generally represented as a graph, where nodes represent data processing tasks (or data

transformations) and edges represent data flows between tasks. Tan [125] describes the

general characteristics of provenance techniques used in workflow management systems.

In these kind of systems data processing tasks are treated as “black boxes” [41]. Details

pertaining to data transformations are typically hidden, and only input-output data,

dependencies between input-output data and short auxiliary information (e.g. descrip-

tion about the software used) are recorded. Hence, the workflow provenance is classified

as “coarse-grained provenance” [125]. We now discuss provenance techniques used in

workflow management systems in detail.

In the life science domain the Taverna project [105, 71] has developed a tool for the

composition and enactment of bioinformatics workflow. To allow scientists to understand

how results from experiments were obtained, Taverna provides support for provenance

tracking. In Taverna, provenance information, which identifies the source and processing

of data, is collected by recording metadata information and intermediate results during

the enactment of a workflow. The provenance information recorded includes technical

metadata explaining how each task has been performed. In addition, the information

regarding types of processor (tasks), status (current state of the processor), start and

end time, and a description of the service operation used, are also recorded.

REDUX project [14] is another study that proposes a mechanism for capturing prove-

nance information in scientific workflows. This study argues that a single representation

of provenance cannot satisfy all existing provenance queries used in this kind of sys-

tems. So, a provenance model that supports multiple levels (four-layers) of provenance

representation is introduced [15]. The first layer captures the abstract description of

workflows consisting of processing tasks and relationships (links) among them. The

second and third layers capture information provided at execution time of the work-

flow including input data, parameters supplied at runtime, etc. The final layer of the

provenance model captures runtime specific information such as start and end time of

individual tasks executed and status code. Using the multi-layered provenance model

allows users (scientists) to comfortably deal with complexity and size of provenance in-

formation. Users can navigate from abstract layers into lower detailed execution layers,

depending on the amount of provenance information needed to validate particular pro-

cessing results. In addition, the multi-layered provenance model offers users to control

over information they wish to share and retain for their experiments and the model also

supports the reproducibility of workflow results.

Vistrail [47, 27] builds on the similar idea of multi-layered provenance representation

presented in REDUX [14, 15]. In this study a “Change-based provenance” mechanism

has been proposed to capture provenance information for the evolution of the workflows

24 Chapter 2 Background

and their data products [109]. Vistrail not only records intermediate results produced

during workflow execution, but also records the operations (actions) that are applied

to the workflow. In this system, the modification of workflows, for example adding or

replacing modules (data processing tasks), deleting modules and setting parameters, is

captured by tracking the steps followed by a user. Intermediate data products generated

by the workflow are also recorded. By storing both data products and modification of

workflows, Vistrial can ensure reproducibility of experimental processes and provide

support for the systematic tracking of workflow evolution.

Following the idea introduced in REDUX [14] and Vistrail [109], Kim et al. [77] proposed

the three stages (layers) provenance mechanism for capturing provenance information in

large-scale scientific workflow systems. This approach is implemented in the Wings/Pe-

gasus framework [42, 53, 54]. For the first two layers, “application-level provenance”

consisting of a definition of reusable workflow templates - abstract specification of work-

flow describing types of processing tasks and data flows among them - and input data

(of workflow instance) defined by Wing is recorded. The final layer captures “execution

provenance” - information gathered during the processing of workflow - which includes

intermediate data, detailed information about transformations, performance informa-

tion, etc. In addition, workflow refinement information, which describes refinement

process automatically performed by Pegasus to make the workflow execution efficient,

is also captured at the final layer of this provenance mechanism.

Karma provenance framework [110, 113] was developed to collect and query provenance

of data products produced by scientific workflows executed in a service-oriented ar-

chitecture (SOA). Two forms of provenance are captured in Karma [114]: Workflow

provenance - information generated by a central workflow engine - describes workflow’s

execution and associated service invocations; and Data provenance - information gener-

ated by each service in a workflow - describes the derivation of a data product, including

input data sources and transformations used to generate that data product. The inter-

esting feature of Karma is that provenance information recorded can be grouped and

ordered along four dimensions: the execution level (e.g. workflow and service), the loca-

tion of the workflow component involved, the time at which the computation took place,

and the dataflow used in the computation of data products. These different layers of

abstraction allow users to conveniently retrieve provenance information at the level of

granularity in which they are interested.

In the area of scientific data management, the collection-oriented modeling and de-

sign (COMAD) provenance framework [92, 7] presented an annotation-based approach

specifically designed to deal with collections of data. This framework is implemented

within Kepler [90] for representing the provenance of scientific workflows. In this model

each COMAD module (processing task) takes collections of data as an input, accesses

particular collections, and produces output collections by adding new computed data

to the data structure it received. To allow the system to trace provenance of scientific

Chapter 2 Background 25

data products, output collections are embedded with a metadata annotation containing

explicit data dependency information. This metadata annotation is used to describe the

derivation of output objects computed in a scientific workflow. In addition, as described

in [23, 24], this system introduced a solution to minimize the provenance information

recorded for a workflow run by allowing provenance annotations on collections to cascade

to all descendant elements.

Another provenance study in the area of scientific workflow is Provenance Aware Ser-

vice Oriented Architecture (PASOA) [65, 64, 67]. PASOA investigated the concept of

provenance and built an infrastructure for recording and reasoning over provenance in

the context of e-Science. PASOA is mainly designed for supporting interactions between

loosely-coupled services. In this study the idea of decomposing process documentation

has been proposed in order to record provenance information efficiently. Each part of

the process from the whole process documentation is defined as a p-assertion. By cap-

turing p-assertions regarding the content of messages (interaction p-assertions) along

with causal relationships between messages (relationship p-assertion) and the internal

states of services (service state p-assertions), the documentation of processes that led

to a result can be recorded. Based on this idea, the Provenance Recording for Ser-

vices (PReServ) [66] software package has been developed. This implementation allows

developers to integrate process documentation recording into their applications.

To conclude, the use of provenance in scientific workflow systems differs from that in

other application domains. Provenance is not only used for describing the origin of re-

sult data, but also for troubleshooting and replaying workflow execution. As described

in several surveys [125, 41], almost all provenance solutions detailed above follow the

“conventional” model of provenance in scientific workflow systems that captures only

input/output data products of transformations (processing tasks), and causal depen-

dencies between them. Processing tasks of workflows are treated as “black-box trans-

formations” for which only short descriptions or links are recorded. Recent studies in

this domain [109, 77] extend the conventional model by introducing novel solutions that

not only dynamically capture dependencies between input/output of transformations

during execution time, but also record information describing the modification of work-

flow specification. In addition, because of complex computation and massive amount

of data used in scientific workflows, provenance information of a data product may be

relatively large and difficult to understand. To allow users to deal with the complexity

and large size of provenance information several provenance solutions [14, 109, 77, 114]

presented the idea of multi-layered provenance representation. Using the idea of multi-

layered provenance representation allows for users to focus on provenance information

at the level of granularity they are interested in and thus they can better understand

and conveniently consider the provenance of results.

Our provenance solution for streams extends the PASOA provenance mechanism [67].

In our model, each stream operation is treated as a “grey box” [22] - black-box modules

26 Chapter 2 Background

(stream operations) to which are provided additional provenance annotations describing

input-output dependencies. So, provenance information can be collected based upon

dependencies between input and output elements of the stream operation. However,

because workflow provenance systems (e.g. PASOA) need to store all dependencies and

intermediate data objects, the amount of information recorded can potentially cause

a storage burden problem when dealing with high volume data streams. Therefore,

one of the practical requirements for our provenance solution for streams is to find

an enhanced technique that can address this storage problem. The idea of how our

provenance solution can address the practical storage problem will be described in the

next chapter.

2.4 Provenance in stream processing systems

The usefulness of provenance in a certain domain is linked to the granularity at which

it is collected [111]. As discussed in [125], there are two granularities of provenance con-

sidered in the literature: course-grained and fine-grained provenance. Course-grained

provenance refers to process documentation captured through processing of a work-

flow. In this granularity, details regarding data transformations are typically hidden.

In contrast, fine-grained provenance provides relatively detailed documentation which

elucidates the derivation of a data item that is in the results of a transformation step.

This particular granularity of provenance is of interest to the database community for

capturing SQL-based transformations. In this section, we apply the terms of provenance

granularity to stream provenance literature. The literature regarding stream provenance

techniques can be divided into two main categories based on the granularity of process

documentation these techniques achieve. Course-grained stream provenance refers to

provenance information that is captured at the level of streams or sets of stream events.

On the other hand, fine-grained stream provenance refers to provenance information that

is collected at the level of individual stream events.

2.4.1 Coarse-grained stream provenance

In the area of distributed stream processing, Vijayakumar [133] defines provenance of

data streams as information that helps to determine the derivation history of a data

product, where the data product is the derived time bounded stream. To address the

provenance problem an information model and architecture for capturing and collecting

stream provenance has been proposed [131, 132, 86]. The provenance collection begins

with recording the static provenance – descriptions of input streams and pre-defined

continuous queries - during system initialization time. After that, the provenance in-

formation (dynamic provenance) is recorded only when something changes in the input

stream environment during processing. The change events include rate and accuracy

Chapter 2 Background 27

changes. Because the change events have attached timestamps, it can associate them

with the set of events in the output stream that is affected by the change events. With

this collection model this research confirms that the overhead for provenance collection

is minimal.

A similar coarse-grained technique for recording provenance has been used in sensor

archive systems [39, 79]. In this technique, processing modules of archive systems have

to employ standardized logging methods to capture only important events during their

processing. Each log record contains a timestamp, the module identifier and the error

code and message. By storing all log records in a metadata database which is separate

from a sensor database, provenance and data quality of sensor data can be tracked.

Another study conducted by Ledlie et al. [84] proposed the idea of collecting provenance

of sensor data - the history of how and where sensor data came to be - and utilizing

it as an index for identifying data items in sensor data storage. Although the detail

regarding how to capture provenance information is not described, the overview concept,

including the granularity for provenance recording, is discussed. This study recommends

that provenance information needs to be recorded at the level of tuple sets or collections

of sensor readings, and it should be grouped by a particular time period in order to

achieve efficient performance. For example, provenance information is recorded for all

sensor data over the span of one hour.

The studies pertaining to coarse-grained stream provenance have proposed ideas to

record provenance by identifying streams or sets of stream events and processing units as

the smallest unit for which provenance is collected in stream processing systems. How-

ever, the level of granularity for capturing provenance information in these models is

not detailed enough to address our problem. To deal with our requirements provenance

information collected in this kind of system needs to be recorded at the level of individ-

ual stream events in order that data dependencies for each individual stream event in a

particular processing step can be examined.

2.4.2 Fine-grained stream provenance

Several studies on fine-grained provenance for streams have been undertaken in the con-

text of sensor data management. Park and Heidemann [107] proposed an annotation-

based approach called tuple-level link to capture provenance information of sensor data

that is processed and republished in sensornet systems [108]. To allow any user to follow

it back to the original source data, each sensor record is embedded with a URI compat-

ible link called a predecessor link. The predecessor link is encoded with the location of

the source repository and a table at that repository, the search used to retrieve the data

from that table, and a timestamp. By resolving the predecessor link for each sensor

record, sensornet’s users can examine dependencies between input and output data in

which they are interested. Furthermore, this study also provides a compression tech-

28 Chapter 2 Background

nique called incremental compression. The main target of this compression technique is

to reduce link size and provide reasonable storage costs for provenance collection. Al-

though the tuple-level link approach offers efficient storage consumption and can express

data dependencies for individual stream elements, there are still some limitations. The

predecessor link is designed especially for supporting the process of transforming on-line

sensor data in sensornet systems and is not general. Therefore, it is difficult to apply

this technique to stream-based applications in other domains.

Lim et al. [88] proposed a systematic method for assessing the trustworthiness of data

elements (stream events) in sensor networks. In this study data provenance is used

as a crucial information for computing “trust scores” - an information associated with

each stream element provides an indication of the trustworthiness of the stream element.

Two types of provenance are captured [87, 40]: the physical provenance (represented as

a network path that each stream element passes through) describes where each stream

element was produced and how it was delivered; the logical provenance represents the

semantic meaning of stream elements in the context of a given application (e.g. sensor

category). Similar to other annotation-based approaches, the physical provenance is

delivered along with stream elements during execution time and it is the type of prove-

nance exploited to compute trust scores. The logical provenance is utilized for grouping

provenance data into semantic events that users are interested in. The drawback of

this technique is that only selection and aggregation are the transformations (or opera-

tions) that this study focuses on. Considering several kinds of stream transformations

used in existing stream systems (e.g. Windowed operations [28, 1] and Binary join [8]),

the technique proposed in this study probably fails to address provenance problems in

general-purpose stream processing systems. In addition, it is claimed that a simple

provenance representation (network path/tree of sensor nodes) currently used in this

study cannot express data dependencies for applications that have complex processing

flows (e.g. split and merge or loops in data flows) [87].

The study by Wang et al. [134] argued that the annotation-based approach, which is

typically designed for transaction-oriented systems, cannot satisfy the unique require-

ments for recording provenance in high-volume and continuous streams. Therefore, a

model-based provenance solution, called Time-Value-Centric (TVC), was introduced to

support stream processing in medical information systems [19]. In the TVC model, re-

lationships between input and output data stream elements can be described in terms

of some invariants. This model supports three primitive invariants for dependency spec-

ification: time, value and sequence. Time is a primitive that captures dependencies

in terms of the time window that the output element depends on. Value captures de-

pendencies in terms of the predicate of the attributes of the input elements. The last

primitive, sequence, captures dependencies in terms of the sequence number of arriving

elements. The model assumes that all elements of all data streams are persisted and

each data element recorded is tagged with a unique timestamp. By composing these

Chapter 2 Background 29

primitive invariants, dependencies between input and output stream elements for each

stream transformation can be explained. The following study, conducted by Misra et

al. [96], extends the previous study by identifying a practical challenge pertaining to

a storage problem. Because every stream element and their intermediate result data

needs to be stored, this persistence of high volume stream events potentially results in

a storage problem. This study proposes a technique called Composite Modeling with

Intermediate Replay (CMIR) to eliminate this storage problem. A group of stream pro-

cessing units involved in stream processing are aggregated into a virtual group, called a

virtual PE (Processing Element). Only streams that act as input and output streams

of the virtual PE are persisted and defined dependencies. By applying CMIR, stream

processing systems do not require the persistence of all intermediate streams, thereby

reducing storage costs consumed by provenance recording.

MediAlly [34] is a recent health monitoring system that applies a Time-Value-Centric

(TVC) model to provide fine-grained provenance tracking functionalities. To support

energy-efficiency, MediAlly adopts an Activity Triggered Deep Monitoring (ATDM)

paradigm [95] as an energy saving mechanism, where data streams (e.g. ECG - the

electrical activity of the heart) are collected and relayed to a central server only when

monitored context information (e.g. locations (from GPS), personal information) is

evaluated and satisfies given predicates. In this system, TVC is utilized as a back-

bone of provenance sub-system. The interesting point of this study is that instead of

dealing with actual medical sensor data streams, TVC is used to capture dependency

relationships between elements of contextual information streams. However, to the best

of our knowledge, due to the fact that all elements of all related contextual informa-

tion streams need to be stored persistently as in the previous study [134], the practical

limitation pertaining to a storage problem remains unsolved.

Another study by Huq et al. [72] identified the problem of maintaining fine-grained data

provenance for streaming data. In stream processing systems, the use of sliding window

operations has become very common resulting in a single stream element contributing

to many output stream elements. As consequence, to facilitate fine-grained provenance

tracking, a single stream element needs to be stored multiple times depending on the

overlap of sliding windows. This potentially results in a storage problem. To reduce

storage costs for fine-grained data provenance, a temporal data model inspired by bi-

temporal model [78] is proposed. In this model, a timestamp utilized as a database

version number is added to each stream element recorded. This is to ensure that a

query on a particular database state in the past achieves the same result regardless of the

query execution time. Then each individual stream element recorded is also embedded

with temporal attributes: valid time representing the time that each stream element

is generated; transaction time representing the time each stream element is inserted

into the backend database. Using the temporal attributes allows users to identify input

stream elements used in the production of output stream elements, thus the provenance

30 Chapter 2 Background

of each individual stream element can be retrieved.

The TVC model [134, 96] is one of the most recent fine-grained provenance solutions

that provides the ability to express data dependencies for individual stream events.

Nevertheless, this model still has some limitations, since it can fail to identify precisely

input stream elements that are used in the production of an output. The use of only

“value” primitive to identify all past input elements contributing to a particular output

element is an example of this limitation [75, 76]. In this case some irrelevant stream

elements that are not involved in the production of the output can probably be included

in the results resulting in this primitive fails to provide exact provenance query results to

users. Another limitation of this model pertains to storage consumption for provenance

collection. Because all intermediate stream elements need to be stored for computing

the provenance of an output element, the persistence of high volume stream events

potentially results in a storage burden problem.

Although the subsequent study [96] introduced the solution (CMIR) to address the

storage problem, there is still a question about this model as to how to compose different

types of primitive invariant in order to derive dependency relationships for virtual PE.

The other similar model [72] has the same limitation as TVC due to the fact that this

model is required to store all intermediate stream elements for fine-grained provenance

tracking as well. Therefore, to address these limitations, we introduce a finer-grained

provenance solution that precisely captures the provenance of every individual stream

element without requiring every intermediate stream elements to be stored persistently.

The detail of our provenance solution and the idea of how the storage problem can be

addressed will be presented in the next chapter.

2.5 Analysis Conclusions

We have presented a wide range of systems and models that address the problem of

provenance in computational systems. We also have investigated related studies on

provenance tracking in stream processing systems. From our analysis, we have come to

the following five key conclusions.

1. The “why-provenance” is the primary type of provenance on which provenance

solutions for stream processing systems should be focused.

In Section 2.4, we have discussed several related studies on provenance tracking

in stream processing systems. Based on this discussion we found that almost all

studies aim to provide a type of provenance similar to why-provenance [25], which

tries to explain the presence of individual stream processing results generated.

For example, TVC model [134, 96] and subsequent studies [72, 34] try to identify

raw sensor data that contributed to an analytical result in medical information

Chapter 2 Background 31

systems. This encourage us to conclude that the why-provenance problem is a

crucial provenance problem in this context.

However, we noted that the existing solutions for fine-grained provenance tracking

in stream processing systems still have some limitations as they fail to provide

exact provenance query results to users [134, 96] and the storage problem, which

results from the persistence of high volume stream events, still remains [96, 72, 34].

Therefore, we conclude that the why-provenance problem is not yet completely

solved by existing stream provenance solutions and it should be exploited as the

primary type of provenance that our provenance solution aims to address.

2. Provenance solution for streams processing systems should combine both lazy and

eager approaches to tracing data provenance.

As described in [124, 125], existing solutions for tracing data provenance can be

classified into two distinct approaches: the lazy and eager approaches. The lazy

approach computes the provenance of data when needed by using a query or an

inversion function. On the other hand, in the eager approach, provenance infor-

mation is computed and carried along with data at execution time.

Our provenance solution for streams blurs the distinction between lazy and ea-

ger approaches. It propagates structured information (structured annotation) at

runtime, which is exploited for retrieving provenance by queries, on demand. Com-

bining these two distinct approaches offers several advantages. First, the limitation

of inversion functions [136] - some stream transformations cannot be invertible -

can be eliminated. Second, we can reduce additional overhead resulting from com-

puting the full provenance of each stream element at runtime (in our approach

structured annotations are just propagated with stream elements and the prove-

nance of each stream element is computed later by using a query). Third, we can

support a variety of queries performed over provenance information on demand.

3. The idea of capturing input-output dependencies of data transformations should be

considered as the significant provenance collection concept for stream processing

systems

In Section 2.3.3, we have described several scientific workflow systems. In such

systems, only information about data products and input-output dependencies of

data transformations is generally captured; the detail related to data transforma-

tions are typically hidden. This idea in which data transformations are treated as

“black boxes” is classified as the conventional model for provenance in workflow

systems [41, 125].

General-purpose stream processing systems and workflow management systems

have similar characteristics where the specification of both systems can be rep-

resented as a graph (a set of interconnected nodes where each node representing

a data transformation or a stream operation). Several provenance solutions for

32 Chapter 2 Background

streams apply the idea of capturing input-output dependencies of stream trans-

formations as well [134, 96, 88, 72, 34]. In our provenance solution, each stream

operation is treated as a “grey box” [22] in which stream operations - black box

modules - are provided with additional annotations describing input-output de-

pendencies. Provenance of individual stream elements can be retrieved based on

dependency relationships between input and output elements of the stream oper-

ation.

4. Timestamp should be utilized as the key element for expressing dependencies be-

tween data items in a data stream.

Based on our definition of streams summarized from [60, 10], each stream element

in a data stream is associated with a timestamp. In this context the timestamp

can be utilized as a unique identifier for each individual element in a data stream.

Almost all solutions for fine-grained provenance tracking in stream processing sys-

tems apply this concept by adding a timestamp to each individual stream element

stored in a data repository [134, 107, 72, 34]. Our provenance solution for streams

adopts the idea of using timestamps as well. The key element of structured in-

formation (event key) that we propagate at runtime is a timestamp. By utilizing

timestamps as a unique identifier we can exactly identify all input elements that

are used in the production of a particular output element and thus the provenance

of an individual stream element can be retrieved.

5. The practical challenge pertaining to the persistence of high volume of stream events

needs to be addressed.

In Section 2.1.2, we described some unique characteristics of stream systems that

differ from traditional data management systems. One of significant characteristics

is that a stream processing system must be able to process stream elements without

any requirement to store them. Using the storage operation naturally causes a

massive overhead to stream processing and storing all high volume stream events

potentially causes a storage burden problem.

Several studies in the context of stream provenance have recognized the need for

stream provenance systems to address this storage problem [131, 107, 96, 72].

Therefore, our provenance solution for streams introduces an enhanced mecha-

nism to reduce the storage requirement. It also supports a stream-specific query

mechanism that can perform provenance queries on-the-fly. By using this query

mechanism, the storage burden problem can be addressed as provenance informa-

tion is not required to be stored persistently.

Chapter 2 Background 33

2.6 Summary

The literature demonstrates that provenance is a crucial tool for confidence in the results

produced by different kinds of application. Research into database systems shows that

the idea of provenance tracing can be successfully implemented and transferred to work-

ing systems, for example lineage tracing in data warehouses. The use of provenance in

database systems also provides an inspiration for applications in other contexts to apply

and extend the provenance capturing techniques for specific purposes. Our provenance

solution is also inspired by the idea of annotation propagation [26, 33, 17, 135, 62]. We

use a structured annotation (event key) as a reference to each individual stream element

and we propagate the annotation along with each stream element in order to use it for

describing dependencies among stream elements later.

Due to the characteristics of input-output dependencies of workflow systems being quite

similar to that of stream processing systems, the scientific workflow provenance literature

encourages us to apply some efficient provenance techniques into our target applications.

The idea of capturing input-output dependencies by hiding details regarding data trans-

formations is quite suitable for stream processing systems. This inspires us to design our

provenance model for streams based on the PASOA provenance mechanism [67]. The

literature in the context of provenance in stream processing systems indicates that the

characteristics of high volume and high generation rates of data streams is a significant is-

sue. Coarse-grained provenance solutions try to avoid the storage problem resulting from

this unique characteristic by recording only provenance of important events in stream

processing. However, the level of granularity for capturing provenance information in

these solutions is not detailed enough to satisfy our requirement use-cases. Fine-grained

provenance solutions which capture provenance of every intermediate stream event are

more suitable for addressing our problems.

To sum up, our provenance solution, which is based on the key critical analysis conclu-

sions presented in Section 2.5, improves over the state-of-the-art in multiple ways. It

defines a fine-grained notion of provenance for streams similar to why-provenance, which

can explain the presence of individual elements in streams. In doing so, it identifies a

class of stream operations for which such fine-grained provenance can be determined.

It blurs the distinction between lazy and eager approaches [124, 125], since it propa-

gates structured information at runtime, which is exploited for retrieving provenance

by queries, on demand. It introduces an enchance mechanism that reduces the storage

requirement compared to a related stream provenance approach. Furthermore, to satisfy

unique requirements of stream processing systems, it introduces a novel stream-specific

query mechanism that can perform provenance queries on-the-fly. This mechanism al-

lows the problem of the persistence of all intermediate stream elements to be solved.

Chapter 3

A provenance model for streams

At the beginning of this dissertation we outlined the requirement for provenance support

in stream processing systems. This requirement is to track provenance information

at the level of individual stream events so that data dependencies for each individual

stream event in a particular processing step can be examined. In this chapter, we begin

to address this requirement by introducing a provenance model for stream processing

systems. The aim of this provenance model is to describe the fundamental concepts of

provenance representation in stream processing systems indicating how provenance of

individual stream elements can be represented and how dependency relationships among

stream elements can be precisely expressed. We also describe a provenance architecture

for stream processing systems that is designed to comply with the stream provenance

model.

To provide a concrete and precise solution supporting the stream provenance model, it

is necessary to understand and to answer several questions regarding how a particular

stream operation works. To do this, we define programmatic specifications for stream

operations. With these programmatic specifications we can precisely describe how the

output element for each stream operation is produced in terms of input elements. We

then use these specifications to define a stream ancestor function for each stream oper-

ation. The purpose of this stream ancestor function is to explicitly express dependency

relationships between input and output elements of a stream operation.

The contributions of this chapter are as follows:

1. A provenance data model that describe the key elements and the structure of infor-

mation that form the representation of provenance for individual stream elements.

2. A set of primitive stream ancestor functions which can precisely express depen-

dency relationships between input and output elements of stream operations.

35

36 Chapter 3 A provenance model for streams

This chapter is organized as follows. First, a fine-grained provenance model for stream

processing systems is presented. Second, a novel stream provenance architecture is

demonstrated. This is followed by the presentation of the programmatic specifications of

primitive stream processing operations. After that, the specifications of stream ancestor

functions are detailed. Finally, conclusions are drawn.

3.1 Fine-grained stream provenance model

3.1.1 Basic assumptions for fine-grained stream provenance model

To design a fine-grained provenance model, we make the following basic assumptions

which describe the infrastructure of a stream processing system and a data stream

model that our provenance model is intended to support.

• Streams of input events submitted to a stream processing system are assumed

to come from a variety of data sources such as software programs that regularly

generate data values or hardware devices (e.g. micro sensors) that submit their

measurements in real-time.

• A stream processing system is represented as a set of interconnected nodes, with

each node representing a stream operation or a stream processing unit (SPU).

Input stream events flow through a directed graph of stream processing operations

(stream processing flow) and finally, streams of output events are presented to

applications that subscribe to receive results from the stream processing system.

• Each data stream in a stream processing system consists of a sequence of time

ordered stream events and each individual stream event is composed of an event

key - a unique reference of an individual stream event - and a content of stream

event (data). The event key is added by the stream provenance system and can

be assumed as standard.

• Streams are implicitly timestamped [119]. In this kind of stream timestamps, every

stream event that first enters a stream processing system from a data source is

timestamped based on the order that each event arrives. Timestamps are derived

from a stream processing system time.

• Provenance recording is started from the beginning of a stream processing system’s

execution and all components of our stream provenance system are assumed to run

on a single machine.

The stream processing infrastructure, which is based on our basic assumptions for fine-

grained stream provenance model, is illustrated in Figure 3.1.

Chapter 3 A provenance model for streams 37

SPU1

SPU2

SPU3 SPU4

SPU5

key dataX1

X0

X2

Y0Y1

Stream processing system

Stream data element

Stream processing unit (SPU)

key data

key data

key data key data

key data

Figure 3.1: Infrastructure of a stream processing system

3.1.2 Fundamental concepts for fine-grained stream provenance track-

ing

Our fine-grained provenance tracking solution for streams can be divided into two main

parts: a provenance data model for streams and stream ancestor functions. A provenance

data model defines the structure and the key elements of provenance representation for

streams provenance-related information to be stored in long-term data storage in order

that the provenance of stream processing results can be retrieved. Another important

part, a reverse mapping method (namely stream ancestor function) is utilized as a crucial

mechanism for our provenance solution to express dependency relationships among in-

dividual stream elements. In this section, we discuss the basic concepts for fine-grained

stream provenance tracking including the idea of stream ancestor functions and how

the provenance of individual stream elements can be captured. After that, the generic

provenance data model will be presented in detail in the next section.

Our fine-grained provenance tracking solution focuses on interactions between stream

components (stream operations). In the context of stream processing systems, inter-

actions consist of the stream events sent between stream operations. By capturing all

the intermediate stream events that take place between stream operations involved in

the processing of results, we can analyze or verify stream computation to ascertain the

validity of the results. Based on the idea of capturing interactions between stream com-

ponents, we distinguish between the whole of provenance related information collected

by our stream provenance system and its individual parts. Interactions are represented

by provenance assertions (or p-assertions) - assertions pertaining to provenance that

are recorded by stream operations (assertors) during a stream processing system’s ex-

ecution. Each provenance assertion represents an individual stream event exchanged

between two stream operations. The provenance related information collected by our

stream provenance system consists of a set of provenance assertions.

38 Chapter 3 A provenance model for streams

We express dependencies between input and output events of stream operations by

means of a stream ancestor function that is defined for each operation. The key idea

of the stream ancestor function is that for a given reference to an output element, the

stream ancestor function identifies the references of input events that are involved in the

production of that output. The stream ancestor function does not work directly with

individual stream elements, but instead it operates on a representation of each individual

stream element - provenance assertion - that is recorded by each stream operation.

We assume that every provenance assertion contains an event key, which consists of

a timestamp, a sequence number, a stream identifier and a delay time. The event key

plays an important role in the mapping process of the stream ancestor function. It serves

as a unique reference for identifying each provenance assertion of an individual stream

event in a stream. By composing stream ancestor functions for all stream operations

in a stream system, all the elements of the intermediate data streams (represented by

particular provenance assertions) involved in the processing of a particular output event,

which we refer to as the complete provenance of a stream processing result, can be exactly

identified. The concept of stream ancestor function is illustrated in Figure 3.2.

SPU2

Stream ancestor

function

key data key data key data key data key data

key data extra info.
key data extra info.

key data extra info.

key data extra info.

key data extra info.

PA(X0)

PA(X1)

PA(X2)

PA(Y0)

PA(Y1)

record provenance

assertion (PA)

record provenance

assertion (PA)

X2 X1 X0 Y1 Y0

SPU2

Optimized stream

ancestor function

key data key data key data key data key data

PA(X0)

PA(X1)

PA(X2)

PA(Y0)

PA(Y1)

record provenance

assertion (PA)

record provenance

assertion (PA)

X2 X1 X0 Y1 Y0

key extra info.

key extra info.

key extra info.

key extra info.

key extra info.

Figure 3.2: unoptimized stream ancestor function

Figure 3.2 shows how the stream ancestor function is used to express dependencies

between input and output stream elements. In this example we focus on one particular

stream processing unit (SPU2). We can determine the input events involved in the

processing of the output event Y0 by passing the provenance assertion PA(Y0) - the

representation of the stream event Y0 - to the stream ancestor function defined explicitly

for SPU2. The stream ancestor function resolves input-output dependencies through the

use of unique event keys and returns the provenance assertions PA(X0) and PA(X1)

which represent the stream events X0 and X1 belonging to the input stream of SPU2.

To extend the concept of stream ancestor functions, we introduce an enhanced solution

called optimized stream ancestor functions. The aim of the optimized version of stream

ancestor functions is to minimize storage consumption of the original function by record-

ing only necessary information. The key idea of this solution is that only contents of

Chapter 3 A provenance model for streams 39

stream events that act as the first input to a stream processing system are stored. For ev-

ery intermediate stream event, we record only its key. Considering the fact that we use

provenance assertions as representations of individual stream elements; therefore, the

generation of the provenance assertions for every intermediate stream event does not

include the contents of stream events, except for the first-input events - stream events

that enter a stream processing system from data sources (e.g. sensors) and are first

processed by stream operations. By applying this solution, we can rely on only event

keys to identify the input events (representations of input events) that contribute to a

particular output event without requiring any content. With the concept of optimized

stream ancestor functions the amount of storage consumed for provenance collection is

reduced and thus this can address the storage burden problem and also eliminate the

requirement for storing every intermediate stream element. Figure 3.3 illustrates the

concept of optimized stream ancestor functions.

SPU2

Stream ancestor

function

key data key data key data key data key data

key data extra info.
key data extra info.

key data extra info.

key data extra info.

key data extra info.

PA(X0)

PA(X1)

PA(X2)

PA(Y0)

PA(Y1)

record provenance

assertion (PA)

record provenance

assertion (PA)

X2 X1 X0 Y1 Y0

SPU2

Optimized stream

ancestor function

key data key data key data key data key data

PA(X0)

PA(X1)

PA(X2)

PA(Y0)

PA(Y1)

record provenance

assertion (PA)

record provenance

assertion (PA)

X2 X1 X0 Y1 Y0

key extra info.

key extra info.

key extra info.

key extra info.

key extra info.

Figure 3.3: optimized stream ancestor function

As illustrated in Figure 3.3, each provenance assertion that represents individual in-

termediate stream event contains only an event key. The content of each intermediate

event is discarded because it can be obtained later by replaying the execution of stream

operations if required. In this example the optimized stream ancestor function takes the

provenance assertion PA(Y0) representing the output event Y0 as an input and returns

the provenance assertions PA(X0) and PA(X1) which represent the input events X0

and X1 that are involved in the production of Y0.

3.1.3 A provenance data model

We now present the provenance data model that underpins fine-grained provenance

tracking in stream processing systems. The aim of this provenance data model is to

describe the detail and the structure of information to be stored in a provenance store in

order that provenance of the stream processing results can be retrieved. We identify the

key elements that form the data model including entities representing units in a stream

40 Chapter 3 A provenance model for streams

processing system and relationships between entities. The provenance data model for

stream processing systems is illustrated in Figure 3.4.

STREAMS

stream_id INTEGER

operation_id INTEGER

input_output CHARACTER

OPERATIONS

operation_id INTEGER

type_id CHARACTER

description CHARACTER

OPERATION_TYPE

type_id INTEGER

type_name CHARACTER

description CHARACTER

PARAMETERS

operation_id INTEGER

param_name CHARACTER

param_value CHARACTER

description CHARACTER

OPERATION_META

operation_id INTEGER

meta_name CHARACTER

meta_value CHARACTER

STREAM_META

stream_id INTEGER

meta_name CHARACTER

meta_value CHARACTER

ASSERTIONS

assertion_id LONG

timestamp LONG

seqno LONG

stream_id INTEGER

delay LONG

event_content CHARACTER

assertor INTEGER

has
has has

has

record (assert)belong to

input to/output from

Figure 3.4: The provenance data model

As presented in Figure 3.4, the information contained in our provenance data model can

be divided into two parts based on how the information is collected:

• Static information - the provenance related information gathered during initializa-

tion time or registration time of a stream processing system. Static information

includes stream topology information, configuration parameters and metadata.

• Dynamic information - the provenance related information collected during execu-

tion time. Dynamic information includes a set of provenance assertions recorded

by stream operations during execution time.

For static information we identify two main entities required for provenance collection

in streams: stream operations and input-output streams. Stream operations are either

continuous stream queries or application code that are predefined or registered during

initialization time. They are executed continuously over streams of input elements until

the end of the operation’s life time. Streams in this context can be classified into two

types: input streams and output streams. Input streams are streams that are consumed

by stream operations in order to use them for stream processing. Output streams are

streams that are outputted from or generated by executing stream operations. Output

Chapter 3 A provenance model for streams 41

streams from one stream operation form input streams for other operations. The in-

terconnection between stream operations associated with input-output streams forms a

stream processing graph (or stream topology) that represents the internal data flow in

a stream processing system. Note that, in the case that several versions of stream pro-

cessing graphs are utilized for a stream application, metadata entities for both stream

operations and streams can be used to specify a graph id for each processing graph.

Based on the idea of capturing all interactions (stream events) between stream operations

during execution time, we identify provenance assertions as a key unit for dynamic

provenance information. We assume that a data stream in a stream processing system

consists of a sequence of time ordered stream events. Each individual stream event

is composed of an event key and an event’s content (data). Therefore, a provenance

assertion which is a representation of an individual stream event exchanged between

two stream operations is required to contain both important parts of a stream event (an

event key and an event’s content).

In our provenance data model, a provenance assertion is composed of four parts: an

assertion identifier (assertion id), an event key, an event’s content (event content) and

an assertor identity (assertor). An assertion identifier serves as a primary key used for

identifying each individual provenance assertion. An event key, which is utilized as a

crucial element for supporting stream ancestor functions, consists of four composite parts

including a timestamp, a sequence number (seqno), a stream identifier (stream id) and

a delay time (delay). A timestamp and a sequence number serve to define a temporal

order and sequential order (position of an event) among stream events in a stream.

They are assigned by a stream processing system when each stream event arrives at

the system. A delay time for event processing is another important part of an event

key. In our context, processing delay time is the amount of time spent for processing

each individual stream element. Because processing delay time for each stream event is

generally different, it is necessary to include the delay time in an event key. Furthermore,

as we assume that each stream event in a stream is assigned a unique timestamp and

dependencies between input and output events of stream operations can be represented

as one-to-one or many-to-one relationships (input-output dependencies will be described

in detail later in Section 3.3 - the specifications of primitive stream operations), therefore

a delay time together with a timestamp for each stream event are adequately used by

stream ancestor functions as variables for computing time dependencies between stream

events. An event’s content contained in a provenance assertion is an exact duplicate

of the message or data contained in the stream event. Finally, an assertor identity

is defined within provenance assertions in order to associate a particular provenance

assertion with the stream operation that records it.

It is important to note that to support stream reproduction, the dynamic provenance

information (provenance assertions) needs to be recorded by all stream operations in

a stream processing system during execution time. The static provenance information

42 Chapter 3 A provenance model for streams

(e.g. stream topology and stream operation parameters) is required to be specified at

system initialization time as well for supporting the dynamic execution of our replay

method. If one of them (static and dynamic provenance information) is not recorded

correctly, stream reproduction cannot be properly performed (the detail of how stream

reproduction or stream replay execution works will be discussed later in Section 4.2).

In addition, it should also be noted that the extra info. contained in each provenance

assertion (presented in Figure 3.2 and 3.3) is the combination of an assertion identifier

and an assertor identity used for supporting provenance retrieval.

As shown in Figure 3.4, our provenance data model consists of seven entities which are

related to each other. From the data model diagram, each stream operation has its

own operation type (e.g. time-window and length-window operation), it is configured

by some parameters and it has operation metadata. Each stream is either an input

stream or an output stream of a stream operation and it has stream metadata as well.

For the assertions entity (provenance assertions), each assertion is recorded or asserted

by a stream operation and it belongs to a particular stream. By using the entities and

the relationships between the entities defined in our provenance data model, we can

construct a directed acyclic graph (DAG) which represents the provenance of individual

stream elements in a stream processing system.

3.2 Provenance architecture for stream processing systems

To support the stream provenance model we have specified a provenance architecture

for stream processing systems. In our context a stream provenance system is defined

as a computer system that is responsible for dealing with the issues pertaining to the

recording and querying of provenance information generated by a stream processing

system during its execution time. Such a system is an implementation of a provenance

architecture for stream processing systems. The provenance architecture allows us to

describe the structure of the stream provenance system, system components and inter-

actions between each components. Our provenance architecture for stream processing

systems is shown in Figure 3.5.

Our provenance architecture for stream processing systems is adapted from the logical

architecture for workflow provenance systems developed in the PASOA project [65].

Our architecture can be divided into two main parts: a persistent subsystem and a

non-persistent subsystem. The provenance service plays a central role in the persistent

subsystem. The provenance service is designed specifically to deal with provenance

information that is stored persistently in a persistent data repository (provenance store).

It is also designed to provide recording and querying functionalities which support the

different phases of the provenance lifecycle in computer systems. To encapsulate the

detail of such functionalities, the service provides two interfaces - a recording interface

Chapter 3 A provenance model for streams 43

Provenance

Service

Recording interface

Q
u
ery in

terface

Provenance query

browser application

User

SPU1

SPU2 SPU5

SPU3 SPU4

Stream-based application

Input stream

Output stream

Provenance store

(persistent repository)

Real-time provenance

monitoring application

Subscribe to receive

query results

On-the-fly

provenance query

service

Provenance

assertion

streams

Query result

streams

Query requests

and responses

Streams

Non-streams

Non-persistent

subsystem

Persistent

subsystem

Compact

provenance

store

Figure 3.5: The provenance architecture for stream processing systems

and a query interface. These interfaces specify the messages accepted and returned by

a provenance service and they are the entry point to the provenance service that allows

applications to inter-operate with different implementations of provenance services.

To capture the provenance of stream processing results, provenance assertions are recorded

by each stream operation for each individual stream element in a stream processing sys-

tem. The provenance assertions are not generated and recorded at a single time, but

instead their generation is interleaved continuously with execution. After each prove-

nance assertion is received by the provenance service via the recording interface it is

recorded into a provenance store - a central storage component that offers a long-term

persistent storage of provenance assertions. The provenance service does not just provide

provenance recording functionality, but instead it supports provenance query function-

ality as well. Once provenance assertions have been recorded in the provenance store,

users who operate a client application (e.g. a provenance query browser application)

can send a variety of provenance related queries to the provenance service in order to

collect precise and accurate provenance of stream processing results.

Another important component is an on-the-fly provenance query service that is a cen-

tral component of the non-persistent subsystem part. In this context, the on-the-fly

provenance query service is designed to be utilized as a stream component. During an

initialization period, users who manage a client application (e.g. a real time provenance

44 Chapter 3 A provenance model for streams

monitoring application) need to subscribe to receive query results from the on-the-fly

provenance query service. As provenance assertions are being recorded and received by

the on-the-fly provenance query service, provenance queries are performed automatically

and continuously over the streams of provenance assertions. It is important to note that

the generation of on-the-fly provenance queries is based on configuration parameters

and stream topology information specified during system registration time. Such infor-

mation is stored in a compact provenance store - a compact version of the provenance

store used only for storing static provenance information. Finally, provenance query re-

sults are generated as streams and they are streamed back to the subscriber application.

On-the-fly provenance queries are discussed in more detail in Chapter 5.

The remaining sections will present the primitive stream operations. These operations

are recognized as common stream operations developed in several stream processing sys-

tem projects [60, 28, 8, 1]. The purpose of the presentation of these primitive operations

is to demonstrate how the output element for each stream operation is produced in terms

of its input elements. Based on these operations we then present a list of specifications of

stream ancestor functions. After presenting each stream ancestor function, we present a

small example illustrating how each primitive stream operation and its stream ancestor

function work in practice. It should be noted that our goal is not trying to explain all

of existing stream operations but we aim to demonstrate that the idea and the method

used in the specifications of our primitive stream operations and their stream ancestor

functions can be transfered to other new stream operations if required. Furthermore,

because our primitive stream operations (and also stream ancestor functions) are de-

signed to be composed together in order to build more complicated stream operations

(we will discuss in detail later in Section 4.1.1), this ability can be usefully exploited to

deal with custom or user-defined stream operations.

In the following sections, all stream operations and stream ancestor functions are de-

fined by using Standard ML (SML [56]) - a general-purpose functional programming

language. By using Standard ML, we can illustrate how continuous queries are formu-

lated in stream operations and how each stream ancestor function works in order to

express dependencies between input and output stream elements. In addition, the rea-

sons that Standard ML is selected over other functional programming languages (such

as Haskell) is that Standard ML is a strict (eager evaluation - subexpressions are alway

evaluated completely before the function is applied) and strong type checking language.

Although Haskell provides the ability to represent infinite streams in a finite manner,

such ability relies on delayed evaluations, which are forced when stream results are

requested. Forcing delayed evaluations may result in the forcing of other delayed eval-

uations as well. Since the purpose of our study is to explicitly represent computation

that would be performed in stream components - potentially in hardware, for our study,

we instead prefer a call-by-value language such as Standard ML, which also provides a

typed discipline, but with explicit control of evaluation.

Chapter 3 A provenance model for streams 45

3.3 Primitive stream processing operations

3.3.1 The basic notation of a data stream

A data stream is an ordered sequence of tuples (stream events) which consist of an

event key and event data. An event key, which is used as a unique identifier for stream

events, contains a timestamp (TIME), a sequence number (LargeInt), a stream identifier

(STREAMID) and a delay time for event processing (TIME). In the context of Standard

ML, we represent a data stream as a list of events (′a EV ENT list) where a stream

event can contain a varying number of elements and it can be any type of content.

The following are data types for representing a data stream.

datatype STREAMID StreamID of int;

datatype KEY = Key of TIME ∗ LargeInt.int ∗ STREAMID ∗ TIME;

datatype ′a EV ENT = Event of KEY ∗ ′a;

The time data type and time comparison operations are represented as follows:

datatype TIME = Time of LargeInt.int;

(∗ fn : TIME ∗ TIME − > TIME ∗)
fun + + (Time(x), T ime(y)) = Time(x + y);

(∗ fn : TIME ∗ TIME − > TIME ∗)
fun −− (Time(x), T ime(y)) = Time(x− y);

(∗ fn : TIME ∗ TIME − > bool ∗)
fun GT (Time(x), T ime(y)) = (x > y);

(∗ fn : TIME ∗ TIME − > bool ∗)
fun GTE (Time(x), T ime(y)) = (x >= y);

(∗ fn : TIME ∗ TIME − > bool ∗)
fun LT (Time(x), T ime(y)) = (x < y);

(∗ fn : TIME ∗ TIME − > bool ∗)
fun LTE (Time(x), T ime(y)) = (x <= y);

(∗ fn : TIME ∗ TIME − > bool ∗)
fun EQ(Time(x), T ime(y)) = if x = y then true else false;

46 Chapter 3 A provenance model for streams

The following is an example of a data stream represented using a list of events.

[Event (Key (Time 22, 1, StreamID 1, T ime 1), 55),

Event (Key (Time 32, 2, StreamID 1, T ime 2), 60)

Event (Key (Time 42, 3, StreamID 1, T ime 1), 65)] : int EV ENT list

3.3.2 Shared functions

Shared functions are defined in order to separate some common routines used in several

operations from the core function of stream operations. The benefits of defining shared

functions is that only a core function for each stream operation is presented, the def-

initions of stream operations are simplified, and they can be more easily understood.

These shared functions include TScope, LScope, getDataList, tStampGT , tStampEQ

and withT ime.

TScope and LScope are functions used to filter elements of a list (B) that are outside

the scope of a data window (the scope ranges from lower bound (lb) to upper bound

(ub)). The difference between these two functions is that elements of a list are filtered

by a timestamp (t) for the former and by size of data window (l) for the latter. The

getDataList function is used to get the event content (event data) of stream events in a

list (B). To determine the temporal order between two stream events, tStampGT and

tStampEQ functions are introduced. Each of these functions compares event timestamps

and return a boolean value indicating the result of the comparison. Finally, withT ime

function is used to calculate a delay time for processing for each stream event. It takes

an internal function of a stream operation as an input and returns a delay time together

with the output of that internal function. The definitions of these shared functions are

presented below.

(∗ fn : TIME ∗ TIME ∗ ′a EV ENT list → ′a EV ENT list ∗)
fun TScope(ub, lb, []) = []

| TScope(ub, lb, ((evt as Event(Key(t, , ,),)) :: B)) =

if (ub GTE t) andalso (t GTE lb) then

evt :: TScope(ub, lb, B)

else TScope(ub, lb, B)

end

(∗ fn : int ∗ ′a EV ENT list → ′a EV ENT list ∗)
fun LScope(l, []) = []

| LScope(l, (evt :: B)) =

if (l > 0) then

evt :: LScope((l − 1), B)

else [];

Chapter 3 A provenance model for streams 47

(∗ fn : ′a EV ENT list → ′a list ∗)
fun getDataList ([]) = []

| getDataList((Event(, e)) :: B) = e :: getDataList(B);

(∗ fn : ′a EV ENT − > ′b EV ENT − > bool ∗)
fun tStampGT (Event(Key(t1, , ,),)) (Event(Key(t2, , ,),)) = (t1 GT t2);

(∗ fn : ′a EV ENT − > ′b EV ENT − > bool ∗)
fun tStampEQ (Event(Key(t1, , ,),)) (Event(Key(t2, , ,),)) = (t1 EQ t2);

(∗ fn : (unit − > ′a) − > ′a ∗ TIME ∗)
fun withT ime func =

let

val timer = startRealT imer();

in

let

val e′ = func();

in

let

val dn = Time(Time.toMilliseconds(checkRealT imer(timer)));

in

(e′, dn)

end

end

end;

3.3.3 Map

One of the most common stream operations that operate on a single stream element at a

time is the map operation. The map operation applies an input function to the content

of every stream element in a stream. The functioning of the map operation can be seen

in Figure 3.6.

As shown in Figure 3.6, an average function (AVG) is used as an input function that

applies to every input stream event. The input is the output stream of the time window

that will be presented later. Note that we use a simple form of stream event which

consists of a timestamp, a sequence number and event data representing a stream event

in the diagram. In addition d specified in the diagram is a delay time for the processing

of the map operation. The definition of the map operation is presented in Figure 3.7.

48 Chapter 3 A provenance model for streams

T1 (t, 1, {12})

T2 (t+1, 2, {12,14})

T3 (t+2, 3, {12,14,18})

Input events input function : AVG

t

t+1

t+2

t+3

t+4

T1

T4 (t+3, 4, {14,18,16})

T5 (t+4, 5, {18,16,15})

Output events

O1 (t+d, 1, 12)

O2 (t+1+d, 2, 13)

O3 (t+2+d, 3, 15)

O4 (t+3+d, 4, 16)

O5 (t+4+d, 5, 16)

T2

T3

T4

T5

AVG()

AVG()

AVG()

AVG()

AVG()

Time

Figure 3.6: Output example for the map operation

Stream operation: Map - Map(F, sid)
Let S be a stream of type ′a EV ENT list
Let F be a function of type (′a → ′b)
Let sid be a stream identifier of an output stream
Map(F, sid) S is defined as:

(∗ fn : (′a − > ′b) ∗ STREAMID − > ′a EV ENT list − > ′b EV ENT list ∗)

fun Map(F, sid) [] = []
|Map(F, sid) ((Event(Key(t, n, ,), e)) :: S) =
let

val (e′, dn) = withT ime (fn () => F e)
in

(Event(Key(t + +dn, n, sid, dn), e′)) :: Map(F, sid) S
end

Figure 3.7: The definition of the map operation

As illustrated in Figure 3.7, the map operation takes a stream of type ′a EV ENT list

as an input, applies a function F to every stream event in the input stream and finally

produces an output stream of type ′b EV ENT list. This operation keeps sequence

numbers of stream events the same and applies a function F over the content of stream

events. Examples of map operations include several kinds of aggregated operation: SUM,

AVG, MIN and MAX. In addition, it is important to note that for all primitive stream

operations, we utilize withT ime function to obtain the amount of time spent (delay)

for stream processing. The timer of this function is started when each stream event is

being received and it is stopped after each event has been processed.

Chapter 3 A provenance model for streams 49

3.3.4 Filter

Another stream operation that operates on a single stream element at a time is the filter

operation. The filter operation screens events in a stream for those that satisfy an input

predicate (filter condition). Figure 3.8 illustrates the functioning of the filter operation.

T1 (t, 1, 17)

T2 (t+1, 2, 14)

T3 (t+2, 3, 18)

Input events Filter: temperature > 15

t

t+1

t+2

t+3

t+4

T4 (t+3, 4, 16)

T5 (t+4, 5, 15)

Output events

O2 (t+2+d, 2, 18)

O3 (t+3+d, 3, 16)

T3

T4





T1
O1 (t+d, 1, 17)

Time

Figure 3.8: Output example for the filter operation

The definition of the filter operation is given in Figure 3.9:

Stream operation: Filter - Filter(P, sn, sid)
Let S be a stream of type ′a EV ENT list
Let P be a predicate that evaluates over stream events
Let sn be a sequence number generated according to a number of output events
Let sid be a stream identifier of an output stream
Filter(P, sn, sid) S is defined as:

(∗ fn : (′a − > bool) ∗ int ∗ STREAMID − > ′a EV ENT list
− > ′a EV ENT list ∗)

fun Filter(P, sn, sid) [] = []
| Filter(P, sn, sid) ((Event(Key(t, , ,), e)) :: S) =
let

val (Pred, dn) = withT ime (fn () => P e)
in

if Pred then
(Event(Key(t + +dn, sn, sid, dn), e)) :: Filter(P, sn + 1, sid) S

else
F ilter(P, sn, sid) S

end

Figure 3.9: The definition of the filter operation

50 Chapter 3 A provenance model for streams

As presented in Figure 3.9, the filter operation applies a predicate P (filter condition)

over the content of an input stream. In the case that an input event satisfies the

predicate, an output event with a new sequence number sn is produced. A new sequence

number for each output event is generated according to the number of output events. If

the input event fails to satisfy the predicate, the filter operation produces nothing.

3.3.5 Windowed operations

In this section, windowed operations - operations that operate on sets of consecutive

events from a stream at a time [28] - are presented. Two common types of windowed op-

erations are described: a time window and a length window. We will detail the abstract

functions first and then the definitions of the windowed operations are presented.

3.3.5.1 Abstract functions for the windowed operations

We define the abstract functions for the windowed operations to separate common rou-

tines contained in both time window and length window operations. These abstract

functions include Window and Windowt.

The Window function is the abstract function defined for input-driven window opera-

tions - the windowed operations that each output is produced in terms of input events.

Another function, Windowt, is the abstract function defined for clock-driven window

operations - the windowed operations that each output is produced based on the pres-

ence of elements in a tick stream (a stream used as a trigger for execution of windowed

operations). Both functions takes a window scope function (either TWindowScope or

LWindowScope) as an input parameter. The window scope functions are used to deter-

mine which stream elements of an input stream are in the window extent. The definitions

of the abstract functions for windowed operations are presented as follows.

(∗ fn : ′a ∗ ′b EV ENT list ∗ STREAMID − > (TIME − > ′a − >
′b EV ENT list − > ′b EV ENT list) − > ′b EV ENT list − > ′b list EV ENT list ∗)
fun Window(w,B, sid) winScope [] = []

|Window(w,B, sid) winScope ((evt as Event(Key(t, n, ,), e)) :: S) =

let val ((scope, eList), dn) = withT ime (fn () =>

let

val scope = winScope t w ([evt] @ B)

in

(scope, getDataList(scope))

end)

in

(Event(Key(t + +dn, n, sid, dn), eList)) :: Window(w, scope, sid) winScope S

end

Chapter 3 A provenance model for streams 51

(∗ fn : ′a ∗ ′b EV ENT list ∗ STREAMID − > (TIME − > ′a − > ′b EV ENT list

− > ′b EV ENT list) − > ′c EV ENT list − > ′b EV ENT list − > ′b list EV ENT list ∗)
fun Windowt(w,B, sid) winScope [] = []

|Windowt(w,B, sid) winScope ((evtt as Event(Key(t, n, ,), e)) :: T) [] =

let val ((scope, eList), dn) = withT ime(fn () =>

let

val scope = winScope t w B

in

(scope, getDataList(scope))

end)

in

(Event(Key(t + +dn, n, sid, dn), eList)) :: Windowt(w, scope, sid) winScope T []

end

|Windowt(w,B, sid) winScope ((evtt as Event(Key(t, n, ,), e)) :: T) (evti :: S) =

let val ((B′, scope, scope′, eList, eList′), dn) = withT ime(fn () =>

let

val scope = winScope t w B

val B′ = [evti] @ B

val scope′ = winScope t w B′

in

(B′, scope, scope′, getDataList(scope), getDataList(scope′))

end)

in

if tStampGT evtt evti then Windowt(w,B
′, sid) winScope (evtt :: T) S

else

if tStampEQ evtt evti then

(Event(Key(t + +dn, n, sid, dn), eList′)) :: Windowt(w, scope
′, sid) winScope T S

else

(Event(Key(t + +dn, n, sid, dn), eList)) :: Windowt(w, scope, sid) winScope T (evti :: S)

end

(∗ fn : TIME − > TIME − > ′a EV ENT list − > ′a EV ENT list ∗)
fun TWindowScope t w B = TScope(t, t−−w,B)

(∗ fn : ′a − > int − > ′b list − > ′b list ∗)
fun LWindowScope t l B = LScope(l, B)

3.3.5.2 Sliding time windows

A sliding time window is a windowed operation (a data window) where the extent of the

window is defined in terms of a time interval. At any point in time, the time window

generates an output event from the most recent input events over a given time period.

52 Chapter 3 A provenance model for streams

Figure 3.10 and 3.11 show the time window operation in action.

T1 (t+3, 1, 12)

T2 (t+4, 2, 14)

T1

T3 (t+5, 3, 18)

Input events Window duration : 3 seconds

t

t+1

t+2

t+3

t+4

t+5

t+6

T4 (t+5.5, 4, 16)

T5 (t+6, 5, 15)

Output events

O1 (t+3+d, 1, {12})

O2 (t+4+d, 2, {12,14})

O3 (t+5+d, 3, {12,14,18})

O4 (t+5.5+d, 4, {12,14,18,16})

O5 (t+6+d, 5, {14,18,16,15})

At t+3 At t+4 At t+5 At t+5.5 At t+6

Time

t+5.5

T2

T1

T2

T1

T3

T2

T1

T3

T4

T2

T3

T4

T5

T1

Figure 3.10: Output example for the input-driven time window

T3 (t+3.5, 3, 18)

TT2 (t+5, 2, -)

Input events Window duration : 3 seconds

t

t+1

t+2

t+3

t+4

t+5

t+6

Output events

O1 (t+3+d, 1, {12,14})

O2 (t+5+d, 2, {14,18,16})

O3 (t+7+d, 3, {16,15,17})

At t+3 At t+5 At t+7

Time

T1

T2

T4

t+3.5

T4 (t+4.5, 4, 16) t+4.5

T5 (t+5.5, 5, 15) t+5.5

T1

T2 (t+2.5, 2, 14) t+2.5

T1 (t+1.5, 1, 12) t+1.5

T3
TT1 (t+3, 1, -)

TT3 (t+7, 3, -)

T2

T4

T5

T6
T6 (t+6.5, 6, 17) t+6.5

t+7

T3

T2

Figure 3.11: Output example for the clock-driven time window

Chapter 3 A provenance model for streams 53

The diagram in Figure 3.10 illustrates how the sliding time window (input-driven time

window) contents change as input events arrive and shows the output events produced

in terms of input events. The diagram starts at a given time t. Input events arrive in

the time window at time t + 3 and t + 4 seconds and so on. As shown in the diagram,

the extent and the execution of the time window are determined based on the arrival of

input stream events. For example, at time t+4 seconds, based on the arrival of the event

T2, the events T1 and T2 are identified as input events in the extent of the time window

and finally the time window produces the O2 event as an output. After each output

event is generated, the time window changes progressively (move forward in time) in

order to capture a new set of stream events. The diagram in Figure 3.11 shows the

functioning of another type of sliding time window operation - the clock-driven time

window - in which each output event is produced based on the presence of elements in a

tick stream (a stream that is used as a trigger for execution of stream operations). The

diagram starts at a given time t and input events (T events) arrive in the time window

at time t + 1.5 and t + 2.5 seconds and so on. In addition, tick stream events (TT

events) arrive the time window operation at time t + 3 and t + 5 and t + 7 seconds.

The time window operations (both the input-driven time window and the clock-driven

time window) are defined as follows.

Stream operation: Input-driven time window - TW (w,B, sid)
Let S be a stream of type ′a EV ENT list
Let w be a duration of the time window
Let B be a data buffer used to temporarily store events
Let sid be a stream identifier of an output stream
TW (w,B, sid) S is defined as:

(∗ fn : TIME ∗ ′a EV ENT list ∗ STREAMID − > ′a EV ENT list
− > ′a list EV ENT list ∗)

fun TW (w,B, sid) S = Window(w,B, sid) TWindowScope S;

Figure 3.12: The definition of the input-driven time window

Stream operation: Clock-driven time window - TWt(w,B, sid)
Let S be a stream of type ′a EV ENT list
Let T be a stream of type ′a EV ENT list used as clock ticks of the time window
Let w be a duration of the time window
Let B be a data buffer used to temporarily store events
Let sid be a stream identifier of an output stream
TWt(w,B, sid) T S is defined as:

(∗ fn : TIME ∗ ′a EV ENT list ∗ STREAMID − > ′b EV ENT list
− > ′a EV ENT list − > ′a list EV ENT list ∗)

fun TWt(w,B, sid) T S = Windowt(w,B, sid) TWindowScope T S;

Figure 3.13: The definition of the clock-driven time window

54 Chapter 3 A provenance model for streams

As shown in Figure 3.12 and 3.13, the two time window operations utilize internal values

of a stream component - a duration of the time window w, a data buffer B and a stream

ID sid - as input parameters at registration time. When each individual input event flows

into each operation it produces an output event, which combines the most recent events

of an input stream during a particular time period w. The difference between these two

operations is that outputs are input driven for one and clock driven for the other. For

the clock-driven time window, the tick stream T is utilized by the operation to determine

when each output event has to be produced. In addition, as shown in the definitions, the

input-driven time window utilizes the Window function (abstract function) for its core

business logic and the Windowt function is used as the base function of the clock-driven

time window.

3.3.5.3 Length windows

Another type of data window is the length window (or count-based window). A length

window is a data window where the extent of the window is defined in terms of the

number of events. At any point in time a length window covers the most recent N

events (size of window) of a stream. A length window of size 3 events, for example,

keeps the last 3 events for a stream. Figure 3.14 and 3.15 show the length window

operation in action.

T1 (t, 1, 12)

T2 (t+1.5, 2, 14)

Input events Size of window = 3 events

t

t+1

t+2

T1

Output events

O1 (t+d, 1, {12})

O2 (t+1.5+d, 2, {12,14})
T1T2

T3 (t+3, 3, 18) t+3

t+4

T4 (t+5, 4, 16)

O3 (t+3+d, 3, {12,14,18})

O4 (t+5+d, 4, {14,18,16})

T2T3 T1

T3T4 T2
t+5

Time

Figure 3.14: Output example for the input-driven length window

Chapter 3 A provenance model for streams 55

T1 (t, 1, 12)

 T2 (t+1, 2, 14)

T3 (t+3.5, 3, 18)

Input events Size of window = 3 events

t

t+1

t+2

t+3

t+4

Output events

O1 (t+2.5+d, 1, {12,14})

O2 (t+5.5+d, 2, {14,18,16})

T1 T2

T2 T3 T1

t+5

Time

TT1 (t+2.5, 1, -)

TT2 (t+5.5, 2, -)

T1

T1 T2

T3 T4 T2

T4 (t+4.5, 4, 16)
T3 T4 T2

Figure 3.15: Output example for the clock-driven length window

The diagram in Figure 3.14 illustrates how the input-driven length window contents

change as events arrive and shows the output events produced in term of the number of

input events. The diagram starts at a given time t and input events arrive in the length

window operation at time t and t + 1.5 seconds and so on. The diagram in Figure

3.15 illustrates the functioning of another type of length window operation - the clock-

driven length window - in which each output event is produced based on the presence

of elements in a tick stream. The clock-driven length window is used as an internal

function of the length-window join operation that will be presented later in this chapter.

The diagram starts at a given time t and input events (T events) arrive in the length

window at time t and t + 1 seconds and so on. Furthermore, tick stream events (TT

events) arrive the length window at time t + 2.5 and t + 5.5 seconds. The definitions

of both length window operations are defined in Figure 3.16 and 3.17.

Stream operation: Input-driven length window - LW (l, B, sid)
Let S be a stream of type ′a EV ENT list
Let l be size of the length window
Let B be a data buffer used to temporarily store events
Let sid be a stream identifier of an output stream
LW (l, B, sid) S is defined as:

(∗ fn : int ∗ ′a EV ENT list ∗ STREAMID − > ′a EV ENT list
− > ′a list EV ENT list ∗)

fun LW (l, B, sid) S = Window(l, B, sid) LWindowScope S;

Figure 3.16: The definition of the input-driven length window

56 Chapter 3 A provenance model for streams

Stream operation: Clock-driven length window - LWt(l, B, sid)
Let S be a stream of type ′a EV ENT list
Let T be a stream of type ′a EV ENT list used as clock ticks of the length window
Let l be size of the length window
Let B be a data buffer used to temporarily store events
Let sid be a stream identifier of an output stream
LWt(l, B, sid) T S is defined as:

(∗ fn : int ∗ ′a EV ENT list ∗ STREAMID − > ′b EV ENT list − >
′a EV ENT list − > ′a list EV ENT list ∗)

fun LWt(l, B, sid) T S = Windowt(l, B, sid) LWindowScope T S;

Figure 3.17: The definition of the clock-driven length window

As shown in Figure 3.16 and 3.17, the two length window operations utilize internal

values of a stream component - size of length window l, a data buffer B and a stream ID

sid - as input parameters at registration time. When each individual input event enters

the operation it produces an output event that combines the most recent l events of an

input stream together. Instead of using timestamps, the size of the data window l is

used together with the scope function LWindowScope for checking which events of an

input stream are in the window extent. The difference between these two operations is

that outputs are input driven for one and clock driven for the other. For the clock-driven

length window the tick stream T is used by the operation to determine when each output

event has to be generated.

3.3.6 Join operations

As in a traditional relational database system, a join operation is an important operation

in stream processing systems. In this section, two common window-based join operations

are described: the time-window join and the length-window join. We will describe the

abstract functions for join operations first and then the definitions of two window-based

join operations will be presented.

3.3.6.1 Abstract functions for the window-based join operations

A window-based join is a binary operation that pairs stream events from two input

streams. Stream events from two time-based windows or count-based windows (length

windows) are combined and each output event is produced according to a join condition.

In order to clearly describe how the window-based join operation works, an output

example for the join operation (sliding time-window join) is presented in Figure 3.18.

Chapter 3 A provenance model for streams 57

T1 (t+4, 1, 12)

W1 (t+5, 1, 11)

Input events Output events

T W

T2 (t+6, 1, 15)

W2 (t+7, 2, 10)

T3 (t+8, 3, 17)

O1 (t+5+d, 1, <12,11>)

t+4

t+6

t+8

t+2

t

T1

At t+4 At t+5 At t+6 At t+7 At t+8

Window duration : 4 seconds
(for both two time windows)

O2 (t+6+d, 2, {<12,11>,
<15,11>}))

O3 (t+7+d, 3, {<12,11>,
<12,10>,<15,11>,<15,10>})

O4 (t+8+d, 4, {<15,11>,
<15,10>,<17,11>,<17,10>})

T W

T1

T W

T2

T W

T2

T W

T3

W1

T1

W1 W1

W2

T1

T2

W1

W2

Time

t+1

t+3

t+5

t+7

Figure 3.18: Output example for the time-window join operation

Merge

Join Operation
Input stream (I1)

<t1,n1,e1>

<t2,n2,e2>

<t3,n3,e3>

<t’1,n’1,e’1>

<t’2,n’2,e’2>

<t1,n1,e1>

<t’1,n’1,e’1>

<t2,n2,e2>

Input stream (I2)

TW1 TW2

Join1

<t2,n2,e2>

<t’2,n’2,e’2>

<t3,n3,e3>

Output stream (O1)

Figure 3.19: The internal functions of the time-window join operation

58 Chapter 3 A provenance model for streams

As shown in Figure 3.18, the diagram starts at a given time t and the input events

from two streams arrive at time t+4 and t+5 seconds and so on. In this example, both

streams have the same window duration (4 seconds). Furthermore, in Figure 3.19, the

detail of the internal functions inside the join operation is presented. This can be used

to explain how the operation works.

We now present the abstract function for the window-based join operations. This ab-

stract function is defined to separate common routines contained in both time-window

join and length-window join operations. The definition of the abstract function is pre-

sented as follows.

(∗ fn : ′a ∗ ′a ∗ (′b ∗ ′b ∗ ′c list − > ′′d list)

∗ int ∗ int ∗ STREAMID − > (′a ∗ ′e list ∗ STREAMID

− > ′f EV ENT list − > ′f EV ENT list − > ′b EV ENT list)

− > ′f EV ENT list − > ′f EV ENT list − > ′′d list EV ENT list ∗)
fun Join(w1, w2, J, nj, sn, sid) ClockDrivenWin [] = []

| Join(w1, w2, J, nj, sn, sid) ClockDrivenWin [] = []

| Join(w1, w2, J, nj, sn, sid) ClockDrivenWin (evt1 :: S1) (evt2 :: S2) =

let

val T ick = Merge(sn, sid) (evt1 :: S1) (evt2 :: S2)

val win1 = ClockDrivenWin(w1, [], sid) Tick (evt1 :: S1)

val win2 = ClockDrivenWin(w2, [], sid) Tick (evt2 :: S2)

in

join1(J, nj, sid) win1 win2

end

fun join1(J, nj, sid) [] = []

| join1(J, nj, sid) [] = []

| join1(J, nj, sid) (Event(Key(t, , ,), e1) :: win1) (Event(, e2) :: win2) =

let

val (jOutput, dn) = withT ime (fn () => J(e1, e2, []));

in

if(jOutput = []) then

join1(J, nj, sid) win1 win2

else

(Event(Key(t + +dn, nj, sid, dn), jOutput)) :: join1(J, nj + 1, sid) win1 win2

end

As presented in the definition of the abstract function, the window-based join consists

of four internal functions: Merge, clock-driven windows (win1 and win2) and join1.

The operation takes events from two streams (S1 and S2) as input. Each time that

a new event from either streams arrives the operation returns a set of output events

that joins events taken from the current state of windows (win1 and win2). From the

Chapter 3 A provenance model for streams 59

definition, the scope (a duration of the data window) for each window applied for each

stream can be different. Furthermore both data windows need to be synchronized, which

means they have to produce their output events at the same time. To deal with this

requirement a merge operation (Merge) is introduced as an internal operation inside

the join operation. The merge operation aggregates events from two streams into a new

stream in order to create a tick stream - a stream that is used as a trigger for execution

of stream operations - for both data windows. The definition of the merge operation is

defined as follows.

(∗ fn : int ∗ STREAMID − > ′a EV ENT list − > ′a EV ENT list

− > ′a EV ENT list ∗)
fun Merge(sn, sid) [] [] = []

|Merge(sn, sid) (evt1 :: S1) [] = evt1 :: Merge(sn + 1, sid) S1 []

|Merge(sn, sid) [] (evt2 :: S2) = evt2 :: Merge(sn + 1, sid) [] S2

|Merge(sn, sid) (evt1 :: S1) (evt2 :: S2) =

if tStampGT evt1 evt2 then

evt2 :: Merge(sn + 1, sid) (evt1 :: S1) S2

else

if tStampEQ evt1 evt2 then

evt1 :: Merge(sn + 1, sid) S1 S2

else

evt1 :: Merge(sn + 1, sid) S1 (evt2 :: S2)

3.3.6.2 Time-window join

One of the most common window-based join operations is a sliding time-window join. A

time-window join is a binary operation that combines stream events from two streams

and returns a combination of stream events that satisfy a join condition. The definition

of the time-window join operation is presented in Figure 3.20.

Stream operation: Time-window join - JoinTW (w1, w2, J, nj, sn, sid)
Let S1, S2 be streams of type ′a EV ENT list
Let w1, w2 be duration of the time windows
Let J be a join condition that joins two input streams
Let nj be a sequence number generated according to the number of output events
Let sn be a sequence number of the merge operation
Let sid be a stream identifier of an output stream
JoinTW (w1, w2, J, nj, sn, sid) S1 S2 is defined as:

(∗ fn : ∗ TIME ∗ TIME ∗ (′a list ∗ ′a list ∗ ′b list − > ′′c list) ∗ int ∗ int
∗ STREAMID − > ′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list ∗)

fun JoinTW (w1, w2, J, nj, sn, sid) S1 S2 = Join(w1, w2, J, nj, sn, sid) TWt S1 S2;

Figure 3.20: The definition of the time-window join

60 Chapter 3 A provenance model for streams

As presented in the definition of the time-window join (Figure 3.20), the Join function

is used as the base function of the time-window join operation. The time-window join

utilizes window duration of the time windows (w1 and w2), a join condition (J), two se-

quence numbers (nj and sn) and an output stream identifier as the function parameters.

This operation takes events from two streams (S1 and S2) as input. Each time that a

new event from either streams arrives the operation returns a set of output events that

joins events taken from the current state of time windows. Joining between two streams

is performed according to a join condition J . Finally, the operation produces an output

event which is the list of pairs of joining events that satisfy that join condition.

3.3.6.3 Length-window join

Another type of join operation is a length-window join. Instead of using time-based

windows, count-based windows are used as internal data windows. Stream events from

two length windows are combined and output events are produced according to a join

condition. The definition of the length-window join operation is presented in Figure

3.21.

Stream operation: Length-window join - JoinLW (l1, l2, J, nj, sn, sid)
Let S1, S2 be streams of type ′a EV ENT list
Let l1, l2 be size of the length windows
Let J be a join condition that joins two input streams
Let nj be a sequence number generated according to the number of output events
Let sn be a sequence number of the merge operation
Let sid be a stream identifier of an output stream
JoinLW (l1, l2, J, nj, sn, sid) S1 S2 is defined as:

(∗ fn : int ∗ int ∗ (′a list ∗ ′a list ∗ ′b list − > ′′c list) ∗ int ∗ int ∗ STREAMID
− > ′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list ∗)

fun JoinLW (l1, l2, J, nj, sn, sid) S1 S2 = Join(l1, l2, J, nj, sn, sid) LWt S1 S2;

Figure 3.21: The definition of the length-window join

As illustrated in Figure 3.21, the length-window join takes events from two streams (S1

and S2) as input. Each time that a new event from either streams arrives the operation

returns a set of output events that combines events taken from the current state of length

windows. Joining between two streams is performed according to a join condition J .

With this result the content of each individual output event is the list of pairs of joining

events that satisfy that join condition.

Chapter 3 A provenance model for streams 61

3.4 Stream ancestor functions

Having described the specifications of primitive stream operations, we now present a

list of specifications of stream ancestor functions for primitive stream operations. The

stream ancestor functions (SAFs) are utilized as our crucial mechanism to explicitly

express dependency relationships between input and output elements of stream opera-

tions. In addition, in order to simplify the specifications, the stream ancestor functions

that will be presented use event keys as inputs and outputs of the functions instead of

provenance assertions.

3.4.1 Additional shared functions

In this section some additional shared functions defined especially for working with

stream ancestor functions are presented. These shared functions include TScopeA,

NScopeA, delayedExactly, delayedExactlyA and Trim. The TScopeA (the compact

version of the TScope) and NScopeA are used to screen elements of a list (KEY list).

They are defined specifically for using with optimized stream ancestor functions. The

delayedExactly and delayedExactlyA (the compact version of the delayedExactly) are

internal functions of stream ancestor functions utilized to compare timestamps between

two stream elements.

Furthermore, the Trim function is a function used to describe how to transform an orig-

inal stream event to the stream event that only consists of an event key. The function

is applied to each stream event before it is sent to the provenance service by a stream

component. Taking an input event the function returns a compact stream event where

the content of each event is discarded. The definitions of all additional shared functions

for stream ancestor functions are presented as follows.

(∗ fn : TIME ∗ TIME ∗ KEY list − > KEY list ∗)
fun TScopeA(ub, lb, []) = []

| TScopeA(ub, lb, ((key as Key(t, , ,)) :: B)) =

if (ub GTE t) andalso (t GTE lb) then

key :: TScopeA(ub, lb, B)

else TScopeA(ub, lb, B)

(∗ fn : int ∗ int ∗ KEY list − > KEY list ∗)
fun NScopeA(ub, lb, []) = []

| NScopeA(ub, lb, ((key as Key(, n, ,)) :: B)) =

if (ub >= n) andalso (n >= lb) then

key :: NScopeA(ub, lb, B)

else NScopeA(ub, lb, B)

62 Chapter 3 A provenance model for streams

(∗ fn : ′a EV ENT − > ′b EV ENT − > bool ∗)
fun delayedExactly (Event(Key(ti, , ,),)) (Event(Key(t, , , d),))

= ((t−−d) = ti)

(∗ fn : KEY − > KEY − > bool ∗)
fun delayedExactlyA (Key(ti, , ,)) (Key(t, , , d)) = ((t−−d) = ti)

(∗ fn : ′a EV ENT list → KEY list ∗)
fun Trim [] = []

| Trim ((Event(Key(t, n, sid, d), e)) :: S) = (Key(t, n, sid, d)) :: Trim S;

3.4.2 The stream ancestor function for a map operation

The stream ancestor function for a map operation is defined in Figure 3.22. For this

stream ancestor function a list of input stream events S is defined as an input parameter.

Because a map operation applies on a single event at a time, after taking an output event

as an input, the function returns an input event that contributes to the output.

Stream ancestor function: SAF for a map operation - MapA(S)
Let event be an output stream event (Event(Key(t, n, sid, d), e)) of type ′b EV ENT
Let S be a list of input stream events of type ′a EV ENT list
For a map operation, the stream ancestor function is defined as:

(∗ fn : ′a EV ENT list − > ′b EV ENT − > ′a EV ENT ∗)
fun MapA(eventi :: S) event =

if delayedExactly eventi event then eventi
else MapA(S) event

Figure 3.22: The definition of the stream ancestor function for a map operation

To further enhance the function, an optimized stream ancestor function (optimized SAF)

is introduced as illustrated in Figure 3.23. The optimized stream ancestor function

for a map operation requires a list of event keys (Sm) to be stored in order to use it

for processing. By using delayedExactlyA as the internal function to determine time

dependencies between event keys, the event key of the input event that contribute to a

particular output event can be exactly identified.

Stream ancestor function: Optimized SAF for a map operation - MapOA(Sm)
Let key be a key of an output stream event (Key(t, n, sid, d)) of type KEY
Let Sm be a list of input event keys - Sm = Trim(S)
The optimized stream ancestor function for a map operation can be defined as:

(∗ fn : KEY list − > KEY − > KEY ∗)
fun MapOA(keyi :: Sm) key =

if delayedExactlyA keyi key then keyi
else MapOA(Sm) key

Figure 3.23: The definition of the optimized SAF for a map operation

Chapter 3 A provenance model for streams 63

As shown in the definition of stream ancestor functions, there are many shared ex-

pressions and statements between the unoptimized and the optimized versions of stream

ancestor functions. In order to avoid code repetitions caused by presenting both versions

of stream ancestor functions, for the stream ancestor functions that will be presented

later in this chapter, the optimized stream ancestor functions are only presented.

An example output produced by the optimized stream ancestor function is presented as

follows. We first show the output for the map operation. This is followed by the example

output for the optimized stream ancestor function. Suppose that the operation takes

parameters: F = double (function) and the key of a particular output event used as

the input for the stream ancestor function is (Key(Time 32, 4, StreamID 2, T ime 1)).

Figure 3.24 illustrates the processing flow for this example.

(∗ input stream ∗)
− val S = [Event(Key(Time 1, 1, StreamID 1, T ime 0), 55),

Event(Key(Time 11, 2, StreamID 1, T ime 0), 60),

Event(Key(Time 21, 3, StreamID 1, T ime 0), 65),

Event(Key(Time 31, 4, StreamID 1, T ime 0), 70),

Event(Key(Time 41, 5, StreamID 1, T ime 0), 75)] : int EV ENT list;

(∗fn : int → int ∗)
− fun double(x) = x + x; (∗ double function ∗)

(∗ execute the operation ∗)
(∗Map(F, sid) : (′a → ′b) ∗ STREAMID → ′a EV ENT list → ′b EV ENT list ∗)
−Map(double, StreamID(2)) S;

(∗ output stream ∗)
> [Event(Key(Time 2, 1, StreamID 2, T ime 1), 110),

Event(Key(Time 12, 2, StreamID 2, T ime 1), 120),

Event(Key(Time 22, 3, StreamID 2, T ime 1), 130),

Event(Key(Time 32, 4, StreamID 2, T ime 1), 140),

Event(Key(Time 42, 5, StreamID 2, T ime 1), 150)] : int EV ENT list

For the optimized stream ancestor function:

(∗ input stream recorded∗)
− val Sm = [Key(Time 1, 1, StreamID 1, T ime 0),

Key(Time 11, 2, StreamID 1, T ime 0),

Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

64 Chapter 3 A provenance model for streams

(∗ execute the stream ancestor function ∗)
−MapOA(Sm) Key(Time32, 4, StreamID 2, T ime 1)

(∗ ancestor events ∗)
> Key(Time31, 4, StreamID 1, T ime 0) : KEY

TW

55

t:1

60657075

t:11t:21t:31t:41 t:2

75,70,65

t:12t:22t:32t:42

70,65,60 65,60,55 60,55 55

Reverse mapping by TWOA

Scope range between (t:42 – d:1)

 and (t:42 – d:1 – w:20)

LW

55

n:1

60657075

n:2n:3n:4n:5 n:1n:2n:3n:4n:5

60,55

Reverse mapping by LWOA

Scope range between (n:5)

 and (n:5 – l:4 + 1)

75,70,65,60 70,65,60,55 65,60,55 55

Map

55

t:1

60657075

t:11t:21t:31t:41 t:2

150

t:12t:22t:32t:42

Reverse mapping by MapOA
Time dependency (t:32 – d:1)

140 130 120 110

Figure 3.24: Example processing flow of a map operation and its SAF

3.4.3 The stream ancestor function for a filter operation

The optimized stream ancestor function for a filter operation is defined in Figure 3.25.

This optimized stream ancestor function utilizes a list of input event keys (Sm) as the

function parameter. The function takes a key of an output event of the filter operation

as an input and returns a key of an input event that contributes to the output. Because

the stream ancestor function for both map and filter operations use the same business

logic, we utilize the optimized stream ancestor function for a map operation (MapOA)

as a core function for this optimized stream ancestor function.

Stream ancestor function: Optimized SAF for a filter operation - FilterOA(Sm)
Let key be a key of an output stream event (Key(t, n, sid, d)) of type KEY
Let Sm be a list of input event keys - Sm = Trim(S)
The optimized stream ancestor function for a filter operation can be defined as:

(∗ fn : KEY list − > KEY − > KEY ∗)
fun FilterOA(Sm) key = MapOA(Sm) key

Figure 3.25: The definition of the optimized stream ancestor function for a filter

An example output produced by the optimized stream ancestor function is presented as

follows. We first demonstrate the output for the filter operation. After that, the output

for the optimized ancestor function is presented. Suppose that the operation takes input

parameters: P = filterCond (function) and sn = 1, and the key of an output event used

as the input for the stream ancestor function is (Key(Time 22, 2, StreamID 2, T ime 1)).

Figure 3.26 presents the processing flow for this example.

Chapter 3 A provenance model for streams 65

(∗ input stream ∗)
− val S = [Event(Key(Time 1, 1, StreamID 1, T ime 0), 55),

Event(Key(Time 11, 2, StreamID 1, T ime 0), 60),

Event(Key(Time 21, 3, StreamID 1, T ime 0), 65),

Event(Key(Time 31, 4, StreamID 1, T ime 0), 70),

Event(Key(Time 41, 5, StreamID 1, T ime 0), 75)] : int EV ENT list

(∗ fn : int → bool ∗)
− fun filterCond(e) = (e >= 60) (∗ filter condition ∗)

(∗ execute the operation ∗)
(∗ Filter(P, sn, sid) : (′a → bool) ∗ int ∗ STREAMID →
∗ ′a EV ENT list → ′a EV ENT list ∗)
− Filter(filterCond, 1, StreamID(2)) S;

(∗ output stream ∗)
> [Event(Key(Time 12, 1, StreamID 2, T ime 1), 60),

Event(Key(Time 22, 2, StreamID 2, T ime 1), 65),

Event(Key(Time 32, 3, StreamID 2, T ime 1), 70),

Event(Key(Time 42, 4, StreamID 2, T ime 1), 75)] : int EV ENT list

For the optimized stream ancestor function:

(∗ input stream recorded∗)
− val Sm = [Key(Time 1, 1, StreamID 1, T ime 0),

Key(Time 11, 2, StreamID 1, T ime 0),

Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

(∗ execute the stream ancestor function ∗)
− FilterOA(Sm) (Key(Time 22, 2, StreamID 2, T ime 1))

(∗ ancestor events ∗)
> Key(Time 21, 3, StreamID 1, T ime 0) : KEY

TW

55

t:1

60657075

t:11t:21t:31t:41 t:2

75,70,65

t:12t:22t:32t:42

70,65,60 65,60,55 60,55 55

Reverse mapping by TWOA

Scope range between (t:42 – d:1)

 and (t:42 – d:1 – w:20)

LW

55

n:1

60657075

n:2n:3n:4n:5 n:1n:2n:3n:4n:5

60,55

Reverse mapping by LWOA

Scope range between (n:5)

 and (n:5 – l:4 + 1)

75,70,65,60 70,65,60,55 65,60,55 55

Map

55

t:1

60657075

t:11t:21t:31t:41 t:2

150

t:12t:22t:32t:42

Reverse mapping by MapOA
Time dependency (t:32 – d:1)

140 130 120 110

Filter

55

t:1

60657075

t:11t:21t:31t:41

75

t:12t:22t:32t:42

Reverse mapping by FilterOA
Time dependency (t:22 – d:1)

70 65 60

Figure 3.26: Example processing flow of a filter operation and its SAF

66 Chapter 3 A provenance model for streams

3.4.4 The stream ancestor function for a sliding time window

The definition of the optimized stream ancestor function for a time window is presented

in Figure 3.27. For this optimized stream ancestor function a list of input event keys Sm

and the duration of the time window w are indicated as the function parameters. The

function takes an event key of the output event generated from a sliding time window

as an input and returns a set of event keys of the input events in the extent of the time

window at the time that the operation produced the output. As shown in the definition,

the optimized SAF for a time window utilizes parameters - the size of the data window,

a timestamp and a delay time - in order to define the extent of a past data window which

a particular output element is generated from. The interval of the past data window is

between t - d - w (lower bound) and t - d (upper bound).

Stream ancestor function: Optimized SAF for a time window - TWOA(w, Sm)
Let Key be a key of an output stream event (Key(t, n, sid, d)) of type KEY
Let Sm be a list of input event keys - Sm = Trim(S)
Let w be the duration of the time window
The optimized stream ancestor function for a sliding time window can be defined as:

(∗ fn : TIME ∗KEY list→ KEY → KEY list ∗)

fun TWOA(w, Sm) (Key(t, , , d)) = TScopeA(t−−d, (t−−d)−−w, Sm)

Figure 3.27: The definition of the optimized SAF for a time window operation

An example output produced by the optimized stream ancestor function is now pre-

sented. We first show the output for the sliding time window. This is followed by the

example output for the stream optimized ancestor function. Suppose that the operation

takes parameters: w = Time(20) and B = [], and the key of a particular output event

used as the input for the stream ancestor function is (Key(Time 42,5,StreamID 2,Time

1)). Figure 3.28 illustrates the processing flow for this example.

(∗ input stream ∗)
− val S = [Event(Key(Time 1, 1, StreamID 1, T ime 0), 55),

Event(Key(Time 11, 2, StreamID 1, T ime 0), 60),

Event(Key(Time 21, 3, StreamID 1, T ime 0), 65),

Event(Key(Time 31, 4, StreamID 1, T ime 0), 70),

Event(Key(Time 41, 5, StreamID ‘1, T ime 0), 75)] : int EV ENT list;

(∗ execute the operation ∗)
(∗ TW (w,B, sid) : TIME ∗′ a EV ENT list ∗ STREAMID →
′a EV ENT list→′ a list EV ENT list ∗)
− TW (Time(20), [], StreamID(2)) S;

Chapter 3 A provenance model for streams 67

(∗ output stream ∗)
> [Event(Key(Time 2, 1, StreamID 2, T ime 1), [55]),

Event(Key(Time 12, 2, StreamID 2, T ime 1), [60, 55]),

Event(Key(Time 22, 3, StreamID 2, T ime 1), [65, 60, 55]),

Event(Key(Time 32, 4, StreamID 2, T ime 1), [70, 65, 60]),

Event(Key(Time 42, 5, StreamID 2, T ime 1), [75, 70, 65])] : int list EV ENT list

For the optimized stream ancestor function:

(∗ input stream recorded∗)
− val Sm = [Key(Time 1, 1, StreamID 1, T ime 0),

Key(Time 11, 2, StreamID 1, T ime 0),

Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

(∗ execute the stream ancestor function ∗)
− TWOA(Time(20), Sm) (Key(Time 42, 5, StreamID 2, T ime 1));

(∗ ancestor events ∗)
> [Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

TW

55

t:1

60657075

t:11t:21t:31t:41 t:2

75,70,65

t:12t:22t:32t:42

70,65,60 65,60,55 60,55 55

Reverse mapping by TWOA

Scope range between (t:42 – d:1)

 and (t:42 – d:1 – w:20)

LW

55

n:1

60657075

n:2n:3n:4n:5 n:1n:2n:3n:4n:5

60,55

Reverse mapping by LWOA

Scope range between (n:5)

 and (n:5 – l:4 + 1)

75,70,65,60 70,65,60,55 65,60,55 55

Figure 3.28: Example processing flow of a sliding time-window and its SAF

3.4.5 The stream ancestor function for a length window

The optimized stream ancestor function for a length window is presented in Figure 3.29.

This optimized SAF is defined as a function that takes a list of event keys (Sm) and the

size of the length window l as the function parameters. The function takes an event key

of the output event of the length window and returns a set of event keys of the input

events in the extent of the length window at the time that the window produced the

output. The extent of the past length window is defined by using parameters - the size

of the length window (l) and a sequence number (n)- and the interval of the window is

between (n− l) + 1 (lower bound) and n (upper bound).

68 Chapter 3 A provenance model for streams

Stream ancestor function: Optimized SAF for a length window - LWOA(l, Sm)
Let Key be a key of an output stream event (Key(t, n, sid, d)) of type KEY
Let Sm be a list of input event keys - Sm = Trim(S)
Let l be the size of the length window
The optimized stream ancestor function for a length window can be defined as:

(∗ fn : int ∗ KEY list → KEY → KEY list ∗)

fun LWOA(l, Sm) (Key(, n, ,)) = NScopeA(n, (n− l) + 1, Sm);

Figure 3.29: The definition of the optimized SAF for a length window operation

An example output produced by the optimized stream ancestor function is now pre-

sented. We first show the output for the length window and then the example output

for the optimized stream ancestor function. Suppose that the operation takes param-

eters: l = 4 and B = [], and the key of a particular output event used as the input

for the stream ancestor function is (Key(Time 42,5,StreamID 2,Time 1)). Figure 3.30

illustrates the processing flow for this example.

(∗ input stream ∗)
− val S = [Event(Key(Time 1, 1, StreamID 1, T ime 0), 55),

Event(Key(Time 11, 2, StreamID 1, T ime 0), 60),

Event(Key(Time 21, 3, StreamID 1, T ime 0), 65),

Event(Key(Time 31, 4, StreamID 1, T ime 0), 70),

Event(Key(Time 41, 5, StreamID 1, T ime 0), 75)] : int EV ENT list;

(∗ execute the operation ∗)
(∗ LW (l, B, sid) : int ∗ ′a EV ENT list ∗ STREAMID →
′a EV ENT list → ′a list EV ENT list ∗)
− LW (4, [], StreamID(2)) S;

(∗ output stream ∗)
> [Event(Key(Time 2, 1, StreamID 2, T ime 1), [55]),

Event(Key(Time 12, 2, StreamID 2, T ime 1), [60, 55]),

Event(Key(Time 22, 3, StreamID 2, T ime 1), [65, 60, 55]),

Event(Key(Time 32, 4, StreamID 2, T ime 1), [70, 65, 60, 55]),

Event(Key(Time 42, 5, StreamID 2, T ime 1), [75, 70, 65, 60])] : int list EV ENT list

For the optimized stream ancestor function:

(∗ input stream recorded∗)
− val Sm = [Key(Time 1, 1, StreamID 1, T ime 0),

Key(Time 11, 2, StreamID 1, T ime 0),

Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

Chapter 3 A provenance model for streams 69

(∗ execute the stream ancestor function ∗)
− LWOA(4, Sm) (Key(Time 42, 5, StreamID 2, T ime 1));

(∗ ancestor events ∗)
> [Key(Time 11, 2, StreamID 1, T ime 0),

[Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

TW

55

t:1

60657075

t:11t:21t:31t:41 t:2

75,70,65

t:12t:22t:32t:42

70,65,60 65,60,55 60,55 55

Reverse mapping by TWOA

Scope range between (t:42 – d:1)

 and (t:42 – d:1 – w:20)

LW

55

n:1

60657075

n:2n:3n:4n:5 n:1n:2n:3n:4n:5

60,55

Reverse mapping by LWOA

Scope range between (n:5)

 and (n:5 – l:4 + 1)

75,70,65,60 70,65,60,55 65,60,55 55

Figure 3.30: Example processing flow of a length-window and its SAF

3.4.6 The stream ancestor function for a time-window join operation

The definition of the optimized stream ancestor function for a time-window join opera-

tion is presented in Figure 3.31. We define the optimized stream ancestor function for a

time-window join operation as a function that takes two lists of input event keys (S1m

and S2m) and the window duration of the time windows (w1 and w2) as the function

parameters. The function takes an event key of the output event of the join operation

as an input and returns a set of event keys of the input events in the extent of the

time windows at the time that the output is produced. This optimized stream ancestor

function identifies all possible event keys of the input events that are involved in the

processing of the join operation for each output event.

Stream ancestor function : Optimized SAF for a time-window join
- JoinTWOA(w1, w2, S1m, S2m)
Let Key be a key of an output stream event (Key(t, n, sid, d)) of type KEY
Let S1m, S2m be lists of input event keys - S1m = Trim(S1) and S2m = Trim(S2)
Let w1, w2 be the window duration of the time windows
The optimized SAF for a time-window join operation can be defined as:

(∗ fn : TIME ∗ TIME ∗ KEY list ∗ KEY list − > KEY − > KEY list ∗)

fun JoinTWOA(w1, w2, S1m, S2m) (Key(t, , , d)) =
TScopeA(t−−d, (t−−d)−−w1, S1m) @ TScopeA(t−−d, (t−−d)−−w2, S2m)

Figure 3.31: The definition of the optimized SAF for a time-window join operation

70 Chapter 3 A provenance model for streams

An example output produced by the optimized stream ancestor function is presented as

follows. We first demonstrate the output for the time-window join operation. This is

followed by the example output for the optimized stream ancestor function. Suppose

that the operation takes input parameters: w1 and w2 = Time(10), J = cartesianJoin

(function), nj = 1 and sn = 1, and the key of a particular output event used as the input

for the stream ancestor function is (Key(Time 44, 9, StreamID 3, T ime 1)). Figure 3.32

presents the processing flow for this example.

(∗ input streams ∗)
− val S1 = [Event(Key(Time 1, 1, StreamID 1, T ime 0), 55),

Event(Key(Time 11, 2, StreamID 1, T ime 0), 60),

Event(Key(Time 21, 3, StreamID 1, T ime 0), 65),

Event(Key(Time 31, 4, StreamID 1, T ime 0), 70),

Event(Key(Time 41, 5, StreamID 1, T ime 0), 75)] : int EV ENT list;

− val S2 = [Event(Key(Time 2, 1, StreamID 2, T ime 0), 70),

Event(Key(Time 12, 2, StreamID 2, T ime 0), 75),

Event(Key(Time 22, 3, StreamID 2, T ime 0), 80),

Event(Key(Time 32, 4, StreamID 2, T ime 0), 65),

Event(Key(Time 42, 5, StreamID 2, T ime 0), 85)] : int EV ENT list;

(∗ execute the operation ∗)
(∗ JoinTW (w1, w2, J, nj, sn, sid)) : TIME ∗ TIME

∗ (′a list ∗ ′a list ∗ ′b list − > ′′c list) ∗ int ∗ int ∗ STREAMID

− > ′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list ∗)
− JoinTW (Time(10), T ime(10), cartesianJoin, 1, 1, StreamID(3)) S1 S2;

(∗ output stream ∗)
> [Event(Key(Time 4, 1, StreamID 3, T ime 2), [(55, 70)]),

Event(Key(Time 13, 2, StreamID 3, T ime 2), [(60, 70), (55, 70)]),

Event(Key(Time 14, 3, StreamID 3, T ime 2), [(60, 75), (60, 70)]),

Event(Key(Time 23, 4, StreamID 3, T ime 2), [(65, 75), (60, 75)]),

Event(Key(Time 24, 5, StreamID 3, T ime 2), [(65, 80), (65, 75)]),

Event(Key(Time 33, 6, StreamID 3, T ime 2), [(70, 80), (65, 80)]),

Event(Key(Time 34, 7, StreamID 3, T ime 2), [(70, 65), (70, 80)]),

Event(Key(Time 43, 8, StreamID 3, T ime 2), [(75, 65), (70, 65)]),

Event(Key(Time 44, 9, StreamID 3, T ime 2), [(75, 85), (75, 65)])]

: (int ∗ int) list EV ENT list

Chapter 3 A provenance model for streams 71

For the optimized stream ancestor function:

(∗ input streams recorded∗)
− val S1m = [Key(Time 1, 1, StreamID 1, T ime 0),

Key(Time 11, 2, StreamID 1, T ime 0),

Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

− val S2m = [Key(Time 2, 1, StreamID 2, T ime 0),

Key(Time 12, 2, StreamID 2, T ime 0),

Key(Time 22, 3, StreamID 2, T ime 0),

Key(Time 32, 4, StreamID 2, T ime 0),

Key(Time 42, 5, StreamID 2, T ime 0)] : KEY list

(∗ execute the stream ancestor function ∗)
− JoinTWOA(Time(10), T ime(10), S1m, S2m) (Key(Time 44, 9, StreamID 3, T ime 2));

(∗ ancestor events ∗)
> [Key(Time 41, 5, StreamID 1, T ime 0),

Key(Time 32, 4, StreamID 2, T ime 0),

Key(Time 42, 5, StreamID 2, T ime 0)] : KEY

JoinTW

55

t:160

65

70

75

t:11

t:21

t:31

t:41

t:4t:33t:34t:43t:44

(75,85)

(75,65)

Reverse mapping by JoinTWOA

Scope range (w1) between (t:44 – d:2)

 and (t:44 – d:2 – w:10)

70

75

80

65

85

t:12

t:22

t:32

t:42

t:2

(75,65)

(70,65)

(70,65)

(70,80)

(70,80)

(65,80)

(65,80)

(65,75)

(65,75)

(60,75)

(60,75)

(60,70)

(60,70)

(55,70)
(55,70)

t:13t:14t:23t:24

Scope range (w2) between (t:44 – d:2)

 and (t:44 – d:2 – w:10)

Figure 3.32: Example processing flow of a time-window join operation and its SAF

72 Chapter 3 A provenance model for streams

3.4.7 The stream ancestor function for a length-window join operation

Stream ancestor function: Optimized SAF for a length-window join
- JoinLWOA(l1, l2, S1m, S2m)
Let Key be a key of an output stream event (Key(t, n, sid, d)) of type KEY
Let S1m, S2m be lists of input event keys - S1m = Trim(S1) and S2m = Trim(S2)
Let l1, l2 be the size of the length windows
The optimized stream ancestor function for a length-window join can be defined as:

(∗ fn : int ∗ int ∗ KEY list ∗ KEY list − > KEY − > KEY list ∗)
fun JoinLWOA(l1, l2, S1m, S2m) key =
let

val ub1 = upperBoundA(key, S1m)
val lb1 = (ub1− l1) + 1
val ub2 = upperBoundA(key, S2m)
val lb2 = (ub2− l2) + 1

in
NScopeA(ub1, lb1, S1m) @ NScopeA(ub2, lb2, S2m)

end

(∗ fn : KEY ∗ KEY list − > int ∗)
fun upperBoundA((Key(t, , , d)), Sm) = getMaxSeqNoA(0, timeFilterA(t−−d, Sm))

(∗ fn : int ∗ KEY list − > int ∗)
fun getMaxSeqNoA(mx, []) = mx
| getMaxSeqNoA(mx, ((Key(, n, ,)) :: B)) =

if(n > mx) then getMaxSeqNoA(n,B)
else getMaxSeqNoA(mx,B);

(∗ fn : TIME ∗ KEY list − > KEY list ∗)
fun timeFilterA(ts, []) = []
| timeFilterA(ts, ((Key(t, n, sid, d)) :: B)) =

if(ts GTE t) then (Key(t, n, sid, d)) :: timeFilterA(ts, B)
else timeFilterA(ts, B);

Figure 3.33: The definition of the optimized SAF for a length-window join operation

As illustrated in Figure 3.33, we define the optimized stream ancestor function for a

length-window join as a function that takes two lists of input event keys (S1m and S2m)

and the size of the length windows (l1 and l2) as the function parameters. The function

takes an event key of the output event of a length-window join operation as an input

and returns a set of event keys of the input events in the extent of the length windows at

the time that the output is produced. This optimized stream ancestor function identifies

all possible event keys of the input events that are involved in the processing of the join

operation for each output event. In addition, getMaxSeqNoA is an internal function

responsible for getting the largest or the maximum sequence number in a given key

list (a data buffer B). Another internal function is timeFilterA which is used to filter

Chapter 3 A provenance model for streams 73

elements of a key list. This function only returns a list of elements (event keys) that

their timestamp are less than or equal to a specific time (ts). The upperBoundA is used

by the optimized stream ancestor function to determine the upper bound of the past

data window.

An example output produced by the optimized stream ancestor function is presented

as follows. We first present the output for the length-window join and then the out-

put for the optimized stream ancestor function. Suppose that the operation takes

parameters: l1 and l2 = 2, J = cartesianJoin (function), nj = 1 and sn = 1, and

the key of a particular output event used as the input for the ancestor function is

(Key(Time 44, 9, StreamID 3, T ime 1)). Figure 3.34 illustrates the processing flow for

this example.

(∗ input streams ∗)
− val S1 = [Event(Key(Time 1, 1, StreamID 1, T ime 0), 55),

Event(Key(Time 11, 2, StreamID 1, T ime 0), 60),

Event(Key(Time 21, 3, StreamID 1, T ime 0), 65),

Event(Key(Time 31, 4, StreamID 1, T ime 0), 70),

Event(Key(Time 41, 5, StreamID 1, T ime 0), 75)] : int EV ENT list;

− val S2 = [Event(Key(Time 2, 1, StreamID 2, T ime 0), 70),

Event(Key(Time 12, 2, StreamID 2, T ime 0), 75),

Event(Key(Time 22, 3, StreamID 2, T ime 0), 80),

Event(Key(Time 32, 4, StreamID 2, T ime 0), 85),

Event(Key(Time 42, 5, StreamID 2, T ime 0), 90)] : int EV ENT list;

(∗ execute the operation ∗)
(∗ JoinLW (l1, l2, J, nj, sn, sid)) : int ∗ int

∗ (′a list ∗ ′a list ∗ ′b list → ′′c list) ∗ int ∗ int ∗ STREAMID

→ ′a EV ENT list → ′a EV ENT list → ′′c list EV ENT list ∗)
− JoinLW (2, 2, cartesianJoin, 1, 1, StreamID(3)) S1 S2;

(∗ output stream ∗)
> [Event(Key(Time 3, 1, StreamID 3, T ime 1), [(55, 70)]),

Event(Key(Time 12, 2, StreamID 3, T ime 1), [(60, 70), (55, 70)]),

Event(Key(Time 13, 3, StreamID 3, T ime 1), [(60, 75), (60, 70), (55, 75), (55, 70)]),

Event(Key(Time 22, 4, StreamID 3, T ime 1), [(65, 75), (65, 70), (60, 75), (60, 70)]),

Event(Key(Time 23, 5, StreamID 3, T ime 1), [(65, 80), (65, 75), (60, 80), (60, 75)]),

Event(Key(Time 32, 6, StreamID 3, T ime 1), [(70, 80), (70, 75), (65, 80), (65, 75)]),

Event(Key(Time 33, 7, StreamID 3, T ime 1), [(70, 85), (70, 80), (65, 85), (65, 80)]),

Event(Key(Time 42, 8, StreamID 3, T ime 1), [(75, 85), (75, 80), (70, 85), (70, 80)]),

Event(Key(Time 43, 9, StreamID 3, T ime 1), [(75, 90), (75, 85), (70, 90), (70, 85)])]

: (int ∗ int) list EV ENT list

74 Chapter 3 A provenance model for streams

For the optimized stream ancestor function:

(∗ input streams recorded∗)
− val S1m = [Key(Time 1, 1, StreamID 1, T ime 0),

Key(Time 11, 2, StreamID 1, T ime 0),

Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

− val S2m = [Key(Time 2, 1, StreamID 2, T ime 0),

Key(Time 12, 2, StreamID 2, T ime 0),

Key(Time 22, 3, StreamID 2, T ime 0),

Key(Time 32, 4, StreamID 2, T ime 0),

Key(Time 42, 5, StreamID 2, T ime 0)] : KEY list

(∗ execute the stream ancestor function ∗)
− JoinLWOA(2, 2, S1m, S2m) (Key(Time 43, 9, StreamID 3, T ime 1));

(∗ ancestor events ∗)
> [Key(Time 31, 4, StreamID 1, T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0),

Key(Time 32, 4, StreamID 2, T ime 0),

Key(Time 42, 5, StreamID 2, T ime 0)] : KEY

JoinTW

55

t:160

65

70

75

t:11

t:21

t:31

t:41

t:4t:33t:34t:43t:44

(75,85)

(75,65)

Reverse mapping by JoinTWOA

Scope range (w1) between (t:44 – d:2)

 and (t:44 – d:2 – w:10)

70

75

80

65

85

t:12

t:22

t:32

t:42

t:2

(75,65)

(70,65)

(70,65)

(70,80)

(70,80)

(65,80)

(65,80)

(65,75)

(65,75)

(60,75)

(60,75)

(60,70)

(60,70)

(55,70)
(55,70)

t:13t:14t:23t:24

Scope range (w2) between (t:44 – d:2)

 and (t:44 – d:2 – w:10)

JoinLW

55

n:160

65

70

75

n:2

n:3

n:4

n:5

n:1n:6n:7n:8n:9

(75,90)

(75,85)

(70,90)

(70,85)

Reverse mapping by JoinLWOA

70

75

80

85

90

n:2

n:3

n:4

n:5

n:1

(75,85)

(75,80)

(70,85)

(70,80)

(70,85)

(70,80)

(65,85)

(65,80)

(70,80)

(70,75)

(65,80)

(65,75)

(65,80)

(65,75)

(60,80)

(60,75)

(65,75)

(65,70)

(60,75)

(60,70)

(60,75)

(60,70)

(55,75)

(55,70)

(60,70)

(55,70)
(55,70)

n:2n:3n:4n:5

Scope range (l2) between (n:5) and (n:5 – l:2) + 1

Scope range (l1) between (n:5) and (n:5 – l:2) + 1

Figure 3.34: Example processing flow of a length-window join operation and its SAF

Chapter 3 A provenance model for streams 75

3.5 Summary

We began this chapter by presenting a stream provenance model which describes the fun-

damental concepts of provenance representation in stream processing systems. Several

provenance related issues, for example the basic assumption for fine-grained provenance

tracking in stream processing systems, how provenance of individual stream elements

can be captured and how dependencies between stream elements can be expressed, were

discussed. Based on the stream provenance model, we defined the provenance archi-

tecture for stream processing systems. With a logical provenance architecture and a

generic fine-grained provenance data model, we can describe the structure of our stream

provenance system and also demonstrate the structure of information used to represent

the provenance of individual stream processing results.

After fully specifying the stream provenance model, we presented the programmatic

specifications for stream operations in the form of recursive functions which were used

to describe the processing logic of stream operations. These specifications allow us to

precisely describe how the output elements for each stream operation are produced in

terms of input elements. We then introduced the stream ancestor functions for stream

operations. By using the stream ancestor function defined for each stream operation,

dependency relationships between input and output stream events of a stream operations

can be explained.

The contributions of this chapter were two fold: firstly, a fine-grained provenance model

for stream processing systems and secondly, a set of primitive stream ancestor functions.

The first contribution is supported by defining the provenance data model for streams.

We not only presented the provenance model which allows the provenance of individual

stream elements to be captured but also a provenance architecture for stream processing

systems that is designed to comply with the provenance model. This logical provenance

architecture allow us to describe internal components in our stream provenance system

and interactions between these components in detail. To support the second contribu-

tion the programmatic specifications of stream ancestor functions for primitive stream

operations were defined by using Standard ML. We demonstrated the use of reverse

mapping techniques (in stream ancestor functions) to identify input stream elements

that are involved in the production of a particular output stream element. Using a

simple example we showed how stream ancestor functions work in practice. In the next

chapter, we will demonstrate how to utilize stream ancestor functions together in order

to address fine-grained provenance queries in stream processing systems.

Chapter 4

Provenance queries for streams

In the previous chapter, we presented the specifications of stream ancestor functions

that can explicitly express dependency relationships between input and output elements

of a stream operation. To provide a provenance query capability, or more particularly

a mechanism that can capture the complete provenance of individual stream elements

(all intermediate stream elements involved in the production of each individual stream

element), it is necessary to express all input-output dependencies for all stream opera-

tions in a stream processing system. This chapter presents a solution that utilizes stream

ancestor functions in order to address the fine-grained provenance queries in stream pro-

cessing systems. The provenance query mechanism which allows for individual stream

elements to be traced and computations to be verified at all processing steps is described.

We demonstrate how precise our provenance query mechanism is by establishing that

query results returned by our query mechanism can be used to reproduce the original

stream processing results using a replay execution method. In addition, we provide a

case study to demonstrate how the provenance query and the replay execution method

work in practice.

The provenance query solution presented consists of two main contributions:

1. A stream provenance query mechanism which utilizes stream ancestor functions

in order to capture the provenance of individual stream elements.

2. A replay execution method used to validate the accuracy of our provenance query

mechanism. We also present a specification of the replay execution functionality.

The rest of the chapter is organized as follows. It begins by describing the concept of

fine-grained provenance query for streams and how to compose stream ancestor func-

tions together in order to obtain the provenance of stream processing results. Next, a

replay execution method which utilizes provenance information (provenance assertions)

77

78 Chapter 4 Provenance queries for streams

recorded to address stream reproduction is presented. We then demonstrate an example

case study for provenance queries. Finally, the chapter is summarized.

4.1 Fine-grained provenance queries

4.1.1 Composition of stream ancestor functions

This section describes how stream ancestor functions are exploited to address fine-

grained provenance tracking in stream processing systems. To utilize stream ances-

tor functions, it is necessary to compose the stream ancestor functions for all stream

operations in a stream system together. This concept has been inspired by function

composition - a mechanism that combines simple functions to build more complicated

ones. Like the usual composition of functions in mathematics, two or more functions

can be composed in a new function that uses the output of one function as the input of

another. For example, the functions f : X → Y and g : Y → Z can be composed by

applying f to an argument X to obtain Y = f(X) and then applying g to Y to obtain

Z = g(Y). This composition can be described by using the notation: g ◦ f : X → Z.

The concept of function composition can be applied to the stream operations and their

stream ancestor functions. In this context, the processing flow of a stream processing sys-

tem is represented as a set of interconnected nodes where each node represents a stream

operation. By composing all nodes (stream operations), the output of the stream pro-

cessing system can be retrieved. To trace back a particular output stream event produced

by a stream processing system, it is necessary to compose stream ancestor functions -

reverse mapping functions for stream operations. For each stream ancestor function we

can identify input events (provenance assertions that represent stream events) involved

in the processing of a particular output stream event. By composing all stream ancestor

functions in a stream processing system, we can capture the complete provenance of an

individual stream element. This satisfies our primary use-case requirement regarding

the tracking of the provenance of individual stream elements.

To demonstrate the concept of how to compose stream ancestor functions together, an

example processing flow of a stream processing system is presented in Figure 4.1. The

example processing flow (forward functions) begins with input events fed into a stream

processing system. The first operation, the input-driven time window (TW), receives

the input events and generates each output event from the most recent input events over

20 time units. Then, the event is sent to the map operation (Map) that is responsible

for computing average values (using avg function). Finally, the event is submitted to the

filter operation (Filter) in order to filter out events that do not meet the filter condition

(filterCond - the condition of event value greater than or equal to 60).

Figure 4.1(a) illustrates an example of processing flow in a stream processing system.

Chapter 4 Provenance queries for streams 79

TW Map Filter

S1 S2 S3 S4

TWOA MapOA FilterOA

S1m S2m S3m

(a) Stream operations (forward functions)

(b) Stream ancestor functions (reverse functions)

Figure 4.1: An example of the composition of stream ancestor functions

In this example, the processing flow is constructed by composing stream operations in-

cluding input-driven time window (TW), Map and Filter. For each operation input and

output streams are labeled with unique IDs. For example, S1 and S2 are the input and

output streams of the time window operation (TW). The composition of these stream

operations to obtain the output stream S4 can be demonstrated as follows.

The input stream (S1) used in this example:

(∗ input streams S1 ∗)
− val S1 = [Event(Key(Time 1, 1, StreamID 1, T ime 0), 58),

Event(Key(Time 11, 2, StreamID 1, T ime 0), 65),

Event(Key(Time 21, 3, StreamID 1, T ime 0), 70),

Event(Key(Time 31, 4, StreamID 1, T ime 0), 75),

Event(Key(Time 41, 5, StreamID 1, T ime 0), 72)] : int EV ENT list;

The predicates (filterCond) used by the filter operation and the input functions (avg)

for the map operation:

(∗ fn : int − > bool ∗)
fun filterCond(e) = (e >= 60)

(∗ fn : int ∗ int − > int list − > int ∗)
fun avg(B : int, cnt : int) [] = round(real(B) / real(cnt))

| avg(B : int, cnt : int) (e :: E) = avg(B + e, cnt + 1) E;

80 Chapter 4 Provenance queries for streams

The output stream (S4) can be produced by composing the stream operations as follows:

(∗ fn : int EV ENT list − > int EV ENT list ∗)
− val FwdFunction = Filter(filterCond, 1, StreamID(4))

o Map(avg(0, 0), StreamID(3))

o TW (Time(20), [], StreamID(2));

(∗ execute the composed stream operations ∗)
− FwdFunction S1;

(∗ the output stream (S4) ∗)
> [Event(Key(Time 14, 1, StreamID 4, T ime 1), 62),

Event(Key(Time 24, 2, StreamID 4, T ime 1), 64),

Event(Key(Time 34, 3, StreamID 4, T ime 1), 70),

Event(Key(Time 44, 4, StreamID 4, T ime 1), 72)] : int EV ENT list

To capture the provenance of the example processing flow, stream ancestor functions

are composed as illustrated in Figure 4.1(b). The stream ancestor functions composed

include FilterOA, MapOA and TWOA. In addition, the information required for the

processing of the optimized stream ancestor functions is also presented in Figure 4.1(b).

Provenance assertions - representations of individual stream events - which contain only

event keys need to be stored in a provenance store. These provenance assertions include

S1m (S1m = Trim(S1)), S2m (S2m = Trim(S2)) and S3m (S3m = Trim(S3)). By

passing the provenance assertions (event keys) of output events from the output stream

S4 to the composed stream ancestor functions, a set of provenance assertions (or ances-

tor assertions) from S1 can be identified. The composition of stream ancestor functions

can be demonstrated as follows.

(∗ compose the stream ancestor functions ∗)
− val ancList = [mapf(TWOA(Time(20), S1m)),map(MapOA(S1m))

,map(FilterOA(S3m))];

(∗ fn : KEY list − > KEY list ∗)
− val RevFunction = AncFun(ancList);

(∗ utility functions for the composition of stream ancestor functions ∗)

(∗ fn : (′a − > ′a) list − > ′a − > ′a ∗)
fun AncFun [f] = f

| fun AncFun (f :: FL) = f o AncFun FL;

(∗ fn : (′a − > KEY list) − > ′a list − > KEY list ∗)
val mapf = fn(f) ⇒ flat o map(f);

Chapter 4 Provenance queries for streams 81

(∗ fn : KEY list list − > KEY list ∗)
val flat = remdupl o concat;

(∗ fn : ′′a list − > ′′a list ∗)
fun remdupl [] = []

| remdupl [x] = [x]

| remdupl (x :: xs) = if mem xs x then remdupl xs

else x :: remdupl xs;

(∗ fn : ′′a list − > ′′a − > bool ∗)
fun mem [] a = false

| mem (x :: xs) a = a = x orelse mem xs a;

(∗ fn : KEY list list − > KEY list ∗)
fun concat [] = []

| concat ((x : KEY list) :: list) = x @ (concat list);

The example described above shows the straightforward case of the composition of

stream ancestor functions. We compose the stream ancestor functions by passing a

list of stream ancestor functions (ancList) to the function AncFun that is responsible

for the recursive composition of all stream ancestor functions in the list. Note that map

is the SML function used for applying a stream ancestor function to all elements in the

results of the predecessor stream ancestor function. It is different from Map operation

that we have defined as a stream operation in the previous chapter which applies an

input function to the content of stream events only.

Suppose that we would like to identify which source events in S1 contributed to the

output events in S4. We can pass the provenance assertions (event keys) of these output

events to the composed stream ancestor functions RevFunction. Figure 4.2 demon-

strates the reverse mapping process of the composition of stream ancestor functions in

our example. The output of the composed stream ancestor function can be shown as

follows:

(∗execute the composed ancestor functions∗)
− RevFunction [Key(Time 34, 3, StreamID 4, T ime 1),

Key(Time 44, 4, StreamID 4, T ime 1)];

(∗the output of the composed stream ancestor functions∗)
> [Key(Time 11, 2, StreamID 1, T ime 0),

Key(Time 21, 3, StreamID 1, T ime 0),

Key(Time 31, 4, StreamID 1, , T ime 0),

Key(Time 41, 5, StreamID 1, T ime 0)] : KEY list

82 Chapter 4 Provenance queries for streams

TW

58

t:1

65707572

t:11t:21t:31t:41

t:2

72,

75,

70

t:12t:22t:32t:42

75,

70,

65

70,

65,

58

65,

58
58

Map Filter

58

t:3

62647072

t:13t:23t:33t:43

62647072

t:14t:24t:34t:44

FilterOA (t:34 – d:1)FilterOA (t:44 – d:1)

MapOA (t:43 – d:1) MapOA (t:33 – d:1)

 TWOA t ≤ (t:32 – d:1)

 and t ≥ (t:32 – d:1 – w:20)

 TWOA t ≤ (t:42 – d:1)

 and t ≥ (t:42 – d:1 – w:20)

S1 S2 S3 S4

TW

58

t:1

65707572

t:11t:21t:31t:41

t:2

72,

75,

70

t:12t:22t:32t:42

75,

70,

65

70,

65,

58

65,

58
58

Map Filter

58

t:3

62647072

t:13t:23t:33t:43

62647072

t:14t:24t:34t:44

FilterOA (t:34 – d:1)FilterOA (t:44 – d:1)

MapOA (t:43 – d:1) MapOA (t:33 – d:1)

S1 S2 S3 S4

Query scope (the provenance query is terminated at StreamID 2 - S2)

Figure 4.2: Mapping process of the composition of stream ancestor functions

4.1.2 Algorithm for a fine-grained provenance query

As demonstrated in the previous section, stream ancestor functions can be statically

composed and then the provenance of individual stream elements can be retrieved by

using a set of predefined stream ancestor functions. This kind of composition is suitable

for stream-based applications or stream processing systems that have simple processing

flows such as a linear or a chain topology. However, practical, real-life stream processing

systems possess many different forms of stream topologies. In addition, there are some

stream-based applications that possess complex internal processing flows. The process-

ing flows of such stream-based applications are generally based on the current state of

stream operations (e.g. a number of stream events processed, the occurrence of some

types of stream events and the values of contents of previous stream events). It is almost

impossible to prepare or predefine stream ancestor functions at system registration time

before provenance queries are executed. Therefore, to offer provenance query capability

that can be applied to various kinds of stream processing systems, it is important that

a provenance query solution for streams satisfies two practical requirements:

1. The composition of stream ancestor functions needs to be performed dynamically

at the time that provenance queries are executed. With this requirement we can

offer a topology-independent query solution that can be used to precisely obtain

the provenance of stream processing results.

2. The provenance query solution should provide an additional technique that allows

for provenance queries to be scoped. With this requirement we can delineate

information used to answer provenance queries and also we can provide only those

pieces of information that users are particularly interested in.

To address the practical requirements mentioned above, we introduced a provenance

query algorithm that can perform fine-grained provenance queries over provenance as-

sertions of stream elements. The fundamental concept of this algorithm is that stream

ancestor functions are composed dynamically during the execution of provenance queries.

Chapter 4 Provenance queries for streams 83

The composition of stream ancestor functions, in this context, is based on the association

of stream topology information and event keys contained in each individual provenance

assertion. Using this information, our algorithm can reconstitute stream data flows by

capturing all representations of interactions - provenance assertions - that take place

between stream operations. Such data flows explicitly express data dependencies among

intermediate stream elements involved in a stream processing system’s execution and

they generally form a direct acyclic graph (DAG) - a formal provenance representation.

The composition of stream ancestor functions is performed like traversing a graph or

more particularly a DAG in reverse order on a node by node basis. Following data de-

pendencies in reverse allows us to understand how a particular stream processing result

was generated. Data dependencies among the provenance assertions of stream elements

are recursively resolved by the provenance query algorithm. This dependency resolution

process is performed continuously until reaching the final node (provenance assertions

of the first-input stream).

In addition, the provenance query algorithm also provides a mechanism that allows query

users to specify the scope of provenance queries. The scope of a provenance query is

generally used to specify which related data items should be included in the provenance

query results [94]. More concretely, in the context of stream provenance queries, we can

say that, given a particular output stream element as an input, instead of identifying

all intermediate stream elements used in the production of that output, which we refer

to as the complete provenance of that output, a scoped provenance query identifies the

subset of the complete provenance of that output that satisfy a query scope condition.

In the query algorithm, we identify the scope of a provenance query by specifying stream

IDs of data streams (targeted stream IDs) used to terminate the dependency resolution

process of the composition of stream ancestor functions. Figure 4.3 presents an example

of how a provenance query is scoped.

TW

58

t:1

65707572

t:11t:21t:31t:41

t:2

72,

75,

70

t:12t:22t:32t:42

75,

70,

65

70,

65,

58

65,

58
58

Map Filter

58

t:3

62647072

t:13t:23t:33t:43

62647072

t:14t:24t:34t:44

FilterOA (t:34 – d:1)FilterOA (t:44 – d:1)

MapOA (t:43 – d:1) MapOA (t:33 – d:1)

 TWOA t ≤ (t:32 – d:1)

 and t ≥ (t:32 – d:1 – w:20)

 TWOA t ≤ (t:42 – d:1)

 and t ≥ (t:42 – d:1 – w:20)

S1 S2 S3 S4

TW

58

t:1

65707572

t:11t:21t:31t:41

t:2

72,

75,

70

t:12t:22t:32t:42

75,

70,

65

70,

65,

58

65,

58
58

Map Filter

58

t:3

62647072

t:13t:23t:33t:43

62647072

t:14t:24t:34t:44

FilterOA (t:34 – d:1)FilterOA (t:44 – d:1)

MapOA (t:43 – d:1) MapOA (t:33 – d:1)

S1 S2 S3 S4

Query scope (the provenance query is terminated at StreamID 2 - S2)

Figure 4.3: Example of how a provenance query is scoped

As illustrated in Figure 4.3, we consider the same example used in the previous sec-

tion (Section 4.1.1). By specify the stream 2 as the targeted stream for a provenance

84 Chapter 4 Provenance queries for streams

query, we can terminate the processing of that provenance query and we can obtain

provenance query results which are event keys: Key(Time 32, 4, StreamID 2, T ime 1)

and Key(Time 42, 5, StreamID 2, T ime 1) that belong to the targeted stream 2. The

algorithm for a stream provenance query is illustrated in Figure 4.4.

Algorithm: Stream provenance query - retrieveAncestors(safList, sidList)
Let KL be a list of event keys use as an input for the query
Let safList be a look up table (list) for stream ancestor functions
Let sidList be a list of targeted stream IDs

(∗ fn : (STREAMID ∗ (KEY − > KEY list)) list ∗ STREAMID list
− > KEY list − > KEY list ∗)
fun retrieveAncestors(safList, sidList) [] = []
| retrieveAncestors(safList, sidList) KL =

composeSAF safList sidList KL []

(∗ fn : (STREAMID ∗ (KEY − > KEY list)) list
− > STREAMID list − > KEY list − > KEY list − > KEY list ∗)
fun composeSAF safList sidList [] R = remdupl R
| composeSAF safList sidList ((key as Key(, , sid,)) :: KL) R =

if member sid sidList then
composeSAF safList sidList KL ([key] @ R)

else
composeSAF safList sidList (executeSAF safList key KL) R

Figure 4.4: Algorithm for a stream provenance query

Utility functions for using with composeSAF function

(∗ fn : ′′a − > ′′a list − > bool ∗)
fun member e [] = false

| member e (e1 :: l) = (e = e1) orelse member e l;

(∗ fn : ′′a − > (′′a ∗ ′b) list − > ′b ∗)
fun assoc sid ((id, func) :: safList) =

if (sid = id) then func

else assoc sid safList;

(∗ fn : (STREAMID ∗ (KEY − > ′′a list)) list − > KEY

− > ′′a list − > ′′a list ∗)
fun executeSAF safList (key as Key(, , sid,)) B =

B @ remdupl (assoc sid safList key);

As presented in Figure 4.4, the query algorithm consists of two internal functions: re-

trieveAncestors and composeSAF functions. The retrieveAncestors is the entry-point

function that takes a list of event keys (KL), a look up table for stream ancestor functions

(safList) and a list of targeted stream IDs (sidList - stream IDs used to terminate or

Chapter 4 Provenance queries for streams 85

scope the provenance query) as input parameters and returns a set of event keys (prove-

nance assertions) which are the query results. Note that, the look up table for stream

ancestor functions is created dynamically by using information from streams, operations

and parameters tables described in Section 3.1.3 (the provenance data model). The

other function, composeSAF, is the recursive function that contains the business logic of

the provenance query. The process of the function consists of first receiving parameters

passed by the retrieveAncestors function. Then the function iterates recursively over a

list of event keys (KL) in order to execute stream ancestor functions on every input event

key. For each event key, if its stream ID is not the IDs in the stream ID list (sidList),

it will be processed by its associated stream ancestor function (using executeSAF func-

tion). Every output (event key) returned by the stream ancestor function is inserted

back to the key list KL. Finally, if there are event keys in the key list KL (meaning

there are some intermediate event keys still waiting to be processed), the composeSAF

function will be called recursively until no event keys remain in the key list KL.

4.2 Replay execution

The main concept of the replay execution method is that it utilizes provenance asser-

tions and auxiliary information (e.g. stream topology and stream operation parameters)

which are stored in a provenance store to address stream reproduction or replay exe-

cution. Our replay method is based on the assumption that for a given execution of

a stream processing system, output (or stream processing results) are generated in a

deterministic way. This means all input events that flow through a processing graph

of stream operations (stream processing flow) for a stream system are executed in the

same order and non-deterministic behavior is therefore not introduced in stream repro-

duction. In addition, our replay method does not require a full input stream as an input

for the processing of stream reproduction, instead it relies on provenance information

(both static and dynamic information) recorded during past stream execution.

To replay stream execution, our replay method takes a set of provenance assertions

representing individual stream events for a specific point of time as an input and pro-

duces replay execution output which are stream processing results originally produced

by a stream processing system. Similar to the provenance query, our replay execution

method applies the idea of function composition. As described earlier, we assume that

the processing flow of a stream processing system is represented as a set of intercon-

nected nodes and stream events flow through a directed graph of stream processing

operations. Therefore, we can derive a particular output stream event in the processing

flow by composing stream operations involved in the production of that output element.

The algorithm for the replay execution method is presented in Figures 4.5. Note that,

because the algorithm is fairly complex and it uses a lot of supporting functions (utility

functions), to concisely illustrate our algorithm, we only present some important utility

86 Chapter 4 Provenance queries for streams

functions for the replay execution algorithm. All utility functions used for the replay

execution algorithm are presented in Appendix A.

Algorithm: Replay execution - replayExec(opList1, opList2, streamLut, sidList, paList)
Let EM be an event map of type (STREAMID ∗ ′a EV ENT list) list
Let opList1 be a look up table (list) for unary stream operations
Let opList2 be a look up table (list) for binary stream operations
Let streamLut be a look up table (list) for input and output streams
Let sidList be a list of targeted stream IDs
Let paList be a list of provenance assertions (event keys) recorded

(∗ fn : (int ∗ (′a EV ENT list − > ′a list EV ENT list)) list ∗
(int ∗ (′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list))
list ∗ (STREAMID ∗ int ∗ InOut) list ∗ STREAMID list ∗ KEY list − >
(STREAMID ∗ ′a EV ENT list) list − > (STREAMID ∗ ′a EV ENT list) list ∗)

fun replayExec(opList1, opList2, streamLut, sidList, paList) [] = []
| replayExec(opList1, opList2, streamLut, sidList, paList) EM =

composeOp opList1 opList2 streamLut sidList paList EM []

(∗ fn : (int ∗ (′a EV ENT list − > ′a list EV ENT list)) list
− > (int ∗ (′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list)) list
− > (STREAMID ∗ int ∗ InOut) list − > STREAMID list − > KEY list
− > (STREAMID ∗ ′a EV ENT list) list − > (STREAMID ∗ ′a EV ENT list) list
− > (STREAMID ∗ ′a EV ENT list) list∗)

fun composeOp opList1 opList2 streamLut sidList paList [] R = remdupl R
| composeOp opList1 opList2 streamLut sidList paList ((elm as (sid,)) :: EM) R =
let
val opID = getOpID sid streamLut I
val sidin = getSID opID streamLut I
val sidout = getSID opID streamLut O

in
if member sid sidList then
composeOp opList1 opList2 streamLut sidList paList EM ([elm] @ R)

else
if containsKeys sidin (elm :: EM) then
let
val EM ′ = executeOp opList1 opList2 opID sidin sidout paList (elm :: EM);

in
composeOp opList1 opList2 streamLut sidList paList EM ′ R

end
else

composeOp opList1 opList2 streamLut sidList paList (EM @ [elm]) R
end

Figure 4.5: Algorithm for the replay execution method

Chapter 4 Provenance queries for streams 87

Utility functions for the composeOp function

datatype InOut = I | O

(∗ fn : ′′a − > (′′a ∗ int ∗ ′′b) list − > ′′b − > int ∗)
fun getOpID sidin ((sid, opid, io) :: streamLut) ioin =

if sidin = sid andalso ioin = io then opid

else getOpID sidin streamLut ioin;

(∗ fn : ′′a − > (′b ∗ ′′a ∗ ′′c) list − > ′′c − > ′b list ∗)
fun getSID opIDin [] ioin = []

| getSID opIDin ((sid, opid, io) :: streamLut) ioin =

if opIDin = opid andalso ioin = io then

sid :: (getSID opIDin streamLut ioin)

else

getSID opIDin streamLut ioin;

(∗ fn : ′′a list − > (′′a ∗ ′b) list − > bool ∗)
fun containsKeys [] HM = true

| containsKeys (k :: KL) HM =

if containsKeys1 k HM then

containsKeys KL HM

else false

(∗ fn : ′′a − > (′′a ∗ ′b) list − > bool ∗)
fun containsKeys1 k [] = false

| containsKeys1 k ((k1,) :: HM) =

(k = k1) orelse containsKeys1 k HM ;

(∗ fn : (int ∗ (′a EV ENT list − > ′a list EV ENT list)) list

− > (int ∗ (′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list)) list

− > int − > STREAMID list − > STREAMID list − > KEY list

− > (STREAMID ∗ ′a EV ENT list) list

− > (STREAMID ∗ ′a EV ENT list) list ∗)
fun executeOp opList1 opList2 opID sidin sidout paList EM =

let

val ((, eList) :: IM) = getElements sidin EM ;

val output = (executeOp1 opList1 opList2 opID sidout paList eList IM)

val EM ′ = removeElm sidin EM

in

EM ′ @ remdupl output

end

88 Chapter 4 Provenance queries for streams

As shown in Figures 4.5, a map or an associative array (EM : (STREAMID ∗
(′a EV ENT list)) list), which consists of a stream ID as a unique key and a list of

stream events as its associated value, is mainly used to store input stream events and

intermediate results. The replay execution algorithm consists of two main functions:

replayExec and composeOp. The replayExec function is the entry-point function that

takes an input map containing input stream events (EM), look up tables for stream op-

erations (opList1, opList2), a look up table for input and output streams (streamLut),

a list of target stream IDs (stream IDs used to terminate the replay execution - sidList)

and a list of provenance assertions recorded (paList) as input parameters. After tak-

ing all parameters, the function returns a result map (R) which contains output events

produced by the replay execution process. Like the provenance query algorithm, the

composeOp is the recursive function that contains the business logic of the replay exe-

cution method. The process of the function begins by receiving parameters passed by

the replayExec function. Then it iterates over the elements of an input map (EM) in

order to execute stream operations on every input stream and every input event. For

each input stream all parameters required for the processing of its associated stream op-

eration are collected (the algorithm identifies each associated stream operation by using

getOpID function). Then a stream ID of each input stream needs to be checked (using

member function). This is for collecting the final results of the replay execution. After

that, the containsKeys function is used to check whether all input streams required

for the processing of the stream operation are available (in the case of binary operation

e.g. time-window join). If the stream ID is not the IDs in the stream ID list (targeted

stream - sidList) and all required input streams are available, all events of the input

streams will be processed by its associated stream operation (using executeOp function).

Every output stream returned by the stream operation is inserted back to the input map

EM . Finally, if there are input streams in the input map EM (which means there are

some intermediate streams still waiting to be processed), the composeOp function will

be called recursively until no intermediate streams remain in the input map EM .

4.3 A case study for provenance queries

To demonstrate that our provenance solution - the stream ancestor functions and the

provenance query algorithm - is expressive enough for precisely tracking provenance in-

formation at the level of individual stream events, we use a simple synthetic processing

flow of a stream system as an example. A provenance query constructed by composing

stream ancestor functions is presented to capture the provenance of the synthetic pro-

cessing flow. The outputs of the provenance query are used as an input for our replay

execution method in order to illustrate how the replay execution method works and how

to validate query results that are produced by the provenance query. Note that, the

example Standard ML code for this case study is also provided in Appendix B.

Chapter 4 Provenance queries for streams 89

Map

TW

Filter

Map

JoinTW
1

2

4

5

6
1

3

2

4

5

3

7

MapOA

TWOA

FilterOA

MapOA

JoinTWOA

I1

I2

I3

I6

I5
I4

(a)

(b)

Stream ID

Operation ID

Stream operation

Ancestor function

TW(5000,[],5)

Map(Ceil,[2,4])

Map(Avg,6)

Filter(Pred,1,3)

JoinTW(1000,1000,

cartesian,1,1,7)

MapOA(I1)

MapOA(I5)TWOA(5000,I4)

FilterOA(I2)

JoinTWOA(1000,1000,I3,I6)

Figure 4.6: The processing flow of a stream processing system (a) vs the composition
of stream ancestor functions (b)

The synthetic processing flow of our stream processing system is presented in Figure

4.6 (a). The processing flow is constructed by composing stream operations including

Map, Filter, Sliding time window (TW) and Time window join (JoinTW). For each

operation input and output streams are labeled with unique IDs (stream identifiers).

For example, the streams 4 and 5 are the input and output streams of the sliding

time window operation (TW). In addition each stream operation is assigned a unique

operation ID. For example, the filter operation is assigned no.2 as its operation ID.

The execution of our synthetic processing flow can be explained as follows: the processing

flow begins with input events containing temperature values fed into a stream processing

system at a rate of one event every two seconds. The first operation, map operation

(Map(Ceil,[2,4])), applies the ceil function which returns the smallest following integer

to the content of every input element. The events are then multicast to two stream

operations. The filter operation (Filter(P,1,3)) is responsible for filtering out events that

do not meet the filter condition (the condition of temperature greater than 60 degrees

Fahrenheit). The time window operation (TW(5000,[],5)) is used to generate each

90 Chapter 4 Provenance queries for streams

output event from the most recent events over 5 seconds (5000 milliseconds). Output

events generated by the time window operation are then passed to another map operation

which applies the average function over the content of every input event. Finally, the

events from the filter and the map operation are joined by the time-window join operation

(JoinTW(1000,1000,cartesian,1,1,7)) and the final outputs are generated based on the

most recent events over a second. Example execution of the case study’s synthetic

processing flow is illustrated in Figure 4.7. This example execution is based on an

implementation of our stream provenance system with Esper stream engine described

in Section 6.1 (the implementation design).

Map

TW

Filter

Map

JoinTW

1

3

2

4

5

99.49 76.6993.28

100.0

77.00

94.00

100.0

77.00

94.00

100.0

77.00

94.00
[77.00,

100.0]
[77.00]

[77.00,

100.0,

94.00]

8
8
.5

0
7
7
.0

0

9
0
.3

3

(#1)(#7)(#13)
(100.0,

88.50)

(77.00,

77.00)

(94.00,

90.33)

(#2)

1

2

4

3

5

6

7

(#8)

(#14)

(#4)

(#11)

(#17)

(#3)

(#9)

(#15)

(#5)(#10)(#16)
(#

6
)

(#
1
2
)

(#
1
8
)

Stream ID

Operation ID

Stream operation

Stream event

(# -) Assertion_id

Final output events

Figure 4.7: Execution of the case study’s synthetic processing flow

assertion_id timestamp seqno stream_id delay event_content assertor content discarded

1 1279398105675 1 1 0 76.69 1
2 1279398105684 1 2 9 3 77.00
3 1279398105684 1 4 9 2 77.00
4 1279398105693 1 3 9 5 77.00
5 1279398105701 1 5 17 4 [77.00]
6 1279398105702 1 6 1 5 77.00
7 1279398107678 2 1 0 99.49 1
8 1279398107678 2 2 0 3 100.00
9 1279398107678 2 4 0 2 100.00

10 1279398107680 2 5 2 4 [77.00,100.00]
11 1279398107681 2 3 3 5 100.00
12 1279398107682 2 6 2 5 88.50
13 1279398109678 3 1 0 93.28 1
14 1279398109678 3 2 0 3 94.00
15 1279398109678 3 4 0 2 94.00
16 1279398109680 3 5 2 4 [77.00,100.00,94.00]
17 1279398109681 3 3 3 5 94.00
18 1279398109682 3 6 2 5 90.33

Figure 4.8: The assertions table

Chapter 4 Provenance queries for streams 91

As illustrated in Figure 4.7, in this example, three input stream events are fed into

the stream processing system. Figure 4.8 presents the assertions table related to the

example execution of the synthetic processing flow. As described in the previous chap-

ter (Section 3.1.3), this assertions table is used to store a set of provenance assertions

recorded during the execution of the synthetic processing flow. The assertions table

consists of the following fields: an assertion identifier (assertion id), a set of fields rep-

resenting an event key of a stream element (timestamp, seqno, stream id and delay),

event content and an assertor (operation ID of a stream operation that records prove-

nance assertions). In addition, as with the concept of our fine-grained provenance model

for streams, only contents of the first input stream, stream 1, are recorded. Note that,

for better understanding, each record presented in the assertions table can refer to an

individual stream element in Figure 4.7 by using assertion id. We also provide an extra

field for event content that is discarded during the generation of provenance assertions.

To obtain the provenance of each stream event in the processing flow, stream ancestor

functions are composed as illustrated in Figure 4.6 (b). The stream ancestor functions

composed include MapOA, FilterOA, TWOA and JoinTWOA. All stream ancestor func-

tions used in this case study are the optimized version of stream ancestor functions.

Furthermore, the provenance assertions of all intermediate streams are required to be

stored in a provenance store. For example, the stream ancestor function, FilterOA, re-

quires the provenance assertions of the input stream 2 to be stored in order to perform

provenance queries. By passing the provenance assertions of output events from the out-

put stream 7 to the composed stream ancestor functions, a set of provenance assertions

of source events (ancestor events) from stream 1 can be identified.

We now demonstrate how to perform a fine-grained provenance query in order to exactly

trace individual stream events. The fine-grained provenance query algorithm described

in section 4.1.2 is applied in order to compose all stream ancestor functions dynamically.

In Figure 4.9, the trace table, the internal table used by the provenance query algorithm

for processing the provenance query, is presented. The trace table is used to temporarily

store both query results and intermediate results produced during the execution of the

provenance query. In the trace table, the top row (index:#1) represents the event key of

the provenance assertion which is the input of the provenance query, and the last four

rows (index:#9-#12) represent the query results.

In Figure 4.10, a provenance graph related to the trace table is presented. This prove-

nance graph is used only for presentation clarity. It demonstrates how intermediate

results produced during the execution of the provenance query (stored in the trace

table) can be used to constitute a directed acyclic graph (DAG) - a core element of

provenance representation. The provenance graph is also used to describe dependency

relationships between each intermediate query result. In the provenance graph, each

node labeled with an index number represents individual records in the trace table. Be-

cause the records #9 and #10 are the same provenance assertion, they are represented

92 Chapter 4 Provenance queries for streams

with a shared node. By traversing the provenance graph in reverse, we can exactly

identify that the events from stream 1 (index:#9-#12) are the source events used in the

production of the output event from stream 7 (index:#1).

index assertion_id timestamp seqno stream_id delay trace_status

1 - 1279398109685 3 7 3 0

2 17 1279398109681 3 3 3 0

3 18 1279398109682 3 6 2 0

4 16 1279398109680 3 5 2 0

5 14 1279398109678 3 2 0 0

6 15 1279398109678 3 4 0 0

7 9 1279398107678 2 4 0 0

8 3 1279398105684 1 4 9 0

9 13 1279398109678 3 1 0 2

10 13 1279398109678 3 1 0 2

11 7 1279398107678 2 1 0 2

12 1 1279398105675 1 1 0 2

Figure 4.9: The trace table

#9/

#10

#12

JoinTWOA(1000,1000,3,6)

FilterOA(2)
MapOA(1)

MapOA(1) TWOA(5000,4)

MapOA(5)

Map(Ceil,[2,4])

TW(5000,[],5) Map(Avg,6)

JoinTW(1000,1000,cartesian,1,1,7)

Filter(Pred,1,3)

JoinTWOA(1000,1000,3,6)MapOA(1)

MapOA(1)

TWOA(5000,4)

TWOA(5000,4)

#11

#6

#7

#8

#5 #2

#1

#3#4

#1

#2

#13 #4

#5

#6

#7

Figure 4.10: The provenance graph related to the trace table

To demonstrate stream reproduction and validate provenance query results, we present

an example of replay execution. We apply the replay execution algorithm described in

Section 4.2 in order to compose all stream operations dynamically. Figure 4.11 shows

the replay table which is the internal table used by the replay execution algorithm for

processing the stream replay execution. In the replay table the top row (index:#1)

represents the provenance assertion which is the input of the replay execution, and the

last row (index:#7) represents the replay result. We also present a processing graph

related to the replay table in Figure 4.12 to describe the dependencies between each

intermediate replay result. Similar to the provenance graph, each node labeled with an

index number represents an individual record in the replay table. We start validating

the query result produced by the previous provenance query by passing the query result

(index:#1) to the replay execution algorithm. The intermediate results produced during

the processing of the replay execution algorithm are stored in the replay table. Finally,

we can derive the output event (index:#7). By comparing the output event derived from

Chapter 4 Provenance queries for streams 93

this replay execution and the event input to the previous query, we can demonstrate the

precision of our provenance query solution and also we can validate the results produced

by our fine-grained provenance query.

index assertion_id timestamp seqno stream_id delay event_content trace_status

1 13 1279398109678 3 1 0 93.28 0

2 14 1279398109678 3 2 0 94 0

3 15 1279398109678 3 4 0 94 0

4 16 1279398109680 3 5 2 [77,100,94] 0

5 17 1279398109681 3 3 3 94 0

6 18 1279398109682 3 6 2 90.33 0

7 - 1279398109685 3 7 3 (90.33,94) 2

Figure 4.11: The replay table

#9/

#10

#12

JoinTWOA(1000,1000,3,6)

FilterOA(2)
MapOA(1)

MapOA(1) TWOA(5000,4)

MapOA(5)

Map(Ceil,[2,4])

TW(5000,[],5) Map(Avg,6)

JoinTW(1000,1000,cartesian,1,1,7)

Filter(Pred,1,3)

JoinTWOA(1000,1000,3,6)MapOA(1)

MapOA(1)

TWOA(5000,4)

TWOA(5000,4)

#11

#6

#7

#8

#5 #2

#1

#3#4

#1

#2

#13 #4

#5

#6

#7

Figure 4.12: The processing graph related to the replay table

4.4 Summary

Once provenance assertions created by stream operations in a stream processing system

are stored in a central provenance repository - provenance store, a number of provenance

queries can be performed in order to determine the provenance of stream processing re-

sults. In this chapter we introduced the stream provenance query solution that resolves

dependency relationships among stream elements and provides the complete provenance

of individual stream elements (fine-grained provenance query). We provided the formal

description of the provenance query mechanism for streams through the generic prove-

nance query algorithm. In order to validate the results produced by the provenance

query mechanism and demonstrate the precision of this query mechanism, we presented

the replay execution method. Our replay execution method utilizes provenance asser-

tions and auxiliary information (including topology configuration parameters and stream

operations parameters) stored in a provenance store to derive an output stream element.

We now revisit the main contributions of this chapter: Firstly, a stream provenance query

mechanism , and secondly, a replay execution method. To support the first contribution

we presented the idea of function composition and detailed how this can be applied

94 Chapter 4 Provenance queries for streams

to our primitive stream operations and their stream ancestor functions. Based on the

concept of function composition, we identified two key practical requirements that our

provenance query mechanism needs to address: dynamic composition of stream ancestor

functions and scoped provenance queries. By addressing these requirements we can

offer a generic and topology-independent query solution which supports complex stream

manipulation operations and can be used to obtain the provenance of individual stream

element in a variety of stream processing flows. To support the second contribution,

we proposed the replay execution algorithm. We defined the core function of replay

execution method that contains business logic and also some necessary utility functions

used to support the core function. Furthermore, we demonstrated how the provenance

query works in practice and how the actual results generated by the provenance query

are validated through the use of our replay execution method by presenting an example

case study for provenance queries. Using this simple case study we can clarify how

our provenance query and replay execution method work step-by-step. In addition, the

impact of all the provenance solutions (presented in this chapter) on stream processing

system performance will be evaluated in Chapter 6.

Although we have proposed the provenance query solution for streams that can per-

form provenance tracking at the level of individual stream elements (fine-grained stream

provenance queries), there are some practical challenges related to the unique charac-

teristics of data streams that are required to be addressed. One of the most significant

practical challenges is the excessive storage requirement resulting from the persistence

of provenance information for all intermediate stream elements. In the next chapter, a

stream-specific provenance query mechanism that can perform provenance queries on-

the-fly over streams of provenance assertions will be presented. This query mechanism

exploits our stream ancestor functions and composes them together on-the-fly without

requiring provenance assertions to be stored persistently. With the combination of both

provenance query solutions we can properly tackle the problem of fine-grained prove-

nance tracking in stream processing systems.

Chapter 5

Stream-specific provenance query

In the previous two chapters, although we have proposed a provenance model and prove-

nance query solution for streams that can be used to track the provenance of individual

stream elements, there are a number of practical challenges related to the unique char-

acteristics of data streams that we still need to address. One of the most significant

requirements that stream processing systems need to satisfy is that they must be able to

process stream events on-the-fly without any requirement to store them. To address such

a practical challenge we introduce a novel stream-specific provenance query mechanism

in this chapter. The contribution of this chapter is a stream-specific provenance query

mechanism that enables a collection of provenance queries to be performed on-the-fly

over streams of provenance assertions without requiring the provenance assertions to

be stored persistently in a provenance store. This mechanism is based on the idea of

using the provenance service as a stream component. We also identify the important

characteristics of this stream-specific provenance query mechanism. In addition, the

specifications of the stream ancestor functions that are designed specifically to work

with an on-the-fly provenance query mechanism are also defined.

The rest of the chapter is organized as follows. First, the fundamental concept of our

stream-specific provenance query solution is detailed. After the stream-specific prove-

nance query solution is conceptually introduced, the specifications of the new version

of the stream ancestor functions designed for stream-specific provenance queries are

described. This is followed by the presentation of an on-the-fly provenance query algo-

rithm. Finally, an example case study for on-the-fly provenance queries is demonstrated

and the chapter is concluded.

95

96 Chapter 5 Stream-specific provenance query

5.1 On-the-fly provenance query mechanism

We now present the fundamental concept of an on-the-fly provenance query mechanism

that is the complementary solution for our fine-grained provenance tracking in stream

processing systems. The purpose of the introduction of on-the-fly provenance queries is

to present a novel stream-specific query solution that can address the practical require-

ment pertaining to “Keep the streaming data moving” rule [120] or more particularly to

process incoming stream elements without any requirement to store them in a persistent

storage. This mechanism is not intended to replace or supersede the existing “persistent

provenance” mechanism that we presented in Chapters 3 and 4 because the persistent

provenance mechanism offers several advantages.

• The persistent provenance mechanism allows us to track the provenance of indi-

vidual stream elements and perform provenance queries at whatever time we need.

Because provenance assertions are stored persistently in a provenance store which

possesses immutable characteristics (it guarantees that provenance assertions that

have been previously recorded will not be overwritten, deleted or modified), we

can perform provenance queries multiple times after provenance assertions are

recorded.

• With the persistence of provenance assertions, we can utilize the provenance asser-

tions together with auxiliary information (topology information and configuration

parameters) stored in a provenance store in order to reproduce or replay stream

events if required. The reproduction capability enables the output of stream pro-

cessing systems to be validated and processing steps can be checked and verified.

With the combination of persistent provenance query and on-the-fly provenance query

mechanisms, we can offer all-round provenance query solution that can properly address

the problem of fine-grained provenance tracking in stream processing systems.

5.1.1 Basic assumptions for on-the-fly provenance query

Before outlining the concept of on-the-fly provenance query in detail, the following is

the basic assumption for our on-the-fly provenance query mechanism.

• The transmission order of provenance assertions streamed to a provenance service

must be preserved. This order-preserving property allows for our stream-specific

query mechanism to operate both time-based and order-based operations over

streams of provenance assertions. It also allows us to control the size of data

buffer used for the processing of on-the-fly provenance queries.

Chapter 5 Stream-specific provenance query 97

• Each individual stream element is associated with one or more properties. A prop-

erty in our context is a piece of information describing a quality, characteristic or

attribute that belongs to an individual stream element. Properties can range from

a simple property (e.g. a single integer value) to a complex property (e.g. a tree,

a graph or a collection of data items). For example, in a stream processing sys-

tem that receives measurements from environmental sensors, a property associated

with each stream element (raw sensor measurement) could be a sensor identifier

or a sensor location (map coordinate).

• Static provenance information (e.g. stream topology and stream operation pa-

rameters) is only the part of our provenance model required to be stored in a

provenance store (a compact provenance store demonstrated in Figure 3.5) for

supporting on-the-fly provenance query processing. No persistent storage space is

required for dynamic provenance information and provenance-related properties

due to the fact that properties are computed on-the-fly over streams of prove-

nance assertions (dynamic provenance information) without any requirement to

store them persistently (we will discuss how on-the-fly provenance query works in

detail in the next section).

• Storage requirements on properties (the amount of temporary memory space) de-

pend on types of provenance-related properties utilized for on-the-fly query pro-

cessing. For example, if a property used is a sensor id which is represented by

an integer value, the storage requirement is only 4 bytes per property. On the

other hand, if a sequence of processing steps (processing paths) used to generate

an output event is utilized as a property, because a stream id for each processing

step (represented by an integer value) is required to be accumulated to obtain the

final result, so the storage requirement for this property can be calculated as the

storage size for each stream id (4 bytes) multiplied by the number of processing

steps used. In addition, in the case that a large number of properties is required

to be temporarily stored for processing, the idea of using a unique identifier as a

reference to a collection of properties for each individual stream element can be

applied to reduce the amount of storage space required to temporarily store a large

number of properties during the processing of on-the-fly provenance queries.

5.1.2 Fundamental concept of on-the-fly provenance query

Our on-the-fly provenance query mechanism adopts concepts from the persistent prove-

nance query mechanism presented in the previous chapter. We apply the idea of function

composition in order to utilize a stream ancestor function defined for each stream oper-

ation. All stream ancestor functions of stream operations in a stream processing system

are dynamically composed and then their execution is interleaved continuously with

the execution of the stream processing system. We extend the concept of the persistent

98 Chapter 5 Stream-specific provenance query

provenance mechanism by adding stream-specific techniques designed specifically for ad-

dressing on-the-fly stream provenance queries. Our key concept is inspired by the idea

of property propagation or annotation propagation. Based on the assumption that each

individual stream element is associated with one or more properties, we can obtain the

provenance of each individual output element by propagating provenance-related prop-

erties from the originating source (the stream elements of the first input streams) to the

final destination (the stream element of the final output stream) of a stream processing

system.

1

2

3

JoinTW

1

Map

2

(C)

(B)

(A)

Stream ID

Operation ID

Stream operation

Stream event

(-) Property propagated

(F)

(E)

(D)

4

#1

#5

#9

#2

#6

#10

#3#7#11 #4#8#12

- Assertion_id

Provenance store

Streams of provenance

assertions

Assertions table

assertion_id timestamp seqno stream_id delay event_content assertor property

1 1279398105675 1 1 0 10 1 A
2 1279398105680 1 2 0 12 1 D
3 1279398105684 1 3 4 - 2 -
4 1279398105689 1 4 5 - 3 -
5 1279398106677 2 1 0 14 1 B
6 1279398106680 2 2 0 13 1 E
7 1279398106683 2 3 3 - 2 -
8 1279398106685 2 4 2 - 3 -
9 1279398107675 3 1 0 16 1 C

10 1279398107680 3 2 0 14 1 F
11 1279398107681 3 3 1 - 2 -
12 1279398107683 3 4 2 - 3 -

Figure 5.1: An example of provenance-related property computed by the persistent
provenance mechanism

To clearly describe the idea of property propagation, we first present an example of how

we can compute provenance-related properties by using our existing persistent prove-

nance mechanism, as illustrated in Figure 5.1. Suppose that in a stream system that

receives measurements from environmental sensors, one of properties associated with

each input stream event is the coverage area of each sensor (area A, B, C and so on).

To determine what the coverage areas of sensors used as sources of the input events

involved in the production of a particular output event are (or to capture provenance-

Chapter 5 Stream-specific provenance query 99

related properties) in the persistent provenance mechanism, all provenance assertions

for individual stream events together with their associated properties need to be stored

persistently in a provenance store (using assertions table). An additional field (property)

designed specifically for storing property information is required to be created. As in

the example shown in Figure 5.1, to capture provenance-related properties of the out-

put stream event (assertion #4), we need to perform a provenance query to obtain the

provenance trail of that output event which consists of the provenance assertions of

stream events id #3,#2 and #1, and finally the coverage area A and D (properties)

from the assertions #2 and #1 can be identified as the query answer. As shown in

this example, due to the fact that several stream processing systems do not have mass

storage, property computing using the persistent provenance mechanism, that requires

the persistence of all provenance assertions with an extra field for property computing,

potentially causes a storage burden problem.

To overcome such a storage problem, we introduce an alternative approach where prop-

erties are computed on-the-fly, without any requirement to store provenance assertions

persistently, by using accumulators. In this approach, we assume that each individual

stream element contains a provenance-related property in its accumulator - a field used to

accumulate property computing results. For each stream operation, provenance-related

properties are computed and propagated automatically from input streams (ancestor

streams) to output streams (descendant streams) based on input-output dependency

relationships between stream elements. Each intermediate result produced by the pro-

cessing of provenance-related properties is accumulated and temporarily stored in the

accumulator field of intermediate stream elements. The processing of property propa-

gation is performed continuously until reaching the final stream operation of a stream

processing flow. Figure 5.2 illustrates an example of our property propagation approach

in which properties are propagated through a stream processing flow.

In the example (illustrated in Figure 5.2), provenance-related properties are propagated

from the stream elements of the first input streams (stream 1 and stream 2) to the

stream element of the final output stream (stream 4). As shown in this example, there

is no storage space required for recording provenance assertions because we compute

provenance-related properties on-the-fly and accumulate them for further processing in

accumulators. By using this property propagation approach, we can derive the same

provenance-related properties as the persistent provenance mechanism for the output

stream event (assertion #4) which are the coverage area A and D. However, it is im-

portant to note that we do not try to propagate provenance-related properties within

a stream processing system layer because this would require the modification of the in-

ternal processing of stream processing operations, but instead provenance-related prop-

erties are computed and propagated through the use of provenance assertions inside a

provenance service.

100 Chapter 5 Stream-specific provenance query

1

2

3

JoinTW

1

Map

2

(C)

(B)

(A)

(CF) (BE) (AD)

Stream ID

Operation ID

Stream operation

Stream event

(-) Property propagated

(F)

(E)

(D)

4

(CF) (BE) (AD)

Figure 5.2: An example of property propagation in a stream processing system

The details of the on-the-fly provenance query mechanism are illustrated in Figure 5.3.

The figure shows the internal processing of the on-the-fly provenance query which de-

scribes the dynamic execution of the on-the-fly provenance query and how the prove-

nance query mechanism works inside the provenance service. Note that we use the same

stream processing flow (stream topology) presented in the property propagation example

(Figure 5.2).

Our on-the-fly provenance query mechanism is based on the idea of utilizing the prove-

nance service as a stream component. The execution begins with a provenance ser-

vice receiving streams of provenance assertions (AS) generated by stream operations

in a stream processing system. Each provenance assertion is detected by an assertion

separation unit. The assertion separation unit (ASU) is a component used to detect

provenance assertions for a particular stream, create an extra field for storing property

information (a property field used as a property accumulator) and direct the detected

provenance assertions to a stream ancestor function that they are associated with. In

the case that arrival assertions are provenance assertions of the first-input event - stream

events that enter a stream processing system from data sources and are first processed

by stream processing operations, it will be sent to a property computing unit (PCU) first

in order to extract provenance-related properties. After that each individual provenance

assertion is computed by its associated stream ancestor function. The stream ancestor

function (SAF) used in our on-the-fly provenance query is the new version of the orig-

inal stream ancestor function - called a property stream ancestor function (PSAF). It

receives stream elements from both an assertion stream (AS) and result streams (RS)

Chapter 5 Stream-specific provenance query 101

Property

Computing

JoinTWpsaf

Mappsaf

Property

Computing

Property

Computing

Property

Computing

Stream of provenance

assertions

AS1

AS2

AS3

AS4

PS3

PS4

RS1

RS2

RS3

RS4

Sid = 1

Sid = 2

Sid = 3

Sid = 4

Stream ancestor function

Property computing unit

Assertion separation unit

Figure 5.3: An internal process of on-the-fly provenance query mechanism

- the output from the previous step of property propagation - as an input and then it

produces an output element belonging to a property stream (PS). Not only is the stream

ancestor function for on-the-fly provenance queries used to identify the ancestors of a

particular provenance assertion, it is also used to extract provenance-related proper-

ties from the ancestor provenance assertions (elements from RS). The output generated

from the stream ancestor function is fed into a property computing unit in order to

compute property propagation. Once the property propagation is processed, an output

provenance assertion containing a new property is produced as an element of a result

stream (RS). This process of on-the-fly provenance queries is executed continuously until

it reaches the final stream ancestor function that executes provenance assertions of the

final output stream. The process of how provenance-related properties are propagated

inside a provenance service is demonstrated in Figure 5.4

102 Chapter 5 Stream-specific provenance query

JoinTWpsaf
Property

Computing

Property

Computing

Property

Computing

AS1

PS3

RS1

RS2

Sid = 1

Sid = 2

Sid = 3

keyAS1 A

keyAS2 D

AS2

AS3

keyAS3 A,D

RS3

keyAS3 AD

Stream ancestor function

Property computing unit

Assertion separation unit

Event key Prop

Provenance assertion

keyAS1 -

keyAS2 -

keyAS3 -

Figure 5.4: An example of how properties are propagated inside a provenance service

As illustrated in Figure 5.4, an extra property field (prop) are added by an assertion

separation unit when a provenance assertion for each stream is detected. It is used as

an accumulator for supporting property computing. Then the stream ancestor function

(SAF) for the time-window join operation (JoinTWpsaf) is used to extract the properties

(A and D) from the ancestor provenance assertions (elements in RS1 and RS2) and to put

them into “prop” field. After that the properties identified by the SAF and the property

of the current provenance assertion (AS3) are computed by the property computing unit.

Finally, a new property value is replaced in “prop” field and the output assertion (RS3)

is generated. It is necessary to note that we separate a property computing unit from a

stream ancestor function component because we would like to make the SAF a generic

function that can be used for any stream-based application independent from property

calculating logic.

5.2 Property stream ancestor functions

In this section, the specifications of stream ancestor functions used for working with

on-the-fly provenance queries are presented. We call this version of stream ancestor

functions “Property stream ancestor function” (PSAF) because one of the most signifi-

cant tasks for these stream ancestor functions is to extract provenance-related properties

from ancestor provenance assertions. We will detail data types and shared functions first

and then we will present the specifications of property stream ancestor functions.

Chapter 5 Stream-specific provenance query 103

5.2.1 Data types for representing a provenance assertion

As presented in the previous section, a provenance assertion used for an on-the-fly prove-

nance query consists of an event key and an extra property field - prop (a list of prop-

erties). An event key contains a timestamp (TIME), a sequence number (LargeInt), a

stream identifier (STREAMID) and a delay time for processing(TIME). We represent

a stream of provenance assertions as a list of assertions (′a ASSERTION list) where

a stream can contain a varying number of elements and properties can be any type

of content. Streams of provenance assertions are utilized in our on-the-fly provenance

query mechanism as internal streams involved in the processing of on-the-fly provenance

queries. The following are data types for representing a provenance assertion.

datatype KEY = Key of TIME ∗ LargeInt.int ∗ STREAMID ∗ TIME;

datatype ′a ASSERTION = Assertion of KEY ∗ ′a list;

The following is an example of a stream of provenance assertions represented by using

a list of assertions.

[Assertion (Key (Time 11, 1, StreamID 1, T ime 1), [9]),

Assertion (Key (Time 21, 2, StreamID 1, T ime 2), [7]),

Assertion (Key (Time 31, 3, StreamID 1, T ime 1), [10])] : int ASSERTION list

5.2.2 Shared functions

We now present shared functions defined for working with property stream ancestor func-

tions. These shared functions include ExtractPropT and ExtractPropN . ExtractPropT

and ExtractPropN are functions used to extract properties from elements in an asser-

tion list (Q) that are inside the scope of a data window (the scope ranges from lower

bound (lb) to upper bound(ub)). The difference between these two functions is that

elements of a list are scoped by using a timestamp (t) for one and a sequence number

(n) for the other. The definitions of these functions are presented as follows.

(∗ fn : TIME ∗ TIME ∗ ′a ASSERTION list − > ′a list ∗)

fun ExtractPropT (ub, lb, []) = []

| ExtractPropT (ub, lb, ((Assertion(Key(t, , ,), p)) :: Q))

= if (ub GTE t) andalso (t GTE lb) then

p @ ExtractPropT (ub, lb,Q)

else ExtractPropT (ub, lb,Q);

104 Chapter 5 Stream-specific provenance query

(∗ fn : int ∗ int ∗ ′a ASSERTION list − > ′a list ∗)

fun ExtractPropN(ub, lb, []) = []

| ExtractPropN(ub, lb, ((Assertion(Key(, n, ,), p)) :: Q))

= if (ub >= n) andalso (n >= lb) then

p @ ExtractPropN(ub, lb,Q)

else ExtractPropN(ub, lb,Q);

5.2.3 Abstract functions for property stream ancestor functions

Abstract functions are defined to separate common routines contained in several property

stream ancestor functions (PSAFs) and provide base functions that a number of property

stream ancestor functions can exploit. The benefit of defining abstract functions is

that we can reduce code repetition in several property stream ancestor functions, the

definitions of property stream ancestor functions are simplified and they can be easily

understood. These abstract functions include AbstractTWpsaf and AbstractLWpsaf .

AbstractTWpsaf is the abstract function defined for property stream ancestor functions

for a sliding time window, a map operation and a filter operation. The function takes

a provenance assertion (AS) and a result stream (RS) - a stream generated from the

previous property propagation step - as an input and generates an element of a property

stream (PS) containing all provenance-related properties needed for further processing.

This function extracts properties from RS by creating the extent of time window at the

time that the operation produced the output using the duration of time window (w).

The definition of the AbstractTWpsaf function is described in Figure 5.5.

(∗ fn : TIME − > ′a ASSERTION list − > ′b ASSERTION
− > ′a ASSERTION ∗)

fun AbstractTWpsaf (w) Q (Assertion(Key(t, n, sid, d),)) =
let

val pList = ExtractPropT (t−−d, t−−d−−w,Q);
in

Assertion(Key(t, n, sid, d), pList)

end

Figure 5.5: The definition of AbstractTWpsaf function

The definition of the other abstract function - AbstractLWpsaf - is described in Figure

5.6. The AbstractLWpsaf function is the abstract function defined for the property an-

cestor function for a length window. It utilizes a size of length window (l) and a queue

(Q) as the function parameters. Similar to the AbstractTWpsaf function, it takes a

provenance assertion (AS) and a result stream (RS) as an input and returns a property

Chapter 5 Stream-specific provenance query 105

stream (PS) containing all properties needed for further processing. To extract prop-

erties from RS, instead of using timestamps as variables, this function uses the size of

length window (l) and a sequence number (n) for creating the extent of count-based

window at the time that the operation produced the output.

(∗ fn : int − > ′a ASSERTION list − > ′b ASSERTION
− > ′a ASSERTION ∗)

fun AbstractLWpsaf (l) Q (Assertion(Key(t, n, sid, d),)) =
let

val pList = ExtractPropN(n, n− l + 1, Q);
in

Assertion(Key(t, n, sid, d), pList)
end

Figure 5.6: The definition of AbstractLWpsaf function

5.2.4 The property stream ancestor function for a map operation

Property stream ancestor function: PSAF for a map operation - Mappsaf
Let RS be a result stream of type ′a ASSERTION list
Let AS be a provenance assertion of type ′b ASSERTION
For a map operation, the property stream ancestor function is defined as:

(∗ fn : ′a ASSERTION list − > ′b ASSERTION − > ′a ASSERTION ∗)

fun Mappsaf RS AS = AbstractTWpsaf (Time(0)) RS AS;

TWpsaf

PSAS

RS

Property

Computing

LWpsaf

PSAS

RS

Property

Computing

Mappsaf

PSAS

RS

Property

Computing

Filterpsaf

PSAS

RS

Property

Computing

JoinLWpsaf

PSAS

RS1

Property

Computing

RS2

Figure 5.7: The definition of PSAF for a map operation

The property stream ancestor function for a map operation is defined in Figure 5.7.

The function takes a provenance assertion (AS) and a result stream (RS) - a stream

generated from the previous property propagation step - as an input and returns an

element of a property stream (PS) containing all provenance-related properties needed

for further processing as the function output. In the definition, this PSAF utilizes the

AbstractTWpsaf function for its core business logic. Note that, we pass Time(0) as the

parameter for the base function - AbstractTWpsaf - because this PSAF is not the PSAF

that requires to create the past extent of time window for extracting properties (it only

106 Chapter 5 Stream-specific provenance query

needs to identify an element in RS that is the ancestors of a particular input assertion).

By using the timestamp (t) together with a delay time (d) of an input assertion (AS) an

associated element in the result stream (RS) can be identified and provenance-related

properties can be obtained.

5.2.5 The property stream ancestor function for a filter operation

Property stream ancestor function: PSAF for a filter operation - Filterpsaf
Let RS be a result stream of type ′a ASSERTION list
Let AS be a provenance assertion of type ′b ASSERTION
For a filter operation, the property stream ancestor function is defined as:

(∗ fn : ′a ASSERTION list − > ′b ASSERTION − > ′a ASSERTION ∗)

fun Filterpsaf RS AS = AbstractTWpsaf (Time(0)) RS AS;

TWpsaf

PSAS

RS

Property

Computing

LWpsaf

PSAS

RS

Property

Computing

Mappsaf

PSAS

RS

Property

Computing

Filterpsaf

PSAS

RS

Property

Computing

JoinLWpsaf

PSAS

RS1

Property

Computing

RS2

Figure 5.8: The definition of PSAF for a filter operation

As illustrated in Figure 5.8, the AbstractTWpsaf function is used as the base function

of the property stream ancestor function for a filter operation containing the function’s

business logic. The function takes a provenance assertion (AS) and a result stream

(RS) as an input and generates an element of a property stream (PS) containing all

provenance-related properties needed for further processing. Similar to the Mappsaf

function, this PSAF extracts provenance-related properties from RS by utilizing the

timestamp (t) together with a delay time (d) of an input provenance assertion (AS).

5.2.6 The property stream ancestor function for a sliding time window

The property stream ancestor function for a sliding time window is defined in Figure 5.9.

For this function, only the duration of the time window (w) is indicated as the function

parameter. The function takes a provenance assertion (AS) and a result stream (RS)

as an input and produces an element of a property stream (PS) as a function output.

As shown in the definition, this PSAF utilizes the AbstractTWpsaf function for its core

business logic. It extracts properties from RS by creating the extent of the sliding time

window at the time that the operation produced the output using the function parameter

- the duration of the time window (w).

Chapter 5 Stream-specific provenance query 107

Property stream ancestor function: PSAF for a sliding time window - TWpsaf (w)
Let RS be a result stream of type ′a ASSERTION list
Let AS be a provenance assertion of type ′b ASSERTION
Let w be the duration of the time window
For a sliding time window, the property stream ancestor function is defined as:

(∗ fn : TIME − > ′a ASSERTION list − > ′b ASSERTION
− > ′a ASSERTION ∗)

fun TWpsaf (w) RS AS = AbstractTWpsaf (w) RS AS;

TWpsaf

PSAS

RS

Property

Computing

LWpsaf

PSAS

RS

Property

Computing

Mappsaf

PSAS

RS

Property

Computing

Filterpsaf

PSAS

RS

Property

Computing

JoinLWpsaf

PSAS

RS1

Property

Computing

RS2

Figure 5.9: The definition of PSAF for a sliding time window

5.2.7 The property stream ancestor function for a length window

Property stream ancestor function: PSAF for a length window - LWpsaf (l)
Let RS be a result stream of type ′a ASSERTION list
Let AS be a provenance assertion of type ′b ASSERTION
Let l be the size of the length window
For a length window, the property stream ancestor function is defined as:

(∗ fn : int − > ′a ASSERTION list − > ′b ASSERTION
− > ′a ASSERTION ∗)

fun LWpsaf (l) RS AS = AbstractLWpsaf (l) RS AS;

TWpsaf

PSAS

RS

Property

Computing

LWpsaf

PSAS

RS

Property

Computing

Mappsaf

PSAS

RS

Property

Computing

Filterpsaf

PSAS

RS

Property

Computing

JoinLWpsaf

PSAS

RS1

Property

Computing

RS2

Figure 5.10: The definition of PSAF for a length window

The property stream ancestor function for a length window is defined in Figure 5.10. As

presented in the function definition, this PSAF utilizes the size of the length window (l)

as the function parameter. The AbstractLWpsaf function is used as the base function

of this PSAF containing the function’s business logic. The function takes a provenance

108 Chapter 5 Stream-specific provenance query

assertion (AS) and a result stream (RS) as an input. Then, provenance-related proper-

ties from RS are extracted by utilizing the size of the length window (l) and a sequence

number (n). Finally, it returns an element of a property stream (PS) containing all

provenance-related properties needed for further processing.

5.2.8 The property stream ancestor function for a time-window join

Property stream ancestor function: PSAF for a time-window join
- JoinTWpsaf (w1, w2)
Let RS1, RS2 be result streams of type ′a ASSERTION list
Let Assertion(Key(t, n, sid, d),) be a provenance assertion of type ′b ASSERTION
Let w1, w2 be the duration of the time windows
For a time window join, the property stream ancestor function is defined as:

(∗ fn : TIME ∗ TIME − > ′a ASSERTION list − > ′a ASSERTION list
− > ′b ASSERTION − > ′a ASSERTION ∗)

fun JoinTWpsaf (w1, w2) RS1 RS2 (Assertion(Key(t, n, sid, d),)) =
let

val pl1 = ExtractPropT (t−−d, t−−d−−w1, RS1)
val pl2 = ExtractPropT (t−−d, t−−d−−w2, RS2)
val pList = pl1 @ pl2

in
Assertion(Key(t, n, sid, d), pList)

end

TWpsaf

PSAS

RS

Property

Computing

LWpsaf

PSAS

RS

Property

Computing

Mappsaf

PSAS

RS

Property

Computing

Filterpsaf

PSAS

RS

Property

Computing

JoinTWpsaf

PSAS

RS1

Property

Computing

RS2

Figure 5.11: The definition of PSAF for a time-window join

As illustrated in Figure 5.11, we define the property stream ancestor function for a time-

window join as a function that takes the duration of the time windows (w1 and w2) as

the function parameters. The function takes a provenance assertion (AS) and two result

streams (RS1 and RS2) as an input and generates an element of a property stream (PS)

containing all provenance-related properties needed for further processing. To extract

all related properties from two result streams (RS1 and RS2), the duration of the time

windows (w1 and w2) is utilized to create the extent of the past time windows.

Chapter 5 Stream-specific provenance query 109

5.2.9 The property stream ancestor function for a length-window join

Property stream ancestor function: PSAF for a length-window join
- JoinLWpsaf (l1, l2)
Let RS1, RS2 be result streams of type ′a ASSERTION list
Let Assertion(Key(t, n, sid, d),) be a provenance assertion of type ′b ASSERTION
Let l1, l2 be the size of the length windows
For a length-window join, the property stream ancestor function is defined as:

(∗ fn : int ∗ int − > ′a ASSERTION list − > ′a ASSERTION list
− > ′b ASSERTION − > ′a ASSERTION ∗)

fun JoinLWpsaf (l1, l2) RS1 RS2 (Assertion(Key(t, n, sid, d),)) =
let

val pl1 = ExtractPropN(n, n− l1 + 1, RS1)
val pl2 = ExtractPropN(n, n− l2 + 1, RS2)
val pList = pl1 @ pl2

in
Assertion(Key(t, n, sid, d), pList)

end

TWpsaf

PSAS

RS

Property

Computing

LWpsaf

PSAS

RS

Property

Computing

Mappsaf

PSAS

RS

Property

Computing

Filterpsaf

PSAS

RS

Property

Computing

JoinLWpsaf

PSAS

RS1

Property

Computing

RS2

Figure 5.12: The definition of PSAF for a length-window join

The property stream ancestor function for a length-window join is defined in Figure

5.12. The function utilizes internal values of length windows (l1 and l2) as the function

parameters. It takes a provenance assertion (AS) and two result streams (RS1 and

RS2) as an input and produces an element of a property stream (PS) containing all

properties needed for further processing. To extract properties from RS1 and RS2, it

utilizes the size of the length windows (l1 and l2) in order to create the extent of the

past count-based windows.

5.3 Algorithm for on-the-fly provenance queries

We now demonstrate how the on-the-fly provenance mechanism works and how property

stream ancestor functions are composed together by means of an on-the-fly provenance

query algorithm. The main concept of the on-the-fly provenance query algorithm is that

it utilizes static provenance information (e.g. stream topology and stream operation

parameters) stored in a provenance store to automatically create the internal processing

110 Chapter 5 Stream-specific provenance query

of on-the-fly provenance queries. Similar to the persistent provenance query and the

replay execution method, our on-the-fly query algorithm applies the idea of function

composition. The algorithm takes a stream of provenance assertions generated during

a stream system’s execution as an input and produces query results which are prove-

nance assertions containing provenance-related properties. The algorithm for on-the-fly

provenance queries is presented in Figure 5.13.

Algorithm: On-the-fly provenance query
Let KL be a list of event keys used as an input for the query
Let psaf1, psaf2 be look up tables (lists) for property stream ancestor functions
Let sidList be a list of targeted stream IDs
Let streamLut be a look up table (list) for input and output streams
Let paramLut be a look up table (list) for stream operation parameters
Let pFun be a property computing function

(∗ fn : (STREAMID ∗ (′a ASSERTION list − > ′b ASSERTION
− > ′aASSERTION)) list ∗ (STREAMID ∗ (′a ASSERTION list
− > ′a ASSERTION list − > ′b ASSERTION − > ′a ASSERTION)) list
∗ STREAMID list ∗ (STREAMID ∗ int ∗ InOut) list ∗
(int ∗ string ∗ int ∗ string) list ∗ (KEY − > ′a list − > ′b)
− > KEY list − > ′a ASSERTION list ∗)

fun OTFpquery(psaf1, psaf2, sidList, streamLut, paramLut, pFun) KL =
queryExec psaf1 psaf2 sidList streamLut paramLut pFun [] [] KL;

(∗ fn : (STREAMID ∗ (′a ASSERTION list − > ′b ASSERTION
− > ′a ASSERTION)) list − > (STREAMID ∗ (′a ASSERTION list
− > ′a ASSERTION list − > ′b ASSERTION − > ′a ASSERTION)) list
− > STREAMID list − > (STREAMID ∗ int ∗ InOut) list
− > (int ∗ string ∗ int ∗ string) list − > (KEY − > ′a list − > ′b)
− > (STREAMID ∗ ′a ASSERTION list) list
− > ′a ASSERTION list − > KEY list − > ′a ASSERTION list ∗)

fun queryExec psaf1 psaf2 sidList streamLut paramLut pFun B R [] = R
| queryExec psaf1 psaf2 sidList streamLut paramLut pFun B R (k :: AS) =
let
val (pa as Assertion(Key(, , sid, d),)) = ASU k;
val (pa′, B′) = if (isF irstIStream sid streamLut) then

(PCU pFun pa,B)
else

(executePSAF psaf1 psaf2 streamLut pFun B pa,
Dequeue psaf1 streamLut paramLut B pa)

in
if (member sid sidList) then
queryExec psaf1 psaf2 sidList streamLut paramLut pFun B′ (pa′ :: R) AS

else
queryExec psaf1 psaf2 sidList streamLut paramLut pFun (addElm B′ pa′) R AS

end

Figure 5.13: Algorithm for on-the-fly provenance queries

Chapter 5 Stream-specific provenance query 111

Utility functions for the queryExec function

datatype InOut = I | O

(∗ fn : STREAMID ∗ (STREAMID ∗ ′a ∗ InOut) list − > bool ∗)
fun isF irstIStream sid streamLut =

(containSID sid I streamLut) andalso not (containSID sid O streamLut);

(∗ fn : KEY − > ′a ASSERTION ∗)
fun ASU (key : KEY) = (Assertion(key, []))

(∗ fn : (KEY − > ′a list − > ′b) − > ′a ASSERTION − > ′b ASSERTION ∗)
fun PCU func (Assertion(key, pl)) = (Assertion(key, [func key pl]));

(∗ fn : (STREAMID ∗ (′a − > ′b ASSERTION − > ′a ASSERTION)) list

− > (STREAMID ∗ (′a − > ′a − > ′b ASSERTION − > ′a ASSERTION)) list

− > (STREAMID ∗ int ∗ InOut) list − > (KEY − > ′c list − > ′d)

− > (STREAMID ∗ ′a) list − > ′b ASSERTION − > ′a ASSERTION ∗)
fun executePSAF psaf1 psaf2 streamLut pFun B (pa as Assertion(Key(, , sid,),)) =

if (containsKeys [sid] psaf1) then

let (∗ unary operation ∗)
val rsID = hd (getRsID sid streamLut);

val ((, rs) :: RS) = getElements [rsID] B;

in

PCU pFun ((assoc sid psaf1) rs pa)

end

else

let (∗ binary operation ∗)
val rsIDList = (getRsID sid streamLut);

val ((, rs1) :: B1′) = getElements [hd rsIDList] B;

val ((, rs2) :: B2′) = getElements (tl rsIDList) B;

in

PCU pFun ((assoc sid psaf2) rs1 rs2 pa)

end

Note that, because the on-the-fly provenance query algorithm utilizes several supporting

functions (utility functions), to concisely illustrate our algorithm, we only present some

significant utility functions. All utility functions used for the on-the-fly provenance query

algorithm is detailed in Appendix C.

112 Chapter 5 Stream-specific provenance query

As illustrated in Figure 5.13, the on-the-fly provenance query algorithm consists of two

main functions: OTFpquery and queryExec. The OTFpquery function is the entry-

point function that takes look up tables for property stream ancestor functions (psaf1

- PSAFs for unary operations -, psaf2 - PSAFs for binary operations -), a list of target

stream IDs (stream IDs used to terminate the query execution - sidList), a look up table

for input and output streams (streamLUT) and a look up table for stream operation

parameters (paramLut) and a property computing function (pFun) as input parameters.

After taking all input parameters, the function returns a result list which is a list of

provenance assertions containing provenance-related properties. The other function -

queryExec - is the recursive function that contains the business logic of the on-the-fly

provenance query algorithm. The process of the function begins by receiving parameters

passed by the OTFpquery function. Then it iterates over the elements of a provenance

assertion list (k :: AS) in order to execute queries (property propagation) on every input

provenance assertion. For each provenance assertion, it is first processed by an assertion

separation unit (ASU) to create an extra field for storing property information. Then, in

the case that input provenance assertions are the assertions belonging to the first-input

stream - a stream that enters a stream system from data sources and are first processed

by stream operations - (each assertion needs to be checked by using isF irstIStream

function), they are executed by a property computing unit (PCU) in order to extract

properties. After that, for each assertion, if its stream ID is not the IDs in the stream

ID list (sidList), it will be processed by its associated property stream ancestor function

(PSAF) and property computing unit (PCU) using the executePSAF function. Every

output of property computing (an element of a result stream RS) is inserted to a data

buffer B. Finally, the queryExec function will be called recursively until no provenance

assertions remain in the provenance assertion list (AS).

As presented in the algorithm, to support the dynamic execution of on-the-fly provenance

queries, a number of intermediate provenance assertions (elements of result streams RSs)

need to be temporarily stored in a data buffer. This processing technique potentially

increases the amount of memory consumed by our stream provenance system. However,

as demonstrated in the on-the-fly query algorithm, the size of the temporary data buffer

can be controlled by using Dequeue function. The function utilizes stream operation

parameters (paramLut) - especially a data window size for each stream operation - to

eliminate assertions that is no longer need for further processing. Therefore, we expect

that the amount of memory consumed by our stream provenance system should depend

on types of stream operations and the size of the data window utilized in a stream system.

We will present the memory consumption evaluation for our on-the-fly provenance query

mechanism in Chapter 6.

An example output produced by the on-the-fly provenance query algorithm is now pre-

sented. We use the same example stream process flow presented in Figure 5.2.

Chapter 5 Stream-specific provenance query 113

A list of input provenance assertions (event keys) used in this example:

− val S = [Key(Time 1, 1, StreamID 1, T ime 0),Key(Time 2, 1, StreamID 2, T ime 0),

Key(Time 4, 1, StreamID 3, T ime 2),Key(Time 7, 1, StreamID 4, T ime 3),

Key(Time 11, 2, StreamID 1, T ime 0),Key(Time 12, 2, StreamID 2, T ime 0),

Key(Time 13, 2, StreamID 3, T ime 1),Key(Time 15, 2, StreamID 4, T ime 2),

Key(Time 21, 3, StreamID 1, T ime 0),Key(Time 22, 3, StreamID 2, T ime 0),

Key(Time 24, 3, StreamID 3, T ime 2),Key(Time 28, 3, StreamID 4, T ime 4)]

Required parameters for the on-the-fly query algorithm:

(∗ property stream ancestor functions ∗)
− val psafLut1 = [(StreamID(4),Mappsaf)];

− val psafLut2 = [(StreamID(3), JoinTWpsaf (Time(5), T ime(5)))];

(∗ a list of targeted stream ids ∗)
− val sidList = [StreamID(4)];

(∗ a look up table for input and output streams ∗)
− val streamLut = [(StreamID(1), 1, I), (StreamID(2), 1, I), (StreamID(3), 1, O)

, (StreamID(3), 2, I), (StreamID(4), 2, O)];

(∗ a look up table for stream operation parameters ∗)
− val paramLut = [(1, “w1”, 5, “T”), (1, “w2”, 5, “T”), (2, “w”, 0, “T”)];

(∗ property computing function and its corresponding look up table ∗)
fun CovArea (Key(t, n, sid, d)) [] = getCovArea sid t covAreaLut

| CovArea (Key(t, n, sid, d)) (p :: pList) = p ∧ CovArea (Key(t, n, sid, d)) pList

fun getCovArea sid ts [] = “”

| getCovArea sid ts ((id,minT,maxT, area) :: aTable) =

if(sid = id) andalso (maxT GTE ts) andalso (ts GTE minT) then area

else getCovArea sid ts aTable

− val covAreaLut = [(StreamID(1), T ime(1), T ime(10), “A”),

(StreamID(2), T ime(1), T ime(10), “D”), (StreamID(1), T ime(11), T ime(20), “B”),

(StreamID(2), T ime(11), T ime(20), “E”), (StreamID(1), T ime(21), T ime(30), “C”),

(StreamID(2), T ime(21), T ime(30), “F”)];

The on-the-fly provenance query for this example can be performed as follows:

(∗ execute the on− the− fly provenance query function ∗)
− OTFpquery(psafLut1, psafLut2, sidList, streamLut, paramLut, CovArea) S;

114 Chapter 5 Stream-specific provenance query

(∗ the provenance query output ∗)
> [Assertion(Key(Time 28, 3, StreamID 4, T ime 4), [“CF”]),

Assertion(Key(Time 15, 2, StreamID 4, T ime 2), [“BE”]),

Assertion(Key(Time 7, 1, StreamID 4, T ime 3), [“AD”])] : string ASSERTION list

5.4 A case study for on-the-fly provenance queries

The previous sections have presented a conceptual design, programmatic specifications

of the property stream ancestor functions and an on-the-fly query algorithm for our

stream-specific provenance query solution. The question now arises as to how to ap-

ply the design in practical stream-based applications. In this section we present our

stream-specific provenance query solution - on-the-fly provenance queries - in action. A

stream processing system containing five common primitive stream operations is used as

a practical case study to demonstrate how our novel provenance solution can be applied

in the example application and the accuracy of the provenance solution for obtaining

the provenance of individual stream elements. Note that a processing flow used as an

example in this case study is the same synthetic flow presented in the provenance query

chapter. The example Standard ML code for this case study is also provided in Appendix

D.

The synthetic processing flow of a stream processing system is presented in Figure 5.14.

The processing flow contains five stream operations including two Map operations, Filter,

Sliding time window (TW) and Time window join (JoinTW). Each stream operation

is assigned a unique operation identifier (operation ID). For example, the sliding time-

window operation is assigned no.3 as its operation ID. Moreover, each data stream (either

input or output stream) for each stream operation is labeled with a unique identifier.

For example, stream 2 is the input stream of the filter operation.

From the processing flow presented in Figure 5.14, an internal process of on-the-fly

queries can be derived, as shown in Figure 5.15. All components and internal streams

illustrated in the figure are automatically generated by using topology configuration

parameters and stream operation parameters stored in a provenance store. Seven as-

sertion separation units are used as intercepting components for receiving provenance

assertions created and streamed to a provenance service by the case study application.

After receiving provenance assertions, each assertion separation unit redirects detected

provenance assertions to their associated property stream ancestor functions (PSAF).

Based on the stream operations in the stream processing flow, six PSAFs are utilized

for on-the-fly provenance queries including two instances of Mappsaf (for operation ID

1), Filterpsaf , Mappsaf (for operation ID 4), TWpsaf and JointTWpsaf . Each PSAF

extracts provenance-related properties and sends provenance assertions containing all

required properties to a property computing unit (PCU) for property processing.

Chapter 5 Stream-specific provenance query 115

Map

TW

Filter

Map

JoinTW
1

2

4

5

6
1

3

2

4

5

3

7

TW(5000,5)

Map(Ceil,[2,4])

Map(Avg,6)

Filter(Pred,6)

JoinTW(1000,1000,7)

Stream ID

Operation ID

Stream operation

Figure 5.14: The processing flow of a stream processing system

Figure 5.16 presents a set of provenance assertions recorded as a stream during the ex-

ecution of the synthetic processing flow of the case study application. The provenance

assertions presented in the figure consists of the following fields: a set of fields represent-

ing an event key of a stream element (timestamp, seqno, stream id and delay) and an

extra property field (prop) used to temporarily store provenance related properties for

property propagation. Note that the index field - a reference for each provenance asser-

tion - is used only for presentation clarity. It is not used in our practical implementation.

In this example three input stream events of stream 1 are fed into the stream system.

The provenance assertions for these input stream events are the assertions at the index

#1, #8 and #15. Three final output stream events of the stream 7 are generated by

the stream system as well. The provenance assertions for these output stream events

includes the assertion at the index #7, #14 and #21.

We now demonstrate how to perform on-the-fly provenance queries in order to obtain

the provenance of each individual stream element. In this case study a total delay time

for event processing is used as an example provenance-related property that we intend

to propagate through the execution of on-the-fly provenance queries. We use an example

scenario of an anomaly or unusual event occurring at some point in time during stream

processing. To detect the anomaly it is necessary to obtain the total delay time for

each individual stream processing result and then compare it with a threshold that is

defined as the maximum delay constraint for stream processing. With the use of query

results (properties: total delay time) produced by on-the-fly queries, we can track that

the problem occurred during the execution of a stream processing system and we can

also determine how to solve this unusual problem in near real-time.

In Figure 5.17 a provenance graph related to the provenance assertions of stream ele-

ments generated in Figure 5.16 is presented. Each node labeled with an index number

116 Chapter 5 Stream-specific provenance query

Property

Computing

Filterpsaf

Mappsaf

Property

Computing

Property

Computing

Stream of provenance

assertions

AS1

AS3

AS4

PS3

PS4

RS1

RS3

RS4

Sid = 1

Sid = 2

Sid = 3

Sid = 4

Stream ancestor function

Property computing unit

Assertion separation unit

Sid = 5

Sid = 6

Sid = 7

Property

Computing
TWpsaf

AS5 PS5 RS5

Property

Computing
Mappsaf

AS6 PS6 RS6

Property

Computing
JoinTWpsaf

AS7 PS7 RS7

Property

Computing
Mappsaf

AS2 PS2 RS2

RS1

Figure 5.15: An internal process of on-the-fly provenance queries for the case study

represents individual provenance assertions. This provenance graph is used to describe

dependencies among each individual provenance assertion. From the provenance graph

we demonstrate how provenance-related properties can be propagated from ancestor

provenance assertions to their descendant provenance assertions, traversing the prove-

nance graph from left to right. For example, the provenance assertion at index #18

is utilized by the property stream ancestor function for the time-window (TWpsaf) to

identify ancestor provenance assertions (index #3, #10 and #17). Then, provenance-

related properties - delay time for processing - represented as integer values in brackets

are propagated from these three ancestor provenance assertions to the assertions at the

index #18.

Figure 5.18 illustrates an example of how provenance-related properties (delay time

for processing) are propagated during the execution of on-the-fly provenance queries.

Chapter 5 Stream-specific provenance query 117

index timestamp seqno stream_id delay prop

1 1279398105675 1 1 0 -
2 1279398105684 1 2 9 -
3 1279398105684 1 4 9 -
4 1279398105693 1 3 9 -
5 1279398105701 1 5 17 -
6 1279398105702 1 6 1 -
7 1279398105703 1 7 1 -
8 1279398107678 2 1 0 -
9 1279398107678 2 2 0 -

10 1279398107678 2 4 0 -
11 1279398107680 2 5 2 -
12 1279398107681 2 3 3 -
13 1279398107682 2 6 2 -
14 1279398107683 2 7 1 -
15 1279398109678 3 1 0 -
16 1279398109678 3 2 0 -
17 1279398109678 3 4 0 -
18 1279398109680 3 5 2 -
19 1279398109681 3 3 3 -
20 1279398109682 3 6 2 -
21 1279398109683 3 7 1 -

Figure 5.16: Provenance assertions generated during the execution of the case study
application

#15

#8

#1

#17

#10

#3

#18 #20

#21

#19#16

JoinTWpsaf(1000,1000)

Filterpsaf()
Mappsaf()

Mappsaf()

TWpsaf(5000)

Mappsaf()

(0) (3)

(14)

(13)(11)

(0)

(0)

(0)

(0)

(9)

(0)

Mappsaf()

Mappsaf()

TWpsaf(5000)

TWpsaf(5000)

JoinTWpsaf(1000,1000)

Figure 5.17: The provenance graph for the example on-the-fly provenance query

In this example we present the execution of on-the-fly provenance queries for obtain-

ing the query result of the third input stream event (provenance assertion at the index

#15). The process begins with each provenance assertion being detected by an assertion

separation unit which adds an empty extra property field (prop) and then the prove-

nance assertion is passed to its associated property stream ancestor function (PSAF) for

processing. After receiving the provenance assertion, PSAF is executed (it identifies an-

cestor provenance assertions and extracts required provenance-related properties - delay

118 Chapter 5 Stream-specific provenance query

time). After that PSAF sends the provenance assertion (element in a property stream -

PS) containing all required properties (delay time of ancestor provenance assertions) to

a property computing unit which finally computes the properties and produces a final

provenance query result (element in a result stream - RS).

Property

Computing

Filterpsaf

Mappsaf

Property

Computing

Property

Computing

Stream of provenance

assertions

AS1

AS3

AS4

PS3

PS4

RS1

RS3

RS4

Sid = 1

Sid = 2

Sid = 3

Sid = 4

Sid = 5

Sid = 6

Sid = 7

Property

Computing
TWpsaf

AS5

PS5 RS5

Property

Computing
Mappsaf

AS6

PS6 RS6

Property

Computing
JoinTWpsaf

AS7

PS7 RS7

Property

Computing
Mappsaf

AS2

PS2 RS2

RS1

#15 -

#17 0

#10 0

#3 9

Stream ancestor function

Property computing unit

Assertion separation unit

Event key Prop

Provenance assertion

#16 -

#15 0

#16 0 #16 0

#19 - #19 0 #19 3

#17 - #17 0 #17 0

#18 - #18 9,0,0 #18 11

#20 - #20 11 #20 13

#21 - #21 13,3 #21 14

Figure 5.18: An internal process of on-the-fly provenance queries for the case study

Chapter 5 Stream-specific provenance query 119

As shown in Figure 5.18, we can describe the processing steps of on-the-fly provenance

queries when the provenance assertion of the stream 5 arrives as follows. The provenance

assertion (index #18) is detected by the assertion separation unit for stream 5 (sid = 5)

and it is sent as an element of the assertion stream 5 (AS5) to PSAF (TWpsaf). Then,

the provenance assertion is used by TWpsaf to identify ancestor provenance assertions

(index #3, #10 and #17) temporarily stored in the buffering queue of the result stream

4 (AS4). After that, all required properties (delay time for processing: 9,0 and 0 mil-

liseconds) from ancestor provenance assertions are extracted and they are contained in

the element of the property stream 5 (PS5) that is sent to the property computing unit

(PCU). Then, PCU computes the properties of the ancestor provenance assertions to-

gether with the property of the current assertion (delay time of the provenance assertion

index #18: 2 milliseconds). Finally, PCU produces the output which is the provenance

assertion containing the new property (accumulated total delay time: 11 milliseconds)

as the element of the result stream 5 (RS5). In addition, as illustrated in Figure 5.18,

the process of on-the-fly provenance queries starts with the processing of provenance

assertions in the assertion stream 1 (AS1). Then, the process iterates through each

successive internal stream until the final internal stream (assertion stream 7 - AS7) is

reached and the final query output - element of the result stream 7 (RS7) containing

total delay time: 14 milliseconds - is generated.

5.5 Summary

We started this chapter by outlining the characteristics that the stream-specific prove-

nance query mechanism should have. Then, a novel on-the-fly provenance query mech-

anism for streams was presented. The key concepts of our on-the-fly provenance query

mechanism is that we exploit a provenance service - a central component of the stream

provenance architecture - as a stream component. Provenance assertions streamed to

the provenance service are processed on-the-fly continuously without any requirement

to store them persistently. We extend the persistent provenance query mechanism for

streams presented in Chapter 4 by introducing the idea of property propagation. We

do not propagate provenance-related properties through the processing flow of a stream

processing system because this requires the modification of the internal processing of

stream operations, instead properties are propagated inside the provenance service us-

ing accumulators. By utilizing a new version of stream ancestor functions (property

stream ancestor functions), provenance-related properties can be propagated and prove-

nance query results are produced as a stream.

We now revisit the main contribution of this chapter: a stream-specific provenance

query mechanism that can create and compute provenance queries automatically with-

out requiring provenance assertions to be stored persistently. To support this main

contribution we presented the conceptual design of on-the-fly provenance queries which

120 Chapter 5 Stream-specific provenance query

described the basic assumptions and how on-the-fly provenance queries can be performed

inside a provenance service. We then introduced the programmatic specification of the

stream ancestor functions designed specifically for working with stream-specific prove-

nance query mechanism (property stream ancestor functions - PSAF) and the on-the-fly

provenance query algorithm. Similar to the specifications of stream ancestor function

previously described, we defined PSAFs and the on-the-fly query algorithm by using the

general-purpose functional programming language - Standard ML (SML). Using SML

allows us to validate our design and it also allows us to prove whether our functions pro-

duce correct outputs. In the next chapter, the evaluation of the implementation of our

stream provenance solutions including the stream-specific provenance query mechanism

will be presented. This evaluation will demonstrate the effectiveness and the impact of

our stream provenance solution under different experimental conditions.

Chapter 6

Evaluation

In this chapter, we evaluate the implementation of our provenance solution presented

in Chapters 3, 4 and 5 - our fine-grained provenance model for streams and both the

persistent provenance query and the stream-specific provenance query mechanism. Our

evaluation is conducted across four different aspects. Firstly, the storage overhead of

the implementation when provenance information (provenance assertions) is stored per-

sistently in a provenance store as the number of stream components increases. Two

message payload sizes were considered to demonstrate the effect of different message

sizes on the storage requirement for provenance recording. Secondly, the impact of

provenance recording (throughput) in a controlled environment as the number of stream

components increases. We also observed the impact of provenance recording on differ-

ent implementations that have different time delays for processing. Thirdly, the memory

consumption for a provenance service. Finally, the time latency of the on-the-fly prove-

nance query approach as the number of stream components increases. Recommendations

on the use of our system in applications are also given.

For this evaluation, there are four key contributions:

1. The storage overhead resulting from recording provenance information can be re-

duced significantly by using our storage reduction technique. The marginal cost

of storage consumption for our provenance solution is constant and predictable

(about 5 MB per additional stream component for 100,000 input stream events).

2. The provenance recording impact evaluation demonstrates that our provenance

solution does not have a significant effect on the normal processing of stream

systems. There are a 4% overhead for the store provenance assertions approach

and a 7% overhead for the on-the-fly provenance query approach.

3. According to both the memory consumption and the time latency evaluations, it is

shown that our on-the-fly provenance query approach offers low-latency processing

(average time latency: 0.3 ms per additional component) with reasonable memory

121

122 Chapter 6 Evaluation

consumption (the marginal cost of memory consumption for the map operation

experiment is 0.5 MB and that for the time-window experiment is 1.8 MB).

4. A set of recommendations for application developers when designing and imple-

menting provenance systems for streams.

The rest of this chapter is organized as follows: First, an implementation of our prove-

nance system for streams is detailed. Next, the environment in which the experimen-

tal evaluations were performed is described. Then, four different sets of performance

evaluation experiments, which include storage overhead, system throughput, memory

consumption and time latency, and analyses of experimental results, are presented. Af-

ter that, analysis conclusions and recommendations on the use of our system in stream

processing applications are given. Finally, the chapter is concluded.

6.1 Implementation design

In this section, we discuss the design and implementation of our stream provenance sys-

tem. We first describe the detailed design of the provenance service. Then, a justification

of the technologies used in the implementation is discussed.

6.1.1 The provenance service

In our stream provenance system, the provenance service is utilized as a central compo-

nent that provides provenance recording and querying functionalities. It is a wrapper

for three important internal components including the provenance recording module, the

on-the-fly provenance query module and the provenance store. The component diagram

of the provenance service is shown in Figure 6.1

There are two operation modes of the provenance service that can be configured at

system registration time: store provenance assertions mode, and on-the-fly provenance

query mode. The store provenance assertions mode is used to support the persistent

provenance query mechanism, which provenance assertions need to be stored persistently

in a persistent storage (provenance store) before performing a variety of provenance

queries. Another operation mode, on-the-fly provenance query mode, is utilized to sup-

port the on-the-fly provenance query mechanism that incoming provenance assertions

are automatically processed in real-time without any requirement to store them in a

persistent storage.

During a stream-based application’s execution, incoming messages (provenance asser-

tions) generated by all stream operations involved in the execution are received by the

assertion dispatcher, which is responsible for routing the assertions to the appropriate

Chapter 6 Evaluation 123

Assertion dispatcher

Provenance

recording module

On-the-fly

provenance query

module

Stream processing engine

Internal streams

 S1

 S2

 S3

�
...

Provenance store

Stream of incoming

provenance assertions
Stream of on-the-fly

provenance query results

provenance assertions

propagation

Storage manager

Figure 6.1: The provenance service architecture

internal component. Depending on the operation modes of the provenance service con-

figured, the provenance assertions can be sent to either the provenance recording module

or the on-the-fly provenance query module. In the store provenance assertions mode,

the provenance recording module takes each provenance assertion from the assertion

dispatcher and converts the assertion, encoded in the communication medium’s format

(JMS format), into the internal format of the provenance service. Then, the converted

provenance assertion is sent to the storage manager, which is the internal component

responsible for recording the assertion into the provenance store. In the provenance ser-

vice architecture, the storage manager is utilized as a storage abstraction layer. It allows

for several internal components of the provenance service to access the provenance store

(back-end data storage) through various provenance specific functions provided by the

storage manager (e.g. provenance recording and static provenance retrieval functions).

The use of the storage manager also enables different types of back-end data storage to

be deployed without any changes to the provenance service implementation. So, after

receiving messages (provenance assertions) from the provenance recording module, the

storage manager transforms the provenance assertions into SQL statements. Then, the

124 Chapter 6 Evaluation

storage manager communicates with the provenance store via a back-end data storage

connector (e.g. JDBC driver) and records the received provenance assertions to the

provenance store.

The on-the-fly provenance query module plays an important role in the on-the-fly prove-

nance query mode. Similar to the provenance recording module, it takes each provenance

assertion from the assertion dispatcher and transforms the assertion, encoded in the com-

munication medium’s format (JMS format) into the internal format of the provenance

service. Then, it puts each transformed provenance assertion into an inbound queue

(internal queue) of the stream processing engine (Esper stream engine) in order to per-

form straight-through processing on provenance assertions without any requirement to

store them. The on-the-fly provenance query module is not only responsible for routing

provenance assertions to the stream processing engine but also for controlling the exe-

cution of stream processing engine. It queries the provenance store through the storage

manager at system initialization time to obtain auxiliary information pertaining to the

processing flow of a stream-base application (e.g. stream topology, stream operations

used and parameters configured). This auxiliary information is used to automatically

create an internal process (internal streams) of on-the-fly provenance queries inside the

stream processing engine and it is also used to support the dynamic execution of on-

the-fly provenance queries. The processing of on-the-fly provenance queries inside the

stream engine is performed interleaved continuously with the execution of a stream-

based application. Once each query result is generated by the stream processing engine,

it is streamed back to a client application that subscribes to receive query results from

the provenance service via the assertion dispatcher component.

One of the significant challenges for the implementation of on-the-fly provenance queries

is how to create the internal process (internal streams) of on-the-fly provenance queries

dynamically inside the stream processing engine (Esper) and support the continuous

execution of on-the-fly queries over streams of provenance assertions. This challenge

is addressed by utilizing EPL - Event Processing Language (sometime called Stream-

SQL [120]) - provided by Esper. At system initialization time, we query the provenance

store to obtain stream topology information and this information is then used to cre-

ate EPL statements representing internal components and internal streams of on-the-fly

provenance queries. As discussed in Section 5.1, there are three types of internal compo-

nents used in the processing of on-the-fly provenance queries: 1) an assertion separation

unit for each stream, 2) a property stream ancestor function (PSAF) for each stream

operation and 3) a property computing unit. All components of all types of internal

components for on-the-fly provenance queries are created as EPL statements and they

are registered with Esper stream processing engine in order to enable them to process

streams of provenance assertions on-the-fly continuously at execution time. An example

of EPL statements utilized in our implementation is illustrated in Figure 6.2.

Chapter 6 Evaluation 125

(∗ Assertion separation unit ∗)

insert into AS2(timeStamp, seqNo, streamID, delay, property)
select timeStamp, seqNo, streamID, delay, null
from assertions
where streamID = 2

(∗ Property stream ancestor function for time window operation − TWpsaf∗)

insert into PS2(timeStamp, seqNo, streamID, delay, property)
select a.timeStamp, a.seqNo, a.streamID, a.delay,

PropExtract.compute(
(select ∗ from RS1),
a.timeStamp − a.delay,
a.timeStamp − a.delay − w

)
from AS2 a

(∗ Property computing unit ∗)

insert into RS2(timeStamp, seqNo, streamID, delay, property)
select timeStamp, seqNo, streamID, delay,

PropCal.compute(timeStamp, seqNo, streamID, delay, property)
from PS2

Sid = 2
Property

Computing
TWpsaf

AS2 PS2 RS2

RS1

Property stream ancestor function

Property computing unit

Assertion separation unit

Stream of provenance assertions

(assertions)

Figure 6.2: An example of EPL statements utilized in our implementation

126 Chapter 6 Evaluation

As shown in Figure 6.2, three example EPL statements representing three different

types of internal components are presented. Parameters and internal stream IDs that

are replaced by the on-the-fly provenance query module according to stream topology

information are presented in bold font. In this example, the first statement - assertion

separation unit - detects each provenance assertion of stream 2 from streams of prove-

nance assertions (assertions) and then sends it as an element of the assertion stream

AS2 to the property stream ancestor function statement (TWpsaf). The property stream

ancestor function receives elements from both the assertion stream AS2 and the result

stream RS1 and then produces an element of the property stream PS2 based on the

element of AS2 and the provenance related properties extracted from the elements in

RS1 (by using PropExtract function). Finally, the property computing unit statement

receives an element of the property stream PS2, performs property processing (by using

PropCal function) and produces an output containing a new property as an element of

the result stream RS2.

6.1.2 Technologies used

We now discuss the technologies used in our implementation and the rationale behind

their selection. Heterogeneity of platform is an important issue in distributed systems.

This heterogeneity motivates us to choose Java as the implementation language. By

using Java, our implementation can be run under several operating systems (that have

Java Virtual Machines) such as Windows, Linux and Solaris without recompilation. The

selection of Java satisfies the ease of installation requirement as well, due to the fact

that implementation is not needed to re-compile the code for a specific platform. Ar-

chitecture scalability is another significant issue. This scalability motivates us to select

Apache ActiveMQ – an open source message broker software [128] – as our messaging

framework. ActiveMQ provides a transport infrastructure that enables all components

of the implementation to work together. It also provides a scalable environment in

which we can easily deploy additional components. In addition, ActiveMQ allows us

to seamlessly handle interactions with other applications using disparate technologies.

For the transport protocol, the Java Message Service (JMS) Protocol [122] has been

selected. JMS allows components of our systems to communicate between each other

asynchronously via a point-to-point model - a model where senders and receivers ex-

change intermediate messages by using message queues. Moreover, JMS enables the

implementation to stream messages preserving their order. This satisfies the required

characteristics that a stream processing system should have.

To facilitate the stream processing environment, real-time processing and instantaneous

response are the key features. Esper [46] - an open source event stream processing engine

for event-driven architectures - is used as our stream processing engine because it satisfies

these requirements. Esper also conforms to other unique characteristics of a stream

Chapter 6 Evaluation 127

processing system: straight-through processing, continuous and long-running queries

and order based and time based operations. By implementing Esper inside ActiveMQ

components, each stream processing unit can exploit stream-specific functions such as

stream filters, continuous queries, and pattern matching. Finally, MySQL [106] is used

as a back-end data storage that offers long-term persistence for provenance assertions

recorded by stream-based applications. The selection was made for a number of reasons.

First, MySQL supports multi-user access which allows for different internal components

of provenance service to simultaneously access to a back-end database. Second, MySQL

supports several different storage engines that allows us to choose the one that is most

suitable for particular applications. In addition, MySQL provides the mysql JDBC

type 4 driver which can communicate directly with databases. This JDBC driver is

not required to translate the requests or to pass through middleware layers; so that it

enhances performance considerably compared to other types of JDBC.

It is necessary to note that in all of our experiments, we choose MyISAM for MySQL

as our storage engine. The selection of MyISAM is based on the fact that MyISAM

is designed specifically for managing non-transactional tables. It provides high-speed

storage and retrieval that satisfy the unique requirements for stream processing. It is

also considered to be the storage engine for MySQL that offers the smallest disk space

consumption. Therefore, the selection of MyISAM directly supports our experiment

pertaining to the storage overhead of our implementation when provenance information

is recorded persistently in the provenance store.

The following is a list of the software used in the implementation:

1. Apache ActiveMQ 5.x - Message broker software

2. Esper 3.x - Stream processing engine

3. MySQL 5.x and MyISAM storage engine - Back-end relational database manage-

ment system (RDBMS)

4. Sun Java Developer Kit (JDK) 1.5.x

6.2 Evaluation environment

For all experiments used in this evaluation, the experimental set-up was as follows: Our

provenance service and a stream processing system were hosted on a server computer

with Intel Xeon Quad Core CPU running at 1.60GHz and 4 GB of memory (RAM).

The server runs the Red Hat Linux operating system version 4.1.1-52 with Linux ker-

nel version 2.6.18-8.1.4.el5. To store provenance information, our implementation used

MySQL database 5.0.22 as a back-end data storage and MyISAM - the default storage

engine of MySQL - is used as our storage engine.

128 Chapter 6 Evaluation

All our application components, including the stream processing system and the prove-

nance service, were implemented in Java and were run using the the Java 1.5.0 15-b04

Server Virtual Machine with Java HotSpot Just-In-Time compilation enabled. The min-

imum and maximum heap sizes that are set to be allocated for Java Virtual Machine at

the initialization time are 1024 MB (1 GB). The provenance service uses Connector/J -

the JDBC driver for MySQL (type 4) - as an API to communicate with the back-end data

storage (provenance store). Furthermore, all components used in our implementation

including the stream processing system, the provenance service and the message broker

software (Apache ActiveMQ 5.3.1) were run within the same Java Virtual Machine.

In all our experiments, map operations are mainly used. This selection was made for

several reasons. For the first two sets of experiments (the storage overheads and the

system throughput), both of them mainly focus on the impact of provenance recording

on system performance with respect to storage consumption and runtime overheads.

Because we utilize the same provenance recording method for all stream operations -

provenance assertions of individual elements of input streams have to be recorded by

each stream operation during application’s execution, map operations are considered as

a representation for all different types of stream operations. In the case of the memory

consumption and the time latency experiments, both of them aim to examine the effect

of on-the-fly provenance query processing. Because of the unique characteristics of our

on-the-fly provenance mechanism that require provenance assertions to be temporarily

buffered in memory and utilize stream operation parameters (e.g. the size of data

window) to control the size of data buffer, we therefore considered to use two different

types of stream operations (map and time-window operations). The use of map and

time-window operations allows us to demonstrate the effect of our on-the-fly provenance

mechanism when a number of assertions buffered increases.

6.3 Storage overheads for provenance collection

We now evaluate our fine-grained provenance solution in terms of storage consumption

on a synthetic processing flow of a stream processing system. This evaluation aims to

establish that our storage reduction technique can significantly reduce the amount of

storage space consumed when provenance is collected. We compare storage space con-

sumed by the implementation of our provenance solution applying our storage reduction

technique (optimized stream ancestor function) to another implementation that does

not employ the reduction technique (unoptimized stream ancestor function).

The experiments were run with a stream producer submitting input stream events to

our stream processing system. After stream events were fed into the stream system,

provenance assertions for individual stream events were recorded to a provenance store.

The synthetic processing flow used in our storage experiments is a linear stream process-

Chapter 6 Evaluation 129

ing flow where stream operations are chained together and each component takes input

events from a previous component. In each set of experiments, we first measured the

original storage cost of provenance recording (without applying the storage reduction

technique). This experiment aims to demonstrate how much storage space the system

requires to store every intermediate stream element. Then, we measured the storage

cost resulting from the system that applies our reduction technique. By analyzing the

storage measurements collected from these experiments, we can indicate the percentage

of storage space we can save when applying our reduction technique.

To understand the variation of storage overheads incurred by the system, the number

of stream components used in the experiments was increased from 2 up to 15. Two

message payload sizes, 100 Bytes and 1 Kbytes, were considered to demonstrate the

storage overheads for different message sizes. For each test, the number of stream events

fed to the stream system was 100,000 stream events. The total number of provenance

assertions recorded in a provenance store can be calculated as the number of events fed

multiplied by the number of data streams used. This number of provenance assertions

is indicative of the amount of data held within a provenance store.

Table 6.1: Mathematical Symbols for storage formulas

Symbol Definition

SCSAF−unopt Storage cost of the unoptimized stream ancestor function

SCSAF−opt Storage cost of the optimized stream ancestor function

MCSAF−unopt Marginal cost of the unoptimized stream ancestor function

MCSAF−opt Marginal cost of the optimized stream ancestor function

SS The percentage of storage saved

k Size of an event key

e Size of an event’s content

m No. of messages fed to a stream processing system

fs No. of first-input streams - streams that enter a stream system

from data sources and are first processed by stream operations

is No. of intermediate streams - streams that are sent or received

between stream operations in a stream processing system

The storage cost for provenance collection in our provenance solution for streams can be

explained in terms of some straightforward mathematical formulas. We can use these

formulas to predict the amount of storage consumed by our system when provenance is

collected. Table 6.1 lists the mathematical symbols used in our storage formulas. For

the unoptimized stream ancestor function approach (unoptimized SAF) which stores

every intermediate stream element persistently in a provenance store, we can derive the

storage cost from the following equation:

SCSAF−unopt = ((k + e) ∗m) ∗ (fs + is)

130 Chapter 6 Evaluation

For the optimized stream ancestor function approach (optimized SAF), only contents of

stream elements that act as the first input to a stream processing system are recorded.

The content of each intermediate event is discarded and only its event key is stored.

Hence, the storage cost for provenance collection can be calculated as follows:

SCSAF−opt = (((k + e) ∗m) ∗ fs) + ((k ∗m) ∗ is)

By utilizing the storage formulas previously presented, we can derive the percentage of

storage saved (SS) from the following equation:

SS =

(
SCSAF−unopt − SCSAF−opt

SCSAF−unopt

)
∗ 100

In addition, we can further utilize the storage measurement information to predict the

marginal cost of storage consumption for provenance collection. In our storage consump-

tion context, we will consider the marginal cost of storage consumption as the amount

of storage space that is required for adding an additional stream component to a stream

processing system. This information can be used by application developers to ascertain

the impact that provenance recording will have when integrated with their application.

For the unoptimized stream ancestor function approach, we can derive the marginal cost

of storage consumption for provenance collection from the following equation:

MCSAF−unopt = (k + e) ∗m

For the optimized stream ancestor function approach, the marginal cost of storage con-

sumption for provenance collection can be calculated as follows:

MCSAF−opt =
SCSAF−opt − (((k + e) ∗m) ∗ fs)

is
or

MCSAF−opt = (k ∗m)

Note that, the marginal cost only focuses on the cost of adding one more component

(stream operation) to a stream system. Therefore, in the equation above (MCSAF−opt),

Chapter 6 Evaluation 131

the fixed storage cost incurred by the recording of the contents of stream elements that

act as the first input streams to a stream system is not used in the calculation.

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14

S
to

ra
ge

 s
pa

ce
 (

M
B

)

Number of stream components

Storage space as the number of components increases (message size: 100 bytes)

errorbar: unoptimized SAF
errorbar: optimized SAF

unoptimized SAF
optimized SAF

unoptimized SAF (predicted)
optimized SAF (predicted)

Figure 6.3: Provenance storage cost for 100 bytes stream events

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14

S
to

ra
ge

 s
pa

ce
 (

M
B

)

Number of stream components

Storage space as the number of components increases (message size: 1 KBytes)

errorbar: unoptimized SAF
errorbar: optimized SAF

unoptimized SAF
optimized SAF

unoptimized SAF (predicted)
optimized SAF (predicted)

Figure 6.4: Provenance storage cost for 1 Kbytes stream events

132 Chapter 6 Evaluation

 0

 20

 40

 60

 80

 100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e
rc

e
n
ta

g
e
 o

f
st

o
ra

g
e
 s

a
ve

d
 (

%
)

Number of stream components

Percentage of storage saved as the number of components increases (message size: 100 bytes)

Actual storage saved
Predicted storage saved

Figure 6.5: Percentage of storage saved for 100 bytes stream events

 0

 20

 40

 60

 80

 100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e
rc

e
n
ta

g
e
 o

f
s
to

ra
g
e
 s

a
v
e
d
 (

%
)

Number of stream components

Percentage of storage saved as the number of components increases (message size: 1 KBytes)

Actual storage saved
Predicted storage saved

Figure 6.6: Percentage of storage saved for 1 Kbytes stream events

Chapter 6 Evaluation 133

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14

S
to

ra
g

e
 s

p
a

ce
 (

M
B

)

Number of stream components

Marginal cost of storage consumption for provenance collection (message size: 100 bytes)

Marginal cost for unoptimized SAF
Marginal cost for optimized SAF

Figure 6.7: Marginal cost of storage consumption for 100 bytes stream events

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14

S
to

ra
g

e
 s

p
a

ce
 (

M
B

)

Number of stream components

Marginal cost of storage consumption for provenance collection (message size: 1 KBytes)

Marginal cost for unoptimized SAF
Marginal cost for optimized SAF

Figure 6.8: Marginal cost of storage consumption for 1 Kbytes stream events

134 Chapter 6 Evaluation

Figure 6.3 and 6.4 show the storage cost needed to store provenance information for

different provenance storage approaches and different payload sizes (message sizes). The

storage cost presented in the both figures are an average from ten trials. We show the

storage cost observed for the synthetic processing flow applying our storage reduction

technique (optimized stream ancestor function - optimized SAF) and the other that

does not employ the storage reduction technique (unoptimized stream ancestor function

- unoptimized SAF). The predicted storage cost of both approaches derived from our

storage formulas are also presented. In both figures, the storage cost of unoptimized SAF

grows significantly because both event keys and event contents for every intermediate

events need to be stored in a provenance store. On the other hand, compared to the

optimized SAF which applies the storage reduction technique, the amount of storage

consumed by the stream system is just slightly increased. This is because many event

contents for every intermediate event are discarded (except the contents of stream events

that are the first input to the system).

The storage saving rates shown in Figure 6.5 and 6.6 indicate that our storage reduction

technique (optimized SAF) is extremely effective when dealing with large message sizes.

For instance, at 10 stream components, the percentage of storage space we can save

from discarding event contents of intermediate stream elements with 1 Kbytes payloads

is almost 85 percent. It is much higher than the percentage of storage saved for 100

bytes payloads stream events at the same number of stream components which is about

60 percent. This finding shows that the bigger the message size that a stream processing

system exploits, the greater the storage overheads can be saved by our storage reduction

technique. The storage saving rates described here not only present the suitability of our

storage reduction approach for dealing with large message sizes, but also demonstrate

the efficiency of our storage reduction approach to reduce the storage overheads for

provenance collection. For example, according to Figure 6.6, it is obvious that, at 15

stream components, the storage cost for provenance collection can be reduced by almost

90 percent by utilizing our storage reduction technique (optimized SAF). Therefore, it

can be concluded that by applying our storage reduction technique, the storage overhead

resulting from recording contents of stream events can be reduced significantly.

Furthermore, the marginal cost of storage consumption in Figure 6.7 and 6.8 indicates

that our storage reduction solution can economize the storage cost for provenance col-

lection when a stream processing system is scaled up. In the both figures, the marginal

cost for unoptimized SAF and that for optimized SAF remain stable when the num-

ber of stream components increases. However, the fixed rate of the marginal cost for

optimized SAF is considerably less than that for unoptimized SAF. Compared to unopti-

mized SAF, the percentage of the marginal cost reduced by the optimized SAF approach

for 100 bytes payloads stream events is around 65 percent and that for 1 Kbytes pay-

loads stream events is about 95 percent. These results show the substantial reduction

in storage consumption when stream components increase. The results not only present

Chapter 6 Evaluation 135

the fixed rate of storage cost but also indicate that the marginal cost for the optimized

SAF does not depend on the size of a stream event (size of event content). It is obvious

that the marginal cost for optimized SAF is relatively low, about 5 MB for both 100

bytes stream events and 1 Kbytes stream events experiments (for 100,000 input stream

events). Therefore, with the considerably smaller and fixed marginal cost (based on the

number of input stream events), practical storage cost control can be maintained by

application developers when a stream processing system needs to be scaled up.

6.4 Provenance recording impact

The impact of provenance recording on stream processing system performance is now

evaluated. The purpose of this evaluation is to observe the impact of provenance record-

ing on a stream processing system, and to understand how much our provenance solu-

tion penalizes stream processing in a controlled environment. In this evaluation, system

throughput - the number of messages (stream events) processed by a stream processing

system over a given interval of time - is used as our performance indicator. We compare

the system throughputs obtained from the implementation of our provenance solution

using different provenance processing modes to another implementation that does not

process or record any provenance-related information (a stream processing system under

normal processing).

The experiments were run with a stream producer submitting input stream events to

our stream processing system. Similar to the storage experiments, after stream events

were fed into the stream system, provenance assertions for individual stream events were

recorded through the use of a provenance service. The synthetic processing flow used

is a linear stream processing flow where stream components (stream operations) are

chained together and each component takes input events from a previous component.

In each set of experiments, we first measured the system throughput of the implemen-

tation of a stream processing system that does not record provenance information. This

experiment aims to demonstrate how much is the system throughput that we can ex-

pect under normal processing (without provenance recording). Then, we measured the

system throughput of a stream processing system that records provenance information

for different provenance processing modes of the provenance service including: 1) “Just

receive provenance assertions” (without any provenance processing by the provenance

service), 2) “Store provenance assertions” into a provenance store, and 3) “Perform on-

the-fly provenance queries” over provenance assertions received. This experiment aims

to present the effect of provenance recording on the system throughput of a stream

processing system applying our different provenance processing approaches.

To understand the impact of provenance recording when a stream processing system is

scaled up, the number of stream components (stream operations) used in the experi-

136 Chapter 6 Evaluation

ments was increased from 2 up to 15. In addition, we note that widely varying delays in

processing are common in real-life stream-based applications. The delays in processing

are usually caused by high-volume data streams and complex calculation of stream pro-

cessing operations. However, the processing delays, in some stream-based applications,

result from the processing of stream operations that do not require intensive or complex

calculation as well. Examples of these stream operations include the in-order stream

processing operations [85] - operations that need to force order on their input stream

elements during execution - and the blocking stream operations [55] - operations that

are required to wait until all input stream elements are available for their computation.

Furthermore, because we assume that our stream processing system is implemented as

a distributed system where stream execution can be computed at different nodes in

the system, so instead of focusing on the computational loads and the complexity of

stream computation performed, we observe the impact of processing delays on system

performance when provenance information is recorded. We consider the delays in stream

processing as significant parameters that can represent the processing of the wide vari-

ety of stream-based applications. Four different time delays in stream processing - no

delay, 1ms, 2ms and 3ms - were considered in the experiments. With the introduction of

various time delays in stream processing, we can better understand the impact of prove-

nance recording on a stream processing system’s performance and we can also evaluate

the effectiveness of our provenance system when dealing with real-life stream processing

systems at different time delays for stream processing.

It is important to note that all components used in the provenance recording impact

experiments, including all stream processing component (stream processing operations)

in a stream processing system and a provenance service, were run in the same Java

Virtual Machine (JVM). During the experiments, no other applications were running and

using resources on the system under test. In addition, before starting each measurement,

we introduced a warm-up or ramp-up period. This interval is utilized as the time for

loading all necessary java classes and allocating all the necessary resources in order

that the implementation of our stream provenance system can be run with full message

handling capacities. System throughput information was collected and calculated after

the warm-up period. Each test was run ten times, and measurements were averaged to

obtain the final results.

Figure 6.9 displays the system throughputs of our implementations of stream processing

systems with no time delays in processing, as a number of stream components increases.

The figure shows a significant drop-off in the system throughput of the implementation

that does not record provenance-related information (no provenance) from the maxi-

mum throughput (around 23,000 messages/second). Similar but significant lower trends

in system throughput were observed for the other implementations that record prove-

nance information. At the same number of stream components, the performance (system

throughput) decreases more than 50 percent for all implementations compared to the

Chapter 6 Evaluation 137

 0

 5000

 10000

 15000

 20000

 25000

 2 4 6 8 10 12 14

S
ys

te
m

 t
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

e
co

n
d

)

Number of stream components

Comparison of system throughputs as the number of components increases (no delay)

errorbar: No provenance
errorbar: Just receive provenance assertions

errorbar: On-the-fly provenance query
errorbar: Store provenance assertions

No provenance
Just receive provenance assertions

On-the-fly provenance query
Store provenance assertions

Figure 6.9: Comparison of system throughputs for no delay in stream processing

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14

S
ys

te
m

 t
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

e
co

n
d

)

Number of stream components

Comparison of system throughputs as the number of components increases (delay: 1 ms)

errorbar: No provenance
errorbar: Just receive provenance assertions

errorbar: On-the-fly provenance query
errorbar: Store provenance assertions

No provenance
Just receive provenance assertions

On-the-fly provenance query
Store provenance assertions

Figure 6.10: Comparison of system throughputs for 1 ms delay in stream processing

138 Chapter 6 Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

S
ys

te
m

 t
h
ro

u
g
h
p
u
t
(e

ve
n
ts

/s
e
co

n
d
)

Number of stream components

Comparison of system throughputs as the number of components increases (delay: 2 ms)

errorbar: No provenance
errorbar: Just receive provenance assertions

errorbar: On-the-fly provenance query
errorbar: Store provenance assertions

No provenance
Just receive provenance assertions

On-the-fly provenance query
Store provenance assertions

Figure 6.11: Comparison of system throughputs for 2 ms delay in stream processing

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

S
ys

te
m

 t
h
ro

u
g
h
p
u
t
(e

ve
n
ts

/s
e
co

n
d
)

Number of stream components

Comparison of system throughputs as the number of components increases (delay: 3 ms)

errorbar: No provenance
errorbar: Just receive provenance assertions

errorbar: On-the-fly provenance query
errorbar: Store provenance assertions

No provenance
Just receive provenance assertions

On-the-fly provenance query
Store provenance assertions

Figure 6.12: Comparison of system throughputs for 3 ms delay in stream processing

Chapter 6 Evaluation 139

 0

 10

 20

 30

 40

 50

 60

 70

 80

No-delay Delay:1ms Delay:2ms Delay:3ms

P
er

ce
nt

ag
e

of
 p

ro
ce

ss
in

g
ov

er
he

ad
 (

%
)

Percentage of processing overhead for different delays in stream processing

Just receive provenance assertions
On-the-fly provenance query
Store provenance assertions

Figure 6.13: Percentage of overheads for different delays in stream processing

case of “no provenance” implementation. We determined that this degradation is due to

the introduction of provenance recording functionality which doubles the number of data

streams maintained by the message broker software (Apache ActiveMQ). Overall, the

processing overhead of the on-the-fly provenance query implementation is slightly greater

than that of the store provenance assertions. This can be explained by the character-

istic of on-the-fly provenance query approach (stream-specific query approach),where

provenance assertions are recorded as a stream and at the same time that incoming

provenance assertions are received, provenance queries are executed continuously by a

provenance service. This processing characteristic directly causes some processing over-

heads to the provenance system compared to the store provenance assertions approach

(or the persistent provenance query mechanism that stores assertions persistently before

performing queries later) which only receives provenance assertions and records them

directly to a provenance store.

Figure 6.10, 6.11 and 6.12 demonstrate the system throughputs of our implementations

that increase time delays for stream processing. The time delays are increased from

no delay to 1ms, 2ms and 3ms respectively. In Figure 6.10, all system throughputs

significantly drop from that in “no processing delay” experiment (shown in Figure 6.9)

as expected due to the introduction of time delay 1ms. The overall trends of the system

throughputs for our implementations using different provenance recording approaches

has been changed by the introduction of time delay as well. The system throughputs

of both on-the-fly provenance query and store provenance assertions implementation

140 Chapter 6 Evaluation

gradually decrease when a number of stream components increases. This degradation of

the system throughputs is considerably smaller compared to the reduction of the system

throughputs in “no processing delay” experiment. In addition, as shown in Figure 6.11

and 6.12, the trends of the system throughputs for all our implementations are almost

flat and there are almost no significant difference between the system throughputs of

“no provenance” implementation and that of both on-the-fly provenance query and store

provenance assertions implementations. The more the time delay for stream processing

increases the more the processing overheads for provenance recording can be reduced.

As a result, we conclude that the overheads caused by our provenance solution can be

greatly reduced when the time delay of a stream processing system is large.

In Figure 6.13, the percentage of the processing overheads incurred by our implemen-

tations for different provenance recording approach is summarized as the time delays

for stream processing increase. For the ‘no processing delay” experiment, the aver-

age overheads when provenance information is recorded are excessively high - about 70

percent for store provenance assertions approach and nearly 75 percent for on-the-fly

provenance query approach. On the other hand, when the time delays for stream pro-

cessing are introduced - 1ms, 2ms and 3ms respectively -, the overheads are significantly

reduced to be less than 10 percent for all our provenance recording approaches. For

example, in “1ms processing delay” experiment, the percentage of overheads for store

provenance assertions approach is about 4 percent and that for on-the-fly provenance

query approach is nearly 7 percent, both of which are relatively low. Considering that,

in real-life stream-based applications, delay time for stream processing is very common

and it generally occurs in wide variety of stream-based applications. Therefore, with

the experimental results, we can establish that the impact of provenance recording is

relatively small or more particularly the processing of provenance recording in our prove-

nance solution generally does not have a significant effect on the normal processing of

stream processing systems. In addition, these performance figures also guarantee that

our provenance solution - including both the on-the-fly provenance query and the store

provenance assertions - offer reasonable and acceptable processing overheads.

6.5 Memory consumption for a provenance service

This evaluation aims to examine the effect of the provenance processing on the normal

processing of a provenance service, particularly with respect to memory consumption.

We compare the amount of memory consumed by the implementation of our provenance

service applying on-the-fly provenance query approach to another implementation that

does not perform any further processing on provenance-related information received

(provenance assertions submitted by a stream processing system are just received and

then discarded by the provenance service).

Chapter 6 Evaluation 141

In our memory consumption experiments, a linear processing flow - synthetic stream

processing flow where stream components are chained together and each component

takes input events from a previous component - was utilized for a stream processing

system. In each set of experiments, we first measured the actual memory space used by

the provenance service when provenance assertions are just collected but not executed as

the number of stream components increases. The result of this experiment is utilized as

a performance baseline which indicates the normal amount of memory consumed by the

provenance service without provenance processing. Then, we measured the actual mem-

ory space used by the provenance service that is operated on the on-the-fly provenance

query mode. This experiment aims to present the effect of provenance processing on the

memory consumption of the provenance service when provenance-related information is

computed (performing on-the-fly provenance queries over provenance assertions).

It is important to note that the provenance service used in our memory consumption

experiments was run in a separate JVM (different from the one used to run a stream

system). The use of a separate JVM allows us to measure the amount of memory

allocated only for the provenance service. The memory space we measured is the Java

heap memory - the area of memory utilized by the JVM for dynamic memory allocation

(store the new objects being created). In addition, for every run for each stream topology

(each number of stream components used), a fresh JVM was used. This means that our

provenance service is executed and run in a new JVM instance every time that a new

measurement (a new run) for each stream topology is started. This experiment set-up is

used to ensure that there is no effect from the previous run on the current measurement

(no objects from the previous run that occupy Java heap spaces when the new run

is started). In this evaluation, the input stream events were submitted to a stream

processing system at a rate of an event per millisecond. Measurements were taken after

receiving 1000 provenance assertions and measurements were averaged to obtain final

results.

To investigate the change of the memory consumption of the provenance service when

a stream processing system is scaled up, the number of stream components used in the

experiments was increased from 2 up to 10. In addition, two different stream operations

are considered: Map and Sliding time-based window operations. The reason behind the

use of two stream operations is because for some stream operations (e.g. Time-based

window), a number of provenance assertions has to be buffered (in memory) until it is

used in the processing of on-the-fly provenance queries. This persistence of provenance

assertions in memory potentially increases the amount of memory consumed by the

provenance service. Therefore, by using different stream operations in our memory

consumption experiments, we can demonstrate the transformation of the amount of

memory consumed when some provenance assertions are buffered during the processing

of on-the-fly provenance queries and we can also present how accurate is our memory

prediction equation.

142 Chapter 6 Evaluation

Table 6.2: Mathematical Symbols for memory prediction formulas

Symbol Definition

MS Memory space consumed for the on-the-fly provenance query mode

MC Marginal cost of memory consumed for the on-the-fly provenance query

c No. of stream components

EP Memory size of additional classes for Esper stream engine

QEP Size of an inbound queue of Esper stream engine

AS Memory size of each provenance assertion

w No. of provenance assertions stored in data windows (temporary buffers)

of Esper engine for the on-the-fly provenance query mode

The memory consumption of a provenance service can be estimated by using a straight-

forward mathematical formula. We can utilize the formula to predict the amount of

memory consumed by our system when provenance information is processed. Table 6.2

lists the mathematical symbols used in our memory prediction formula. For the on-

the-fly provenance query, the amount of memory space consumed can be calculated as

follows:

MS = Initial memory + EP + (QEP ∗AS) + (c ∗ w ∗AS)

According to the memory prediction formula, the initial memory is defined as the amount

of memory consumed by the provenance service when provenance assertions are just

received but not executed (no provenance processing). Because Esper stream engine is

added to the provenance service to provide straight-through processing over streams of

provenance assertions supporting the on-the-fly provenance query (discussed in Section

6.1), EP - the memory size of additional classes for Esper - is a required parameter.

Furthermore, due to the fact that all incoming events (provenance assertions) need to be

placed in Esper’s inbound queue for on-the-fly processing, the size of Esper’s inbound

queue QEP is another important parameter for memory calculation. The last term -

(c∗w∗AS) - describes a total number of assertions temporarily stored in the internal data

buffers of Esper for each stream operations. Note that, in this formula, we particularly

focus on the case that every stream operation has the same size of data windows (w).

So, in the case that the difference sizes of data windows are used, the last term needs to

be modified in order to accurately calculate the memory consumption. For example, in

the case of two length-windows of size 10 and 20 events respectively, we can derive the

memory prediction formula as follows:

MS = Initial memory + EP + (QEP ∗AS) + (10 * AS) + (20 * AS)

Chapter 6 Evaluation 143

In addition, we can further utilize the memory prediction formulas to predict the marginal

cost of memory space consumed. In this context, the marginal cost is calculated by using

the difference between the fixed memory space consumed for a single stream component

and the memory space used for the actual number of stream components divided by the

number of stream components increased. The marginal cost of memory space consumed

is calculated by the following equations:

MC =
MS −MS(for a single stream component)

(c− 1)

Figures 6.14 and 6.15 present the actual memory space consumed by our implementation

of a provenance service for the map operations and the sliding time window operations

experiments respectively, as the number of stream components (stream operations) in-

creases. The predicted memory space consumed for our on-th-fly provenance query

approach is also presented. The memory size for the on-the-fly provenance query ap-

proach is slightly higher in Figure 6.14 (map operation experiment), and significantly

higher in Figure 6.15 (time window operation experiment) as the number of stream

components increases, compared to that for the baseline (Just receive provenance asser-

tions). For instance, at 10 stream components, the memory size for the baseline and

the on-the-fly provenance query in the map operation experiment are about 98 and 102

MB respectively (the difference of memory size is around 4 MB) compared to that in

the time window operation experiment which are around 98 and 115 MB (the difference

of memory size is around 17 MB). We determine that this increase of memory size is

due to the processing of on-the-fly provenance queries that needs to store provenance

assertions received in the memory (both in an inbound queue and in temporary data

windows of a stream engine during the execution of provenance queries) and also the

introduction of the Esper stream engine added to the provenance service to provide

on-the-fly provenance query functionality.

In addition, considering the fact that when the type of stream operations is changed

from Map operations (in Figure 6.14) to Sliding time window operations (in Figure

6.15), the memory size consumed for the on-the-fly provenance query approach goes up

considerably. This can be explained because, for the time window experiment, about

1000 provenance assertions are required to be stored in the memory for each internal

assertion stream of the stream engine during execution time (the size of data window

used is 1 seconds and the stream rate is an event per millisecond). Furthermore, when the

number of stream components increases, the number of internal assertion streams of the

stream engine increases as well. The greater the number of provenance assertions needed

to be stored in memory for processing, the greater the memory space consumed by our

provenance solution. Therefore, from the experimental results, we can conclude that

the amount of memory space consumed for the on-the-fly provenance query approach

144 Chapter 6 Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 s

iz
e

 (
M

B
)

Number of stream components

Memory consumption as the number of stream components increases (Map operation)

errorbar: Just receive assertions
errorbar: On-the-fly provenance query

Just receive provenance assertions
On-the-fly provenance query

On-the-fly provenance query (predicted)

Figure 6.14: Memory consumption for a provenance service (Map operation)

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 s

iz
e

 (
M

B
)

Number of stream components

Memory consumption as the number of stream components increases (Time-window operation)

errorbar: Just receive assertions
errorbar: On-the-fly provenance query

Just receive provenance assertions
On-the-fly provenance query

On-the-fly provenance query (predicted)

Figure 6.15: Memory consumption for a provenance service (Time-window operation)

Chapter 6 Evaluation 145

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

M
e
m

o
ry

 s
iz

e
 (

M
B

)

Number of stream components

Marginal cost of memory consumption as the number of stream components increases

On-the-fly provenance query (Time-window operation)
On-the-fly provenance query (Map operation)

Figure 6.16: Marginal cost of memory space consumed

depends upon the types of stream operations used and the size of data windows specified

for each stream operation (the size of data windows indicates the amount of assertions

required to be buffered in memory).

Furthermore, as shown in Figures 6.16, the overall trend of the marginal cost of memory

space consumed remains stable for both the map operation experiment and the time-

window operation experiment as the number of stream components increases. The result

also shows that the marginal cost is relatively low compared to the total memory space

consumed. For example, the average marginal cost of memory size for the on-the-fly

provenance query in the map operation experiment is slightly less than 0.5 MB and also

that in the time window operation experiment is about 1.8 MB. With these experimental

results, we can conclude that the memory consumption for a provenance service may vary

slightly based on the types of stream operations and the size of data windows utilized in

a stream processing system, but the marginal cost of memory space consumed for our

provenance solution is relatively low and reasonable.

6.6 Time latency for on-the-fly query processing

We now examine the overall runtime overheads for our on-the-fly provenance query ap-

proach by measuring the time latency while a stream processing system records prove-

nance assertions for individual stream elements and provenance query results are con-

146 Chapter 6 Evaluation

tinuously generated as a stream by on-the-fly provenance queries. In this context, the

time latency for on-the-fly provenance queries is defined as a period of time differ-

ence between a stream system produces a stream processing result and a corresponding

provenance-related property is computed. This evaluation aims to establish that our on-

the-fly provenance query approach offers low-latency query processing and can provide

real-time or near real-time query responses.

In this experiment, we use a linear stream processing flow where stream components

(stream operations) are chained together and each component takes input events from

a previous component. Three different chains of stream operations are considered: Map

operations, Time-windows of size 10ms and Time-windows of size 100ms. The reason

behind the use of different stream operations is because for some stream operations

(e.g. Time-based window operation), more than one provenance-related properties have

to be calculated in the processing of provenance queries. This may cause some runtime

overheads and potentially results in delayed query results. Furthermore, because the size

of data windows indicates the amount of provenance assertions required to be buffered in

memory, therefore we consider the size of data windows as another factor that potentially

has an impact on time latency. To understand the overhead cost of our on-the-fly query

solution when a stream processing system is scaled up, we increased the number of stream

components used in the experiment from 2 up to 10. With the use of three different

chains of stream operations and the increase of the number of stream components utilized

in the experiment, we can better understand the performance characteristics of our

on-the-fly query approach and we can also evaluate the effectiveness of the on-the-fly

provenance query when dealing with difference scales of stream processing systems.

In order to obtain the time latency for each stream processing result, we first measured

the time that a stream processing system produces an output. Then, we compared it

with the time that the corresponding provenance-related property is generated by our

provenance service. For each test, 100,000 input stream events were submitted to a

stream processing system (at a rate of an event per millisecond). Measurements were

averaged to obtain the final results (average time latency). Note that, all components

used in the time latency evaluation, including all stream component in a stream system

and a provenance service, were run in the same Java Virtual Machine (JVM). During

the experiment, no other applications were running and using resources on the system

under test. We measured the time latency for each stream processing result after the

warm-up period (to ensure that all necessary classes and resources are loaded).

Figure 6.17 displays the average time latency of the implementation of our on-the-fly

provenance query solution, as a number of stream components increases. We show the

time latency observed for the chain of map operations, the chain of time-windows of size

10 ms and the chain of time-windows of size 100 ms. In the figure, as the number of

stream components increases, the time latency for the chain of map operations remains

stable (at around 0.3 ms). On the other hand, the time latency for both chains of time-

Chapter 6 Evaluation 147

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

tim
e

(m
s)

Number of stream components

Average latency for on-the-fly query approach as the number of components increases

errorbar: Chain of map operations
errorbar: Chain of time-window operations (window size: 10 ms)

errorbar: Chain of time-window operations (window size: 100 ms)
Chain of map operations

Chain of time-window operations (window size: 10 ms)
Chain of time-window operations (window size: 100 ms)

Figure 6.17: Average time latency for on-the-fly provenance query approach

window operations increases significantly. This can be explained by the characteristic

of on-the-fly provenance query processing that for windowed operations such as time-

window and length-window operations, internal data buffers of a stream engine (Esper)

are used to store intermediate provenance assertions during query execution. This results

in an increase of the average delay time in query processing. In addition, as shown in the

latency graph, there are no significant differences between both chains of time-window

operations in time latency for on-the-fly query processing. These results indicate that

the increase of the size of time windows or more particularly the amount of provenance

assertions stored in data buffers does not have a significant impact on time latency. From

the latency graph, the average time latency increased per additional stream component

is about 0.3 ms. Therefore, with a relatively low latency per additional component, we

can guarantee that our on-the-fly query solution offers low-latency processing, which

is critical for stream systems, and we can also establish that our solution can provide

provenance query results in real-time or near real-time.

6.7 Analysis

Based on our experimental evaluation, we offer a set of recommendations for applica-

tion developers to use when integrating our provenance solution with their applications.

These recommendations are presented in terms of trade-offs by which developers can

decide what costs are worth suffering for what benefits and which mechanism is the

most suitable for their applications.

148 Chapter 6 Evaluation

6.7.1 Replay execution and multiple queries vs. storage space

The ability to reproduce stream events is very important and useful for stream process-

ing systems. It allows users to replay stream execution with new input in order to obtain

precise and up-to-date stream processing results. It also allows the original results pro-

duced by stream processing systems to be validated, so that users can have confidence

and trust in the results. The ability to perform provenance queries multiple times over

persistent provenance information is another significant function for stream provenance

systems. This function allows users to perform a variety of provenance queries to an-

swer various types of provenance questions and also to track the provenance of stream

elements at whatever time users need. However, to support these two important func-

tions, provenance information needs to be recorded in a long-term persistent storage

(provenance store). As presented in several studies on provenance tracking in stream

processing systems [134, 96, 72], the persistence of the provenance information of high

volume stream events potentially results in a storage burden problem. Therefore, appli-

cation developers face a trade-off between the capability to replay stream execution and

perform provenance queries multiple times, and the amount of storage space consumed

for recording provenance information.

From our experimental evaluation, as shown in Figures 6.3 and 6.4, the storage space

consumed by the implementation of our provenance solution for provenance recording

can be significantly reduced by applying the storage reduction mechanism (optimized

stream ancestor function). Our storage reduction mechanism offers not only the reduc-

tion of storage overheads but also a constant storage cost when a stream processing

system is scaled up. Furthermore, application developers can estimate the physical stor-

age space used for their stream provenance systems during the system design process by

using our storage prediction formulas. Therefore, for the stream-based applications that

require the replay execution and multiple provenance query functionalities, they should

exploit the store provenance assertions approach with the optimized stream ancestor

function mechanism (the storage reduction technique).

6.7.2 Storage space and real-time response vs. processing overheads

and memory space

As discussed by many studies [120, 116, 70, 96], the practical challenge pertaining to

the persistence of stream elements is one of the most important issues which needs to be

carefully considered in the design of stream processing systems. In some cases, a high

volume of streaming events with a large size of content data need to be processed in real-

time and continuously by stream processing applications. This makes the persistence

of provenance information of stream elements, which generally requires an immutable

characteristic (provenance information that has been previously recorded will not be

Chapter 6 Evaluation 149

overwritten, deleted or modified), unfeasible. Another significant challenge for stream

processing applications is to process high-volume streaming data in real-time and deliver

instantaneous responses. This challenge is applied to provenance systems for streams as

well, due to the fact that in many cases, such as decision support systems, traceability

of streaming data in real-time and instantaneous provenance query results are necessary

in order to support mission critical operations such as disaster recovery.

To address the challenges mentioned previously, provenance assertions are required to

be processed as they fly by (on-the-fly query processing) without any requirement to

store them. After that, provenance query results are generated instantaneously and

sent to client applications that register to receive the results as a stream. This concept

we describe is the key idea that underpins our on-the-fly provenance query approach.

However, the more intensive and complex the on-the-fly query processing, the greater

the impact on performance. In this context, application developers face a trade-off

between the capability to perform on-the-fly processing and provide instantaneous query

results without the requirement to store provenance information persistently, and the

processing overheads and the amount of memory space consumed resulting from the use

of this capability.

From our experimental evaluation, as shown in Figure 6.13 (throughput experiments),

the average processing overheads for the on-the-fly provenance query approach is slightly

higher than that for the other approach - the store provenance assertions approach.

Likewise in the memory usage experiments, as presented in Figure 6.14 and 6.15, the

amount of memory consumed for the on-the-fly provenance query approach increases

continuously when a stream processing system is scaled up. This is the real evidence that

indicates how much the processing overheads resulting from the on-the-fly provenance

query approach are compared to the other our approach. Our recommendation on this

issue is that, for stream processing applications where storage space is very limited or

where the applications require real-time and instantaneous provenance query responses,

they should exploit the on-the-fly provenance query approach. Furthermore, in the

design phase of application development, the types of stream operations used and the

size of data windows utilized in a stream processing system need to be carefully designed

in order that the amount of memory consumed can be strictly controlled.

6.7.3 Throughput vs. processing overheads

As shown in Figure 6.9, in the system throughput experiments with no time delays

for processing, a significant drop-off in system throughput is presented when provenance

information is recorded for both the store provenance assertions and the on-the-fly prove-

nance query approaches. The trend of system throughput also continues to decrease as

the number of stream components (stream operations) increases. This experimental

result indicates the significant impact of provenance recording on the performance of

150 Chapter 6 Evaluation

stream processing systems under normal processing. However, from Figures 6.10, 6.11

and 6.12, as time delay for processing increases, the impact of provenance recording

(processing overheads) drops significantly. The average processing overheads are consid-

erably reduced to be less than 10 percent for all our provenance processing approaches

compared to the case of “no provenance” implementation (7 percent for the on-the-fly

query approach and 4 percent for the store provenance assertions approach). There-

fore, there exists a trade-off between maximizing system throughput and minimizing

processing overheads resulting from recording provenance information.

Based on our experimental evaluation, our provenance solution (both the store prove-

nance assertions and the on-the-fly provenance query approaches) is more suitable for

stream processing applications that process slightly low-rate data streams (e.g. greater

than 1ms per event used in our experiments) due to the fact that the impact of prove-

nance recording is minimal. However, in the case that it is required to apply our prove-

nance solution to stream applications that process extremely high-rate data streams,

the number of stream operations used in a stream processing system has to be carefully

designed by application developers in order that the processing overheads resulting from

recording provenance information can be controlled.

6.8 Summary

We started this chapter by presenting the implementation design of our stream prove-

nance system which was used as a test system for our experimental evaluation. The

design of the provenance service was detailed in order to give a clear understanding of

how the implementation of our stream provenance system works, what the responsibil-

ities of each internal component are and how the provenance service operates for each

different provenance processing mode. We also discussed the technologies used in our

implementation and the reasons behind their selection.

After describing the design and the experimental set-up in detail, four different sets

of performance evaluation experiments, including the storage overheads for provenance

collection, the provenance recording impact (system throughput), the memory consump-

tion for a provenance service and the time latency for on-the-fly query processing, were

presented. The storage overheads experiments showed that the storage overheads re-

sulting from recording provenance information are reduced significantly when applying

our storage reduction technique (optimized SAF). The results of the storage overheads

experiments also indicate that our provenance solution offers considerably small and

fixed marginal costs based on the number of input stream events when a stream system

is scaled up.

In the provenance recording impact experiments, we have demonstrated that recording

provenance information for individual stream elements, which we refer to as fine-grained

Chapter 6 Evaluation 151

provenance recording, can be done with reasonable processing overheads. The processing

overheads caused by our provenance solution (both the store provenance assertions and

the on-the-fly provenance query approaches) can be greatly reduced when time delay

for stream processing increases, and the average overheads are significantly reduced to

be less than 10 percent for all our provenance processing approaches (7 percent for the

on-the-fly query approach and 4 percent for the store provenance assertions approach

in“1ms processing delay” experiment). Furthermore, according to the effect of time delay

for processing on system throughput, we can conclude that our provenance solution is

more suitable for stream processing applications that process on slightly low-rate data

streams.

In addition, in the memory consumption experiments, we demonstrated that the amount

of memory space consumed by the on-the-fly provenance query approach depends on the

types of stream operations used and the size of data windows specified for each stream

operation. This is due to the fact that these implementation choices indicate the number

of provenance assertions required to be buffered in memory. We also demonstrated that

the marginal cost of memory consumption for our provenance solution is relatively small

compared to the total memory consumed. Finally, from the results of the time latency

experiment, we can guarantee that our on-the-fly provenance query solution offers low-

latency processing and support real-time or near real-time responses (the average time

latency per additional component is about 0.3 ms).

Overall, the experimental evaluation demonstrated that our conceptual design, including

our stream provenance model, provenance architecture, fine-grained provenance query

and on-the-fly provenance query mechanism, enables the fine-grained provenance prob-

lem in stream processing systems to be addressed with acceptable performance and

reasonable overheads.

Chapter 7

Conclusion

The main objective of this dissertation is to address provenance tracking in stream pro-

cessing systems. Three requirement use-cases have been identified in order to present

provenance problems which are commonly found in this kind of context. The first use-

case is pertaining to the need for stream systems to precisely trace individual stream

events in order to validate stream processing results. The second use-case concerns the

need for stream systems to reproduce stream events in order to handle stream imperfec-

tions and validate the original results produced in this kind of system. The third use-case

is the need for stream processing systems to perform provenance tracking on-the-fly in

order to provide real-time or near real-time responses.

In our literature review we have shown that there are no existing provenance collection

techniques and data models for streams which can support our requirements. Several

solutions to provenance tracking in the context of stream provenance systems focus on

coarse-grained stream provenance which identifies streams or sets of stream elements

and stream processing units as the smallest unit for which provenance information is

collected. However, the level of granularity for capturing provenance information in these

solutions is coarse and it is not detailed enough to satisfy our requirements. Although

some recent stream provenance solutions provide the ability to express data dependencies

for individual stream events, they still have some limitations, particularly concerning a

storage burden problem resulting from the persistence of high volume stream events.

In addition, another important limitation is that these solutions also fail to accurately

identify all individual stream elements used in the production of a stream processing

result. To deal with our use-case requirements, a fine-grained provenance solution which

precisely captures provenance of every individual stream element is required.

In this dissertation, we have shown that through the use of our stream provenance model

with a reverse mapping method (stream ancestor function) which precisely captures data

dependencies for every individual stream elements, the problem of fine-grained prove-

nance tracking can be solved. We have also illustrated that, by applying our provenance

153

154 Chapter 7 Conclusion

query mechanism for streams and our replay execution method, stream reproduction

functionality for stream processing systems can be facilitated. In addition, our stream

provenance solution is extended to support a stream-specific query mechanism (on-the-

fly provenance queries). The use of this query mechanism enables provenance queries to

be created automatically and computed continuously over streams of provenance asser-

tions, without requiring the assertions to be stored persistently. Thus, the significant

problem pertaining to the persistence of high volume stream events which potentially

results in a storage burden problem can be eliminated.

We now revisit the key contributions of this dissertation.

7.1 Contributions

7.1.1 A stream provenance model and stream ancestor functions

This first contribution is a stream provenance model that defines the structure and the

key elements of provenance representation in stream processing systems and a set of

primitive stream ancestor functions that is utilized as a crucial mechanism to explicitly

express dependency relationships among individual stream elements.

A provenance data model for streams defines the structure and the key elements of

provenance representation for streams - provenance-related information to be stored in

a provenance store in order that the provenance of stream processing results can be

retrieved. The key elements of stream provenance representation include provenance as-

sertions (dynamic information) and auxiliary information (static information e.g. stream

topology information, configuration parameters and metadata). Because of the generic

nature of the provenance data model, this offers the vital advantage of allowing our

stream provenance model to be applied in a wide range of stream processing applications

for a variety of domains. To support the stream provenance model, another important

mechanism - a reverse mapping method namely stream ancestor function - has been

proposed. The stream ancestor function is defined for each stream operation in a stream

processing system to express dependency relationships between input and output events

of stream operations. To deal with the storage problem potentially resulting from the

persistence of all intermediate stream elements, the original stream ancestor function is

extended by introducing the optimized version of stream ancestor functions that can be

used to reduce storage consumption by recording only necessary information. With the

composition of all stream ancestor functions in a stream processing system, the complete

provenance of a stream processing result can be captured.

The novelty of this contribution is in its ability to precisely identify all stream elements

involved in the production of a stream processing result - fine-grained stream provenance

Chapter 7 Conclusion 155

tracking - and the combination of a compact provenance representation and a storage re-

duction mechanism (optimized stream ancestor functions) that can significantly reduce

the amount of storage consumed for provenance collection and eliminate the require-

ment to store every intermediate stream element. We have concretely demonstrated

how dependency relationships between input and output stream elements for each type

of stream operations can be determined and how our reverse mapping mechanism can

accurately identify input elements used in the production of a particular output element

by presenting the programmatic specifications of stream ancestor functions as defined

in Section 3.4. In addition, as presented in the experimental evaluation (Chapter 6),

we have shown that the stream ancestor functions and the provenance model can be

concretely implemented and the performance of the implementation is acceptable. The

results of the storage consumption experiments (presented in Section 6.3) demonstrate

the evidence that substantial storage savings can be achieved, and considerably small

and constant marginal cost of storage consumption based on the number of input stream

events can be offered when a stream system is scaled up by utilizing our storage reduc-

tion mechanism (about 5 MB per additional stream component for 100,000 input stream

events). The results of the provenance recording impact experiments (presented in Sec-

tion 6.4) indicate a 4% overhead for our store provenance assertions approach. Therefore,

from these experimental results, we have established that our stream provenance solution

can effectively address the storage problem caused by the persistence of all intermediate

stream elements and our provenance solution does not have a significant effect on the

normal processing of stream systems.

7.1.2 Provenance query and replay execution methods

The second contribution is a provenance query method for streams that underpins our

first contribution - fine-grained stream provenance model. The provenance query method

exploits stream ancestor functions in order to perform fine-grained provenance tracking

in stream processing systems. We have developed a novel provenance query algorithm

based on the idea of function composition that combines simple functions to build more

complicated functions. As described in Section 4.1, the key concept of our provenance

query algorithm is that for a given stream processing result, the query algorithm dy-

namically composes stream ancestor functions for all stream operations in the processing

flow of a stream processing system together (like traversing a graph in reverse order on

a node by node basis) in order to resolve data dependencies among intermediate stream

elements and finally provide the complete provenance of that stream processing result.

To establish that the results produced by the provenance query method are perfectly

accurate and to provide a mechanism for validating stream processing results, we have

developed a replay execution method for streams that defines a mechanism by which to

perform stream reproduction by using provenance query results and provenance-related

156 Chapter 7 Conclusion

information stored in a provenance store. We have shown the generic algorithm for

stream replay execution as described in Section 4.2. The replay execution algorithm

dynamically composes the stream operations involved in the production of a particular

output by utilizing provenance-related information recorded (e.g. provenance assertions

and stream topology information) and finally produces replay execution outputs which

are processing results originally produced by a stream processing system. To demon-

strate how the provenance query method works in practice, an example case study for

provenance queries is presented, as shown in Section 4.3. With the presentation of

this straightforward case study, we have shown that the provenance query method can

be concretely implemented, the provenance of each individual stream element can be

traced by using our provenance query mechanism and also the actual query results can

be validated by using our replay execution method.

7.1.3 Stream-specific provenance query

The third contribution is a stream-specific provenance query mechanism that enables

provenance queries to be computed on-the-fly without requiring provenance assertions to

be stored persistently. As presented in Section 5.1, the key concept of the stream-specific

provenance query is inspired by the idea of property propagation where the provenance

of each individual stream element can be obtained by propagating provenance-related

properties from the source (the first input stream) to the destination (the final output

stream) inside the provenance service. We have discussed the important characteris-

tics of the stream-specific provenance query and also defined a specification of a new

version of the stream ancestor functions that are designed specifically to work with the

stream-specific query mechanism. To ascertain that the design of our stream-specific

provenance query can be applied in practical stream-based applications, we have pre-

sented an example case study for on-the-fly provenance queries, as shown in Section 5.4.

In this case study, the actual processing of data accumulation used for properties prop-

agation is demonstrated in detail which allows us to assure that the results of on-the-fly

provenance queries conducted over streams of provenance assertions are accurate.

The use of a stream-specific query mechanism offers two major advantages. Firstly,

because provenance assertions for individual stream elements are not required to be

stored persistently, the storage problem caused by storing provenance information for

high-volume stream events can be solved. Secondly, as the query results are generated

as streams, this allows for provenance systems to offer real-time or instantaneous prove-

nance query results to their users. Our experimental results derived from the provenance

recording impact study (Section 6.4) indicate that the stream-specific query approach

offers relatively low and reasonable processing overheads (there is a 7% overhead for

stream-specific query approach compared to the overhead of “no-provenance” imple-

mentation). This guarantees that the stream-specific query mechanism does not have a

Chapter 7 Conclusion 157

significant effect on the performance of stream processing systems under normal process-

ing. The results of the latency experiment (Section 6.6) indicate that our stream-specific

query solution offers low-latency processing (the average time latency per additional com-

ponent is about 0.3 ms). As a result, we can establish that our stream-specific query

can provide provenance query results in real-time or near real-time. In addition, as

shown in the memory consumption experiments (Section 6.5), the experimental results

show that the amount of memory consumed for the stream-specific query approach is

based on the types of stream operations used and the size of data windows utilized in a

stream processing system. Therefore, we can assure that the memory consumption for

our stream-specific query approach can be practically controlled by developers during

application design phase.

7.2 Future work

The fine-grained stream provenance tracking approach we have outlined in this disserta-

tion is centered around a generic fine-grained provenance model and a reverse mapping

method (stream ancestor functions) which provide fundamental concepts of how prove-

nance of each individual stream processing result can be captured in stream processing

environments and the structure of information required to be stored in order to support

the concept. Based on the provenance model, enhanced mechanisms, including a stor-

age reduction technique (optimized stream ancestor functions), provenance query and

replay execution methods and a stream-specific query mechanism, are developed which

extend the fundamental concept to deal with practical requirements related to the unique

characteristics of data streams. Our experimental evaluation indicates that the novel

contributions of this dissertation we have outlined are vitally important and they en-

able the problem of provenance tracking in stream processing systems to be addressed

effectively. However, we also believe that there is a significant amount of research that

remains to be done in the area of provenance tracking in stream processing systems.

Therefore, in future, this dissertation work can be extended in the following directions.

7.2.1 Interoperability with stream optimization techniques

In some specific applications (e.g. battlefield monitoring systems [28]), a high volume

of data streams with rapid arrival rates are required to be processed in real-time and

continuously by stream processing systems, and outputs of stream processing are pro-

duced based on Quality-of-service (QOS) specifications. During execution time, the data

rates can significantly increase and potentially exceed system capacity. This situation

results in stream processing systems becoming overloaded, the system latency increas-

ing rapidly, and thus stream systems probably fail to satisfy QOS requirements. Several

stream optimization techniques are generally provided by stream processing systems

158 Chapter 7 Conclusion

to deal with such overload situations. One of the most common techniques is “load

shedding” [126, 11] - the process of discarding some fraction of input stream elements

in order to enable stream processing systems to continue to provide up-to-date stream

processing results and satisfy given real-time constraints. Another example of common

optimization techniques is a shared query execution strategy [68, 91] where a number of

continuous stream queries shares execution of data windows together in order to avoid

system degradation when a system is overloaded.

Our work presented in this dissertation has primarily focused on the ability of stream

processing systems to capture the information necessary in order to precisely trace the

provenance of individual stream elements. Particularly, our proposed technique requires

that the provenance assertions of full input streams have to be recorded (either recording

as stream or recording in a persistent storage) in order that the provenance of stream

processing results can be determined. However, it would be a difficult task for our

stream provenance solution to work with the stream optimization techniques mentioned

above because, as described for the load shedding technique, some input stream ele-

ments for some stream operations are probably discarded. Therefore, it is still an open

question as to the appropriate or extended mechanism that enables our fine-grained

stream provenance solution to inter-operate with such stream optimization techniques

for time-critical stream applications. The extended mechanism should enable our stream

provenance solution to function alongside such stream optimization techniques with a

well-understood effect on the accuracy of provenance query answers.

7.2.2 Integration with stream processing engine architectures

Extensive research in stream processing engines has been done in the area of data stream

management in order to support the emergence of sensor technologies and real-time

monitoring applications. Several stream processing engines, including Aurora [28], Tele-

graphCQ [29], STREAM [8] and Borealis [1], have been developed for research purposes.

These stream processing engines, particularly their system architectures, usually consist

of different types of processing components or sub-systems depending on the model of

data streams and query languages used. Besides stream processing engines developed for

research purposes, there is considerable interest in the development of stream processing

engines for industrial purposes as well. Examples of industrial stream processing engines

include Esper [46] and StreamBase [121]. The industrial stream processing engines pro-

vide not only fundamental facilities and architectural components required to process

data streams in timely and continuous fashion, but also enhanced architectural compo-

nents (e.g. high availability modules and security and privacy support components) that

can efficiently deal with large-scale and distributed requirements of enterprise systems.

In this dissertation, our work has mainly focused on investigating a novel fine-grained

provenance tracking method for streams, and a provenance model that allow the prove-

Chapter 7 Conclusion 159

nance of individual stream elements to be obtained. We have also specified a provenance

architecture for stream systems to describe the structure of the stream provenance sys-

tem, system components and interactions between each component. However, our prove-

nance architecture for stream systems exists as a set of separate components from stream

processing engine architecture. Therefore, another open question still remains as to how

our stream provenance solution can be integrated into the holistic view of stream pro-

cessing engine architecture considering the various architectures of stream processing

engines designed for both research and industrial purposes. From our point of view, this

integration of our provenance solution into stream engine architecture is an important

step forward for practical and industrial use of stream provenance systems. It is very

important that the provenance-specific components for our stream provenance solution

need to be seamlessly integrated, co-exist and interchanged with stream processing en-

gines’ architectural components (e.g. Query processor and High availability modules).

In addition, the question pertaining to where the provenance-specific components should

be fitted into the stream processing engine architectures is another important issue that

needs to be carefully considered as this will probably affect the overall performance of

stream processing engines.

7.2.3 Integration with the W3C provenance standard

As the need to understand and manage provenance in computer systems is growing

rapidly, the ability to share and exchange provenance information among disparate sys-

tems will need to be provided. This raises an interesting challenge in terms of the

interoperability of provenance systems. To address the challenge, the World Wide Web

Consortium (W3C) provenance working group has developed the provenance data model

(PROV) [129] as a standard mechanism for exchanging provenance information among

systems. The introduction of PROV allows existing provenance systems to export their

provenance information into such a standard provenance model and then other systems

that need to utilize the provenance information can import and query over it.

In this dissertation, work has focused primarily on the design and the implementation

of a provenance model that can support fine-grained provenance tracking in stream pro-

cessing systems. Therefore, another future research issue is how to integrate or more

particularly translate our fine-grained provenance model for streams into the W3C stan-

dard provenance model - PROV. The integration with this exchange provenance model

will allow our stream provenance system to seamlessly share and exchange provenance in-

formation with other systems and thus ensure interoperability of our fine-grained stream

provenance solution.

Appendix A

Utility functions for the replay

execution algorithm

(∗ fn : ′′a− > ′′a list − > bool ∗)
fun member e [] = false

| member e (e1 :: l) =

(e = e1) orelse member e l;

(∗ fn : ′′a − > (′′a ∗ ′b) list − > ′b ∗)
fun assoc sid ((id, func) :: opList) =

if (sid = id) then func

else assoc sid opList;

(∗ fn : ′′a list − > (′′a ∗ ′b) list − > bool ∗)
fun containsKeys [] HM = true

| containsKeys (k :: KL) HM =

if containsKeys1 k HM then

containsKeysKLHM

else false

(∗fn :′′ a− > (′′a ∗′ b)list− > bool∗)
fun containsKeys1 k [] = false

| containsKeys1 k ((k1,) :: HM) =

(k = k1) orelse containsKeys1 k HM ;

161

162 Appendix A Utility functions for the replay execution algorithm

(∗ fn : ′′a list − > (′′a ∗ ′b) list − > (′′a ∗ ′b) list ∗)
fun getElements [] HM = []

| getElements (k :: KL) HM = (getElements1 k HM) @ (getElements KL HM);

(∗ fn : ′′a − > (′′a ∗ ′b) list − > (′′a ∗ ′b) list ∗)
fun getElements1 key [] = []

| getElements1 key ((K,V) :: HM) =

if key = K then [(K,V)]

else getElements1 key HM

(∗ fn : ′′a list − > (′′a ∗ ′b) list − > (′′a ∗ ′b) list ∗)
fun removeElm kList [] = []

| removeElm kList ((K,V) :: HM) =

if member K kList then removeElm kList HM

else (K,V) :: removeElm kList HM

(∗ fn : ′′a − > (′′a ∗ int ∗ ′′b) list − > ′′b − > int ∗)
fun getOpID sidin ((sid, opid, io) :: streamLut) ioin =

if sidin = sid andalso ioin = io then opid

else getOpID sidin streamLut ioin;

(∗ fn : ′′a − > (′b ∗ ′′a ∗ ′′c) list − > ′′c − > ′b list ∗)
fun getSID opIDin [] ioin = []

| getSID opIDin ((sid, opid, io) :: streamLut) ioin =

if opIDin = opid andalso ioin = io then

sid :: (getSID opIDin streamLut ioin)

else

getSID opIDin streamLut ioin;

(∗ fn : TIME − > STREAMID − > int − > KEY list − > (int ∗ TIME) list ∗)
fun getDelay ts sidn cnt [] = []

| getDelay ts sidn cnt (Key(t, n, sid, d) :: KL) =

if sidn = sid andalso t GTE ts andalso cnt > 0 then

(n, d) :: getDelay ts sidn (cnt− 1) KL

else getDelay ts sidn cnt KL

(∗ fn : ′′a list − > ′′a list ∗)
fun remdupl [] = []

| remdupl [x] = [x]

| remdupl (x :: xs) = if mem xs x then remdupl xs

else x :: remdupl xs;

Appendix A Utility functions for the replay execution algorithm 163

(∗ fn : ′′a list − > ′′a − > bool ∗)
fun mem [] a = false

| mem (x :: xs) a = a = x orelse mem xs a;

(∗ fn : (int ∗ (′a EV ENT list − > ′a list EV ENT list)) list

− > (int ∗ (′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list)) list

− > int − > STREAMID list − > STREAMID list − > KEY list

− > (STREAMID ∗ ′a EV ENT list) list

− > (STREAMID ∗ ′a EV ENT list) list ∗)
fun executeOp opList1 opList2 opID sidin sidout paList EM =

let

val ((, eList) :: IM) = getElements sidin EM ;

val output = (executeOp1 opList1 opList2 opID sidout paList eList IM)

val EM ′ = removeElm sidin EM

in

EM ′ @ remdupl output

end

(∗ fn : (int ∗ (′a EV ENT list − > ′a list EV ENT list)) list

− > (int ∗ (′a EV ENT list − > ′a EV ENT list − > ′′c list EV ENT list)) list

− > int − > STREAMID list − > KEY list

− > ′a EV ENT list − > (STREAMID ∗ ′a EV ENT list) list

− > (STREAMID ∗ ′a EV ENT list) list ∗)
fun executeOp1 opList1 opList2 opID (id :: sidout) paList eList1 IM =

let

val output = if IM = [] then (∗ unary operation ∗)
((assoc opID opList1) eList1)

else

let (∗ binary operation ∗)
val (, eList2) = hd IM ;

in

((assoc opID opList2) eList1 eList2)

end

in

if sidout = [] then

let

val output′ = updateKeys id paList (length output) output

in

[(id, output′)]

end

else multicast paList output (id :: sidout)

end

164 Appendix A Utility functions for the replay execution algorithm

(∗ fn : STREAMID − > KEY list − > int − > ′a EV ENT list

− > ′a EV ENT list ∗)
fun updateKeys sidn paList cnt ((evt as Event(Key(t, n, sid, d),)) :: output) =

let

val dList = getDelay t sidn cnt paList

in

if dList <> [] then

updateKeys1 dList (evt :: output)

else (evt :: output)

end

(∗ fn : (int ∗ TIME) list − > ′a EV ENT list − > ′a EV ENT list ∗)
fun updateKeys1 [] = []

| updateKeys1 ((sn, dn) :: dList) (Event(Key(t, n, sid, d), e) :: output) =

(Event(Key(t + +dn, sn, sid, dn), e)) :: (updateKeys1 dList output)

(∗ fn : KEY list − > ′a EV ENT list − > STREAMID list − >

(STREAMID ∗ ′a EV ENT list) list ∗)
fun multicast paList output [] = []

| multicast paList output (id :: sidList) =

let

val output′ = updateKeys id paList (length output) output

in

(id, output′) :: (multicast paList output sidList)

end

Appendix B

SML code for the provenance

query case study

B.1 An example provenance query

(∗ provenance assertions − event keys − used in this case study ∗)

− val key1 = Key(Time 1279398105675, 1, StreamID(1), T ime 0);

− val key2 = Key(Time 1279398105684, 1, StreamID(2), T ime 9);

− val key3 = Key(Time 1279398105684, 1, StreamID(4), T ime 9);

− val key4 = Key(Time 1279398105693, 1, StreamID(3), T ime 9);

− val key5 = Key(Time 1279398105701, 1, StreamID(5), T ime 17);

− val key6 = Key(Time 1279398105702, 1, StreamID(6), T ime 1);

− val key7 = Key(Time 1279398107678, 2, StreamID(1), T ime 0);

− val key8 = Key(Time 1279398107678, 2, StreamID(2), T ime 0);

− val key9 = Key(Time 1279398107678, 2, StreamID(4), T ime 0);

− val key10 = Key(Time 1279398107680, 2, StreamID(5), T ime 2);

− val key11 = Key(Time 1279398107681, 2, StreamID(3), T ime 3);

− val key12 = Key(Time 1279398107682, 2, StreamID(6), T ime 2);

− val key13 = Key(Time 1279398109678, 3, StreamID(1), T ime 0);

− val key14 = Key(Time 1279398109678, 3, StreamID(2), T ime 0);

− val key15 = Key(Time 1279398109678, 3, StreamID(4), T ime 0);

− val key16 = Key(Time 1279398109680, 3, StreamID(5), T ime 2);

− val key17 = Key(Time 1279398109681, 3, StreamID(3), T ime 3);

− val key18 = Key(Time 1279398109682, 3, StreamID(6), T ime 2);

165

166 Appendix B SML code for the provenance query case study

(∗ provenance assertions for each stream ∗)

− val S1m = [key1, key7, key13];

− val S2m = [key2, key8, key14];

− val S3m = [key4, key11, key17];

− val S4m = [key3, key9, key15];

− val S5m = [key5, key10, key16];

− val S6m = [key6, key12, key18];

(∗ prepare a look up table (list) for stream ancestor functions ∗)

(∗ fn : ′a − > ′a list ∗)
fun toList key = [key] @ [];

− val saf1 = toList o MapOA(S1m);

− val saf2 = toList o F ilterOA(S2m);

− val saf3 = TWOA(Time(5000), S4m);

− val saf4 = toList o MapOA(S5m);

− val saf5 = JoinTWOA(Time(1000), T ime(1000), S3m, S6m);

− val safList = [(StreamID(2), saf1), (StreamID(4), saf1), (StreamID(3), saf2)

, (StreamID(5), saf3), (StreamID(6), saf4), (StreamID(7), saf5)];

: (STREAMID ∗ (KEY − > KEY list)) list

(∗ execute a provenance query by using the retrieveAncestors function ∗)

− val getAnc = retrieveAncestors(safList, [StreamID(1)]);

− getAnc [(Key(Time 1279398109685, 3, StreamID(7), T ime 3))];

(∗ provenance query results ∗)

> [Key (Time 1279398105675, 1, StreamID 1, T ime 0)

,Key (Time 1279398107678, 2, StreamID 1, T ime 0),

Key (Time 1279398109678, 3, StreamID 1, T ime 0)] : KEY list

Appendix B SML code for the provenance query case study 167

B.2 Example stream replay execution

(∗ prepare look up tables (lists) for stream operations ∗)

(∗ fn : ′a EV ENT list − > ′a list EV ENT list ∗)
fun toEventList [] = []

| toEventList ((Event(key, value)) :: EL) =

(Event(key, [value])) :: toEventList EL;

− val op1 = toEventList o Map(Ceil, StreamID(2));

− val op2 = toEventList o F ilter(filterCond, 1, StreamID(3));

− val op3 = TW (Time(5000), [], StreamID(5));

− val op4 = toEventList o Map(avg(0, 0), StreamID(6));

− val op5 = JoinTW (Time(1000), T ime(1000), cartesianJoin, 1, 1, StreamID(7));

− val opList1 = [(1, op1), (2, op2), (3, op3), (4, op4)];

− val opList2 = [(5, op5)];

(∗ prepare a look up table (list) for input and output streams ∗)

− val streamLut = [(StreamID(1), 1, ”I”), (StreamID(2), 1, ”O”), (StreamID(2), 2, ”I”)

, (StreamID(4), 1, ”O”), (StreamID(4), 3, ”I”), (StreamID(3), 2, ”O”)

, (StreamID(3), 5, ”I”), (StreamID(5), 3, ”O”), (StreamID(5), 4, ”I”)

, (StreamID(6), 4, ”O”), (StreamID(6), 5, ”I”), (StreamID(7), 5, ”O”)];

: (STREAMID ∗ int ∗ string) list

(∗ prepare a list of targeted stream IDs ∗)

− val sidList = [StreamID(7)];

(∗ prepare a list of provenance assertions ∗)

− val paList = [key1, key2, key3, key4, key5, key6, key7, key8, key9, key10,

key11, key12, key13, key14, key15, key16, key17, key18];

(∗ execute a stream replay by using the replayExec function ∗)

− val replayResult = replayExec(opList1, opList2, streamLut, sidList, paList)

− replayResult [(StreamID(1), [Event(key13, 93.28)])]

168 Appendix B SML code for the provenance query case study

(∗ replay execution results ∗)

> [(Stream7, [Event((Key (Time 1279398109685, 3, StreamID 7, T ime 3))

, (90.33, 94.0)])] : (STREAMID ∗ real EV ENT list) list

Appendix C

Utility functions for the on-the-fly

provenance query algorithm

(∗ fn : ′′a− > ′′a list − > bool ∗)
fun member e [] = false

| member e (e1 :: l) =

(e = e1) orelse member e l;

(∗ fn : ′′a − > (′′a ∗ ′b) list − > ′b ∗)
fun assoc sid ((id, func) :: opList) =

if (sid = id) then func

else assoc sid opList;

(∗ fn : ′′a − > ′′b − > (′′a ∗ ′c ∗ ′′b) list − > bool ∗)
fun containSID sidin ioin [] = false

| containSID sidin ioin ((sid, , io) :: streamLut) =

if(sidin = sid andalso ioin = io) then true

else containSID sidin ioin streamLut

(∗ fn : ′′a − > (′′a ∗ int ∗ ′′b) list − > ′′b − > int ∗)
fun getOpID sidin [] ioin = 0

| getOpIDsidin((sid, opid, io) :: streamLut) ioin =

if sidin = sid andalso ioin = io then opid

else getOpID sidin streamLut ioin;

169

170 Appendix C Utility functions for the on-the-fly provenance query algorithm

(∗ fn : ′′a − > (′b ∗ ′′a ∗ ′′c) list − > ′′c − > ′b list ∗)
fun getSID opIDin [] ioin = []

| getSID opIDin ((sid, opid, io) :: streamLut) ioin =

if opIDin = opid andalso ioin = io then

sid :: (getSID opIDin streamLut ioin)

else

getSID opIDin streamLut ioin;

(∗ fn : ′′a − > (′′a ∗ int ∗ InOut) list − > ′′a list ∗)
fun getRsID sid streamLut = getSID(getOpID sid streamLut O) streamLut I;

(∗ fn : int ∗ string ∗ (int ∗ string ∗ int ∗ string) list − > int ∗ string ∗)
fun getParam opIDin pNamein ((opid, pName, param, pType) :: paramLut) =

if(opIDin = opid andalso pNamein = pName) then (param, pType)

else getParam opIDin pNamein paramLut

(∗ fn : ′′a list − > (′′a ∗ ′b) list − > bool ∗)
fun containsKeys [] HM = true

| containsKeys (k :: KL) HM =

if containsKeys1 k HM then

containsKeysKLHM

else false

(∗fn :′′ a− > (′′a ∗′ b)list− > bool∗)
fun containsKeys1 k [] = false

| containsKeys1 k ((k1,) :: HM) =

(k = k1) orelse containsKeys1 k HM ;

(∗ fn : ′′a list − > (′′a ∗ ′b) list − > (′′a ∗ ′b) list ∗)
fun getElements [] HM = []

| getElements (k :: KL) HM = (getElements1 k HM) @ (getElements KL HM);

(∗ fn : ′′a − > (′′a ∗ ′b) list − > (′′a ∗ ′b) list ∗)
fun getElements1 key [] = []

| getElements1 key ((K,V) :: HM) =

if key = K then [(K,V)]

else getElements1 key HM

Appendix C Utility functions for the on-the-fly provenance query algorithm 171

(∗ fn : (STREAMID ∗ ′a) list − > (STREAMID ∗ int ∗ InOut) list

− > (int ∗ string ∗ int ∗ string) list − > (STREAMID ∗ ′b ASSERTION list) list

− > ′c ASSERTION − > (STREAMID ∗ ′b ASSERTION list) list ∗)
fun Dequeue psafLut1 streamLut paramLut B (pa as Assertion(Key(t, n, sid, d),)) =

if containsKeys [sid] psafLut1 then

let (∗ unary operation ∗)
val rsID = hd (getRsID sid streamLut);

val ((, rs) :: RS) = getElements [rsID] B;

val opID = getOpID sid streamLut O;

val (w,wType) = getParam opID ”w” paramLut;

val rs′ = if (wType = ”T”) then

DequeueT (t−−d−−Time(w), rs)

else

DequeueN(n− w + 1, rs)

in

(replaceElm [rsID] [(rsID, rs′)] B)

end

else

let (∗ binary operation ∗)
val rsIDList = (getRsID sid streamLut);

val ((rsID1, rs1) :: B1′) = getElements [hd rsIDList] B;

val ((rsID2, rs2) :: B2′) = getElements (tl rsIDList) B;

val opID = (getOpID sid streamLut O);

val (w1, wType1) = getParam opID ”w1” paramLut;

val (w2, wType2) = getParam opID ”w2” paramLut;

val [rs1′, rs2′] = if (wType1 = ”T”) then

[DequeueT (t−−d−−Time(w1), rs1)]

@ [DequeueT (t−−d−−Time(w2), rs2)]

else

[DequeueN(n− w1 + 1, rs1)]

@ [DequeueN(n− w2 + 1, rs2)]

in

(replaceElm rsIDList [(rsID1, rs1′), (rsID2, rs2′)] B)

end

(∗ fn : TIME ∗ ′a ASSERTION list − > ′a ASSERTION list ∗)
funDequeueT (lb, []) = []

| DequeueT (lb, ((paasAssertion(Key(t, , ,),)) :: Q)) =

if (t GT lb) then

pa :: DequeueT (lb,Q)

else [];

172 Appendix C Utility functions for the on-the-fly provenance query algorithm

(∗ fn : int ∗ ′a ASSERTION list − > ′a ASSERTION list ∗)
fun DequeueN(lb, []) = []

| DequeueN(lb, ((pa as Assertion(Key(, n, ,),)) :: Q)) =

if (n > lb) then

pa :: DequeueN(lb,Q)

else [];

(∗ fn : ′′a list − > (′′a ∗ ′b) list − > (′′a ∗ ′b) list ∗)
fun removeElm kList [] = []

| removeElm kList ((K,V) :: HM) =

if member K kList then removeElm kList HM

else (K,V) :: removeElm kList HM

(∗ fn : ′′a − > (′′a ∗ ′b list) list − > ′b − > (′′a ∗ ′b list) list ∗)
fun updateElm sid B pa =

let

val ((, rs) :: RS) = getElements [sid] B;

val B′ = removeElm [sid] B;

in

(sid, (pa :: rs)) :: B′

end

(∗ fn : (STREAMID ∗ ′a ASSERTION list) list

− > ′a ASSERTION − > (STREAMID ∗ ′a ASSERTION list) list ∗)
fun addElm B (pa as Assertion(Key(, , sid,),)) =

if (containsKeys [sid] B) then (updateElm sid B pa)

else (sid, [pa]) :: B

(∗ fn : ′′a list − > (′′a ∗ ′b) list
− > (′′a ∗ ′b) list − > (′′a ∗ ′b) list ∗)
fun replaceElm kList elmList B =

let

val B′ = removeElm kList B;

in

elmList @ B′

end

Appendix C Utility functions for the on-the-fly provenance query algorithm 173

(∗ fn : STREAMID ∗ (STREAMID ∗ ′a ∗ InOut) list − > bool ∗)
fun isF irstIStream sid streamLut =

(containSID sid I streamLut) andalso not (containSID sid O streamLut);

(∗ fn : KEY − > ′a ASSERTION ∗)
fun ASU (key : KEY) = (Assertion(key, []))

(∗ fn : (KEY − > ′a list − > ′b) − > ′a ASSERTION − > ′b ASSERTION ∗)
fun PCU func (Assertion(key, pl)) = (Assertion(key, [func key pl]));

(∗ fn : (STREAMID ∗ (′a − > ′b ASSERTION − > ′a ASSERTION)) list

− > (STREAMID ∗ (′a − > ′a − > ′b ASSERTION − > ′a ASSERTION)) list

− > (STREAMID ∗ int ∗ InOut) list − > (KEY − > ′c list − > ′d)

− > (STREAMID ∗ ′a) list − > ′b ASSERTION − > ′a ASSERTION ∗)
fun executePSAF psaf1 psaf2 streamLut pFun B (pa as Assertion(Key(, , sid,),)) =

if (containsKeys [sid] psaf1) then

let (∗ unary operation ∗)
val rsID = hd (getRsID sid streamLut);

val ((, rs) :: RS) = getElements [rsID] B;

in

PCU pFun ((assoc sid psaf1) rs pa)

end

else

let (∗ binary operation ∗)
val rsIDList = (getRsID sid streamLut);

val ((, rs1) :: B1′) = getElements [hd rsIDList] B;

val ((, rs2) :: B2′) = getElements (tl rsIDList) B;

in

PCU pFun ((assoc sid psaf2) rs1 rs2 pa)

end

Appendix D

SML code for the on-the-fly

provenance query case study

A list of input provenance assertions (event keys) used in the case study:

− val aStream = [Key(Time1279398105675, 1, StreamID(1), T ime0),

Key(Time1279398105684, 1, StreamID(2), T ime9),

Key(Time1279398105684, 1, StreamID(4), T ime9),

Key(Time1279398105693, 1, StreamID(3), T ime9),

Key(Time1279398105701, 1, StreamID(5), T ime17),

Key(Time1279398105702, 1, StreamID(6), T ime1),

Key(Time1279398105703, 1, StreamID(7), T ime1),

Key(Time1279398107678, 2, StreamID(1), T ime0),

Key(Time1279398107678, 2, StreamID(2), T ime0),

Key(Time1279398107678, 2, StreamID(4), T ime0),

Key(Time1279398107680, 2, StreamID(5), T ime2),

Key(Time1279398107681, 2, StreamID(3), T ime3),

Key(Time1279398107682, 2, StreamID(6), T ime2),

Key(Time1279398107683, 2, StreamID(7), T ime1),

Key(Time1279398109678, 3, StreamID(1), T ime0),

Key(Time1279398109678, 3, StreamID(2), T ime0),

Key(Time1279398109678, 3, StreamID(4), T ime0),

Key(Time1279398109680, 3, StreamID(5), T ime2),

Key(Time1279398109681, 3, StreamID(3), T ime3),

Key(Time1279398109682, 3, StreamID(6), T ime2),

Key(Time1279398109683, 3, StreamID(7), T ime1)];

175

176 Appendix D SML code for the on-the-fly provenance query case study

Required parameters for the on-the-fly query algorithm:

(∗ prepare look up tables for property stream ancestor functions ∗)

− val psaf1 = Mappsaf

− val psaf2 = Filterpsaf

− val psaf3 = TWpsaf (Time(5000))

− val psaf4 = Mappsaf

− val psaf5 = JoinTWpsaf (Time(1000), T ime(1000))

− val psafLut1 = [(StreamID(2), psaf1), (StreamID(4), psaf1), (StreamID(3), psaf2),

(StreamID(5), psaf3), (StreamID(6), psaf4)];

− val psafLut2 = [(StreamID(7), psaf5)];

(∗ prepare a look up table for input and output streams ∗)

− val streamLUT = [(StreamID(1), 1, I), (StreamID(2), 1, O), (StreamID(2), 2, I)

, (StreamID(4), 1, O), (StreamID(4), 3, I), (StreamID(3), 2, O)

, (StreamID(3), 5, I), (StreamID(5), 3, O), (StreamID(5), 4, I)

, (StreamID(6), 4, O), (StreamID(6), 5, I), (StreamID(7), 5, O)];

: (STREAMID ∗ int ∗ InOut) list

(∗ prepare a list of targeted stream IDs ∗)

− val sidList = [StreamID(7)];

(∗ property computing function ∗)

(∗ fn : KEY − > TIME list − > TIME ∗)
fun totalDelay (key as Key(, , sid, d)) pList =

if (isJoinOp sid streamLut) then

(maxDelay (Time(0)) pList) + + d

else

totalDelay1 key pList

fun totalDelay1 (Key(t, n, sid, d)) [] = d

| totalDelay1 (Key(t, n, sid, d)) [p] = p + +d

| totalDelay1 (Key(t, n, sid, d)) (p :: pList) = p + + totalDelay1 (Key(t, n, sid, d)) pList

Appendix D SML code for the on-the-fly provenance query case study 177

(∗ fn : ′′a − > (′′a ∗ int ∗ InOut) list − > bool ∗)
fun isJoinOp (sid) streamLut = ((getOpID sid streamLut O) = 5);

(∗ fn : TIME − > TIME list − > TIME ∗)
fun maxDelay maxD [] = maxD

| maxDelay maxD (d :: dList) = maxDelay (MAXTIME(maxD, d)) dList;

(∗ fn : TIME ∗ TIME − > TIME ∗)
fun MAXTIME(Time(x), T ime(y)) = if x > y then T ime(x) else T ime(y);

The on-the-fly provenance query for the case study can be performed as follows:

(∗ execute provenance queries by using the OTFquery function ∗)

− val query = OTFpquery(psafLut1, psafLut2, sidList, streamLut, paramLut, totalDelay);

− query aStream;

(∗ query results ∗)

> [Assertion(Key(Time 1279398109683, 3, StreamID 7, T ime 1), [Time14]),

Assertion(Key(Time 1279398107683, 2, StreamID 7, T ime 1), [Time 14])

Assertion(Key(Time 1279398105703, 1, StreamID 7, T ime 1), [Time 28])]

: TIME ASSERTION list

Bibliography

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H.

Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,

and S. Zdonik, “The design of the borealis stream processing engine,” in Pro-

ceedings of the Second Biennial Conference on Innovative Data Systems Research

(CIDR’05), Asilomar, California, USA, 2005, pp. 277–289.

[2] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar, T. Sugihara,

and J. Widom, “Trio: a system for data, uncertainty, and lineage,” in Proceedings

of the 32nd international conference on Very large data bases (VLDB ’06), Seoul,

Korea, 2006, pp. 1151–1154.

[3] G. Alonso and A. El Abbadi, “Cooperative modeling in applied geographic re-

search,” University of California at Santa Barbara, Technical Report, 1994.

[4] G. Alonso and C. Hagen, “Geo-opera: Workflow concepts for spatial processes,” in

Proceedings of the 5th International Symposium on Advances in Spatial Databases

(SSD’97), Berlin, Germany, 1997, pp. 238–258.

[5] G. Alonso, C. Hagen, H.-J. Schek, and M. Tresch, “Distributed processing over

stand-alone systems and applications,” in Proceedings of the 23rd International

Conference on Very Large Data Bases (VLDB’97), Athens, Greece, 1997, pp.

575–579.

[6] G. Amato, S. Chessa, and C. Vairo, “Mad-wise: a distributed stream management

system for wireless sensor networks,” Software Practice and Experience, vol. 40,

no. 5, pp. 431–451, April 2010.

[7] M. K. Anand, S. Bowers, T. McPhillips, and B. Ludäscher, “Efficient provenance

storage over nested data collections,” in Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database Technol-

ogy (EDBT’09), Saint Petersburg, Russia, 2009, pp. 958–969.

[8] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,

U. Srivastava, and J. Widom, “Stream: The stanford data stream management

system,” Stanford InfoLab, Stanford University, Technical Report, 2004.

179

180 BIBLIOGRAPHY

[9] A. Arasu, S. Babu, and J. Widom, “The cql continuous query language: semantic

foundations and query execution,” The VLDB Journal, vol. 15, no. 2, pp. 121–142,

June 2006.

[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in

data stream systems,” in Proceedings of the twenty-first ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (PODS’02), Madison, Wis-

consin, USA, 2002, pp. 1–16.

[11] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation queries

over data streams,” in Proceedings of the 20th International Conference on Data

Engineering (ICDE’04), Boston, Massachusetts, USA, 2004, pp. 350–361.

[12] S. Babu and J. Widom, “Continuous queries over data streams,” SIGMOD Record,

vol. 30, no. 3, pp. 109–120, 2001.

[13] M. Balazinska, A. Deshpande, M. J. Franklin, P. B. Gibbons, J. Gray, M. Hansen,

M. Liebhold, S. Nath, A. Szalay, and V. Tao, “Data management in the worldwide

sensor web,” IEEE Pervasive Computing, vol. 6, no. 2, pp. 30–40, 2007.

[14] R. Barga and L. Digiampietri, “Automatic generation of workflow provenance,”

in Provenance and Annotation of Data, ser. Lecture Notes in Computer Science,

L. Moreau and I. Foster, Eds. Springer Berlin / Heidelberg, 2006, vol. 4145, pp.

1–9.

[15] R. S. Barga and L. A. Digiampietri, “Automatic capture and efficient storage of

e-science experiment provenance,” Concurrency and Computation: Practice and

Experience, vol. 20, no. 5, pp. 419–429, April 2008.

[16] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widom, “An introduction to

uldbs and the trio system,” IEEE Data Engineering Bulletin, Special Issue on

Probabilistic Databases, vol. 29, no. 1, pp. 5–16, 2006.

[17] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “An annotation man-

agement system for relational databases,” The VLDB Journal, vol. 14, no. 4, pp.

373–396, 2005.

[18] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Verscheure,

H. Koutsopoulos, and C. Moran, “IBM infosphere streams for scalable, real-ti

intelligent transportation services,” in Proceedings of the 2010 international con-

ference on Management of data (SIGMOD’10), Indianapolis, Indiana, USA, 2010,

pp. 1093–1104.

[19] M. Blount, J. Davis, M. Ebling, J. H. Kim, K. H. Kim, K. Lee, A. Misra, S. Park,

D. Sow, Y. J. Tak, M. Wang, and K. Witting, “Century: Automated aspects of

BIBLIOGRAPHY 181

patient care,” in Proceedings of the 13th IEEE International Conference on Em-

bedded and Real-Time Computing Systems and Applications (RTCSA’07), Daegu,

Korea, 2007, pp. 504–509.

[20] R. Bose and J. Frew, “Composing lineage metadata with xml for custom satellite-

derived data products,” in Proceedings of the 16th International Conference on

Scientific and Statistical Database Management (SSDBM’04), Santorini Island,

Greece, 2004, pp. 275–284.

[21] ——, “Lineage retrieval for scientific data processing: a survey,” ACM Computing

Surveys (CSUR), vol. 37, no. 1, pp. 1 – 28, 2005.

[22] S. Bowers and B. Ludscher, “Actor-oriented design of scientific workflows,” in

Conceptual Modeling ER 2005, ser. Lecture Notes in Computer Science, L. Del-

cambre, C. Kop, H. Mayr, J. Mylopoulos, and O. Pastor, Eds. Springer Berlin /

Heidelberg, 2005, vol. 3716, pp. 369–384.

[23] S. Bowers, T. McPhillips, M. Wu, and B. Ludäscher, “Project histories: managing

data provenance across collection-oriented scientific workflow runs,” in Proceed-

ings of the 4th international conference on Data integration in the life sciences

(DILS’07), Philadelphia, PA, USA, 2007, pp. 122–138.

[24] S. Bowers, T. M. McPhillips, and B. Ludascher, “Provenance in collection-oriented

scientific workflows,” Concurrency and Computation: Practice and Experience,

vol. 20, no. 5, pp. 519–529, 2008.

[25] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A characterization of

data provenance,” in Proceedings of the 8th International Conference on Database

Theory (ICDT’01), London, UK, 2001, pp. 316–330.

[26] P. Buneman, S. Khanna, and W.-C. Tan, “On propagation of deletions and annota-

tions through views,” in Proceedings of the twenty-first ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (PODS’02), Madison, Wis-

consin, USA, 2002, pp. 150–158.

[27] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo,

“Managing the evolution of dataflows with vistrails,” in Proceedings of the 22nd

International Conference on Data Engineering Workshops (ICDEW’06), Atlanta,

Georgia, USA, 2006, pp. 71–75.

[28] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, and S. Zdonik, “Monitoring streams: a new class of data man-

agement applications,” in Proceedings of the 28th international conference on Very

Large Data Bases (VLDB’02), Hong Kong, China, 2002, pp. 215–226.

182 BIBLIOGRAPHY

[29] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,

W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah, “Tele-

graphcq: continuous dataflow processing,” in Proceedings of the 2003 ACM SIG-

MOD international conference on Management of data (SIGMOD’03), San Diego,

California, USA, 2003, pp. 668–668.

[30] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “Niagaracq: a scalable continuous

query system for internet databases,” in Proceedings of the 2000 ACM SIGMOD

international conference on Management of data (SIGMOD’00), Dallas, Texas,

USA, 2000, pp. 379–390.

[31] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in databases: Why, how,

and where,” Found. Trends databases, vol. 1, no. 4, pp. 379–474, April 2009.

[32] M. Cherniack, “Squal: The aurora [s]tream [qu]ery [al]gebra,” Brandeis University,

Technical Report, 2003.

[33] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “DBNotes: a post-it system for

relational databases based on provenance,” in Proceedings of the 2005 ACM SIG-

MOD international conference on Management of data (SIGMOD’05), Baltimore,

Maryland, USA, 2005, pp. 942–944.

[34] A. Chowdhury, B. Falchuk, and A. Misra, “Medially: A provenance-aware remote

health monitoring middleware,” in Proceedings of the Eighth Annual IEEE In-

ternational Conference on Pervasive Computing and Communications (PerCom

2010), Mannheim, Germany, 2010, pp. 125–134.

[35] G. Cormode and S. Muthukrishnan, “What’s new: finding significant differences

in network data streams,” IEEE/ACM Transactions on Networking, vol. 13, no. 6,

pp. 1219–1232, 2005.

[36] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck, “Gigascope:

high performance network monitoring with an sql interface,” in Proceedings of

the 2002 ACM SIGMOD international conference on Management of data (SIG-

MOD’02), Madison, Wisconsin, USA, 2002, pp. 623–623.

[37] Y. Cui and J. Widom, “Tracing the lineage of view data in a warehousing envi-

ronment,” ACM Transactions on Database Systems, vol. 25, no. 2, pp. 179–227,

2000.

[38] ——, “Lineage tracing for general data warehouse transformations,” The VLDB

Journal, vol. 12, no. 1, pp. 41–58, May 2003.

[39] B. Cutt and R. Lawrence, “Managing data quality in a terabyte-scale sensor

archive,” in Proceedings of the 2008 ACM symposium on Applied computing

(SAC’08), Fortaleza, Ceara, Brazil, 2008, pp. 982–986.

BIBLIOGRAPHY 183

[40] C. Dai, H.-S. Lim, E. Bertino, and Y.-S. Moon, “Assessing the trustworthiness

of location data based on provenance,” in Proceedings of the 17th ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Systems

(GIS’09), Seattle, Washington, USA, 2009, pp. 276–285.

[41] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludscher, T. M. McPhillips, S. Bowers,

M. K. Anand, and J. Freire, “Provenance in scientific workflow systems,” IEEE

Data Engineering Bulletin, vol. 30, no. 4, pp. 44–50, 2007.

[42] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,

K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, “Pegasus:

A framework for mapping complex scientific workflows onto distributed systems,”

Scientific Programming, vol. 13, no. 3, pp. 219–237, July 2005.

[43] J. Dunkel, A. Fernndez, R. Ortiz, and S. Ossowski, “Event-driven architecture for

decision support in traffic management systems,” Expert Systems with Applica-

tions: An International Journal, vol. 38, no. 6, pp. 6530–6539, 2011.

[44] F. Dvorák, D. Kouril, A. Krenek, L. Matyska, M. Mulac, J. Posṕısil, M. Ruda,

Z. Salvet, J. Sitera, and M. Vocu, “glite job provenance,” in Provenance and An-

notation of Data, ser. Lecture Notes in Computer Science, L. Moreau and I. Foster,

Eds. Springer Berlin / Heidelberg, 2006, vol. 4145, pp. 246–253.

[45] EGEE Project. (2011, july) glite – ligthweight middleware for grid computing.

[Online]. Available: http://glite.cern.ch/

[46] EsperTech Inc. (2011, August) Event stream intelligence: Esper & nesper.

[Online]. Available: http://esper.codehaus.org/

[47] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo, “Managing

rapidly-evolving scientific workflows,” in Provenance and Annotation of Data, ser.

Lecture Notes in Computer Science, L. Moreau and I. Foster, Eds. Springer Berlin

/ Heidelberg, 2006, vol. 4145, pp. 10–18.

[48] J. Frew and R. Bose, “Earth system science workbench: A data management in-

frastructure for earth science products,” in Proceedings of the 13th International

Conference on Scientific and Statistical Database Management (SSDBM’01), Fair-

fax, Virginia, USA, 2001, pp. 180–189.

[49] J. Frew, D. Metzger, and P. Slaughter, “Automatic capture and reconstruction of

computational provenance,” Concurrency and Computation: Practice and Expe-

rience, vol. 20, no. 5, pp. 485–496, April 2008.

[50] F. Geerts, A. Kementsietsidis, and D. Milano, “MONDRIAN: Annotating and

querying databases through colors and blocks,” in Proceedings of the 22nd In-

ternational Conference on Data Engineering (ICDE’06), Atlanta, Georgia, USA,

2006, pp. 82–92.

http://glite.cern.ch/
http://esper.codehaus.org/

184 BIBLIOGRAPHY

[51] F. Geerts and J. Van Den Bussche, “Relational completeness of query languages

for annotated databases,” in Proceedings of the 11th international conference on

Database programming languages (DBPL’07), Vienna, Austria, 2007, pp. 127–137.

[52] S. Geisler, C. Quix, and S. Schiffer, “A data stream-based evaluation framework

for traffic information systems,” in Proceedings of the ACM SIGSPATIAL Inter-

national Workshop on GeoStreaming (IWGS’10), San Jose, California, USA, 2010,

pp. 11–18.

[53] Y. Gil, J. Kim, V. Ratnakar, and E. Deelman, “Wings for pegasus: A seman-

tic approach to creating very large scientific workflows.” in Proceedings of the

2nd international workshop on ”OWL: Experiences and Directions (OWLED’06),

Athens, Georgia, USA, 2006.

[54] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim, “Wings for pegasus:

creating large-scale scientific applications using semantic representations of com-

putational workflows,” in Proceedings of the 19th national conference on Innova-

tive applications of artificial intelligence - Volume 2 (IAAI’07), Vancouver, British

Columbia, Canada, 2007, pp. 1767–1774.

[55] A. Gilani, S. Sonune, B. Kendai, and S. Chakravarthy, “The anatomy of a stream

processing system,” in Flexible and Efficient Information Handling, ser. Lecture

Notes in Computer Science, D. Bell and J. Hong, Eds. Springer Berlin / Heidel-

berg, 2006, vol. 4042, pp. 232–239.

[56] S. Gilmore. (2009, March) Programming in Standard ML ’97: An on-line tutorial.

[Online]. Available: http://homepages.inf.ed.ac.uk/stg/NOTES/

[57] B. Glavic and G. Alonso, “Perm: Processing provenance and data on the same data

model through query rewriting,” in Proceedings of the 2009 IEEE International

Conference on Data Engineering (ICDE’09), Washington, DC, USA, 2009, pp.

174–185.

[58] ——, “Provenance for nested subqueries,” in Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database Technology

(EDBT ’09), Saint Petersburg, Russia, 2009, pp. 982–993.

[59] L. Golab and M. T. Ozsu, “Data stream management issues - a survey,” School of

Computer Science, University of Waterloo, Technical Report, 2003.

[60] ——, “Issues in data stream management,” ACM SIGMOD Record, vol. 32, no. 2,

pp. 5–14, 2003.

[61] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Update exchange with

mappings and provenance,” in Proceedings of the 33rd international conference on

Very large data bases (VLDB ’07), Vienna, Austria, 2007, pp. 675–686.

http://homepages.inf.ed.ac.uk/stg/NOTES/

BIBLIOGRAPHY 185

[62] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,” in

Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems (PODS’07), Beijing, China, 2007, pp. 31–40.

[63] S. Greenhill and S. Venkatesh, “Virtual observers in a mobile surveillance system,”

in Proceedings of the 14th annual ACM international conference on Multimedia

(MULTIMEDIA ’06), Santa Barbara, California, USA, 2006, pp. 579–588.

[64] P. Groth, “The origin of data,” PhD. Thesis, University of Southampton, 2007.

[65] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L. Moreau,

“An architecture for provenance systems,” University of Southampton, Technical

Report, 2006.

[66] P. Groth, S. Miles, and L. Moreau, “PReServ: Provenance recording for services,”

in Proceedings of the UK e-Science All Hands Meeting 2005, Nottingham, UK,

2005.

[67] P. Groth and L. Moreau, “Recording process documentation for provenance,”

IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 9, pp. 1246–

1259, September 2009.

[68] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. Elmagarmid, “Scheduling

for shared window joins over data streams,” in Proceedings of the 29th international

conference on Very large data bases (VLDB’03), Berlin, Germany, 2003, pp. 297–

308.

[69] Q. Han, S. Mehrotra, and N. Venkatasubramanian, “Application-aware integration

of data collection and power management in wireless sensor networks,” Journal of

Parallel and Distributed Computing, vol. 67, no. 9, pp. 992–1006, 2007.

[70] K. Hildrum, F. Douglis, J. L. Wolf, P. S. Yu, L. Fleischer, and A. Katta, “Storage

optimization for large-scale distributed stream-processing systems,” ACM Trans-

actions on Storage, vol. 3, pp. 1–28, February 2008.

[71] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn,

“Taverna: a tool for building and running workflows of services.” Nucleic Acids

Research, vol. 34, pp. 729–732, July 2006.

[72] M. R. Huq, A. Wombacher, and P. M. G. Apers, “Facilitating fine grained data

provenance using temporal data model,” in Proceedings of the Seventh Interna-

tional Workshop on Data Management for Sensor Networks (DMSN’10), Singa-

pore, 2010, pp. 8–13.

[73] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan,

U. Çetintemel, M. Cherniack, R. Tibbetts, and S. Zdonik, “Towards a streaming

186 BIBLIOGRAPHY

sql standard,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1379–1390,

August 2008.

[74] S. R. Jeffery, M. Garofalakis, and M. J. Franklin, “Adaptive cleaning for RFID

data streams,” in Proceedings of the 32nd international conference on Very large

data bases (VLDB’06), Seoul, Korea, 2006, pp. 163–174.

[75] A. Kementsietsidis and M. Wang, “On the efficiency of provenance queries,”

in Proceedings of the 2009 IEEE International Conference on Data Engineering

(ICDE’09), Shanghai, China, 2009, pp. 1223–1226.

[76] ——, “Provenance query evaluation: what’s so special about it?” in Proceeding of

the 18th ACM conference on Information and knowledge management (CIKM’09),

Hong Kong, China, 2009, pp. 681–690.

[77] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar, “Provenance trails in the

wings-pegasus system,” Concurrency and Computation: Practice and Experience,

vol. 20, no. 5, pp. 587–597, April 2008.

[78] C. Koncilia, “A bi-temporal data warehouse model,” in Proceedings of the Fif-

teenth International Conference on Advanced Information Systems Engineering

(CAiSE’03), Klagenfurt/Velden, Austria, 2003, pp. 77–80.

[79] A. Kruger, R. Lawrence, and E. C. Dragut, “Building a terabyte nexrad radar

database for hydrometeorology research,” Computers and Geosciences, vol. 32,

no. 2, pp. 247–258, March 2006.

[80] J. Kurose, E. Lyons, D. McLaughlin, D. Pepyne, B. Philips, D. Westbrook,

and M. Zink, “An end-user-responsive sensor network architecture for hazardous

weather detection, prediction and response,” in Technologies for Advanced Het-

erogeneous Networks II, ser. Lecture Notes in Computer Science, K. Cho and

P. Jacquet, Eds. Springer Berlin / Heidelberg, 2006, vol. 4311, pp. 1–15.

[81] A. Křenek, J. Sitera, L. Matyska, F. Dvořák, M. Mulač, M. Ruda, and Z. Salvet,

“glite job provenance – job-centric view,” Concurrency and Computation Practice

and Experience, vol. 20, no. 5, pp. 453–462, April 2008.

[82] D. Lanter, “Design of a lineage-based meta-data base for gis,” Cartography and

Geographic Information Systems, vol. 18, no. 4, pp. 255–261, 1991.

[83] ——, “Lineage in gis: The problem and a solution,” National Center for Ge-

ographic Information and Analysis (NCGIA), University of California at Santa

Barbara, Technical Report 90-6, 1991.

[84] J. Ledlie, C. Ng, and D. A. Holland, “Provenance-aware sensor data storage,” in

Proceedings of the 21st International Conference on Data Engineering Workshops,

Tokyo, Japan, April 2005, pp. 1189–1193.

BIBLIOGRAPHY 187

[85] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier, “Out-

of-order processing: a new architecture for high-performance stream systems,”

Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 274–288, Aug. 2008.

[86] X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, and H. Conover,

“Real-time storm detection and weather forecast activation through data mining

and events processing,” Earth Science Informatics, vol. 1, no. 2, pp. 49–57, 2008.

[87] H.-S. Lim, Y.-S. Moon, and E. Bertino, “Research issues in data provenance for

streaming environments,” in Proceedings of the 2nd SIGSPATIAL ACM GIS 2009

International Workshop on Security and Privacy in GIS and LBS (SPRINGL ’09),

Seattle, Washington, USA, 2009, pp. 58–62.

[88] ——, “Provenance-based trustworthiness assessment in sensor networks,” in Pro-

ceedings of the Seventh International Workshop on Data Management for Sensor

Networks (DMSN’10), Singapore, 2010, pp. 2–7.

[89] Lojack.com. (2011, August) Lojack – a vehicle theft recovery system. [Online].

Available: http://www.lojack.com/

[90] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.

Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the kepler sys-

tem: Research articles,” Concurrency and Computation: Practice and Experience

- Workflow in Grid Systems, vol. 18, no. 10, pp. 1039–1065, August 2006.

[91] L. Ma, D. Liang, Q. Zhang, X. Li, and H. Wang, “Load shedding for shared

window join over real-time data streams,” in Proceedings of the Joint International

Conferences on Advances in Data and Web Management (APWeb/WAIM ’09),

Suzhou, China, 2009, pp. 590–596.

[92] T. McPhillips, S. Bowers, and B. Ludäscher, “Collection-oriented scientific work-

flows for integrating and analyzing biological data,” in Proceedings of the Inter-

national Workshop on Data Integration in the Life Sciences (DILS’06), Hinxton,

UK, 2006, pp. 248–263.

[93] A. Melski, L. Thoroe, and M. Schumann, “Managing RFID data in supply chains,”

International Journal of Internet Protocol Technology, vol. 2, no. 3/4, pp. 176–189,

December 2007.

[94] S. Miles, “Electronically querying for the provenance of entities,” in Provenance

and Annotation of Data, ser. Lecture Notes in Computer Science, L. Moreau and

I. Foster, Eds. Springer Berlin / Heidelberg, 2006, vol. 4145, pp. 184–192.

[95] A. Misra, B. Falchuk, and S. Loeb, “Server-assisted context-dependent pervasive

wellness monitoring,” in Proceedings of the 3rd International Conference on Per-

vasive Computing Technologies for Healthcare, London, UK, April 2009, pp. 1–4.

http://www.lojack.com/

188 BIBLIOGRAPHY

[96] A. Misra, M. Blount, A. Kementsietsidis, D. Sow, and M. Wang, “Advances and

challenges for scalable provenance in stream processing systems,” in Provenance

and Annotation of Data and Processes, ser. Lecture Notes in Computer Science,

J. Freire, D. Koop, and L. Moreau, Eds. Springer Berlin / Heidelberg, 2008, vol.

5272, pp. 253–265.

[97] L. Moreau, P. Groth, S. Miles, J. Vazquez, J. Ibbotson, S. Jiang, S. Munroe,

O. Rana, A. Schreiber, V. Tan, and L. Varga, “The provenance of electronic data,”

Communications of the ACM, vol. 51, no. 4, pp. 52–58, 2008.

[98] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,

S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. V. den

Bussche, “The open provenance model core specification (v1.1),” Future Genera-

tion Computer Systems, vol. 27, no. 6, pp. 743–756, June 2011.

[99] L. Moreau, J. Freire, J. Futrelle, R. E. Mcgrath, J. Myers, and P. Paulson, “The

open provenance model: An overview,” in Provenance and Annotation of Data and

Processes, J. Freire, D. Koop, and L. Moreau, Eds. Springer Berlin / Heidelberg,

2008, vol. 5272, pp. 323–326.

[100] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer, “Provenance-

aware storage systems,” in Proceedings of the annual conference on USENIX ’06

Annual Technical Conference, Boston, Massachusetts, USA, 2006, pp. 43–56.

[101] S. Munroe and S. Miles, “PrIMe: A methodology for developing provenance-aware

applications,” University of Southampton, Technical Report, 2006.

[102] S. Munroe, S. Miles, L. Moreau, and J. Vázquez-Salceda, “PrIMe: a software

engineering methodology for developing provenance-aware applications,” in Pro-

ceedings of the 6th international workshop on Software engineering and middleware

(SEM ’06), Portland, Oregon, USA, 2006, pp. 39–46.

[103] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel, “The intel mote plat-

form: a bluetooth-based sensor network for industrial monitoring,” in Proceedings

of the 4th international symposium on Information processing in sensor networks

(IPSN ’05), Los Angeles, California, USA, 2005, pp. 437–442.

[104] National Gallery of Art Website. (2011, August) Provenance of the painting

- roses. [Online]. Available: http://www.nga.gov/collection/gallery/vangogh/

vangogh-72328-prov.html

[105] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: a tool for the composition

and enactment of bioinformatics workflows,” Bioinformatics, vol. 20, no. 17, pp.

3045–3054, 2004.

http://www.nga.gov/collection/gallery/vangogh/vangogh-72328-prov.html
http://www.nga.gov/collection/gallery/vangogh/vangogh-72328-prov.html

BIBLIOGRAPHY 189

[106] Oracle Corporation. (2011, August) Mysql - the world’s most popular open source

database. [Online]. Available: http://www.mysql.com/

[107] U. Park and J. Heidemann, “Provenance in sensornet republishing,” in Provenance

and Annotation of Data and Processes, ser. Lecture Notes in Computer Science,

J. Freire, D. Koop, and L. Moreau, Eds. Springer Berlin / Heidelberg, 2008, vol.

5272, pp. 280–292.

[108] S. Reddy, G. Chen, B. Fulkerson, S. J. Kim, U. Park, N. Yau, J. Cho, and J. H. M.

Hansen, “Sensor-Internet Share and Search—Enabling Collaboration of Citizen

Scientists,” in Proceedings of the ACM Workshop on Data Sharing and Interop-

erability on the World-wide Sensor Web, Cambridge, Massachusetts, USA, April

2007, pp. 11–16.

[109] C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and C. Silva,

“Tackling the provenance challenge one layer at a time,” Concurrency and Com-

putation: Practice and Experience, vol. 20, no. 5, pp. 473–483, April 2008.

[110] Y. Simmhan, B. Plale, D. Gannon, and S. Marru, “Performance evaluation of the

karma provenance framework for scientific workflows,” in Provenance and Anno-

tation of Data, ser. Lecture Notes in Computer Science, L. Moreau and I. Foster,

Eds. Springer Berlin / Heidelberg, 2006, vol. 4145, pp. 222–236.

[111] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in e-

science,” ACM SIGMOD Record, vol. 34, no. 3, pp. 31–36, 2005.

[112] ——, “A survey of data provenance techniques,” Computer Science Department,

Indiana University, Technical Report, 2005.

[113] ——, “A framework for collecting provenance in data-centric scientific workflows,”

in Proceedings of the IEEE International Conference on Web Services, Chicago,

USA, 2006, pp. 427–436.

[114] ——, “Query capabilities of the karma provenance framework,” Concurrency and

Computation: Practice and Experience, vol. 20, no. 5, pp. 441–451, April 2008.

[115] Southampton City Council, “Port of southampton off-site reactor emergency

plan,” SotonSafe report, Version 4, 2006.

[116] D. M. Sow, L. Lim, M. Wang, and K. H. Kim, “Persisting and querying biometric

event streams with hybrid relational-xml dbms,” in Proceedings of the 2007 in-

augural international conference on Distributed event-based systems (DEBS ’07),

Toronto, Ontario, Canada, 2007, pp. 189–197.

[117] L. Spery, C. Claramunt, and T. Libourel, “A lineage metadata model for the

temporal management of a cadastre application,” in Proceedings of the 10th In-

ternational Workshop on Database & Expert Systems Applications (DEXA ’99),

Florence, Italy, 1999, pp. 466–474.

http://www.mysql.com/

190 BIBLIOGRAPHY

[118] ——, “A spatio-temporal model for the manipulation of lineage metadata,” Geoin-

formatica, vol. 5, no. 1, pp. 51 – 70, 2001.

[119] U. Srivastava and J. Widom, “Flexible time management in data stream systems,”

in Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems (PODS ’04), Paris, France, 2004, pp. 263–274.

[120] M. Stonebraker, U. etintemel, and S. Zdonik, “The 8 requirements of real-time

stream processing,” ACM SIGMOD Record, vol. 34, no. 4, pp. 42 – 47, 2005.

[121] StreamBase Systems Inc. (2011, September) Complex event processing: Stream-

base. [Online]. Available: http://www.streambase.com/

[122] Sun Microsystems Inc. (2011, August) Messaging systems and the java

message service (JMS). [Online]. Available: http://java.sun.com/developer/

technicalArticles/Networking/messaging/

[123] SunSPOT Project. (2011, August) Sun spot world: Program the world! [Online].

Available: http://www.sunspotworld.com/

[124] W.-C. Tan, “Research problems in data provenance,” IEEE Data Engineering

Bulletin, vol. 27, no. 4, pp. 45–52, 2004.

[125] ——, “Provenance in databases: Past, current, and future,” IEEE Data Engineer-

ing Bulletin, vol. 30, no. 4, pp. 3–12, 2007.

[126] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker, “Load

shedding in a data stream manager,” in Proceedings of the 29th international

conference on Very large data bases - Volume 29 (VLDB’03), Berlin, Germany,

2003, pp. 309–320.

[127] D. Terry, D. Goldberg, D. Nichols, and B. Oki, “Continuous queries over append-

only databases,” in Proceedings of the 1992 ACM SIGMOD international confer-

ence on Management of data (SIGMOD ’92), San Diego, California, USA, 1992,

pp. 321–330.

[128] The Apache Software Foundation. (2011, August) Apache activemq - the most

popular and powerful open source message broker. [Online]. Available:

http://activemq.apache.org/

[129] The World Wide Web Consortium. (2012, January) The PROV data model and

abstract syntax notation. [Online]. Available: http://www.w3.org/TR/prov-dm/

[130] A. Vahdat and T. Anderson, “Transparent result caching,” in Proceedings of the

annual conference on USENIX Annual Technical Conference (ATEC ’98), New

Orleans, Louisiana, USA, 1998, pp. 3–3.

http://www.streambase.com/
http://java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/developer/technicalArticles/Networking/messaging/
http://www.sunspotworld.com/
http://activemq.apache.org/
http://www.w3.org/TR/prov-dm/

BIBLIOGRAPHY 191

[131] N. Vijayakumar and B. Plale, “Towards low overhead provenance tracking in near

real-time stream filtering,” in Provenance and Annotation of Data, ser. Lecture

Notes in Computer Science, L. Moreau and I. Foster, Eds. Springer Berlin /

Heidelberg, 2006, vol. 4145, pp. 46–54.

[132] ——, “Tracking stream provenance in complex event processing systems for

workflow-driven computing,” in Proceedings of the 2nd International Workshop on

Event-driven Architecture, Processing, and Systems, in conjunction with VLDB’07

(EDA-PS’07), Vienna, Austria, 2007.

[133] N. N. Vijayakumar, “Data management in distributed stream processing systems,”

PhD. thesis, Indiana University, 2007.

[134] M. Wang, M. Blount, J. Davis, A. Misra, and D. Sow, “A time-and-value centric

provenance model and architecture for medical event streams,” in Proceedings of

the 1st ACM SIGMOBILE international workshop on Systems and networking

support for healthcare and assisted living environments (HealthNet’07), San Juan,

Puerto Rico, 2007, pp. 95–100.

[135] J. Widom, “Trio: A system for integrated management of data, accuracy, and

lineage,” in Proceedings of the Second Biennial Conference on Innovative Data

Systems Research (CIDR’05), Asilomar, California, USA, 2005, pp. 262–276.

[136] A. Woodruff and M. Stonebraker, “Supporting fine-grained data lineage in a

database visualization environment,” in Proceedings of the Thirteenth Interna-

tional Conference on Data Engineering (ICDE’97), Birmingham, UK, 1997, pp.

91–102.

[137] Y. Zhu and D. Shasha, “Statstream: statistical monitoring of thousands of data

streams in real time,” in Proceedings of the 28th international conference on Very

Large Data Bases (VLDB’02), Hong Kong, China, 2002, pp. 358–369.

