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Y.G. Berger and O. De La Riva Torres
University of Southampton, UK

Summary. We define an empirical likelihood approach which gives consistent design-based
confidence intervals which can be calculated without the need of variance estimates, design-
effects, re-sampling, joint-inclusion probabilities and linearisation, even when the point estimator
is not linear. It can be used to construct confidence intervals for a large class of sampling de-
signs and estimators which are solutions of estimating equations. It can be used for means,
regressions coefficients, quantiles, totals or counts even when the population size is unknown.
It can be used with large sampling fractions and naturally includes calibration constraints. It can
be viewed as an extension of the empirical likelihood approach to complex survey data. This
approach is computationally simpler than the pseudo empirical likelihood and the bootstrap ap-
proaches. The simulation study shows that the proposed confidence interval may give better
coverages than the confidence intervals based on linearisation, bootstrap and pseudo empirical
likelihood. Our simulation study shows that under complex sampling designs, standard confi-
dence intervals based upon normality may have poor coverages, because point estimators may
not follow a normal sampling distribution and their variance estimators may be biased.

Keywords: Calibration, Design-based approach, Estimating equations, Finite population correc-
tions, Hajek estimator, Horvitz-Thompson estimator, Regression estimator, Stratification, Un-
equal inclusion probabilities.

1. Introduction

Survey data is often used to compute complex estimators, such as quantiles, poverty indica-
tors, M-estimators or parameters of population models. The sampling distribution of these
estimators may not be normal when the variable of interest is skewed. Furthermore, asymp-
totic linearised variance estimators may be biased. Therefore, standard confidence intervals
based upon normality can have poor coverages and bounds out of the range of the parameter
space. For example, standard lower bounds can be negative with positive parameters. The
coverage and the tail error rates can be also different from the nominal levels (e.g. 95%
and 2.5%). On the other hand, empirical likelihood confidence intervals may have better
coverages in this situation, as empirical likelihood confidence intervals are determined by
the distribution of the data (e.g. Owen, 2001) and as the range of the parameter space is
preserved.

Let U be a finite population of N units; where N is a fixed quantity which is not necessarily
known. Suppose that the population parameter of interest €, is the unique solution of the
following estimating equation (Godambe, 1960).

G(0) =0, with G(0)=_ g:(0): (1)

el
where g;(@) is a function of 6 and of the characteristics of the unit 7, such as the variables
of interest and the auxiliary variables. This function does not need to be differentiable. We
assume that the g;(fy) satisfy the conditions (21)-(24) which are discussed in § 5. Note



2 Y.G. Berger and O. De La Riva Torres

that the g;(0) and 6y can be vectors, but for simplicity, we consider that they are scalars.
For example, 6y is the population mean N~! > icu Yi, when gi(0) = y; — 6; where the
y; denote the values of a variable of interest. Other examples are ratios, quantiles (see §
7.1), low income measures, regression coefficients, M-estimators (e.g. Qin and Lawless, 1994;
Binder and Kovacevié, 1995). The aim of this paper is to derive an empirical likelihood
point estimator and an empirical likelihood confidence interval for #y. Suppose that 6 is
estimated from the data of a sample s of size n selected randomly using a sampling design.
The quantity n/N ! denotes the sampling fraction. We adopt a non-parametric design-based
approach; where the sampling distribution is specified by the sampling design and where 6,
and the values of the variables are fixed (non-random) quantities. First, we suppose that we
do not have nonresponse. In § 7.3, we show how the proposed approach can be extended
under a uniform response mechanism.

Under the design-based approach, the standard likelihood function is flat and cannot
be used for inference (Godambe, 1966). Hartley and Rao (1968) introduced an empirical
likelihood approach. Owen (1988) brought this approach into the mainstream statistics.
The main purpose of this article is to extend empirical likelihood approaches for complex
sampling designs.

Chen and Sitter (1999) pointed out that standard empirical likelihood approaches cannot
be directly used without taking the sampling design into account. They proposed a pseudo
empirical likelihood approach which can be used with complex sampling designs. This ap-
proach is not entirely satisfactory, because its empirical likelihood function is not a standard
one and its empirical log-likelihood ratio function does not converge to a chi-squared dis-
tribution (Wu and Rao, 2006). For confidence intervals, the pseudo empirical log-likelihood
ratio function needs to be adjusted by a ratio of variances (the design effect) which needs to
be estimated. Wu and Rao (2006) proposed two pseudo empirical likelihood approaches de-
noted pseudo-EL1 and pseudo-EL2. The fact that the pseudo empirical likelihood approaches
rely on variance estimates, limits the range of the parameters it can be applied to. The
design effect needs to be estimated, incurring an additional variability which may affect the
coverages of confidence intervals. The simulation study in § 7 shows that, for means, the
proposed confidence interval may give better coverages and tail error rates than the pseudo
empirical likelihood confidence intervals.

Empirical likelihood approaches under Poisson sampling are studied in detail by Kim
(2009) and Chen and Kim (2014). Kim (2009) proposed an empirical likelihood point es-
timator under Poisson sampling with negligible sampling fraction. Chen and Kim (2014)
stated that the empirical log-likelihood ratio function based on Kim (2009) empirical like-
lihood function follows a chi-squared distribution asymptotically under Poisson sampling
with negligible sampling fractions. Chen and Kim (2014) proposed a population empirical
log-likelihood ratio function which has a chi-squared distribution asymptotically with negli-
gible sampling fractions. With large sampling fractions, these empirical log-likelihood ratio
functions do not necessarily follow a chi-squared distribution asymptotically. In this paper,
we do not assume that the sampling fraction is negligible. The sampling sampling designs
considered are different and more complex than the Poisson sampling design.

We comnsider four sampling designs commonly used in practice: (i) (stratified) sampling
with replacement (pps sampling), where n denotes the number of draws and the sample is
the set of n observations (units can be selected more than once); (ii) (stratified) sampling
without replacement (wps sampling); (iii) multi-stage sampling; (iv) two phase sampling
with one phase being a uniform response mechanism. We show that the proposed confidence
interval gives the correct nominal coverage asymptotically under these designs.
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The calculation of the proposed confidence interval does not rely on variance estimates, or
unknown population parameters, such as design effect or population size. The proposed ap-
proach is different from and not an adjustment of the pseudo empirical likelihood approaches
or Kim (2009)’s approach. It is computationally simpler than the pseudo empirical likelihood
and bootstrap approaches. It can be used with a wide class of parameters of interest and
with large sampling fractions. Our simulation study shows that, for means and quantiles,
the proposed confidence interval gives good coverages even when the variables of interest are
skewed or contains outlying units which is a common situation with business surveys and
social surveys on wealth or income.

The pseudo-EL2 approach can only be used when N is known. However, N may be
unknown with social household surveys; for example, when the total number of households
is unknown. The proposed approach can be used even when N is unknown.

In § 2, we define the proposed empirical likelihood function. In § 3, we define the max-
imum empirical likelihood estimator. In § 4, we define the asymptotic framework and give
some asymptotic properties of this estimator. In § 5, we show that, under a series of regular-
ity conditions, the empirical log-likelihood ratio function follows a chi-squared distribution
asymptotically. We show how this property can be used to derive confidence intervals. In
§ 5.3, we show how the auxiliary variables can be taken into account. In § 6, we define a
penalised empirical likelihood approach which takes the large sampling fractions into account
(under mps sampling). In § 7, we compare, via a series of simulations, the proposed empirical
likelihood approach with the pseudo empirical likelihood, the bootstrap and the linearisation
approaches. We also show how the proposed approach can be implemented under multi-stage
sampling and under a uniform response mechanism (two-phase sampling). In § 8, we have
some concluding remarks and a summary of the proposed approaches in Table 5.

2. Empirical log-likelihood function

Consider the following empirical log-likelihood function

f(m) = log H m; | = Z log(m;), (2)
1Es 1Es
where [, e, and > <, denote the product and the sum over the sampled units. The quantities
m; are unknown positive scale loads which will be estimated. Hartley and Rao (1969)
showed that (2) is an log-empirical likelihood function under unequal probability sampling
with replacement. Chen and Qin (1993) proposed to use (2) under simple random sampling.
Zhong and Rao (2000) used (2) under stratified simple random sampling. The aim is to
show that (2) can be used for inference: point estimation, confidence intervals and tests.
Note that the pseudo empirical likelihood approach is not based on (2) and is based on the
Kullback-Leibler distance.
The m; can be estimated by the values m; which maximise £(m) subject to the constraints
m; = 0 and
Zn‘b@,c-@, = C; (3)
1Es
where ¢; is a Q x 1 vector associated with the i-th sampled unit and C'is a Q x 1 vector. The
vectors ¢; are related to the design and the auxiliary variables. Possible choices for e; and C
are given in Table 5 and discussed throughout this paper. Note that the ¢; and C' cannot be
any vectors, as they must obey the regularity conditions (9)-(13) given in § 3. The vector C
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is not necessarily a vector of fixed quantities (see Table 5). Hence C can be fixed or random.
The constraint (3) resembles the constraint used in calibration (e.g. Huang and Fuller, 1978;
Deville and Sérndal, 1992). However, in this paper, we consider that the quantity C' is not
necessarily a vector of population totals of auxiliary variables. A comparison with calibration
can be found in § 8.

Suppose that the sample size n is a fixed (non-random) quantity. Let m denote the first-
order inclusion probability of unit ¢ under sampling without replacement (7ps sampling).
Under sampling with replacement (pps sampling), m = np;, where p; is the probability to
select unit ¢ at the i-th draw (Hansen and Hurwitz, 1943) and n denotes the (fixed) number
of draws. In this case, the sample s is a set of n labels of the units selected after n draws.
This set may contain the same label several times, when some units are selected more than
once. We consider that the ¢; contain the m; that is, we assume that the ¢; and C are such
that there exists a Q x 1 vector ¢ such that t'¢; = m and t' C = > icu M- We have that (3)
implies that Z-ae.-; mitTe; =t C or equivalently

Z mim = Z W= n- (4)
i€s iel
In other words, the constraint (3) is such that that the constraint (4) always holds. For
example, when we have a single stratum, we can use Nn~lm as the first component of ¢;
and N as the first component of C. In this case, t = (nRN~1,0,...,0)".

Note that the constraint (4) reduces to ), m;m = n, because the sample size (or the
number of draws) is fixed. Thus, the equation (4) can be interpreted as a design constraint.
Under equal probability sampling, we have that m; = n/N, and the constraint (4) reduces
to Z-ae.—; m; = N which is the constraint adopted under equal probability sampling (e.g. Rao
and Wu, 2009). Note that we do not impose that 3" csMi = N always holds (except when
m = n/N), because N may be unknown. If N is known and we want to impose the constraint
Z-a e i = N, we need to consider an additional constraint Z-a e T = N with x; = 1,
and treat x; as an auxiliary variable (see § 5.3).

We assume that the C is an inner point of the convex conical hull formed by the sample
observations {¢; : i € s} so that a unique solution to (3) exists, as the objective function
(2) is a strictly concave function. This solution can be found by using the Lagrangian
function, Q(m,n) = 3, log(m;) —(t+n)" (3,., mic; — C). The values of m; and 1 which
maximise (Q(m,n) are the solutions of the following set of equations dQ(m, n)/0m; = 0 and
dQ(m,n)/0(t +n) = 0. The solution is

m; = [(t+n) e - (m+n'c) - (5)

as t'¢; = m. The quantity n is such that the constraint (3) holds. This quantity can
be computed using a modified Newton-Raphson algorithm as in Chen et al. (2002). This
algorithm ensures that m; > 0. Note that it is not always necessary to know N in order to
the compute n and m;.

3. Maximum empirical likelihood estimator

In this section, we define the maximum empirical likelihood point estimate as the value which
minimises the empirical log-likelihood ratio function defined by (6).

Let the m; be the values which maximise (2) subject to the constraints m; > 0 and (3),
for given ¢; and C. Let £(m) = ), log(m;) be the maximum value of (2). Let the m;(#) be
the values which maximise (2) subject to the constraints m; > 0 and ), csMC) = C* with
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= (¢, gi(0))" and C* = (CT,0)T, for a given 6. Let f(ﬁ.i,* 0) = >, c. log(m;}(#)) be the

maximum value of (2) subject to these constraints involving ¢f. The empirical log-likelihood
ratio function is defined by the following function of 6.

FO) = 2{l(m)— L(M*,0)} (6)

The mazimum empirical likelihood estimate 0 of tp is defined by the value of § which
minimises the function 7(#). Note that 7(f) > 0, for all §. Thus 6 is the solution of r(d) = 0.
Assuming that the g;(#) are such that the estimating equation

G(0) =0, with G(0) = gi(0), (7)

1Es

has a unique solution, we have that 8 is the solution of (7) as it implies m} (g) = m; (for all
i) and ?(g) = 0.

Note that when ¢; = Nn_ mand C = N (or equivalently ¢; = m; and C = n), we have
that n = O and m; = ©7 . Under 7ps sampling, G(# ) is given by (18) and @ is the Horvitz and
Thompson (1952) estimator given by Y D ics Vi ! when g,(0) = y;—n~'0m. (Under pps
sampling, we obtain the Hansen and Hurwitz (1943) thlmdtor) When qt(b’") =y — N,
0 is the Héjek (1971) ratio estimator Y = NNV, where N, = iesT - The thlmdtor

YTr is more efficient than YH when the variable of interest is correlated with the inclusion
probabilities (Rao, 1966). Note that we cannot obtain Y, with the pseudo-EL2 approach.

4. Asymptotic properties

In order to derive asymptotic properties of the proposed empirical likelihood approach, we
need to define an asymptotic framework and assume a set of regularity conditions.

Consider that n — oo and N — oo. The stochastic orders O(-), o(-), O,(:) and q,(-) are
defined according to this asymptotic framework, where the convergence in proba_blllty is with
respect to the sampling design (e.g. Isaki and Fuller, 1982). We do not assume nN~! = o(1).
Other empirical likelihood approaches (Owen, 1988; Kim, 2009) assume that nN~—! = o(1).
This condition is restrictive because many surveys (e.g. business surveys) use non negligible
sampling fractions.

Consider that the sampling design is such that the following regularity conditions hold.

max{nN " 'r': i€s} = Oyl), (8)
NTHCr=Cl = Opn77), (9)
max{|l¢;|| ;i € s} = q,(n.%): (10)
ISI = G(1), (11)
ISTH = Ou(1), (12)
el _ gy o
W > = 7 = 0T (r=234) (13)
s
with

= mn cic;r = G

S = _ﬁz 2 and C'Tr:. p (14)

1Es 1Es
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The quantity |Al| = trace(AT A)Y? denotes the Euclidean (Frobenius) norm.

The condition (8) is the key condition. It ensures that the inclusion probabilities are not
disproportionately small compared to the sampling fraction. This condition was proposed
by Krewski and Rao (1981, p. 1014). The condition (9) holds when the law of large numbers
holds. For unequal probability sampling, Isaki and Fuller (1982) gave conditions under which
(9) holds (see also Krewski and Rao, 1981, p. 1014). Chen and Sitter (1999, Appendix 2)
showed that the condition (10) holds for common unequal probability sampling designs. It
can be shown that the conditions (11) and (12) hold when ~Sis positive definite and when
S— 8| = 0,(1) and [|S|| = O(1). The
condition (13) is a Lyapunov-type condition for the existence of moments (e.g. Krewski and
Rao, 1981, p. 1014, Deville and Sérndal, 1992, p. 381). In § 5, we will see that the conditions
(9), (11), (12) and (13) are trivial when we do not have auxiliary variables. In § 5.3, we will
see that these conditions are needed when we have auxiliary variables.

Using the Lemma 1 of the supplementary materials, we have that Nn=!||n| = Op(n._%):
where 77 is given in (5). This implies the following approximation for 77 (see Lemma 2 in the
Appendix A of the supplementary materials).

there exists a positive definite matrix —8 such that

n=nN"25"YC-C,)+nN"'e (15)
where C, is defined in (14) and € is such that [|é]| = Op(n~1). Furthermore, we have that
M = :rr_i_l - Wi_gc;rn(l +v;)~! where v; = :rr_i_lc;rn. Hence by substituting this equation into

equation (7), we obtain G(6) = G(0), — 2 ies gi(0)c] (1 +v;)~"; where G(0), is defined
by (18). By replacing (15) into the previous expression of G(f), we obtain (see Appendix A)
GO) = G(0)peg+ 0)(Nn"7); (16)

where é(ﬁ},.ey is the following regression estimator.
G0)ey = GO)x+B(O)(C—C,). (17)

where

GOx = a0, (18)

i€s

and §;(0) = g;(6)m,'. The quantity B (#) is a vector of regression coefficients defined by

-1
~ 1 T+ 1
B0 = (L hed) ¥ Luoe 19)
ics igs 't
In the supplementary materials, we show rigorously that the equation (16) holds for
sampling designs which are such that the conditions (8)-(13) hold. We also assume that 6 is
such that following condition holds.

1 . .
—5 260 = 0,7 (20)
1Es

In this paper, the vector ¢; always contains the m or the stratification variables (see §
5.2). Thus, it can be shown that (17) converges to a design-optimal regression estimator
under a single stage unequal probability pps sampling design (Berger et al., 2003). Note
that (16) implies that the maximum empirical likelihood is asymptotically design-consistent

because (17) is a consistent regression estimator.
Kim (2009) proposed an empirical likelihood estimator which is equivalent to (17) in
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some particular cases. For example, if we use the auxiliary variables z; = m in Kim (2009) S
estimator, we obtain an estimator which is equivalent to (17), when ¢; = (Nn~!m,1)T and
C = (N,N)T. However, (17) is different from Kim (2009)’s estimator when ¢; does not
contain the constant one or under stratified designs (see § 5.2). There are situations when
we do not want to include the constant one within ¢;, for example, when N is unknown.

5. Empirical likelihood confidence intervals

In order to derive standard confidence intervals, we need unbiased point estimators following
a normal distribution and unbiased variance estimators. However, the sampling distribution
may not be normal for a given sample size, despite the fact that a point estimator may be
asymptotically normal. Furthermore, linearised variance estimators may be biased. The main
advantage of the empirical likelihood approach is its capability of deriving non-parametric
confidence intervals which do not depend on variance estimates of 9 and do not rely directly
on the normality of #. However, this approach depends on the normality of G(ﬁg)_r (see (21)
below).

Empirical likelihood confidence intervals rely on the conditions (21)-(24) given below.
Consider that the sampling design and the g;(6y) are such that the following regularity
conditions hold.

G(00)r var[G(00)=]"2 — N(0,1), (21)
N7'G(0)r = Oy(n%), (22)
max{|g;(fo)|: i € s} = q,(n.%): (23)
=@ = O (r=2,3 4) (24)

T ies

where var[G(6p) ] denotes the design-based variance of G(6g)x and §;(6y) = gi(0o)m

The conditions (22), (23) and (24) ensure that the conditions (9)-(13) hold with ¢ when
# = 6p. Chen and Sitter (1999) showed that (23) holds for common sampling designs. The
condition (24) is a Lyapunov-type condition for the existence of moments. As f is a constant,
é(ﬁg)w is an Horvitz and Thompson (1952) estimator. Isaki and Fuller (1982) gave regularity
conditions under which (22) holds (law of large numbers). Hajek (1964), Visek (1979) and
Berger (1998) gave regularity conditions for the asymptotic normality of the Horvitz and
Thompson (1952) estimator. Under pps sampling, the g;(6y) are independent and standard
large sample theory can be used to show the normality (e.g. Praskova and Sen, 2009). Based
on these evidences, it is reasonable to consider that (21) holds, as E(G(6y),) = G(6) = 0.
Note that the classical empirical likelihood approach and the pseudo empirical likelihood
approaches also rely on (21) (e.g. Owen, 1988, p. 242, Owen, 2001, p. 219, Wu and Rao,
2006, p. 364).

The proposed cmplrl( al likelihood approach relies on the normality of G(ﬁg)_r but not
on the normality of 6. That does not mean that @ is not asymptotically normal. It can be
shown that the condition (21) implies that the point estimator is asymptotically normal under
additional conditions such as g;(#) being differentiable and twice differentiable with respect
to @ (Binder, 1983; Godambe and Thompson, 2009). Note that the differentiability is not
necessary for empirical likelihood, although the differentiability holds for most parameters,
except for quantiles which require additional conditions for normality (Francisco and Fuller,
1991). Thus, the condition (21) is weaker than the asymptotic normality of g; because the
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latter requires additional conditions. Even if # is normal, we need an unbiased variance
estimator, as a biased variance affects the coverage of confidence intervals. This can be an
issue with quantiles (see Graf and Tillé (2014) and § 7.1). This is not a problem with empirical
likelihood, because it does not rely on a variance estimate of 6. This is the key advantage of
empirical likelihood confidence intervals over standard confidence intervals. Note that we do
not need to assume that # is unbiased, although it will be asymptotically unbiased because

of (17) and (22).

5.1.  Empirical likelihood confidence intervals for pps sampling with replacement
In this §, we assume that the sample is selected according to a pps with replacement sampling
design. The empirical log-likelihood ratio function (6) can be used to construct empirical
likelihood confidence intervals. It requires that 7(6g) follows asymptotically a chi-squared
distribution with one degree of freedom under our regularity conditions. This property is the
consequence of the Proposition 1 below.

The proposition 1 is valid for any sampling designs which satisfy the regularity conditions.
However, in order for 7(f) to follow a chi-squared distribution asymptotically, (26) needs to
be a consistent estimator for the variance. This is true under pps sampling with replacement.

PROPOSITION 1. Let ¢; = Nn~ 1w, C = N, c = (c;r:g.;(ﬁg))—r = (Nn='m,gi(6)) " and
C* = (CT,0)" = (N,0)", assuming that the sampling design is such that the conditions
(8). (10), (22), (23) and (24) hold, we have that

7(00) = G(0)2 57 ,,[G(00) ) ™! + O,(n~7), (25)
where

— =5 v 1, 2

5735 G (00)x) = 3 (3(60) = 71 G(00)s) - (26)

1Es

Find below a Sketch of the proof. The rigorous proof can be found in the supplementary
materials (see Corollary 4). Chen and Kim (2014) obtained a result similar to (25) under
Poisson sampling and n N~ = o(1).

The quantity Nn~! in ¢; guarantees that the conditions (11) and (12) hold. Note that
the constraint ), m;m = n is equivalent to the constraint ), mi(Nn~'m) = N. Thus,
we obtain the same m; and m}(#), with ¢, = m and C = n, or with ¢; = Nn~'m and
C = N. Thus the equation (25) also holds with ¢; = m and C = n. This also means that
mq, m}(#) and 7(¢) can be calculated even when N is unknown.

The regularity conditions (9), (11), (12) and (13) do no appear in Proposition 1, because
* given in the Proposition 1.

they are trivial with the ¢; and ¢

Sketch of the proof: Let ((m) = ), log(m). Using (5), we have that — log (m;)—log(m) =
log(1 +v;) = v; —v2/2 + 0, (v3), where v; = :rr_i_lc;rn. Hence, we have
—2{l() + £(m)} = =2 (log (i) — log(m)) =2 v — > v} + Op(n™?)
tES tES s

=23 (it mm) =Y v -2+ 0,(n7F) =Y v+ 0,(n"%), (27)

1Es 1Es 1Es
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because Y, fum = n (see (4)) and Y, (vi + fum) =n + Y, 07 + Op(n—%) (see (C.5)
in the supplementary materials). Now using (15), we have

. 1 o~ o~ o~
Sowt=n"Y Sec/n=(Cr—C)'EHC, — C)+Opn"7); (28)
i€s ics i
where £ = —N2p-18§. Thus, by using equations (27) and (28), we have
—2{l(in) 4 (n)} = (Cr — C)T="HC, — C) + Oy(n"7), (29)
and similarly
—2{l(*,00) + U(m)} = (Ck — CHTEHC: — C*) + Oy (n2), (30)
as the regularity conditions hold with ¢! and C*, when 6 = 6, where C* = 2 ies mter and
=) m2ererT. Using equations (6), (29), (30) and C, — C = 0, we obtain

7(00) = (Ct — C*) TS 1(Ct — C*) + 0,(n"7) (31)

NZp—1 NT?-_lé(gﬂ)W

-1
~ T 1
! rn’_lé(gﬂ)w Z.ie.-; .(}-;(60)2 ) (0: G(gﬂ)“) + OP(“‘ )

= (0, G(00)x) (

-1
= G(6,)? (Z 3:(00)% — n--lé(ﬁnﬁ) +0p(n7%), (32)

1Es

as Ct — C* = (0,G(00)x)T. The Proposition follows from (32). O

Under sampling with replacement with unequal probabilities (pps sampling), (26) is an
unbiased consistent estimator for the variance (Durbin, 1953). Hence 7(6y) follows asymp-
totically a chi-squared distribution with one degree of freedom, by Slutsky’s theorem and
(21). Thus, the consistent « level empirical likelihood type confidence interval (see Shao and
Tu, 1996, Definition 4.1) for the population parameter 6y is given by (e.g. Wilks, 1938)

{6 : 7(0) < xi(a)} = [ min{6] 7(0) < x3(a)}; max {6] 7(0) < x3i(a)} |; (33)
where X% () is the upper a-quantile of the chi-squared distribution with one degree of free-
dom. The quantity o is called the nominal coverage level. Note that 7(f) is a convex
non-symmetric function with a minimum at # = 6. This interval can be found using any
root search method. This involves calculating 7() for several values of 6. If g;(#) and # are
R x 1 vectors, the random variable 7(fy) will converge to a chi-squared distribution with R
degrees of freedom (see Oguz-Alper and Berger, 2014).

The p-value to test Hy : 6y = 6 is given by -[;?95} f(x)dz, where f(x) is the density of
the chi-squared distribution with one degree of freedom.

5.2. Stratification
Suppose that the finite population U is stratified into H strata denoted by Uy, ..., Uy,
..., Ug; where UL U, = U. Suppose that a sample s;, of fixed size ny, is selected with
replacement with unequal probabilities from Uj,. We assume that the number of strata H is
bounded (H = O(1)).

The empirical likelihood estimator is still the solution of (7) where m; are the values

which maximise (2) under a set of constraints (3) with ¢; = Nn~!z; and C = Nn~!n;
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where z; are the values of the design (or stratification) variables defined by
zi = (zi1y .- -, z.iH)T and where n = (nq,..., n.H)T (34)

denotes the vector of the strata sample sizes, with z;, = m when i € Uy and 2z, = 0
otherwise. It can be shown that m; = :rr_é_l.

We assume that conditions (8), (10), (22), (23) and (24) hold with ¢; = Nn~lz;, C =
Nn='n, ¢} = (¢],gi(f))" and C* = (CT,0)", when 0 = 6. The regularity conditions (9),
(11), (12), (13) are trivial in this case. Note that for the computation of m; and m; (), we
can use ¢; = z; and C = n instead.

The Corollary 3 in the supplementary materials shows that (25) holds where the variance
estimator is now the following stratified pps variance estimator.

H :
var s [G(00)x] = [Z (.‘7-&(‘90) - ”-Eléw-,h(ﬁn))zl ; (35)

h=1 Li€sy

where éw-’h(ﬁg) = > ies, Gi(fo). This can be proven using (31), where $* is now a (H +
1) x (H +1) matrix. Details of the proof can be found in the Appendix B of the supplemen-
tary materials (see Corollary 3). The variance estimator (35) is design-consistent because
H = O(1). Hence, 7(fg) follows a chi-squared distribution asymptotically and a consistent
empirical likelihood confidence interval is given by (33).

Note that the same likelihood function (2) is used with or without stratification. The
pseudo empirical likelihood function has to be modified to take the stratification into account

(e.g. Rao and Wu, 2009, p. 195).

5.3.  Auxiliary variables
In this §, we assume that the sample is selected according to a stratified pps with replace-
ment sampling design described in § 5.2. Let &; be a P vector of values of auxiliary vari-
ables attached to unit ¢. Suppose that these variables are such that their population totals
X = Z'&GU x; are known. Let f;(x;, X) = &; — Xmn~! be a P vector. Let m;(x) be the
values which maximise (2) under the constraint (3) with ¢; = (Nn='z, fi(2;, X)T)T and
C=>,p¢ci= (Nn='n",07)". Thus the maximum empirical likelihood estimator is the
solution of » .. m;(x)gi(0) = 0 (see (6) and (7)). Note that m;(x) are calibrated weights
because ), mi(x)fi(x;, X) = 0 implies ), . mi(x)x; = X. When N is known, we recom-
mend to include the variable x; = 1 (intercept) within @;. This may improve the efficiency
of the maximum empirical likelihood estimator. Note that for the calculation of m;(x), the
quantity Nn~! can be omitted within ¢; and C.

It is also possible to calibrate towards parameters more complex than totals. For example,
we may want to calibrate with respect to population means, quantiles or variances (e.g.
Owen, 1991; Chaudhuri et al., 2008; Lesage, 2011). In this case, the calibration constraint
is specified by the estimating equations ), mfi(x;i,9o) = 0; where f;(x;,9¢) is a vector
function of the auxiliary variables and of a known parameter ¥y which is the solution of the
estimating equation Y, f;(z;,9) = 0. In this case, we use ¢; = (Nn~ 'z fi(z;,99)") "
and C = (Nn._ln—r: OT)T. For example, if we want to calibrate towards known population
means, we need to use fi(x;, 9y) = x; — g, with ¥y = X N~1. The most common situation
is practice is to know a set of totals, means or proportions from large external censuses or
surveys. Simultaneous calibration on totals, means or proportions is feasible with this §
approach.
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We assume that the conditions (8)-(13), (22)-(24) hold. Using Theorem 2 in the Appendix
B of the supplementary materials, we have that 7(6y) follows asymptotically a chi-squared
distribution with one degree of freedom. This relies on the condition that the regression
estimator (17) has a normal distribution asymptotically, when ¢ = 6. This condition can
be supported by Scott and Wu (1981) regularity conditions for normality of the regression
estimator.

6. ps sampling without replacement

In this §, we consider that we have a uni-stage sample selected without replacement (mwps
sampling). When n/N is negligible, the variance estimator (26) is approximately unbiased
and the random variable (25) follows a chi-squared distribution asymptotically. When n/N
is not negligible, (26) is biased under wps sampling, implying that (25) does not necessarily
follow a chi-squared distribution. In this §, we assume that n/N is not negligible.

Under wps sampling, the point estimator is still given by the solution of (7) with ¢;
and C given in § 5. This gives a consistent estimator because (16) still holds. However,
for confidence intervals, we use a penalised empirical log-likelihood ratio function (36) with
constraints based on a different set of vectors ¢;, €}, (o} , o given below. We will see that this
ensures that the penalised empirical log-likelihood ratio function (40) follows a chi-squared
distribution asymptotically, when 6 = 6.

First we consider the case of a single stratum without auxiliary variables. In this case,
we use ¢; = ¢ Nn~'m, C = Nn~! D ies@i- Let ¢f = ¢(Nn~'m,g:(0))7 and C* =
(Nn™' Yo @i 2oies(ai — 1)3i(0)) T, with g = (1 — m)%.

Consider the following penalised empirical log-likelihood function.

{(m) = log (H m; exp(1l — mmi)) = Zlog(nn) +n-— Z T (36)

tES 1Es 1Es
Let £(ii) be the maximum value of (36) under the constraints m; > 0 and
ZT}"L-,;E-,; = é (37)
1Es
The quantities m; which maximise (36) under the constraints (37) are given by m; = (m +
77 ¢;)~'; where 7 is such that (37) holds. Note that for the computation of 17, the quantity
Nn—! can be omitted within ¢; and C.
Let ¢(m*, #) be the maximum value of (36) under the constraint m; > 0 and
Y me; = C*, (38)
1Es
for a given . We obtain
~ ~ -1
mi(0) = (m+n"er) . (39)
where f7* is such that (38) holds. Note that for the computation of m}(#), the quantity
Nn~! can be omitted within ¢! and C*.

The penalised empirical log-likelihood ratio function is defined by

7o) = 2{?{7?;)—?(7?:,*:8)}- (40)
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We may interpret the g; as finite population corrections. The penalty exp(l — mm;) in
(36) ensures that the m}(#) maximise (36) and that the random variable 7(fy) follows a
chi-squared distribution asymptotically (see Proposition 2 below). Note that (36) reduces to
(2) when ¢; = ¢; and €} = ¢} given in § 2 because (4) holds in this case. However as ¢; # ¢;
and €/ # ¢}, the equation (4) does not hold any longer. Thus, (2) is different from (36) and

7(0) # 7(6), for all 6.

PROPOSITION 2. Assuming that the wps sampling design is such that the conditions (8),
(10), (22), (23) and (24) hold with ¢;, ¢!, C and C*, when 6 = 6,, we have that

7(00) = G(080)2 5ar(G(00)x] ™ + Op(n™2); (41)
where
var[G(00)x] = Y a2gi(60)* — d " G(60)?, (42)
FI=x]

with Cor'(ﬁg) = Zié.‘i qf_(}-;(ﬁg) and d = Z-ae.—; qf
Note that the regularity conditions (9), (11), (12), (13) are trivial for the ¢;, ¢!, C and C*
considered.

The proof follows the same principle as the proof of Proposition 1. The rigorous proof can
be found in the Appendix B of the supplementary materials (see Theorem 1 and Corollary
2).

The variance estimator (42) is the Héjek (1964) variance estimator which is consistent,
for high entropy sampling designs when d = 3, ., m(1 — m) — oo (e.g. Hijek, 1964, 1981;
Berger, 1998; Praskova and Sen, 2009; Berger, 2011). Thus, the random variable r(6y) follows
a chi-squared distribution. Hence a consistent empirical likelihood confidence interval can be
constructed with r(#) (see (33)). Berger (2011) gave regularity conditions under which (42)
is consistent under a large class of high entropy sampling designs. For example the rejective
(Héjek, 1964; Fuller, 2009), the Rao-Sampford (Rao, 1965; Sampford, 1967), the Pareto
(Aires, 2000) and the Chao (1982) sampling designs are high entropy sampling designs.
Although most sampling designs used in practice have large entropy, there are designs with
low entropy, such as the non-randomised systematic sampling design and the Hartley-Rao-
Cochran sampling design (Rao et al., 1962). Berger (2014) proposed a set of ¢;, €}, C and
C* which can be used for the Hartley-Rao-Cochran sampling design (Rao et al., 1962).

The ¢; reduce the effect of the units with large m. For example, if m; = 1, then ¢; = 0
and ¢; = 0. Thus, m; = m;(f#) = 1 and this unit has no contribution towards the empirical
likelihood functions and any confidence intervals. This is a natural property since this unit
does not contribute towards the sampling distribution. Note that with small sampling frac-
tions (m negligible), ¢; is approximately equal to one. If we replace g; by one, the approach
proposed in this § reduces to the approach of § 5. This is in agreement with the fact that
pps and 7ps sampling are equivalent when the m are negligible. Note we adjust the con-
straints by the quantities ¢; which do not need to be estimated, unlike the pseudo empirical
likelihood approach which adjusts the log-likelihood ratio function by the design effect which
needs to be estimated. Note that the precision of (42) can be improved by substituting g; by
(1 — A\;)%, where the ); are defined by the recursive formula (3.25) in Héjek (1981) . Using
@i = (1= X;)% instead of ¢; = (1 — )% may improve the variance (42) for moderate sample
sizes (see Héjek (1981) for more details).
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For stratified designs, we use ¢; = ¢;Nn~lz;,, C = Nn'_lz-;e,, ¢z, € = ¢;(Nn~1z],

gi(0))T and C* = (Nn—1 Yics @iZ] Y ics(ai—1)3i(0)) T, where 2; = z;m " and z; is defined
by (34). We assume that conditions (8), (10), (22), (23) and (24) hold with ¢;, C, ¢; and
C*, when 6 = 6. The conditions (9), (11), (12) and (13) are trivial in this case. Using
Corollary 1 in the Appendix B of the supplementary materials, we have that (41) holds;
where 1ar[G(6o) ] is now the stratified Hajek (1964) variance estimator given by

H

0ara|G(00)x) = > | D aai(00)* — dy ' Gn(00)? | ; (43)

h=1 Ligsy

where dj, = D e o ¢? and éh(ﬁg) = i o q2§i(0o). This variance estimator is consistent
when d, = ).y, m(1 —m) — oo and when H = O(1). Hence 7(fp) follows a chi-squared
distribution asymptotically. _

This §'s approach can be extended for calibration constraints. For ¢(m), we use ¢;
= qi(Nn7'z] fi(zi,9)")" and C = (Nn™ 'Y, a2, > e (ai — Dfi(x;,90)7) 7, where
ﬂ(:}:.éz Yy) = fi(x;, 190)7&_1. For E(ﬁz*: 0), we use € = (€, ¢;9:(0)) " and Cr = (6'—'—: D ieslti—
1)g;(#))T. We assume that the conditions (8)-(13), (22)-(24) hold. Using the Theorem 2 in
the Appendix B of the supplementary materials, we have that r(fy) follows asymptotically
a chi-squared distribution with one degree of freedom. Note that for the computation of m;
and m(6), the quantity Nn~! can be omitted within ¢&;, C, & and C*.

This § ’s results are based on the Theorem 1 (Appendix B of the supplementary materials)
which holds under any stratified sampling designs which satisfy the regularity conditions (9)-
(13) with ¢; and €. This is true for the high entropy mps and pps sampling designs with
the ¢; and ¢} we considered. The Theorem 1 shows that 7(6y) converges to a quadratic form
which follows a chi-squared distribution asymptotically only for specific choices of ¢; and
¢! which depends on the design and on the auxiliary variables (see Table 5), because these
choices induce a design consistent variance within the quadratic form.

7. Simulation study

In this §, we compare the performance of the proposed empirical likelihood confidence inter-
val with alternative approaches. The parameters of interest are population quantiles (in §§
7.1 and 7.3) and population means (in § 7.2). In §§ 7.1 and 7.2, we consider a single stage
mps randomised systematic sampling design (e.g. Tillé, 2006, §7.2). This is a high entropy
design (Brewer and Donadio, 2003) which is implemented by arranging the population ran-
domly before selecting each wps systematic sample. In the Appendix C of the supplementary
materials, we consider a two-stage design. We consider that we have a single stratum. For
the bootstrap approaches, we used 1000 bootstrap samples. The Hartley and Rao (1962)
variance estimator is used for standard confidence intervals and for the pseudo empirical
likelihood approaches. In § 7.3, we show how empirical likelihood confidence intervals can
be constructed when we have unit nonresponse. The population data are either generated
from a model or based upon the 1998-1999 British Family Expenditure Survey (FES). The
variables of interest considered are skewed. With non-skewed variables of interest, we did
not observe major differences between the competitive approaches. These simulation results
are not presented.

We investigate the Monte-Carlo performance of the 95% confidence intervals. All the
simulation studies are based on 10,000 samples randomly selected. The sample size is n = 500
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in§§7.1,7.2and 7.3. In § A, the average sample size is 1000. We used the statistical software
R (R Development Core Team, 2014). The algorithms were coded in C.

7.1.  Quantiles
Let g be the ¢ quantile Y, of the population distribution of a variable of interest y;; where
0 <qg<1l. Weuseg;(f) = Q(y iy, 0) — q, with

0 — y
oy, 0) = o{y) < 0} + 71}5{?; (i-1) < 0} (1 = o{yu) < 0});

Y(i)y — Y(i—1)

where the y;) is the values of the i-th sampled units arranged in increasing order, Wlth
Yoy = ¥y — (W) — vay)- The function o{y < @} = 1 when y < ¢ and o{y < 8} =
otherwise. The empirical likelihood estimator of Y, is the solution of the equation é(ﬁ) = U'
which reduces to f’(ﬁ) = q; where ﬁ(b’") = (Z-ae.—; ﬁ.i,[.é})_l > ies Mpyo(y(i), ) is a distribution
function. Note that F (f) = g has always a unique solution because F (y) is a bijective
function given by a piecewise linear interpolation of the step distribution function
ies My <0}

Dics M)
This interpolation consists in joining the steps of F (8) by Ld:ra_lght lines segments (Harms a.nd
Duchesne, 2006). It can be casily shown that N=1G(f), = N1 Yieslo(ey . 00) — dlm”
approximately equal to N—! Z-ae.—;[a {yi < 6} — q]:rr_i_l which is an Horvitz and Thornphon
(1952) estimator. Thus, (21) and (22) hold, and the log-likelihood ratio function has a
chi-squared distribution asymptotically and it can be used to derive confidence intervals for

Y,. This approach can be generalised to take the stratification and auxiliary variables into
account (see § 7.3). Note that the empirical likelihood estimator is different from the classical

F() = (44)

estimator of a quantile 17;. = inf{# : F(0) > ¢q}. We did not observe significant differences
between the mean squared errors of both estimators.

We generated several skewed population data according to the following model y; =
3+ a; + ¢ e; (Wu and Rao, 2006); where a; follows an exponential distribution with rate
parameters equal to 1 and e; ~ X% — 1. The m are proportional to a; + 2. Populations of size
N = 2000 and N = 25000 are generated. The values y;, z; and a; generated are treated as
fixed. The parameter ¢ is used to specify the correlation p(y, m) between the values y; and
m (ply, ™) = 0.8 with ¢ = 0.5; p(y,7) = 0.3 with ¢ = 2.3). We used the 7ps randomised
systematic sampling design to select 10,000 samples of size n = 500. We use the approach
described in § 6. We consider the 5% and 25% quantiles.

The results are given in Table 1. The values not within brackets are the values for the
populations of size N = 2000 (large sampling fractions). The values within brackets are
the values for the populations of size N = 25,000 (small sampling fractions). The ratio of
average length is the average length of the confidence intervals divided by the average length
of the confidence intervals based on linearisation. We measure the stability of the confidence
intervals using the standard deviation of the lengths. The standard deviations are divided
by the standard deviation of lengths of the linearisation confidence intervals. These values
are given in the last column of Table 1.

Based on the Shapiro-Wilks test for normality, the point estimators do not follow a normal
distribution. This lack of normality may affect the coverages. For the standard confidence
intervals based on the linearised variance (Deville, 1999), we observed that the coverages and
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Table 1. Quantiles Y, (¢ = 5% and 25%). n = 500. The values not within brackets for N = 2000 (large
sampling fractions). The values within brackets for N = 25, 000 (small sampling fractions).

qg ply,7) Approaches Overall Lower tail Upper tail Ratio Av. Ratio SD
Cov. % err. rates% err. rates% Length Length
5% 0.8  Linear. (Std.) 99.3*% (98.0%) 0.7* (1.8%) 0.0* (0.2*%) 1.00 (1.00) 1.00 (1.00)
Rescaled boot. 97.2% (95.4) 1.4* (2.3)  1.4% (24)  0.74 (0.82) 2.95 (2.21)
Direct boot. 95.0 (93.6%) 1.9* (3.6%) % 2"‘ (2.8)  0.67 (0.83) 2.83 (2.36)
Woodruff 94.9 (95.2) 2.3 (2.0% 8 (2.8%) 0.67 (0.81) 2.82 (2.19)
Emp. Lik. 94.8 (95.0) 1.9* (2.1%) .% 5"‘ (3.0%) 0.65 (0.80) 2.78 (2.18)
0.3 Linear. (Std.) 98.8% (98.8%) 1.2% (1.2¥) 0.0¥ (0.0%) 1.00 (1.00) 1.00 (1.00)
Rescaled boot. 97.2% (95.2) 1.4% (2.1%) l —1"‘ (2.8) 067 (0.73) 2.59 (2.22)
Direct boot. 92.9% (93.8%) 4.9*% (3.1%) 2 (3.1%) 0.65 (0.74) 2 8") (2.35)
Woodruff 95.0 (95.2) 2.5 (1.7%) 4 (3.1%) 062 (0.73) 2.54 (2.19)
Empirical Lik. 94.9 (94.9) 2% (1.9%) .% [)"‘ (3.2%)  0.60 (0.72) 2 —18 (2.16)
25% 0.8 Linear. (Std.) 94.2% (95.4) 2 5 (2.0%) 3.4* (2.6) 1.00 (1.00) 1.00 (1.00)
Rescaled boot. 97.0% (95.1) 1.5% (2.3)  1.5% (2.6)  1.10 (0.98) 3.78 (2.29)
Direct boot. 92.0% (94.2%) 4.2* (2.9%) .% 8"‘ (2.9%) 1.03 (0.99) 4.16 (2.41)
Woodruff 94.8 (95.1) 2.8% (24) 4 (2.5) 1.00 (0.98) 3.58 (2.25)
Empirical Lik. 94.9 (95.0) 24 (2.2) 7 (2.8)  0.99 (0.97) 3.52 (2.23)
03 Linear. (5td.) 07.6 (97.17) L.7* (1.67) n 7F (137 1.00 (L.00) TL.00 (L.00)
Rescaled boot. 97.0% (94.9) 1.4* (2.3) l 6% (2.7) 097 (0.91) 3.36 (2.45)
Direct boot. 94.3*% (95.0) 3.1* (2.7) l’) (2.3)  0.87 (0.91) 3.29 (2.55)
Woodruff 95.0 (94.9) 2.6 (2.6) 4 (2.5)  0.86 (0.91) 3.12 (2.41)
Empirical Lik. 94.9 (94.9) 2.1* (2.3) 2 ()"‘ (2.8)  0.86 (0.91) 3.10 (2.39)
* Coverages (or tail error rates) significantly different from 95% (or 2.5%). p-value < 0.05.

tail error rates are significantly different from their nominal levels 95% and 2.5% respectively,
except with Yj 25, NV = 25,000 and a correlation of 0.8. This can be explained by the bias of
the linearised variance estimator. This was also observed by Wu (1999).

The rescaled bootstrap confidence interval (the histogram approach) is based upon the
observed 2.5% and 97.5% quantiles of the set of bootstrap values (Rao et al., 1992). The
rescaled bootstrap approach gives acceptable coverages for small sampling fra_(.tlons. How-
ever, for large sampling fraction, it gives coverages and tail error rates significantly different
frorn 95% and 2.5% respectively. This is not surprising, as rescaled bootstrap is design for
small sampling fractions. The direct bootstrap approach (Antal and Tillé, 2011) is designed
for wps sampling with large sampling fractions. The coverages and tail error rates of the
confidence interval proposed by Antal and Tillé (2011) are significantly different, except in
two situations: (i) with Yj 25 with a small sampling fraction and a small correlation between
y; and m, (ii) and Yj g5 with a large sampling fraction and a large correlation.

Chen and Wu (2002) proposed a Woodruff (1952) approach for confidence intervals of
pseudo empirical likelihood estimators of quantiles. The Woodruft (1952) confidence intervals
are obtained by inverting the distribution function (44). This approach gives the correct
coverage in all situations, except that the tail error rates of Y} o5 are significantly different
from 2.5% with small sampling fractions. The empirical likelihood confidence intervals have
also good coverages comparable to the Woodruff (1952) approach. The tail error rates of
Yy.05 can also be significantly different from 2.5%.

Note that the empirical likelihood confidence intervals have the shortest average length
among the approaches which give the correct coverage. The bootstrap confidence intervals
are more unstable (see last column of Table 1) because of re-sampling. Linearisation gives
the most stable confidence intervals, but with usually poor coverage and tail error rates.
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Table 2. Quantiles Y, with ¢ = 5% and ¢ = 25% (values within brackets). FES Data. n = 500.
N = 19,890.

Approaches Overall Lower tail Upper tail Ratio Ratio SD
Cov. % error rates % error rates %  Av. Length Length
Linearisation (Std.) 95.6% (95.8%) 3.1* (1.8%) 1.3* (2.4) 1.00 (1.00)  1.00 (1.00)
Rescaled bootstrap ~ 95.5% (95.0) 2.6 (2.6) 2.1% (2.4) 0.95 (0.95)  1.99 (2.03)
Direct bootstrap 93.2% (94.3%) 3.1* (2.9%) 3.6% (2.8%) 0.97 (0.95) 2.17 (2.11)
Woodruff 95.8% (94.9) 1.7* (2.6) 2.6 (2.6) 0.96 (0.94)  1.97 (2.00)
Empirical likelihood 95.5% (94.8)  2.1* (2.4) 2.5 (2.8%) 0.94 (0.94)  1.94 (1.98)

* Coverages (or tail error rates) significantly different from 95% (or 2.5%). p-value < 0.05.

With Y25, N = 25,000 and a correlation of 0.8, the linearisation approach gives acceptable
coverages with slightly more stable confidence intervals, but only in this case. In the other
cases, the proposed confidence interval is the most stable one among the confidence intervals
with acceptable coverages.

We duplicated the FES data three times to create an artificial population of N = 19,890
households. Samples of size n = 500 are selected with m proportional to first-order inclu-
sion probabilities given in the FES dataset. The parameters of interest are quantiles of the
equivalent total weekly household expenditure (Department of Social Security, 2001). The
results are given in Table 2. For Y} g5, the coverages and tail error rates are significantly dif-
ferent from 95% and 2.5%. For Y{ 25 (the values within brackets), the rescaled bootstrap, the
Woodruff and the empirical likelihood confidence intervals have similar coverages. However,
the upper tail error rate of the empirical likelihood confidence interval is significantly larger
than 2.5%. The linearisation and the direct bootstrap confidence intervals have significantly
different coverage and tail error rates. The empirical likelihood approach gives slightly more
stable confidence intervals than the rescaled bootstrap and the Woodruff approaches.

7.2. Means
Suppose that the parameter of interest 6, is the population mean, and that we have a vector
x; = (1,z;)" of auxiliary variables with known popula_tion totals X = (N, X)T; that is,

fi(x;, X) =x; — Xmn~!. Weuse g;(#) =y; —n ' Nfm. The standard confidence interval is
based on the standard regression estimator defined by (6.4.2) in Sérndal et al. (1992). Note
that the regression estimator, the pseudo empirical likelihood point estimators (pseudo-ELL
& pseudo-EL2) and the empirical likelihood point estimator are different.

Let a; and x; be generated from independent exponential distributions with rate parame-
ters equal to 0.5. The m are proportional to a; +2. We generate 80% of the values of y; from
a normal distribution with mean 8 and variance 1. The remaining 20% are outlying values
generated from y; = 3 + a; + Bz; + ¢ e;, where ¢ = 1.5. We select 10,000 samples of size

= 500 from populations of size N = 2000 and N = 25,000. Based on the Shapiro-Wilks
tu;t for normality, the point estimators do not follow a normal distribution, except for the
empirical likelihood and pseudo empirical likelihood estimators when N = 25,000.

The simulation results are given in Table 3. The column “Ratio MSE" gives the relative
efficiency given by the ratio between the mean squared error (MSE) of the point estimator and
the regression estimator. The proposed empirical likelihood approach gives the correct cov-
erage in all cases. The regression estimator has also good coverages. However, the proposed
empirical likelihood approach gives shorter and more stable confidence intervals. The MSE of
the empirical likelihood point estimator is about 50% lower than the MSE of the regression
estimator. The pseudo empirical likelihood estimators have similar MSE. With small sam-
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Table 3. Mean. n = 500. The values not within brackets for N = 2000 (large sampling fractions).
The values within brackets for N = 25, 000 (small sampling fractions).

Approaches Overall Lower tail  Upper tail Ratio Ratio SD  Ratio MSE

Cov. % err. rates % err. rates % Av. Length Length (Rel. Eff.)
Reg. Est. (Std.) 95.2 (94.8) 2.3 (2.7) 2.5 (2.5) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
Rescaled boot.  97.4% (94.3%) 0.2* (1.0%) 4 (4.6%) 1.19 (1.01) 1.29 (1.03) 1.00 (1.00)
Direct boot. 94.3% (91.3%) 0.9* (1.4%) —1 7"‘ (7.2%)  0.99 (0.90) 0.50 (0.37) 1.00 (1.00)
Pseudo-EL1 94.5% (94.8) 3.0* (2.5) 5 (2.6) 0.54 (0.52) 0.54 (0.41) 0.53 (0.49)
Pseudo-EL2 90.3% (92.3*) 5.5*% (4.0%) —1 2"‘ (3.6%)  0.47 (0.47) 0.45 (0.36) 0.52 (0.48)
Empirical Lik.  95.1 (94.9) 2.6 (2.4) 24 (2.7) 0.53 (0.50) 0.45 (0.37) 0.52 (0.48)
* Coverages (or tail error rates) significantly different from 95% (or 2.5%). p-value < 0.05.

pling fraction (N = 25,000), the proposed empirical likelihood approach and the pseudo-EL1
approach give similar coverages, but the proposed confidence intervals are slightly shorter
and more stable. The bootstrap and the pseudo-EL2 approaches give coverages and tail error
rates significantly different from 95% and 2.5%. The coverages observed for the bootstrap
approaches are due to a lack of normality because both bootstrap variance estimators are
unbiased. The small coverages for the pseudo-EL2 approach is due to the instability of the
design effect. The pseudo-EL1 approach gives the correct nominal coverage when the point
estimator is normal; that is, for small sampling fraction (N = 25,000).

In the Appendix C of the supplementary materials, we give the result of a simulation study
based on a two-stage sampling design. The coverages and tail error rates of the proposed
approach are not significantly different 95% and 2.5% (see Table C1). The coverages and tail

errors rates of the bootstrap and the pseudo-EL approaches are significantly different from
95% and 2.5%

7.3. Unit non-response

Suppose that we have unit non-response according to a uniform response mechanism; that
is, we assume that all the units respond independently with the same response probability
pr. Let r; be the response indicator: r; = 1 if the unit ¢ is a respondent and r; = 0
otherwise. Consider a reverse approach (Fay, 1991); that is, we have a two-phase design
with the response mechanism being the first phase and the second phase being a stratified
pps sampling design or a stratified wps sampling design with negligible sampling fraction
(n/N = 0,(1)). The uniform response assumption is often unrealistic in practice. It is
common practice to form a finite number of adjustment cells and to assume uniform response
within cells. The proposed approach can be extended in this case.

The approaches described in § 5 can be used after replacing g;(6) by r;g:(#). The estimator
of b is the solution of ) 7, . m;r;ig;(#) = 0. Assuming that the two-phase design is such that
the regularity conditions (8) (13), (22)-(24) hold and that n/N = o(1), the empirical log-
likelihood ratio function 7(6y) is asymptotically equal to a quadratic form with a variance
(35) which incorporates the r; (see §§ 5.1, 5.2, 5.3 and 6). When n/N = o(1), Shao and Steel
(1999) showed that this variance is a consistent variance estimator. Hence, 7(fg) follows a
chi-squared distribution asymptotically.

We used the FES population data described in § 7.1. The parameters of interest are
quantiles of the equivalent total weekly household expenditure. The auxiliary information
is the numbers of individuals within age-sex groups (0-19, 20-39, 40-59, 60+). We consider
two situations: with and without the auxiliary variables. Nonrespondents are generated
according to a uniform response mechanism with the average response rates 60%, 70% and
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Table 4. Empirical likelihood coverages (%) for quantiles Y. Unit nonresponse. FES data.

Av. resp. rate = 60% Av. resp. rate = 7T0% Av. resp. rate = 80%
q Overall Lower Upper Overall Lower Upper Overall Lower Upper
Without 10% 95.2 2.1% 27 95.0 2.6 24 94.8 2.4 2.8%
auxiliary  25% 94.9 2.2 2.9% 94.8 24 2.8 94.8 2.5 2.6
variables  50% 95.1 2.3 2.7 95.0 2.3 2.7 95.3 2.1* 2.5
75% 94.5% 24 3.1% 94.8 2.2 2.9% 95.4 1.9% 2.7
With ——  10%  94.4% 28 28F T 946 26 2.7 948 24 28]
auxiliary  25% 94.5% 2.7 2.8 94.9 2.5 2.6 95.0 2.2 2.7
variables  50% 94.9 2.2 2.9% 94.8 24 2.8% 94.5% 2.3 3.2%
75% 94.4% 2.2 3.4% 94.6% 2.3 3.1% 94.6% 2.2 3.2%
* Coverages (or tail error rates) significantly different from 95% (or 2.5%). p-value < 0.05.

80%. The aim of this simulation study is to show the performance of the proposed confidence
interval. Comparing with alternative methods is beyond the scope of this §. The results are
given in Table 4. Most of the coverages and tail error rates are not significantly different from
95% and 2.5%. With auxiliary variables, the upper tail error rates can be slightly larger than
2.5%. Note that these confidence intervals take the effects of the nonresponse, the calibration
and the sampling design into account. A variance estimator which incorporate these features
is more complex to derive and not necessarily unbiased.

8. Conclusion and discussion

The vectors ¢; and C used for point estimation and the vectors ¢;, C, ¢ and C* used for
confidence intervals are summarised in Table 5. In this table, the quantity Nn~! has been
omitted because this quantity does not change the constraints. We notice that the ¢; # ¢;
and C # C unless ¥; = 1. Note that by setting 1; = 1, the approaches described in §§ 5 and
6 are the same, because in this case, ¢; = ¢;, C' = C, ¢} = ¢} and C* = C*. This implies
that (2) is equal to (36) and 7(#) = (). Note that the finite population correction ¢; plays
no role for point estimation. However, it has an effect on the confidence intervals.

There are analogies between the proposed empirical likelihood approach and calibration
(Huang and Fuller, 1978; Owen, 1991; Deville and Sérndal, 1992). The empirical likelihood
estimator is asymptotically equivalent to a calibrated regression estimator (16). The objective
function (2) is related to the concept of empirical likelihood and can be used with or without
auxiliary information. The advantage of the proposed empirical likelihood approach over
standard calibration is the fact that it gives positive weights, and the empirical log-likelihood
ratio function (6) can be used to construct confidence intervals and to test hypotheses. The
proposed approach can be naturally extended for balanced samples (e.g. Deville and Tillé,
2004), by including the balancing constraints within (3).

Non-parametric bootstrap is an alternative approach which can be used to derive non-
parametric confidence intervals. The consistency of the bootstrap confidence intervals is
limited to smooth function of means and for quantiles with small sampling fraction (e.g.
Shao and Tu, 1996, Ch.6). The direct bootstrap (Antal and Tillé, 2011) is limited to vari-
ance estimation of totals, because it provides a second-moment matching in this case. For
complex parameters (such as quantiles), only simulation evidence are provided. Results on
the consistency of the direct bootstrap confidence interval is not available. The proposed
empirical likelihood confidence interval is consistent for a wider class of parameters (which
are solution of estimating equations) with large and small sampling fractions. The proposed
approach is simpler to implement and less computationally intensive than the bootstrap,
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Table 5. The vectors ¢; and C (for point estimation) and the vectors &;, C, & and C* (for confidence
intervals) For without replacement sampling: ¢ = ¢ = (1 — m-)% (or v = (1 — Ag-)%, see § 6). For
with replacement sampling designs: v»; = 1. The z; and n are defined by (34). With a single stratum,
z; = m and n = n. The parameter ¥, is a known parameter specifying the auxiliary information (see
§5.3).

¢; and C for point estimation ¢, C , ¢ and C* for confidence intervals
Eﬁ, = "‘g',z:
Without C; = zi - v -
e C = Zé&s Pizi
auxiliary — (ﬁ_ . (9))_
c; = (¢ ,1ig:
information C = ZEU ci=n ~ ~_L g . . _
__________________________ C =C L, = D50) ________
_ — & =iz fi(mi,9)")"
With c; = (zé ,fg; (:Bg;, 19[;) ) ~ - ) . o
- C = (Ze‘,&s qiZ; ,Z‘-Es(wé — Dfi(x;,9)")
auxiliary — (& igi(0))
T AT T Ci =6 Vigi
information C=3% ,pci=(n ,0") ~ ot . . ~
C"=(C 3, —1)gi(h))

especially with calibration weights. Like bootstrap, the proposed approach does not rely on
analytic derivation. Our simulation studies show that, for means and quantiles, bootstrap
confidence intervals may have coverages and tail error rates significantly different from their
nominal levels. The empirical likelihood approach may give better coverages.

Unlike the pseudo empirical likelihood approach, the computation of the proposed confi-
dence interval does not rely on variance estimates and design effects. This means that it can
be applied to a wide class of parameters. The proposed approach is also simpler to imple-
ment than the pseudo empirical likelihood. The simulation studies show that, for means, the
empirical likelihood confidence interval may give better coverages than the pseudo empirical
likelihood confidence intervals.

There are other issues, such as imputation, two-stage designs with large sampling fraction,
heavily stratified designs, non-randomised systematic designs and weight trimming adjust-
ment, which are not tackled in this paper and are beyond the scope of this paper.
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