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Abstract

Background: S-nitrosation – the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins – is a posttranslational
modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the
formation of N-nitrosamines (RNNOs) in proteins in vivo, although their biological significance remains obscure. In this
study, we characterized a redox-based mechanism by which N-nitroso-tryptophan residues in proteins may be denitrosated.

Methodology/Principal Findings: The denitrosation of N-acetyl-nitroso Trp (NANT) by glutathione (GSH) required molecular
oxygen and was inhibited by superoxide dismutase (SOD). Transnitrosation to form S-nitrosoglutathione (GSNO) was
observed only in the absence of oxygen or presence of SOD. Protein denitrosation by GSH was studied using a set of mutant
recombinant human serum albumin (HSA). Trp-214 and Cys-37 were the only two residues nitrosated by NO under aerobic
conditions. Nitroso-Trp-214 in HSA was insensitive to denitrosation by GSH or ascorbate while denitrosation at Cys-37 was
evident in the presence of GSH but not ascorbate. GSH-dependent denitrosation of Trp-214 was restored in a peptide
fragment of helix II containing Trp-214. Finally, incubation of cell lysates with NANT revealed a pattern of protein nitrosation
distinct from that observed with GSNO.

Conclusions: We propose that the denitrosation of nitrosated Trp by GSH occurs through homolytic cleavage of nitroso Trp
to NO and a Trp aminyl radical, driven by the formation of superoxide derived from the oxidation of GSH to GSSG. Overall,
the accessibility of Trp residues to redox-active biomolecules determines the stability of protein-associated nitroso species
such that in the case of HSA, N-nitroso-Trp-214 is insensitive to denitrosation by low-molecular-weight antioxidants.
Moreover, RNNOs can generate free NO and transfer their NO moiety in an oxygen-dependent fashion, albeit site-
specificities appear to differ markedly from that of RSNOs.
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Introduction

The chemistry associated with the production of nitric oxide

(NO) in biological systems provides the foundation from which the

diverse functions of NO may be interpreted. The nitrosation – i.e.

the addition of a nitrosonium (NO+) equivalent – of the sulfhydryl

group of cysteine residues in proteins to form S-nitrosothiols

(RSNOs) has received increasing attention [1] with evidence of its

occurrence in vivo and demonstration of regulatory effects in

various proteins including GTPases [2], proteases [3], ion

channels [4], phosphatases [5], and transcription factors [6]. In

contrast, the N-nitrosation of primary and secondary amines to

form N-nitrosamines (RNNOs) has been studied mainly in the

context of carcinogenesis with little attention given to protein N-

nitrosation [7]. In 1996, Loscalzo et al. established that tryptophan

in albumin is nitrosated by acidified nitrite to form N-

nitrosotryptophan [8] but the significance of these findings for

the formation of N-nitrosated proteins in vivo has remained

unclear. Other studies indicate that RNS production in vivo gives

rise to the formation of NO adducts with the chemical signature of

RNNOs [9–12]. Collectively, this suggests that – in addition to

cysteine - amino acids such as Trp might be nitrosated in vivo to

form protein RNNOs.

The denitrosation or removal of the NO moiety from amino

acid residues is essential for protein RSNOs and RNNOs to

function as NO storage or signaling intermediates. Although
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denitrosation pathways have been detailed for RSNOs [13],

information about similar reactions for RNNOs is scarce.

Understanding the denitrosation of protein RNNOs in complex

biological matrices would help develop and improve methods to

detect and identify these molecules, and unravel their biological

function. N-nitrosamines in general undergo denitrosation

through thermal and photochemical homolytic cleavage of the

N-NO bond [14,15]. In the presence of a nucleophile, denitrosa-

tion occurs through the direct or indirect - proton catalyzed -

transfer of the nitrosonium group to the nucleophile itself [16].

Kirsch and Korth have proposed that the denitrosation of N-

nitrosotryptophan and other derivatives also occurs without

proceeding through the proton-catalyzed reaction [17]. In this

case, the nitrosamine directly acts as an electrophilic nitrosating

agent such that denitrosation of N-nitrosotryptophan by low

molecular weight thiols including GSH is dominated by the

transnitrosation of GSH and the accumulation of GSNO ([18]).

Alternatively, de Biase et al. have proposed that denitrosation in

the presence of ascorbate occurs through initial homolytic cleavage

of the N-NO bond in nitrosamines [19]. In the present study, we

show that the denitrosation of nitrosated Trp residues by excess

GSH is driven by the formation of superoxide derived from the

oxidation of GSH to GSSG. Transnitrosation occurs only in the

absence of oxygen or upon scavenging of superoxide. We also

studied the S- and N-denitrosation of human serum albumin and

found no evidence for GSH or ascorbate-dependent denitrosation

of the N-nitrosated Trp residue indicating that the site of N-

nitrosation (Trp-214) is not accessible to low-molecular-weight

antioxidants.

Results

Denitrosation of N-acetyl nitroso Trp by GSH forms S-
nitrosoglutathione only in the absence of molecular
oxygen or presence of superoxide dismutase

The denitrosation of nitrosated Trp residues can be modeled by

studying the stability of N-acetyl nitroso Trp (NANT) in solution.

In this set of experiments, NANT decomposition was followed

spectrophotometrically at 335 nm upon incubation of 100 mM

NANT with various concentrations of GSH in 100 mM phosphate

buffer (pH 7.4) containing 100 mM DTPA. As previously shown

[18], NANT decay was increased upon addition of GSH and

followed apparent first order kinetics. The rate of NANT decay

increased with GSH until zero-order dependence was established

at 1 mM GSH and above (Figure 1). The apparent rate of NANT

decomposition with 2.5 mM GSH was 9.9760.0861024. s21

(n = 4), in accordance with values produced for other nucleophiles

[16].

In contrast with a previous study [18], we found that the direct

transnitrosation between NANT and GSH could be ruled out as

the primary mechanism for NANT decomposition because the

disappearance of NANT was inhibited by the exclusion of

molecular oxygen (Figure 2A). This was confirmed by reversed

phase HPLC, by showing inhibition of GSH-sensitive decompo-

sition of NANT upon deoxygenation (Figure 2B). The HPLC

results also revealed close to 90% decomposition of NANT with

1 mM GSH. A portion of the residual absorbance at 30 min

observed in the spectrophotometric assay was due to products

absorbing at 335 nm derived from the preparation of NANT from

acidic nitrite and N-acetyl Trp. Based on the spectrophotometric

and HPLC results and an e of 6100 M21.cm21 at 335 nm [20],

NANT concentration decreased by 73.761.5 mM (n = 16) over the

30 min incubation period in the presence of 1 mM GSH. Under

the same conditions, O2 consumption followed apparent first order

kinetic such that 67.065.3 mM O2 was consumed within 30 min

(n = 4; Figure 2C).

Next, we found that superoxide dismutase (SOD) inhibited

NANT decomposition by GSH in a fashion similar to that

observed in the absence of O2 (Figure 3A). Reductive cleavage of

NANT by SOD as previously shown for S-nitrosothiols [21,22]

did not occur because addition of SOD alone to NANT did not

have any effect (Figure 3A). Low levels of NO were generated in

the presence of 100 mM NANT and 1 mM GSH. This was

dramatically increased upon addition of SOD, with steady-state

levels of NO generation approaching 400 nM (Figure 3B).

Finally, GSH, glutathione disulfide (GSSG), GSNO, nitrite

(NO2
2), and nitrate (NO3

2) formation were analyzed by ion-

pairing HPLC (Figure 4). We found that only NO2
2 was formed

with NANT alone while both NO2
2 and NO3

2 were formed upon

coincubation of NANT with GSH. In the latter case, there was

good agreement between NANT and O2 consumption, and NO2
2

+ NO3
2 produced amounted to a total of 60.265.9 mM (n = 9).

Glutathione disulfide was formed in excess of NANT consumed or

NO2
2 + NO3

2 produced, totaling 120.262.8 mM (n = 9). There

was no evidence for GSNO formation in the presence of GSH

unless SOD was present or O2 absent. In either case, the yields of

GSNO amounted to approximately 30% of the total amount of

NANT decomposed.

Site-specific nitrosation and denitrosation of human
serum albumin

To evaluate the impact of GSH-induced denitrosation of

nitrosated Trp residues in human serum albumin (HSA), we

established first that tryptophan and cysteine were the only

proteinogenic residues to form nitrosated products in significant

amounts upon incubation with NO in oxygenated solution

(Table 1). Next, RSNO and RNNO content in nitrosated HSA

was determined. This was accomplished using a chemilumines-

cence-based assay as previously described [23] (Figure 5A). In this

assay, acidic tri-iodide (I3
2) reduces RSNOs, RNNOs, and NO2

2.

The samples are pretreated with acidified sulfanilamide to

eliminate NO2
2 by conversion to a diazonium cation. The RSNO

concentration is determined by measuring the difference in

chemiluminescence signal between samples pretreated with and

without HgCl2. Mercuric ions cleave the S-NO bond in RSNOs

Figure 1. Denitrosation of N-acetyl-nitroso-Trp (NANT) by
glutathione (GSH). The decomposition of NANT (100 mM) was
followed spectrophotometrically at 335 nm upon incubation with
increasing concentrations of GSH in 100 mM phosphate buffer
(pH 7.4) containing 100 mM DTPA. NANT decay followed apparent first
order kinetics and kobs for NANT decomposition was plotted as a
function of [GSH]. The values represent the mean 6 SEM (n = 4).
doi:10.1371/journal.pone.0014400.g001

Protein Denitrosation by GSH
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without affecting the signal obtained from RNNOs such that in a

RSNO/RNNO mixture the remaining signal after pretreatment

with HgCl2 is derived exclusively from the RNNO component

(Figure 5A). To confirm the validity of the approach within the

specific context of the present experiments, NANT (10 mM) was

preincubated with HgCl2 or NEM, all in the presence of acidified

sulfanilamide. The samples were then injected into a purge vessel

containing the tri-iodide mixture and the amount of NO evolving

from the purge vessel was quantified by gas phase chemilumines-

cence as described under Materials and Methods. As illustrated in

Figure 5B, it was evident that NANT is decomposed only upon

light irradiation. In a different set of experiments, stock solutions of

GSNO and NANT of known concentrations were diluted and

mixed together in 100 mM phosphate buffer containing DTPA

(100 mM) and nitrite (40 mM) to obtain a final concentration of

5 mM for each compound. Concentrations were immediately

determined using the same tri-iodide based chemiluminescence

assay. There was no statistical difference between the different

values (Figure 5C) with recovery corresponding to 102 (SEM = 11,

n = 3) and 96 (SEM = 5, n = 3) % for GSNO and NANT,

respectively. These results indicate that nitrosated Cys and

nitrosated Trp can be detected with comparable efficiency in

agreement with previous studies [23]. While concerns have been

raised about the specificity of the triiodide assay in complex

biological systems, our results indicate that these do not apply to

the much simpler in vitro conditions of the present experiments.

Human serum albumin contains only one tryptophan residue

(Trp-214) and one reduced cysteine residue (Cys-34; Figure 6).

Evidence that Trp-214 and Cys-34 were the sites of nitrosation by

NO/O2 was attained by generating recombinant proteins in

which serine replaced Cys-34 (C34S) and lysine replaced Trp-214

(W214L). These recombinant and the wild type (WT) proteins

were treated for 30 min at 37uC with 20 mM DEA/NO in

100 mM phosphate buffer (pH 7.4) containing 100 mM DTPA.

The results illustrated in Figure 7A indicated that removal of Trp-

214 in HSA essentially eliminated the mercury-resistant signal,

while removal of Cys-34 eliminated the mercury sensitive-signal.

Overall, these results indicated that the primary sites of nitrosation

in HSA are Trp-214 and Cys-34. Although the concentration of

mercury-resistant signal obtained from WT HSA was of the same

order as that obtained with C34S, the concentration of mercury-

Figure 2. The denitrosation of N-acetyl-nitroso-Trp (NANT) by
glutathione (GSH) requires molecular oxygen. (A), Time-course of
GSH-induced NANT decomposition in the presence or absence of
molecular oxygen; representative of at least 4 experiments. (B),
Representative chromatogram (detection at 335 nm) obtained from
the reaction of 100 mM NANT with 1 mM GSH and O2. Chromatograms
are representative of three independent experiments. (C), Time-course
of O2 consumption in the presence of 100 mM NANT and 1 mM GSH;
representative of 4 experiments. The solid lines represent the nonlinear
regression fitting of data points (open symbols).
doi:10.1371/journal.pone.0014400.g002

Figure 3. Effect of superoxide dismutase (SOD) on the GSH-
induced decomposition of NANT and NO production. (A), Time-
course of NANT decomposition in the presence of GSH with or without
SOD; representative of three experiments. (B), NO formation in solution
upon incubation of NANT with GSH and SOD; representative of 4
experiments.
doi:10.1371/journal.pone.0014400.g003

Protein Denitrosation by GSH
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sensitive signal in W214L amounted to only a third of the signal

recovered from WT (Figure 7A). The reasons for these results

remain unclear in as much as opposite observations were made

when acidified nitrite was used, i.e. an increase in the mercury-

sensitive signal with W214L relative to WT [24].

Azide inhibited HSA nitrosation in a concentration-dependent

manner such that, in the presence of 1 mM azide, Cys-34 and

Trp-214 nitrosation was inhibited by approximately 57% and

71%, respectively (Figure 7B). In addition, we noted a marked

difference in sensitivity of the two residues to the presence of GSH

(Figure 7C). Upon incubation with 1 mM GSH, nitrosation yields

of Cys-34 were inhibited by approximately 50%, but the yields of

nitroso-Trp-214 remained unchanged. In contrast, GSH (1 mM)

inhibited by approximately 80% the nitrosation of N-acetyl-Trp

(200 mM) by 20 mM DEA/NO (1.3660.11 mM NANT formed in

the absence of GSH vs. 0.2560.03 mM in the presence of GSH;

P,0.01, n = 3).

To evaluate possible denitrosation of HSA, the protein was

incubated with DEA/NO for 30 min, incubated with either GSH

or ascorbate for an additional 30 min, and then desalted before

nitroso species determination. Incubation of nitrosated WT HSA

with GSH but not ascorbate eliminated the signal associated with

Cys-34 (Figure 8). There was no effect of these treatments on

nitroso-Trp-214, in contrast to the results obtained with NANT

(Figure 2). To obtain further evidence that the localization of Trp-

214 within the hydrophobic core of HSA limited the denitrosation

of nitroso-Trp by GSH, we evaluated the stability of nitroso-Trp in

a peptide consisting of the portion of helix II that contains Trp-

214. We found no evidence for nitrosated products in a peptide

(#1, Figure 9A) that did not contain the Trp residue and

submitted to nitrosation with acidified nitrite. In contrast, light

irradiation decreased by more than 80% the signal obtained from

the Trp-214 containing peptide (#2) while mercury did not have

any effect on the signal, consistent with nitroso-Trp formation. In

agreement with our hypothesis, we found that incubation for

30 min of the nitrosated peptide with either GSH or ascorbate

Figure 4. Formation of nitrite (NO2
2) and nitrate (NO3

2, panel A), glutathione disulfide (GSSG, panel B), and S-nitrosoglutathione
(GSNO, panel C) during NANT decomposition. N-acetyl nitroso Trp (100 mM) was incubated with GSH 1 mM for 30 min in the presence or absence
of O2 and SOD at 37uC and product formation was determined by anion pairing HPLC. The values represent the mean 6 SEM (n = 5–9); ND = not detectable.
doi:10.1371/journal.pone.0014400.g004

Table 1. Detector response obtained from the reaction of N-
acetylated L-amino acids by NO in oxygenated solution.

Amino Acids Peak Area (mV.sec)

None (buffer control) 66.6612.5

Alanine 127.5673.6

Arginine 41.9610.4

Asparagine 38.865.5

Aspartate 36.861.1

Cysteine 11600.0±410.0

Glutamate 62.6633.5

Glutamine 32.568.7

Glycine 35.4610.3

Histidine 108.9653.6

Isoleucine 74.3631.3

Leucine 35.464.0

Lysine 37.7611.0

Methionine 97.5626.1

Phenylalanine 87.1629.9

Proline 36.064.5

Serine 34.466.6

Threonine 66.3639.5

Tryptophan 6800.0±50.6

Tyrosine 55.562.8

Valine 189.06135.2

Acetylated amino acids (1 mM) were incubated for 30 min at 37uC with 20 mM
DEA/NO at ambient oxygen concentration in 100 mM phosphate buffer
(pH 7.4) containing 100 mM DTPA. Product formation was determined using a
chemiluminescence-based assay as described under Materials and Methods.
The values represent the mean 6 SEM, n = 3.
doi:10.1371/journal.pone.0014400.t001
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resulted in a significant decrease in the nitroso-Trp signal

(Figure 9B).

Transnitrosation between NANT and cellular proteins
S-nitrosocysteine and other low molecular weight RSNOs have

been used as alternates to NO donors in order to nitrosate cellular

proteins [25]. The observation of slow but efficient transnitrosa-

tion between NANT and GSH in the presence of SOD led us to

entertain the possibility that NANT may also be used to

transnitrosate proteins in the cellular environment where SODs

are abundant. To this end, 10 mM NANT was incubated with cell

lysates obtained from mouse fibroblasts for 1 hr at 37uC and S-

nitrosated proteins were examined using a biotin switch assay as

described under Materials and Methods. Coincubation of the cell

lysates with NANT resulted in a banding pattern of nitrosated

proteins that was distinct from the one obtained upon treatment

with GSNO (Figure 10). The extent of protein nitrosation was less

compared to GSNO, and addition of N-acetyl-Trp with nitrite

(NO2
2) resulted in only minimal immunoreactivity.

Discussion

The denitrosation of NANT occurs through nucleophilic attack

on the protonated form of the nitrosamine, and the reversibility of

the reaction is suppressed upon addition of a trap for the NO

species liberated [16]. More recent work had indicated that

NANT denitrosation by GSH occurred primarily through

transnitrosation to form Trp and GSNO [18]. In contrast, we

here show that transnitrosation cannot account for GSH-sensitive

NANT denitrosation because it is almost completely inhibited

upon deoxygenation. The absence of GSNO formation could not

be explained through secondary reactions of GSNO with excess

Figure 5. Validation of nitrosamine determination by tri-iodide-based chemiluminescence assay. (A), Flow chart for the determination
of nitroso species using the tri-iodide chemiluminescence assay. Details may be found under Materials and Methods. (B), N-acetyl-nitroso-Trp (NANT,
10 mM) was preincubated with HgCl2 or NEM in the presence of acidified sulfanilamide. The samples were then quantified by gas phase
chemiluminescence as described under Materials and Methods. The values represent the mean 6 SEM (n = 3). (C), Stock solutions of GSNO and NANT
of known concentrations were diluted and mixed together in 100 mM phosphate buffer containing DTPA (100 mM) and nitrite (40 mM) to obtain a
final concentration of 5 mM for each compound. Concentrations were immediately determined using the same tri-iodide based chemiluminescence
assay (n = 3, mean 6 SEM).
doi:10.1371/journal.pone.0014400.g005

Protein Denitrosation by GSH
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GSH or superoxide because the decomposition of micromolar

concentrations of GSNO even in the presence of 1 mM GSH or

excess superoxide is far too slow [26,27]. In contrast, GSNO

formation was evident in the absence of oxygen. Additional

product characterization revealed stoichiometric amounts of

NANT and O2 consumed. The denitrosation of NANT by GSH

and the formation of GSSG were almost completely inhibited by

SOD while an increase in free NO was detected upon addition of

SOD. A potential explanation is that superoxide might be formed

from contaminating trace metals. However, this is unlikely because

all of our experiments were done in the presence of the metal

chelator DTPA. The simplest explanation consistent with all these

results is a reaction pathway that involves the homolytic cleavage

of NANT to form a Trp indole radical and free NO (Figure 11).

This is followed by the reduction of the Trp indole radical by GSH

and reaction of the thiyl radical formed with excess GSH to yield a

glutathione disulfide anion radical. In the presence of excess GSH,

the reaction is driven by the rapid removal of the disulfide radical

anion through reduction of O2 to superoxide [28] that combines

with free NO to form peroxynitrite. The initial step in this

pathway would be similar to the mechanism of denitrosation of N-

nitrosomelatonin by ascorbate proposed by De Biase et al. [19].

The fact that superoxide dismutase inhibits the increase in the rate

of denitrosation by GSH indicates that superoxide itself plays an

important role in driving the homolytic cleavage of the N-NO

bond, possibly by limiting the recombination of NO with the

aminyl radical. In the absence of O2 but with excess GSH, GSNO

may be formed through radical-radical combination of NO with

the thiyl radical [29], upon proton-catalyzed denitrosation of

NANT, or through direct transnitrosation as previously described

[16,18]. In our hands, NANT denitrosation in the absence of GSH

was insensitive to O2 suggesting proton-catalyzed denitrosation in

the presence of excess phosphate or direct transnitrosation. As

clearly illustrated earlier by Kytzia et al. in the case of ascorbate,

the outcome of N-acetyl nitroso Trp derivatives denitrosation is

dependent on secondary reactions that impact the formation of

free NO [30].

Human serum albumin is unique among other mammalian

orthologs as it contains only one reduced cysteine (Cys-34) and one

tryptophan residue (Trp-214) [31]. Cysteine-34 is located at the

surface of the protein in a loop between helices Ia-h2 and Ia-h3

(Figure 6), and is conjugated to cysteine or glutathione in 30–40%

of HSA molecules in the circulation. The 36 other cysteine

residues present in HSA are oxidized to form 18 disulfide bridges

that are not accessible for nitrosative modification. The indole

group of Trp-214 projects from helix IIa-h2 that forms one side of

the drug 1 binding site. Using recombinant proteins lacking either

Cys-34 or Trp-214, we showed that these two residues were

the principal targets of nitrosation in the NO/O2 system in

accordance with a previous report demonstrating similar results

with acidified nitrite [24]. The nitrosation of Trp-214 by NO/O2

was sensitive to azide, consistent with an N2O3-mediated process,

although part of the decrease could be due to azide-mediated

denitrosation [16]. Glutathione also inhibits N-acetyl-Trp nitrosa-

tion [20] but there was no effect on the nitrosation of Trp-214

(Figure 7). Nedospasov and coworkers have proposed that the

Figure 6. Overview of human serum albumin (HSA). The protein
secondary structure is shown schematically and the domains are
colored-coded as follows: I, blue; II, green; III, yellow; IV, red. Cys-34 and
Trp-214 are shown in a space-filling representation and colored by
atom types (PDB ID: 1E78; [45]).
doi:10.1371/journal.pone.0014400.g006

Figure 7. Site-directed nitrosation of human albumin. (A), The
presence of mercury-sensitive and -resistant species in wild-type (WT),
C34S and W214L recombinant HSA (3 mg/ml) treated with 20 mM DEA/
NO for 30 min at 37uC was determined by reductive chemilumines-
cence. The effect of sodium azide (B) and GSH (C) on the amount of
nitrosated Cys-34 and Trp-214 was determined after desalting of the
samples. The values represent the mean 6 SEM (n = 3).
doi:10.1371/journal.pone.0014400.g007
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hydrophobic interior of albumin serves as a catalyst for NO

autoxidation such that the rate of Trp nitrosation for albumin is

much faster compared to free Trp [32]. The size and hydrophilic

nature of GSH would forbid direct contact of GSH with the

hydrophobic environment surrounding Trp-214. This would

provide conditions for which the efficacy of GSH as a competitive

scavenger of Trp-214 nitrosation relative to N-acetyl-Trp would be

diminished, and explain the absence of effect of GSH on Trp-214,

at least in the presence of a 5-fold excess of GSH (200 mM albumin

vs. 1 mM).

The location of Cys-34 and Trp-214 in distinct regions of HSA

also offered a testable paradigm related to the stability of the

nitroso species associated with HSA. In short, although nitrosated

Trp residues are susceptible to denitrosation by GSH, the

solubility of GSH (and other low molecular weight thiols) would

preclude access to Trp-214 buried within one of the hydrophobic

pockets of HSA. Conversely, Cys-34 is accessible to GSH (as

evidenced by its thiolation in vivo) and the stability of nitrosated

Cys-34 should be greatly affected by GSH. The lack of effect of

ascorbate in contrast to NANT [30] and a peptide containing Trp-

214 (Figure 9) illustrates the poor sensitivity of S-nitrosated HSA to

this antioxidant unless it is used at supraphysiological concentra-

tions or in the presence of certain metals [33]. These findings offer

the intriguing possibility that the relative amount of RSNOs and

RNNOs associated with HSA is regulated by circulating

biomolecules that have differential access to Cys-34 and Trp-

214. In this context, recent studies have revealed that fatty acid

binding to HSA increases its S-nitrosation and associated

antibacterial and cytoprotective properties [34,35]. Possible NO

transfer between Trp-214 and associated fatty acids may need to

be considered in view of studies indicating that nitrated fatty acids

are found in relative abundance in plasma [36]. It is also possible

that a fraction of S-nitrosated Cys on albumin is formed by

transnitrosation from N-nitrosated Trp although the two nitrosa-

tion sites – Cys-34 and Trp-214 – are far apart.

In summary, several conclusions may be drawn from our results:

(1) The denitrosation of N-nitrosated Trp derivatives in the

presence of excess GSH occurs through homolytic cleavage of

the N-NO bond driven by the oxidation of GSH and

formation of superoxide and peroxynitrite (Figure 11).

(2) As illustrated with HSA, the primary factor limiting RNNO

denitrosation by low molecular weight antioxidants such as

GSH is the steric accessibility of the nitrosated Trp; as a result,

only appropriately located residues within proteins should be

available for denitrosation. This issue was previously concep-

tualized with regard to Trp nitrosation and should also be

considered as far as protein RNNO denitrosation is concerned

[37].

(3) Techniques for the determination of RNNOs such as

chemiluminescence-based assays require preincubation peri-

ods that may lead to thiol induced degradation of RNNOs

[23]. Removal of low molecular weight thiols through

desalting or alkylation of sulfhydryl groups using NEM or

iodoacetamide for example should be strategies to consider in

order to minimize artefactual degradation of RNNOs.

Figure 8. Stability of nitrosated human serum albumin in the
presence of GSH and ascorbate. HSA (3 mg/ml) was incubated with
20 mM DEA/NO in 100 mM phosphate buffer (pH 7.4) containing
100 mM DTPA for 30 min at 37uC. Samples were then incubated for
an additional 30 min either alone or in the presence of GSH (1 mM) and
ascorbate (Asc; 300 mM) in 100 mM phosphate buffer (pH 7.4)
containing 100 mM DTPA, after which the samples were desalted.
Nitrosation at Cys-34 and Trp-214 was then determined using reductive
chemiluminescence. The values represent the mean 6 SEM (n = 3).
doi:10.1371/journal.pone.0014400.g008

Figure 9. Stability of nitrosated fragment of helix IIa-h2 of HSA
containing Trp-214. A, A peptide (#2) corresponding to the
fragment of helix IIa-h2 of HSA was nitrosated using acidified nitrite.
The peptide was then diluted to obtain a final concentration of nitroso
Trp of 10 mM (based on an e of 6100 M21.cm21 at 335 nm) and the
stability of the nitrosated peptide was determined by reductive
chemiluminescence. There was no evidence for an NO-dependent
signal in the control peptide (#1) that did not contain the Trp residue
but that was exposed to acidified nitrite. Peptide #2 (10 mM) was also
incubated in the presence of light for 30 min or with HgCl2 (final
concentration 4.9 mM) for 15 min. The values represent the mean 6
SEM (n = 3). B, The nitrosated peptide (10 mM) was incubated for 30 min
either alone or in the presence of GSH (1 mM) and ascorbate (Asc;
300 mM) in 100 mM phosphate buffer (pH 7.4) containing 100 mM
DTPA. Nitrosation of Trp was then determined using reductive
chemiluminescence upon pretreatment of paired samples with or
without HgCl2 to elimate the contribution of RSNOs and as described
under Materials and Methods. The values represent the mean 6 SEM
(n = 3); *p,0.05 vs. peptide alone.
doi:10.1371/journal.pone.0014400.g009
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(4) The denitrosation of nitrosated Trp residues by GSH is slow

and should allow for the accumulation of significant amounts

of RNNOs in vivo. This should be most evident in the

extracellular environment, which contains relatively low

antioxidant concentrations and may allow accumulation of

RNNOs associated with the extracellular matrix in tissues or

plasma proteins in the circulation [10]. This important issue

still awaits additional experimental confirmation.

(5) Efficient transnitrosation from N-nitrosated Trp derivatives

to GSH (or other low molecular thiols) does not occur

unless molecular oxygen is absent or SOD present. Thus,

RSNO formation in vivo upon pharmacological delivery of

N-nitrosated Trp derivatives should be favored in hypoxic or

anoxic tissues. Similarly, our results indicate that N-nitrosated

Trp derivatives may potentially be used as alternatives to

GSNO/S-nitrosocysteine for the intracellular delivery of

transnitrosating agents and S-nitrosation of proteins in the

SOD and GSH-rich intracellular environment. It is still to be

determined whether N-nitrosated Trp derivatives such as

NANT can be transported across the plasma membrane as

efficiently as S-nitrosocysteine [25].

Materials and Methods

Materials
DEA-NONOate (DEA/NO) was obtained from Cayman

Chemicals (Ann Arbor, MI). All N-acetylated L-amino acids were

purchased from Sigma except for leucine, histidine, and valine

which were purchased from Fisher Scientific (Hampton, NH). The

peptides AFKAFAVAR and AFKAWAVAR were purchased

from GenScript Corp. (Piscataway, NJ). The anti-biotin anti-

body was from Bethyl Laboratories (Montgomery, TX) and the

anti-rabbit HRP antibody from Amersham Pharmacia (Piscat-

away, NJ). The HRP detection kit was from Pierce (Rockford, IL).

The Lipidex-1000 columns were from Packard Instruments. All

other chemicals were purchased from Sigma Chemical Co. (St

Louis, MO).

Synthesis and purification of recombinant human serum
albumin

Specific mutations were introduced into the HSA-coding region

in a plasmid vector containing the entire HSA coding region as

previously described [38–41]. Mutations in the DNA sequence of

the HSA coding region were verified as previously described. The

mutated HSA coding regions which contained the native HSA

secretion signal sequence were introduced into the yeast species

Pichia pastoris by homologous recombination. The secreted HSA

was isolated from growth medium as follows. The medium was

brought to 50% saturation with ammonium sulfate at room

temperature. The temperature was then lowered to 4uC, and the

pH was adjusted to 4.4, the isoelectric point of HSA in a solution

50% saturated with ammonium sulfate. The precipitated protein

was collected by centrifugation and resuspended in distilled water.

Dialysis was carried-out for 72 h against 100 volumes of

phosphate-buffered saline (PBS; 137 mmol/L NaCl, 2.7 mmol/

Figure 10. Transfer of NO between nitroso-N-acetyl-Trp and
proteins. Cell lysates obtained from murine fibroblasts were incubated
alone (Control), with 10 mM nitroso-N-acetyl-Trp (NOTrp), 10 mM sodium
nitrite and N-acetyl-Trp (Trp + NO2

2), or 10 mM GSNO (GSNO) for 1 hr at
37uC. Nitrosated proteins were then determined using the biotin switch
assay as described under Materials and Methods. Equal loading was
verified using Coomassie blue staining. The immunoblot is represen-
tative of three experiments.
doi:10.1371/journal.pone.0014400.g010

Figure 11. Proposed pathway for the denitrosation of NANT by GSH in the presence of molecular oxygen.
doi:10.1371/journal.pone.0014400.g011
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L KCl, 4.3 mmol/L Na2HPO4, 1.4 mmol/L KH2PO4, pH 7.4)

with one change of buffer. The solution was loaded onto a column

of cibacron blue immobilized on Sepharose 6B. After the column

was washed with 10 bed volumes of PBS, HSA was eluted with 3M

NaCl. The eluent was dialyzed against PBS and passed over a

column of Lipidex-1000 to remove hydrophobic ligands possibly

bound to the HSA [38,39,41]. The resulting protein exhibited a

single band after sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE).

UV-Visible quantification of NANT
The decomposition of NANT (100 mM) at 37uC was followed by

monitoring the absorbance change at 335 nm (e= 6100 M21.cm21

[20]). Measurements were carried out using a Shimadzu UV-1601

PC spectrometer (Shimadzu Scientific Instruments Inc. Columbia,

MD, USA). NANT was prepared using acidified nitrite as

previously described [20].

Reaction of NANT and GSH with nitric oxide
In a typical experiment, a one mL reaction volume containing

various concentrations of NANT and GSH was incubated in

100 mM phosphate buffer (pH 7.4). After 30 min incubation at

37uC, the samples were prepared for analysis by high performance

liquid chromatography or chemiluminescence detection as des-

cribed below. All experiments were performed in the presence of

the metal chelator DTPA (100 mM) and in the absence of light to

limit the artefactual decomposition of NANT and the reaction

products.

High performance liquid chromatography (HPLC)
analysis of tryptophan reaction products

NANT was directly quantified by reversed-phase HPLC.

Samples were injected onto a 25064.6 mm 5-mm octadecyl silane

C18 Prevail column isocratically running at a flow rate of 1 ml/

min with distilled water containing trifluoro acetic acid (TFA;

0.1%) and acetonitrile. The acetonitrile concentration was

increased from 20% to 27% in a linear gradient from 13 min to

38 min after injection, with the reactions products detected at

335 nm.

The products obtained from the denitrosation of NANT by

GSH were also studied by ion-pairing HPLC as previously

described [42]. Samples were injected onto a 25064.6 mm 5-mm

octadecyl silane C18 ultrasphere column (Beckman Coulter, Inc.

Fullerton, CA) isocratically running at a flow rate of 1 ml/min

with 10 mM K2HPO4, 10 mM tetrabutylammonium hydrogen

sulfate (TBAHS) in acetonitrile-water (5:95, v/v, pH 7.0). The

reaction products of GSH and nitrite and nitrate were detected at

210 nm and the identity of each peak was confirmed by co-elution

with authentic standards.

Detection of nitric oxide
Nitric oxide formation was measured using a Clark-type NO

electrode (Iso-NO with 2 mm shielded sensor; WPI, Sarasota, FL).

Changes in current output were recorded and NO release was

quantified by comparison with a standard curve constructed by

addition of increasing concentrations of NaNO2 under reducing

conditions (KI/H2SO4).

Chemiluminescence detection
In a typical experiment, 800 ml of sample was transferred to a

glass tube containing 100 ml of 100 mM NEM. The samples was

kept on ice and in the dark for 15 min before addition of 100 ml of

100 mM sulfanilamide in 1 M HCl and incubation for another

15 min on ice to scavenge nitrite. Paired samples were also

incubated with or without HgCl2 (final concentration 4.9 mM) for

an additional 15 min to evaluate for the presence of RSNOs. The

concentration of nitroso species in the samples was evaluated by

quantification of the amount of NO liberated after injection of the

sample into a purge vessel containing 4.5 ml of glacial acetic acid

and 500 ml of an aqueous mixture comprised of 450 mM

potassium iodide and 100 mM iodine [23]. The vessel was kept

at 70uC via a water jacket with the solution constantly purged with

nitrogen, and changed every four injections. The amount of NO

evolving from the purge vessel was quantified by gas phase

chemiluminescence (NOA 280: Sievers Instruments; Boulder, CO

or CLD 77am sp, Eco Physics, Ann Arbor, MI). Peak integration

was performed and results were converted to NO concentrations

using authentic NO as a standard.

Detection of S-Nitrosated Proteins Using Biotin
Derivatization Coupled to Western Blotting (Biotin Switch
Assay; [43])

Cell lysates were prepared from NIH 3T3 cells [44] and diluted

to a final concentration of 1 mg/ml in either 100 mM phosphate

buffer and 0.1 mM DTPA (pH 7.4) or HED buffer containing

250 mM Hepes, 1 mM EDTA, and 0.1 mM DTPA (pH 7.7).

After treatment with the NO donor, 75 ml of the lysate was loaded

onto a Micro Bio-Spin 6 column (Bio-Rad, Hercules, CA)

equilibrated with HED and the column was centrifuged at

1,0006 g for 5 min. Seven microliters of 25% SDS and 1.5 ml

of 20% MMTS in DMF were added to the 75 ml eluate. The

sample was then incubated at 50uC in a water bath for 20 minutes

with frequent vortexing. Thereafter, samples were desalted to

remove MMTS and 8 ml of 2 mM biotin-HPDP in DMSO with

4 ml of 100 mM ascorbate was added. The sample was incubated

for 60 min before desalting 4 times and final resuspension into

HED containing 0.5% Triton X-100. After SDS-PAGE biotiny-

lated proteins were detected by immunobloting using an anti-

biotin antibody as a primary, an anti-rabbit HRP antibody as a

secondary, and a HRP detection kit.

Statistics
For groups of three or more, the data were analyzed by one-way

analysis of variance, and when a significant difference was

suggested, the Tukey test was used as a post-hoc test. Comparisons

restricted to two groups were analyzed using the Student’s t-test. A

probability value of less than 0.05 was considered to represent a

statistically significant difference.
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