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ABSTRACT 

Nitrite and nitrate are frequently used surrogate markers of nitric oxide (NO) production.  Using rat 

models of acute and chronic DSS-induced colitis we examined the applicability of these and other NO-

related metabolites, in tissues and blood, for the characterization of inflammatory bowel disease.  Global 

NO dynamics were assessed by simultaneous quantification of nitrite, nitrate, nitroso and nitrosyl 

species over time in multiple compartments. NO metabolite levels were compared to a composite 

disease activity index (DAI) and contrasted with measurements of platelet aggregability, ascorbate redox 

status, and the effects of 5-aminosalicylic acid (5-ASA). Nitroso products in the colon and in other 

organs responded in a manner consistent with the DAI.  In contrast, nitrite and nitrate, in both intra- and 

extravascular compartments, exhibited variations that were not always in step with the DAI. 

Extravascular nitrite, in particular, demonstrated significant temporal instabilities, ranging from 

systemic drops to marked increases. The latter was particularly evident after cessation of the 

inflammatory stimulus and accompanied by profound ascorbate oxidation. Treatment with 5-ASA 

effectively reversed these fluctuations and the associated oxidative and nitrosative stress. Platelet 

activation was enhanced in both the acute and chronic model. Our results offer a first glimpse into the 

systemic nature of DSS-induced inflammation and reveal a greater complexity of NO metabolism than 

previously envisioned, with a clear dissociation of nitrite from other markers of NO production. The 

remarkable effectiveness of 5-ASA to abrogate the observed pattern of nitrite instability suggests a 

hitherto unrecognized role of this molecule in either development or resolution of inflammation. Its 

possible link to tissue oxygen consumption and the hypoxia that tends to accompany the inflammatory 

process warrants further investigation. 

 

 

 

Keywords:   Inflammation, ulcerative colitis, inflammatory bowel disease, nitric oxide, nitrite, 
nitrosation, ascorbate, redox signaling, 5-aminosalicylate, hypoxia 
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Introduction 

Nitric oxide (NO) is a free radical capable of reacting with a variety of molecules in biological fluids 

and tissues. These interactions produce not only the oxidation products, nitrite and nitrate, but also lead 

to formation of nitrosyl (NO-heme) species and modification of thiols and amines to produce S- and N-

nitroso products1. The level of these NO-related substances, in fluids and in tissues, is widely assumed 

to reflect the activity of NO-synthases, including the inducible form of NO-synthase (iNOS) which is 

known to be expressed at high levels during inflammation2, such as in inflammatory bowel disease 

(IBD)3. The link between iNOS expression and inflammation serves as a rationale for considering 

increased levels of NO-related products as evidence of inflammatory conditions. Nitrite and nitrate have 

been used extensively as markers of inflammation, largely because of their ease of determination using a 

variety of assays,4 including the widely available Griess reaction that can measure the combined 

concentrations of both anions (NOx) in body fluids 5.  

The use of NO-related products as markers of inflammation presupposes that only iNOS activity affects 

their concentrations in the compartment of interest. However, it is well known that nitrite and nitrate 

from the diet can also affect NOx levels assessed in fluids6 and in tissues7. There is mounting evidence 

that nitrite is not as biologically inert as previously assumed, i.e. that it is a biochemically and 

pharmacologically active molecule7-12 and that its levels are maintained within a tight concentration 

range (200-500 nM) across many mammalian species13, suggesting some level of regulation. Further 

evidence for some form of nitrite homeostasis in plasma is gleaned from experiments recently conducted 

in rats sustained on a low NOx diet. These experiments revealed an unusual compartmentalization of this 

anion, showing complete depletion in the extravascular compartment with essentially unaltered levels in 

plasma7. If the level of nitrite in plasma was indeed regulated, then the question arises as to whether the 

systemic concentration of this NO product is able to increase at all during a local inflammatory event.  

In addition to assessing the merit of NO products as markers of inflammation, we were interested in 

understanding how increased NO production localized to an inflammatory site, such as the colon in 

colitis, can affect NO status in distal tissues. This interest is grounded on evidence from clinical studies 

of colon inflammation showing that this disease can trigger several extra-intestinal problems that appear 

to be associated with a decreased bio-availability of NO, including enhanced platelet aggregation14-17 

and thromboembolic events18-21.   

The present study sought to investigate the dynamics of a wide spectrum of NO markers, including 
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nitrite, nitrate, nitroso and nitrosyl products, in the circulation and in tissues throughout the body of an 

exemplary rodent species, following the induction of acute and chronic colitis. Both forms of colitis are 

characterized by mucosal inflammation of the large bowel, leading to an increased NO production 

secondary to iNOS upregulation22-30. A state of acute and chronic colitis that is clinically and 

histologically reminiscent of human ulcerative colitis (UC) can be induced in rodents by administration 

of dextran sulfate sodium (DSS)31. In the present study, the in vivo assessment of NO-products was 

complemented by measurements of ascorbate redox status and platelet aggregability; in addition, the 

effects of the therapeutic drug 5-aminosalicyclic acid (5-ASA) were investigated. Our results 

demonstrate that colitis elicits significant NO-related reactions that are complex and at times counter-

intuitive, suggesting they may not be suited as markers of disease activity until their behavior is better 

understood. Additionally, our results raise the prospect that nitrite plays a hitherto unrecognized role in 

either development or resolution of IBD and that fluctuations in nitrite concentration are intimately 

linked to tissue oxygen consumption and the hypoxia that tends to accompany the inflammatory process.  

 

Methods 

Materials: All chemicals were from Sigma Chemicals Co. (St. Louis, MO) unless otherwise stated. 

Induction of Colitis: Male Wistar rats (Harlan, Indianapolis; 200-400g; housed 3/cage) were kept on a 

normal 12/12 light/dark cycle, with access to food (2018 rodent diet, Harlan Teklad) and water ad 

libitum. A minimum of 7 days was allowed for acclimatization to the institutional housing environment 

before experimental use. Rats were administered 5% DSS (MP Biomedicals) dissolved in tap water for 7 

days (day 0-6, ad libitum) to induce acute colitis, followed by 4 days of tap water without DSS to assess 

recovery. Chronic colitis was induced by three cycles of DSS treatment, where one cycle included 7 

days 5% DSS followed by 7 days water, and measurements were performed on the final day of 3 

complete cycles (i.e. one week after cessation of the last DSS administration). A group of animals that 

received tap water only served as time-matched controls. A minimum of 3 animals/group was used for 

each time point in the acute study, whereas 5 (control) and 6 (DSS) animals/group were used in the 

chronic study. All protocols described were carried out in strict accordance with the National Institutes 

of Health Guidelines for the Care and Use of Laboratory Animals (NRC 1996) and were approved by 

the Institutional Animal Care and Use Committee of the Boston University School of Medicine. 

Clinical Assessment of Colitis: The extent of colitis was assessed using a composite disease activity 
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index (DAI)32, 33 determined by scoring changes in weight, hemoccult positivity (as determined by a 

guaiac paper test (ColoScreen; Helena Laboratories Inc., Beaumont, TX, USA) and stool consistency. 

The scores (0-4) for weight change, the presence of blood in the stools and stool consistency were 

combined and the final score divided by three where 0 represents no symptoms and 4 represents 

maximum symptoms. Following sacrifice colon samples were assessed for myeloperoxidase (MPO) 

activity and histopathological signs of disease progression. 

Myeloperoxidase Assay: Colon samples were rinsed with cold phosphate buffered saline, blotted dry and 

immediately frozen in liquid nitrogen. Following storage at -80°C, tissues were thawed, weighed and 

assessed for MPO activity using the o-dianisidine method as described.34, 35 

Histology: Colon cross sections were fixed with 10% neutral-buffered formalin and embedded in 

paraffin. Full-thickness sections were stained with hematoxylin/eosin and examined by a blinded 

pathologist for evidence of pathological changes and neutrophil infiltration. 

NO-Related Biochemistry: To provide a comprehensive assessment of NO biochemistry during 

development of colon inflammation the NO-related metabolites, nitrite and nitrate as well as S- and N-

nitroso species and nitrosylated heme species were measured in blood (plasma and red blood cells), 

brain, heart, liver, kidney, colon, aorta, and inferior vena cava (IVC). In addition, cellular redox status 

was assessed in the same compartments by measurement of the redox couple ascorbate/ 

dehydroascorbate, and platelet activity was analyzed in whole blood as detailed underneath. Analyses 

were performed on day 0 (control); days 1, 3, 5 and 7 of DSS administration, and on days 9 and 11 (i.e. 

2 and 4 days after cessation of DSS administration) to assess recovery in the acute model. In the chronic 

model, measurements were taken following three cycles of DSS treatment as described above. 

Experimental Protocol: Heparinized (0.07 Units/g i.p.) rats were anesthetized with diethylether (2 min) 

and killed by cervical dislocation. After thoracotomy, a catheter was inserted into the infrarenal part of 

the abdominal aorta, and organs were flushed free of blood by retrograde in situ perfusion with air-

equilibrated PBS (50 mM, pH 7.4) supplemented with N-ethylmaleimide (NEM)/ethylenediamine 

tetraacetic acid (EDTA) (10/2.5 mM) at a rate of 10 ml/min. The superior vena cava was cut directly 

after the aortic cannulation to provide an exit port for blood and buffer. After 2 min of perfusion, the 

brain was removed, followed by the heart. Liver, kidneys, and colon were individually cannulated and 

perfused through the portal vein, renal artery, and mesenteric artery respectively, and excised 2–3 min 

apart. The colon was removed from the cecum to the pelvic floor and prepared for histology and 
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assessment of MPO activity. Thoracic aorta and IVC were harvested last. This order of extraction was 

based on the relative metabolic rates of the organs and was strictly adhered to throughout the study to 

minimize tissue hypoxia. Excised tissues were blotted dry on filter paper, weighed, cut into small pieces, 

and homogenized immediately in ice-cold NEM/EDTA-containing perfusion buffer (5:1 v/w) by using 

either a Teflon-glass Potter-Elvehjem or a Wheaton glass-glass homogenizer immersed in an ice bath. 

Tissue homogenates were kept on ice in the dark and analyzed within 1–4 min of preparation. 

Quantification of NO Metabolites: Nitroso species (i.e. the sum of S- and N-nitroso compounds) were 

quantified by a technique that uses reductive denitrosation followed by chemiluminescence detection of 

NO in the gas phase as described in detail elsewhere.36 NO-heme species were quantified by direct 

injection of cell or tissue homogenates into an oxidizing solution comprised of 0.05 M ferricyanide in 

PBS.1  Total amounts of NO adducts were calculated by comparison of peak areas of the samples to 

those of freshly prepared standards. The oxidative decomposition products of NO, nitrite and nitrate, 

were measured in aliquots of tissue homogenates and blood after methanol precipitation of proteins (1:1 

vol/vol) using a dedicated HPLC system (ENO-20; EiCom, Kyoto) as described.1  

NO-related responses are reported either as concentrations or fold-changes relative to the average basal 

levels. Most of the basal levels measured in our current study (see Tab.1) were similar to those reported 

in earlier studies, although some differences were noted which might be attributed to opposed light cycle 

conditions (animals used in the present study were kept on a normal rather than a reversed 12h/12h 

light/dark cycle), strain (different local supplier) or weight differences (final animal weights differed 

between the acute and chronic study). With the concentration of NO-heme products being noticeably 

lower under these conditions, no attempt was made to analyze the time course of these species. In view 

of our current lack of knowledge about the identity and significance of individual proteins undergoing 

NO-dependent post-translational modification during inflammation, in some cases we opted to collapse 

the data obtained for S- and N-nitroso compounds into a single value. 

Redox Status: The redox status of plasma and tissues was assessed by quantification of the 

concentrations of the reduced and oxidized forms of ascorbate using the dinitrophenylhydrazine assay 

and expressed as ascorbate/dehydroascorbate ratio. Samples were treated as described by Carr et al.37 

and read at 524 nm using a 96-well plate reader. An additional blank was run in which 2,4-

dinitrophenylhydrazine was not added until after the addition of sulfuric acid to account for tissue-

specific background coloration of samples.38 Total ascorbate concentrations in tissues were determined 

by the difference in readings of the 2,6-dichlorophenol-indophenol (DCIP)-treated and control samples 
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by comparison with a standard curve of ascorbic acid. 

5-ASA Administration: To investigate the effects of 5-ASA on the development of acute colitis a further 

set of animals received 5-ASA at a dose level of 50mg/kg/day with the drinking water, starting from day 

5 of DSS treatment throughout the duration of the study period to mimic a therapeutically relevant 

scenario. NO-related metabolites, ascorbate/dehydroascorbate and platelet activity in blood and tissue 

were analyzed as described above on days 7, 9 and 11 (i.e. after 2, 4 and 6 days of 5-ASA 

administration). 

Platelet Aggregation: Platelet aggregability was assessed in freshly obtained whole blood, sampled from 

the inferior vena cava of DSS-treated and control rats and diluted 1:1 with PBS, using a Whole Blood 

Aggregometer (Chronolog Model 590D). Amplitude and slope of the resulting changes in impedance 

following addition of either collagen (2 µM) or adenosine diphosphate (5 µM) were evaluated using the 

Aggrolink software (Chronolog). 

Statistical Analysis: Data from the acute study were analyzed with a one-way ANOVA followed by 

Dunnett's post hoc test. Comparisons between two groups, as in the chronic study were analyzed using 

an unpaired t test. All analyses were performed using GraphPad Prism (version 4, GraphPad Software, 

San Diego). All values are reported as means ± SEM. Statistical significance was set at p < 0.05. Values 

reported as fold-increases were calculated from the averages at a given time-point to corresponding 

time-matched controls, and their respective SEM through propagation of errors.  

 

Results 

Disease Assessment:  The development of colitis was accompanied by reduced body weight gain until 

day 3 of DSS administration and an average weight loss thereafter, leading to body weights varying 

from -1% (day 5) and -9% (day 7) on DSS to -6% and -10% on days 2 and 4 off DSS compared to the 

weight at day 0. In agreement with published data 39-44, the DAI increased gradually over the time of 

DSS administration, reaching a maximum of 3.11 ± 0.05 on the last day of DSS administration (day 7), 

and subsequently decreased to 1.55 ± 0.17 at the 4th day after DSS cessation. The full DAI time course is 

shown in Fig.1. The induction and extent of colitis was further confirmed by blinded histological 

assessment, which showed inflammatory injury in the colon of DSS-treated animals including crypt 

damage, mucosal ulceration, loss of goblet cells, and submucosal edema. Significant leukocyte 
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recruitment to the colon was observed at day 7 of DSS administration, with MPO activity remaining 

increased on day 11 (p<0.05).  

Colonic Nitrosative Stress and Systemic NO Metabolite Changes: Consistent with previous findings1, 

the concentrations of nitroso and nitrosyl species present in blood and tissues at baseline (day 0) were 

found to be in the range of 10-100 pmoles/g wet tissue weight, with distinctly different ratios in different 

compartments. The major nitroso compounds present in plasma and in the colon were mercury-stable 

species (presumably RNNOs), whereas those in venous tissue were almost exclusively of the RSNO 

type (data not shown). In all other compartments a mixture of S- and N-nitroso products, along with 

nitrosyl heme species prevailed. A complex picture of changes in NO-related metabolites was apparent, 

both during administration and cessation of DSS (Fig.2). In the colon, DSS-induced inflammation was 

accompanied by a transient decrease in total nitros(yl)ation products (i.e. the sum of all S/N-nitroso and 

heme nitrosyl species), followed by an increase with peak concentrations on day 7 (p<0.01), coinciding 

with the peak in DAI, and a return to control levels by day 11 (Fig.1). These alterations were 

accompanied by dynamic changes in the ratio of individual colon nitroso and nitrosyl products with a 

shift from amine to thiol nitrosation products and the appearance of nitrosyl heme species on day 7 of 

DSS administration, indicative of a significant change in local NO production and metabolism. Overall, 

shifts in metabolite composition and concentration were organ-specific and most dramatic on days 1, 5 

and 7 of DSS application, suggesting the involvement of multiple competing pathways affecting local 

NO metabolite profiles. Importantly, these changes were evident also in tissues other than the colon, 

revealing the systemic nature of DSS-induced inflammation. 

Plasma and Colon Nitrite and Nitrate versus DAI: Plasma nitrite and nitrate exhibited a time course 

that paralleled the DAI up to and including day 2 following cessation of DSS (see Fig. 3A). By day 4 

after DSS cessation, however, both anions experienced a resurgence in concentration, in sharp contrast 

to the DAI which continued to drop.  The time course for changes in nitrite and nitrate concentrations in 

the colon is shown in Fig. 3B and contrasted in the same figure with the kinetics of the DAI. While 

nitrate exhibits a relatively small reduction during the course of the disease, nitrite experiences two 

surges, including a 2.5 fold-increase 3 days after DSS administration and a 2.2 fold-increase after its 

cessation. A considerable decline in colon nitrite is observed in the intervening time, particularly at day 

2 after DSS cessation when levels of the anion dropped from a basal level of 1.4 �M to below our 

detection limit of about 0.01 µM. Thus, NOx species in the colon experience changes very distinct from 

those seen in plasma.  
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Systemic Changes in Nitrite, Nitrate, Redox and Tissue Nitrosation Status:  Nitrite concentrations in 

all organs studied exhibited changes remarkably similar to one another and to those observed in the 

colon (see Fig.4 for absolute changes at select time points and Fig.5 for fractional changes over the 

entire time course). These included (1) a general decline in nitrite, bottoming at levels below our 

detection limit at day 2 following DSS cessation, superimposed with (2) a spike at day 3 into the DSS 

treatment, and (3) a profound surge by day 4 after DSS cessation. In the course of these changes, the 

redox couple ascorbate/dehydroascorbate (Asc/DHA) remained steady except at day 4 after cessation of 

DSS administration, when a statistically significant redox change occurred, characterized by a decrease 

in ascorbate (p<0.05) and an increase in the corresponding oxidation product, DHA (p<0.05) (Fig. 5A). 

Increases in nitrite concentrations after DSS cessation correlated well (R2=0.89, data not shown) with 

decreases in the logarithm of the AA/DHA ratio, strongly suggesting the existence of a redox-related 

link between the changes in ascorbate and nitrite. In contrast to the many-fold changes exhibited by 

nitrite and AA/DHA (Fig. 5A), and total ascorbate (not shown), nitrate remained largely unchanged 

throughout the acute phases of the disease (Fig. 5B).  In all organs studied, tissue nitrosation levels (i.e., 

the concentrations of S- and N-nitroso products combined) exhibited remarkably similar changes in 

response to DSS administration (see Fig. 5C). Those trends included a moderate decline during the first 

5 days of DSS administration, followed by a sudden rise on the last day of the treatment. The sudden 

rises in tissue nitrosation levels at day 7 are in stark contrast to the nitrite downward trends observed 

during that period in the same organs.  

Platelet Aggregation during Acute Colitis:  Irrespective of the test stimulus applied, platelet 

aggregability was found to be elevated both during acute DSS administration (Fig. 6) and following 

cessation (not shown), although the differences to untreated controls did not reach statistical 

significance. Given that a certain percentage of UC cases is associated with a hypercoagulable state we 

reasoned that the changes observed in the acute model may be indicative of a stage that precedes this 

state and may become more pronounced only in the chronic setting. To investigate this possibility a 

more chronic form of colitis was induced in a separate set of animals and the above measurements 

repeated. 

Chronic Colitis Model:  The chronic model of colitis yielded a DAI of 1.3 ± 0.1 compared to time-

matched controls (p<0.01). Changes in absolute concentration of NO metabolites in blood and tissues 

are shown in Figure 7, and fractional changes from control levels are summarized for NO-metabolites 

and AA/DHA ratios in Table 2. As observed during DSS administration in the acute model, plasma 
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nitrite levels remained significantly elevated in the chronic model (mean fractional change of 2.26 over 

11 days for the acute model versus 2.25 for the chronic model). In contrast to the changes in tissue 

nitrite concentrations observed during acute DSS administration, which dropped to levels below our 

detection limit, those levels remained either unchanged or increased in the chronic model. Tissue 

nitrosation also exhibited a general tendency toward systemic increases that was particularly evident in 

targets of the cardiovascular system (exemplified by effect on heart and aorta; see Fig.7 and Tab.2), 

whereas changes in cellular redox status and nitrate showed no clear systemic trends. While plasma 

nitrate in particular remained almost unchanged in the chronic model, platelet aggregation (Fig. 6) was 

elevated to levels comparable to those observed in the acute model, with differences reaching statistical 

significance when compared to age and time-matched controls.  

5-ASA Treatment:  Histological assessment of the colon in those animals that received 5-ASA between 

day 5 of DSS administration through to day 4 after removal from DSS revealed no measurable reduction 

in colon damage. However, 5-ASA treatment was accompanied by a reduction in DAI compared to 

animals receiving DSS alone (2.70 ± 0.07, day 7; 1.22 ± 0.40, day 11). The difference in DAI was not 

due to reduced weight loss, which was comparable between the 5-ASA treatment group and the DSS-

treated control group that received only water in the recovery phase (-7% and -11% at days 9 and 11, 

respectively). Similarly, no changes in MPO activity were observed compared to animals treated with 

DSS alone. Given the short time the animals received 5-ASA treatment on top of DSS these results are 

perhaps not surprising. Unexpectedly, however, 5-ASA had a dramatic effect on NO-related products 

and redox status. Co-administration of 5-ASA together with DSS completely abolished the increased 

formation of nitrosated species to levels virtually indistinguishable from those of control animals (data 

not shown). Moreover, 5-ASA treatment largely prevented the drop in tissue nitrite concentrations at the 

height of DSS-induced inflammation and fully prevented the systemic increase in nitrite and oxidative 

stress observed in all compartments on the fourth day of recovery following DSS administration (Fig. 8). 

In addition to the abrogation of oxidative stress following DSS cessation a trend towards a more reduced 

status became apparent in several compartments with 5-ASA administration, in particular in the brain. 

The significance of this finding remains unclear at present. In contrast, blood nitrate levels remained 

unchanged with 5-ASA treatment compared to DSS administration alone (data not shown).  

 

Discussion 
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The present study provides a first comprehensive assessment of the global dynamics of a series of NO-

related metabolites during development, manifestation and remittance of DSS-induced colon 

inflammation in a rodent model in vivo. Our results reveal an unexpected level of complexity 

concerning the fate of NO and are at odds with the contemporary (and often indiscriminate) use of NO-

related metabolites as universal markers of enhanced NOS activity which typically accompanies 

inflammatory events. These findings are of relevance not only for the monitoring of disease progression 

and for biomarker research, but may have important implications for the role of NO and nitrite in 

inflammation in general. The appreciation that iNOS induction during inflammation can be sometimes 

beneficial and on other occasions detrimental,3, 45 depending in part on whether the enzyme is induced in 

blood cells or tissues,46 does little to answer the question as to whether NO is protective or deleterious.47, 

48 This has created a situation, characterized as “NO paradox”, that not only continues to confuse clinical 

and basic investigators but represents a significant impediment to research progress in this area. By 

addressing this situation from an analytical angle, our study contributes to a better understanding of the 

chemical biology of NO and its reaction products in the setting of gastrointestinal inflammation, an 

important prerequisite for defining novel treatment strategies aimed at modulating NO bioavailability. 

The demonstration that 5-ASA leads to almost complete normalization of the NO metabolite profile and 

oxidative stress-induced perturbations in tissues, even when administered well after colon inflammation 

is established, further suggests that the systems-based experimental paradigm used in the present 

investigation may hold promise for future mechanistic studies and drug discovery efforts. 

 

NO Metabolites as Markers of Inflammation – Prospects and Limitations 

While elevated NOS activity has been found in experimental rodent models of colon inflammation as 

well as in patients with Ulcerative Colitis and Crohn’s Disease, the relationship between this activity and 

the severity of bowel inflammation remains ill defined.49, 50 This may be due, in part, to the fact that 

most individuals from whom colon biopsy samples are obtained typically receive either corticosteroids 

or other anti-inflammatory medications all of which have the potential to interfere with NOS expression 

and activity. Information in the literature about iNOS expression in DSS colitis (in particular changes 

over time) is sparse, sometimes conflicting, and differs between species and strains. We opted not to 

determine message or protein expression for endothelial or inducible NOS in our present study. We 

reasoned that such measurements may be of little help in interpreting the changes in NO metabolite 
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patterns observed without concomitant information about true NOS activity (as opposed to a potential 

activity as measured by citrulline or oxyHb assay, which is typically determined in the presence of 

optimal cofactor and substrate supply), reactive oxygen species production and NO/nitrite consumption 

processes. While we could speculate about oxidative stress levels taking into account the ascorbate 

redox status measured, NO/nitrite consumption is likely to change dynamically as inflammation 

progresses or animals recover. Thus, all these processes have the potential to affect NO availability and 

metabolic profile even if NO production progressively increased or remained constant. Other 

complications include the multitude of reactions NO and its metabolites can undergo in a biological 

environment, the chemical instability of some of the reaction products and analytical challenges related 

to their quantification at trace level in biological samples. Sampling frequency and logistical challenges 

related to sample processing further limit the mechanistic insight one can gain from an analysis of 

clinical specimen in this particular area of research, emphasizing the need to address issues of greater 

complexity in animal models of disease such as the one employed in the present study.  

Another formidable confounding factor is dietary intake. Rodent diets are known to contain varying 

amounts of NOx which, if not controlled for, may contribute to poor comparability between studies. 

Since stress and/or sickness are typically accompanied by reduced food intake progression of disease 

may translate into changes in bodily NOx supply and their concentration in tissues. Since accurate 

quantification of food consumption is only possible with individually housed animals (which itself is a 

stressor that may impact on the inflammatory process) weight gain is often used as a proxy for food 

intake. In agreement with other investigations a variable degree of weight loss was observed in DSS-

treated animals in the present study. However, with regard to its relevance to NO metabolite 

concentration this data has to be interpreted with caution as loss in body weight may be due to changes 

in metabolism, extracellular fluid volume depletion and other factors unrelated to food intake. 

Irrespective of these limitations, both nitrite and nitrate seem to track the DAI in our acute colitis model, 

with the exception of the sudden surge in nitrite/nitrate observed four days after DSS cessation 

(discussed below).  In the chronic model, however, nitrate levels remained essentially unaltered 

(fractional change of 1.27 ± 0.19) while nitrite levels more than doubled (2.25 ± 0.31).  The finding that 

nitrate increases significantly only in the acute model of inflammation suggests that plasma nitrite may 

be a better overall marker of inflammatory events. Consequently, any plasma assay that combines nitrite 

with nitrate into one single marker of NO synthesis (i.e. NOx assays) will not provide a more sensitive 

disease index since only nitrite appears to be changing consistently during inflammation. In fact, since 
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plasma nitrite concentrations are usually an order of magnitude lower than those of nitrate, any changes 

in nitrite may be overwhelmed by sampling errors in nitrate. Thus, our results suggest that plasma nitrite 

by itself may be better suited as a marker of inflammatory activity than assays that combine nitrite and 

nitrate values. However, caution is recommended in associating the time-course of this product too 

closely to the DAI, given our observation that its levels rebounded even as the DAI subsided (Fig 3A).  

A surprising finding from our acute model is the extent of NO responses (Figs. 2-5) that occurs in the 

extravascular compartment. Our results clearly indicate that the levels of nitrite and nitroso products, but 

not nitrate, are significantly altered synchronously in all organs including the colon. Additionally, the 

data obtained in the chronic model (Figs. 7 and 8, Tab.2) indicate that the colon exhibits no particular 

pattern of NO-metabolites that would differentiate it significantly from other organs. Thus, given the 

similarity in changes in NO-metabolite profiles between the colon (where supposedly inflammation is 

confined to) and other organs, it appears that these species may not serve as markers suitable for 

confirmation or localization of inflammation in tissues, neither in the acute nor in the chronic stage.  

 

Compartmentalization of Nitrite Between Intra- and Extravascular Space 

Another surprising finding from our study is the degree of compartmentalization of nitrite between intra- 

and extravascular space. For instance, a salient feature in the nitrite signals from the colon and from 

other organs (Fig 5A) is the presence of two surges, at days 3 after initiation of DSS treatment and at 

day 4 following its withdrawal. The first nitrite surge which is prominent in the colon but also present in 

other tissues, may originate from the induction of iNOS in macrophages and other cells in those tissues. 

Interestingly, there is no evidence that this added nitrite diffuses into the intravascular compartment, 

which is surprising considering the relatively large volume of extravascular spaces that experience 

increases in nitrite. Further evidence of compartmentalization is seen in the dramatic loss in 

extravascular nitrite observed in the intervening time between the two surges. This loss occurs while 

levels of nitrite in the intravascular compartment continue to increase above basal values. Further 

evidence for nitrite compartmentalization can be gleaned from our 5-ASA data, which demonstrates that 

therapeutic administration of this drug selectively affects nitrite in the extravascular compartment. 

The degree of compartmentalization between the extra- and intravascular compartments is surprising, 

given the established ability of this anion to cross cell membranes through ion channels and possibly 

also via passive transport in the form of nitrous acid (HNO2)51. This level of compartmentalization is 
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reminiscent of those from another recent study7. In that particular study, animals sustained on a low 

NOx diet exhibited a systemic loss of nitrite from all tissues except the circulation where levels 

remained unchanged compared to those of animals on a normal diet.  Thus, the low NOx diet also did 

not lead to a loss of tissue nitroso products when nitrite was lost. The similarities between the findings 

of that study with those reported here might be part of a common reaction channel yet to be 

characterized that is activated under certain physiological stresses. In the following section we elaborate 

further on the nature of this response and the difficulty in reconciling it with our current understanding 

of NO biochemistry in inflammation.   

 

A Need to Re-Examine the Chemical Biology of NO and Nitrite in Inflammation  

Most NO-metabolites found in vivo, including nitrite, nitrate, and nitrosation products are thought to 

arise primarily from the NO autoxidation pathway, in which NO and O2 react to form NO2,  from which 

either N2O4 or N2O3 are formed: 

2NO + O2   . 2NO2     (1) 

          2 NO2. N2O4    (2) 

NO + NO2 . N2O3    (3) 

These higher N-oxides can subsequently lead to the formation of NOx and nitroso products according to 

the following reactions: 

N2O4 + RXH . RXNO + NO3
-
 + H+

  (4) 

N2O3 + H2O . 2NO2
-
 + 2H+

    (5) 

N2O4 + H2O . NO2
-
 + NO3

-
 + 2H+

   (6) 

N2O3 + RXH . RXNO + NO2
-
 + H+  (7) 

Thus, if inflammatory responses were associated with an increase in NO synthesis while the availability 

of other reactants (O2, H2O, RXH) was kept essentially constant, one would expect that levels of nitrite, 

nitrate, and nitroso species all would rise simultaneously in inflamed tissues to eventually end up in the 

circulation. However, this is not what we observe. Instead, nitrite levels in tissues drop even as 
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nitrosation in that compartment rises, while no appreciable changes in nitrate concentration are apparent. 

Furthermore, our data suggest that these products behave differently in the circulation and are not in 

equilibrium with their counterparts in tissues. 

The departure from the chemistry outlined in reactions (1-7) might be attributed to a shift in NO-

biochemistry driven by increased levels of a third reactant, namely superoxide (O2
-). This oxygen-

derived radical anion, which is not merely a by-product of aerobic respiration but fulfills important 

signaling functions52, is produced at much higher levels during inflammatory responses. Superoxide 

reacts very rapidly with NO to form peroxynitrite: 

O2
- + NO . ONOO-    (8) 

Scavenging of NO by this reaction would reduce its bioavailability, leading to lower levels of nitrite 

from reactions (5-7). While a decrease in NO bioavailability might account for the lower levels of nitrite 

in tissues and the increased platelet aggregability in the circulation, much of the product peroxynitrite 

decays readily to form nitrate, 

  ONOO
- . NO3

-    (9) 

leading to what we should have registered as increased levels of nitrate in tissues. As clearly seen from 

Fig. 3B for the colon, and echoed in the data for other organs (Fig. 5B), nitrate either remains unchanged 

or even decreases somewhat during this period. This scenario also fails to account for the seemingly 

contradictory rise in tissue nitrosation (Fig. 5C) when NO bioavailability is presumably diminished. The 

significant rise in nitrite in the circulation observed at days 5 and 7 (Fig. 3A), at a time when all tissues 

supposedly produce much less of it (Figs. 4 and 5), also cannot be rationalized as a consequence of 

superoxide production.  

The increased production of nitroso products at the peak of the disease activity invites consideration of a 

third scenario involving a recently proposed mechanism for thiol nitrosation via a radical mechanism53. 

In this mechanism, NO2 produced via reaction 1 reacts directly with thiols to produce a thiyl radical, RS� 

via the following reaction: 

  NO2 + RSH . RS� + NO2
-
 + H+  (10) 

Once formed, the RS� radical can react very rapidly with NO to produce the nitroso product RSNO via a 

radical-radical reaction: 
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  NO� + RS� . + RSNO   (11) 

If inflammation somehow produces conditions that favor reactions (10-11) over reactions (2-7), the net 

result would be a chemical shift that produces less nitrate in favor of nitroso (and nitration) products and 

nitrite. The increased nitrite, however, is not consistent with the observed disappearance of this anion 

from tissues, including the colon.  

The difficulty in reconciling current models of NO biochemistry with the observed dynamics of NO 

products in our model of acute colitis incites the question of whether additional mechanisms are 

intervening to modulate nitrite, nitrate, or nitroso products. For instance, several mechanisms have been 

proposed in the literature that could reduce nitrite to NO in vivo and generate nitroso products through 

the nitrosative chemistry described above. Mechanisms include interaction of nitrite with the 

mitochondrial electron transport chain, haemoglobin and myoglobin, xanthine oxidase, cytochrome P450, 

and simple protonation to form nitrous acid10.  In addition, nitrite may be consumed in reactions with 

peroxidases/H2O2, which are known to be present at high levels in inflamed tissues (and documented by 

MPO measurements in colon tissue in the present study), leading to the formation of nitrotyrosine, 

nitrated fatty acids and other nitration products54, 55 which would go largely undetected in our assay 

systems. While these may readily account for the diminishing levels of nitrite we observe, they could 

only account for the increased nitrosation if we assumed the increased NO fluxes from nitrite reduction 

enhanced the nitrosative chemistry described above. However, that same nitrosative chemistry would 

inevitably yield increased levels of nitrate, a trend we do not observe. To complicate matter further, the 

action of peroxidase/H2O2 on nitrite gives rise to NO2 to either form S-nitrosothiols via reactions (10-11) 

or nitrite via reactions (3, 5).  Furthermore, the increased platelet aggregability we measured at the peak 

of the disease activity (i.e., at day 7 of DSS administration) would also argue against increased systemic 

NO bioavailability during the course of the disease, as NO is well known to inhibit platelet activation.  

A possible way to resolve the apparent conflict between the formation of nitroso products without 

increased NO or other NO products, such as nitrate, is to consider an alternative mechanism that 

produces nitrosation from nitrite without the intermediacy of NO or nitrosative species such as N2O3. 

The existence of such a mechanism was indeed demonstrated in a recent study of the biochemical 

response of rat tissues to nitrite, both in vivo and in vitro7. This study found that tissue nitrosation was 

directly correlated with nitrite levels. A unique feature of this process, which involves a cooperative 

action between thiols and hemes, is its use of nitrite as a substrate to produce nitrosation products 
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without the intermediacy of NO. If the same mechanism was responsible for the nitrosation observed in 

the present study, our results would suggest that this may be part of an enzymatic process that is 

significantly enhanced in inflammation.  

 

Links Between Nitrite, Ascorbate Status and the Pathology of Gut Inflammation  

Many of the findings discussed above point to an unusual behavior of nitrite during the course of the 

acute inflammatory process, i.e. one that extends beyond a passive role as an inert end-product of NO 

formation. One of those findings relates to the extraordinary surge in the levels of this anion that take 

place on the fourth day after withdrawal of DSS, i.e. at a time when iNOS expression is supposedly no 

longer massively up-regulated. Importantly, this surge is observed in every organ examined, and appears 

to be correlated with a significant oxidative event in those organs as indicated by the drop in their 

AA/DHA ratio (Fig. 5A). The connection between nitrite and the redox status in those tissues is further 

strengthened by the relation between the drop in the log of the AA/DHA ratio and the magnitude of the 

nitrite surge (R2=0.89). The response is particularly large in extra-colonic tissues such as the liver and 

kidney (Fig 5A), but its mechanism remains unclear at present. Dehydroascorbate formation is unlikely 

a consequence of direct chemical interaction between ascorbate and nitrite given that intracellular 

concentrations of the former exceed those of the latter by at least an order of magnitude in most tissues. 

Rather, it may originate from an impaired capacity of the mucosa to reduce DHA back to ascorbate, 

which has been observed in colonic biopsies from IBD patients56. Regardless of the underlying 

mechanism, an impairment of ascorbate-mediated antioxidative defense may render inflamed tissue 

more susceptible to oxidative damage. Moreover, these changes lead to an impaired availability of 

reduced ascorbate in tissues and may therefore affect hydroxylation processes and other reactions in 

which ascorbate is acting as a specific cofactor rather than an antioxidant. 

Another curious connection between nitrite and acute colitis is gleaned from the results obtained during 

co-administration of 5-ASA with DSS. This drug is highly effective in the setting of acute inflammatory 

bowel disease in the clinic and has become the gold standard for the therapy of ulcerative colitis.57 Its 

intestinal anti-inflammatory effects are believed to be mediated via interaction with the peroxisome 

proliferator-activated receptor-�.58  In the present study, no significant change in either weight gain or 

MPO activity was observed following 5-ASA administration, while intestinal bleeding and effects on 

stool consistency were clearly reduced. Yet, both circulating and tissue nitrite levels (Fig 8C) showed 
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substantial reversal toward basal levels, both at the peak of the DAI (day 7) and at day 4 after DSS 

withdrawal when nitrite would otherwise surge (Fig. 8A). While we cannot exclude the possibility that 

reduced food intake may contribute to the progressive decrease in tissue NOx levels once colitis is 

established, we do not believe that dietary changes can account for the dramatic surge in nitrite 

following cessation of DSS treatment for two reasons: 1. reduced body weight gain persisted well into 

the recovery phase; 2. there was no difference in weight loss after DSS cessation between the group that 

received only water and the one that received 5-ASA, although the surge in nitrite was completely 

abrogated in the latter. The prevention or reversal of the nitrite surge toward basal levels was 

accompanied by a notable attenuation of oxidative stress (compare Figs. 8B and 8D).  It has been 

demonstrated that the p-amino phenol moiety of 5-ASA confers both potent antioxidant effects59 and a 

reactive nitrogen oxide species scavenging ability60 to the molecule. Both of these actions might work in 

concert to reduce nitrite accumulation and prevent the occurrence of oxidative and nitrosative stress. 

These results appear to be of particular relevance in the context of concerns that the nitrite produced 

during inflammatory conditions in the gut may enhance, via formation of carcinogenic N-nitrosamines, 

the risk for colon cancer61, 62. Of note, nitrite has recently been suggested to modulate T-cell function 

and cytokine release63. Given the significance of T-lymphocytes in the disease process64 the avoidance 

of abrupt fluctuations in nitrite concentration may prove beneficial. Our biochemical findings with 5-

ASA would seem to lend support to the contemporary interest in its broader use for chemoprevention of 

colorectal cancer, one of the more fearsome complications of IBD65, 66. 

Thus, parallels between the behavior of nitrite described above and known disease progression/ 

complications of colitis seem inescapable. Firstly, ulcerative colitis is a disease characterized by 

recurring cycles of acute illness and remission. Our study shows that an underlying product of the 

inflammatory process, nitrite, also undergoes considerable cycling throughout the disease, dipping to 

vanishingly low levels and suddenly rising to values many-fold above basal ones. Secondly, IBD is 

often accompanied by complications in distal organs, including the liver and the kidney, for reasons that 

are yet unclear67. Our findings show that those two organs are the main targets of nitrite overload and 

significant oxidative stress. Thirdly, our findings show that the drug 5-ASA, which is effective in the 

treatment of ulcerative colitis, also normalizes the levels of nitrite in the circulation and in the 

extravascular compartment. Together, these parallels raise the prospect that an intimate connection 

exists between nitrite and IBD. Whether this relationship is causal or consequential and whether nitrite 

plays a beneficial or detrimental role in gut inflammation remains to be determined. 
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Chronic gastrointestinal inflammation is accompanied by specific alterations in oxygen supply and 

utilization as well as increased tissue metabolism, rendering inflamed mucosal tissue hypoxic.68 Tissue 

hypoxia leads to activation of the hypoxia-responsive transcription factor HIF-1�, and this response is 

subject to redox modulation by the combined production of NO and reactive oxygen species.69 Whilst 

mitochondrial reactive oxygen species production is enhanced in hypoxia,70 mitochondrial NO 

consumption is reduced,71 with important consequences for local NO availability and redox signaling. 

Hypoxia is linked to inflammation via the transcription factor, NF-�B.72 Ascorbate is a cofactor of prolyl 

hyroxylases, and inhibition of HIF hydroxylases has been shown to be protective in rodent models of 

colitis.68 Thus, changes in cellular redox status secondary to alterations in NO and ascorbate availability 

may affect hypoxic signalling and key inflammatory mediators in a complex fashion via several 

different angles. Nitrite is known to be consumed by mammalian tissues under hypoxic conditions,1 with 

NO being produced along the process.10 The formation of hydrogen sulphide (H2S), produced in the gut 

by commensal sulfate-reducing bacteria or in tissues by mammalian enzymatic processes, has been 

suspected to be involved in the etiology of IBD, possibly as a result of impaired detoxification.73 Of 

note, H2S formation is markedly upregulated in inflammation and known to affect NO availability.74 It is 

possible, therefore, that this cross-talk between mediators of inflammatory and hypoxic processes is 

sufficient to explain the fluctuations in nitrite observed in the present study, and tissue NO metabolite 

profiling an informative tool to study this cross-talk in vivo. Given the effectiveness of 5-ASA to prevent 

and/or abolish the alterations in NO-related metabolite levels and redox status, this systems cross-talk 

would seem to deserve further investigation. 

 

Conclusions 

This study investigated the formation and fate of nitrite, nitrate, and nitroso products, following the 

induction of colitis in a rodent model of colitis in vivo. Our main findings are summarized as follows: 

1) Plasma nitrite and nitrate correlate well with disease activity, but only in the acute case and 

during the onset of the inflammatory response. In the recovery phase, both plasma anions rise again to 

very high levels 4 days after withdrawal of the inflammatory stimulus, even when disease activity 

continues to fall. In the chronic stage, nitrite shows a significant increase in plasma whereas nitrate 

remains essentially unchanged. Our findings suggest that plasma nitrite by itself provides a more 

consistent indication of colitis, although rises of this indicator may not be synchronized with either 
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progression or resolution of inflammation.  

2) In the extravascular space during acute colitis, only nitroso products correlate well with disease 

activity. This response, however, seems to be systemic in nature inasmuch as qualitatively identical 

transient rises in nitroso products are also seen in other tissues. At the same time nitrite levels in all 

organs, including the colon, actually drop as the disease intensifies, while nitrate remains essentially 

unchanged. Thus, none of these NO-related products appear to be suitable as biomarkers of 

inflammation in tissues.  

3) Our assessment of NO metabolite profiles during inflammation reveals dynamical features of NO 

biochemistry that cannot be fully rationalized in terms of classical oxidative and nitrosative textbook 

chemistry. In particular, the dynamics of nitrite and its compartmentalization between intravascular and 

extravascular spaces seems to imply that this anion is under the control of yet unidentified mechanisms 

that are activated as part of the inflammatory response. A potential major factor in this context may be 

the degree of tissue hypoxia accompanying the inflammatory process, and this relationship deserves 

further investigation. In any case, our systems analysis of individual NO-related metabolites in vivo has 

unmasked a richer complexity of NO biochemistry as previously appreciated from analyses of NOx 

levels in blood alone. 

4) Finally, our study brings to light the destabilizing effect that colon inflammation has on the redox 

state and on nitrite levels in other tissues. The level of oxidative stress appears to be particularly 

significant in the liver and kidneys, organs well known to suffer from complications of IBD. This 

destabilizing effect was effectively abolished by the therapeutic drug 5-ASA, suggesting that nitrite may 

play a key role in the modulation of inflammation. 
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Figure legends 

 

Figure 1. 

Disease activity index (DAI) and concentration of total nitroso compounds in the colon of DSS-treated 

rats. Data displayed as mean ± SEM, n=3/day. DAI was significantly increased from day 3 of DSS 

application on and remained significantly (p<0.01) elevated 4 days after cessation of DSS administration 

(asterisks omitted for sake of clarity). Colon nitrosation was significantly (** p<0.01) increased on day 7 

of DSS administration. 

Figure 2. 

Systemic changes in concentration of NO-related metabolites in blood and exemplary tissues of the rat 

during development of acute colon inflammation during DSS administration (days 0-7) and following 

cessation of DSS treatment (recovery phase; days 9-11). Nitros(yl)lation products are exemplified by S-

nitrosothiols (white), N-nitrosamines (black) and nitrosyl heme species (grey), whereas nitrate (black) 

and nitrite (grey) represent products of oxidative NO metabolism (NOx). Data are means ± SEM; 

n=3/day/tissue. 

Figure 3.  

Inflammatory response to continuous administration of DSS over a period of 7 days (area shaded in 

grey).  The blue and green curves contrast the time course of nitrite and nitrate, respectively, with that of 

the DAI, in plasma (panel A) and in the colon (panel B). Each time point represents a fold-change from 

basal levels, calculated from the ratio of the mean concentration (n=3) at the day indicated on the X axis 

compared to the basal level (n=3) assessed at day 0 (Controls). Error bars were omitted for clarity. 

Figure 4. 

Blood and tissue concentration of nitrite in controls (white bars, day 0), following 7 days DSS treatment 

(grey bars, day 7) and four days after treatment cessation (black bars, day 11). Data displayed as mean ± 

SEM, n=3/day/tissue. Where * represents p<0.05 and ** represents p<0.01 vs. matched control (day 0). 

(IVC, inferior vena cava; RBC, red blood cells). 

Figure 5. 

Comparisons of the changes in redox status (expressed as AA/DHA ratio; panel A) as well as in the 
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concentrations of nitrate (panel B) and nitroso products (panel C) with those in nitrite (solid curves) 

across various organs and in the circulation, in response to DSS administration over a course of 7 days 

followed by 4 days of recovery. Each time point represents a fold-change from basal levels, calculated 

from the ratio of the mean concentration (n=3) at the day indicated on the X axis compared to the basal 

level (n=3) assessed at day 0 (Controls). Error bars were omitted for clarity. Aortic AA/DHA levels 

were not determined due to limited sample size. 

Figure 6. 

Platelet aggregation as assessed by addition of collagen and adenosine diphosphate (ADP) to whole 

blood under control conditions (white bars, n=6) and following 7 days of DSS administration (grey bars, 

n=4), and in the chronic model of colon inflammation (white hatched bars, n=9) with time-matched 

controls (grey lined bars, n=4). Data displayed as mean ± SEM (* p<0.05, ** p<0.01 vs. control). 

Figure 7. 

Systemic changes in concentration of NO-related metabolites in blood and representative organs during 

chronic colon inflammation. Nitros(yl)lation products are exemplified by S-nitrosothiols (white), N-

nitrosamines (black) and nitrosyl heme species (grey), whereas nitrate (black) and nitrite (grey) 

represent products of oxidative NO metabolism (NOx). Data are means ± SEM, n=5-6/day/tissue. 

Figure 8. 

Comparison of changes in nitrite concentration and ascorbate redox status in blood and tissues of DSS-

treated animals in the absence (panels A and B) and presence (panels C and D) of 5-ASA. Upper panel: 

(A) Blood and tissue concentrations of nitrite and (B) tissue concentrations of ascorbate and 

dehydroascorbate (DHA; displayed as a ratio of ascorbate/DHA) in controls on day 0 (white bars), day 7 

(grey bars) and day 11 (black bars). Lower panel: (C) Blood and tissue concentrations of nitrite and (D) 

tissue concentrations of ascorbate and dehydroascorbate (DHA; displayed as a ratio of ascorbate/DHA) 

on day 0 (white bars), day 7 (grey bars) and day 11 (black bars) of DSS administration with concomitant 

5-ASA treatment starting on day 5. Data displayed as mean ± SEM from 3 animals/day (* p<0.05). IVC, 

inferior vena cava; RBC, red blood cells. No ascorbate/DHA measurements were performed in vascular 

tissue and blood due to limited sample availability. 
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Table legends 

 

Table 1. 

Basal concentrations of nitrite, nitrate, nitroso, and nitrosyl species in plasma and tissues of Wistar rats 

enrolled in the acute (grey shaded) and chronic (unshaded) model of colitis (mean ± SEM; n=3 for acute 

study, time-matched to day 7 of DSS administration; n=5-6 for chronic study, corresponding to end of 

the treatment cycle). 

 

 

Table 2. 

Global changes of NO-related metabolites in plasma and representative organs during chronic colon 

inflammation. Fractional changes in nitrite, nitrate and total nitroso products (RXNO) and redox status 

(expressed as the ratio of ascorbic acid/dehydroascorbate, AA/DHA) in rats subjected to three cycles of 

DSS treatment compared to age- and weight-matched controls. Data displayed as mean ± SEM from 

n=5-6 animals. ND not determined. 
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 Nitrite, µM Nitrate, µM RSNO, nM RNNO, nM NO-heme, nM 

   Plasma 0.28 ± 0.07 7.70 ± 0.40 0.37 ± 0.37 11.83 ± 0.58 <1.0 

 0.21 ± 0.01 5.63 ± 0.77 0.98 ± 0.87 13.84 ± 7.20 <1.0 

   Brain 1.18 ± 0.10 8.05 ± 0.53 72.47 ± 2.82 26.40 ± 5.61 154.83 ± 73.25 

 0.61 ± 0.14 4.96 ± 1.03 20.56 ± 10.11 83.02 ± 31.84 71.64 ± 18.72 

   Heart 1.21 ± 0.14 10.66 ± 1.92 23.73 ± 4.77 7.67 ± 0.97 <1.0 

 0.28 ± 0.08 3.87 ± 0.83 8.45 ± 4.17 19.66 ± 7.86 <1.0 

   Liver 0.32 ± 0.27 7.21 ± 1.43 61.7 ± 4.2 16.67 ± 4.87 <1.0 

 0.02 ± 0.01 1.65 ± 0.25 34.04 ± 18.08 28.83 ± 9.80 <1.0 

   Kidney 0.50 ± 0.26 7.71 ± 0.91 24.57 ± 9.14 8.83 ± 3.34 <1.0 

 0.08 ± 0.04 3.14 ± 0.65 19.8 ± 5.25 6.00 ± 2.62 <1.0 

   Colon 1.41 ± 0.14 23.79 ± 8.33 0.20 ± 0.05 80.57 ± 24.57 <1.0 

 1.25 ± 0.22 5.31 ± 0.88 29.18 ± 4.48 33.96 ± 6.46 <1.0 

   Aorta 3.88 ± 0.29 24.22 ± 12.5 37.93 ± 9.02 2.77 ± 2.77 <1.0 

 3.27 ± 8.3 6.31 ± 0.52 7.46 ± 4.73 <1.0 <1.0 

 

Table 1 
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  Nitrite Nitrate Total RXNO AA/DHA 

Plasma 2.25 ± 0.31 1.27 ± 0.19 1.05 ± 0.67 ND 

Brain 1.51 ± 0.42 0.77 ± 0.20 1.19 ± 0.29 0.98 ± 0.08 

Heart 1.73 ± 0.57 2.03 ± 0.46 3.96 ± 1.69 0.46 ± 0.19 

Liver 4.77 ± 2.99 1.14 ± 0.46 2.28 ± 0.79 0.45 ± 0.16 

Kidney 1.46 ± 1.00 0.88 ± 0.24 1.44 ± 0.30 0.62 ± 0.13 

Colon 1.24 ± 0.28 0.85 ± 0.20 1.44 ± 0.43 1.41± 0.27 

Aorta 1.26 ± 0.35 1.14 ± 0.45 7.45 ± 5.34 ND 

 

Table 2 
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