The University of Southampton
University of Southampton Institutional Repository

Contrasting pyroclast density spectra from subaerial and submarine silicic eruptions in the Kermadec arc: implications for eruption processes and dredge sampling

Barker, Simon J., Rotella, Melissa D., Wilson, Colin J.N., Wright, Ian C. and Wysoczanski, Richard J. (2012) Contrasting pyroclast density spectra from subaerial and submarine silicic eruptions in the Kermadec arc: implications for eruption processes and dredge sampling Bulletin of Volcanology, 74, (6), pp. 1425-1443. (doi:10.1007/s00445-012-0604-2).

Record type: Article


Pyroclastic deposits from four caldera volcanoes in the Kermadec arc have been sampled from subaerial sections (Raoul and Macauley) and by dredging from the submerged volcano flanks (Macauley, Healy, and the newly discovered Raoul SW). Suites of 16–32 mm sized clasts have been analyzed for density and shape, and larger clasts have been analyzed for major element compositions. Density spectra for subaerial dry-type eruptions on Raoul Island have narrow unimodal distributions peaking at vesicularities of 80–85%, whereas ingress of external water (wet-type eruption) or extended timescales for degassing generate broader distributions, including denser clasts. Submarine-erupted pyroclasts show two different patterns. Healy and Raoul SW dredge samples and Macauley Island subaerial-emplaced samples are dominated by modes at ~80–85%, implying that submarine explosive volcanism at high eruption rates can generate clasts with similar vesicularities to their subaerial counterparts. A minor proportion of Healy and Raoul SW clasts also show a pink oxidation color, suggesting that hot clasts met air despite 0.5 to >1 km of intervening water. In contrast, Macauley dredged samples have a bimodal density spectrum dominated by clasts formed in a submarine-eruptive style that is not highly explosive. Macauley dredged pyroclasts are also the mixed products of multiple eruptions, as shown by pumice major-element chemistry, and the sea-floor deposits reflect complex volcanic and sedimentation histories. The Kermadec calderas are composite features, and wide dispersal of pumice does not require large single eruptions. When coupled with chemical constraints and textural observations, density spectra are useful for interpreting both eruptive style and the diversity of samples collected from the submarine environment.

Full text not available from this repository.

More information

Published date: August 2012
Keywords: Submarine volcanism, Explosive eruption, Kermadec arc, Pumice
Organisations: Marine Geoscience


Local EPrints ID: 337716
ISSN: 0258-8900
PURE UUID: b4cde035-87e7-49e3-be30-6817c3ea9428

Catalogue record

Date deposited: 02 May 2012 08:43
Last modified: 18 Jul 2017 06:01

Export record



Author: Simon J. Barker
Author: Melissa D. Rotella
Author: Colin J.N. Wilson
Author: Ian C. Wright
Author: Richard J. Wysoczanski

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.