Numerical model of a non-contact piezoelectric energy harvester for rotating objects
Numerical model of a non-contact piezoelectric energy harvester for rotating objects
Energy harvesting is an attractive technique for powering wireless sensors and low power devices. Harvesters delivering sufficient power from rotation for sensor applications have been developed, but difficulties are encountered when the devices to be powered are located off axis on a rotating object. In such cases, harvesters are not adapted to low frequency and high amplitude of motion, where the input force amplitude is higher than the mass available displacement. A novel approach, based on using non-contact piezoelectric energy harvester to generate power from magnetic forces due to the effect of the centripetal force is proposed in this paper. In this approach, the pre-stressed piezoelectric beams are deformed by interaction with an oscillating magnet that is supported by magnetic levitation system. Because the magnetic levitation system is nonlinear, the nonlinear spring enables operation over a wide range of large centripetal accelerations. A model of the system is presented and analyzed in order to identify the parameters that control the performance of the harvester. Theoretical investigations are followed by a series of experimental tests to validate the response predictions. With an off-axis distance of 75 mm the prototype, occupying a volume of approximately 17.74 cm3 and weighting 46 g, generated an output power ranging from 0.2 µW to 3.5 µW when the rotating speed changes from 3 rps to 5.55 rps. Further optimization of the piezoelectric harvester is carried out in order to improve the power density. An application in which the harvester can be used in is tire pressure monitoring systems. In this case, the harvester can replace the battery of the pressure sensors located inside the vehicle tire.
magnetic force, non-contact based generator, piezoelectric curved beam, piezoelectric energy harvester, rotational energy, thunder beam
1785-1793
Manla, Ghaithaa
2a5eda91-2c36-4850-ae22-85ce2ddc2511
White, Neil M.
c7be4c26-e419-4e5c-9420-09fc02e2ac9c
Tudor, Michael John
46eea408-2246-4aa0-8b44-86169ed601ff
June 2012
Manla, Ghaithaa
2a5eda91-2c36-4850-ae22-85ce2ddc2511
White, Neil M.
c7be4c26-e419-4e5c-9420-09fc02e2ac9c
Tudor, Michael John
46eea408-2246-4aa0-8b44-86169ed601ff
Manla, Ghaithaa, White, Neil M. and Tudor, Michael John
(2012)
Numerical model of a non-contact piezoelectric energy harvester for rotating objects.
IEEE Sensors Journal, 12 (6), .
(doi:10.1109/JSEN.2011.2175721).
Abstract
Energy harvesting is an attractive technique for powering wireless sensors and low power devices. Harvesters delivering sufficient power from rotation for sensor applications have been developed, but difficulties are encountered when the devices to be powered are located off axis on a rotating object. In such cases, harvesters are not adapted to low frequency and high amplitude of motion, where the input force amplitude is higher than the mass available displacement. A novel approach, based on using non-contact piezoelectric energy harvester to generate power from magnetic forces due to the effect of the centripetal force is proposed in this paper. In this approach, the pre-stressed piezoelectric beams are deformed by interaction with an oscillating magnet that is supported by magnetic levitation system. Because the magnetic levitation system is nonlinear, the nonlinear spring enables operation over a wide range of large centripetal accelerations. A model of the system is presented and analyzed in order to identify the parameters that control the performance of the harvester. Theoretical investigations are followed by a series of experimental tests to validate the response predictions. With an off-axis distance of 75 mm the prototype, occupying a volume of approximately 17.74 cm3 and weighting 46 g, generated an output power ranging from 0.2 µW to 3.5 µW when the rotating speed changes from 3 rps to 5.55 rps. Further optimization of the piezoelectric harvester is carried out in order to improve the power density. An application in which the harvester can be used in is tire pressure monitoring systems. In this case, the harvester can replace the battery of the pressure sensors located inside the vehicle tire.
Text
06078388.pdf
- Version of Record
Restricted to Repository staff only
Request a copy
More information
Published date: June 2012
Keywords:
magnetic force, non-contact based generator, piezoelectric curved beam, piezoelectric energy harvester, rotational energy, thunder beam
Organisations:
EEE
Identifiers
Local EPrints ID: 337793
URI: http://eprints.soton.ac.uk/id/eprint/337793
ISSN: 1530-437X
PURE UUID: 608e3620-add1-45ef-be5e-d4e9c4d0691e
Catalogue record
Date deposited: 04 May 2012 08:46
Last modified: 15 Mar 2024 02:42
Export record
Altmetrics
Contributors
Author:
Ghaithaa Manla
Author:
Neil M. White
Author:
Michael John Tudor
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics