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ABSTRACT 
 
 
 
While nitroxyl (HNO) has been shown to engage in oxidation and hydroxylation reactions, little 

is known about its nitrosating potential. We therefore sought to investigate the kinetics of 

formation and identity of the reaction products of the classical nitroxyl donor Angeli’s salt (AS) 

with three representative tryptophan derivates (melatonin, indol-3-acetic acid, and N-acetyl-L- 

tryptophan) in vitro. In the presence of oxygen and at physiological pH, we find that the major 

products  generated  are  the  corresponding  N-nitrosoindoles  with  negligible  formation  of 

oxidation and nitration products.  A direct comparison of the effects of AS, nitrite, peroxynitrite, 

aqueous NO
•  

solution and the NO-donor DEA/NO toward melatonin revealed that nitrite does 

not  participate  in  the  reaction  and  that  peroxynitrite  is  not  an  intermediate.    Rather,  N- 

nitrosoindole formation appears to proceed via a mechanism that involves electrophilic attack of 

nitroxyl on the indole nitrogen, followed by a reaction of the intermediary hydroxylamine 

derivative with oxygen.  Further in vivo experiments demonstrated that AS exhibits a unique 

nitrosation signature which differs from that of DEA/NO inasmuch as substantial amounts of a 

mercury-resistant nitroso species are generated in the heart whereas S-nitrosothiols are the major 

reaction products in plasma.  These data are consistent with the notion that the generation of 

nitroxyl in vivo gives rise to formation of nitrosative post-translational protein modifications in 

the form of either S- or N-nitroso products, depending on the redox environment. It is intriguing 

to speculate that the particular efficiency of nitroxyl to form N-nitroso species in the heart may 

account for the positive inotropic effects observed with AS earlier. 

 
KEYWORDS: nitrosation, nitroxyl (NO

-
/HNO), indole, α-oxyhyponitrite, nitroside anion, 

tryptophan derivatives, nitration 
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acid;  MelNO,  1-nitrosomelatonin;  ε,  molar  extinction  coefficient;  RSNO,  S-nitrosothiols; 

RNNO, N-nitrosamines; DAF, 4,5-diaminofluorescein. 
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INTRODUCTION 
 

Nitric oxide (NO
•
) has emerged as a major biological mediator in the cardiovascular, 

immune, and nervous system since the discovery of its biosynthesis two decades ago.   Direct 

effects of NO
• 

are often attributed to its interaction with iron-heme-containing molecular targets, 

whereas indirect NO
• 

effects arise via intermediate formation of reactive nitrogen oxide species 

(RNOS
1
; e.g. NO2

•
, ONOO

−
, ONOO

•
, and N2O3) secondary to the reaction of NO

• 
with oxygen 

 
or oxygen-derived radicals (1).  Such RNOS have the ability to entertain nitrosative chemistry 

the outcome of which can affect protein structure and function.  RNOS are generally more 

reactive than NO
• 

itself and can be divided into oxidizing, nitrating, and nitrosating agents.  NO
•
 

reacts with superoxide anion (O2
•−

) at diffusion controlled rates yielding the potent oxidizing and 
 

nitrating species, peroxynitrite (ONOO
−
,  pKa  = 6.8) (2).   The nitrosating NO

•
-derived species 

(e.g., ONOO
•
, N2O3) are thought to be trapped by thiols to yield S-nitroso compounds, species 

believed to play a role in NO
• 

transport and storage (3).   Nitrite (NO2
−
), the end-product of NO

• 

autoxidation (4) and ubiquitous degradation product of NO
• 

under aqueous conditions (5, 6), and 

nitrate (NO3
−
), the stable end-product of NO

•
’s reaction with oxygenated hemeproteins, both 

participate in NO
• 
elimination reactions. 

In contrast to the aforementioned higher oxidation products such as N2O3 and peroxynitrite, 

the reactivity of the one-electron reduction product of NO
•
, nitroxyl (NO

-
/HNO), towards organic 

biomolecules is largely unknown.  This redox sibling of NO
• 
has recently been shown to have 

unique and promising pharmacological properties (7). HNO and NO
• 

often induce discrete, 

orthogonal (i.e., of the same origin but not overlapping) reactions with heme centers as well as 

other biological targets that are highly dependent on reaction conditions (8-10).   Nitroxyl has 

been demonstrated to arise as a product of L-arginine oxidation by nitric oxide synthase (NOS) 
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under certain conditions (11-15), oxidation of N-hydroxyguanidines (16), thiolate-mediated 

decomposition of S-nitrosothiols (17) and as a possible intermediate of NO
• 

metabolism (14), 

although direct evidence for its formation in vivo is lacking. Recent evaluation of the physico- 

chemical characteristics of NO
-
/HNO warrants exploration of the biological role of nitroxyl in 

order to complement the wealth of information on the physiological significance of NO
•
.  The 

acid-base equilibrium of nitroxyl has been reevaluated, and the pKa for HNO is now suggested to 

exceed 11 (18, 19) as opposed to 4.7 as determined by Grätzel and coworkers (20).   Thus at 

physiological pH, HNO is the likely exclusive form of nitroxyl present in biological systems. 

This distinction is important since the reactivities of the protonated and unprotonated forms of 

nitroxyl vary substantially.  The chemistry of HNO is primarily electrophilic in nature, whereas 

the anion NO
– 

is mainly involved in redox chemistry via outer-sphere electron transfer reactions 

(1). The redox potential of NO
•
, determined to be < -0.7 V (vs. NHE) (18, 19), makes electron 

 

transfer difficult to achieve and renders NO
• 

virtually inert to reduction within cells (1). Despite 

these thermodynamic hurdles, however, recent interest in nitroxyl has surged with possibilities of 

in vivo reduction of NO
• 

by superoxide dismutase (21), reactions with ferrous hemeproteins such 

as ferrocytochrome c (22), and the possibility that it may be formed via reaction of thiols with S- 

nitrosothiols (17). 

Angeli’s salt (AS; Na2N2O3), a well known nitroxyl donor, has shown a large variety of 

biological effects.    Similar to NO
•
, nitroxyl offers both protective (7, 23) as well as 

proinflammatory and cytotoxic effects (24, 25), depending on dose or concentration, and reaction 

conditions. In addition, it is a potent thiol oxidant (25).  Whereas higher concentrations of AS 

have been shown to induce DNA double-strand breaks and base oxidation along with other 

oxidative  damage  (15,  26), more  moderate  pharmacological  doses  induce  positive  cardiac 
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inotropy and selective venodilation in vivo (27).  AS is known to induce relaxation of vascular 

smooth muscle in vitro and to lower systemic blood pressure in vivo, effects which may be 

associated with the formation of iron-nitrosyl complexes (28, 29).   Acute toxicity is often 

attributed to reductive nitrosylation of transition metals (30, 31), thiol modification (32), and to 

hydroxylation of aromatic compounds (24).   While it has been observed that organ protection 

may occur after AS administration, there is no unifying mechanism to account for such an effect. 

Taken together, these studies indicate that while HNO is an integral component of the redox 

biology of NO
•
, its physiological chemistry is not well understood. 

 

When dissolved in water, AS is in equilibrium with its conjugate acid (HN2O3
−
; Eq. 1), the 

pKa values of which have been reported to be 2.4-2.51 for the first deprotonation step and 9.35 or 

9.7 for the second (33, 34). Thus, at physiological pH, it exists predominantly in its monobasic 

form, which is unstable and decomposes (at a rate of ∼10
-4  

s
-1 

at 25°C) (34) to yield HNO as a 

singlet ground state and nitrite (Eq. 2). 

(1) 

(2) 

Deprotonation  of  HNO  to  the  triplet  ground  state  (
3
NO

−
)  can  only be  achieved  by 

crossing a large activation barrier due to the spin-forbidden reaction at physiological pH (at a 

rate of 5 × 10
4  

M
-1 

s
-1

) (18).   Dimerization of 
1
HNO can occur to generate a hydroxylating 

species  (HON=NOH),  which  dehydrates  to  form  nitrous  oxide  (N2O)  (35).    The  latter  is 

frequently measured as a surrogate of HNO formation.  In the presence of oxygen, peroxynitrite 

is believed to be formed to subsequently rearrange to nitrate with a rate constant of 1.2 s
-1 

(36). 
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Evidence for ONOO
–  

formation can be obtained by measuring the transient absorption at 302 

nm, and the rate of decay can be monitored in the presence and absence of CO2, a known 

peroxynitrite scavenger, as well as by measurement of the stable end-product nitrate (18, 37).  It 

has been suggested, however, that the oxidant species derived from the reaction of AS with 

oxygen is not necessarily peroxynitrite (38-40). 

While the mechanism of nitrosation of thiols and amines by NO
• 
in vitro has been shown to 

 
be oxygen-dependent and to proceed via intermediate formation of N2O3 (41) little is known 

about the potential nitrosative and nitrative chemistry of nitroxyl and its biomolecular targets. 

Concerning the latter, both low molecular weight compounds and proteins have to be considered. 

In proteins, the sulfhydryl group of cysteine residues, the phenol ring of tyrosines and the indole 

nitrogen of tryptophans have been identified as major targets of ROS and RNOS. Recent 

observations about the physiological occurrence of N-nitroso species in human plasma (42) and 

the formation of N-nitroso proteins from NO
•  

in rodent tissues (43) has renewed the interest in 

tryptophan chemistry. The amino acid tryptophan is the precursor to melatonin (N-acetyl-5- 

methoxytryptamine) and indol-3-acetic acid, both of which are widely distributed throughout the 

animal and plant kingdom.   The hormone melatonin, which is mainly produced by the pineal 

gland during hours of darkness, has been implicated in aging and senescence (44), the regulation 

of seasonal reproductive cycles (45), and other biological functions. In addition, it has been 

shown to be endowed with potent cardioprotective effects (46), possibly by acting as an 

antioxidant to preserve mitochondrial integrity (47).  Melatonin is also an effective scavenger of 

e.g. hydroxyl radicals (OH
•
) during a reaction with which it is oxidized to N-formylkynuramine, 

indol-2-one, pyrroloindoles, as well as hydroxylated and dimerized products (48, 49).  Some of 

these species have been described as markers of oxidative stress.  For example, pyrroloindole has 
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been detected in large amounts from the urine of rats and humans upon increased exposure to 

ionizing radiation (50). Transformations involving melatonin are typical of indoles in general 

and should help in clarifying what occurs with free tryptophan or at tryptophan residues when 

exposed to various NOx species. 

With questions arising as to the nature of the intermediate(s) in the AS decay route, analysis 

 
of the products of the AS reaction with various tryptophan derivatives should cast light on the 

effects of AS in vitro and in vivo.   The objective of the present work is to investigate the 

chemistry of nitroxyl with particular emphasis on the generation of N-nitroso products.   In 

addition, we aimed at comparing the outcome of in vitro reactions of nitroxyl and NO
• 

with 

tryptophan  derivatives  with  the  situation  in  an  intact  animal  model  in  vivo  using  AS  and 

DEA/NO as representative HNO and NO
• 

donors, respectively.  The release characteristics of the 

 
respective NOx species from each donor as well as their half-lives in solution are comparable (t1/2 

 

= 2.5 min at 37°C and 12-17 min at 25°C at pH 7.4 for DEA/NO) (51), allowing for a direct 

comparison of the redox siblings, HNO and NO
• 
in vivo. 
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EXPERIMENTAL PROCEDURES 

 
Materials.   Melatonin (MelH, C13H16N2O3, MW = 232), N-acetyl-L-tryptophan (C13H14N2O3, 

MW = 246), indol-3-acetic acid (C10H9NO2, MW = 175), and diethylenetriamine pentaacetic 

acid (DTPA, C14H23N3O10, MW = 393) were obtained from Sigma. Sodium nitrite (NaNO2, MW 

= 69) and sodium nitrate (NaNO3, MW = 85) were obtained from Fluka. Isotopically labeled 

sodium nitrite, Na[
15

N]-NO2, anhydrous disodium hydrogenphosphate (Na2HPO4, MW = 142), 

sodium dihydrogenphosphate dihydrate (NaH2PO4· 2H2O, MW = 156) and acetonitrile were 

obtained from Prolabo (France). Angeli’s salt (Na2N2O3, MW = 121) and 2-(N,N- 

diethylamino)diazen-1-ium-1,2-diolate, diethylammonium salt (DEA/NO, C4H10N3O2 · C4H12N, 

MW = 206) were from Cayman Chemical. Stock solutions were prepared daily in 20 mM 

sodium hydroxide and kept on ice until use. Peroxynitrite synthesis was performed in a two- 

phase system using isoamyl nitrite and hydrogen peroxide following the method of Uppu et al. 

(52).   The product ONOO
–  

was stored at –20 °C, and its concentration was determined by 

measuring the absorbance at 302 nm (ε = 1,670 M
-1

cm
-1

) in NaOH (0.02 N). 
 
 
 
 
Reactions with Indolic Compounds.   Unless stated otherwise, all reactions were performed at pH 

 

7.5 (and 8.5) using phosphate buffered aqueous solutions (400 mM) at a temperature of 25°C. 

Ten equivalents of either AS or ONOO
–  

and seven equivalents of DEA/NO were allowed to 

react with varying concentrations (1 mM and 100 µM) of the following tryptophan derivatives: 

melatonin, N-acetyl-L-tryptophan, or indol-3-acetic acid.   Diluted ONOO
–  

in NaOH (0.02 M) 

was added to each respective indole buffered solution either as a bolus or by infusion through a 

syringe at a flux rate of 1 µM/s while stirring vigorously.  Reaction progress was monitored via 

HPLC and spectrophotometry. 
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For preparative purposes, an aliquot of AS (50 mg, 1 mM) was added to each indolic 

solution (100 µM) into a 400 mL 0.4 M phosphate-buffered solution.   The final pH was 

determined to be 7.5.  Absorption changes at λmax = 346 nm or 335 nm were monitored.  After 

one hour, the reaction mixture was subject to filtration using a 0.2 µM Acrodisc filter and 

 

injected into the preparative HPLC column. 
 
 
 
 
Spectrophotometric Analysis.  Absorption data were recorded either with a double-beam Uvikon 

 
942 or Agilent 8453 UV-Vis spectrophotometer.  One cm quartz cuvettes were used for all 

analyses.     Under  aerobic  conditions,  solutions  were  prepared  using  standard  laboratory 

glassware, exposed to atmospheric conditions, and immediately transferred into the cuvette for 

analysis.  Special precautions were taken for the anaerobic experiments.  All solutions were 

deaerated by bubbling with oxygen-free argon for 15 minutes and kept sealed prior to 

measurement.   The following absorbance values were measured  and used to determine the 

concentrations of individual species: AS (ε (237 nm) = 6,100 M
-1  

cm
-1

), 1-nitrosomelatonin 
 

(MelNO) (ε (346 nm) = 10,900 M
-1 

cm
-1

), 1-nitrosoindol-3-acetic acid (ε (335 nm) = 4,900 M
-1

 

 

cm
-1

), and N-acetyl-1-nitroso-L-tryptophan (ε (335 nm) = 6,900 M
-1 

cm
-1

). 
 
 
 
 
Reversed  Phase  HPLC  and  Mass  Spectrometry.     The  equipment  and  methods  used  for 

preparative and analytical liquid chromatography and mass spectrometry have been described 

previously (53). The column was eluted using a 10- 50% gradient of acetonitrile in water for 60 

min at a flow rate of 1 mL/min. Yields were evaluated by integrating the values obtained at 215 

or 350 nm using external standards of synthesized nitroso compounds.  In the case of melatonin, 

standards of oxidation and nitration derivatives used were those obtained from the reaction with 
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peroxynitrite.    HPLC measurements allowed the main products to be identified and further 

characterization  was  obtained  by NMR  and  MS  analyses  once  aliquots  were  collected  and 

lyophilized (-50°C, < 0.1 mbar).   Molecular masses of all nitroso compounds were obtained 

 
using direct infusion of the methanolic solution. 

 

 
 
 

NMR Measurements.   All experiments were carried out at 25°C in a 600 MHz Bruker 

spectrometer.  Chemical shifts are expressed as ppm relative to SiMe3.  All products isolated by 

preparative HPLC were dissolved in either CD3OD or d
6
-DMSO for NMR analysis.  Standard N- 

nitroso compounds (Figure 1) were synthesized using methods described by Bravo et al. (54) for 

1-nitrosomelatonin and by Bonnett et al. for N-acetyl-1-nitroso-L-tryptophan (55).  All products 

determined are mixtures of two conformers showing that the N-N=O bond is coplanar with the 

aromatic ring as shown for the crystal structure of 1-nitrosomelatonin (45). 

Insert Figure 1 here 
 
 
 

1
H and 

13
C NMR characteristics of 1-nitrosomelatonin (R1=CH3O; R2=CH2NHCOCH3) have 

previously been described. (50, 53). 
1
H and 

13
C NMR characteristics of N-acetyl-1-nitroso-L- 

tryptophan (R1=H; R2=C(COOH)NHCOCH3) and 1-nitrosoindol-3-acetic acid (R1=H; 

R2=COOH) are available as supporting information. 
 
 
 
 

In vivo Studies with AS and DEA/NO.  Male Wistar rats (250-350g) were obtained from Harlan 

(Indianapolis, IN) and housed at a normal 12/12 light cycle 3 animals/cage with food and water 

ad libitum.  DEA/NO and AS were dissolved at a concentration of 5 mg/mL in PBS immediately 

before intraperitoneal (ip) administration at a dose of 5 mg/kg.  Heparinized (0.07 U/g ip) rats 
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were anaesthetized using diethylether and euthanized by cervical dislocation 15 min after 

compound administration. Following thoracotomy, a catheter was inserted into the infrarenal part 

of the abdominal aorta, and organs were flushed free of blood by retrograde in situ perfusion 

with air-equilibrated PBS supplemented with N-ethylmaleimide/EDTA (10 mM/ 2.5mM) at a 

rate  of  10  mL/min  essentially  as  described  along  with  details  on  animal  protocols,  blood 

sampling, and organ harvest/homogenization elsewhere (43). 

 
 
 

Quantification of Nitrite, Nitrate, N2O and Nitroso Species.  Nitrite and nitrate were quantified 

by high pressure liquid ion chromatography employing on-line reduction of nitrate to nitrite and 

post-column derivatization with the Griess reagent (ENO20 Analyzer, Eicom, Kyoto, Japan) (43, 

56).   The extent of nitrosation of endogenous biomolecules in blood and tissue homogenates was 

quantified using group-specific reductive denitrosation followed by chemiluminescent detection 

of NO
• 

in the gas phase (CLD77am sp, Eco Physics) as described in detail elsewhere (43, 56). S- 

nitrosothiols (RSNO) and N-nitrosamines (RNNO) were differentiated by their mercury 

sensitivity where RSNO signifies Hg
2+

-sensitive species and RNNO signifies Hg
2+

-resistent 

species. The latter may include N-nitrosamines and metal nitrosyls. The formation of nitrous 

oxide (N2O) from AS was quantified in the headspace of septum-sealed vials using gas 

chromatography essentially as described (17). 

 

 
NO

• 
Formation Upon Angeli’s Salt Decomposition.  Gas phase chemiluminescence techniques 

(43) were implemented to monitor NO
• 

formation from the decay of AS in 10 mM phosphate 

buffer with 1 mM EDTA (or 50µM  DTPA) at neutral pH (7.5 and 25°C).   Deoxygenated 

 

conditions were obtained by bubbling the samples and reaction chamber with N2 (or Ar) for 15- 
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30 minutes.   Oxygenated conditions implemented air-equilibrated samples (with [O2] ≈ 0.24 

 
mM) while the reaction chamber was bubbled with compressed air for 15 minutes prior to 

addition of samples.  NO
• 

was measured upon addition of AS while increasing concentrations of 

melatonin were added into the reaction chamber (0, 167, 333, 667 µM).  In order to assess the 

effect of melatonin on the formation of NO
• 

as AS decays, the order of addition was reversed. 

 

This time, varying concentrations of melatonin were placed into the chamber after addition of 

AS and the formation of NO
• 

was monitored.  The quantities of NO
• 

formed from deoxygenated 

and oxygenated conditions were compared by integrating the areas under the curve over a set 

period of time (2, 3, or 5 minutes). 
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RESULTS 

 
Characterization of AS as a Nitroxyl Source – Effect of Oxygen.  The classical view about the 

aerobic decomposition of AS is that it is associated with generation of equimolar amounts of 

nitrite and nitroxyl (Reactions 1 and 2) (57, 58).  While nitrite is rather stable, nitroxyl is not and 

typically undergoes further reaction depending on the nature of the medium.   At neutral pH and 

under aerated conditions, HNO consumes molecular oxygen with a rate constant of 3-8 × 10
3 

M
-1

 

 
s

-1 
(8, 37) to yield ONOOH/ONOO

–  
(or a related oxidant), which eventually re-arranges to form 

nitrate, NO3
–
, as a stable end product.  The results of the present study are principally consistent 

with this route of AS decomposition. The half-life of AS at pH 7.5 and 37°C was 2.57 ± 0.43 

 
min as determined by UV/Vis spectrophotometry, and did not differ between absence and 

presence of oxygen (n=3; data not shown). The concentrations of nitrite generated were roughly 

the same, approaching theoretical yields, under aerobic and anaerobic conditions (inset of Fig. 

2). Formation of nitrate was negligible in the absence of oxygen, but approached ~ 20 mol% in 

its presence. The predominant end-product of nitroxyl is thought to be N2O which forms with a 

rate constant of ∼ 8 × 10
6 

M
-1 

s
-1 

(18), via intermediate formation and subsequent dehydration of 

 
the HNO dimerization product, hyponitrous acid (HON=NOH) (35, 59, 60).    Under anaerobic 

conditions, AS generated N2O in amounts comparable to those of nitrite (90.5 mol% HNO with 

100 µM AS as determined by gas chromatography). However, N2O formation was substantially 
 
lower under aerobic conditions, corresponding to 70-80% inhibition by the presence of oxygen 

(n = 2; data not shown). Taken together, theses results confirm that the compound used in our 

subsequent studies behaves biochemically in a manner that is qualitatively and quantitatively 

consistent with what has been described for AS before (30). In addition, the data reveal that 

under aerobic conditions molecular oxygen effectively competes with the dimerization reaction 
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of nitroxyl to form nitrous oxide by generating a reactive intermediate that decomposes to 

nitrate. Formation of the latter is consistent with, although no proof for, the involvement of 

peroxynitrous acid, ONOOH. 

 
Insert Figure 2 here 

 

 
 

N-nitrosation of Indoles by AS.  The reaction of various indolic compounds (e.g., melatonin, 

indol-3-acetic acid, and N-acetyl-L-tryptophan) with AS in buffered aqueous solution under 

aerobic conditions was associated with prominent spectral changes between 250-450 nm. The 

spectral changes observed were qualitatively identical whether reactions were carried out at 

physiological pH or under more alkaline conditions (pH 7.5 and 8.5). Figure 3 illustrates the 

spectral changes observed upon reaction of melatonin with AS at pH 8.5.  The disappearance of 

native melatonin is evident at 300 nm, while the appearance of a new species is shown by the 

increase in absorbance at λmax = 346 nm.  Similar spectral changes were observed with the other 
 

two tryptophan derivatives, except that λmax was at 335 nm.  In all cases, parallel analysis of the 

reaction mixtures by HPLC showed one major reaction product along with residual indolic 

compound(s).  Although the major products of each respective indole examined were generally 

unstable (compounds typically decompose within 1-3 hours), we were able to identify them as 

the  respective  1-nitrosoindole  derivatives  by  their  molecular  mass  as  well  as  their  UV- 

absorbance and NMR spectra (Fig. 1).  Due to the labile nature of their NO
• 

moiety, mass spectra 

of 1-nitrosoindoles are notoriously difficult to obtain by traditional HPLC-MS.  However, using 

direct injection of the methanolic solution of nitrosomelatonin, the complete fragmentation 

spectrum with peaks at m/z 254 [M-NO+Na]
+
, 284 [M-Na]

+
, 295 [M-NO+CH3CN+Na]

+
, 485 

[2(M-NO)+Na]
+
, 515 [M+(M-NO)+Na]

+
, and 545 [2M+Na]

+ 
is revealed.  With all three indoles 
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studied the yield of N-nitrosation increased with increasing concentrations of AS (Figure 4), 

which was accompanied by the mirror image disappearance of the starting compounds. With 

melatonin and a molar excess of AS, a 22% product yield was obtained at pH 7.5, with an 

observed rate constant (kobs) of (7.6 ± 0.5) x 10
-4 

s
-1 

(inset of Figure 3).  At pH 8.5, product yield 
 

doubled while kobs was similar (6.4 ± 0.1x 10
-4 

s
-1

).  Trace secondary products in much less than 

 
1% yield were identified as N-formylkynuramine (N-{3-[2-(formylamino)-5-methoxyphenyl]-3- 

oxopropyl}acetamide) (λmax = 236, 265, 343 nm and m/z 287 [M+Na]
+
) and 2,3-dihydro-2,3- 

epoxymelatonin (epoxide, λmax = 260, 300 nm and m/z 271 [M+Na]
+ 

and 519 [2M+Na]
+
). These 

compounds had been shown previously to be among the major reaction products of melatonin 

with peroxynitrite (53). Control incubations with melatonin and AS in the presence of the metal 

chelator DTPA (20 µM) revealed no difference in either spectral changes or product formation 

 
confirming that N-nitrosoindole formation was not the result of Fenton-type chemistry due to 

contaminant trace metals in the buffer.  Importantly, no formation of nitrosomelatonin was 

observed with melatonin and AS in the absence of oxygen, indicating that N-nitrosoindoles are 

not formed directly from nitrite or nitroxyl, but only after reaction with oxygen. Yields of N- 

nitrosation with indol-3-acetic acid and N-acetyl-L-tryptophan at pH 7.5 were 10% and 15%, 

respectively, with kinetics almost identical to melatonin.   Since the pattern of reaction was 

similar with all three indoles investigated, melatonin was used as a representative compound in 

all subsequent mechanistic experiments. 

 
Insert Figures 3 and 4 here 

 

 
 

N-Nitrosation of Melatonin by Peroxynitrite.  Peroxynitrite has been shown to exhibit potent 

reactivity towards a large range of molecules including the amino acids cysteine, methionine, 
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tyrosine, and tryptophan (61). It has also been reported to be formed during the decay of AS in 

the presence of oxygen (from the reaction of HNO and O2) (37), and it was thus conceivable to 

assume that peroxynitrite formation may account for the N-nitrosation of melatonin observed in 

the present study.  Indeed, we recently demonstrated that in phosphate buffered aqueous solution 

(pH 7.5) the reaction of peroxynitrite with melatonin produces 1-nitrosomelatonin (53).  Similar 

results were observed with N-acetyl-L-tryptophan (62).   However, depending on the chemical 

species (e.g. ONOO
–
, ONOOH, or the CO2  adduct, ONOOCO2

–
) and the reaction conditions 

involved peroxynitrite can act either as an oxidant or as a nitrosating and nitrating agent of 
 
aromatic, phenolic, and heterocyclic rings. Consistent with previous results (53), but in contrast 

to AS, nitrosomelatonin was only one of many products formed from ONOO
–  

with melatonin 

(Fig. 5). 

 
Insert Figure 5 here 

 

 
 

The formation of nitrosomelatonin by peroxynitrite was accompanied by formation of 

significant quantities of N-formylkynuramine. At pH 7.5, when ONOO
–  

is added rapidly (as a 

bolus) to a solution of melatonin, similar yields were observed for nitrosomelatonin and N- 

formylkynuramine (19% and 18%, respectively).  Consistent with the potent scavenging activity 

of HCO3
–
/CO2 towards ONOO

– 
(k ∼ 5.8 × 10

4  
M

-1 
s

-1
) (63) product yields decreased to 8% for 

 
nitrosomelatonin and 7% for N-formylkynuramine in the presence of 60 mM bicarbonate. 

Increasing the pH to 8.5 increased overall product yields of nitrosomelatonin and N- 

formylkynuramine  to  40  and  35%,  respectively.  The  yields  of  the  oxidation  and  nitration 

products identified were 7% for 2,3-dihydro-2,3-epoxymelatonin, 3% for 1-nitromelatonin, 2% 

for 3-nitromelatonin, and 3% for 4-nitromelatonin at pH 7.4. 
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Various factors influenced the reaction between peroxynitrite and melatonin.  Increasing the 

concentration of melatonin (100, 500, and 1000 µM) while keeping the ONOO
–  

concentration 

constant altered the product ratios, as did a change in the manner by which peroxynitrite was 

delivered (i.e., bolus vs. infusion; see Fig. 6).   The latter is not surprising as the chemistry of 

peroxynitrite is known to differ depending on whether it is added as a bolus from a stock solution 

or produced in situ by cogeneration of NO
• 

and superoxide. However, its behavior was not the 
 

same for all reaction products. Bolus addition of ONOO
– 

(700 µM) to increasing concentrations 

of  melatonin  increased  the  yields  of  both  types  of  oxidation  products  (epoxide  and  N- 

formylkynuramine) as well as the nitrosation product (1-nitrosomelatonin) in a concentration 

dependent manner.   In contrast, no significant change in product yield was observed with 

increasing melatonin for any of the nitration products (3-nitromelatonin, 6-nitromelatonin, 4- 

nitromelatonin, and 1-nitromelatonin). In an effort to mimic the hypothetical delivery that would 

be generated from AS and for comparison to the results obtained with bolus addition of 

peroxynitrite, an additional set of experiments was performed in which peroxynitrite was slowly 

infused into a melatonin-containing buffer solution.  While little difference was observed in the 

yield and spectrum of oxidation products between bolus and infusion of ONOO
–  

much less 
 

nitrosation and nitration products were generated when ONOO
– 

was added to the melatonin 

solution by infusion. 

 
Insert Figure 6 here. 

 

 
 

Mechanism of N-Nitrosation of Melatonin by AS - Roles of Peroxynitrite and Nitrite.  Air- 

exposed phosphate-buffered aqueous solutions of ONOO
–  

contain a mixture of ONOO
–
, 

ONOOH, and ONOOCO2
– 

due the presence of adventitious CO2 in air.  The latter is an efficient 
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ONOO
–   

scavenger  which  has  been  shown  to  reduce  the  yield  of  nitrosomelatonin  while 

increasing the yield of 1- and 3-nitromelatonin from peroxynitrite (53). In order to assess the role 

of ONOOCO2
– 

in N-nitrosation of melatonin by AS, separate incubations were performed in the 

presence of sodium bicarbonate (60 mM).   More importantly, this addition altered neither the 

rate nor yield of nitrosomelatonin suggesting little to no involvement of peroxynitrite in its 

production by nitroxyl. 

During AS decomposition, both HNO and the nitrite anion are formed (Eqs. 1 and 2).  In 

order to assess the role nitrite may play in the nitrosation of melatonin, additional incubations 

with AS were carried out in the presence of an equimolar amount and a 10-fold excess of NaNO2 

at pH 7.5.   In agreement with earlier findings (64), no changes in either nitrosation rate or 

product yields were observed in the presence of additional nitrite. Moreover, mass spectrometric 

analysis of nitrosomelatonin produced in the presence of isotopically labeled nitrite (
15

NO2
-
) 

revealed no incorporation of labeled 
15

N.  Taken together with the finding that N-nitrosation of 
 
melatonin by AS is dependent on the presence of oxygen (see above) these data unambiguously 

show that, under the conditions of this study, a nitroxyl oxidation product that is neither 

peroxynitrite nor nitrite is responsible for the nitrosation of the indole nitrogen of tryptophan 

derivatives by AS. 

 

 

Mechanism of N-Nitrosation of Melatonin by AS – Possible Role of NO
•
.   In order to contrast 

the reactions of nitroxyl and peroxynitrite directly with that of the NO
•
/O2 system additional 

experiments were performed with i) a saturated aqueous solution of NO
•  

and ii) with the NO- 

donor DEA/NO.  At pH 7.5 and 25°C, the half-lives of AS and DEA/NO are almost identical 

(~30 min), providing an ideal tool to directly compare the effects of nitroxyl with those of NO
•
. 
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Since DEA/NO releases 1.5 equivalents of NO
• 

per molecule, the amount of DEA/NO used was 

adjusted accordingly to generate ∼10 equivalents of NOx released for every melatonin.  The 

rationale  for  the  use  of  both  aqueous  NO
•   

solution  and  NO-donor  were  similar  to  that  of 

comparing bolus addition and infusion of peroxynitrite. Where a 10:1 ratio of aqueous 

NO
•
:melatonin was applied, a 7:1 ratio of  DEA/NO:melatonin was used in these studies.  In 

agreement with earlier studies (54, 64) the data show that under both conditions melatonin 

required dioxygen to yield nitrosomelatonin as the exclusive organic reaction product. 

Interestingly, the HPLC traces (data not shown) and rates of formation of nitrosomelatonin from 

incubations of 100 µM of melatonin with DEA/NO were similar to those determined for AS (≈ 
 

1×10
-8  

M s
-1

) with an overall yield of 13% nitrosomelatonin (as compared to 22% with an excess 

of AS; see above). 

In an attempt to explain the apparent similarity in profile of products and product yields, 

further experiments were performed to address under what conditions NO
• 

may be formed from 

AS.   NO
•  

has been shown to be produced from AS in a pH-dependent manner, with highest 

yields under acidic conditions (59). The results from the present study demonstrate that NO
•  

is 

generated from AS even at physiological pH (in the presence of either EDTA or DTPA as metal 

chelator), albeit in relatively low yield. Of note, NO
• 

production from AS was enhanced not only 

by molecular oxygen, but also by addition of melatonin (Fig. 7).   Melatonin enhanced NO
• 

release from AS in a concentration-dependent manner both in the absence and presence of 

oxygen. Under aerobic (and anaerobic) conditions, the reaction of AS with melatonin does not 

appear to be straightforward as different rates of NO
•  

release were observed depending on the 

order of addition of reagents (data not shown).   Taken together, these data suggest that small 
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amounts of AS-induced nitrosation of the indole nitrogen of melatonin may arise from the 

reaction of NO
• 
or HNO with O2. 

 
Insert Figure 7 here 

 

Comparison of N-Nitrosating Potential of Nitroxyl and NO
• 

in vivo.  In vitro experiments like 

the ones described above comparing the chemical reactivity of NO
• 

and HNO towards a common 

substrate (e.g. indoles) are crucial to understanding the differences between the two classes of N- 

oxides. However, they do not necessarily allow extrapolating results to the in vivo situation as 

the factors that govern the site-specificity of nitrosation processes are currently not well 

understood.   Nevertheless, an extension of such a comparison to the in vivo situation may 

provide valuable insight into the potential physiological relevance of HNO.   To this end, 

experiments were conducted in which 5 mg/kg of either DEA/NO or AS were administered via 

ip injection to male Wistar rats.  After 15 minutes (corresponding to ~5 half-lives at 37°C), the 

concentrations of nitrite, nitrate, mercury-sensitive compounds (e.g. S-nitrosothiols; RSNO) and 

mercury-resistant compounds (e.g., N-nitrosoamines; RNNO) were measured via gas phase 

chemiluminescence and HPLC in red blood cells, plasma, and three exemplary tissues (i.e., 

brain, heart and liver).   Figure 8 summarizes the net changes in the levels of these NO
•
/HNO 

related metabolites upon application of DEA/NO and AS in vivo.   The administration of either 
 

AS or DEA/NO increased the levels of all NO
•
/HNO-related metabolites quantified (i.e., nitrite, 

nitrate, RSNO and RNNO) in blood and most tissues (with the brain representing a notable 

exception). Whereas the increases in nitrate concentrations were comparable in all compartments 

between AS and DEA/NO, nitrite levels after AS application were 2-5-fold higher in blood and 

two tissues (brain and heart, but not liver) compared to DEA/NO.   More marked differences 

were seen in the nitrosation pattern elicited by either compound. Whereas AS and DEA/NO 
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produced roughly the same degree of S-nitrosation in all tissues, it preferentially formed RSNO 

in blood. In contrast, RNNO formation from either compound was comparable in blood, but 

substantially higher with AS than with DEA/NO in tissues. The most impressive elevation of 

mercury-stable nitroso species (presumed to represent primarily RNNO-type compounds) with 

AS was seen in the heart. Collectively, these data show that the biological chemistry of NO
• 

and 

 
nitroxyl differs substantially and that the nitrosative chemistry such endogenous target molecules 

are exposed to after administration of AS or DEA/NO in vivo depends on the biological 

compartment in which these species are generated and the biochemical makeup of the 

microenvironment. One of the outstanding features observed, which deserves further 

investigation, was the massive formation of mercury-stable nitroso species with AS in the heart. 

 
Insert Figure 8 here 
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DISCUSSION 

 
The present study focused on the kinetics of formation and the identification of the reaction 

products of indoles with nitroxyl generated from AS.  Using three representative tryptophan 

derivatives (melatonin, indol-3-acetic acid, and N-acetyl-L-tryptophan) at physiological pH and 

in the presence of oxygen (O2), we find negligible oxidation and nitration but N-nitrosoindoles as 

the primary reaction products.  We further demonstrate that neither nitrite nor peroxynitrite are 

involved in N-nitrosoindole formation. In additional animal experimental work we demonstrate 

that AS exhibits a unique in vivo nitrosation signature, which differs from that of DEA/NO 

inasmuch as in the heart substantial amounts of a mercury-stable nitroso species are generated 

whereas in plasma the major reaction products are S-nitrosothiols (RSNO). Thus, the outcome of 

the nitrosation chemistry entertained by nitroxyl in vivo appears to depend on the redox 

environment in which it is generated. 

During decomposition of AS, both HNO and nitrite are generated, and either species may 

potentially serve as a nitrosating agent.  However, at physiological pH in vitro nitrite is a very 

poor nitrosating agent unless supported by enzymatic catalysis.   In contrast, N2O3  has been 

shown to efficiently nitrosate not only thiols to form RSNO, but also secondary amines such as 

the indole nitrogen of tryptophan derivatives (62).   Whether or not nitroxyl is capable of 

entertaining similar nitrosation chemistry at physiological pH is not known.  In the first set of 

experiments,  we  therefore  investigated  the  reactivity  of  AS  towards  melatonin  and  other 

tryptophan  derivatives  in  order  to  provide  insight  into  the  NO
−
/HNO  mediated  nitrosation 

 
reactions.  In the presence of air, a single unique reaction product, i.e. the corresponding N- 

nitrosoindole, was found upon the incubation of AS with various indolic compounds while no 

nitrosation was observed in the absence of O2.  Formation of N-nitroso species was unexpected 
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since oxidation and hydroxylation products have been described to represent the predominant 

products of AS reaction with aromatic compounds in previous reports (24, 38-40). 

While the role of O2 is significant, another possible intermediate, peroxynitrite (ONOO
–
) does 

 
not appear to play a major role in AS-mediated nitrosation.  Independent experiments with 

peroxynitrite reveal that the predominant products of these reactions are nitrosomelatonin and N- 

formylkynuramine whereas with AS, the only major product was nitrosomelatonin with yields 

differing by at least 10%.  Furthermore, addition of a known peroxynitrite scavenger (HCO3
−
) 

 
into the reaction mixture containing AS and melatonin did neither alter rate nor yield of 

nitrosomelatonin, consistent with results reported for the oxidation of the fluorophore 

dihydrorhodamine (DHR) (26). 

Our studies suggest that there may be more than one route through which AS can elicit 

nitrosation, with O2  playing a key role in all cases.  Although AS is known to decompose into 

NO2
– 

and HNO, the similarity in qualitative and quantitative results with either DEA/NO or AS 

and melatonin suggested involvement of a common intermediate in N-nitrosoindole formation 

with either donor.  Given that the likelihood of peroxynitrite involvement is small, another 

conceivable intermediate was the one-electron redox sibling of nitroxyl, NO
•
.   This suspicion 

was seemingly supported by the detection of free NO
• 

during AS decomposition using gas phase 

chemiluminescence. 
 

Thus, several scenarios were considered that would involve both NO
•  

and O2.  Two ways in 

which nitrosation at physiological pH can proceed (via the NO
•
/O2 route) are through a concerted 

(involving N2O3) (Eq. 3) or a free radical pathway (involving NO2
•
/NO

• 
or ONOO

•
) that may be 

competitive with the hydrolysis of N2O3 (45). 
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(3) 
 

While the concerted N2O3  pathway may account for the formation of N-nitrosoindoles from 

NO
• 

donors such as DEA/NO, it cannot account for that from AS since the nitrosation of all 

tryptophan derivatives was found to be first order with respect to AS (see Fig. 4).   Since much 

of  the  chemistry involving  the  NO
•
/O2   reaction  is  second  order  (4),  it  is  unlikely that  N- 

nitrosation of indoles is caused by intermediates of the NO
•  

autoxidation reaction.     However, 

the latter may well account for the elevated levels of NO2
– 

found during AS decomposition in the 

presence of oxygen (Fig. 2 inset) whereas nitrate formation under the same conditions is likely to 

result from the reaction between O2 and HNO (Eq. 4). 
 
 
 
 

                                     (4) 
 

 
 
 

An alternative pathway for the nitrosation of melatonin that would involve both NO
•  

and O2 

might proceed via the intermediacy of the nitrosating peroxyl radical, ONOO
• 

which necessitates 

that the reaction is first order with respect to NO
• 

(64).  Although not thermodynamically favored 

by simple NO
•  

oxidation, ONOO
•  

can be stabilized by solvation in water (65).  Theoretically, 

this mild oxidant could react with melatonin to generate an adduct that might rearrange to form 

the 1-nitrosomelatonin product.  However, little is known about the chemical properties of this 

peroxyl radical, other than that it is rather unstable (66). 
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If true, how then is NO formed from AS?  NO
• 

may be artifactually generated during AS 

decomposition due to the presence of trace metals in the solution (30).  With the metal chelator 

DTPA present, it is unlikely that the oxidation of AS will occur since the oxidation potential of 

HN2O3
- 
about 0.9 ± 0.1 V (vs. NHE at pH 7) (30).  Another possibility why only small quantities 

 
of NO

• 
are detected is through the decomposition of the final N-nitrosoindole product rather than 

 
AS itself. 

 
Since NO

• 
was observed to have formed, despite the presence of the metal chelator EDTA or 

DTPA, it most likely through the reaction with trace metals with HNO.  In the presence of HNO, 

NO
• 

can form the hyponitrite radical N2O2
− 

whose oxidation potential was determined to be 0.96 

V and may act as the oxidant to react with melatonin to form the 1-nitrosomelatonin product in 

small quantities (35). 

 

 
 

Together with the fact that NO
•  

formation from AS was low, none of the above mechanisms 

involving the NO
•
/O2  route is likely to account for the majority of the N-nitrosoindole product 

formed. 

 
 
 
 
 
 

Since none of the routes above provide a viable mechanism to explain the bulk of 1- 

nitrosomelatonin product formed, an alternative model involving HNO is proposed (Scheme 1). 

In this Scheme, melatonin reversibly reacts with HNO to form an N-hydroxalamine intermediate 

(Intermediate 1).  Addition of the powerful electrophile HNO to nitrogen-based nucleophiles is 

predicted to be highly favorable in solution (67).  This pathway is analogous to the proposed 

nitrosation of 4,5-diaminofluorescein (DAF) by AS (40).  Intermediate 1 can then react further 
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by either one of two routes;  the first set of minor products can be generated via a radical 

pathway following homolytic cleavage of the N-N bond to form a melatoninyl radical species 

(Intermediate 2) and the hydroxylamine radical (HNOH
•
).  The latter may further react with 

oxygen to generate NO
• 
and H2O2 while the melatoninyl radical (Intermediate 2) can trap NO

• 
to 

 
generate 1-nitrosomelatonin.  The two-electron oxidation of Intermediate 1 by oxygen to yield 

the final products, 1-nitrosomelatonin and hydrogen peroxide (H2O2), is likely to be the more 

favored reaction pathway. 

 
 
 

Insert Scheme 1 here. 
 
 
 

Whatever the mechanism(s) involved in the N-nitrosation of indoles by nitroxyl and 

regardless of the similarities in product profile and yields between DEA/NO and AS in vitro, our 

animal experimental results indicate that the consequences of a generation of NO
•  

and HNO in 

terms of the post-translational protein modifications induced in vivo are vastly different. 

Specifically, S-nitrosothiols were elevated most profoundly with AS in plasma whereas mercury- 

resistant nitroso species (most likely, protein N-nitroso compounds) were elevated most 

dramatically in the heart, with a >30-fold difference between AS and DEA/NO induced N- 

nitrosation. Because the reported half-lives of the two donor compounds (~2.5 min at 37°C) are 

comparable, which translated into comparable levels of total NOx in blood and tissues following 

their administration to rats, we conclude that the chemical fate of AS and DEA/NO at the level of 

the intact organism must differ substantially. Since facile redox interconversion between NO
• 

and HNO/NO
– 

is kinetically impossible, specific changes in redox states (dictated by the 

environment) of thiol, metal,  or amine containing proteins  provide an  attractive setting for 
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regulation. Given the differences in the biological chemistry between HNO and NO
•
, we and 

others have observed, these redox siblings appear to represent ideal signaling agents for control 

of a variety of physiological processes. 

While our experimental animal investigations do not provide any clues as to the nature of 

the reaction products in tissues, the data are consistent with the notion that the generation of 

nitroxyl in vivo can give rise to the formation of N-nitrosotryptophan derivatives. Such reaction 

products had previously been described only in the context of NO
• 

formation but not for nitroxyl. 

Further investigations are required to address the mechanism(s) of nitrosation by nitroxyl and its 

physiological/pharmacological implications. It is intriguing to speculate that the particular 

efficiency of this reaction and/or the accumulation of the reaction products in the heart may 

account for the positive inotropic effects observed with AS earlier.  Clearly, considerable efforts 

will be required to identify and characterize which tissue targets are subject to N-nitrosation 

before the full the pharmacological potential of nitroxyl donors will be uncovered and potential 

therapeutic avenues for HNO donors (e.g. for the treatment of cardiovascular diseases such as 

heart failure (1, 7, 27) may be realized. 
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FIGURE CAPTIONS 
 

 
Figure 1.        Structures of  N-nitrosotryptophan derivatives (R1=CH3O, R2=CH2NHCOCH3: 1- 

nitrosomelatonin; R1=H, R2=C(COOH)NHCOCH3: N-acetyl-1-nitroso-L-tryptophan; R1=H, 

R2=COOH: 1-nitrosoindol-3-acetic acid ). 

 
 
 

 
Figure 2.        Temporal spectral changes associated with Angeli’s salt decomposition (100 µM) 

 

under aerobic conditions at 37°C using a phosphate-buffered aqueous medium (100 mM).  The 

first 7 spectral traces were obtained at 60 s intervals.  The two subsequent spectra are taken at 

120 s intervals while the remaining spectra were recorded at 300 s intervals.  The inset depicts 
 

the temporal changes in NO2
–  

and NO 
–
 concentrations generated from AS (10 µM) under 

 

aerobic and anaerobic conditions as quantified by ion chromatography. Depicted data are 

representative of 2-3 independent experiments and qualitatively identical for 3 to 300 µM AS. 

 
 
 

 
Figure 3.        Spectrophotometric analysis of the reaction between melatonin (100 µM) and AS 

(1 mM) in 0.4 M phosphate-buffered aqueous solution at pH 8.5 and 25°C. The absorption due to 

 

the decomposition of 1 mM AS under the same conditions was electronically subtracted from the 

spectra.  The first spectrum was recorded just before addition of AS and every successive spectra 

were obtained in intervals of 5 minutes. The inset represents a comparison of the kinetics at pH 

7.5 and 8.5 with λmax = 346 nm illustrating the formation of nitrosomelatonin (MelNO) upon 
 

addition of AS (kobs were determined to be (7.6 ± 0.5) × 10
-4 

s
-1 

at pH 7.5 and (6.4 ± 0.5) × 10
-4

 

 

s
-1 

at pH 8.5). 
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Figure 4.        Formation of 1-nitrosoderivatives from 3-substituted indoles at pH 7.5 and 25°C. 

 
All tryptophan derivatives (1 mM) were incubated with increasing concentrations of AS in 0.4 M 

phosphate-buffered aqueous solution under stirring.   The concentrations of 1-nitrosoindoles 

formed were determined after 1 hour when the absorbance for the nitroso species had reached a 

maximum.  1-Nitrosomelatonin (diamonds) exhibited a λmax at 346 nm while both N-acetyl-1- 
 

nitroso-L-tryptophan (squares) and 1-nitroso-indol-3-acetate (triangles) showed a λmax at 335 nm. 
 
 
 
 
 
 
Figure 5.        Comparison   of   products   generated   after   mixing   melatonin   with   either 

peroxynitrite (A) or Angeli’s salt (B).  HPLC analysis of the reaction of melatonin (1 mM) in 0.4 

M phosphate buffered solutions at pH 7.5 by (A) 15 min after bolus addition of ONOO
–  

(10 

 
mM), (B) 10 minutes after addition of AS (10 mM).  Both conditions yielded nitrosomelatonin 

 
(tR = 46 min), but the reaction with peroxynitrite generated a number of additional products. The 

identified products are as follows: 2,3-dihydro-2,3-epoxymelatonin (tR = 19 min, ∼1% yield), N- 

formylkynuramine (tR = 23 min, ∼0.5% yield), and 1-nitrosomelatonin (tR = 46 min, 22% yield). 

 
 
 
 
 

Figure 6.        Effects of increasing concentrations of melatonin (100, 500, and 1000 µM) with 
 

ONOO
– 

(700 µM) at pH 7.5.  Three different sets of reaction products were generated: oxidation, 

nitration,  and  nitrosation  products.     Oxidation  products  included   both  2,3-dihydro-2,3- 

epoxymelatonin (epoxide) and N-formylkynuramine, nitration products included 1-, 3-, 4-, and 

 
6-nitromelatonin, and the only nitrosation product found was 1-nitrosomelatonin.  Product yields 
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were found to depend on the method of addition (bolus vs. infusion at an approximate rate of 1 
 

µM/s)  and  were  determined  by  means  of  HPLC  analysis.    Product  concentrations  were 

determined using external standards. Depicted data represent means ± SD of at least n = 3 

independent experiments. 
 
 
 
 
 
 

Figure 7.        Stimulation  of  NO
•   

formation  from  AS  under  aerobic  conditions.  Effects  of 

increasing melatonin (MelH) under aerobic conditions as measured by gas phase 

chemiluminescence. The tracings depicted are representative of 2-5 individual experiments with 

qualitatively identical outcome.  The solid line depicts the original tracing of NO
• 

formation and 

AS decay obtained from no melatonin present, while the dotted line represents the trace from 333 

µM of melatonin.  The inset depicts the melatonin dependence of NO
• 
formation on the system. 

 
 
 
 
 
 
Figure 8.        Net changes in tissue concentrations of nitrite, nitrate, S-nitroso (RSNO) and N- 

nitroso (RNNO) products after ip administration of either DEA/NO or AS (5 mg/kg).  Animals 

were sacrificed after 15 minutes, and blood (plasma and RBC) and three representative tissues 

(brain, heart, and liver) were analyzed by HPLC and chemiluminescence (means ± SEM; n=3). 

Untreated  animals served as controls and had typically less than  1% of NO
•
/HNO-induced 

nitroso products of the AS and DEA/NO-treated animals in their blood and tissues. 
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Figure 1.        Structures of  N-nitrosotryptophan derivatives (R1=CH3O, R2=CH2NHCOCH3: 1- 

nitrosomelatonin; R1=H, R2=C(COOH)NHCOCH3: N-acetyl-1-nitroso-L-tryptophan; R1=H, 

R2=COOH: 1-nitrosoindol-3-acetic acid ). 
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Figure 2. Temporal spectral changes associated with Angeli’s salt decomposition (100 µM) 

under aerobic conditions at 37°C using a phosphate-buffered aqueous medium (100 mM).  The 

first 7 spectral traces were obtained at 60 s intervals.  The two subsequent spectra are taken at 

120 s intervals while the remaining spectra were recorded at 300 s intervals.  The inset depicts 
– 

the temporal changes in NO2
–  

and NO3 concentrations generated from AS (10 µM) under 
aerobic  and  anaerobic  conditions  as  quantified  by  ion  chromatography.  Depicted  data  are 

representative of 2-3 independent experiments and qualitatively identical for 3 to 300 µM AS. 
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Figure 3.        Spectrophotometric analysis of the reaction between melatonin (100 µM) and AS 
(1 mM) in 0.4 M phosphate-buffered aqueous solution at pH 8.5 and 25°C. The absorption due to 

the decomposition of 1 mM AS under the same conditions was electronically subtracted from the 

spectra.  The first spectrum was recorded just before addition of AS and every successive spectra 

were obtained in intervals of 5 minutes. The inset represents a comparison of the kinetics at pH 

7.5 and 8.5 with λmax = 346 nm illustrating the formation of nitrosomelatonin (MelNO) upon 

addition of AS (kobs were determined to be (7.6 ± 0.5) × 10
-4 

s
-1 

at pH 7.5 and (6.4 ± 0.5) × 10
-4

 

s
-1 

at pH 8.5). 
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Figure 4.        Formation of 1-nitrosoderivatives from 3-substituted indoles at pH 7.5 and 25°C. 

All tryptophan derivatives (1 mM) were incubated with increasing concentrations of AS in 0.4 M 

phosphate-buffered aqueous solution under stirring.   The concentrations of 1-nitrosoindoles 

formed were determined after 1 hour when the absorbance for the nitroso species had reached a 

maximum.  1-Nitrosomelatonin (diamonds) exhibited a λmax at 346 nm while both N-acetyl-1- 

nitroso-L-tryptophan (squares) and 1-nitrosoindol-3-acetate (triangles) showed a λmax at 335 nm. 
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Figure 5.        Comparison   of   products   generated   after   mixing   melatonin   with   either 

peroxynitrite (A) or Angeli’s salt (B).  HPLC analysis of the reaction of melatonin (1 mM) in 0.4 

M phosphate buffered solutions at pH 7.5 by (A) 15 min after bolus addition of ONOO
–  

(10 

mM), (B) 10 minutes after addition of AS (10 mM).  Both conditions yielded nitrosomelatonin 

(tR = 46 min), but the reaction with peroxynitrite generated a number of additional products. The 

identified products are as follows: 2,3-dihydro-2,3-epoxymelatonin (tR = 19 min, ∼1% yield), N- 

formylkynuramine (tR = 23 min, ∼0.5% yield), and 1-nitrosomelatonin (tR = 46 min, 22% yield). 
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Figure 6. Effects of increasing concentrations of melatonin (100, 500, and 1000 µM) with 

ONOO
– 

(700 µM) at pH 7.5.  Three different sets of reaction products were generated: oxidation, 

nitration,  and  nitrosation  products. Oxidation  products  included   both  2,3-dihydro-2,3- 

epoxymelatonin (epoxide) and N-formylkynuramine, nitration products included 1-, 3-, 4-, and 

6-nitromelatonin, and the only nitrosation product found was 1-nitrosomelatonin.  Product yields 

were found to depend on the method of addition (bolus vs. infusion at an approximate rate of 1 

µM/s)  and  were  determined  by  means  of  HPLC  analysis. Product  concentrations  were 

determined using external standards. Depicted data represent means ± SD of at least n = 3 
independent experiments. 
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Figure 7.        Stimulation of NO
•  

formation  under aerobic conditions.  Effects  of increasing 

melatonin (MelH) under aerobic conditions as measured by gas phase chemiluminescence. The 

tracings depicted are representative of 2-5 individual experiments with qualitatively identical 

outcome.  The solid line depicts the original tracing of NO
•  

formation and AS decay obtained 

from no melatonin present, while the dotted line represents the trace from 333 µM of melatonin 

while in the presence of metal chelator (EDTA).  The inset depicts the melatonin dependence of 

NO
• 
formation on the system. 
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Figure 8.        Net changes in tissue concentrations of nitrite, nitrate, S-nitroso (RSNO) and N- 

nitroso (RNNO) products after ip administration of either DEA/NO or AS (5 mg/kg).  Animals 

were sacrificed after 15 minutes, and blood (plasma and RBC) and three representative tissues 

(brain, heart, and liver) were analyzed by HPLC and chemiluminescence (means ± SEM; n=3). 

Untreated  animals served as controls and had typically less than  1% of NO
•
/HNO-induced 

nitroso products of the AS and DEA/NO-treated animals in their blood and tissues. 
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SCHEME TITLES 
 

 
Scheme 1.  Proposed mechanism(s) for the nitrosation of melatonin using Angeli's  salt. 
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1
H  and   

13
C  NMR   characteristics  of  N-acetyl-1-nitroso-L-tryptophan   (R1=H; 

R2=C(COOH)NHCOCH3) and 1-nitrosoindol-3-acetic acid (R1=H; R2=COOH). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

δ (ppm) of N-acetyl-1-nitroso-L-tryptophan (R1=H; R2=C(COOH)NHCOCH3) in 

CD3OD: A : 
1
H NMR: 1.90 (3H, s, -NHC(O)CH3), 3.09 (dd, J = 15.0, 8.3 Hz, H2a), 3.31 

(dd, J = 15.0, 4.9 Hz, H2b), 4.77 (1H, dd, J = 8.3, 4.9 Hz, H1), 7.42 (1H, dd, J = 7.5, 7.5 Hz, 

H5’), 7.49 (1H, dd, J = 7.8, 7.5 Hz, H6’), 7.66 (1H, s, H2’), 7.68 (1H, brd, J = 7.5 Hz, H4’), 
 

 

8.13 (1H, brd, J = 7.8 Hz, H7’). 
13

C NMR: δ = 22.5 (-NHC(O)CH3), 28.0 (C2), 53.8 (C1), 
 

 

112.0 (C7’), 113.9 (C2’), 120.9 (C4’), 123.7 (C3’), 126.7 (C5’), 127.5 (C6’), 130.8 (C3’a), 
 

 

136.9  (C7’a),  173.2  (-NHC(O)CH3),  174.3  (-COOH).  B:  
1
H  NMR:  1.94  (3H,  s, 

 

 

-NHC(O)CH3), 3.17 (dd, J = 15.0, 8.3 Hz, H2a), 3.37 (dd, J = 15.0, 5.1 Hz, H2b), 4.84 (1H, 

dd, J = 8.3, 5.1 Hz, H1), 7.39 (1H, dd, J = 7.5, 7.5 Hz, H5’), 7.43 (1H, dd, J = 7.8, 7.5 Hz, 



S2 

 

 

H6’), 7.62 (1H, brd, J = 7.5 Hz, H4’), 8.18 (1H, s, H2’), 8.29 (1H, brd, J = 7.8 Hz, H7’). 
13

C 

NMR: δ = 22.5 (-NHC(O)CH3), 28.0 (C2), 53.4 (C1), 116.3 (C7’) 119.9 (C4’), 122.0 (C3’), 

122.0 (C6’), 128.0 (C2’), 128.0 (C5’), 129.6 (C7’a), 130.5 (C3’a), 173.2 (-NHC(O)CH3), 
 

 

174.5 (-COOH). 
 

 

δ (ppm) of 1-nitrosoindol-3-acetic acid (R1=H; R2=COOH) in DMSO-d
6
: A: 

1
H NMR: 

 

 

3.75 (2H, s, H2), 7.44 (1H, dd, J = 8.0, 8.0 Hz, H5’), 7.52 (1H, dd, J = 8.0, 8.0 Hz, H6’), 
 

 

7.66 (1H, d, J = 8.0 Hz, H4’), 7.87 (1H, s, H2’), 8.16 (1H, d, J = 8.0 Hz, H7’). 
13

C NMR: δ = 
 

 

30.3 (C2), 111.1 (C7’), 114.1 (C2’), 120.8 (C4’), 121.1 (C3’), 125.9 (C5’), 126.7 (C6’), 129.3 

(C3’a), 135.0 (C7’a), 171.2 (C1). B: 
1
H NMR: 3.79 (2H, s, H2), 7.44 (1H, dd, J = 8.0, 8.0 Hz, 

H6’), 7.46 (1H, dd, J = 8.0, 8.0 Hz, H5’), 7.61 (1H, d, J = 8.0 Hz, H4’), 8.26 (1H, dd, J = 8.0, 

1.3 Hz, H7’), 8.47 (1H, s, H2’). 
13

C NMR: δ = 30.1 (C2), 115.1 (C7’), 119.8 (C3’), 119.8 

(C4’), 126.4 (C2’), 127.2 (C6’), 127.4 (C5’), 127.9 (C7’a), 129.0 (C3’a), 171.5 (C1). 


