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ABSTRACT 
 

An emergent approach to the detection of nitric oxide (NO) in tissues relies on the use of 

fluorescence probes that are activated by products of NO autoxidation.  Here we explore the 

performance of the widely-used NO probe 4,5-diaminofluorescein diacetate (DAF-2 DA) for the 

localization of sources of NO in rat aortic tissue, either from endogenous NO synthesis or from 

chemically or photolytically-released NO from targets of nitrosation/nitrosylation. Of importance 

toward understanding the performance of this probe in tissues is the finding that, with incubation 

conditions  commonly  used  in  the  literature  (10  µM  DAF-2  DA),  intracellular  DAF-2 

accumulates to concentrations that approach the millimolar range. Whereas such high probe 

concentrations do not interfere with NO release or signaling, they help to clarify why DAF-2 

nitrosation is possible in the presence of endogenous nitrosation scavengers (e.g. ascorbate and 

glutathione). The gain attained with such elevated concentrations is, however, mitigated by 

associated high levels of background autofluorescence from the probe. This, together with tissue 

autofluorescence, limits the sensitivity of the probe to low-micromolar levels of accumulated 

DAF-2 triazole (DAF-2 T), the activated form of the probe, which is higher than the 

concentrations of endogenous nitrosation/nitrosylation products found in tissues. We further 

show that the compartmentalization of DAF-2 around elastic fibers further limits its potential to 

characterize the site of NO production at the subcellular level. Moreover, we find that reaction of 

DAF-2 with HgCl2 and other commonly employed reagents are associated with spectral changes 

that may be misinterpreted as NO signals. Finally, UV illumination can lead to high levels of 

nitrosating species that interfere with NO detection from enzymatic sources. These findings 

indicate that while DAF-2 may still represent an important tool for the localization of NO 

synthesis, provided important pitfalls and limitations are taken into consideration, it is not suited 

for the detection of basally-generated nitrosation/nitrosylation products. 
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INTRODUCTION 

 
The discovery in 1987 that nitric oxide (NO) is the signaling molecule responsible for so 

diverse biological effects such as endothelium-dependent smooth muscle relaxation, nerve cell 

communication, and antimicrobial defense in macrophages, precipitated a flood of interest in 

unraveling its full spectrum of actions in physiology and pathophysiology [1-3]. According to the 

PubMed database, >60,000 scientific studies have already addressed the involvement of NO in 

biology and medicine. Despite the enormous attention given to the ubiquitous role that this 

molecule plays in living systems, the mechanisms by which it fulfills these roles often remain 

unclear. Among the challenges involved in clarifying these mechanisms is the localization of NO 

sources  and  targets  within  a  cell.  This  will  require  not  only  a  molecular  probe  with  high 

sensitivity and specificity for NO, but also the chemical and physical interventions to free NO 

from its biological targets. 

Recently, a family of fluorescence dyes became available commercially for the detection 

of  NO,  including  diaminofluoresceins  (DAFs)  and  diaminorhodamines  (DARs)  that  are 

purported  to  deliver  low  nanomolar  sensitivity.  These  indicators  contain  a  benzoic  group 

attached to a fluorophore that possesses a charge transfer state located energetically between the 

ground and excited states of the fluorophore moiety, which serves as an effective deactivation 

pathway for the highly fluorescent excited state [4, 5]. When nitrosated by reactive nitrogen 

oxides such as N2O3  at one of its vicinal amino moieties, an internal diazotation reaction takes 

place that leads to formation of the corresponding triazole. This chemical modification of the dye 

by a secondary product of NO is associated with a lowering of the energetic charge transfer state 

below the ground state of the fluorophore, thus removing the quenching effect of the benzoic 

structure and allowing the fluorophore to emit efficiently. The high yield of fluorescence of the 

triazole  forms  of  DAF  and  DAR  make  these  indicators  suitable  for  the  detection  of  NO 

production in biological systems, a property that has been exploited by now in many studies 

using fluorometry [6-17], flow cytometry [18,19], high-pressure liquid chromatography (HPLC) 

[20], and fluorescence microscopy [4, 14, 20-58]. Furthermore, when used in conjunction with 

other probes, diamino fluorophores theoretically provide the option to test for co-localization of 

NO  formation  with  other  signaling  events,  such  as  a  change  in  intracellular  calcium 

concentration using Fura-2 [12, 16, 38], or its association with certain cell organelles by e.g. the 

use of MitoTracker to specifically stain for mitochrondria [26,50]. 
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The original aim of this study was to assess the viability of the widely-used probe DAF-2 

to locate and quantify biological targets of NO in a tissue previously characterized by chemical 

means, namely in aortic tissue [59,60]. The cellular products, which include RSNO, RNNO, and 

NO-heme species, are all known to release NO when exposed to light of appropriate wavelengths 

[60]. We therefore reasoned that exposure to light of wavelengths specific to individual forms of 

bound NO, in conjunction with DAF-2 incubation, would permit us to image the locations and 

concentrations  of  each  of  these  species  in  intact  tissues,  with  subcellular  resolution  and 

nanomolar sensitivity. As we struggled with this seemingly straight-forward proposition, it 

became  apparent  that,  while  the  development  of  diamino  fluorophores  represent  a  great 

analytical advance in NO bioimaging, there are a number of unresolved questions regarding the 

performance of these probes in biological tissues that impact their utility for the localization of 

sources and targets of NO. One important issue is that their sensitivity may be significantly 

limited in biological milieus by reducing agents such as ascorbate (Asc) and reduced glutathione 

(GSH), since these are known to scavenge nitrosating products such as N2O3, or their precursor 

NO2.     Several studies [6,46,66] have demonstrated this effect in buffer solutions, in which 

substantial drops or even a total abolishment of formation of the fluorescent triazole form DAF-2 

T were observed. Yet, only modest inhibition of DAF-2 activation is observed within cultured 

cells containing comparable levels of reducing agents [66], and all other cell-culture or tissue 

studies published to date [6-58] document its successful activation. Thus it remains unclear how 

these probes can be effective in a cellular environment when they seem to perform so poorly in 

chemical systems of similar composition. A second issue concerns the artefactual activation of 

DAF-2 by NO photolysed from natural products of NO synthesis, including nitrosothiols, 

nitrosamines, nitrite, and nitrate [59]. The photolysis of these products is particularly effective 

with UV light [60, 61], a problem of relevance to experimental setups utilizing illumination 

optics  that  unintentionally  allow  transmission  of  UV  light,  or  intentionally  utilize  UV 

illumination to excite secondary probes, such as Fura-2, for the co-localization of concomitant 

biochemical events. A third issue relates to the reactivity of the probe with substances commonly 

used in the NO field to identify targets of nitrosation or nitrosylation, such as mercuric chloride 

and ferricyanide. A final question, central to the localization of sources/targets of NO, is whether 

the patterns of fluorescence observed with DAF-2 correspond to sites of activation or 

compartmentalization of the probe. 
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To address these issues, we investigated the nitrosation of the diamino fluorophore DAF- 
 

2 after loading of rat vascular tissue with its membrane-permeable diacetate analogue, DAF-2 
 

DA, using optical measurements and HPLC analysis. These investigations were complemented 

with organ bath studies to investigate the functional integrity of dye-loaded tissues, assays for 

cGMP production to corroborate the production of NO, as well as control measurements 

performed in isolated buffer solutions. The results presented here help explaining how DAF-2 

nitrosation can compete for N2O3  with Asc or GSH and provide novel insight into its limits of 

sensitivity for the bioimaging of NO production. Moreover, we demonstrate that UV illumination 

can lead to significant probe nitrosation through the photoactivation of an NO-related metabolite 

of hitherto assumed biological inertness, and provide evidence for the chemical origin of the 

photoactivated species. We also show that substances such as glutathione, mercuric chloride, and 

ferricyanide, elicit spectral changes in the probe that could be misinterpreted as fluorescence 

intensity changes. Finally, we demonstrate that the DAF-2 T patterns obtained in vascular tissue 

are not necessarily correlated to subcellular compartmentalization of NO formation. These new 

findings add to the growing body of knowledge on how to best optimize their use [9,10] and 

avoid potential pitfalls  [62-66], which will ultimately help investigators to use this relatively 

new class of fluorophores more judiciously for the investigation of NO-related events. 
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METHODS 
 

Animals 
 

Male Wistar rats (Harlan) were housed 3/cage in HEPA-filtered cages on cedar bedding 

and maintained on a 12/12 reversed light/dark cycle.  Food consisted of a standard rat chow and 

was available with water ad libitum.  Rats were allowed to acclimatize to their new environment 

for at least 7 days prior to their use in the study. 

 
 
Tissue Preparation 

 

Rats (315-375g) were anaesthetized with diethyl ether and sacrificed by cervical 

dislocation.  After opening of the chest, the thoracic aorta was cannulated at the level of the 

kidneys and retrogradely perfused at 2ml/min with oxygenated (95% O2, 5% CO2) Krebs- 

Henseleit buffer (pH 7.4, 126.8mM NaCl, 5.9mM KCl, 2.5mM CaCl2, 1.2mM MgCl2, 1.2mM 

NaH2PO4, 30mM NaHCO3, 5mM D-glucose, and 1µM indomethacin) to flush the tissue free of 

blood and prevent intravascular clotting. The aorta was removed and placed in Krebs-Henseleit 

buffer while trimmed free of adipose and connective tissue, and then cut into 4-5mm rings. 

Tungsten wire was used to suspend the vascular tissue in a 20ml organ bath containing 

oxygenated Krebs-Henseleit buffer at 37°C. Tissues were allowed to equilibrate for 90min, 

during which time the buffer was exchanged every 20min, before loading with DAF-2 DA 

(10µM, Calbiochem) for an additional 60min. In preliminary experiments, other DAF-2 DA 

concentrations (0.1, 1, 30µM) and incubation periods (30 and 120min) were investigated for 

comparison. In instances where inhibition of NO synthesis was necessary, tissues were incubated 

with 300 µM N
ϖ
-(1-iminoethyl)-L-ornithine dihydrochloride (L-NIO) 30 min prior to loading 

with DAF-2 DA. 

 
 
Organ Bath Studies 

 

Possible interference of DAF-2 with NO formation and/or release and NO-dependent 

signaling was investigated in endothelium-intact, isolated rat aortic rings using standard organ 

bath  techniques.  Vascular  relaxation  in  response  to  acetylcholine  (3x10
-9

-1x10
-4   

M)  and 

papaverine (1x10
-7

-1x10
-4 

M) was investigated in precontracted (phenylephrine, 0.3 µM) aortic 
 

rings with and without prior labeling with DAF-2 DA (10µM, 60min). Changes in isometric 

tension were measured by means of force displacement transducers and documented on a six- 

channel recorder as described. [60]. 
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Fluorescence Imaging 
 

For analysis of fresh tissue, aortic rings were mounted on a coverslip immediately after 

loading with DAF-2 DA. A drop of PBS was placed on top of the ring to ensure that the tissue 

remained viable during the subsequent examination. This also allowed for an easy exchange of 

media in order to test other experimental conditions.   A confocal microscope (Radiance 2000 

Confocal, Bio-Rad) was used to capture changes in DAF-2 related fluorescence intensity of the 

tissue, using the 488nm line of the Argon laser for excitation in combination with a 515nm 

emission filter.  In select studies, the microscopic stage was kept at a temperature of 37±1°C 

throughout the experiment, and a waiting time of 3min was allowed to bring the specimen from 

RT to body temperature. 

In an alternative approach, semi-thin frozen sections were prepared in order to allow for 

repeated testing of multiple interventions on the same piece of aortic tissue.   This method 

allowed us to rapidly preserve tissue integrity without the use of a fixative that could adversely 

affect the purportedly labile tissue stores of NO. Another advantage of this approach is that 

consecutive sections could be examined under different experimental conditions, minimizing 

changes in tissue composition from section to section as occurring in rings of different animals. 

Aortic rings of 3mm width were embedded in O.C.T. Compound (Tissue-Tek), rapidly frozen 

using Cytocool II (Richard-Allan Scientific) and stored at -20°C for up to 2 months. Blocks with 

up to 4 vascular rings were then cut into 10 or 20µm thin sections using a cryostat microtome 

(Tissue-Tek, Miles, Inc.), transferred onto poly-L-lysine coated microscopic slides at -25°C and 

immediately mounted in PBS, coverslipped and sealed. In some experiments, an NO donor was 

added at the appropriate concentration to the PBS before coverslipping. Tissue sections were 

then examined on an inverted fluorescence microscope (Nikon Eclipse TE 300) equipped with a 

high-pressure mercury lamp, a combination of narrow-bandwidth excitation (490-500nm) and 

emission (510-530nm) filters (Chroma), and a digital camera (Roper CoolSNAP HQ). To 

minimize the exposure of our samples to the intense illumination, the shutter was opened just 

prior to, and closed immediately after, acquiring the image. For calibration purposes, the 

fluorescence intensity of home-made standards consisting of uniform thin films (120 µm thick) 

of DAF-2 and DAF-2T at defined concentrations in PBS was recorded under identical imaging 

conditions. All images were captured under constant exposure time, gain, and offset using IPLab 

capturing software (Scanalytics, Inc.). 
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Image Analysis 
 

Image analysis was performed using the MetaMorph software package (Universal 

Imaging).  Images from each experimental group were equilibrated to the same threshold value 

for elimination of background fluorescence and selection of the tissue section as an object in 

order to determine its total gray value and total tissue area.  Increases in fluorescence were 

calculated  from  the  ratio  of  total  gray  value  to  total  tissue  area  of  individual  images  and 

expressed as percent of baseline intensity. 

 
 
Chemical Assays 

 

An in vitro approach was used to investigate some of the basic chemical interactions of 

DAF-2 with selected biomolecules and NO standards.  A concentration response curve was 

performed for GSH and sodium ascorbate in the presence of DAF-2 (10µM and 50µM) using 

10µM of the NO-donor MAHMA-NONOate, which equates to a maximum yield of 20 µM NO. 

Upon completion of the reaction solutions were transferred to a 96-well microtiter plate and read 

within 2min on a fluorescent plate reader (Fluoroskan Ascent, Labsystems; 485nm excitation, 

515nm  emission  or  FLx800,  Bio-Tex  Instruments  Inc.;  485nm/20  excitation,  528nm/20 

emission). GSH-containing DAF-2 solutions were also examined with the aid of a fluorometer 

(Quanta-Master, Photon Technology International; 480nm excitation). 

 
 
HPLC and fluorometric analysis of dye content in tissues 

 

Tissues targeted for fluorometry and HPLC analysis were incubated following the 

protocols shown in Table 1, including a combination of NO donor (MAHMA-NONOate, 1 mM), 

a NOS inhibitor (L-NIO, 300 µM), or exposure to UVA light from a tunable xenon lamp (Melles 

Griot  Spectrum  9000)  set  to  emit  at  350nm,  with  a  bandwidth  of  30nm and  an  estimated 

irradiance of 2 mW/cm
2 

at the sample. 

Intracellular concentrations of DAF-2 and related compounds, including DAF-2 DA and 
 

DAF-2T, were determined subsequent to the incubation protocols outlined in Table 1. These 

compounds were extracted from the incubated tissues using DMSO (12 mm
3 

of tissue per 500 µl 

DMSO) under shaking for 1h in a water bath at 37
o
C.   The supernatant (DMSO and solutes) 

were divided into two aliquots of 400 and 100µl each, the first of which was used for HPLC 

analysis, while the second one was used for fluorometric analysis. The products obtained from 
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the DAF-2 extracts and the standards were separated by reversed phase HPLC.   The samples 

were injected onto a 250x4.6 mm 5-µm octadecyl silane C18 ultrasphere column (Beckman 

Coulter, Inc. Fullerton, CA) using a 5 to 40% acetonitrile - water (TFA, 0.05%) gradient over 

40min at a flow rate of 1 ml/min.  Products were detected by UV/VIS absorption at 490 nm. 

Samples for fluorescence analysis were prepared by dissolving 50µl of the DMSO extract into 

3ml of buffer (total dilution 1:2,500 relative to original tissue volume), and compared to the 

fluorescence from a 1µM DAF-2T (Calbiochem) standard. Fluorescence spectra were obtained 

with a fluorometer (PTI Quanta-Master) at an excitation wavelength of 480 nm. 

 
 
Action spectrum of light-induced cGMP production in vascular tissue 

 

Thoracic aortic tissue was obtained from male Wistar rats as described above. Some 

blood vessels were de-endothelialized by in situ perfusion for 15 sec with 1 mL 0.2% 

desoxycholate. Tissues were kept in oxygenated KH buffer for 30 min at 37°C in the dark, 

followed  by  incubation  for  further  30min  in  the  dark  in  the  same  buffer  additionally 

supplemented with 0.5 mM isobutyl methylxanthine (IBMX; a phosphodiesterase inhibitor). 

Thereafter, aortae were divided into six strips of equal length, each strip placed in a separate 

Petri dish containing oxygenated KH buffer (intima facing up) and labeled according to their 

distal position along the blood vessel. All but control strips were illuminated for 60s with light of 

distinct wavelengths derived from an HPLC detector (Shimadzu RF-551, flow cell removed, and 

light coupled into a liquid waveguide, 5mmx2m) and collimated to a spot size of 1.5 cm at the 

sample (310-650 nm, 7 nm bandwidth, 0.34-1.36 mW/cm
2
). The order with which strips were 

 

exposed to light and the selection of exposure wavelengths followed a randomized process in 

order  to  attain  an  equal  representation  of  distal  positions  along  the  vessels,  exposure 

wavelengths, and processing time from extraction of aortae to light exposure. 

Immediately after illumination, the segments were snap-frozen in liquid nitrogen. The 

frozen samples were homogenized in a porcelain mortar at liquid nitrogen temperature and 

quantitatively transferred into Eppendorf tubes. Then, 1 mL 6% trichloroacetic acid (TCA, 4°C) 

was added and the sample vortexed for 1min. Samples were kept on ice and vortexed once more 

immediately before centrifugation at 14,000 rpm (20 min; 4°C). The supernatant was transferred 

with a pipette into new tubes for determination of cyclic guanosine monophosphate (cGMP) and 

the pellet was suspended in 5 mL 0.1 N NaOH. Protein was determined in 100 µL of these 

samples using a commercially available assay kit based on the Lowry method (BioRad). The 
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TCA in the samples was removed by 4-5 x extraction with water-saturated diethylether before 

the samples were evaporated to dryness (Vortex Evaporator) at 55°C. The content of GMP in 

these samples was determined using a commercially available scintillation proximity assay for 

cGMP (RPA 540, Amersham). Briefly, dried samples were reconstituted in 1 mL assay buffer, 

vortexed for 1 min and diluted with assay buffer to the expected range (1:5, 1:10, 1:100). 100 µL 

of this dilution was used and determinations performed in duplicate. Samples (as well as the 

cGMP standards) were subjected to acetylation by incubation with 5µL acetylation reagent. 

Following a 15h incubation the samples were transferred to scintillation vials and counted 

(Beckman LS 6000; 10min interval; window 10-999.0). To account for differences in width and 

thickness  of individual  vascular  segments  the  amount  of  cGMP was  normalized  to  protein 

content before data averaging 

The action spectrum for light-induced cGMP production was obtained through a global 

error-minimization fitting process performed in Microsoft Excel as follows. Each point on the 

spectral profile of the action spectrum was treated as a fitting parameter. In addition, each animal 

was assigned a multiplicative fitting parameter that accounted for the sensitivity that their whole 

aorta exhibited to light. The product of these fitting parameters was then compared to 

corresponding  cGMP  data  (basal  levels  subtracted)  obtained  from  aortic  strips  through 

calculation of the square difference normalized to the experimental value. The fitting parameters 

were then varied iteratively by minimization of the sum of the square differences from all cGMP 

measurements, using the Solver option in Excel. The resulting spectral profile was corrected for 

spectral variations in the intensity of the illumination source and expressed as percent changes in 

cGMP concentration relative to basal levels. 
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RESULTS 
 

 
 

Functional studies 
 

To address the question of whether labeling with DAF-2 DA (10µM, 60min) interferes 

with NO-related signaling in vascular tissue experiments were performed in isolated rat aortic 

rings submaximally precontracted with phenylephrine. Using endothelium-intact rings, no 

significant difference was observed in the degree of contraction to a submaximal concentration 

(0.3 µM) of phenylephrine in the absence and presence of DAF-2 in the tissue (4.3±0.2 vs. 

4.2±0.3 g) while inhibition of basal endothelial NO production by L-NIO (100 µM) increased 

contractile force by 27±4% and 25±7% under the same conditions (n=3). Moreover, vascular 

responses to the endothelium-dependent dilator, acetylcholine and the endothelium-independent 

dilator, papaverine were virtually indistinguishable with and without prior labeling of tissues 

with DAF-2 DA (data not shown). Additional organ bath experiments were conducted with an 

intense fiber optic illuminator to elicit light-induced relaxation, as described in Ref. 60, and the 

tissue responses to light appeared indistinguishable between DAF-2 DA-labeled and unlabeled 

aortic rings (data not shown). Taken together, these experiments affirm that NO production and 

signaling remains unchanged in the presence of DAF-2 DA and its hydrolysis product DAF-2, 

and  further  suggest  that  the  oxidation  of  DAF-2  to  a  radical  species  capable  of  directly 

interacting with NO is likely to be minimal in this particular biological system. 

 
 
Comparative nitrosation of DAF-2 in buffer solutions and tissue slices 

A   number   of   studies   have   reported   on   the   nitrosation   of   DAF-2   for   varying 

concentrations of NO donors, either in buffer solutions [9,10,20,21,30] using fluorometry or in 

cells/tissues [26,29] using fluorescence microscopy. Fig. 1 shows for the first time a direct 

comparison between the two, expressed in terms of the fluorescence exhibited at each condition 

in  the  absence  of  NO  donors.  When  measurements  are  conducted  in  buffer  solutions  and 

analyzed by fluorometry, the data indicates that concentrations as little as 20 nM of the NO- 

donor MAHMA-NOnoate are capable of eliciting a measurable nitrosation response over the 

background signal. This is close to the lower limits of detection reported in the literature 

[4,9,10,20]. Our data also shows a DAF-2 response that is linear with increasing concentrations 

of NO-donor, as demonstrated by resulting curve fit to y = a x
b 

which yielded an exponent b very 
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close to unity (b = 1.01±0.02). The linearity of the response is also consistent with prior reports 
 

[9,10,20,21,30]. 

In contrast to the high NO-sensitivity observed in simple buffer solutions, however, the 

data shown for thin tissue slices under microscopy suggest that NO-donor concentrations above 

the micromolar range are needed to elicit a signal above background fluorescence levels. This 

behavior appears consistent with data previously published on the nitrosation of DAF-2 in cell 

cultures [26,29]. The DAF-2 nitrosation response we observe displays a sub-linear relationship 

with respect to increasing concentrations of NO donor, as demonstrated by the value of the 

exponent to the curve fit y = a x
b 

(b = 0.53 ± 0.11).  The deviation from linearity could be due to 

depletion of oxygen in our sealed samples (coverslipped microscopic sections), caused by the 

autoxidation of generated NO. Consistent with this assumption, we observed greater increases in 

fluorescence in experiments conducted in uncovered samples under confocal microscopy, 

although these still failed to exhibit full linear behavior. The failure to see full linear behavior 

with aerated samples may indicate that tissue consumption of O2 and NO may also limit the 

formation of the triazole form. 
 

 
 

Intracellular concentrations of DAF-2, DAF-2 DA, and DAF-2 T, quantified  via fluorometry, 

spectrophotometry,  and HPLC 

DMSO extracts derived from the protocols outlined in Table 1 were dissolved in PBS and 

characterized via fluorometry and spectrophotometry to quantify their contents of DAF-2-related 

metabolites. All fluorescence spectra, shown in Fig. 2, displayed a profile characteristic of DAF- 

2 emission, including those recorded from basal and L-NIO-treated samples. Since no significant 

DAF-2 nitrosation is expected in L-NIO treated samples, we infer that its emission arises from 

either DAF-2, DAF-2 DA, or other DAF-2 related adducts [65].  Spectrophotometric scans 

revealed spectra resembling those of DAF-2 compounds, with an absorption maximum of about 

0.024 near 490 nm. This absorption corresponds to a concentration of 3×10
-7

M, assuming an 
 

extinction coefficient of 8×10
4 

M
-1

cm
-1 

for all DAF-2 related products that might be present in 

the DMSO supernatants.  Given the dilution factor of 2,500 from aortic tissue volume to final 

sample volume, we estimate that the average concentration of all DAF-2 related products in the 

tissue was 750 µM. The elevated tissue concentration of DAF-2 reflects the effective conversion 

of the cell permeable DAF-2 DA into the impermeable form DAF-2, which subsequently is 

trapped in the intracellular space and thus accumulates over the period of incubation period. 
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HPLC measurements performed in aliquots of the same DMSO supernatants directly 

confirmed that the fluorophore content of all but sample #5 arose mostly from DAF-2 derived 

from DAF-2-DA by esterase activity, with smaller amounts (<20%) of   the parent substance 

DAF-2-DA. The concentration of all these substances combined totaled about 10µM, 

corresponding to an estimated 400 µM of DAF-2 related products in the tissues. This 

concentration corroborates the elevated levels of DAF-2 related products found using 

spectrophotometry (750 µM). For sample #5, which was incubated with 1mM of MAHMA 

NONOate, distribution of DAF-2, DAF-2-DA, and DAF-2-T in the tissue corresponded to 340 

µM, 40 µM, and 120 µM, respectively. 
 

 
 

Actions of Asc and GSH on DAF-2 activation 

Addition of Asc or GSH resulted in inhibition of DAF-2 T formation, as shown in Fig. 3. 

The efficacy of inhibition was determined from a curve fit of the concentration response curves 

shown in Fig.3 to an equation of the form 
 

 

Fluorescence([ x]) = 

 

Fluorescence([0]) 

1 + [ x] / IC50 
 

where [x] is the concentration of Asc or GSH in the sample. The fits showed that the Asc 

response curve followed the above equation very closely, whereas the GSH fits showed 

significant  departures  from  the  equation  at  higher  concentrations.  For  the  10µM  DAF-2 

solutions, Asc was found to be a more effective inhibitor of DAF-2-T formation than GSH (IC50 

25 µM vs. 200 µM respectively). These values are in qualitative agreement with those reported 
 

by Espey et al [67] (IC50  2 µM vs. 90 µM respectively) employing the NO-donor DEA/NO. 

Importantly, our results reveal that the amount of triazole formed in the GSH-containing samples 

increases  3-4  fold  when  the  concentration  of  DAF-2  is  increased  to  50  µM  while  the 

concentration of NO-donor was kept constant (see Fig. 3b). The increased DAF-2-T formation 

indicates that the competition between GSH and DAF-2 for NO autoxidation species is more 

favorable toward DAF-2 when this probe is present at higher concentration. 

Our results also indicated a possible interaction between DAF-2 and GSH, at GSH 

concentrations higher than the ones shown in Fig. 3b. Addition of 10mM GSH not only inhibited 

the formation DAF-2 T, but also resulted in spectral broadening of the fluorescence, which were 

not transient in nature. The broadening effect resulted in artifactual increases in fluorescence at 
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wavelengths away from the emission peak, and opposing behavior near the peak. Thus caution 

should be exercised when interpreting DAF-2 T fluorescence changes under elevated GSH 

concentrations, particularly in the absence of accompanying spectral data. 

 
 
Sensitivity to HgCl2 

 

A common approach to determination of RSNO content in a sample involves a duplicate 

measurement with and without preincubation with mercuric chloride. The addition of HgCl2 to a 

sample is thought to result in the cleavage of the S-NO bond of nitrosothiols due to the high 

affinity of mercuric salts for sulfur and thus to a reduction in NO signals derived from RSNOs. 

Our studies revealed that pre-incubation of aortic tissues with 0.1% HgCl2 (final concentration 

3.7 mmol/L) followed by DAF-2 DA resulted in a 3-fold increase in fluorescence compared to 
 

those incubated with DAF-2 DA only. A similar increase in fluorescence was obtained when a 

drop of 0.2% HgCl2 was added to DAF-2 DA incubated tissue slices under the microscope. No 

increase in fluorescence was observed when the same experiment was performed with tissues 

that were not incubated with DAF-2 DA. 

Additional experiments were conducted in the absence of a biological matrix, i.e. in 

buffer solutions, to better understand the nature of this fluorescence increase. Addition of 0.2% 

HgCl2 to a buffer solution containing 10µM of DAF-2 only resulted in a 4-fold increase in 

fluorescence, as monitored with a fluorometer. Importantly, the addition of the mercury salt 

resulted in a red shift of the fluorescence spectrum by about 12 nm and a double-banded 

absorption spectrum between 400 and 500 nm. These observations suggest that DAF-2 DA reacts 

with HgCl2  to form a new product with a modified absorption/emission spectrum and a higher 

quantum yield of fluorescence. This phenomenon may therefore account for the increase in 

fluorescence seen in tissue slices upon addition of HgCl2. 

Although no attempts were undertaken to characterize in detail the nature of interaction 
 

with other reagents commonly used in NO research, preliminary results with ferricyanide, N- 

ethylmaleimide, and Tempol, seem to indicate that these compounds may also interfere with 

DAF-2 fluorescence (data not shown). 

 
 
Compartmentalization of DAF-2 T in aortic tissues 

 

Microscopic slices of aortic tissue incubated with DAF-2 DA were exposed to 

concentrated solutions of MAHMA-NONOate in order to identify spatial patterns of DAF-2 
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arising from compartmentalization of the probe or of the nitrosating agent N2O3. Figure 4a shows 

the pattern obtained with addition of 200 µM MAHMA-NONOate. Identical laminar patterns 

were obtained at other concentrations, ranging from 200 nM to 20 mM, but with a concentration- 

dependent intensity. A similar pattern was observed when tissues were double-stained with 

haematoxylin/eosin (H&E staining) as shown in Fig. 4b, indicating that DAF-2 T formation in 

aortic tissue is largely focused in or around elastic laminae. Even in the absence of NO donors, 

i.e. under basal conditions, it was still possible to observe a pattern of DAF-2 T formation that 

was still largely focused around the elastic laminae (see Fig 4c), with overall higher intensities 

near the endothelium. Interestingly, this pattern is preserved but the brightness intensified with 

increasing exposure to UV light (Figs. 4d and 4e). 

 
 
Action spectrum of intracellular DAF-2T formation under intense UV-VIS exposure 

 

DAF-2 DA incubated aortic tissue, exposed to UV radiation of 350 mn, responded with 

significant increases in DAF-2T formation as exemplified in Figs. 4d and 4e. Similar responses 

were observed for other wavelengths of light ranging from 310 nm to 450 nm. The resulting 

action spectrum, when normalized to the spectral output of the light source over the same 

spectral range, shows that the light induced DAF-2T formation appears to be most effective at 

the lowest wavelengths (Fig. 5a). A qualitatively similar trend is reflected in the action spectrum 

for cGMP production (Fig. 5b). 
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DISCUSSION 
 

 
 

The results from the present study have revealed factors of chemical, biochemical, and 

physical origin that impact the ability of DAF-2, and generally other diamino fluorophores, to 

image sources and targets of NO in tissues. In what follows, we discuss these factors separately 

and consider ways to address ensuing limitations. 

 
 
What is the true sensitivity of DAF-2 for imaging NO sources and targets? 

 

The elevated concentration of DAF-2 that accumulates in tissues incubated with DAF-2 
 

DA, however advantageous toward the competition with endogenous antioxidants for nitrosating 

agents, brings an undesired background signal that diminishes the sensitivity of the technique for 

the detection of NO. This limitation may arise from the intrinsic fluorescence of the inactivated 

probe DAF-2, or from reaction products of DAF-2 with intracellular substances such 

dehydroascorbate [66]. The presence of background fluorescence is evident in the results shown 

in Fig. 2, which show that tissues incubated with DAF-2-DA always exhibit some level of DAF- 

2-like fluorescence, even when NO production is inhibited with L-NIO. The similarity in 

fluorescence intensity between the basal and the L-NIO treated sample also suggests that a large 

component of the fluorescence observed under basal conditions arises from background emission 

related to DAF-2. 

Closer quantitative consideration of the results shown in Fig.2 suggests that the 

background emission indeed arises from DAF-2 autofluorescence. This interpretation is arrived 

at by comparing the emission between the 100 nM DAF-2 T standard and the L-NIO-treated 

tissues as follows.   According to Fig. 2, the emission from the DAF-2 T standard is 125-fold 

greater than that of the L-NIO-treated aortas, suggesting that the emission from the NOS- 

inhibited tissue sample is equivalent to that of 0.8 nM DAF-2 T. Since the latter was diluted by a 

factor of 2,500 relative to the original aortic concentration, the estimated emission emanating 

directly from the tissue should be equivalent to that of 2 µM of DAF-2-T. Compared to the 400 

and 750 µM concentration of DAF-2 determined by HPLC and spectrophometry, respectively, 

the  emission  thus  represents  a  fraction  of  0.003-0.005  of  the  total  emission  that  could  be 

produced if all DAF-2 fluoresced with unity quantum yield. This fraction is in fact remarkably 

similar to the fluorescence quantum yield of DAF-2, which has been reported to be 0.005 [4]. 

This estimate indicates that the background emission arises from DAF-2 autofluorescence, which 
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despite its low quantum yield becomes significant owing to its large accrued concentration in the 

tissue. The finding that this background emission is equivalent to the activation of 2 µM of DAF- 

2-T within the tissue attests to its significance and potential for interfering with the detection of 

DAF-2 T formation. The importance of DAF-2 autofluorescence was first pointed out by Leikert 

et al [9] and Rathel et al [10] in the context of DAF-2 in tissue perfusates, which our results now 

extend to tissue NO bioimaging. 

The level of interference due to DAF-2 autofluorescence depends ultimately on the 

exactness with which this background emission can be subtracted from the total fluorescence 

emanating from the sample. Factors such as quantum noise and excitation lamp fluctuations can 

lead to variations in autofluorescence intensity from one time point to the next that obscure small 

changes in DAF-2 T formation, particularly when the fluorescence spectrum of DAF-2 T cannot 

be distinguished from DAF-2 autofluorescence. The magnitude in the fluctuations of the latter 

can thus be equated with the limit of sensitivity for detection of the former. For the 

instrumentation used in this study, we determined that the magnitude of the fluctuations for these 

factors are typically on the order of a few percent, leading to a detection limit for the ratio of 

(DAF-2 T fluorescence)/(DAF-2 autofluorescence) of a few 0.01. In the case of DAF-2 T 

formation in buffer solutions (see curve fit in Fig.1a), this ratio appears to be attained when the 

concentration of MAHMA-NONOate reaches the low nM level.  This estimate for the minimal 

detectable level of an NO-donor in a buffer solution is in fact consistent with the sensitivity 

usually quoted for this probe. However, in the case of DAF-2 nitrosation in tissues (see curve fit 

in Fig 1b), the corresponding minimal detection level for the above ratio appears to occur in the 

low µM region of MAHMA-NONOate, i.e., roughly 3 orders of magnitude higher than the 

corresponding levels in buffer solutions. 

The lower-than-expected sensitivity of DAF-2 implied by Fig.1b imposes significant 

limitations on the number of biochemical NO-targets that can be imaged with this probe, at least 

for those generated in vivo under basal conditions.   According to Bryan et al [59], the basal 

levels of many endogenous nitroso/nitrosyl species (i.e. nitrosothiols, nitrosamines, and heme- 

NO products) typically range from low-nanomolar to hundreds of nanomolar. If the detectability 

of DAF-2 T is truly in the micromolar range in tissue samples, then all of these products fall 

below the limit of detection. Nitrite, which is now gaining interest as a biologically-active NO- 

product [68], can reach low micromolar levels in brain and aortic tissues and hence this product 

may be at the limit of detection in those tissues. Nitrate, which is found at levels ranging from a 
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few to tens of micromolar across different tissues [59], is best suited to be imaged with the 

limited sensitivity of DAF-2, although this NO-product holds little biological activity. Lastly, the 

micromolar detectability of DAF-2 T in tissue samples also has important implications for the 

localization of NO sources and associated real-time capability. Given that NO fluxes from 

biological sources are typically estimated to be in the lower µM/min range, the limited sensitivity 

of DAF-2 implies that the minimum accumulation time for the detection of a signal may be 

measured in minutes rather than in seconds. Such a delayed response could limit applicability of 

this probe to NO-signaling in tissues. 

 
 
Do antioxidants such as GSH or Asc affect DAF imaging? 

 

Prior investigations have called attention to the quenching of DAF-2 nitrosation by naturally 

occurring reducing agents such as Asc and GSH [7,46,67]. Consistent with these findings, our 

results indicate that the presence of millimolar concentrations of such substances in media 

containing 10 µM of DAF-2, leads to a substantial reduction in triazole formation to levels that 

could undermine the use of this fluorophore in vitro. However, at higher DAF-2 concentrations, 

much of this inhibition can be mitigated by a greater efficiency of NO capture, as demonstrated 

in Fig 3b for 10 µM vs 50 µM DAF-2.  Therefore, at DAF-2 concentrations approaching 1 mM 

one might expect very effective probe activation that could essentially mitigate quenching effects 

by  other  molecules.  Thus  it  seems  that  the  scavenging  action  of  Asc  and  GSH  may  not 

necessarily undermine the efficacy of DAF-2 as previously feared. This finding may account in 

part for the observation made by Espey et al. [67] that intracellular DAF-2 T formation in cell 

cultures was only modestly affected by GSH depletion following buthionine sulfoximine (BSO) 

treatment, whereas buffer solutions with equivalent changes in concentrations of GSH exhibited 

dramatic changes. 

 
 
Is DAF-2 compartmentalized in tissues? 

 

The spatial patterns of fluorescence observed in this study establish another important 

issue concerning compartmentalization of fluorescence signals within tissues. A typical 

fluorescence pattern in tissue from large arterial blood vessels, shown in Fig 4a, is characterized 

by the presence of strongly fluorescent strands, despite uniform application of MAHMA-NO 

NOate over the entire surface of the sample.  This pattern is strikingly similar to the morphology 

of elastic laminae in this tissue that are readily seen using H&E staining (see Fig 4b). The 
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similarity strongly suggests that the emission of DAF-2 T from aortic tissue originates 

predominantly from the elastic laminae. One potential mechanism that accounts for the 

localization of the emission could be linked to enhanced N2O3  production occurring within the 

hydrophobic environment of the lamina [69]. Alternatively, it may simply reflect preferential 

accumulation of the fluorophore within elastic fibers. Although this process has never been 

characterized specifically for the interaction between DAF-2 and the components making up the 

elastic laminae, the information available for the interaction between fluorescein and collagen 

(dissociation constant Kd = 1.8 µM) [70] indicates that this type of fluorophore binds strongly to 

these proteins. Regardless of the mechanism involved, the images obtained in this study with 

broadly-distributed NO sources serve as a vivid reminder that fluorescence DAF-2 T patterns do 

not necessarily correlate with local NO production. This issue is further complicated by the 

finding that DAF-2 is subject to oxidation to a radical cation that can directly trap NO [64, 65]. 

Such processes are expected to occur preferentially at highly redox-active cell organelles such as 

mitochondria [71], which might contribute to the formation of “hotspots” or “punctate emission” 

of NO-related DAF-2 fluorescence previously attributed to NO formation within this particular 

cell organelle [26]. 

 
 
Can targets of NO be detected through photolysis? 

 

In addition to elucidating the consequences of elevated intracellular concentrations of 

DAF-2, our study also provides new insight into the interaction of UV light with tissues and its 

effect on the nitrosation of DAF-2. This interaction produces a fluorescence enhancement in 

tissues incubated with DAF-2-DA that is consistent with the formation of DAF-2-T (see Fig. 2). 

The same effect is seen under microscopy, as depicted in the time sequence Figs 4c-4e. 

Furthermore,  the  resemblance  between  action  spectra  for  DAF-2  T  and  cGMP  productions 

during illumination, shown in Fig. 5, strongly suggest that NO is being generated via photolysis 

from a UV-absorbing species with an absorption peak below 310 nm. These action spectra are 

consistent with that of nitrate photolysis (λmax=302 nm), which in fact has been shown recently 

to produce significant levels of NO when illuminated with UV light in the presence of thiols 

[61]. The identification of nitrate as the source of photolysis, and its distribution in aortic tissue 

as implied in Figs 4d and 4e, could also have important biological implications. The evidence 

shows that nitrate is distributed deep into the tissue with maximal levels found near the 

endothelium, suggesting that tissue nitrate concentrations are a biochemical correlate of local 
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steady-state levels of NO. Given that plasma contains relative little nitrate compared to aortic 

tissue [59], and assuming that nitrate is capable of diffusing freely across the tissue, one would 

have expected layers in contact with blood to be drained of nitrate rather than maximally loaded 

with it. The lack of evidence for drainage of nitrate in these layers therefore suggests that nitrate 

does not necessarily diffuse freely across tissues, at least not in aortic blood vessels. 

 
 
Final remarks 

Although not directly related to the main aim of this study, the above findings provide a 

framework for rationalizing why the 10 µM incubation concentration of DAF-2 DA, first 

suggested by Kojima et al [4], may be an optimal concentration for the observation of triazole 

formation in tissues. Given the resulting intracellular accumulation of DAF-2 shown here to 

approach 1 mM, the extinction coefficient for DAF-2 of about 79,000 M
-1

cm
-1

, and the thickness 

of tissue slices typically used in most studies (10-20 µm), one estimates the DAF-2 absorption 

through a DAF-2 DA stained sample to reach 0.08-0.15 OD. Increasing the concentration further 

could  therefore  result  in  significant  re-absorption  of  the  fluorescence  produced  within  the 

sample. Additionally, as the intracellular concentration of DAF-2 increases to 1 mM, the mean 

separation between probes decreases to distances on the order of 10 nm. Such distances begin to 

rival those of the Forster radii for most fluorophores (~5 nm) below which energy transfer from 
 

highly fluorescent DAF-2 T to low-emitting DAF-2 should dominate. This process would 

effectively quench the fluorescence derived from DAF-2 nitrosation. 

Zhang et al. [66] have recently published a comprehensive study on the formation of 

DAF-2 complexes with ascorbate and dehydroascorbate, and on their potential for interfering 

with the fluorescence from DAF-2T. Although this issue was not addressed directly in our study, 

the fluorescence measurements derived from DMSO extracts (Fig. 2) and the results obtained 

from aortic tissues incubated with DAF-2 DA indicate that DAF-2 autofluorescence fully 

accounts for the observed background emission and that ascorbate adducts may not interfere 

significantly with DAF-2-T detection in this particular biological specimen. Although we see no 

evidence in the present study of ascorbate-related products in rat aorta, this conclusion cannot be 

generalized to other tissues. As pointed out by the authors, and confirmed with measurements by 

our group [72], ascorbate levels vary significantly across the organ system of rats, ranging from 

<100 µM in the aorta to ~2 mM in the brain. Thus, it is still conceivable that the DAF-2 
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complexes formed with ascorbate or dehydroascorbate could interfere with DAF-2 assays in 

biological tissues other than the one studied here. 

A final point should be made concerning the possible use of additional spectroscopic 

information to offset some of the artifacts encountered in this study. As our study demonstrated, 

the presence of GSH or HgCl2 can trigger spectral shifts and quantum yield changes in the 

emission of DAF-2. Such changes could be misinterpreted by single-wavelength detection 

systems as increased or decreased DAF-2 T formation. However, using microscopy systems 

equipped with wavelength-tunable filters (spectral imaging) combined with multi-wavelength 

analysis, it should be possible to separate the contributions due to spectral artifacts from those 

due to DAF-2 T formation. However, the tunable filters required to achieve this form of 

microscopy are costly and the multi-wavelength analysis may require a significant investment of 

time to develop. An additional improvement that could potentially eliminate the interference due 

to DAF-2 autofluorescence is the incorporation of a technique capable of differentiating between 

species with low fluorescence lifetimes, such as DAF-2, and high fluorescent lifetimes, such as 

DAF-2 T. Fluorescence lifetime imaging microscopy is also available commercially, although 

these systems constitute a costly alternative to conventional fluorescence microscopy. 

In summary, this study describes important considerations and limitations in the use of 

diamino fluorophores for imaging sources and targets of NO. A main finding is that incubation 

of tissue with DAF-2 DA produces intracellular concentrations of DAF 2 that approach the mM 

range. Such a high concentration is beneficial, inasmuch as it enables the probe to compete with 

scavenging by cellular antioxidants (Asc, GSH), but detrimental as its autofluorescence 

contributes significantly to the overall background fluorescence from tissue samples. The 

resulting loss in sensitivity (approaching 3 orders of magnitude compared to those in buffer 

solutions) make detection of sources and targets of NO in tissues by fluorometry difficult under 

basal conditions. Our study also demonstrates that DAF-2 can be activated by NO generated 

from UV photolysis of a substance with an action spectrum similar to nitrate. These findings 

provide a better insight into key factors that affect the performance of such probes for NO 

bioimaging. 
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TABLE AND FIGURE LEGENDS 

 
Table 1 

Protocols followed with the samples designated for fluorometric and HPLC analysis. Samples 

were subsequently soaked in DMSO and shaken for 1 hour at in a water bath at 37
o
C to extract 

fluorophores within.  The supernatant (DMSO and solutes) was characterized by fluorometry and 

HPLC techniques. 

 
Figure 1 

Concentration response curves for DAF-2 T formation from DAF-2 loaded media incubated with 

varying concentrations of the NO donor MAHMA-NOnoate. The vertical axis represents DAF-2 

T fluorescence expressed as a fraction of the fluorescence from unactivated samples 

(autofluorescence). The solid squares represent values obtained (a) from plate reader experiments 

with 10 µm DAF-2 in buffer solutions, and (b) from fluorescence microscopy experiments 

performed on aortic tissues incubated with buffer solutions containing 10 µm DAF-2 DA. The 

solid lines correspond to curve fits to an equation of the form y = A x 
b 

and a statistical weighting 

wi=1/yi. 

 
Figure 2 

Fluorescence spectroscopy performed on DMSO extracts from aortic samples, following the 

protocols outlined in Table 1 and further diluted in PBS (total dilution 1:2500). The spectra from 

these samples are contrasted with a sample of DAF-2 T (100 nM) in the same buffer solution. 

 
Figure 3 

Quenching of DAF-2 T formation at varying concentrations of two endogenous antioxidants, 

ascorbate (Asc) and glutathione (GSH). 

 
Figure 4 

Panel A shows an aortic segment incubated with DAF-2 DA (10 µM) for 60 min and the NO- 

donor MAHMA-NONOate (200 µM), and viewed under fluorescence microscopy. For contrast, 

panel B depicts a similar cross-section of an aortic segment stained with H&E, and viewed under 

bright field microscopy. The similarity in staining patterns suggest that DAF-2 is significantly 

compartmentalized around the elastic laminae. Panel C represents a typical image obtained from 

a tissue incubated with DAF-2 DA under basal conditions (no NO-donor). Upon continuous 

exposure to UV light of 350 nm, the same tissue becomes increasing fluorescent, as shown in the 

sequence D and E.  The white bars in panels A and C represent 20 µm for the upper and lower 

panels, respectively. Panels C through E are depicted in a false-color scale, whereby the rainbow 

progression of colors from violet to red represent increasing levels of intensity. 

 
Figure 5 

Action spectra of NO formation in aortic tissues by UV illumination, assessed by (a) DAF-2 

nitrosation, and (b) cGMP formation. Both spectra indicate that the photoactive species 

responsible absorbs strongly at or below 310 nm. Each of the cGMP points shown represents the 

outcome of 4-6 experiments that were processed as described in the Methods section. 
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SAMPLE ORGAN BATH INCUBATION SEQUENCE 
 90 min 10min 60 min 15 min 

1 equilibration - - - 

  2     equilibration   L-NIO   DAF-2 DA 10 uM   -   

3 equilibration - DAF-2 DA 10 uM - 

  4     equilibration   -   DAF-2 DA 10 uM   350 nm light   

5 equilibration L-NIO DAF-2 DA 10 uM 1 mM MAHMANO 
 
 

Table 1 
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Figure 5 


