The University of Southampton
University of Southampton Institutional Repository

Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules

Cerwinka, Wolfgang H., Cooper, Dianne, Krieglstein, Christian F., Feelisch, Martin and Granger, D. Neil (2002) Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules American Journal of Physiology: Heart and Circulatory Physiology, 282, (3), H1111-H1117. (doi:10.1152/ajpheart.00391.2001). (PMID:11834510).

Record type: Article


Although platelets have been implicated in the pathogenesis of vascular diseases, little is known about factors that regulate interactions between platelets and the vessel wall under physiological conditions. The objectives of this study were to 1) define the contribution of nitric oxide (NO) to endotoxin (lipopolysaccharide, LPS)-induced platelet-endothelial cell (P/E) adhesion in murine intestinal venules and 2) determine whether the antiadhesive action of NO is mediated by soluble guanylate cyclase (sGC). Adhesive interactions between platelets and endothelial cells were monitored by intravital microscopy. LPS administration into control wild-type mice (WT) resulted in a >15-fold increase in P/E adhesion. Similar responses were observed using endothelial NO synthase (eNOS)-deficient platelets. However, treatment with the NO donor diethylenetriamine-nitric oxide (DETA-NO) attenuated the P/E adhesion response to LPS, whereas the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester or eNOS deficiency resulted in an exacerbation. P/E adhesion response did not differ between LPS-treated WT and inducible NOS-deficient mice. Inhibition of sGC abolished the attenuating effects of DETA-NO, whereas the sGC activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) reduced LPS-induced P/E adhesion. These findings indicate that 1) eNOS-derived NO attenuates endotoxin-induced P/E adhesion and 2) sGC is responsible for the antiadhesive action of NO.

Full text not available from this repository.

More information

Published date: 1 March 2002
Keywords: endotoxemia, nitric oxide synthase, soluble guanylate cyclase, postcapillary venules
Organisations: Clinical & Experimental Sciences


Local EPrints ID: 337867
ISSN: 0363-6135
PURE UUID: 4dfb7cd7-d6c3-481f-9a20-6bfdb0414b83
ORCID for Martin Feelisch: ORCID iD

Catalogue record

Date deposited: 22 Jun 2012 13:25
Last modified: 18 Jul 2017 06:00

Export record



Author: Wolfgang H. Cerwinka
Author: Dianne Cooper
Author: Christian F. Krieglstein
Author: Martin Feelisch ORCID iD
Author: D. Neil Granger

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.