The University of Southampton
University of Southampton Institutional Repository

The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation

Feelisch, Martin, Kotsonis, Peter, Siebe, Jan, Clement, Bernd and Schmidt, Harald H.HW (1999) The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation Molecular Pharmacology, 56, (2), pp. 243-253. (PMID:10419542).

Record type: Article

Abstract

Soluble guanylyl cyclase (sGC) is an important effector for nitric oxide (NO). It acts by increasing intracellular cyclic GMP (cGMP) levels to mediate numerous biological functions. Recently, 1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) was identified as a novel and selective inhibitor of this enzyme. Therefore, ODQ may represent an important pharmacological tool for differentiating cGMP-mediated from cGMP-independent effects of NO. In the present study, we examined the inhibitory action of ODQ both functionally and biochemically. In phenylephrine-preconstricted, endothelium-intact, isolated aortic rings from the rat, ODQ, in a concentration-dependent manner, increased contractile tone and inhibited relaxations to authentic NO with maximal effects at 3 microM. Pretreatment of vascular rings with ODQ induced a parallel, 2-log-order shift to the right of the concentration-response curves (CRCs) to histamine, ATP, NO, the NO-donors S-nitrosoglutathione, S-nitroso-N-acetyl-D,L-penicillamine, and spermine NONOate [N-[4-[1-(3-amino propyl)-2-hydroxy-2-nitroso hydrazino]butyl]-1, 3-propane diamine], and the direct sGC-stimulant [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole] YC-1 but did not affect relaxations induced by papaverine and atriopeptin II. Moreover, the rightward shift of the CRCs to Angeli's salt, peroxynitrite, and linsidomine was similar to that of NO. These results suggested that ODQ is specific for sGC. Furthermore, they indicate that NO can cause vasorelaxation independent of cGMP. Three interesting exceptions were observed to the otherwise rather uniform inhibitory effect of ODQ: the responses to acetylcholine, glycerol trinitrate, and sodium nitroprusside. The latter two agents are known to require metabolic activation, possibly by cytochrome P-450-type proteins. The 3- to 5-log-order rightward shift of their CRCs suggests that, in addition to sGC, ODQ may interfere with heme proteins involved in the bioactivation of these NO donors and the mechanism of vasorelaxation mediated by acetylcholine. In support of this notion, ODQ inhibited hepatic microsomal NO production from both glycerol trinitrate and sodium nitroprusside as well as NO synthase activity in aortic homogenates. The latter effect seemed to require biotransformation of ODQ. Collectively, these data reveal that ODQ interferes with various heme protein-dependent processes in vascular and hepatic tissue and lacks specificity for sGC.

Full text not available from this repository.

More information

Published date: 1 August 1999
Organisations: Clinical & Experimental Sciences

Identifiers

Local EPrints ID: 337881
URI: http://eprints.soton.ac.uk/id/eprint/337881
ISSN: 0026-895X
PURE UUID: d3b7a97f-2b05-437c-9dff-8a105dcd98c5
ORCID for Martin Feelisch: ORCID iD orcid.org/0000-0003-2320-1158

Catalogue record

Date deposited: 29 Jun 2012 11:21
Last modified: 18 Jul 2017 06:00

Export record

Contributors

Author: Martin Feelisch ORCID iD
Author: Peter Kotsonis
Author: Jan Siebe
Author: Bernd Clement
Author: Harald H.HW Schmidt

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×