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Abstract—A series of experiments were performed in order
to explore the effect of communication network structure
on collective sensemaking under a variety of informational
conditions. A multi-agent computational model of collective
sensemaking was used in which each agent was implemented
as a constraint satisfaction network. Within the simulations,
agents were tasked with the interpretation of information
indicating the presence of a particular object, and they were al-
lowed to share information with other agents while performing
this task subject to the constraints imposed by the structure
of a communication network. In all simulations, a minority
of agents (5) received evidence in favor of one interpretation,
while a majority of agents (15) received evidence in favor of a
conflicting interpretation. Communication networks with four
types of topological structure (i.e., disconnected, random, small-
world and fully-connected) were used in the experiments. The
results suggest that network topology influences the extent to
which minority views are able to influence collective cognitive
outcomes. In particular, fully-connected networks deliver a
performance profile in which minority influence is minimized
in situations where both minority and majority groups are
exposed to weak evidence. However, the same networks serve
to maximize minority influence when minority group members
are selectively exposed to strong evidence. These results suggest
that fully-connected networks differentially regulate minority
influence based on the kinds of evidence presented to both
minority and majority group members.

Keywords-sensemaking; distributed cognition; social influ-
ence; network science; social information processing.

I. INTRODUCTION

The emergence of network science as a scientific dis-
cipline in recent years has focused attention on how the
various features of social and communication networks can
affect aspects of human thought and action. The study of
social networks, for example, has yielded a number of
important findings regarding the effect of network structure
on the adoption of specific ideas or technological innovations
(see [1]), and such findings have important implications for
those who seek to influence the spread of specific beliefs,
attitudes and behavioral patterns throughout a target com-
munity. Other studies within the network science literature
have attempted to shed light on how particular features
of networks (for example, time-variant changes in network

structure) affect the dynamics of cognitive processing, either
at the individual or social (collective) levels [2], [3].

In general, there are two approaches to studying the
relationship between cognitive processes and the features
of social/communication networks. The first of these in-
volves the use of human subjects who are observed in a
specific experimental context. This is the approach typically
adopted by members of the cognitive and social psychology
communities. A second approach involves the use of multi-
agent simulation environments and computational models
of cognitive processing. This approach has the advantage
of enabling researchers to explore scenarios that would
be difficult or impossible to explore with human subjects;
however, it is an approach that has been criticized in
terms of the psychological plausibility and relevance of the
computational methods used to simulate aspects of human
cognition [4], [5]. Clearly, any computational model needs
to make some simplifying assumptions about the real-world;
otherwise it loses the elements of computational tractability
and explanatory concision that make it useful as an aid to
both analysis and comprehension. However, the problem
with many multi-agent simulations is that the agents are
too rigid and simplistic to be even approximate simulacra
of their real-world human counterparts. In many cases, the
agents are represented by single, time-variant numerical val-
ues, and they lack any kind of internal cognitive processing
capability. This is arguably a crucial limitation, and one that
needs to be addressed in the context of future work on multi-
agent cognition (see [6]).

The current series of experiments seeks to further our
understanding of the relationship between network structure
and the dynamics of collective cognition. It relies on the use
of multiple, inter-connected constraint satisfaction networks
(CSNs) in order to provide a model of what is called collec-
tive sensemaking. Collective sensemaking is an extension
of sensemaking abilities at the level of individual agents.
At the individual level, sensemaking has been defined as
“a motivated, continuous effort to understand connections
(which can be among people, places, and events) in order
to anticipate their trajectories and act effectively” [7]. The



notion of collective sensemaking simply extends this ability
to the realm of multiple agents. It refers to the effort of
multiple agents to coordinate their individual sensemaking
capacities in order to accurately interpret some body of
environmental information, which is typically ambiguous,
conflicting or uncertain in nature'. Collective sensemaking
is therefore a specific form of socially-distributed cognition
in which cognitive processing can be seen as involving
the information processing efforts of multiple, interacting
individuals [9].

The use of CSNs to provide a model of sensemaking
abilities is justified on the grounds that the ability to interpret
(make sense of) information (especially when that informa-
tion is incomplete, uncertain, ambiguous or conflicting) can
be seen as a form of constraint satisfaction in which an agent
attempts to establish a consistent set of beliefs subject to
the constraints imposed by background knowledge, initial
expectations and received information. In addition to this,
CSNs have been used to model a wide variety of psycho-
logical phenomena, including belief revision, explanation,
schema completion, analogical reasoning, causal attribu-
tion, discourse comprehension, content-addressable memo-
ries, cognitive dissonance and attitude change [10], [11],
[12], [13], [14]. This helps to address some of the issues
of psychological plausibility and relevance that are often
associated with computer simulation studies of collective
cognition.

By representing individual agents as CSNs, each engaged
in the process of making sense of environmental information,
a model of collective sensemaking can be implemented by
allowing agents to exchange information with one another
via communication links. These links enable agents to share
information about their beliefs with other agents, and they
support investigations into how factors like network structure
might affect collective sensemaking abilities. CSNs have
been used in precisely this way to explore the dynamics
of collective sensemaking in a couple of previous studies
[15], [9]. In one study, Smart and Shadbolt [15] used CSNs
to examine the way in which collective sensemaking was
affected by manipulations that altered the dynamics of inter-
agent communication. The current work extends these initial
observations in a number of ways. Firstly, the current work
uses a larger number of agents, which are connected together
in a greater variety of ways. All of the experiments described
by Smart and Shadbolt [15] involved the use of only 4
agents, and these agents were connected together using a

IThe notion of collective sensemaking resembles that of team sensemak-
ing [8], which has been defined as “the process by which a team manages
and coordinates its efforts to explain the current situation and to anticipate
future situations, typically under uncertain or ambiguous conditions” [8].
In the context of the current paper, we prefer to use the term collective
sensemaking. This is because the term ‘team sensemaking’ has typically
been applied to research contexts involving the study of human teams of
limited size. This is clearly unlike the current case, where the focus is on
synthetic agents and groups of (potentially) unlimited size.

fully-connected network topology. The current study uses 20
agents in each simulation, and these agents are connected
together using a variety of network topologies. Secondly,
the study by Smart and Shadbolt [15] aimed to investigate
the effect of a number of communication variables (e.g.,
communication frequency) on collective sensemaking using
a fixed body of environmental information. This contrasts
with the current work where the aim is to examine the effect
of different network structures on agents’ ability to make
sense of different bodies of environmental information.

The specific aim of the current work is to examine the way
in which different communication network structures (i.e.,
communication networks with different structural topolo-
gies) affect collective sensemaking performance under a
variety of informational conditions. Three experiments were
performed in which a minority of agents were presented
with evidence supporting one interpretation and a majority
of agents were presented with evidence supporting an al-
ternative, conflicting interpretation. The evidence presented
to agents at the outset of the simulation caused agents to
adopt different beliefs or views, and these were subsequently
subject to modification across successive processing cycles.
In the absence of any social influence (i.e., input from
other agents), agents developed cognitive states that were
consistent with the initial evidence they were provided with.
However, in situations where agent communication was
enabled, agents were forced to factor in the views of other
agents into their emerging belief states. Communication
networks with different structural topologies might be ex-
pected to differentially influence the dynamics of collective
cognitive processing in this situation; however, it is unclear
what the nature of this influence is at present. The three
experiments reported in this paper aim to shed light on this
issue.

II. METHOD
A. Computational Architecture

Details of the computational model used in the current
study are described in Smart and Shadbolt [15]. The CSNs
used in the current study are based on a model developed
by Schultz and Lepper [16], called the consonance model.
This model was used by Schultz and Lepper to replicate the
findings associated with a number of studies purporting to
study the phenomenon of cognitive dissonance [17].

Each agent within the current model is implemented as a
CSN based on the design specification outlined by Schultz
and Lepper. The nodes which make up each CSN at the
agent level are organized into a number of cognitive units,
each of which represents a particular belief or view held by
an agent. The agent depicted in Figure 1 shows the internal
structure of all the agents used in the current study. As can
be seen from Figure 1, each agent consists of 6 cognitive
units, and each of these units represents beliefs about two
types of animals, namely cats and birds. Four of the units
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Figure 1. Organization of cognitive units in a single agent. Nodes
represent cognitive units, each of which consists of two processing units.
Solid lines represent excitatory connections between the units, while broken
lines represent inhibitory links. Colored circles represent beliefs about the
features of objects (feature beliefs), while white circles represent beliefs
about the object type (object beliefs).

represent beliefs about the features typically associated with
objects, while the other two units represent beliefs about the
object itself. For convenience, the former are called ‘feature
beliefs’, while the latter are referred to as ‘object beliefs’2.

The pattern of connectivity between the units in Figure 1
reflects the compatibility or consistency between different
types of beliefs. Cognitive units can be connected to other
cognitive units via inhibitory or excitatory links, and these
reflect the background knowledge or experience that an
agent has of a particular domain. Whether the connection
between two cognitive units is excitatory or inhibitory in
nature depends on the compatibility or consistency of the
beliefs represented by the cognitive units. Thus, in our
simulations, agents are presented with the task of making
a decision about the type of an object (an animal) based
on limited information about the presence of its associated
features (e.g., whether it has feathers or fur). The result
is that cognitive units are always connected together in a
way that reflects the association of particular animals with
particular features. For example, the ‘cat’ cognitive unit is
always positively connected to the ‘meows’ and ‘has-fur’
units because if an agent believes that a cat is present then
they will also believe in the presence of cat-related features.
Similarly, the ‘bird’ cognitive unit is positively connected to
the ‘tweets’ and ‘has-feathers’ units because of the natural
association between birds and these features.

Note that it is a feature of these models that mutually
reinforcing sets of beliefs will tend to emerge across the
course of successive processing cycles. Thus, if the ‘has-
feathers’ unit was activated at the beginning of a simulation,
then both the ‘bird” and ‘tweets’ units would also become
active at later stages during the simulation. All these units
would then reinforce one another’s activation throughout the
remainder of the simulation. By the end of the simulation,

2The internal complexity of cognitive units is not described in the current
paper for reasons of space limitations (see the discussion in Smart and
Shadbolt [15] for more details about the internal structure of cognitive
units).

the agent could be said to believe that the object was both
a bird and that it had tweeting features, even though no
evidence for these particular beliefs was provided at the
outset of the simulation (e.g., in the form of an initial activa-
tion vector). The process of forming beliefs in the absence
of evidence reflects the inferential capabilities of an agent.
These inferences occur against a backdrop of background
knowledge, which is encoded in the organizational structure
(i.e., pattern of inhibitory and excitatory connections) of the
CSN.

In addition to a sign, indicating whether a connection
exerts an excitatory or inhibitory influence on its target node,
each connection has a weighting that determines the amount
of influence it exerts. Although these weights could assume
a variety of values, in the current study we limit all weights
to values of either 0.5 (excitatory) or -0.5 (inhibitory).

B. Computational Processing

Computational processing in each CSN proceeds by the
activation of particular cognitive units at the beginning of a
simulation®. This initial activation is deemed to represent an
agent’s beliefs or views at the outset of the simulation. In
the case of feature beliefs, the activation of each cognitive
unit reflects the agent’s beliefs or views in response to
information about the features of different types of objects
(in our case, either cats or birds). Computational processing
then occurs via the spreading of activation between the
cognitive units of the CSN following the pattern of excitatory
and inhibitory linkages between the units (see Figure 1). At
each processing cycle in the simulation, the activation of
each node in the CSN is updated according to the following
rules:

a;(t+1) = a;(t) + net;(ceiling — a;(t)) (1)

when net; > 0, and

a;(t+ 1) = a;(t) + net;(a;(t) — floor) (2)

when net; < 0.

In these equations, a;(t -+ 1) is the activation of node i at
time ¢+ 1, a;(t) is the activation of node 4 at time ¢, ceiling
is the maximal level of activation of the node, floor is the
minimum activation of the node (zero for all nodes), and
net; is the net input to node ¢, which is defined as:

net; = resist; Zwijaj 3)

J
where a; is the activation of node j that is connected to
node ¢, w;; is the weighting associated with the connection
between 4 and j (as mentioned above, w;; assumes values of

3Space limitations prohibit a detailed description of the computational
processing dynamics associated with the CSN model. For more details, see
Smart and Shadbolt [15] and Schultz and Lepper [16].



either 0.5 or -0.5), and resist; is a measure of the resistance
of node ¢ to having its activation changed. In general, the
smaller the value of this parameter, the greater the resistance
to activation change, and thus the greater the resistance to
cognitive change. One possible use of this parameter is to
make certain types of beliefs more or less resistant to change
than others; in the current simulation, however, we fixed the
resist; parameter at a value of 0.5 for all nodes.

At each point in the simulation, n nodes were randomly
selected and updated according to equations 1 and 2, where
n corresponds to the number of nodes in the (agent-level)
CSN. Agents were then allowed to communicate information
to their connected peers (i.e., their immediate neighbors
in the communication network). Communication involved
each agent contributing activation to connected agents based
on the activation levels of their own constituent nodes.
Each node was associated with a parameter, comminput;,
which is the weighted sum of activation received from all
talking agents. This parameter was updated according to the
following equation:

comminput; = Z Wi;Aj 4)
J

where A; represents the activation value of a node in
the talking agent and W;; represents the weight of the
connection from node j (in the talking agent) to node 7 (in
the listening agent).

At the next processing cycle, comminput; was incorpo-
rated into the activation equations by extending equation 3
as follows:

net; = resisti(z w;;a; + comminput;) 5)
J

Once the communicated activation had been incorporated
into the node’s current activation level, comminput; was
reset to zero in order to avoid repetitive presentation of
the same communicated information across successive pro-
cessing cycles. Processing continued until the pattern of
activation in each of the agent networks had settled down.
Typically, in the case of our simulations, 20 processing
cycles were sufficient for a stable pattern of activation to
be achieved.

C. Communication Networks

In order to examine the effect of network structure on
collective performance, agents were organized into com-
munication networks with different structural topologies.
Examples of these network structures are shown in Figure 2.
In the case of disconnected networks, no communication
links were included between the agents. Experimental con-
ditions involving this type of network structure allowed
us to examine the performance of agents when inter-agent
communication was effectively disabled and each agent
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Figure 2.  Examples of the different network structures used in the
experiments. Nodes represent agents and lines indicate channels of com-
munication.

functioned autonomously. The second type of network struc-
ture was the random network. Networks of this type were
created following the same procedure as that described in
Mason et al [3]. Bidirectional links between agents were
added at random between the agents until a specific number
of bidirectional links (i.e., 1.3 times the number of agents)
had been created. Given that all our simulations involved 20
agents, the number of bidirectional links added to random
network configurations was (1.3 x 20 =) 26. An additional
constraint used in the creation of random networks was that
every agent could be reached from every other agent (i.e.,
the network had a single component). The procedure for
generating the small-world network was also the same as
that reported by Mason et al [3]. In this case, agents were
initially connected into a ring structure. Six agents were then
selected at random and each of these randomly selected
agents was connected to another randomly selected agent
subject to the constraint that connected agents were at least
6 agents apart in the ring topology. Finally, in the case of
the fully-connected network, all agents were connected to
all other agents.

D. Procedure

Three experiments were performed in order to explore
the effect of different networks structures on the processing
of minority views. These experiments used the four types
of network structure described in Section II-C; the main
difference between the experiments was with respect to the
initial activation vectors used to activate nodes at the start
of each simulation. Table I shows the activation vectors that
were used in each experiment.



Table T
INITIAL ACTIVATION VECTORS USED IN THE EXPERIMENTS.

Experiment Agent Group cat has-fur meows | bird has-feathers tweets
Experiment 1 Mir}or_ity Group (5 agents) 0.0 0.1 0.0 0.0 0.0 0.0
Majority Group (15 agents) || 0.0 0.0 0.0 0.0 0.1 0.0
Experiment 2 Minority Group (5 agents) 0.0 0.2 0.0 0.0 0.1 0.0
Majority Group (15 agents) || 0.0 0.1 0.0 0.0 0.2 0.0
Experiment 3 Minority Group (5 agents) 0.0 0.5 0.0 0.0 0.0 0.0
Majority Group (15 agents) || 0.0 0.0 0.0 0.0 0.1 0.0

At the beginning of each simulation, 20 agents were
created and configured according to the description in Sec-
tion II-A. All agents were created with identical cognitive
architectures. Agents were then configured into one of
four communication network structures using the procedures
described in Section II-C.

At the beginning of each simulation 5 agents were selected
at random and assigned to a ‘Minority’ group; the remaining
(15) agents were assigned to a ‘Majority’ group. The agents
in each group were then initialized with the activation
vectors shown in Table I. In the case of Experiment 1,
the minority group were presented with weak evidence
that favored a cat interpretation, while the majority group
were presented with weak evidence that favored a bird
interpretation. The aim of this experiment was to examine
the effect of different network structures on sensemaking
performance when only weak evidence was available to all
the agents. In Experiment 2, conflicting information was
presented to agents in both the minority and majority groups.
The aim of this experiment was to examine the impact of
communication network structures under conditions of high
uncertainty or ambiguity. The third experiment examined the
effect of communication network structures under conditions
where a minority of agents received strong evidence in favor
of one interpretation, and a majority of agents received weak
evidence in favor of a conflicting interpretation.

After the initial activation levels had been established for
each agent, the simulation commenced and continued for
20 processing cycles. The activation level of both the ‘cat’
and ‘bird’ cognitive units was recorded from each agent
throughout each simulation. The activation levels of these
units at the end of the simulation (i.e., at the 20th processing
cycle) was subjected to statistical analysis.

The design for all three experiments was a two-way (4 X
2) factorial design with a between subjects factor of Network
Structure (with levels reflecting the types of networks tested:
Disconnected, Random, Small-World and Fully-Connected)
and a within subjects factor of Belief Type (with two levels
- Cat and Bird - each corresponding to the activation of the
‘cat’ and ‘bird’ cognitive units, respectively). The data were
analyzed using Analysis of Variance (ANOVA) procedures.
For each experiment, significant two-way interactions were
explored by running separate one-way ANOVAs at each
level of the Belief Type factor (i.e., separate ANOVAs

were performed for both the ‘cat’ and ‘bird’ cognitive unit
data). Comparisons between the activation levels obtained
for cognitive units across the 4 network structure conditions
were made using Tukey’s HSD test.

Fifty simulations were run for each of the different
network structure conditions. This yielded a total of (50 X
4 =) 200 simulations for each experiment. Given that there
were 20 agents in each network and we recorded from two
cognitive units, each experiment yielded a total of (20 x
200 =) 8000 data points for each experiment.

ITII. RESULTS

A. Experiment 1: Minority and Majority Views Based on
Weak Evidence

The results from Experiment 1 are shown in Figure 3A.
ANOVA revealed significant main effects of Network Struc-
ture (F(33096) = 11.908, P < 0.001) and Belief Type
(F(1,3006) = 2879.846, P < 0.001), as well as a significant
two-way interaction (F(3 3996y = 73.720, P < 0.001). The
interaction was explored by running two reduced one-way
ANOVAs at each level of the Belief Type factor. These anal-
yses revealed significant differences between the network
structures for both the ‘cat’ (F(3 3996) = 73.713, P < 0.001)
and ‘bird’ (F(3 3996) = 73.726, P < 0.001) cognitive units.
Post hoc comparisons using Tukey’s HSD test revealed that,
in the case of the ‘cat’ cognitive unit, all the activation levels
were the same, except for the fully-connected network in
which the level of activation was significantly below that
seen with other network types. Similar results were obtained
in the case of the ‘bird’ cognitive unit: activation levels
were the same across all network types with the exception
of the fully-connected network. In the case of the ‘bird’
cognitive unit, activation in the fully-connected network was
significantly above that seen with other network types.

B. Experiment 2: Minority and Majority Views Based on
Conflicting Evidence

The results from Experiment 2 are shown in Figure 3B.
As is suggested by Figure 3B, the activation of the ‘bird’
cognitive unit was, in general, higher than that of the ‘cat’
cognitive unit (main effect of Belief Type: (F(i 3996) =
2965.586, P < 0.001)). ANOVA also revealed a significant
main effect of Network Structure (F(33996) = 4.820, P <
0.01) and a significant two-way interaction (F(33996) =
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Figure 3. Mean activation levels of ‘cat’ and ‘bird’ cognitive units in each
of the four network structure conditions for Experiment 1 (A), Experiment
2 (B) and Experiment 3 (C). Standard error of the mean (SEM) is not
shown. In all cases, SEM was less than 0.03.

4.820, P < 0.01). ANOVAs at each level of the Belief Type
factor revealed significant differences across the network
conditions for both ‘cat’” (F(3 3996y = 4.817, P < 0.01) and
‘bird” (F(3 3996) = 4.824, P < 0.01) cognitive units. Post hoc
analyses revealed that the activation of the ‘bird’ cognitive
unit was significantly higher in the fully-connected network
versus the disconnected network. The reverse result was seen
in the case of the ‘cat’ cognitive unit (i.e., activation levels

in the fully-connected network condition were significantly
below that seen in the disconnected network condition). No
other differences between the network structure conditions
were observed at either level of the Belief Type factor.

C. Experiment 3: Minority Views Based on Strong Evidence
versus Majority Views Based on Weak Evidence

Figure 3C shows the results for Experiment 3. As with the
other experiments, ANOVA revealed significant main effects
of Network Structure (F(3 3996y = 11.038, P < 0.01), Belief
Type (F(1,3906) = 196.247, P < 0.001) and a significant two-
way interaction (F(3 3996y = 93.131, P < 0.001). Separate
one-way ANOVAS at each level of the Belief Type factor re-
vealed significant differences between the network structure
conditions for both the ‘cat” (F(3 3996) = 93.140, P < 0.001)
and ‘bird’ (F(3 3996) = 93.121, P < 0.001) cognitive units.
Post hoc analyses revealed significant differences between
the activation levels of the ‘cat’ cognitive unit across all the
network conditions with the exception of the small-world
and random networks, which did not differ from each other.
The same pattern of results was seen in the case of the ‘bird’
cognitive unit (i.e., significant differences were observed
across the different network structures with the exception of
the small-world and random networks). As is suggested by
Figure 3C, in the case of the ‘cat’ cognitive unit, activation
was greatest in the fully-connected network and lowest in the
disconnected network; activation in the random and small-
world networks was at an intermediate level between these
two extremes. In the case of the ‘bird’ cognitive unit, the
reverse pattern of results was obtained: activation was lowest
in the fully-connected network, highest in the disconnected
network, and at intermediate levels in the random and small-
world networks.

IV. DISCUSSION

The results of this study suggest that communication
networks with different structural topologies differentially
affect performance in a simulated sensemaking task under
a variety of informational conditions. Some of the most
interesting results were obtained with fully-connected net-
works. When minority and majority groups were presented
with weak evidence (Experiment 1), a performance profile
emerged in which the majority view predominated. This
is reflected in the higher average activation of the ‘bird’
cognitive unit in the fully-connected network condition
relative to that seen with other network types. It was also
the case that the minority view (reflected in activation of
the ‘cat’ cognitive unit) had less influence in fully-connected
networks relative to other networks (this is reflected in the
fact that activation of the ‘cat’ cognitive unit in the fully-
connected network condition was below that seen with other
types of network). Fully-connected networks therefore seem
to result in the discounting of minority views in favor in
majority opinions when weak evidence is presented to all



agents. In other words, when weak evidence is presented
to all agents and agents are configured into communication
networks with fully-connected topologies, then the evidence
available to minority groups has less influence on final
collective judgements compared to other types of com-
munication network structure (i.e., networks with random
and small-world topologies). This particular result may be
attributable to the greater speed at which information is
shared between agents in fully-connected networks. Because
all agents receive information from all other agents in fully-
connected networks, there is a tendency for minority views
to be swamped by the weight of initial majority opinion.
Other types of network, such as the small-world and random
networks tend to support information propagation rates that
are slower than those seen in fully-connected networks, and
thus there is greater chance that minority views will have
time to become established before majority influence begins
to take effect.

Experiment 3 differed from Experiment 1 in that it ex-
amined the effect of network structure on performance in
cases where minority group members were presented with
strong rather than weak evidence. In this situation, fully-
connected network topologies yielded a collective outcome
in which ‘cat’ beliefs predominated. This contrasted with
the results obtained with all other network types in which
‘bird’ beliefs predominated. The results seem to indicate
that fully-connected networks are particularly effective at
integrating minority views into collective judgements when
the evidence in favor of the minority view is high and the
evidence in favor of the majority view is weak. Random
and small-world networks were not as effective as fully-
connected networks in producing this effect, although they
were better than the situation observed in the disconnected
network condition. These results may be interpreted in
terms of the nature of the dynamics of social influence in
fully-connected networks. Fully-connected networks enable
strong, but uncommon, evidence to quickly influence the
beliefs of all agents before weaker, contradictory evidence
has had time to contribute to opposing beliefs. In the case
of small-world and random networks, weaker evidence has
longer to contribute to beliefs that are progressively more
resistant to change across successive processing cycles.

The profile of results seen in Experiment 3 is particularly
interesting when compared to the results obtained in Experi-
ment 1. In Experiment 1, fully-connected networks were the
most effective in terms of attenuating minority influence; the
same networks, in Experiment 3, were the most effective in
terms of promoting the influence of minority views. The
difference between these results stems from the relative
differences in the initial strength of minority versus majority
opinion.

Experiment 2 studied the effect of conflicting information
that was presented to both minority and majority groups.
Notwithstanding the significant differences between fully-

connected and disconnected networks, the results from this
experiment suggest that network topology has little effect
on collective sensemaking in this particular informational
condition. In all cases, inter-agent communication seemed
to result in a performance profile in which majority views
predominated.

V. CONCLUSION AND FUTURE WORK

The current work explored the effect of different network
structures in a simulated version of a collective sensemaking
task. This work extends earlier work that has used CSNs
to explore the dynamics of collective cognition [15], [18].
The results suggest that network topology influences the
extent to which minority information is able to influence
collective cognitive outcomes. In particular, fully-connected
networks deliver a performance profile in which minority
influence is minimized in situations where both minority and
majority groups are exposed to weak evidence. However,
the same networks serve to maximize minority influence
when minority group members are selectively exposed to
strong evidence. These results suggest that fully-connected
networks differentially regulate minority influence based
on the kinds of evidence presented to both minority and
majority group members.

There are variety of ways in which the current work
could be extended. One direction for future research is to
explore models in which agents have more complicated
belief structures; for example, agents could have a greater
number of beliefs arranged in more complex configurations.
In the current study, all cognitive units were configured so
that positive (excitatory) connections had a weight of 0.5 and
negative (inhibitory) connections had a weight of -0.5. One
extension of the current work is thus to examine the effect
of variable weightings between cognitive units. Since each
linkage between cognitive units represents a psychological
implication or association between belief states, the weight-
ing associated with inter-cognition linkages may be deemed
to reflect the strength of this implication or association.
We assume that inter-cognition linkages are acquired as a
result of prior learning, experience or training, and that they
reflect the background knowledge (including assumptions,
stereotypes and prejudices) that an agent brings to bear on a
particular problem-solving activity. Inasmuch as this is true,
we can see individual variability in the inter-cognition link-
ages as reflecting differences in the background knowledge
that was acquired before the simulation. Such manipulations
may have value in terms of shedding light on how individual
differences in background knowledge and experience can
influence the dynamics of collective cognition in a variety
of network-mediated communication contexts.
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