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In the field of stochastic structural dynamics, perturbatieethods are widely used to estimate
the response statistics of uncertain systems. When laiieipisystems are to be modelled in
the mid-frequency range, perturbation methods are ofterbawed with finite element model
reduction techniques in order to considerably reduce timepcation time of the response.
Existing methods based on Component Mode Synthesis (CNtsY #ie uncertainties in the
system parameters to be treated independently in each sfilistructures and the perturbation
in the local parameters to be propagated to the full systetmagparameters. However, local
treatment of damping uncertainty is usually avoided by @awsg proportional damping. Here,
a perturbation method that includes local modal dampingetamty and its propagation to
the global response is proposed. Local damping is accodatad the CMS model by use
of complex modes. A perturbation relationship betweenllaod global modal properties is
stated for non-classically damped systems.

1. Introduction

In the design stage of mechanical structures computedadgineering (CAE) methodologies
are used for modelling the behaviour of the structures atidngging their performance. The vibra-
tions of dynamic structures are often analysed using thee falement (FE) method. For large built-up
structures the FE analysis computational cost raises di@atiia as the analysis frequency increases.
This happens because the FE mesh has to be further refinedaenador small wavelengths cor-
responding to high frequency modes. Hence, modelling gfeldouilt-up structures is commonly
addressed using finite element sub-structuring and modetten techniques like component mode
synthesis (CMS), in order to considerably reduce compndime.

Nevertheless, the high computational cost due to FE mesbamqgrements is not the only issue
to be faced when the analysis frequency increases. An FElmmbdenechanical structure is charac-
terized through its physical parameters e.g. density, d&oas, Young's modulus, etc. It is therefore
a deterministic model defined by certain nominal values@férameters. In real structures, however,
it is impossible to know with infinite precision the value bbse physical parameters. Moreover, the
parameter values might be slightly different for each inséaof a manufactured structure. At low
frequencies these tiny variations/errors in the pararaetemot produce significant errors in the FE
solution. However, when the FE analysis frequency inciedbe modal frequencies and mode shapes
become very sensitive to small variation in the parametkrega This might give rise to major er-
rors in the computed FE response. Consequently, at mididrezies there is the need to account for
the uncertainties in the physical parameters in order topcenrobust estimates of the response of
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a system. The so called mid-frequency range is the frequemme in which uncertainties become
significant but, yet, statistical methods, such as stasistinergy analysis (SEA), do not give accurate
results due to the lack of modal density and modal overlap.

Stochastic Finite Element Method (SFEM) is the generic ngiven to the methods that intro-
duce uncertainties in an FE model and seek to compute notloaigominal response of the system
but also its statistics (mean responses, variances, eonas, confidence levels, etc). These SFEM
methods involve the use of Monte Carlo (MC) methods. Thatas)puting the system response for a
large amount of slightly different FE parameters sets, lisnamed Monte Carlo samples. As stated
above, Conducting a single FE analysis at mid-frequen@ssahhigh computational cost, notwith-
standing if FE analyses are to be run for a large amount of Mi@pses. The required computational
time then becomes impracticable. For this reason, SFEMadsthsually solve the nominal model
once and then make use of approximations in order to competeest of MC samples at a lower
computational cost.

In this context, component mode synthesis has been idehtdibe a suitable framework for
the quantification and propagation of uncertainties [1]. dde hand CMS allows the uncertainties
in the system parameters to be treated independently inaddahk substructures. This is convenient
in many cases since it is likely that the different parts afthup structures have distinct uncertain
nature. On the other hand, the use of perturbation methodseo@MS parameters makes it pos-
sible to drastically reduce the computational effort of Mente Carlo simulations. Nevertheless,
existing CMS perturbation techniques avoid the local tresit of damping by assuming proportional
damping. When designing dynamic structures, however, dagng usually added in localized zones
in order to reduce their noise and vibration levels. Thersfthe proportional damping assumption
appears to be quite inaccurate in these cases.

This paper presents a perturbation method for SFEM basedraplex component mode syn-
thesis. The main feature of this method is that complex madesused for the CMS component
modal basis. In this way, damping and damping perturbatiamsbe addressed at the component
level. Then, perturbations in the component parametergrapagated into full system modal param-
eters through a first order approximation sensitivity refaghip, so that the statistics of the frequency
response functions for systems with localized damping eacomputed at a low computational cost.

2. Component mode synthesis, perturbations and damping

Component mode synthesis was introduced in the 1960’s byyH2F and Craig and Bamp-
ton [3] and it is nowadays a well established sub-structur@chnique. Classical CMS methods are
defined for undamped systems, where the structure is dividedeveral components and their un-
damped free/fixed interface modes are computed. Model tietuis obtained by truncating the series
of undamped component modes. Damping is assumed to be pos@band therefore itis introduced
directly into the global modes once the full structure ungachsolution has been computed.

In uncertainty analysis, perturbation approaches have bien used together with component
mode synthesis [1, 4, 5]. In 1968 Fox and Kapoor [6] derivest &ind second order expressions for
the rate of change of modal frequencies and mode shapes geetobation in physical parameters.
Based on Fox and Kapoor, Mace and Shorter developed thenhmxtd| perturbational (LMP) method
[4] in which the mass and stiffness matrices expressed id fixerface Craig-Bampton coordinates
were introduced into the Fox and Kapoor linear expressitmghis way they derived a simple sen-
sitivity expression relating the perturbations in compun®odes to the global modal frequencies
and mode shapes. In this and other methods classical CMSufation is used, which implies that
damping is not introduced at a component level.

Over the last decades, however, other CMS methods have beeloded so that non-proportional
damping can be included at a component modal level. For ebeari@paig and Ni [7] developed the
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inertia-relief attachment modes method based on a firstr at@d¢e-space formulation. Wang and
Kirkhope [8] extended the method using complex modes angntoupling interfaces, naming it
complex component mode synthesis. More recently Morgah ¢®pderived an alternative formu-
lation using also complex modes that is a direct extensighdéamon-proportionally damped case of
the classical Craig-Bampton methods. Thus, it should beiplesto develop new perturbation based
methods that include non-proportional damping formutatitndeed, Fox and Kapoor's linear ex-
pressions were extended to the non-proportional viscoompuhey case by Adhikari [10] some years
ago. However, these expressions are not directly appédallCMS formulation.

Recently, Ouisse et al. [11] presented a robust CMS methmithéooptimization of stochastic
damped systems. In their work they work out an ad-hoc fortiardor the fluid-structure coupling
case. The Ritz basis is enriched with static residuals &sgsocwith visco-elastic and poro-elastic
behaviour, and with the static response of residual foraesd structural modifications.

The purpose of this paper is to present an alternative mettatds able to perform uncertainty
analysis based on perturbations using the CMS formulatiahihcludes damping at a component
level. The main idea is to extend the LMP method for non-atafly damped cases. This is done in
a straightforward manner by use of complex component moxlénegis.

3. Component mode synthesis

Component mode synthesis is a method to solve in an efficiagtthe finite element model
of a system. CMS performs modal analysis for the undampe@rsysand modal damping is later
introduced into the undamped modes. From the equations tdmaf an undamped system

Mii+ Ku = f (1)

the modal parameters can be computed by solving the eigenpabblem (EVP) for the homoge-
neous equations of motion
K¢ = Mo ©)

where) and¢ are the eigenvalue and eigenvector solutions respectiZalsh solution of the EVP is
an undamped mode of vibration, with ¢,,, being its mode shape and, since Equation 1 is a set of
second order differential equations, being its squared modal frequency,.

A = w2 3)

Rather than solving the full system EVP (Equation 2), CM&sfhe system inte subsystems
or components. Each component has, degrees of freedom (DOFs), which are a subset ofXhe
DOFs of the FE model. In turn, the component DOFs are splt ¥, interior DOFs andV.,,
coupling interface DOFs. The displacementin each component reads

uy m @)

U

By means of a coordinate transformati@h, each component’s displacement is posed in a
component modal basis.
u, = Trqr =T, |:q3:| (5)
q.],

wheregq, , andg,, correspond to the interior and coupling DOFs respectivEhe basis consists of
N;, local modes of the component. If all modes are used to create the thastransformation in
Equation 5 is exact. However, if the basis is truncated up s$maller number of local modes the
transformation is an approximation that will give no sigrafit error in the frequency range below

3



19" International Congress on Sound and Vibration, Vilniushuania, July 8-12, 2012

the highest kept modes. In this way model reduction is aellieVhe components’ mass and stiffness
matrices are transformed as well, i.e.

K'=T'K.T,; M?=T"M.T, (6)

The components’ transformed response and matrices areaséembled together imposing
continuity in the coupling interfaces. This yields a fulksgm reduced responggeand reduced mass
M and stiffnesg<? matrices. Hence, the equations of motion (Equation 1) cgobed in terms of
the reduced basis, and the modal analysis is performed ynga reduced EVP

K9¢% = AM%¢" 7)

where the original mode shapes are recovered by using ti&fdranationp = T'¢9.

4. Complex component mode synthesis

Complex component mode synthesis (CCMS) considers theofysty) damped equations of
motion of the FE system.

Mi+Cu+ Ku=f (8)
In order to perform modal analysis over the damped modeldbateons of motion have to be posed
in state-space formulation.
0Mﬁ+—MO w| |0 )
M C| |4 0 K| |u|l |f

Equation 9 can be rewritten by introducing the state-spasjganse vectat consisting of the velocity
u and displacement vectors of the FE model.

Az + Bx = f* (20)
In this way, an EVP in state-space form can be solved in oal#nd the system modes.
Bé® = A\ AG* (11)

The solutions of this EVP are the complex eigenvaligsand complex eigenvectors,. Here the
bar indicates that they are complex numbers. Due to the attstate-space formulation has been
introduced, the number of degrees of freeddidoubles with respect to the EVP for undamped
modal analysis (Equation 2). Hence, the number of modaltisolsi V,,, is also doubled. Since
Equation 10 is a set of first order differential equationg, ¢igenvectors correspond to the system
modal frequencies
A = —ip, (12)
and they come in complex conjugate pairs and \*,, given thatA and B are Hermitian matrices.
The eigenvectors come in complex conjugate pairs as wellttey consist of the displacement mode
shapes),, and velocity mode shapés,.
_ 0, :
=g o= (13)
Analogously to classical CMS, component sub-structuigoegiponent modal basis transforma-
tion (x = T ¢*), and model order reduction can be defined for the stateedpd®, so that a reduced
complex EVP is obtained.
BT g7 = NAT g7 (14)
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4.1 Complex component mode synthesis with fixed interface co mplex modes

One possible CCMS method is the one defined in [9], which igdtrect extension to CCMS
of the classical Craig-Bampton free interface CMS. For thigppse of this paper, it is convenient to
use a fixed interface counterpart of this method. Theretbeefixed interface CMS direct extension
to CCMS is presented next.

Following the sub-structuring notation introduced in gat, the state-space response vector
for each component reads

Ty = [u] y Lir = [u1:| y Ler = [uc:| (15)
ul ’ u;i ’ U]

Then, the component responsecan be expressed in terms of a fixed interface complex modes ba

_ 0 qs
2 —T'q" quzH ~ a, (16)

Lc
U, -

The interior DOFs transformed respongg, is expressed in terms of the fixed interface complex
modes. The coupling interface DOFs respo@se remain being the physical velocity. and dis-
placementu,. vectors.

The complex transformation matrix consists of two stateesgsub-matrices, the fixed interface
mode shapes matri®;, and the constraint modes matflx’. The state-space fixed interface modes
are computed by solving the state-space EVP for the compamenor DOFs.

Bii,réir - S\T‘AZ'Z',T‘QZ;Z@,T (17)

The state-space constraint modes are analogous to thedbeised in Craig-Bampton fixed interface
CMS, ¥, ., = ~K ! K,.,. This happens because the static constraint relation faidise velocity

i,r

DOFs as it does for the displacement DOFs.

\Ilic . O \Ilic .
U, = [ICC:| ) Ueyr ;5 Uy = [Icc] ) U, (18)

Thus, the complex modes transformation matrix reads

Bl 57 T cs Icc Occ
TT B [q)r \IIT} B <i)zls Oic lI’ic (19)
Ocs Occ Icc

T

and, assumin@; to be B, normalised, the component transformed matrices show the stiucture
as for undamped fixed interface CMS

- _qz i _qfli
g Bsg] AT = [I_f; Asg] (20)
BCS BZC ACS AZC

— T

B! =

r

with [&SM a diagonal matrix containing the complex fixed interfaceem'@luesz, andI,, an
identity matrix of the same size.

Finally, conveniently arranging together the interior rabcesponseg; = (J, ¢¢, and the
coupling responses. = J, z.,, SO that

L

¢ = H (21)
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the full system transformed matrices are obtained by asiyemhthe component transformed matri-

ces. B . .
j};‘; B, Ll AT = {ga A . (22)
Bct Zr Bgc,r A Zr Aq

ct

ce,r

5. Local modal perturbational method

The LMP method [4] is a method that estimates the statisfiésequency response functions
of a system at small computational cost. In LMP the systenvided into CMS components and the
uncertainty in each component is assumed to be uncorrdiaiedthe uncertainty in other compo-
nents. Then, the uncertainty in each component is quantifiedms of the local modal properties of
the component. Then, the uncertainty in the component meggepagated to the full system modes
based on Fox and Kapoor’s formulation [6].

Fox and Kapoor’s expressions describe the sensitivity efaorped modal frequencies and
mode shapes of the full system to the variation in a physiaepeter.. For example, the linear
expression for then'th eigenvalue relates the perturbatidh,, in the eigenvalue due to a perturba-
tion oy in the physical parameter

Am = P {8—1{ — Amaﬂ] o, 0L (23)
" O ol
and it follows from the partial derivative of Equation 2 witspect to the parameterwith ¢,, being
M normalised. If this expression is posed in terms of the CM&itdation, the perturbation of the
m’th global eigenvalue due to perturbation in thth local eigenvalue can be described
OK1 oM

— - q
Y (24)

where);, = ;.

Now, for simplicity, assume that uncertainty is only preserthe component modal frequen-
cies, i.e. components have deterministic mode shapes amdirng interfaces. Examining the sys-
tem’s mass and stiffness matrices in fixed interface Cragygton form

Ay O I, M!
q _ . q __ c
K= [0 S K¢ } M= [Mgt S M (25)

ce,r ce,r

only the eigenvalues sub-matrix;; depends on\; under the assumptions above. Hence, all other
sub-matrices derivative% in Equation 24 equal zero. Furthermore, since local eigapgaare
independent one to another, Equation 24 reduces to a siraglgipation relationship.

OAm = (Dh)” 6N (26)

If all component local eigenvalues are perturbed, the fmetlirbation in then’th global eigen-
value is given by
m =Y (0F,)" 6N (27)
t
Proceeding analogously, a similar relationship for theéysbation of global mode shape vectors due
to perturbations in local eigenvalues can be found from #spective Fox and Kapoor’s linear ex-

pression.
Sp? = Z M(bq S\ (28)
" n#m )\m N )\n !

t
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6. Complex local modal perturbational method

In this section, the direct extension of the LMP method to CZMlpresented. In the same way
the rate of change of eigenvalues (Equation 23) is obtanoed the derivation of the EVP in Equation
1 with respect tq, the rate of change in CMS form (Equation 24) is derived froederivation of the
CMS-EVP in Equation 7 with respect #g. Therefore, it is apparent that, by deriving the state-spac
EVP in Equation 14 with respect tg, an analogous expression for CCMS is obtained.

A= [80] [ag—qz A ] oA (29)

O\ " ON

Using the fixed interface complex modes method presenteztiios 4.1, the state-space trans-
formed matricesB? and A? show the same characteristics as the transformed massitineisst
matrices in the undamped LMP method (cf. Equations 22 and2refore, under the assumptions
considered in the LMP method a simple perturbation relatigmis derived for complex eigenvalues.

5 = (972) 5% (30)

Notice that complex conjugate eigenvalue pairsiip are also independent since for any complex
numberz € C the partial derivative of the complex conjugate functiozéso,% =0.

Thus, the complex local modal perturbational method usesithple perturbation relationships
for the system’s complex eigenvalues and eigenfrequencies

A=Y (‘gﬁ;)Q S (31)

t

Z (Z gbmtgbnt Y z) 55\2& (32)

n#Em

to compute the statistics of the frequency response fumetd the system.

6.1 Perturbation of local modal frequencies

A significant difference between the undamped and the darmpEtimethods is that the local
eigenvalues\, and \, do not represent the same physical quantity. (cf. Equatioaad 12). A
damped modal frequency; is determined by the corresponding undamped modal frequenand
modal damping factow;. If the uncertainty in the); andr, parameters is assumed to be independent,
these parameters might be perturbed independentlyu.eanddrn;, in order to perturb the complex
damped eigenvalues,i.e.

0N = N (wi + Swy, my + 0my) — Ny (wi, mt) (33)

For example, for viscously damped componentsuhandrn; parameters can be obtained di-
rectly from the nominal local eigenvalues

wtszt\ oM = — (34)

so that independent perturbations can be applied to bo#mpeers, from which the perturbed eigen-

values follow.
N = —wy (%) — w1 — (%)2 (35)
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7. Conclusions

A new perturbation method for SFEM based on complex compiamexe synthesis has been
presented. The method is an extension of the local modalnpational method for non-classically
damped systems. As in the LMP method, the computationalaggaires from the fact that the nominal
FE model of the system has to be solved only once, and all dtbate Carlo samples are computed
using the computationally cheap modal perturbation m@tetips. Introduction of the state-space
formulation makes it possible to treat damping at a compblemel. This is done at the price of
doubling the number of degrees of freedom of the EVP to sdltie.computation time for propagat-
ing the perturbations is also increased with respect to mpea LMP, since complex LMP presents
twice as many eigenvalues and these are complex valuedrtNelass, the overall computation time
is several orders of magnitude lower than performing a ftgtem solving Monte Carlo simulation.
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