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Abstract 
 
It is well known that the Durbin-Watson and several other tests for first-order 
autocorrelation have limiting power of either zero or one in a linear regression model 
without an intercept, and tend to a constant lying strictly between these values when an 
intercept term is present.  This paper considers the limiting power of these tests in models 
with restricted coefficients.  Surprisingly, it is found that with linear restrictions on the 
coefficients, the limiting power can still drop to zero even with the inclusion of an 
intercept in the regression.   It is also show n that for regressions with valid restrictions , 
these test statistics have  algebraic forms equivalent to the corresponding statistics in the 
unrestricted model.    
 
 
I. Introduction 
 
The Durbin-Watson (DW) test is by far the most common test for first-order 
autocorrelated (AR(1)) errors.  Over the past three  decades there has been a sizable 
literature on the power properties of the DW test  and its power comparisons with various 
other testing procedures under differing circumstances.  Several of these papers have  
appeared in this Review.  See, for example, Blattberg (1973), Schmidt & Guilkey (1975), 
Bartels & Goodhew (1981), White (1992), among others.  For a survey of the literature 
on testing for autocorrelation, see King (1987).  A number of authors  have shown that the 
power of the DW test can drop to zero when the autocorrelation coefficient in the AR(1) 
process is close to one.  Krämer (1985) found that in a linear regression without an 
intercept, the limiting power of the DW test is either zero or one, and whether the limit is 
zero or one is determined by the sign of an eigenvalue that depends on the underlying 
regressor matrix.  Krämer & Zeisel (1990)  provided further analytical evidence 
suggesting that in addition to the DW test, the alternative DW (ADW) (King, 1981), the 
Berenblut-Webb (BW) (Berenblut & Webb, 1973), and King’s point optimal (King, 1985) 
tests  can all have zero power when the correlation between neighbouring errors is close to 
one.  The latter two tests are most powerful invariant in a given neighbourhood of the 
alternative hypothesis’ parameter space.  So it may very well happen that all of these tests 
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do not reject the null hypothesis of no autocorrelation, but that nevertheless the 
neighbouring disturbances are nearly perfectly correlated. On the other hand, Zeisel 
(1989) proved that in the model with an intercept, the DW test has limiting power that 
never reaches unity or drops to zero.  Small (1993) showed that Zeisel’s (1989) results 
apply also to the ADW, BW and King’s point optimal test s.  It appears therefore that, by 
adding a constant to the model, one can avoid the worst scenario of the autocorrelation 
tests having no power at all as one approaches the unit root.   
 
There is surprisingly very little written on the DW and other autocorrelation tests in 
models with restricted coefficients.  On the other hand, there is some indirect evidence 
which suggests that the DW test applied to the  restricted regression has somewhat similar 
properties to that applied to the unrestricted model.  Giles and Lieberman (1992) studied 
the size and power of the DW test when its application is preceded by a preliminary t-test 
on the significance of a coefficient.  Their Monte-Carlo results indicate no size distortion 
for the DW test applied without pre-testing to the restricted model when the restriction is 
true; but if the false restriction is imposed without pre-testing, then the subsequent DW 
test generally yields sizes far greater than the nominal size.  The restricted version of the 
DW test is generally more powerful than the corresponding unrestricted and pre-test 
versions of the test when the restriction is true; if the restriction is false then, the power of 
the restricted DW test can be vastly inferior to the other two.   Giles and Lieberman (1992) 
also reported the possibility of very poor power properties of the pre-test DW test when 
highly correlated errors are combined with a grossly incorrect restriction.  Dufour (1990), 
on the other hand, suggested a joint procedure for testing linear restrictions on the 
coefficients and autocorrelated errors.  This procedure, however, fails when applied to the 
testing of a zero intercept at the unit-root. 
 
In this paper we present analytical results on the limiting power of the DW, ADW, BW 
and King’s point optima l tests when applied to a model with linear restrictions on the 
coefficients.  For a restricted regression with no intercept, it is found that the limiting 
power of all four tests tends to either one or zero as in the case of an unrestricted model; 
but with restrictions on the coefficients, these limiting power characteristics can still 
apply even with the inclusion of an intercept. The latter finding provides an interesting 
contrast with the existing results on the power properties of these tests in the unrestricted 
model.  Whether or not the restrictions are in fact valid has no effect on the limiting 
power of the tests.    On the other hand, provided that the restrictions are correct, there is 
an algebraic equivalence between these test statistics and the ir unrestricted model 
counterparts. 
 
The rest of this paper is organized as follows. Section 2 below introduces the model and 
test statistics, while Section 3 presents the main results.  Section 4 concludes the paper.   
 
 
II. Model framework, test statistics and notations 
 
We consider the following linear regression with possibly AR(1) errors: 
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where y and u are 1n? random vectors, X is an n k? non-stochastic matrix of full 
column rank and ?  is a 1k ?  vector of unknown coefficients. In addition to sample 
information, there exists prior information in the form of the following set of m 
independent linear restrictions on the coefficients: 
 
 R r? ?  ,                (2) 
 
where R is an m k? known prior information design matrix of rank m  and r is a 

1m? vector of known elements.  We are interested in testing the hypothesis of 
: 0oH ? ? of no first-order autocorrelation versus 1 : 0.H ? ?   It is assumed tha t tests of 

oH are preceded by fitting the regression (1) with the linear restrictions (2) incorporated.   

Let 2( ') ( )E uu V? ?? .  Clearly, (0) ,V I?  an identity matrix.  Imposing the restrictions in 
(1) gives rise to the restricted least squares (RLS) estimator  
 

 ? ? ? ?11 1ˆ ˆ( ) ( ) ( ) ( ) ( )S R RS R r R? ? ? ? ? ? ? ?
?? ?? ?? ? ?? ,           (3) 

  
where 1 1ˆ( ) ( ) ( )S X V y? ? ? ?? ???  and 1( ) ( ) .S X V X? ????   In practice, prior to testing 

,oH the estimator used is the one in (3) with 0,? ?  i.e.,  
 

 ? ? ? ?11 1ˆ ˆ(0) (0) (0) (0) (0)S R RS R r R? ? ?
?? ?? ?? ? ??  .           (4) 

 
Let 
 1 1( ) ( ) ( )M I XS X V? ? ?? ??? ? ,              (5) 

? ? 11 1 1 1( ) ( ) ( ) ( ) ( ),B XS R RS R RS X V? ? ? ? ?
?? ? ? ?? ? ??            (6) 

and  

? ? 11 1( ) ( ) ( ) ( ) /XS R RS R R r? ? ? ? ? ?
?? ?? ?? ? .            (7)

  
 If the restrictions are correct then ( ) 0,? ? ? for which 
 
 ? ?( ) ( ) ( ) ( ) .y X M B u M u? ? ? ? ?? ? ? ??             (8) 
 
On the other hand, if the restrictions are incorrect, then ( ) 0? ? ? . Thus,  
 
 ( ) ( ) ( ).y X M u? ? ? ? ? ?? ? ??              (9)  
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Equation (9) is the vector of residuals corresponding to the RLS estimator given in (4) for 
? =0.   
 
We consider the test statistics which can be expressed as ratios of the following quadratic 
form: 
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where o?  is a known constant.  Note that (10) is in fact the generalized likelihood ratio 

test for testing the hypothesis of the autoregressive parameter being zero or o?  if we take 

o? ?? and 1( )oQ V ???  under the assumption that .R r? ?    
 
Below we give the restricted regression analogues of four of the autocorrelation test 
statistics considered in Krämer & Zeisel (1990): 
 
i) The DW test:   The restricted DW test statistic is given by (0, ),G A where  
 

  

1 1 0 ...... 0
1 2 1 ...... 0
. . . . .
. . . . .
0 0 ..... 2 1

0 0 ..... 1 1

A

?? ?
? ?? ?? ?
? ?

? ? ?
? ?
? ??
? ?? ??? ?

.           (11) 

 
ii) The ADW test: For this test, the test statistic has the form 1(0, ),G A  where 

1 ,A A C? ? and C is an n n? matrix whose top left and bottom right elements are 
one and all remaining elements are zero.  For regressions without restrictions , this 
test is found to be more powerful than the DW test against negative 
autocorrelation, with the reverse being the case against positive autocorrelation.  
See King (1981).   

 
iii) The BW test:  Here o? = 1 and Q W? in (10) (i.e., 1(1)V ? is replaced by W), where  
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2 1 0 ...... 0
1 2 1 ...... 0
. . . . .
. . . . .
0 0 ..... 2 1

0 0 ..... 1 1

W

?? ?
? ?? ?? ?
? ?

? ? ?
? ?
? ??
? ?? ??? ?
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Empirical evidence has suggested that this test has a very clear power advantage 
over the DW test for large values of ?  in the unrestricted regression. 

 
iv) King’s point optimal ( 1( ))s ? test:  This test corresponds to setting 1o? ??  and 

1
1( )Q V ???  in (10) for some known constant 1.?  For the unrestricted model, 

King (1985) showed that this test is most powerful invariant in a given region of 
the alternative hypothesis parameter space.  By construction, this test yields a 
different test statistic for each choice of 1.?    The BW and the 1( )s ? tests are 
approximately identical as 1 1.? ?  

 
 
III.  Main results 
 
In this section, we consider the limiting power of the test statistics based on the quadratic 
form ( , )oG Q?  given in (10).  Using results from Banerje e and Magnus (1999), we can 
write  

2

1
( )

1
V LL?

?
??

?
              (13) 

where 2
1 ( ),oL L L O? ?? ? ?  21 ,? ?? ? ? ?( 1), 0 ,o n nL i ? ?? 1

0 0
0

L
?? ?

? ? ??? ?
 , and ? is an 

( 1) ( 1)n n? ? ? lower triangular matrix with ones on and below the diagonal and zeros 

elsewhere.  Write ,u L
??
??

? ?
? ? ?

? ?
 where ?  is a scalar, ? is an ( 1) 1n ? ? vector, and 

~ (0, ).nN I
?
?

? ?
? ?
? ?

  Then we have 

 

 ? ?2( )pu i P O
?

? ? ? ?
?

? ? ?  ,            (14) 

 
where P J? ? and 1(0, ).nJ I ???   Upon substituting (14) in (10), we obtain 
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So when (0) 0,M i ?  
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On the other hand, if (0) 0,M i ? then ( ) 0,oM i? ? ( ) 0oB i? ?  and hence ( ) 0.oM i? ?   
Therefore, we have 
 

 
? ? ? ?

? ? ? ?
( ) ( ) ( ) ( )

( , ) ( ),
(0) (0) (0)

p
o o o o

o

P M QM P
G Q g

P M P

? ? ? ? ? ? ? ?
? ?

? ? ? ?

? ?? ?
? ?

?? ?
        (17) 

 
when (0) 0.M i ?    Note that (16) and (17) hold regardless of the validity of the linear 
restrictions R r? ? . 
 
Combining (16) and (17), Theorem 1 follows at once.   
 
Theorem 1:  Consider model (1) subject to the linear restrictions .R r? ?  The following 
results apply irrespective of whether r R?? is a zero vector : 
 
1) if (0) 0,M i ? then  

? ?
*

*1

1      if 
limPr ( , )    ;

0     if 
o

g c
G Q c

g c?
?

?

? ??? ? ?
???

           (18) 

 
2) if (0) 0,M i ? then  
 

? ? ? ?
1

limPr ( , ) Pr ( )    ,oG Q c g c
?

? ?
?

? ? ?            (19)

  
where c is an arbitrary constant and *g and ( )g ? are defined in (16) and (17), respectively. 
 
Let us interpret Theorem 1.  The case where (0) 0M i ? arises if and only if (0) 0,M i ?  or 

(0) 0M i ? and (0) 0.B i ?   Observe that if the regression contains no intercept, 
then (0) 0,M i ?  otherwise (0) 0.M i ?   Also, (0) 0B i ? if at least one restriction in R r? ?  
involves the intercept.   So part 1) of Theorem 1, which states that the limiting power will 
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be either one or zero, holds for both regressions with and without an intercept, and in the 
case of the former, at least one restriction must involve the intercept12.   
 
The limiting power in part 1) is determined by the non-zero eigenvalues of the 
matrix ( ) ( ) (0) ,o oM QM cM ii? ?? ?? ??? ? which has rank of at most one.  When (0) 0M i ?  

and * ,g c? ( ) ( ) (0)o oM QM cM ii? ?? ?? ??? ? has a unique non-zero eigenvalue whose sign 

determines the limiting power of ( , );oG Q? if * ,g c?  this eigenvalue is positive and the 

limiting power takes the value of 1; alternatively, if * ,g c? this eigenvalue is negative  and 
the limiting power is 0.   In part 2) of Theorem 1, the limiting power is a constant lying 
strictly between zero and one.  This occurs when (0) 0,M i ? or 
equivalently, (0) 0M i ? and (0) 0B i ? , i.e., the model contains an intercept but the 
restrictions do not involve the intercept.  Thus the existing results, which in particular 
have shown that the limiting power of test cannot drop to zero or reach one when the 
(unrestricted) regression contains an intercept, do not apply to regression models with 
linear restrictions. It is possible for the tests to have zero power even with the inclusion of 
an intercept in the model if at least one of the linear restrictions involves the intercept, 
irrespective of whether the restrictions are in fact valid.  Theorem 1 yields the 
corresponding results for the unrestricted model when 0,m ?  then (0) (0)M M? and the 
two parts of Theorem 1 give the limiting power characteristics of the tests for the 
regressions with no intercept and with an intercept, respectively.   
 
So, it is clear from the foregoing discussion that the four test statistics in rest ricted 
regressions do not possess the same properties as their unrestricted counterparts.  
Nevertheless, provided that the restrictions are correct, there is an interesting 
correspondence between the unrestricted and restricted versions of the statistics as one 
moves from the unrestric ted model to the restricted model:    
 
Theorem 2: Let the restrictions R r? ?  hold.   Then with a suitable data transformation, 

( , )oG Q? and the corresponding quadratic form in the unrestricted regression are 
algebraically equivalent. 
 
Proof: Our proof requires the following Lemma from Rao (1973, p.77) : 
 

                                                 
1 Note that zero restriction on the intercept would imply, the restricted model is same as an unrestricted 
model with no intercept, and the corresponding results are well-known from the work of Krämer (1985) 
and Krä mer and Zeisel (1990).  
 
2 The case of models testing for non-zero restrictions involving the intercept often comes up in the context 
of the Solow growth models.   These models look at the Solow residuals between countries and test for the 
differences in productivity growth represented by the intercept term, and then compare them with the 
productivity growth of the benchmark region (see Bernard and Jones, 1996).  Our results in Theorem 1 
suggest that diagnostic checking for AR(1) errors in such models may be prone to errors because the power 
of the autocorrelation tests may be low.    
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Lemma 1: If V is any n n?  positive definite matrix, and U and T are n k? and 
( )n n k? ? matrices, respectively, such that ( | )U T is orthogonal, then we have 

 
 1 1 1 1 1 1( ) ( )V V U U V U U V T T VT T? ? ? ? ? ?? ? ? ?? ?  .          (20) 
 

Now, since the matrix R is of rank m, we can write ? ?( )| 0m m m k mR I P? ? ?? ? , where ? is 

an m m? orthogonal matrix and P is a k k?  non-singular matrix.  Denote * 1X XP?? and 
* ( |0).R I? ?   When ,R r? ?  the test statistic ( , )oG Q? can be written as 

 

 
* *

*

( ) ( )
( , )

(0)
o o

o
u M QM u

G Q
u M u
? ?

?
??

?
?

  ,          (21) 

 

where * * *( ) ( ) ( ),o o oM M B? ? ?? ?  * * * 1 * 1 * 1( ) ( ( ) ) ( )o o oM I X X V X X V? ? ?? ? ?? ?? ?    and 

? ? ? ?
1 1* * * 1 * 1 * * * 1 * 1 * * * 1 * * 1( ) ( ( ) ) ( ( ) ) ( ) ( ).o o o o oB X X V X R R X V X R R X V X X V? ? ? ? ?

? ??? ? ? ? ? ?? ? ? ? ??

Consider a ( )k k m? ? matrix ? such that ? ?* |R ? ?  is orthogonal.  Then from Lemma 1, 

we have 

? ? ? ?
1 1* 1 * 1 * 1 * 1 * * * 1 * 1 * * * 1 *( ( ) ) ( ( ) ) ( ( ) ) ( )o o o oX V X X V X R R X V X R R X V X? ? ? ?

? ??? ? ? ? ? ? ?? ? ? ? ??

 

= ? ? 1
* 1 *( )oX V X?

?
?? ??? ?? ? ? ?? ?? ?

           (22) 

 
Using (22) and the definition of *( ),oM ? we obtain 
 

 ? ? 1* 1 1( ) ( ) ( )o o oM I Z Z V Z Z V? ? ?
?? ?? ?? ? ,          (23) 

 
where * .Z X? ?  In particular, 
 

? ? 1*(0)M I Z Z Z Z?? ?? ? .             (24)
  
Now, consider the linear regression 1,  t t ty Z u u u? ? ??? ? ? ? without restrictions.  
Krämer & Zeisel (1990) show that the quadratic form 
 

 
( ) ( )

( , )
(0)

u z o z o
z o

z

u M QM u
G Q

u M u
? ?

?
? ?

?
?

            (25) 
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encompasses the DW, ADW, BW and King’s 1( )s ? statistics, where 
1(0) ( )zM I Z Z Z Z?? ?? ? and 1 1 1( ) ( ( ) ) ( ).z o o oM I Z Z V Z Z V? ? ?? ? ?? ?? ?    Clearly, 

*( )oM ? = ( )z oM ? , *(0) (0),zM M?  and hence ( , ) ( , ).u
o z oG Q G Q? ??   This completes 

the proof of Theorem 2.  
 
So, provided that the restrictions are correct, the algebra of ( , )oG Q? in the X and R space 

is essentially the same as that of ( , )u
z oG Q? in the Z space.  Accordingly, the existing 

results on the power properties of ( , ),u
z oG Q?  for a given Z matrix, will hold precisely for 

( , )oG Q?  that corresponds to the data matrix X and the restriction matrix R  such that 
* .Z X? ?   For example, the Monte-Carlo results of Bartels (1992)  are invariant to this 

transformation; by transforming his design matrices from Z in the original (unrestricted) 
space to X and R in the transformed (restricted) space, his results hold exactly in the 
restricted model as in the unrestricted model.   The algebra of the ( , )oG Q? statistic 
facilitates this generalization of results.  On the other hand, the arguments used to prove 
Theorem 2 cannot be extended to cover the situation of  incorrect restrictions because 

( ) ( ) 0o oM ? ? ? ?  when 0.r R?? ?   It is also clear from the foregoing discussion that for 

( , )oG Q? and ( , )u
z oG Q? to be equivalent, there must exist a suitable data transformation 

that turns ( , )oG Q? into ( , );u
z oG Q? in general when a common data set is applied to both 

the unrestricted and restricted regressions, properties of the tests considered can differ 

substantially across  the two models.  Furthermore, note that while ( , )u
z oG Q? possesses an 

invariance property (see King, 1981), but since 0( ) 0B X? ?  for any given ,o?  there 
exists no corresponding invariance property for ( , )oG Q?  to linear transformation of the 

form *
oy y y X? ?? ? ? , for any positive scalar o?  and 1k ?  vector ? . 

 
 
IV.  Conclusions  
 
This paper has provided new insights into the limiting power of the four well-known tests 
for AR(1) errors.  We demonstrate in particular that with restricted coefficients, the 
probability of detecting autocorrelation can fall to zero as the autocorrelation gets very 
strong, even when the model includes an intercept term. So the well-known results 
regarding the limiting power of these tests do not all apply to regressions with restricted 
coefficients.  We have also noted that all four autocorrelation tests lack a common 
invariance property in restricted regressions, but algebraically, provided that the 
restrictions are true, the test statistics in the unrestricted and restricted regressions are 
equivalent.  Altogether, given the widespread use of these tests, in particular the Durbin -
Watson test, our observations should be of interest to both theorists and applied 
researchers.    
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