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Abstract— A Differential Evolution (DE) algorithm assisted Minimum

Symbol Error Ratio (MSER) Multi-User Detection (MUD) scheme is
proposed for multi-user Multiple-Input Multiple-Output (MIMO) aided

Orthogonal Frequency-Division Multiplexing / Space Division Multiple

Access (OFDM/SDMA) systems. Quadrature Amplitude Modulation

(QAM) is employed in most wireless standards by virtue of providing a
high throughput. The MSER Cost Function (CF) may be deemed to be

the most relevant one for QAM, but finding its minimum is challenging.

Hence we propose a sophisticated DE assisted MSER-MUD scheme,
which directly minimizes the SER CF of multi-user OFDM/SDMA

systems employing QAM. Furthermore, the effects of the DE assisted

MSER-MUD’s algorithmic parameters, namely those of the population

size Ps, of the scaling factor λ and of the crossover probability Cr on
the number of DE generations required for attaining convergence were

investigated in our simulations. This allowed us to directly quantify their

complexity. The simulation results also demonstrate that the proposed DE
assisted MSER-MUD scheme significantly outperforms the conventional

MMSE-MUD in term of the system’s overall BER and it is capable of

narrowing its BER performance discrepancy with respect to the optimal

Maximum Likelihood (ML) MUD to about 4dB, while requiring about
200 times less CF evaluations compared to the optimal ML-MUD scheme.

Index Terms— Orthogonal frequency division multiplexing (OFDM),

space division multiple access (SDMA), minimum symbol error rate,
multi-user detection, differential evolution algorithm.

I. INTRODUCTION

The best possible exploitation of the finite available spectrum in

the light of the increasing demands for wireless services has been at

the centre of wireless system optimization. Multiple antennas can be

employed both at the transmitter and/or the receiver, which leads to

the concept of Multiple Input Multiple Output (MIMO) systems, in

order to attain improvements in both capacity and Bit Error Rates

(BER) [1, 2]. As one of the most wide-spread MIMO types, Spatial

Division Multiple Access/Orthogonal Frequency-Division Multiplex-

ing (OFDM/SDMA) systems [3] exploit the advantages of both

OFDM and SDMA, which increase the systems’ capacity by sharing

the same bandwidth and time slots by several users roaming in

different geographical locations [1].

More specifically, the transmitted signals of U simultaneous single-

antenna aided UpLink (UL) Mobile Stations (MSs) are received by

an array of antennas at the Base Station (BS). At the BS, Multi-User

Detection (MUD) techniques are invoked for separating the signals

of the different MSs. Over the past decade, a variety of SDMA

MUDs have been proposed for separating the users’ data on the

basis of their unique, user-specific ’spatial signature’, i.e. the Channel

Impulse Responses (CIRs). Naturally, for near-single-user MUD the

CIRs have to be accurately estimated [1]. As one of the most popular

linear SDMA-receiver design strategy, Minimum Mean Square Error

(MMSE) MUD [3] strikes a tradeoff between the achievable Multi-

User Interference (MUI) rejection and noise amplification. In [4], a
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Constrained Least Squares (CLS) detector was designed for constant

modulus signals, which exploited the constant modulus nature of

the subcarrier modulation. This CLS-MUD outperformed the MMSE

MUD, despite its lower computational complexity. In general, the

MMSE-MUD [3] and the CLS-MUD [4] may be viewed as linear

MUDs, which minimize the Mean Square Error (MSE) at the MUD’s

output. However, it is not the MSE, but the BER or Symbol Error

Ratio (SER) that really matters in most communications system. This

is, because minimizing the MSE does not necessarily guarantee that

the BER or SER of the communication system is also minimized,

unless the MUD’s output signal is strictly Gaussian [5]. This has

motivated the quest for directly minimizing the system’s BER or

SER.

Over the past decade, intensive research efforts have been devoted

to the formulation and exploitation of the Minimum BER (MBER)

criterion in diverse applications [6], including MUDs in both Code-

division Multiple-Access (CDMA) systems [7] and space-time equal-

ized SDMA systems [5, 8, 9]. Since, Quadrature Amplitude Modula-

tion (QAM) schemes have become popular in wireless standards by

virtue of providing a high throughput, direct Minimum SER (MSER)

detection was conceived for M -QAM systems [10].

The MUD schemes based on the MBER criterion [5, 8, 9] have

paved the way for conceiving a novel Differential Evolution (DE)

[11, 12] assisted MSER-MUD. However, the extension of the MBER-

MUD originally designed for Binary Phase Shift Keying (BPSK)

assisted systems to the MSER-MUD is non-trivial, as demonstrated

in this paper. Against this background, our new contribution is

the formulation of the MSER criterion for MUD in OFDM/SDMA

systems and its solution with the aid of DE optimization. More

specifically, we study the effects of the DE-aided MSER-MUD’s

algorithmic parameters, namely those of the population size Ps, of

the scaling factor λ and of the crossover probability Cr , which allows

us to characterize the attainable performance versus the complexity

imposed.

The rest of this paper is organized as follows. The system model of

the multi-user OFDM/SDMA UL is described in Section II. Section

III is devoted to formulating the MSER solution for the MUD of the

multi-user OFDM/SDMA systems. In Section IV, we will illustrate

the proposed DE assisted MSER-MUD. Our simulation results and

discussions are presented in Section V, while our conclusions are

offered in Section VI.

II. SYSTEM MODEL

The multi-user OFDM/SDMA UL system considered is shown

in Fig. 1, where each of the U simultaneous users is equipped

with a single transmission antenna, while the BS employs an array

of Q antennas. All users simultaneously transmit their independent

data streams, denoted by bu, u = 1, 2, · · · , U . The information

bits bu are first encoded by the independent Low-Density Parity-

Check (LDPC) encoder of each user, as seen in Fig. 1. The data

stream is modulated and then the pilot symbols are embedded into

the Frequency Domain (FD) representation of each OFDM symbol.
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Fig. 1. Uplink system model for Multi-user MIMO OFDM/SDMA.

These FD pilot symbols and their specific allocation are known at the

receiver and hence can be exploited for channel estimation. Then the

signals are fed to a classic K-point Inverse Fast Fourier Transform

(IFFT) based modulator in order to generate the Time-Domain (TD)

modulated signal. After concatenating the Cyclic-Prefix (CP) of Kcp

samples, the resultant sequence is transmitted through the MIMO

channel.

At the BS, the received signals yq of antenna q, q = 1, 2, · · · , Q,

are constituted by the superposition of the independently faded TD

signals of the U users sharing the same space-frequency resource,

which are also corrupted by the Gaussian noise at the array elements.

After discarding the CP and performing FFT-based demodulation of

the received TD signals, we generate Q separate received sequences

for the s-th OFDM symbol Yq[s], q = 1, 2, · · · , Q, which is given

by the superposition of the different users’ channel-impaired received

signal contribution plus the Additive White Gaussian Noise (AWGN),

formulated as:

Yq[s] =
U

∑

u=1

X
u[s]Hu

q [s] + nq [s], (1)

where Yq[s] ∈ C
K×1,Hu

q [s] ∈ C
K×1 and nq [s] ∈ C

K×1

in Equation (1) are column vectors hosting the subcarrier-related

received signal Yq[s, k], the Frequency Domain Channel Transfer

Factors (FD-CHTFs) Hu
q [s, k] and the AWGN nq[s, k], respectively.

Furthermore, Xu[s] ∈ C
K×K is a diagonal matrix with elements

given by Xu[s, k], k = 1, 2, · · · , K which represents the U users’

transmitted signals, assuming values from the M -QAM symbol set

of

S ,

{

sm,n

∣

∣sm,n = zm + jzn, 1 ≤ m, n ≤
√

M
}

, (2)

where the real-part of the symbols is R{sm,n} = zm = 2m−
√

M−
1 and the imaginary-part is I{sm,n} = zn = 2n −

√
M − 1.

III. THE MSER-BASED MUD SCHEME

Upon invoking vector notations, the set of equations constituted by

Equation (1) for q = 1, 2, · · · , Q at the k-th subcarrier of the s-th

OFDM symbol can be rewritten as:

Y[s, k] = H[s, k]X[s, k] + n[s, k], (3)

where Y[s, k] ∈ C
Q×1,H[s, k] ∈ C

Q×U ,X[s, k] ∈ C
U×1 and

n[s, k] ∈ C
Q×1 represent the received signals, the FD MIMO

channel matrix, the transmitted signals and the AWGN noise, re-

spectively. For notational convenience, the indices [s, k] are omitted

during our forthcoming discourse. The estimate X̂ of the transmitted

signal vector X of the U simultaneous users can be generated by

the MUD upon linearly combining the signals received by the Q
different antennas at the BS with the aid of the array weight matrix

W, yielding [1, 5],

X̃ = W
H
Ȳ + W

H
n, (4)

where the superscript of (·)H denotes the Hermitian transpose and

Ȳ = HX represents the noise-free received data. Since the trans-

mitted signals of different users are independent from each other, the

signals output by the MUD can be on a per user basis. Considering

the u-th users’ associated signal, we arrive at

X̃u = X̄u + eu, (5)

where eu = WuHn1 represents the noise with zero mean and a

variance of σ2
nWuHWu, while X̄u = WuHȲu denotes the noise-

free signal output by the MUD.

The Probability Density Function (PDF) of the real-part X̃u
R of X̃u

conditioned both on Xu = zm and on Wu is a Gaussian mixture,
which may be readily formulated as [13]

f
(

X̃u
R|X̄u

R|Xu
R

=zm
,Wu

)

=
1√
M

√
M

∑

n=1

f
(

X̃u
R|X̄u

R|Xu
R

=zm+jzn
, Wu

)

, (6)

where f
(

X̃u
R|X̄u

R|Xu
R

=zm+jzn
,Wu

)

represents the PDF of X̃u
R

conditioned both on Xu = zm + jzn and on Wu, while

X̄u
R|Xu

R
=zm+jzn

is constituted by those Nsb = MU−1 specific trial

vectors, whose u-th elements has a value of (zm + jzn).

Given that (z1 + jz1) was transmitted by user-u, the probability

of error for the real-part X̃u
R is simply the probability that we have

X̃u
R < z1 + 1, i.e.,

PE,u,R(Wu)|Xu
R

=z1
=

∫ +∞

z1+1
f

(

X̃u
R|X̄u

R|Xu
R

=z1
,Wu

)

dX̃u
R,

=
1

2Nsb

Nsb
∑

i=1

erfc
[

CR,i(W
u)

]

, (7)

where erfc(·) denotes the complementary error function [13] and

CR,i(W
u) is formulated as

CR,i(W
u) =

(z1 + 1) − X̄u
R,i|Xu

R
=z1

σn

√
WuHWu

. (8)

Due to symmetry [13], the error probabilities are identical for

Xu
R = z1 and Xu

R = z√M , while the error probabilities for

Xu
R = zm, m = 2, 3, · · · ,

√
M − 1 are twice that of Xu

R = z1.

Since all the legitimate M -QAM signals are equally likely to be

transmitted, the total error probability of the real-part X̃u
R becomes

PE,u,R(Wu) =

√
M − 1√
MNsb

Nsb
∑

i=1

erfc [CR,i(W
u)] . (9)

A direct evaluation of Equation (9) imposes a high computational

complexity, due to the integration operation in the function erfc(·).

However fortunately the computational complexity of erfc(·) may

be reduced by exploiting that [14]:

erfc(x) =



















1 +

[

1 − e
−x2(4/π+0.14x2)

1+0.14x2

]1/2

, x < 0,

1 −
[

1 − e
−x2(4/π+0.14x2)

1+0.14x2

]1/2

, x ≥ 0.

(10)

The lines marked in Fig. 2 by the dots and circles represent the

true values of erfc(x) and the approximated values of erfc(x),

1The weight vector W
u is rotated as W

u
new = W

uH
H

‖WuHH‖W
u and

normalized as W̃u
new =

W
u
new

Wu
newH

.



3

0.0

0.5

1.0

1.5

2.0

er
fc

(x
),

P
E

,R

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

x, PE,u,R

..........................
.
.
.
.
.
.
.
.
.
..........................

. True values of erfc(x)

Approximate values of erfc(x)

Values of PE,R as Eq. (27)

Values of PE,R as Eq. (29)

erfc(x),

erfc(x)

PE,u = 2PE,u,R - P
2
E,u,R

PE,u = PE,u,R

Fig. 2. The chart of the true values of erfc(x), approximated function

of erfc(x), i.e., erfc(x), the total BER PE,u which regards PE,u,R as a
variable and a loose approximation for PE,u as Equation (13).

respectively. It can be seen that the approximate erfc(x) formula of

Equation (10) perfectly matches the function erfc(x).

Assuming that the square-shaped M -QAM constellation is con-

sidered, the real-part and imaginary-part will be symmetric to each

other. Hence, the error probability of the imaginary-part is identical

to that of the real-part. Hence the total SER is given by

PE,u(Wu) = 2PE,u,R(Wu) − P 2
E,u,R(Wu). (11)

The MSER solution Wu
MSER is defined as the weight vector that

minimizes the SER of PE,u, which is formulated as

Ŵ
u
MSER = arg min

Wu
PE,u(Wu). (12)

Naturally, we have 0 ≤ PE,u,R(Wu) ≤ 1 in realistic commu-

nications systems. However, the initial values of the weight vector

Wu are randomly generated in our DE assisted MSER-MUD, which

will be elaborated on in the following section. Hence CR,i(W
u) may

become negative, which will result in erfc
[

CR,i(W
u)

]

> 1 and this

in turn may result in PE,u,R(Wu) > 1. Intuitively, these are flawed

solution vectors. However, we can see from Fig. 2 that the total SER

PE,u(Wu) decays beyond the abscissa value of PE,u,R(Wu) > 1,

which may misguide the MSER-CF-based DE-aided optimization.

Hence we set the total SER of PE,u(Wu) to2:

PE,u(Wu) = PE,u,R(Wu). (13)

IV. DIFFERENTIAL EVOLUTION ALGORITHM AIDED

MSER-MUD

Due to the irregular shape of the CF of Equation (11), the MSER

solution does not have a closed-form. However, DE optimization

algorithms may be employed for assisting the MSER-MUD in finding

the minimum of the CF. As a relatively new member in the family

of Evolutionary Algorithms (EAs), the DE [11, 12] algorithm also

constitutes a random guided population-based search method, which

employs repeated cycles of candidate-solution re-combination and

selection operations for guiding the population towards the vicinity of

the global optimum. In this treatise, we employed the DE algorithm

to assist the MSER-MUD as a benefit of its versatility in solving

these sophisticated optimization problems.

The DE algorithm may be characterized with the aid of its initial-

ization, mutation, re-combination and selection operations invoked

for exploring the search space in an iterative progression, until

the termination criterion is met. The structure of the proposed DE

aided MSER-MUD can be best understood with the aid of the

flowchart shown in Fig. 3, which will be often referred to during

our forthcoming discourse.

2This simplified mathematical expression augments the role of the ’merito-
rious’ candidate vectors and sidelines the flawed solution vectors, although it
does not accurately portray the true values of PE,u(Wu), which are shown
in Fig. 2 by the curve marked by hearts.
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YES

Trial

Select trial or target

Target

rand3(0, 1) ≤ Cr

}

Initialization

· · ·

g = 1.

Ŵu
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Ŵu
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Ŵu
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Ŵu
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Ŵu
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u
g,ps

)

Ŵu
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g,best) = PE,u(Ŵu
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)

Fig. 3. Flowchart of the differential evolution algorithm.

1) Initialization. DE algorithm commences its search from a

population of Ps Q-dimensional complex-valued solution vectors.

The ps-th vector of the population in the first generation of g = 1
may be readily expressed as

Ŵu
1,ps

=
[

Ŵu
1,ps,1, Ŵu

1,ps,2, · · · , Ŵu
1,ps,Q

]T

, (14)

where again, u is the user-index and Q is the number of antennas.

2) Mutation. The mutation operation allows DE to maintain the

diversity of the population, while insightfully steering the optimiza-

tion. The appropriate choice of the mutation parameters allows DE to

prevent ’early convergence’ to a local minimum without thoroughly

exploring the entire solution space. More specifically, mutation is one

of the distinctive features of the DE algorithm, which does not use a

predefined probability density function for generating the perturbed

solutions. Instead, it relies upon the population itself in perturbing the

candidate solutions by adding an appropriately scaled and randomly

selected difference-vector 3 to a base population vector. As seen

in Fig. 3, the vector difference is scaled by a problem-specific,

optimized scaling factor λ invoked for combining two randomly

selected population vectors. More specifically, the following equation

shows how to create a mutant vector by combining three different,

randomly chosen vectors according to

V̂u
g,i = Ŵu

g,r1
+ λ

(

Ŵu
g,r2

− Ŵu
g,r3

)

, (15)

where the scaling factor λ ∈ (0, 1] is a positive real-valued number

that controls the rate at which the population evolves and u is the

user-index.

3) Crossover. The crossover operation generates a trial vector by

replacing certain parameters of the target vector with the correspond-

ing parameters of a randomly selected donor vector. As a significant

3The difference of the vectors Ŵu
g,r2

and Ŵu
g,r3

was defined as

∆Ŵu
g,r2

,Ŵu
g,r3

= Ŵu
g,r2

− Ŵu
g,r3

, as also seen in Fig. 3
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complementarity to the above-mentioned differential mutation, the

crossover operation increases the potential diversity of the population

vectors. There exist diverse variants of the crossover mechanisms [11,

12]. We opted for employing the uniform crossover algorithm, where

each DE parameter, regardless of its location in the trial vector, has

the same probability of inheriting its value from a given vector. More

particularly, the q-th value of the i-th vector in the population at the

g-th generation, namely Ûu
g,i,q , is given by

Ûu
g,i,q =

{

V̂u
g,i,q, randq(0, 1) ≤ Cr or q = qrand,

Ŵu
g,i,q, otherwise,

(16)

where Cr ∈ [0, 1] represents the crossover probability, which is a

problem-specific value that represents the specific weight applied to

the parameter values that are copied from a previous vector to the

mutant, as seen in Fig. 3. Furthermore, randq(0, 1) denotes a random

number generator, which returns a uniformly distributed random value

from the range [0, 1). The antenna-index q = 1, 2, · · · , Q indicates

that a new random value is generated for each of the q parameters

of user u = 1, 2, · · · , U .

4) Selection. In order to keep the population size constant over

subsequent generations, the selection operator determines whether

the target vector Ŵu
g,ps

or the trial vector Ûu
g,ps

survives to the

next generation, as seen in Fig. 3. The DE algorithm does not

use fitness-based selection for the next generation. Instead, the CF

of the trial vector Ûu
g,ps

, namely PE,u(Ûu
g,ps

) is compared to that

of its corresponding target vector Ŵu
g,ps

. As seen in Fig. 3, if

the trial vector has lower or equal CF value in comparison to the

corresponding target vector, then the trial vector will replace the

target vector and it is allowed to proceed to the next generation.

Otherwise, the target vector will remain in the population for the

next generation. More specifically, the selection procedure may be

described mathematically as

Ŵu
g+1,ps

=

{

Ûu
g,ps

, PE,u(Ûu
g,ps

) ≤ PE,u(Ŵu
g,ps

),

Ŵu
g,ps

, otherwise.
(17)

5) Termination. The ultimate stopping criterion would be that

of confirming that the optimal solution of the MSER-MUD has

been found. However, we cannot glean any proof of evidence that

the MSER-MUD solution has indeed been found. Hence, we opted

for halting the optimization procedure, when any of the following

stopping criteria are met:

• The pre-defined maximum affordable number of generations

Gmax has been exhausted.

• ∆gmax generations have been explored without a trial vector

being accepted, which also implies that ∆gmax generations have

passed without any reduction of the CF.

A low-complexity termination criterion is constituted by the num-

ber of CF Evaluations (CF-Evals.), which may be readily used

for evaluating the computational complexity imposed. For a given

population size Ps terminated after G generations, the number of CF-

Evals. employed for finding the weight vectors Ŵu
MSER representing

the MSER solution is equal to (Ps × G). Hence the total CF-Evals.

for a U -user scenario of the proposed DE assisted MSER-MUD

is equal to U(Ps × G). By contrast, the number of CF-Evals. of

the optimum ML detector using exhaustive search is equivalent to

MU . As to the MMSE-MUD [1], there is a closed-form solution,

where the computational complexity is dominated by the operation

of matrix inversion, namely by a (Q × Q)-element matrix inversion

for OFDM/SDMA systems equipped with Q antennas at the BS. It is

worth noting that the weight vectors ŴMSER of the MSER-MUD

solutions acquired may be employed for prolonged time-intervals in

the scenarios, when the channels are block-fading or slowly fading.

Hence the proposed DE assisted MSER-MUD is more attractive for

block-fading or slowly fading scenarios.

V. SIMULATION RESULTS

In this section, our simulation results are presented in order

to illustrate the attainable performance of the proposed DE aided

MSER-MUD in the context of multi-user OFDM/SDMA systems. It

was assumed that the UL multi-user OFDM/SDMA system equipped

with Q = 4 antennas at the BS supported U = 4 MSs simultaneously

transmitting their data in the UL to the BS. A summary of the various

parameters used in our simulations is provided in Table I.

TABLE I

BASIC SIMULATION PARAMETERS USED IN OUR SIMULATIONS

Type LDPC
FEC encoder Code rate 1/2
and decoder Code-word length 1152

Maximum No. of iterations 50
Number of paths L 4
Delay 0, 1, · · · , 3
Average path gains [0;−5;−10;−15] (dB)

Channel MSs U 4
Received antennas P 4
Subcarriers K 64
Cyclic prefix Kcp 16

Recall from Section IV that there are three basic algorithmic

parameters, namely the population size Ps, the scaling factor λ and

the crossover probability Cr , which influence the performance of

the DE assisted MSER-MUD. The number of iterations required for

convergence is influenced by the scaling factor λ and the crossover

probability Cr, as illustrated by our simulations. The effects of the

population size both on the attainable the convergence rate and on

the overall BER performance were also characterized.

Specifically, the effects of the scaling factor and the crossover

probability on the proposed DE assisted MSER-MUD were investi-

gated in Fig. 4. Observe in Fig. 4 that the proposed scheme required

an increasing number of generations for satisfying the termination

criterion defined in Section IV, when increasing the value of λ across

the range of 0.4 ≤ λ ≤ 0.9 and using the fixed crossover probability

of Cr = 0.6. Moreover, we can see from Fig. 4 that the number

of generations required for achieving convergence monotonically

decreased upon increasing the crossover probabilities Cr, while

keeping λ in the range of 0.1 ≤ λ ≤ 0.7. By contrast, the number

of generations required for attaining convergence remained near-

constant across the range of 0.8 ≤ λ ≤ 1.0. The lowest-complexity

operating point was found to be at (Cr, λ) = (1.0, 0.1), yielding

(50 × 42) = 2100 CF-Evals.. However, observe in Fig. 5 that the

BER performance of this operating point was suboptimum, which

is due to convergence to a local – rather than global – minimum

without thoroughly exploring the entire solution space. The BER

performance of the operating point (Cr, λ) = (0.1, 0.1) was optimal,

but it imposed an increased complexity, as seen from Fig. 4.

The convergence rate of the proposed DE-aided MSER-MUD at

Eb/N0 = 10dB, 20dB was characterized in Fig. 6. We can see from

Fig. 6 that as expected, the BER was reduced upon increasing the

affordable complexity. The proposed scheme exhibits a BER floor

at Eb/N0 = 10dB, which was eliminated at Eb/N0 = 20dB.

Furthermore, it can be seen from Fig. 6 that the proposed DE-aided

MSER-MUD performs best for Ps = 60, when imposing about

750 CF-Evals.. Here the complexity imposed was lower than the

above-mentioned ’lowest-complexity’, since the termination criterion

defined in Section IV was a cautious stopping criterion. Indeed, the

BER performance may benefit from no substantial improvement be-

fore the DE-aided MSER-MUD’s evolutionary search was terminated,

especially at high values of Eb/N0.

In Fig. 7 we characterized the overall BER performance of the

proposed DE assisted MSER-MUD for a fixed number of CF-Evals.,

but differently apportioning the total computational complexity of



5

0.2
0.4

0.6
0.8

1

0.2
0.4

0.6
0.8

1

0

50

100

150

200

250

Crossover probability C
rScaling factor λ

T
h
e
 a

v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
g
e
n
e
ra

ti
o
n
s
 r

e
q
u
ir
e
d

Fig. 4. Average number of evolution generations required for convergence
of the proposed DE aided MSER-MUD scheme versus the scaling factor λ
and crossover probability Cr at Eb/N0 = 12dB. All other parameters are
given in Table I.
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Fig. 5. BER performance of the proposed DE aided MSER-MUD scheme
versus the scaling factor λ and crossover probability Cr at Eb/N0 = 12dB.
The number of evolution generations for different combination of (Cr , λ) are
illustrated in Fig. 4. All other parameters are given in Table I.

(Ps × G) = 6000 by varying Ps and G. The conventional MMSE-

MUD [1, 3] and the optimal ML-MUD were also included as bench-

markers. The MUD weight vectors WMMSE of the MMSE-based

and WMSER of the MSER-based solutions were calculated from the

pilot symbols and they were then used for the subsequent Ns = 72
OFDM symbols, namely until the next training symbols became

available. It can be seen from Fig. 7 that the DE-aided MSER-

MUD has achieved a significant BER versus Eb/N0 improvement

over the MMSE-MUD, except for the combination of Ps = 100
and G = 60. But, regrettably, there was still an approximately 4dB
performance degradation for the proposed DE-aided MSER-MUD

compared to the optimal ML-MUD, albeit, the number of CF-Evals.

was only UPsGK
KNsMU = 4×6000×64

64×72×164 = 0.51% for the proposed DE-

aided MSER-MUD compared to the ML-MUD, which corresponded

to an approximately 200-fold improvement.

VI. CONCLUSIONS

A DE-aided MSER-MUD scheme was proposed for multi-user

OFDM/SDMA systems employing M -QAM, which directly mini-

mized the SER CF. The proposed MSER-MUD was assisted by the

DE algorithm in finding the minimum of the SER CF. The attainable

performance versus complexity behaviour was predominately deter-

mined by the DE operations of mutation, crossover and selection.

The influence of these algorithmic parameters on the proposed DE-

aided MSER-MUD was investigated using Monte Carlo simulations.

It was demonstrated that the proposed DE-aided MSER-MUD is

capable of achieving significant performance gains in terms of the

system’s overall BER over the classic MMSE-MUD and approached

the performance of the optimum ML-MUD within about 4dB at

about 0.51% of its complexity.

BER performance versus generation for the proposed DE assisted MSER-MUD
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Fig. 6. BER performance against the number of generations required for the
proposed DE assisted MSER-MUD scheme. The optimal ML-MUD attains
an infinitesimally low BER at Eb/N0 = 20 dB, which is not shown in this
figure. All other parameters are given in Table I.
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