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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

DESIGN CONSIDERATIONS OF HARVESTED-ENERGY MANAGEMENT

by Mustafa Imran Ali

Using energy harvesting for powering autonomous sensor systems can meet the goal of

perpetual operation. However, the uncertainty in system supply coupled with the size

constraints presents challenges in design of such systems. To address these challenges,

this thesis is concerned with effective management of harvested-energy for matching

supply and demand in order to operate perpetually with uniform performance. The

thesis focuses on two fundamental design considerations in addressing these challenges:

(i) managing variability of the energy harvesting source, and (ii) matching the demand

with energy supply under the influence of non-ideal characteristics of the harvesting

system.

To address the problem of variability of energy source, the thesis focuses on effective pre-

diction of harvested-energy. An effective approach for evaluating the accuracy of solar

energy prediction algorithm is proposed and optimised values of prediction algorithm pa-

rameters are determined to minimise prediction error. The problem of achieving uniform

performance under the supply variability is addressed by proposing a new prediction-

based energy management policy. The results of the proposed policy are compared with

other recently reported policies and it is shown that the proposed policy achieves up to

41% lower variance in performance and 30% lower dead time of the system, which is

important to achieve the goal of perpetual operation.

To address the problem of effective matching of supply and demand, the thesis considers

the design of photovoltaic energy harvesting supply and storage subsystem in terms of its

component’s non-ideal characteristics. The influence of these characteristics on supply

and demand is identified using modeling of losses and component interdependencies, and

empirically validated using a reference system design. Using the proposed modeling, the

performance of recently reported energy management policies is evaluated to show that

these are ineffective in achieving the goal of perpetual operation, and optimisations are

proposed to address this.
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Chapter 1

Introduction

Energy harvesting is defined as the conversion of some form of environmental energy into

electrical energy. Using energy harvesting to power devices such as autonomous wireless

sensors is highly desirable since these devices are deployed in places where use of wires

for communication or power supply is very costly or even unfeasible. In many cases these

devices also need to have very small physical dimensions to be conveniently deployed

at targeted locations or even carried around [70]. The contemporary choice of power

source for wireless devices are some type of batteries [7]. Since battery replacement is

undesirable due to its cost or even inaccessibility to deployed systems [70], low-power

design [66] and energy conservation techniques [7] are employed in order to maximise

operating lifetime. Even though the power consumption of electronic devices has been

steadily minimised using various techniques over the past years [66], the advancements

in battery technology have not kept pace, thus becoming the major bottleneck in real-

isation of long-life wireless sensing applications [70]. Therefore, being able to operate

perpetually without a tethered source of power can greatly increase the utility of wireless

sensing devices.

Energy harvesting [40] is a promising approach to realising the goal of near perpetual

operation [62] if there is the possibility to harvest energy from the deployment envi-

ronment. The design of optimised energy harvesting powered systems can be simple if

a certain power availability is guaranteed from the harvesting source at all times [65].

In this case, the design will mostly involve optimising the harvester (supply) to deliver

the required power depending on the consumption demands of the device. However,

this is not the common scenario since most energy harvesting sources or environments

are dynamic, supplying variable amounts of stimuli with time [133]. This variability

of energy harvesting source leads to design challenges and optimisation opportunities

that are different than those of battery powered systems design. For example, the se-

lection/design of the harvester needs be optimised based on the expected environmental

energy supply and the average demand of the application workload [146, 59], but due

to the variability of energy harvesting source this is not sufficient to ensure perpetual

1



2 Chapter 1 Introduction

operation. The energy storage capacity also needs to be selected appropriately to allow

a certain amount of energy to be buffered for times of energy unavailability [59, 10]. In

addition to optimising the harvesting supply subsystem for a given application demand,

the variability of the energy source makes the case for adapting the application energy

consumption to maximise the consumption of harvested energy while preventing the

system from being completely shut down [65, 154, 102, 103, 39]. This can be achieved

by using harvesting-aware (adaptive) energy management that determines the energy

consumption budgets of the application according to the available energy and harvesting

capability. Investigating the design considerations of harvested-energy management is

the topic of this thesis.

This chapter introduces the preliminary concepts needed for understanding the contri-

butions of this thesis and presents its aims and objectives. The chapter is organised as

follows. Section 1.1 introduces energy management in the context of the energy harvest-

ing system design to motivate the aims and objectives of this thesis. Sections 1.2-1.4

discuss the individual parts of the energy harvesting system and related works while

Section 1.5 focuses on harvested-energy management and its state-of-the-art. Section

1.6 presents the aims and objectives of this thesis, Section 1.7 outlines its chapters and

Section 1.8 presents the contributions.

1.1 Energy Harvesting System Design with Energy Man-

agement

This section outlines the structure of an energy harvesting system, and discusses the

fundamental problems in the design of such systems. It explains the general objectives

of harvested-energy management, its position in context of the complete system and

interdependencies with other system components. This section serves as a road map

for rest of this chapter and sets the stage for discussing the aims and objectives of this

thesis in Section 1.6.

Figure 1.1 depicts the organisation of an energy harvesting system as conceived in this

thesis. It consists of an energy source within a deployment environment, and an energy

harvesting supply and storage subsystem for capturing and delivering environmental

energy to a wireless sensor device. The wireless sensor device implements an applica-

tion workload which is the consumer of harvested-energy, as well as harvested-energy

management to determine the energy budgets for application workload based on the

monitored energy resources. The overall design objective is to match the average power

supply rate with the average power demand of the application workload to achieve long-

term perpetual system operation. The main challenges in achieving this goal is the

variability of energy harvesting source and practical constraints on the power output

of the energy harvesting supply and storage subsystem. To address the objective of
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Figure 1.1: Organisation of a typical energy harvesting powered system with
harvested-energy management as conceived in this thesis.

matching the supply and demand under the variability of the energy harvesting source,

two aspects of system design need to be considered:

1. The energy harvesting supply and storage subsystem needs to be engineered to

deliver a certain supply (depending on the environmental energy available).

2. According to this available supply, harvested-energy management needs to deter-

mine the energy budgets for the application workload.

Based on these two aspects, Figure 1.2 identifies the problem specification and the

system design space of energy harvesting systems. The problem specification includes

selection of the type of energy harvester depending on the deployment environment and

the given application workload energy demand. The system design space includes the

design of harvesting supply and storage subsystem and harvested-energy management.

A harvesting supply and storage subsystem is needed to extract useful power output

from the harvester. Its design involves selection of energy harvester output power and

capacity of energy storage, which determines the average power delivery to the load.

Furthermore, the operating voltage/current range of the harvester, the energy storage

and the application workload may not be compatible, therefore requiring the addition

of appropriate input and output power conditioning circuitry (Figure 1.1). The energy

losses between these components due to the non-ideal characteristics of system compo-

nents also have to be taken into account since they reduce the net energy available. The

two main considerations are supply efficiency and capacity. Chapter 2 discusses in detail

the design of harvesting supply and storage subsystem.

Given the harvesting supply and storage subsystem design, harvested-energy manage-

ment (Figure 1.2) determines the allocation of harvested-energy to the application work-

load to ensure maximum utilisation of harvested-energy while not exceeding the supply
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Figure 1.2: Problem specification and design space of energy harvesting systems.

and storage capability. To meet this goal effectively, harvested-energy management has

to account for the characteristics of the energy source, the power delivery and stor-

age subsystem and the application workload. Knowledge of energy source variations is

needed to determine the amounts of energy to be consumed during different time inter-

vals, with the overall goal of maximising its utilisation. Chapter 3 discusses prediction of

harvested-energy to enable the determination of energy consumption budgets. Aware-

ness of losses of and non-ideal characteristics of harvesting system components is needed

to achieve the desired match between supply and demand. Chapter 4 discusses system

modeling that allows harvested-energy management to take into account these charac-

teristics of harvesting supply and storage subsystem. Using the knowledge of supply thus

determined, the energy budget allocation is performed by using an algorithm or policy

that aims to achieve the general objectives of energy management while accounting for

any application-specific constraints. Chapters 5 and 6 discuss the energy management

policies and their effective realisation. Figure 1.3 indicates the factors influencing the

design of the harvested-energy management.

The next sections of this chapter discuss the different parts of an energy harvesting sys-

tem (Figure 1.1). First the characteristics of wireless sensor applications to be powered

by energy harvesting are discussed in Section 1.2. Section 1.3 discusses the main types

of energy harvesters and their range of power outputs. Section 1.4 discusses the energy

harvesting supply and storage subsystem designs and Section 1.5 surveys the state-of-

the-art in harvested-energy management. The identification of choices that define the
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scope of this thesis is also discussed where applicable.

1.2 Energy Harvesting Powered Applications

This section describes the typical devices and their applications that need to be powered

using energy harvesting. This thesis focuses on maximising performance and operating

times of very low-power wireless sensor devices using energy management. The usage

of these devices demands autonomy from tethered means of communication and power

supply. Using wireless communications allows freedom from communication wires and

the next evolutionary step is the ability to operate perpetually without the constraint

of tethered power supply. The contemporary solution is to rely on either primary or

rechargeable batteries, however, the need to replace or recharge batteries limits the us-

ability and/or wider applications of these systems by varying degrees [125]. Note that

the qualification of the term ‘very low-power’ is not absolute since decreasing manu-

facturing cost, increasing miniaturisation and computing power has helped to create a

range of low-power devices with varying hardware complexity, power consumption and

applications. The contemporary variety of wireless devices range from smartphones with

a typical power consumption close to 1 Watt in active mode to roughly 100 mW in idle

mode [18], to wireless sensor nodes (also called motes [34]) having an active mode con-

sumption of tens of mW and idle mode consumption of few µW [120] or even nW [8].

Limited battery capacity is a bottleneck for all wireless computing, however, the limited

lifetime problem is nowhere near as severe as in case of remote and wireless sensing ap-

plications where replenishing batteries is inherently unfeasible due to the large number

of deployed nodes and difficulty of access after deployment [70]. In the case of personal

mobile devices, recharging of a battery by the user is not a major issue since there is

usually a single device to maintain, whereas in the case of wireless sensor networks there

can be many devices. Furthermore, even a single battery replacement can be prohibitive

depending upon deployment, e.g., at an oil rig [70].
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A more focused definition of the low-power systems of interest in this thesis is: those ap-

plications for which replacement of depleted batteries or manual recharging is infeasible,

and their supply requirements can be fulfilled (to a practical extent) by state-of-the-art

small scale energy harvesters. The contemporary devices that fall under this category

can be classified as wireless sensors. This section discusses examples of typical wireless

sensor applications under consideration, their system components and power consump-

tion. A brief survey of approaches used to maximise operation lifetime specific to these

applications is also presented, followed by a discussion of design considerations from the

perspective of harvested-energy management.

1.2.1 Wireless Sensor Network Applications

This section briefly reviews applications of wireless sensor systems that are required to

operate for very long periods (many months) from the available energy source. Wireless

sensors are perceived as an enabling technology for pervasive or ubiquitous computing

[160]. The potential of wireless networked sensors to permit interaction with the physical

world has opened up a vast number of applications. Contemporary wireless sensors have

been deployed in a variety of applications that include military, industrial, agriculture,

environmental monitoring, structural health monitoring, and smart buildings [162]. The

general functionality of these applications involves collection of data samples of some

physical phenomenon, pre-processing the collected data and transmitting it to a base

station. Other applications include event detection and tracking movement of mobile

entities. A number of detailed surveys [16, 5] have been published that cover these

applications and classify them according to their key attributes [132]. A few examples

of these applications (Figure 1.4) are mentioned in this section to motivate the energy

management considerations discussed later. Wireless sensors used for observing the

breeding season of birds lasting seven months by measuring the humidity, pressure,

temperature, and ambient light level of the burrows is described by Mainwaring et al.

[87]. Juang et al. [64] attached sensor nodes to the bodies of Zebras for sampling of

physical location and movement. Morais et al. [100] describe a network of sensors that

are powered by combination of solar, wind and water flow, for monitoring the conditions

that influence growth of crops, e.g., temperature, soil moisture, light and humidity.

Simon et al. [142] implemented a system of locating the position of snipers by measuring

the time of arrival of muzzle blast and its shockwaves using acoustic sensors. Wireless

sensors deployed at different positions on a bridge were used to monitor its structural

health using time-synchronised high frequency sampling of accelerometer signals [68],

while Dondi et al. [31] describe a solar energy harvesting custom designed sensor node

for active ultrasonic structural health monitoring. A network of solar energy harvesting

sensors were deployed to monitor the microclimate of a watershed [146].
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Figure 1.4: A few examples of wireless sensor applications (reproduced from
cited sources): (top left) wireless sensors used to observe the breeding season of
birds [87], (top right) sensor nodes attached to the body of animals for moni-
toring movement [64], (middle left) solar harvesting active ultrasonic structural
health monitoring node [31], (middle right) precision agriculture using sensors
powered by a combination of solar, wind and water flow [100], and (bottom)
HydroWatch node for monitoring microclimate of watershed [146].
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In the various application examples considered in this section, for increasing the fidelity

of data collection or event-detection/target-tracking accuracy, a corresponding increase

in the frequency of sampling the sensor(s), data processing and communication activity

is required. In this thesis this is called the application workload, which determines the

energy consumption of the overall system. One of the common requirements among these

applications is the demand for long operating lifetimes while satisfying some application

workload requirements. The difficulty in achieving this requirement using batteries alone

is widely acknowledged as a critical barrier that limits the realisation of more ambitious

applications. The next section discusses the system components and power consumption

of typical wireless sensor systems.

1.2.2 System Components and Power Consumption

Communication 

Subsystem
Sensors 

Subsystem

Power Supply

Subsystem

Processor

Memory

Figure 1.5: A generic structure of wireless sensing nodes.

The present generation of wireless sensor nodes (called motes) has been inspired by

research efforts started a decade ago such as Networked Embedded Systems Technology

(NEST), Smart Dust and Wireless Integrated Networked Sensors (WINS) [121, 132,

34]. A variety of mote systems/platforms have been proposed in the last decade both

academically and commercially [43, 34]. A wireless sensor node can be generalized as

being composed of sensing, computing and memory, and communication subsystems

(Fig. 1.5). A widely used mote called the Telos developed by UC Berkeley and later

commercialised [120] is shown in Fig. 1.6. The labels indicate the common components

of the system. The power can be supplied via a USB interface when connected to

a host PC or via expansion headers from a battery (regulated or unregulated) or an

energy harvesting supply. The power supply subsystem may also provide facilities for

querying the state of energy of the node to implement energy aware algorithms and

communication protocols as discussed in the next section.

Table 1.1 [34] gives a comparison of low-power processors used in wireless sensors and

their active and deep sleep mode current draw (at 3V and 1MHz). The release year

provides a sense of the underlying technology trends. Similarly, Table 1.2 [34] gives a

list of radio modules and their receive and transmit mode power consumptions. Table
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Figure 1.6: A commercial Tmote Sky wireless sensor node with labels indicating
typical components (reproduced from [27]).

1.3 lists the power consumption of typical activities and modes of three commonly used

wireless sensor platforms [120]. It may be noted that wireless transmission and reception

have the highest power draw among the other activities, while the sleep mode power

consumption is three orders of magnitude smaller. For this reason, the most common

energy conservation technique in wireless sensing applications is duty cycling between

active and sleep modes by shutting down the radio and MCU during periods of inactivity.

Figure 1.7 (top) shows the typical long-term current draw profile of a duty-cycled system

[61], which is dominantly a flat profile during sleep mode and spikes of high current draw
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Table 1.1: Comparison of power consumption of microcontrollers used in wire-
less sensor platforms (adapted from [34]).

Mfg Device Year Arch VCC Active Sleep
(V) (mA) (µA)

Atmel ATmega128L 2002 RISC/8 2.7-5.5 0.95 5
ATmega1281 2005 RISC/8 1.8-5.5 0.9 1
ATmega2561 2005 RISC/8 1.8-5.5 0.9 1

Ember EM250 2006 XAP2b/16 2.1-3.6 8.5 1.5

Freescale HC05 1988 8-bit 3.0-5.5 1 1
HC08 1993 8-bit 4.5-5.5 1 20
HCS08 2003 8-bit 2.7-5.5 7.4 1

MC13213 2007 HCS08 2.0-3.4 6.5 35

Jennic JN5121 2005 RISC/32 2.2-3.6 4.2 5
JN5139 2007 RISC/32 2.2-3.6 3 3.3

TI MSP430F149 2000 RISC/16 1.8-3.6 0.42 1.6
MSP430F1611 2004 RISC/16 1.8-3.6 0.5 2.6
MSP430F2618 2007 RISC/16 1.8-3.6 0.5 1.1
MSP430F5437 2008 RISC/16 1.8-3.6 0.28 1.7

CC2430 2007 8051 2.0-3.6 5.1 0.5

ZiLOG eZ80F91 2004 ez80/16 3.0-3.6 50 50

Table 1.2: Comparison of power consumption of IEEE 802.15.4-compatible ra-
dios used in wireless sensor systems (adapted from [34]).

Mfg Device Year VCC Rx Tx Sleep
(V) (mA) (mA) (µA)

Atmel RF230 2006 1.8-3.6 15.5 16.5 0.02

Ember EM260 2006 2.1-3.6 28 28 1

Freescale MC13192 2004 2.0-3.4 37 30 1
MC13202 2007 2.0-3.4 37 30 1
MC13212 2005 2.0-3.4 37 30 1

Jennic JN5121 2005 2.2-3.6 38 28 <5.0
JN5139 2007 2.2-3.6 37 37 2.8

TI CC2420 2003 2.1-3.6 18.8 17.4 1
CC2430 2005 2.0-3.6 17.2 17.4 0.5
CC2520 2008 1.8-3.8 18.5 25.8 0.03

during active mode. A magnified view of current draw during the active mode (Figure

1.7 bottom) shows the varying current drawn during the different activities such as

switching to active mode, sampling the sensor, turning the radio on, transmitting and

receiving, and finally switching to idle mode. The next section discusses the various

energy conservation techniques for wireless sensing applications.
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Table 1.3: Measured current consumption of Telos mote compared to MicaZ
and Mica2 motes (reproduced from [120]).

Figure 1.7: A typical current profile of wireless sensor systems: (top) long
periods of sleep punctuated by short, periodic bursts of high-current activity,
(bottom) detailed view of current drawn during active period (reproduced from
[61]). Note that the time-scales shown are relative to start of each measurement.
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1.2.3 Energy Conservation Techniques

Until recently, the choice of power source for wireless sensor systems have been small

light weight batteries. The advancements in battery technologies have not been able to

keep pace with demands of providing increased operating lifetimes under the constraints

of small weight and volume. This section reviews techniques proposed to prolong the

operating lifetime of wireless sensor systems under constraints of a finite supply of bat-

tery energy. When using energy harvesting, these techniques can be adapted to work in

a harvesting-aware mode.

The state-of-the-art low-power systems rely on a combination of techniques to maxi-

mize their lifetime within a given battery energy budget. These include reducing power

consumption of digital and analogue components by using low voltage for analog and

voltage/frequency scaling (DVFS) for digital circuits, shutting down unused blocks with

power gating [66, 110], and clock gating for digital circuits. On top of these techniques

lie the operating system, application and network level power management approaches.

Low-power processors optimised for wireless sensors have been proposed in [44, 138].

Techniques to minimise energy consumption of sensor and communication subsystems

are discussed in [3, 75, 73, 161], which also include a number of strategies at the applica-

tion and network level. These approaches to energy conservation attempt to maximise

the time spent in deep-sleep mode of the processor and radio, while intelligently deciding

how to best allocate the active time to achieve the application goals. This is generally

termed as duty cycling. Furthermore, to conserve energy during active periods, the focus

is on minimizing the need for communication since it consumes the bulk of energy (Ta-

ble 1.2) compared to computations. A comprehensive survey of approaches to minimize

communications is presented in [7]. The following summarises the major approaches [7]

for optimizing the communications duty cycle:

Network Topology Control [135]: By exploiting node redundancy, which is typical

in sensor networks, and adaptively selecting only a minimum subset of nodes to

remain active for maintaining connectivity. Nodes that are not currently needed for

ensuring connectivity can go to sleep and save energy. Finding the optimal subset

of nodes that guarantee connectivity is referred to as topology control. Therefore,

the basic idea behind topology control is to exploit the network redundancy to

prolong the network longevity.

System Sleep/Wakeup Protocols [67]: These strategies decide at what time the

nodes should wake-up for relaying messages so that they need to remain active for

minimum durations.

MAC Protocols with Low Duty Cycle [30]: These protocols try to minimize the

energy wasted due to collisions in the network while at the same time minimizing

the active time of radio subsystem.
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Another subset of techniques focus on minimizing the amount of data transmitted or the

need to transmit the sensed data by using data compression [89], in-network processing

[29] and data prediction [13]. These techniques tradeoff communication at the expense of

increased computation by relying on the fact that communication is much more expensive

than computation. A class of approaches attempt to minimize the power consumption

of sensing by adjusting the sampling frequency or using multiple sensors with different

power consumptions according to sensing fidelity needed [4].

1.2.4 Discussion

Wireless sensing applications have inherent characteristics that can take advantage of

energy harvesting to achieve near perpetual operation such as the availability of vari-

ous energy harvesting sources in the deployment environment. Most of the applications

discussed in Section 1.2.1 operate in a conservative mode to prolong system life while

satisfying the minimum application demands, possibly incorporating some of the en-

ergy conservation techniques discussed in Section 1.2.3. Note that the usage model of

many of these applications allows for some flexibility in their operation depending on

the energy resources available. For instance, the user may prefer the highest possible

rate of sampling of data but if this is not possible while achieving the desired operating

lifetime, it may be acceptable to use a low sampling and reporting rate as long as the

system operation lifetime is maximised. This is an important aspect from the perspec-

tive of harvested-energy management because it allows scaling of an application’s energy

consumption according to the available energy (Section 1.1). Energy conservation and

(dynamic or runtime) energy management are not the same, since energy management

involves monitoring the energy resources and adjusting system operation accordingly. As

an example of how harvested-energy management can benefit, consider the case of wa-

tershed microclimate monitoring application [146] powered by solar energy harvesting.

The authors note that even after careful engineering of the harvesting supply and storage

subsystem according to the average application workload demand, most of the wireless

sensor nodes did not meet the lifetime requirement due to the unexpected shortages of

harvested-energy in the deployment environment. The main reason quoted was the dif-

ference in harvested-energy between the environment used for system design evaluation

and the actual deployment environment. However, if some form of harvested-energy

management was used, it would have allowed the wireless nodes to adjust their energy

consumption to maximise their lifetime.

In [63], the concept of operation priorities is introduced (Figure 1.8) to enable a wireless

sensing application to degrade gracefully when faced with an energy shortage. The

concept takes advantage of the fact that most practical applications are already designed

for a ‘best effort’ operation because of battery constraints while meeting the minimum

acceptable performance. The concept of priority enables a system that is unable to
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Figure 1.8: Operating priorities for system-level energy management. Line num-
bers indicate priority (Reproduced from [63]).

meet all the goals of the user, due to shortage of energy, to degrade gracefully by at

least satisfying the most important goals. This is achieved by using a policy such those

shown in Figure 1.8. Consider the first policy shown in Figure 1.8 (top), the line item

numbers indicate the priority of a directive and the sub-numbering (e.g., 3.a, 3.b) implies

selection between either one of these, with the higher ones having priority, i.e. ‘a’ before

‘b’. According to this policy, the first priority is to guarantee a lifetime of one year,

then a minimum sampling rate of 1 Hz, followed by either communicating readings

on the network or storing them locally, depending on whether there is enough energy

for sending. Finally, if all these directives are achieved and there is more energy, the

sampling rate is increased. On the other hand, if the available energy is insufficient to

meet all of the directives, the system degrades in the reverse pattern: first, the sampling

rate is reduced until it reaches 1 Hz. Then, if the energy is not sufficient to satisfy

directives 1, 2, and 3.a, energy management attempts to satisfy 1, 2, and 3.b. and so

on.

This concept of energy-driven operation is a natural fit to the variability of most energy

harvesting sources as discussed in the next section. The priority-driven policy discussed

in this section is an example of fine-grained application-level energy management. In

Chapters 5 and 6 of this thesis, generic harvested-energy management policies are dis-

cussed that allocate the harvested energy such that the energy consumption can be

adaptively controlled to prevent the system from shutting down due to shortages, while

maximising the consumption of available energy. It should be noted that if the appli-

cation workload demand is completely inflexible, energy management cannot benefit in

this case. The only way to guarantee the required lifetime under a variable energy sup-

ply is to select the harvesting supply and storage subsystem capacities according to the

worst-case energy availability.
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1.3 Energy Harvesting Sources and Harvester Types

This section describes the different types of energy harvesters. The deployment environ-

ment for wireless sensors determines the types of energy sources available for harvesting.

Since development of efficient or new harvesters is not the aim of this work, from the per-

spective of energy management, we are concerned with the following aspects of energy

harvesting environments and harvesters:

Harvester Technology Can the harvester provide enough usable energy to fulfill the

minimum consumption demand of the application workload? For a given energy

availability, this also depends on the physical dimension of the harvester. A vari-

ety of transducers have been developed such as photovoltaic, thermoelectric, elec-

tromechanical, electroacoustic, electromagnetic etc., but only a limited of these

can be used as energy harvesters, generating sufficient power output with prac-

tically acceptable physical dimensions for embedded system applications such as

wireless sensors. For example, sound energy harvesting is still in a very early stage

of development [45] while the current state of radio frequency harvesting requires

large size antennae [117], which may not be feasible use with small sized systems.

Harvesting Environment In what manner or pattern is the energy provided by

the environment or source? More specifically, is the energy source controllable

or uncontrollable, and does the supplied energy follow a predictable, partially-

predictable or stochastic pattern? Some combination of these possibilities can

obviate the need for any energy management while others can make energy man-

agement trivial, such as when the harvested energy can be generated when needed

in a fixed pattern. For example, consider the special case in which the energy

source is controllable and predictable, such as when the energy is harvested from

machinery which generates a certain fixed pattern of vibrations when turned on. In

this case, there is no real need for harvested-energy management if the harvested-

energy is only needed when the machinery is on or the pattern in which machinery

will be turned on is completely predictable. The predictability of supplied energy

determines the type of energy management policy that should be used [39, 154].

This section reviews the main harvesting technologies that are commercially available,

which include energy harvesting from light, kinetic energy (vibrations and wind), and

thermal differences. Design considerations for energy harvesting powered applications

such as realistic levels of power that can be derived and the variability of energy source

are also referred to. A comprehensive review of harvesting technologies is beyond the

scope of this work. A number of reviews of energy harvesting techniques have been

published [19, 37, 99, 156, 40], with the most recent survey in [40].
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Figure 1.9: Examples of different light energy harvesting environments: (top) an
example of predictable solar energy profile of Las Vegas, US, (middle) partially-
predictable profile measured on an office window, and (bottom) stochastic be-
haviour measured from a mobile device at New York, US at nighttime (repro-
duced from [39]).

1.3.1 Photovoltaic Energy Harvesting

A photovoltaic (PV) cell is fundamentally a semiconductor diode whose p-n junction is

exposed to light [155]. Several types of semiconductors, including amorphous, monocrys-

talline and polycrystalline silicon, are used to commercially manufacture PV cells. The

technology behind silicon based PV panels is relatively mature and a number of de-

ployments of autonomous sensors powered by natural (solar) [65, 164, 146] or artificial

lighting (or a mix) [39] have been reported.

Light energy is measured in watts per square meter or smaller units derived from this

and is termed as irradiance. Another common way of measuring the intensity of light as

perceived by the human eye is called Lux. Figure 1.9 [39] show the measured illumination

power (irradiance) under different conditions both outdoor and indoors. Note that the

difference in light power levels between outdoors (top), indoors (middle) and night time

artificial light (bottom) ranges across three orders of magnitude. Furthermore, the

pattern of available energy varies from predictable, partially predictable to stochastic.

Figure 1.10 shows an amorphous silicon photovoltaic module with dimensions 97mm x

57mm from Sanyo, along with its measured power curves at various light levels under

a 40W tungsten lamp. This cell is optimised for indoor use and at lower light levels it

has higher efficiency levels than a cell optimised for outdoor use. It has a peak power

of 600µW at 300 Lux and 1.8mW at 1,000 Lux. Figure 1.11 shows a monocrystalline

60mm x 60mm outdoor solar panel and its measured output power at summer mid-day
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(a) Sanyo AM1816 amorphous
silicon 97mm x 57mm PV panel
(reproduced from [26]).

(b) Measured power output versus volt-
age curves under different light levels of a
tungsten lamp.

Figure 1.10: An indoor photovoltaic panel and its measured power under dif-
ferent light levels.

1 of 1

(a) A monocrystalline silicon
60mm x 60mm PV panel (re-
produced from [116]).

0

50

100

150

200

0 1 2 3 4 5

P
o

w
e

r 
(m

W
)/

C
u

rr
e

n
t 

(m
A

)

Voltage (Volts)

I (mA)

P (mW)

(b) Measured power output versus voltage
curve under clear summer mid-day condi-
tions.

Figure 1.11: An outdoor photovoltaic panel and its measured power.

in Southampton. The peak power is 200mW, which is more than 100 times that of

the indoor panel of similar size. Photovoltaic cells behave as voltage controlled cur-

rent sources, and are characterised by their open-circuit voltage (Voc) and short-circuit

current (Isc), along with other parameters. As incident light levels drop, short-circuit

current decreases, while open-circuit voltage remains fairly constant as shown in Figure

1.10b. Furthermore, Figures 1.10b and 1.11b show that the power output varies with the

operating voltage and to maximise the power output the PV panel should be operated

at its optimal operating point (Vopt and Iopt) as discussed further in Section 1.4.
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Table 1.4: List of vibration sources with their maximum acceleration magnitude
and frequency of peak acceleration (reproduced from [133]).

1.3.2 Vibration Energy Harvesting

Vibration energy harvesting uses different types of mechanisms such as electromagnetic,

piezoelectric and electrostatic to convert ambient vibrations to electrical energy. The

key attribute of most vibration energy harvesters is that these are ‘tuned’ to specific

frequencies, called the resonant frequency, and the output of harvester degrades beyond

this frequency [133]. Techniques for adapting this resonant frequency of the harvester

have recently been proposed [20].

Vibration energy is measured in terms of its acceleration and frequency in units of

gravity (g) and Hertz (H), respectively. Table 1.4 shows the results of a survey [133] of

peak accelerations and frequencies of vibration of a range of objects; it may be noted

that a number of electrical devices in this table exhibit twice of mains-frequency (60Hz,

US) vibrations. This observation is important because a vibration energy harvester

is ’tuned’ to specific frequency and the output power degrades beyond this frequency.

Figure 1.12 shows the measurement of accelerations and peak acceleration frequencies

along three axes from a heating pump and car body. Note that the frequency and

amplitude of vibrations from the heat pump along the Y-axis can be considered as fairly

uniform with a single dominant frequency which can used to tune the harvester. On

the other hand, the car’s vibration along the X-axis exhibit a random pattern that can

be considered as stochastic, with changing dominant frequencies which make a case for

adapting the resonant frequency of the harvester according to the dominant frequency

to maximise the harvester output.

Vibration energy generators fall under three main types [156]: electromagnetic, piezo-

electric, and electrostatic. Only the first two of these types are commercially available

[82, 36, 28, 1] and are considered in some detail in the following sections.
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(a) Measurement of vibrations and peak frequencies of a heat pump (repro-
duced from [42]).

(b) Measurement of vibrations and peak frequencies from a car engine (repro-
duced from [41]).

Figure 1.12: Measurement of vibrations and peak acceleration frequencies of
vibrations from a heat pump and car engine.
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(a) Free-Standing Vibration
Energy Harvester (PMG FSH)
by Perpetuum Inc (reproduced
from [82]).

(b) Vibration energy harvester
from Ferro Solutions (repro-
duced from [36]).

Figure 1.13: Different varieties of commercially available electromagnetic vibra-
tion energy harvesters.

1.3.2.1 Electromagnetic

Electromagnetic generators are based on the principle that movement of a magnet rela-

tive to a coil induces an electrical current in the coil. The disadvantage of electromechan-

ical generators is their high cost [82] but compared to piezoelectric based generators they

are relatively low-impedance sources that produce moderate voltages that can be effi-

ciently rectified and used to power electronic devices [157]. Commercial electromagnetic

generators have been developed targeting energy harvesting from vibrating machinery.

PMG Perpetuum has developed one such generator, the PMG FSH (Free-Standing Vi-

bration Energy Harvester) [82] in two versions tuned to 100Hz and 120Hz (Figure 1.13a)

capable of generating peak output of 4mA (0.5g) up to 5 VDC, with the current drive

output independent of load voltage up to 5 V. It has with a height of 63mm and diameter

of 68mm. Ferro Solutions manufacture a similar device, the VEH-360 [36], with a height

of 39mm and diameter of 53mm which is tuned to 60Hz (Figure 1.13b). Its reported

output is 0.3mA (50mg) to 1.6mA (100mg) at 3.3VDC.

1.3.2.2 Piezoelectric

The basis of electric power generation from piezoelectric materials is mechanical de-

formation of these materials using some source of vibrations. Piezoelectric generators

benefit from straightforward fabrication, but their drawback is that they generate high

AC voltages but low current, which can be difficult to convert efficiently to DC [157].

Piezoelectric-based vibration energy harvesting technology has been commercialised by
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(a) AdaptivEnergy
piezoelectric vibra-
tion energy harvester
inside casing.

(b) Disassembled device showing its components.

Figure 1.14: JouleTheif piezoelectric vibration energy harvester from Adap-
tivEnergy (Reproduced from [1] and [88]).

(a) Structure of
Mide piezoelectric
harvester.

(b) Diagram showing different parts of the harvester.
(reproduced from [36]).

Figure 1.15: Volture piezoelectric vibration energy harvester from Mide (Repro-
duced from [28]).

AdaptivEnergy with their ‘JouleTheif’ [1] (Figure 1.14) and Mide with their ‘Volture’

generator range [28] (Figure 1.15). The JouleTheif by AdaptivEnergy is reported to

generate output of 3.9mJ in 1.4 seconds (2.78mW) from 1g vibration at 60 Hz [88] while

the Mide Volture generator is available in a variety of dimensions and Figure 1.16 shows

the output of PEH20w model (designed for 80-175 Hz) at different amplitudes using a

resistive load of 20KΩ.

1.3.3 Thermoelectric Energy Harvesting

A thermoelectric energy harvester converts thermal energy in the form of temperature

differences into electrical energy. Thermoelectric energy harvesting is based on the

Seebeck effect [40, 127]. A thermoelectric harvester is constructed by using many ther-

mocouple elements and each thermocouple is composed of an n-type material electrically
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Figure 1.16: The performance data of Mide Volture PEH20WG (Reproduced
from [28]).

Figure 1.17: Output power of Micropelt thermoelectric generators versus hot
side temperature (reproduced from [38]).

in series with a p-type material. When a temperature difference is applied across this

material, heat begins to flow from the hotter to the cooler side. Thus, the heat energy

causes the free electrons and holes to move and form an electric potential, resulting in

current flow if the circuit is closed. The voltage obtained at the output of the thermo-

electric harvester is proportional to the temperature difference across the thermoelectric

element [127]. Thermoelectric harvesters have been commercialised by Micropelt, which

has developed a range of thermoelectric harvesters in different form factors suited to

different applications and two types of these are shown in Figure 1.17. The figure also

shows the output power versus hot side temperature at an ambient temperature of 25

degree Celsius and using natural convection.
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Figure 1.18: Profile of wind speed measured over a single day at height of 6 feet
above ground (reproduced from [114]).

1.3.4 Wind Energy Harvesting

Wind-energy harvesting on a micro-scale for powering wireless sensors has been demon-

strated using various prototypes systems using small scale turbines and piezoelectric

windmill (Figure 1.19). Figure 1.18 shows the profile of wind energy over a day [114].

As can be seen, the pattern of wind energy can exhibit a very high variability over a

short period and can be considered as practically stochastic. Based on the design of the

energy harvesting device, the amount of wind energy that can be harvested ranges from

a few microwatts to 500 mW. The authors of [145] demonstrated a platform for wind

energy harvesting using a small size wind turbine with maximum power point tracking.

The maximum output power ranged from 2 to 100 mW for wind speeds of 2.3 to 8.5 me-

ters per second. The authors of [123, 122] propose a piezoelectric windmill (Figure 1.19

left) that converts air current into electrical energy by vibrating piezoelectric benders,

with a reported maximum output power of 7.5 mW at a wind speed of 10 miles per hour.

In [118], a wind harvesting system with maximum power tracking is described and the

authors reported that the wind turbine used can output a maximum power of 500 mW

(Figure 1.19 middle). Similar to [118], the authors of [100] also used a wind turbine to

harvest wind energy (Figure 1.19 right). The authors reported that their wind turbine

can output 45 mW at wind speed of 5 meters per second and 210 mW at wind speed of

9 meters per second.
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Figure 1.19: Different types of wind energy harvesters (left to right): piezo
windmill [123, 122], horizontal turbine [118], and vertical axis turbine [100]
(reproduced from cited sources).

Table 1.5: Power output comparison of different types of harvesters.
Type Subcategory Stimuli Power Cost

Photovoltaic Sanyo Amorphous Si 1000 Lux 1.8mW £9.35
Photovoltaic Monocrystalline Si Sunny Day 200mW £3.90
Electromagnetic PMG FSH 100/120Hz@0.5g 20mW £150-180†
Electromagnetic FerroSolutions VEH-360 60Hz@0.1g 5.28mW n/a
Piezoelectric AdaptivEnergy JouleTheif 60Hz@1g 2.78mW $49
Piezoelectric Mide Volture (tuned) 50Hz@1g 8mW $399
Thermoelectric Micropelt TE-Power Node 80 elcius 10mW £70.53
Wind Small turbine [145] 2.3-8.5 metre/sec. 2-100 mW £12‡
Wind Piezoelectric Windmill [122] 10 mph 7.5mW n/a
Wind Horizontal Turbine [100] 5-9 metre/sec. 50-210 mW n/a

† Based on price quote obtained via sales enquiry.
‡ For a similar turbine as used in [145].

1.3.5 Discussion

The choice of energy harvester is dictated by the working environment of the embed-

ded system and the aim of this section is to give an overview of state-of-the-art in

commercially-oriented and relatively mature energy harvesting technologies. Table 1.5

summarises the output power of different types of harvesters considered in this chap-

ter. Besides the power output achievable from these harvesters, cost is an important

practical concern in design of embedded applications. In this respect, PV technology

is currently the most affordable means of energy harvesting available since the cost of

commercially available vibration and thermoelectric solutions are well above the price of

small PV panels (Table 1.5). Furthermore, with respect to the output harvested power,

PV harvesting is capable of powering a range of contemporary wireless sensing systems

depending on the size of PV panel permissible and available illumination, however, the

selection of the appropriate type of PV panel is important especially in low-light or arti-

ficially lit environments. On the other hand, vibration and thermoelectric technologies

not only have a limited power output, but also require a specific operating threshold to

provide any useful output at all. For example, present technologies for vibration energy

harvesting are sensitive to specific vibration frequencies, so the technologies are typically
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Figure 1.20: Generic model of an energy harvesting supply and storage system
along with the wireless sensor application workload.

applicable to deployment on machines working from a mains power supply or at a fixed

frequency (Table 1.4). Similarly, thermoelectric devices require maintaining a suitable

temperature difference across the thermocouple (Figure 1.17), which can only be a sat-

isfied in a limited number of working environments. Wind energy is relatively promising

in terms of its availability and output power but it also requires comparatively large

sized generator and the pattern of wind speed shows a very high degree of fluctuation

making the useful output of wind generator smaller than outdoor PV panels [118].

Considering the relative benefits of photovoltaic harvesting mentioned above, this work

has selected photovoltaic harvesting systems as a concrete instance for investigating de-

sign consideration for harvested-energy management. Small size PV panels deployed

outdoors are capable of powering a variety of application workload demands, neverthe-

less, there is need to intelligently manage the time-varying supply of harvested-energy.

Chapter 3 discusses prediction of solar harvested-energy to assist an energy manage-

ment policy (Chapter 6) to adapt an application workload’s energy consumption to

dynamically match the supplied energy. The next section discusses the required system

components to efficiently extract, store and deliver energy from a given harvester to the

application workload.

1.4 Energy Harvesting Supply and Storage Subsystem

The energy harvesting supply and storage subsystem captures the energy required to

meet the application workload demand. The main components in this subsystem are

shown in Figure 1.20 and their purpose is explained in this section.

Since the output of the harvester varies depending upon harvesting source fluctuations,

the energy storage is an important part of this subsystem so that the non-uniform output

of the energy harvester can be smoothed for delivery to the load. The power conditioning

elements are required because the operating voltage/current range of the harvester is

constrained by its construction/type and may not match the operating range of the

energy storage or load. Similar constraints apply to energy storage and load and hence
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voltage converters are required to enable power flow from harvester to energy storage and

the load. In addition to matching the harvester, energy storage and load characteristics,

another needed functionality is to ensure that the maximum power is delivered from the

harvester for any given environmental stimulus. This is achieved by using maximum

power point tracking (MPPT) circuits that manipulate operating point to improve the

converted power output of the harvester.

The key issues in the design of the power delivery subsystem are (i) the selection of

appropriate sizes of harvester and energy storage capacities and (ii) minimize the wasted

energy in the stages during power delivery from harvester to the load. Since the supply

chain is made up of harvester, power converters and storage stages, to maximize the

power delivered multiple challenges need to be addressed.

Harvester Maintaining the harvester conversion efficiency across variations in environ-

mental conditions (illumination intensity, vibration frequency, temperature etc.)

[139, 84]. For example, the conventional MPPT approaches used for outdoor solar

panels are not suitable due to their power consumption requirements and for this

reason ‘micro’ solar MPPT approaches have been proposed [6, 14, 69, 22]. MPPT

techniques for wind energy harvesting [118, 145], and thermoelectric energy har-

vesting [127] have also been proposed.

Power Conversion Minimizing the losses in voltage conversion circuitry at sub-watt

power levels and across the variable range of inputs. For high efficiency DC-DC

conversion at sub-milliwatt levels, circuits optimised for energy harvesting appli-

cations have been proposed [146, 21, 126, 74]. Harvesters such as thermoelectric

generators produce very low voltage and additional circuits are needed to kick-start

operation of the DC-DC converter [74, 127].

Storage Desirable properties include high charging efficiency, low leakage, very large

number of cycles, low recharge circuit complexity and ability to accurately measure

remaining energy. These properties are conflicting in real storage technologies such

as different battery types and supercapacitors [59, 157]. For instance, rechargeable

batteries have limited charge cycles and lower charging efficiency than supercapac-

itors, while supercapacitors have higher self-discharge [131, 164, 158].

The specific configuration of components used in the design of power delivery and energy

storage depends on the type of energy harvester used as well as the desired characteristics

of a energy storage. For instance, Figure 1.21 shows the generic configuration of photo-

voltaic energy harvesting subsystem. Besides the PV panel, energy storage and load, the

input regulation can be used to ensure the proper charging of energy storage and MPPT,

while the output regulator delivers a constant voltage to the load. This configuration is

discussed in more detail in Chapter 2 of the thesis. Similarly, Figures 1.22 and 1.23 show

the configuration used in wind and vibration energy harvesting systems. Compared to
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Figure 1.21: Generic model of a PV energy harvesting system (reproduced from
[59]).

Figure 1.22: Generic model of a wind energy harvesting system (reproduced
from [59]).

a PV harvesting system, since the electricity generated from the wind generator or a

vibration energy harvester is AC, it needs to be converted to DC before it is stored in

the energy storage. The input regulator, which consists of a rectifier and a DC-DC con-

verter, does the following: first, the rectifier converts the AC output to DC, and second,

the DC-DC converter adjusts the voltage level of the rectifier output to be within the

charging range of the energy storage. To address the start-up and efficiency problems

with rectifier circuits, [72] discusses switched-inductor regulation. Figure 1.24 shows the

structure of PV harvesting system using a hierarchical energy storage [62] composed of

a supercapacitor and rechargeable battery to benefit from individual strengths of each

type of storage. A switch is used to select between the two energy storage devices to

supply the load, and a DC-DC converter is used as a charger for the batteries.

From the perspective of energy management, the energy harvesting supply and storage

subsystem influences the operation of energy management in two ways:

1. For a given energy source, the harvester size determines how much energy can be

captured and the capacity of energy storage influences the uniformity of consump-

tion achievable with respect to harvesting source variations.
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Figure 1.23: Generic model of a vibration energy harvesting system (reproduced
from [59]).

Figure 1.24: An instance of PV harvesting system with multi-level energy stor-
age (reproduced from [59]).

2. The characteristics of system components such as input regulation, energy storage,

and output regulation determine the losses in the system and the actual energy

available to be consumed or stored. Furthermore, due to the non-ideal character-

istics of system components, the amount of losses are also dependent on the value

of input power, stored energy and power consumed.

Since the purpose of energy management is to manipulate the amount of energy being

consumed, it needs an awareness of the correct values of energy flows or the model of

underlying system. Thus, the specific configuration of the harvesting subsystem has to

be taken into account for the practical realisation of energy management. Furthermore,

support for monitoring of system energy flows such as harvested-power, stored energy

and energy consumption [34, 63, 159] is also required. Figure 1.25 shows the imple-

mentation of a PV energy harvesting supply and storage subsystem with support for

monitoring of PV panel current and various voltages. Chapter 2 focuses on the design

of PV energy harvesting and supply subsystem with respect to supply and demand con-

siderations and efficiency of design, while Chapter 4 discusses non-ideal behaviour of

system components to enable the design and evaluation of energy management based

on the underlying system configuration.



Chapter 1 Introduction 29

PV panel current 

monitor

Reverse current and 

overcharging 

protection diodesInput voltage 

regulation

Output voltage 

regulation

Solar panel, battery 

and load voltage 

measurement

Figure 1.25: Design of a PV energy harvesting and storage subsystem show-
ing the power conditioning and power measurement components (adapted from
[146]).

1.5 Harvesting-Aware Energy Management

Techniques for operating lifetime maximisation in case of (primary) battery powered sys-

tems focus on energy conservation (Section 1.2.3), since this is the only way to maximise

the lifetime of applications while achieving the desired performance, as the total energy

budget is dictated by the battery capacity. In energy harvesting powered applications,

the same approach can be used but this by itself cannot guarantee uninterrupted oper-

ation at all times because of the variability of harvested energy. On the other hand, it

is also possible that using a conservative mode of consumption results in wasted energy

that could be used to increase the application workload, e.g., to achieve a higher sam-

pling rate or higher rate of message transmission, resulting in a more responsive system

in the case of a wireless sensor application as described in Section 1.2.1. The general

concept of harvested-energy management is to allocate energy to the application work-

load with the aim of maximising the utilisation of available energy while not exceeding

it, a concept aptly termed as ‘energy-neutral operation’ [65, 154]. To achieve this, the

system energy consumption needs to be adapted according to the output of the supply

subsystem (Section 1.4). This implies that, depending on the energy availability, the

system can increase its energy consumption (if desirable) rather than operating in energy

conservation mode (as usually desirable in a battery powered systems) and consume en-

ergy that otherwise cannot be stored in limited energy storage. In case of reduced energy

supply, it can also decrease the application workload to prevent undesirable shutdown.

This section reviews recent works on harvesting-aware energy management by identi-

fying the main approaches, and places the work undertaken in this thesis in context.

The common theme in all work undertaken on harvesting aware energy management

is the recognition of the variability of the energy supply and the need to dynamically
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adjust the application operation according to supply while achieving application goals.

Different models of applications [105] have been targeted for adaptation.

One category of works aim at real-time scheduling of tasks under the variable supply of

harvested-energy while minimising the number of deadline misses. In [102], Moser et al.

investigate ‘lazy’ scheduling algorithms as compared to ‘earliest deadline first’ schedul-

ing for optimal scheduling of real-time tasks under the joint constraints of energy and

time on a single processor. To handle the uncertainty in energy availability, the authors

introduce the concept of energy variability characterisation curves (EVCC) based on

the maximum and minimum energy produced in any time interval. The authors note

that the performance of algorithms are highly sensitive to the accuracy of the prediction

achieved by EVCC. The model of the energy harvesting system is simplistic and the

energy source is modeled synthetically. In [80, 81], the authors propose energy aware

dynamic voltage and frequency (EA-DVFS) scheduling that improves upon the lazy

scheduling by assuming a dynamic voltage frequency scaling capable processing unit to

more efficiently use the tasks slack to further minimise the deadline miss rate. Liu et

al. [79, 78] investigate variation of the technique in [81] by assuming a more realistic

model of the system that considers the efficiency of energy storage and various predic-

tion techniques to show the impact of these on earlier results that were based on perfect

knowledge of harvested-energy. In [86], the DVFS based real-time scheduling is extended

to multi-core processors. Task scheduling for structural health monitoring (SHM) ap-

plications is discussed in [119] called Head-of-Line Low-Overhead Wide-priority Service

(HOLLOWS). It uses an energy-constrained prioritised queue model to describe the

residence time of tasks entering the system and dynamically selects the set of tasks to

execute, according to system accuracy requirements and expected energy. A prediction

algorithm is also proposed to estimate energy expected, as required by the scheduling

algorithm. For the same SHM application [31], a DVFS based task scheduler based

on a linear regression model is proposed in [128] that relates the energy consumption,

execution time and data accuracy to the number of tasks and their complexity. This

work is further improved in [32] to achieve consistent performance under the variability

of solar harvested-energy. Zhang et al. [163] propose harvesting-aware speed selection

algorithms for time-critical and performance-intensive monitoring and control activities,

based on Dynamic Voltage Scaling (DVS) for CPUs and Dynamic Modulation Scaling

(DMS) for wireless radios. The purpose is to maximise energy reserves while meeting

application performance requirements of wireless sensors in a network under spatiotem-

poral energy variability to achieve resilience to network-wide workload burst or shortage

in amount of energy harvested.

Another model of application is one that consists of a set of repetitive tasks with different

costs in terms of energy consumption, which may be dependent on each other, and the

aim is to decide the rate of task execution in a given interval based on energy available

in the interval and the application performance constraints on tasks execution. Based
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on this model, [107, 103] present a multi-parametric linear programming based policy to

determine the rates of tasks execution based on prediction of future energy. Since the

online solution can be computationally prohibitive in terms of both runtime and energy

consumption, the solution is based on off-line computation based on different possible

system states and environmental conditions. The authors note that the performance of

the policy is sensitive to prediction errors and a worst-case long-term energy prediction

technique is used to prevent the system from depleting the energy storage because of

mis-prediction. The system model used takes into account the energy storage efficiency

and the possibility of consuming energy directly depending on supply and demand. A

simpler model of application with duty cycling of one task is considered in [65] and the

goal is to maximise the average duty cycle of application. The system model considers

energy storage efficiency and possibility to consume energy directly without discharging

the energy storage depending on energy available. Using prediction of future energy,

the policy determines the times in future when energy can be consumed directly and

allocates maximum possible duty cycle during these time slots to maximise utilisation

harvested-energy and thus the average duty cycle. [164, 165] and [154] also consider

an harvesting adaptive duty cycling control. [154] propose a Linear Quadratic Tracking

based controller to adapt the duty cycle based on monitoring of stored energy in a

rechargeable battery and also consider reducing the variability of energy consumption

as an optimisation objective. [164, 165] consider the leakage in supercapacitors and the

aim is to minimise the wasted energy by allocating higher duty cycles when leakage is

higher, using a proportional gain controller.

In [106, 104, 39], an optimisation problem based on utility maximisation framework

is considered, which is based on maximising the allocation of available energy to an

application while achieving smoothness of energy consumption under a variable sup-

ply of energy. Utilising the knowledge of future harvested energy, [106, 104] propose a

polynomial time heuristic that allocates energy as uniformly as possible within the con-

straints of finite energy storage while [39] propose a max-min time-fair allocation policy

to achieve the same goal. In [76, 77], the problems of energy harvesting aware sensing,

routing and data dissemination in wireless sensor networks is considered under the time-

varying profile of harvested-energy. Similarly, a number of other works which are too

numerous to mention here consider harvested-energy management in context of energy

source variability and some wireless sensor network application specific optimisation ob-

jective. Some of these works require knowledge of energy source to manage variability

and to this end many of the works discussed above with few exceptions [65, 128, 32] as-

sume perfect knowledge of future energy. On the other hand, energy source model-free

approaches are described in [154, 164, 165], while Gorlatova et al. [39] discuss various

energy allocation approaches based on a stochastic model of the energy source. With

the exception of considering the energy storage efficiency, the model of energy harvest-

ing system assumed in majority of these works is highly simplified, with energy source

modeled as a series of values that determine the energy stored in an ideal buffer.
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The focus of this thesis is on energy management design considerations, mainly the

variability of harvested-energy and the non-ideal characteristics of various system com-

ponents. Considering this, the goal is to uniformly allocate harvested-energy that can

be utilised by any application to achieve consistent performance. In Chapter 5, some of

these energy management policies are evaluated using detailed system modeling (Chap-

ter 4) to identify the shortcomings in the original system model and propose improve-

ments, while Chapter 6 considers the problem of time-uniform energy allocation under

a variable energy harvesting supply.

1.6 Project Aims and Objectives

As discussed in previous sections, the choice of a suitable harvester depends on the avail-

able environmental energy sources and the capability of the harvester to deliver sufficient

power within any imposed constraints on its selection. The power delivery and storage

subsystem needs to be designed to optimise the power extracted from the harvester and

it determines the amount of energy that can be harvested and buffered. The embedded

applications under consideration can vary their energy consumption within certain limits

by increasing or decreasing their workload. This can be exploited by harvested-energy

management to optimise the utilisation of available energy by maximising the energy

consumption while not exceeding the available supply capacity. Effective implementa-

tion of energy management requires awareness of the energy source variations to optimise

long-term operation, while also accounting for the non-ideal characteristics of harvest-

ing system components. There has been a significant amount of work covering different

aspects of energy harvesting powered applications in the last few years as discussed in

this chapter. These works have addressed different problems in this domain such as the

validation of different energy harvesting system designs, optimisation of the harvesting

supply subsystem, and adapting application parameters accordingly to the spatiotem-

poral variability of the harvesting source using some form of energy management. With

few exceptions [65, 165], harvested-energy management and harvesting subsystem design

are considered together; in most of the works, methods of harvested-energy management

are discussed and evaluated while abstracting the details of harvesting subsystem [154]

and focusing mainly on the specifics of a given application [76], even assuming complete

knowledge of the energy source variations [103, 39].

The aim of this thesis is to investigate design considerations for harvested-energy man-

agement with particular emphasis on variability of energy supply and the non-ideal

characteristics associated with harvested-energy supply and consumption. Figure 1.26

shows the topics of this thesis and the links between these to address the project aims

and objectives, which are as follows:
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Figure 1.26: Overview of thesis topics in context of design considerations for
harvested-energy management.

• To manage variability of energy harvesting supply using suitable harvested-energy

prediction technique. This is addressed in Chapter 3.

• To study the energy harvesting system designs to identify necessary components

and their characteristics such as interdependency and losses, which influence energy

supply and consumption. This is addressed in Chapter 2.

• To better manage supply and demand, determine the various parameters that

affect these using suitable modeling and validate it empirically. This is addressed

in Chapter 4.

• To demonstrate the utility of modeling in achieving energy-neutral operation, eval-

uate and optimise existing energy management policies. This is addressed in Chap-

ter 5.

• To achieve uniform operation of application under supply variability, propose prac-

tical energy management policy for optimised allocation of energy budgets using

harvested-energy prediction. This is addressed in Chapter 6.

As a concrete instance of problem specification (Figure 1.2), this thesis focuses on pho-

tovoltaic harvesting systems using solar energy due to its widespread applications, rela-

tively high power output and maturity of harvester technology compared to other means

of harvesting since harvester development is beyond the scope of this work. As the target

workload, a single wireless node is considered instead of a network because the princi-

ples discussed are applicable to each node in a network. For adaptation of application
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parameters, a generic model of energy budget allocation is considered since the allo-

cated budget can be used to decide duty cycles, sampling rates, transmission rate, etc.

depending on application specific functionality.

1.7 Thesis Outline

The thesis is organised as seven chapters.

Chapter 1 outlined the complete system within which harvested-energy management

needs to function. The goal was to explain the major components in an energy harvest-

ing powered application, such as the embedded application, the harvesting sources and

harvesters, and the power supply subsystem. Furthermore, the possible choices amongst

the different types of these major components and their relevance to the problem of

harvested-energy management was discussed.

Chapter 2 discusses the design of energy harvesting supply and storage subsystems. The

aim is to identify the required components, their characteristics, and their selection from

the aspect of efficient realisation of the energy harvesting system. This chapter explains

the interdependency between system components and the losses associated with supply

and consumption, which are modeled in Chapter 4. It also describes a reference system

implementation that is referred in Chapters 4 to validate the system modeling, and in

Chapters 5 and 6 to optimise and evaluate energy management policies.

The variability of harvested energy is a key challenge in harvested-energy management

since it makes it difficult to determine the energy spending budget that will guarantee

that the utilisation of all available energy is maximised without exceeding the total

harvested-energy. In addition, the knowledge of energy to be harvested in future can

be used to determine the energy budgets that result in uniform performance of the

application workload in the long-term. Chapter 3 considers the problem of prediction of

harvested-energy with low computation and energy consumption overheads, and focuses

on prediction of solar energy for low-power and resource constrained wireless sensor

devices. The main contribution of this chapter is an effective short-term prediction

technique through systematic evaluation of the prediction algorithm parameters. The

obtained results are used in Chapter 6 for evaluation of the proposed energy allocation

policy.

The common objectives of harvested-energy management are to ensure a dynamic bal-

ance between energy supplied and consumed. A better correlation between supply and

demand can be achieved if the non-ideal behaviour of each system component is consid-

ered, and its variation (if any) based on component’s input/output (or inter component

dependency). The contribution of Chapter 4 is to address this by identifying the con-

tribution of individual system component on supply or demand through modeling. The
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proposed approach to modeling the system and its individual components is validated

against empirical measurements using the reference system configuration described in

Chapter 2.

Chapter 5 applies the modeling concepts discussed in Chapter 4 to show that existing

energy management policies need to reconsider their underlying system model to operate

in an effective manner. This chapter evaluates three energy management policies and the

contribution of this chapter is the identification of changes to the system model of these

policies to correctly achieve energy neutral operation and/or maximise harvested energy

utilisation. Chapter 6 considers the problem of uniformity of energy budget allocations

under the variable supply of harvested energy. Using knowledge of future harvested

energy, it is possible to allocate energy as uniformly as possible while achieving energy

neutral consumption. A prediction based energy budget allocation policy is proposed

and using the system model considered in Chapter 4, the results are compared with close

variants and a prediction-less policy. It is shown that proposed policy achieves lower

variance of allocated energy at comparable energy utilisation and system dead times.

The chapter also applies the system modeling in Chapter 4 to determine the size of PV

panel and energy storage to meet a given minimum consumption demand of application

workload. Chapter 7 presents the conclusions and discusses directions for future work.

1.8 Thesis Contributions

The contributions of this thesis are:

1. This thesis defines the goals of harvested-energy, identifies the two fundamen-

tal challenges in its realisation, i.e., uncertainty in supply and non-ideal system

components, and establishes the dependence of harvested-energy management on

different parts of an energy harvesting system such as the energy source, harvesting

system components and application workload demand.

2. To address uncertainty in energy supply the thesis focuses on prediction of

harvested-energy and proposes a systematic approach for evaluation of solar energy

prediction algorithm accuracy and simplifies determination of prediction algorithm

parameters for minimising the average prediction error across multiple profiles of

input energy.

3. The thesis identifies the interdependencies of harvesting system components and

their non-ideal characteristics, proposes appropriate modeling to quantify these,

and optimises recently proposed harvested-energy management policies to achieve

effective match of application workload demand with energy supply.
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4. To achieve uniform performance under supply uncertainty, the thesis proposes a

prediction based energy management policy that achieves lower variance in perfor-

mance and lower system dead-time at comparable utilisation of harvested-energy

compared to recently proposed approaches.

The contributions discussed in Chapter 3 of this thesis have been published as:

• Mustafa Imran Ali, Bashir M. Al-Hashimi, Joaquín Recas, David Atienza, ”Eval-

uation and Design Exploration of Solar Harvested-Energy Prediction Algorithm,”

Design, Automation and Test in Europe Conference and Exhibition (DATE), 2010,

page 142-147, 8-12 March 2010



Chapter 2

Photovoltaic Harvesting Supply

and Storage Subsystem Design

Considerations

As discussed in Chapter 1 (Section 1.3), photovoltaic energy harvesting has been cho-

sen in this thesis to investigate the harvested-energy management design considerations.

This was because of lower cost, higher power output per unit area, and applicability

to many wireless sensor applications. For a given deployment location, the amount of

energy available to the workload is dictated by the capability of the harvesting sub-

system to capture, store and supply energy. As discussed in Section 1.1, the aim of

energy management is to allocate energy budgets for application workload consumption

according to harvested-energy availability. Furthermore, it was discussed that effective

energy management has to account for the characteristics of the energy source (harvest-

ing environment), harvesting subsystem and demand of application workload. Unlike

the harvesting environment characteristics that cannot be controlled but only estimated

to minimise uncertainty (Chapter 3), the harvesting subsystem needs to be carefully

engineered by appropriate selection of components to ensure sufficient energy supply

to the application workload. This chapter considers the design choices for photovoltaic

harvesting supply and storage subsystems in detail. This is important since energy

management policies need to consider the non-ideal behaviour of the chosen system

components for energy budget allocations to effectively adapt the demand according to

supply. Chapter 4 discusses the modeling of system components’ non-ideal behaviour

such as losses and inter-component dependencies. Figure 2.1 depicts a generic architec-

ture of a photovoltaic energy harvesting system, showing the system components and

their interconnections. The environmental energy (irradiation) is captured by the pho-

tovoltaic (PV) panel and this is made available through the input power conditioning

block for replenishing the energy storage and consumption by the application workload.

37
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Figure 2.1: Architecture of a photovoltaic energy harvesting sensor node.
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Figure 2.2: Factors influencing the design of harvesting supply and storage
subsystem.

The application workload is connected through the output regulation block to the har-

vester output and energy storage. Depending on the load demand and energy supplied,

the load demand can be supplied from the output of PV panel, the energy storage, or

both. The harvested-energy management is implemented on a processing unit that is

part of the wireless sensor node. To allocate energy budgets, energy management policy

requires measurement of energy harvested, stored, and consumption. To obtain these

values, measurement circuits may be used.

Figure 2.2 broadly depicts the factors influencing the design of the harvesting supply and

storage subsystem. These factors can be categorised into two main design considerations:

Matching Supply and Demand Given the deployment environment, the required

energy supply from the PV panel and energy storage capacity needs to be de-

cided to meet a given (average) application workload demand. In most practical

energy harvesting powered applications (Section 1.2), there is a desired minimum

operating demand of the application that must be met to obtain results while op-

erating perpetually. The harvesting subsystem has to be engineered for sustaining

this minimum acceptable demand. This involves selecting the power output of PV

panel and capacity of energy storage accordingly. It may be non-trivial to achieve
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this in an exact manner since it is not always possible to accurately characterise

the environment’s energy supply and fluctuations completely over the long-term

[59]. Furthermore, the selection of PV panel and energy storage is also constrained

by physical dimensions, mainly due to the need for miniaturisation, and possibly

cost.

Maximising System Efficiency At an abstract level, the sensor node is the consumer

of energy, the photovoltaic panel caters to this demand by extracting energy from

the environment and energy storage buffers this energy. In an ideal system, the

harvester (PV panel) output would be independent of the state of energy storage or

the load. However, real system components are interdependent and their current-

voltage (I-V) characteristics are non-linear and need to be matched to realise a

functioning harvesting subsystem and enable efficient operation. High efficiency of

energy transfer is an important factor since the harvested energy is invariably con-

strained by the small size of PV panels. Although there can be multiple choices of

components to design a harvesting subsystem with a given supply rate and storage

capacity, the inflexibility in choice of a component due to its desired properties,

e.g., supercapacitor vs. rechargeable batteries, may constrain the choice of other

system components such as PV panel, input/output power conditioning elements

etc.

The aim of this chapter is to present harvesting supply and storage subsystem design with

respect to the above two considerations. Given a harvesting subsystem design, energy

management needs to account for system losses for balancing supply and demand to

achieve energy-neutral operation. Chapter 4 discusses modeling of system components

to identify the non-ideal characteristics and a reference system design is used to validate

the modeling. This chapter also discusses the selection of this reference system design.

The chapter is organised as follows. Section 2.1 discusses related work, Section 2.2

presents the design considerations for the photovoltaic energy harvesting system, Section

2.3 gives the details of the reference system design and Section 2.4 concludes the chapter.

2.1 Related Work

A number of previous works have touched upon design considerations for energy har-

vesting systems [10, 59, 83, 24] and a variety of photovoltaic energy harvesting system

designs have been proposed in the literature [124, 62, 146, 164, 141] covering different

points in the design space [59]. These designs are driven by different objectives such

as design simplicity [65, 146], long life of energy storage [141, 62], and maximum power

point tracking [141, 118, 15]. Recently, the use of supercapacitors as energy storage and

the resulting challenges in maximum point point tracking [141, 14, 15], cold booting a

system with an empty supercapacitor [164, 22, 24] and leakage management [164, 131]
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have received much attention. Considerations in maximising system energy efficiency

[83] and application driven design of systems has also been discussed [146]. Based on

the study of these different designs of photovoltaic energy harvesting and storage sub-

systems, this chapter summarises the design choices and identifies the behaviour of each

system component in terms of losses and the interdependency between system compo-

nents. Based on the general structure of these systems, the aim is to identify parameters

that influence harvested-energy management in adapting demand according to supply.

Chapter 4 builds upon these concepts and discusses the modeling of these parameters,

and validates it using a reference system design described in this chapter (which is based

on the principle of design simplicity).

2.2 Design Considerations

This section discusses the underlying issues in the design of an optimised harvesting

subsystem. First, the matching of supply with the energy consumption demand of the

application workload is considered. Next, the requirements for interfacing the PV panel,

energy storage and load for efficient design is explained. Then each system component

is discussed along with its associated design considerations.

2.2.1 Dimensioning Energy Supply and Storage

Dimensioning involves selecting the PV panel nominal output power and the energy

storage capacity to cater to a certain demand. Consider a simple case of a PV harvesting

system deployed in a predictable setting where the lights are illuminated for a certain

fixed time per day and the application workload needs to operate at a constant demand

throughout. Assuming that there are no constraints on sizes of PV panel and energy

storage, the PV panel can be selected such that it is capable of capturing the energy

required for a complete day’s demand while the energy storage should be large enough

to meet the energy demand under periods of no supply. This simplistic scenario can be

generalised to more realistic cases in which the energy available varies from day-to-day

due to changes in magnitude or periods of availability. Therefore, selecting an optimised

harvesting capacity is complicated by variations in the deployment environment. A

possible approach is to select the PV panel according to worst case supply and the

energy storage for buffering worst case shortages. However, this may not be possible

due to the practical constraints on permitted physical dimensions of these components,

besides costs. The planning for supply and demand also needs to account for the non-

ideal factors or losses in energy transfer between the energy harvester and the application

workload. The focus of this thesis is on the adaptive allocation of energy budgets using

energy management policies, rather than simply the design of supply capacity to meet

a static demand. Nevertheless, energy management policies can only allocate energy



Chapter 2 Photovoltaic Harvesting Supply and Storage Subsystem Design

Considerations 41

within the energy resources provided by the harvesting supply and storage subsystem.

Chapter 6 considers the influence of PV panel size and energy storage capacity on

performance of energy management policy.

2.2.2 Efficiency Considerations in Energy Harvesting Supplies

2.2.2.1 Voltage Conversions Overhead

The terminal I-V (current-voltage) characteristics of the PV panel, energy storage and

the required supply voltage of the application workload (processor, radio, ADC etc.)

can be incompatible. For example, the wireless sensor node may require a 3.3V supply,

the rechargeable battery (NiMH) terminal voltage can range from 0.9-1.4V from fully

discharged to charged, while the PV panel’s maximum power voltage lies in the range of

3.6-4.0V for nominal illumination conditions. In this case power conditioning circuitry

is required to harvest energy from PV panel and power the wireless sensor node, which

inevitably introduces losses in the supply path. The need for voltage regulation and

conversion to supply multiple voltages to different subsystems is not uncommon in low-

power battery operated embedded systems [51]. However, the scarce and intermittent

supply of harvested-energy and the desire for perpetual operation makes it critical to

achieve high efficiency. A possible solution is to use components with closely matching

I-V characteristics, such as a PV panel with (near) maximum output power voltage

that is matched with voltage range of the battery [59, 146, 85], since the voltage range

of battery is fixed based on their chemistry (e.g., NiMH or Lithium-ion). If voltage

regulation must be used, the efficiency of the regulator should be as high as possible

under a given operating range of input voltages and output currents (Section 2.2.7.1).

2.2.2.2 Requirements for Energy Storage

In contemporary rechargeable battery powered electronics devices (e.g., mobile phones),

the battery is recharged while the application workload receives its supply power simul-

taneously when connected to a tethered power supply [147]. An energy harvesting supply

has some similarity with these rechargeable battery powered devices since a harvester

powers the workload and also charges the energy storage (battery or supercapacitor)

when the harvested-energy exceeds the demand of application workload [65, 59]. On

the other hand, the energy storage fulfills the demand when the power output of har-

vester alone cannot supply the required load. The key difference between an energy

harvesting supply and contemporary rechargeable battery devices is the variable sup-

ply of harvested-power which leads to variable and intermittent charging of the energy

storage. This is not the case in contemporary rechargeable battery power supplies since

a dedicated charging path is used while supplying the load. The implication of this

for the energy harvesting supply and storage subsystem is that it should be capable
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of storing a variable amount of energy while sustaining intermittent charge/discharge

cycles. Rechargeable batteries such as NiMH and Lithium-ion/polymer are not capable

of optimal energy storage in this manner and to maintain their lifetime recommended

charging ranges need to be used [11, 150, 149, 148, 152]. Another problem with irregular

charging of batteries is the difficulty in determining when these have been fully charged

leading to damaged batteries, which can be catastrophic in Lithium batteries, or wasted

capacity due to undercharging. A related implication for energy management is that the

exact amount of stored energy cannot be reliably determined even by using advanced

battery monitors or fuel-gauges, since these are designed to monitor battery parameters

under regular charging and discharging conditions [50]. These factors make supercapac-

itors more suited to energy harvesting supplies as they are more flexible in accepting

a range of charging rates [35], however, supercapacitors have a wide voltage range and

the self-discharge of supercapacitors is higher [131, 158, 164] and not straightforward to

quantify [158], and therefore needs consideration in both harvesting subsystem design

and energy management. Section 2.2.5 discusses the energy storage characteristics in

more detail.

2.2.3 Estimation of Deployment Environment

Estimation of harvesting capability of a given deployment environment involves deter-

mining the expected energy a PV panel will harvest. This can be used to decide the

size of PV panel that can be sufficient to ensure a certain average supply. Although, the

focus of this thesis is not to optimise the harvesting subsystem based on such estimation,

for the sake of completeness this section briefly discusses the related works on this topic.

The PV panel datasheet specifies its nominal power output Ppanel at standard test condi-

tions (STC), which implies input light energy of 1 kW/m2 of air mass (AM) 1.5 radiation

[108]. Therefore, to calculate the PV panel output power or energy, an estimation of the

amount of solar radiation power is needed. In [59], a software suite called Meteonorm

[94] is mentioned, which uses meteorological database of more than 30 years of solar

radiation measurements from a number of locations around the world. For locations not

available in the database, the software estimates its approximate solar radiation based

on its geographic characteristics (latitude, longitude and altitude), and matches it to the

data of previously known locations. The estimates of solar energy radiation are output

as a monthly solar radiation Emonth in kWh/m2. Using Emonth, the peak solar hours

(PSH) can be calculated, which implies the equivalent number of solar radiation hours

per day assuming that solar energy is received at an uniform intensity of 1 kW/m2.

From this value the available energy from a specific solar panel for one day, Esol−day,

can be estimated as the product of the PSH and the solar panel output power Ppanel at

1 kW/m2 as usually provided by manufacturer datasheets:
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Esol−day = PSH × Ppanel =
Emonth

1kW/m2 × days
× Ppanel (2.1)

Another approach taken in [71] does not use the panel output power but expresses the

available energy in terms of area of PV panel (A), panel efficiency (epanel), the loss due

to angular deviation from the incident solar radiation (a), the losses in power transfer

circuitry (eel), and a temperature exceedance loss (L):

Esol−day = (1− L) · eel · epanel ·A · a ·
Emonth

days
(2.2)

Note that these estimates are very coarse-grained and the aim is to guide PV panel selec-

tion. These cannot be used for management of short-term variability of harvested-energy.

Chapter 3 discusses short-term harvested-energy prediction techniques to achieve this

purpose.

2.2.4 Application Workload Demand

The application workload is the consumer of harvested energy and it includes all digital

and analogue modules that constitute a wireless sensor node [34, 43] such as a mi-

crocontroller, wireless radio, sensors, supporting peripherals and specialised processing

unit such as a digital signal processor [31] or FPGA [109] (Section 1.2.2). The appli-

cation workload usually has different power consumption states corresponding to the

different activities or tasks that make up the application functionality such as sensing,

data processing, data transmission, and data reception. Also, various energy conserving

idle/inactive modes in processor and radio are available, in which certain modules are

shutdown or put in standby mode [55, 49]. A commonly used method of conserving

energy in many wireless sensor applications is duty cycling, in which the application

workload alternates between idle and active states (Section 1.2.3). Based on the energy

consumption of these different activities and application functionality, a given energy

budget will dictate the performance that can be achieved by the application workload.

For example, given an energy budget for a certain interval, a data collection application

can decide its sensor sampling rate, duty cycle of radio to transmit its sampled data

and participate in routing other packets in a multi-hop wireless network (Section 1.2.1).

Furthermore, there is also potential for dynamic voltage scaling [95] since the process-

ing element and some peripherals can operate within a range of supply voltages, with

lower voltages providing greater power savings at the cost of reduced clock frequency,

although the cut-off voltages can be different among different components. For example,

the flash memory can have a cut-off voltage of 2.2V [55] while the microprocessor core

can work down to 1.8V [55]. Although, different elements in a wireless sensor system

may be able operate within a range of input voltage, a fixed supply voltage is required for
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Table 2.1: Description of different activities in application active mode shown
in Figure 2.3 (bottom) (derived from data in [101]).

Activity Label Description Time Elapsed

A Sample temperature sensor 78 µs
B Sample VCC 37 µs
C Calculate temperature and VCC from ADC

sample results (MSP430 active and radio idle)
140 µs

D Oscillator startup time 300 µs
E Timeout before chip ready goes high tolow 150 µs
F Transmit message to TX FIFO and prepare

message TX (MSP430 active and radio idle)
140 µs

G PLL calibration of radio frequency synthesizer 809 µs
H RX mode (clear channel assessment) 180 µs
I Switch between RX and TX mode 30 µs
J TX mode (message transmission) 800 µs
K Radio prepares for sleep (MSP430 active and

radio idle)
70 µs

deterministic operation of the clocking subsystem and A/D converter, the latter needs

a fixed supply voltage for use as a voltage reference. Depending on the required supply

voltage values of the wireless sensor system and the voltage range of energy storage,

some suitable voltage regulation can be used as discussed in Section 2.2.7.1. The cost

of using this voltage regulation is that the efficiency of the output regulator influences

the energy consumed by the workload.

To determine the required energy supply to support a given application workload, or

conversely to determine the application performance within an energy budget allocated

by energy management, consider a simple application example of a periodic temperature

sensing application using Texas Instruments ez430-RF2500 wireless sensor node [101].

To conserve energy, the application duty cycles between idle and active states of the

microprocessor (TI MSP430) and radio (CC2500). Figure 2.3 (top) shows a five seconds

profile of current drawn with one data transmission per second, where the spikes indicate

the active mode. Due to the different power consumptions depending on the activity,

the instantaneous power during the active mode can vary. Figure 2.3 (bottom) shows

the current profile during the active mode for the application task involving sampling

and transmission of temperature sensor value to a receiving node. Table 2.1 gives brief

description of different activities during the active mode shown in Figure 2.3 (bottom).

The total energy consumed during active mode is 35.508µAs lasting for 2.838ms (Table

2.2), resulting in an average current of 12.511µA, while the total current drawn in sleep

mode (processor+radio) is 1.3µA [101]. For the purpose of quantifying the application

demand, the average power consumption can be used, which is determined by power

consumption during the active and idle modes, and the number of tasks per unit time.

For one transmission per second, the average power consumption is given by:
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Figure 2.3: (top) Profile of application current drawn for five seconds, (bottom)
current profile during a single application task (reproduced from [101]).
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Table 2.2: Current consumption of different activities in application active mode
shown in Figure 2.3 (bottom) (reproduced from [101]).

3V ×
1.3µA× (1s − 2.838ms) + 12.511µA × 2.838ms

1s
= 3V × 36.80µA = 110.4µW

(2.3)

In the given example, the average power consumption will increase if more sample trans-

missions are performed in a given interval. Depending on the desired application work-

load (sampling and transmission frequency), the resulting average power consumption

can be used for the purpose of planning the supply and storage capacity of the harvest-

ing subsystem [146, 59]. Using energy management, the knowledge of each application

task’s energy consumption can be used to decide the number of task executions within a

given energy budget. The energy management policies discussed in Chapters 5 and 6 use

the duty cycling approach for adapting the application workload energy consumption.

2.2.5 Energy Storage

The selection of the PV panel’s nominal output power is an important consideration in

the design since the long-term application demand can only be met with an appropriate

supply capability. The role of energy storage is to smooth the fluctuations in supply

by buffering excess energy and supplying it when PV panel output cannot meet the

demand. The characteristics of the selected energy storage influences the overall design

of the harvesting subsystem, especially the design of input and output power processing

because of the constraints imposed by charging and discharging characteristics. On

the other hand, energy harvesting systems also impose certain requirements on energy

storage performance, as discussed in Section 2.2.2.2, which makes some storage types

more suitable for use in energy harvesting systems. The commonly used types of energy

storage applicable to design of compact and low-power energy harvesting subsystems

can be broadly classified as rechargeable batteries and supercapacitors. Among the

types of rechargeable battery chemistries, Nickelmetal hydride (NiMH), Lithium-ion
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(Li-ion), Lithium-ion Polymer (Li-poly) and thin-film or solid-state Li-ion batteries are

the most commonly used types of batteries for low-power portable devices [59, 53, 151,

157]. The following sections discuss the constraints and requirements according to the

characteristics of interest for design of the energy harvesting subsystem and energy

management.

2.2.5.1 Operating Voltage Range

This refers to the terminal voltage range of energy storage during charging and discharg-

ing states. Since the energy storage connects to both the PV panel and the load, the

operating voltage range has to be matched with both the PV panel output and load.

If this range falls outside the operating range of PV panel, the panel will not output

any power while the load can be damaged or will not operate if the energy storage volt-

age exceeds or lies below its supply range. As mentioned in Section 2.2.2.1, this is an

important consideration in efficient design of supply subsystem because matching the

operating voltage involves using power converters (Section 2.2.7) which consume energy

and add to system design complexity and cost. The operating voltage of recharge-

able batteries is constrained by their chemistries, with NiMH cells having a range of

0.9-1.45V and 3.7-4.2V for Lithium cells from fully discharged to full charged states

[11, 150, 149, 148, 152]. In case of supercapacitors, they can discharge down to 0V and

can have a maximum voltage of 2.1-3V for a variety of different capacities [17, 35, 25].

Since a wireless sensor workload may demand a stable supply voltage, a high efficiency

voltage regulator can be used to interface the workload to the energy storage. In case

of the PV panel, it is possible to select a PV panel that eliminates the need for input

power processing as explained in Section 2.2.6, however the very wide voltage range of

supercapacitors require special considerations for input power interface design which are

discussed in Section 2.2.7.2.

2.2.5.2 Capacity vs Physical Size

The physical size of the energy storage is a major constraint for a compact low-power

system. The energy stored per unit weight is called the energy density and among

the three main types of energy storages, Lithium batteries have the highest energy

density followed by NiMH, while supercapacitors have the lowest as shown in Figure

2.4. The capacities of batteries, commonly denoted by C, are indicated in milli or

micro Ampere hours (mAh or µAh). This rated capacity is obtained at a recommended

nominal discharge current (Section 2.2.5.3) and at higher currents, the capacity usually

decreases. NiMH cells are available in capacities up to 4000 mAh [98] while Li-poly are

available in 2600 mAh [97] with dimensions close to standard AA sized batteries. Thin-

film or solid-state Lithium batteries are currently available in very small capacities of

less than 100µAh [53] and are only suitable for very low duty cycle operation. To obtain
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Figure 2.4: Comparison of energy and power densities of different energy storage
types (reproduced from [115]).

the total energy in Joules or Watts-Hours, the capacity is multiplied by the nominal

voltage:

Ebatt = Vnom ∗ Cbatt (2.4)

Note that due to the higher nominal voltage of Lithium batteries than NiMH for a given

mAh capacity, Li-poly holds roughly 3 times more energy than NiMH. Supercapacitor

energy capacities are specified in terms of their capacitance (C) values (Farads) and

their maximum voltage (V) using the capacitor energy equation E = 1/2CV 2. For

comparison, a Maxwell Technologies 3000F 2.7V supercapacitor weighs 0.51 Kg [164]

and holds energy equivalent to a 2531mAh NiMH AA cell.

2.2.5.3 Charging and Discharging Characteristics

Energy storage devices have recommended charging and discharging current and voltage

ranges which should be met for correct operation and preventing damage. These charging

and discharging currents are usually a function of total capacity. For batteries, these are

specified in terms of percent of the maximum capacity (C) in mAh. For example, for a

1000mAh battery, a 100mA charge or discharge current will be specified as 0.1CA. For

NiMH and Lithium batteries, there is a normal and fast charging current [148, 152], with

full charging times determined by the rate of current and indicated by the upper voltage
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Figure 2.5: (Top) Typical discharge curves of NiMH Button Cells at various
continuous loads at room temperature. (Bottom) Typical charging curves at
various charging currents of NiMH High Rate Button Cells at room temperature
(Reproduced from [96]).

limit [96]. The end of discharge condition is similarly indicated by a lower voltage cut-off

beyond which batteries can be damaged. Commonly, the full capacity of the battery

is obtained by using 0.2C discharge rate, and achievable capacity decreases at higher

discharge currents. Figure 2.5 show the charging and discharging curves for Varta NiMH

button batteries at different rates at room temperature. In case of supercapacitors,

the allowed currents are much higher [35]. Lithium batteries have different charging

requirements than NiMH requiring initial charge using constant current (CC) followed

by a constant voltage (CV) as shown in Figure 2.6.

For the design of the harvesting subsystem, the maximum discharge current of the bat-

tery is not a major issue due to the small current draw (less than 100mA) of the load,

which translates to 0.2CA rate for a 500mAh battery. The maximum charging currents

are determined by the PV panel specification and varies according to the environmen-

tal conditions. The maximum current output of the PV panel should not exceed the

recommended fast charging current of the battery to prevent damage. On the other

hand, if the current output of the panel is less than C/50 or 0.033CA, called the trickle
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Figure 2.6: Different stages in fully charging a Lithium-ion battery (Reproduced
from [152]).

charging rate, the batteries will not charge. Efficient design of energy harvesting sys-

tems demands that the variable harvested-energy inputs should be captured. Therefore,

the energy storage should be matched to the PV panel current supply and vice versa

to ensure high efficiency of energy capture. Supercapacitors can be charged at variable

currents and thus do not have strict charging requirements of batteries. On the other

hand, Lithium batteries are highly sensitive to both under and overcharge conditions

and designing with Lithium batteries requires that these conditions should be carefully

detected, mainly to prevent battery explosion risks due to overcharge.

2.2.5.4 Efficiency, Leakage, Lifetime and Stored Charge Measurement

The efficiency of charging determines how harvested energy is captured by the energy

storage. A high efficiency is highly desirable since it implies that the energy storage

can be replenished with less harvested energy. Lithium batteries and supercapacitors

have reported charging efficiencies of greater than 90% while NiMH batteries have a

66% charging efficiency [157]. The leakage rate of stored charge is major factor if the

stored energy has to be conserved for long periods, e.g., when harvested-energy input

is scarce due to prolonged shortage. Lithium and NiMH batteries have low leakages

[96, 97] while supercapacitors have relatively high self-discharge rate, which increases

with both capacity and charged voltage [164, 131, 158]. The number of allowed recharge

cycles is a major factor limiting the operational life of an energy harvesting subsystem.

Rechargeable batteries typically have less than 1000 cycles while supercapacitors can

endure a million cycles [17].

Accurate determination of the State of Charge (SoC) of energy storage is critical for

practical realisation of energy management policies, however, this appears to be one of

the fundamental challenges in energy harvesting systems for multiple reasons. Deter-

mining the SoC using battery voltage is a simple technique commonly used in low-cost
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primary battery operated devices. This technique is not accurate because the battery

voltage alone is not a sufficient indicator, as it is influenced by rate of discharge, re-

laxation effects, temperature, and aging effects [91]. In case of rechargeable batteries,

voltage based determination of the SoC is further complicated by different profiles of

voltage depending on charging or discharging states (Figure 2.5). An accurate method

of determining the SoC is by tracking of energy charged in or discharged from the bat-

tery, commonly known as Coulomb counting [91]. The state-of-the-art off-the-shelf SoC

determination ICs, called battery fuel gauges, use Coulomb counters along with other

sophisticated algorithms to learn the battery capacity over multiple charge/discharge cy-

cles and also compensate for different battery chemistries, aging effects and other factors

in order to give an accurate estimate of SoC. However, as mentioned in Section 2.2.2.2,

these fuel gauges are designed to measure the battery state under controlled charging

and discharging conditions, while in energy harvesting supplies intermittent charging

and discharging are quite common. Another problem is the low-power operating range

of application workload in which case the current drawn between the sleep mode and

radio transmission can vary as much as four orders of magnitude (Section 2.2.4) in a

very short burst of activity lasting a few milliseconds [63]. This requires both a high rate

of sampling the variations in current drawn as well as a high dynamic range of sampling

[61, 34]. This requires high accuracy Coulomb counters, most of which are designed

for Lithium-ion batteries commonly used in mobile and embedded devices. Superca-

pacitors are widely perceived [164, 131] as much simpler compared to batteries in their

stored charge determination based on voltage monitoring and use of ideal capacitor for-

mula. However, recent works [15, 158] have shown that supercapacitors exhibit non-ideal

charging and discharging characteristics similar to batteries, and determination of stored

energy and actual leakage is influenced by the recent history and pattern of charging

and discharging. Despite of these issues in determination of SoC in energy harvesting

storage subsystems, the commonly used approach is to rely on Coulomb counters in the

case of batteries to monitor the charging and discharging [124], and terminal voltage in

the case of supercapacitors to estimate their stored energy [164, 131].

2.2.6 PV Panel

For a given environmental energy, the size of PV panel determines the amount of har-

vested power as discussed in Section 2.2.3. A PV panel is constructed using series and/or

parallel combination of individual PV cells [155]. The maximum (open circuit) voltage

of each cell is determined by the type of cell and varies from 0.5-0.6V [58]. The maxi-

mum (short circuit) current is proportional to the area of cell. The series combination

of PV cells increases the total terminal voltage while parallel combination adds up the

currents of the individual PV cells.
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(a) 60mm x 60mm PV panel with
VMP :1.92V, IMP :200mA, VOC :2.20V
and ISC:220mA (reproduced from
[111]).

(b) 80mm x 45mm PV panel with
VMP :3.84V, IMP :100mA, VOC:4.40V
and ISC :110mA (reproduced from
[112]).

Figure 2.7: Two PV panels with same area of 3600 mm2 and maximum power
output (384 mW) but different configurations of cells.

The output power of the panel depends on both environmental stimuli and its terminal

voltage. The peak power output of a PV panel under a given irradiance level is specified

in terms of optimal voltage and current, called the maximum power point. The I-V

relationship is non-linear and shown in Figures 2.16 and 2.17 for two small size panels

used in the design of the reference system. Different PV panels can provide the same

maximum power but at different combinations of terminal voltage and current. For

example, Figure 2.7 shows two PV panels with one on the left having a maximum power

voltage VMP of 1.92V and current IMP of 200mA. It provides the same maximum power

(400mW) as the panel on the right with VMP of 3.84V and current IMP of 100mA. One

of these panels can be selected based on which has I-V characteristics that have a better

match with the type of energy storage connected to the panel output. For example, if the

PV panel on the left, with an open-circuit voltage of (VOC) 2.2V, is connected directly

with two series NiMH batteries (2.0-2.6V) via a reverse protection diode, the PV panel

will not be able to supply any power since its output current is zero at 2.2V (VOC).

Even if the batteries are completely discharged to near 2.0V, the forward voltage drop

of reverse protection diode will need to be overcome. On the other hand, if the 3.84V

panel is used it will work across the whole voltage range of batteries, but the operating

range of the panel will be below the maximum power point. It should be noted that

these specified maximum power outputs of the PV panel and corresponding operating

points are specified under standard test conditions (STC) which implies 1000 Watts per

square meter of radiation; in practice, the output power is usually smaller and operating

points shift to the left of I-V curve, depending on the input light conditions (Figures

2.16 and 2.17).
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2.2.7 Input Conditioning and Output Voltage Regulation

Sections 2.2.5 and 2.2.6 discussed the selection of an energy storage device and PV

panel for matched operation to ensure high efficiency while meeting the required demand.

However, it may not be possible to completely match the I-V characteristics of workload,

energy storage and PV panel, e.g., if the application workload components such as

microprocessors and radio operating at 2.2V are connected to a Lithium battery with

operating range of 3-4.2V, the energy storage voltage needs to be stepped-down over the

full voltage range of Lithium batteries. As another example, since supercapacitors have

a wide voltage range, the PV panel voltage may need to be restricted to ensure useful

power output that is independent of the supercapacitor voltage. The following sections

discuss the design considerations of power conversion circuits between energy storage

and application load, and PV panel and energy storage.

2.2.7.1 Energy Storage - Load Interface

A voltage regulator is commonly used to supply a fixed voltage to the workload indepen-

dent of the operating voltage range of the energy storage. A buck, boost or buck-boost

converter is required depending on the type of energy storage used and the required

workload voltage. For example, a Texas Instrument ez430-RF2500 wireless board re-

quires 3.3V to operate at 16 MHz clock. If two series NiMH batteries are used for energy

storage with possible voltage range of 1.8-2.9V, then a boost converter is needed with

a minimum input voltage of 1.8V to output 3.3V. If a supercapacitor with maximum

voltage of 2.7V is used as energy storage, then a boost converter with lower cut-off

voltage (e.g., 0.3V) will allow maximum utilisation of supercapacitor stored energy. On

the other hand, use of Lithium battery (3.6-4.2V) will require a buck or buck-boost

converter, depending on exact type of Lithium battery. The cost of using the output

regulator is the sub-unity efficiency that is a function of input voltage and output cur-

rents as shown in Figures 2.8 and 2.9 for two different 3.3V boost converters by Texas

Instruments. Note that the variations in efficiency of power conversion in terms of input

voltage and output current differs with the type of regulator used and can be highly

non-linear. In the efficiency relationships shown in Figures 2.8 and 2.9, the efficiency

increases with increase in input voltage and output current, however, a sudden drop in

efficiency is observed with increase in output current beyond a certain value, especially

with low input voltage. Since the efficiency of output regulation influences the energy

consumed by the application for a given energy budget, this must be taken in to account

during energy management to ensure that demand and supply are matched. Chapter 4

considers the modeling of this efficiency and in Chapter 5 the influence of this is shown

on energy management policies.

The battery over-discharge protection circuit may also be considered part of energy

storage load interface since it can be used to shut down the output voltage regulator
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Figure 2.8: Efficiency of TI TPS61097 3.3V boost converter as functions of input
voltage and output current (reproduced from [56]).
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Figure 2.9: Efficiency of TI TPS61221 3.3V boost converter as functions of input
voltage and output current (reproduced from [57]).
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or put the load in suspended (very low-power) state depending on the cut-off voltage

limit for over-discharge protection. Similar arrangement is also needed to cold start

from a depleted supercapacitor since the output regulator can draw a large current to

start-up causing the supercapacitor voltage to fall below the threshold, thus preventing

the regulator from starting up at all. Cold start designs are proposed in [164, 22].

2.2.7.2 PV Panel - Energy Storage Interface

The PV panel and energy storage (rechargeable battery or supercapacitor) interface

can typically include reverse current flow protection, charging controller and maximum

power point tracking circuits. The simplest of this interface includes a reverse current

protection diode, which prevents energy storage from forcing current into the PV panel

under low illumination conditions but adds a diode voltage drop (exact value depends

on diode type) between the PV panel and energy storage. This simple interface can be

sufficient and even efficient in the case where the PV panel nominal operating voltage

range falls a diode drop above the operating voltage range of energy storage. On the

other hand, the PV panel will not be able to output any power in the limiting case if

the PV panel nominal voltage range falls completely below the voltage range of energy

storage plus the diode drop. Hence, this arrangement is suitable for systems that are

able to select a PV panel or energy storage accordingly. As discussed in Section 2.2.5.1,

the voltage range of energy storage devices, especially batteries is fixed and depends on

the chemistry of battery. Supercapacitors have some flexibility in this regard since they

have a wide operation range. On the other hand, a PV panel voltage range is determined

by the number of PV cells in series and PV panels are available in a larger variety for

similar output power as discussed in Section 2.2.6. The PV panel can be selected to

satisfy the condition of voltage range match. If this is not possible, then some type

of voltage conversion circuitry is required, which increases the design complexity and

introduces losses in the path, that are inherent in power conversion circuits.

Another circuit block that can be part of the PV panel and energy storage interface is

charging control or current/voltage limiting to prevent overcharge or to supply a constant

current or voltage for charging, if the energy storage requires it. For example, the proper

charging of Lithium-ion (polymer) battery requires a constant current and later constant

voltage charging arrangement. On the other hand, NiMH batteries can be charged with

a range of currents ranging from 0.033CA to 0.3CA [96], but overcharge detection and

termination is required to prevent battery damage. In this regard, supercapacitor have

the maximum flexibility in terms of charging currents while Lithium batteries need a

careful charging arrangement to prevent risk of explosion due to overcharge [152].

Besides the blocks mentioned, the maximum power point tracking (MPPT) block can

also be part of this interface. In case of low-power harvesting supplies, the main concern

is the efficiency of this block and a number of implementations have been proposed. It
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Figure 2.10: Comparison of solar panel output power: operating point vs MPP
(reproduced from [59]).

Figure 2.11: Operating range of PV panel: a system with direct connection
between PV panel and energy storage (reproduced from [59]). Vstor is energy
storage voltage, Vsol is PV panel voltage, and Psol is the output power of PV
panel.
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has also been shown that in some cases, the benefit gained from MPPT is marginal as

shown in Figure 2.10 especially if the PV panel can operate near to its maximum power

point by using a matched connection as discussed in Section 2.2.6. In this case, the

use of MPPT is only beneficial if the gain achieved is greater than power consumed by

the MPPT circuit [59]. On the other hand, when using a supercapacitor the resulting

voltage swing as a supercapacitor fully discharges or charges can make the PV panel

deviate greatly from its near maximum power operating point as shown in Figure 2.11.

In this case the MPPT block can ensure that PV panel operates close to its maximum.

A number of MPPT blocks specifically designed for supercapacitor based harvesting

systems have been proposed [141, 15]. With a fully discharged supercapacitor, another

issue is ‘cold-booting’ where the depleted supercapacitor doesn’t allow the PV panel to

charge up the supercapacitor. A pulse based charging circuit is proposed in [141] that

allows the rapid charging of a supercapacitor compared to direct charging.

2.2.8 Measurement of System Energy Flows

Besides the energy supply and storage components, support for measurement of vari-

ous energy values is required by harvested-energy management to adapt consumption

according to supply. This includes measurement of harvested energy being supplied to

the energy storage and load, stored energy in battery or supercapacitor, and energy

consumption. This can be achieved using measurements of currents and voltages associ-

ated with supplied and consumed energy flows, and by monitoring the terminal voltage

and/or charge drawn from energy storage. For obtaining the energy value over an in-

terval, the power needs to be measured periodically and averaged. The on-board ADC

of the sensor node can be used to sample voltages such as the PV panel output volt-

age and the energy store voltage. Since the voltage and current can both vary, current

measurement is also required to calculate the power or energy. The common approach

[124, 146, 165] is to use a small value current sense resistor and measure the voltage drop

across it to obtain the current flow. In case of small voltages, a current sense amplifier

may be used [146, 137]. Furthermore, measurement of this voltage drop may be done

with high-side or low-side sensing which implies either a differential voltage is measured

or the sense resistor is connected between negative terminal and ground (single ended

voltage). Accuracy of measurement is an important issue and slow changing currents

such as PV panel currents can be measured easily using this approach. However, the

current consumption of application workload can have high a dynamic range [61, 33]

since the difference between active currents (0.5-20 mA) and sleep mode currents (few

µA) can easily be 104 (Section 2.2.4). Furthermore, the application activity can involve

fast changing current draws in a short burst as shown by example in Section 2.2.4. This

requires use of a high sampling rate and high dynamic range of ADC. Use of dedicated

ICs is a possible solution [61] but these ICs can consume quiescent current which can be

higher than the sleep mode current of application workload, thus resulting in noticeable
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Figure 2.12: Implementing load current measurement by measuring the switch-
ing pulses of regulator (reproduced from [33]).

overheads [61]. Dutta et al. [33] proposed a low-overhead method of monitoring the

workload current consumption based on counting the switching frequency of a Pulse

Frequency Mode (PFM) switching regulator using the integrated timers of wireless sen-

sor node microcontroller as shown in Figure 2.12. However, this method has a strong

dependency on the input voltage changes of the switching regulator [33] as shown in

Figure 2.13. This makes it ineffective to use in energy harvesting systems because the

continuous fluctuations in energy storage voltage due to intermittent charging and dis-

charging makes it difficult to correlate the measured frequency and input voltage. A

simple but low-accuracy alternative is to use models of application workload activity,

such as duty cycling [154, 165, 131, 59], to approximate its power consumption.

2.3 Design of Reference Photovoltaic Energy Harvesting

System

In this section, the design of the reference PV energy harvesting and storage subsystem

is discussed in light of design considerations and choices discussed in Section 2.2. This

reference system configuration (Figure 2.14) is used in Chapter 4 for obtaining empirical

results for validation of system modeling. The system model based on this configuration

is referenced in Chapters 5 and 6 for evaluation of energy management policies. This

selected system configuration focuses on design simplicity while optimising the transfer

of power from the photovoltaic panel to the application workload. Measurement support

of key power flows is also provided. The detailed schematic and component data are

given in Appendix A. Figure 2.15 shows the PCB with a wireless sensor node attached.

The following sections describe the design details in terms of power supply (PV panel,
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Figure 2.13: The relationship between switching frequency and load current
for MAX1724 regulator according to different input voltages (reproduced from
[33]).
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Figure 2.14: System implementation for validating case studies.

input power interface and energy storage), power consumption (voltage regulation and

application workload) and power measurement support.
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Figure 2.15: Reference energy harvesting system with labels indicating main
components.
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(a) A monocrys-
talline silicon 60mm
x 60mm PV panel
supplied by MUTR
(reproduced from
[116]).
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(b) Measured power output versus voltage curve un-
der clear summer mid-day conditions at Southamp-
ton.

Figure 2.16: Smaller of the two panels selected for reference system configura-
tion.

2.3.1 PV Panel, Input Power Interface and Energy Storage

The PV panel, energy storage and the power transfer interface in between are considered

together due to the interdependency between selection of these parts of the design. As

discussed in Section 2.2.7.2, the role of input power processing depends on the selected

energy storage charging requirements, PV panel and energy storage I-V characteristics

and the need for maximum power point tracking. Therefore, if the PV panel and energy

storage are selected so that the I-V characteristics are matched to a large extent and the

energy storage has simple charging requirements, then the complexity of input power

interface can be reduced as well as the associated losses. This principle motivates the

selection of PV panel and energy storage device for the reference system configuration.

As discussed in Section 2.2.5, the energy storage terminal characteristics can guide the



62
Chapter 2 Photovoltaic Harvesting Supply and Storage Subsystem Design

Considerations

(a) A BP SOLAR -
MSX-005F polycrys-
talline silicon 80mm
x 148mm PV panel
(reproduced from
[143]).
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(b) Measured power output versus voltage curve un-
der clear summer mid-day conditions at Southamp-
ton.

Figure 2.17: Larger of the two panels selected for reference system configuration.

selection of suitable PV panels. Therefore, instead of using maximum power point track-

ing circuit, the power transfer from PV panel is maximised by matching the nominal

operating ranges of PV panel and energy storage [60, 83]. This simplifies the design

and bypasses input power conditioning inefficiency, which is a function of circuit design,

energy storage voltage and output power of the solar panel (illumination conditions)

[141]. Use of an MPPT circuit was avoided because off-the-shelf solutions are not avail-

able. Most MPPT circuit designs proposed in the literature are highly customised for

the particular PV panel used [141, 15], so implementing these and ensuring their correct

operation would have been time consuming.

For energy storage, two options are selected: either two NiMH batteries in series with

a combined voltage in the range of 1.8 (fully discharged) to 2.9V (fully charged), or a

2.7V 100F supercapacitor [35]. Both NiMH batteries and supercapacitors have relatively

simple charging requirements. In case of NiMH batteries, the main consideration is that

the charging current should not be higher than the fast charging current to prevent

damage, which is typically 0.3C of rated maximum capacity [153]. For example, for

a 1000mAh battery this value is 300mA while for a 250mAh battery this is 75mA.

Overcharge protection is also needed, which is implemented based on a maximum voltage

threshold using a Zener diode in parallel with energy storage with breakdown voltage of

2.9V. Protection of reverse current flow from the energy storage to the PV panel under

low light conditions is required and is implemented using a Schottky diode (Figure 4.6),

which adds a diode voltage drop of 0.37-0.6V between the energy storage and battery

depending on the current transferred (20mA-200mA).

Based on the voltage ranges of the energy storage, two PV panels were selected and their
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Figure 2.18: P-V and I-V curves of two tested panels under well lit indoor
conditions.

I-V and P-V curves are shown in Figures 2.16 and 2.17 under sunny outdoor conditions

(in Southampton). The smaller panel (60mm x 60mm) delivers 200mW (3V@66mA) of

maximum power while and larger panel can deliver 350mW (3V@116mA). Note that the

maximum power voltages of these panels are close to 3V under these conditions, while

up to 20% reduction in output power occurs as the operating voltage is decreased from

3V to 2V. Thus, the selected PV panels can operate within 20% of their MPP with 2

NiMH batteries in series, with the exact output determined by the voltage of battery.

It should be noted that under lower illumination conditions, the MPP shifts to the left

(i.e., less than 3V). In the extreme case of low illumination, the panel operating voltage

can fall below the energy storage voltage, resulting in no energy harvested. However,

it was found that these panels were still able to harvest power under well lit indoor

conditions under the given range of voltages as shown in Figure 2.18.

The design of this input stage involves two tradeoffs. First, the elimination of MPPT

circuitry decreases the complexity of prototype system development and eliminates any

associated losses, however, when using supercapacitor as energy store the wide range of

supercapacitor voltage change with stored energy change can lead to wide fluctuation

in harvested-power from PV panel (Figure 2.11). This implies that the harvested power

for a given input light intensity can vary depending on the supercapacitor voltage. One

consequence of this for energy management is that the accuracy of harvested-energy

prediction is affected (Chapter 3) since the actual harvested-power is no longer a function

of input light intensity. The effect of this behaviour is discussed in Chapter 5 and 6 when

evaluating energy management policies. The next tradeoff is selection of NiMH batteries

instead of more efficient Lithium-ion batteries. While this reduces the complexity of PV

panel-energy storage interface design because of the use of simple variable rate charging,

the losses in the system are increased due to the lower efficiency of NiMH batteries. These

losses need to be considered in energy management policy design. This tradeoff was

considered reasonable in light of safety issues in case of improper charging of Lithium-

ion batteries as compared to NiMH batteries. Furthermore, the dedicated charging

circuitry involve power conversion circuits which clearly have sub-unity efficiencies.
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USB programming and 

debugging interface

ez430-RF2500 wireless 

sensor development kit

MSP430 MCU CC2500 Radio

Figure 2.19: Texas Instruments ez430-RF2500 wireless sensor kit with USB
debugging interface attached (adapted from [136]) The MSP430 microcontroller
unit (MCU) has an on-chip 10-bit ADC.

2.3.2 Application Workload and Voltage Regulation

A Texas Instruments ez430-RF2500 wireless sensor node (Figure 2.19) [52] containing a

Texas Instruments MSP430F2274 microcontroller and Chipcon CC2500 RF transceiver

is used as the application workload due the to ease of programming in the C language and

the availability of library of common routines. The MSP430 MCU has a multichannel

10-bit ADC which can be used to sample voltages for monitoring of power as discussed

in the next section.

The voltage supply to the sensor node is fixed to 3.3V by using a Maxim 1724 boost DC-

DC converter [48] (Figure 2.14) in the supply subsystem. The efficiency of the regulator

is a function of both current drawn and supply voltage and it has efficiencies of greater

than 50% over the range of typical currents drawn by ez430-RF2500 as shown in Figure

2.20. Also, it can operate at lowest input voltage of 0.91V, which is an important feature

when using supercapacitors since supercapacitors can be discharged down to 0V and but

the useable energy of supercapacitors is limited by lowest input voltage of the regulator.

Although, other regulators could have been selected such as those discussed in Section

2.2.7.1, the choice of this regulator was also driven by the need to experiment with

low-overhead power monitoring of application workload as described in [33]. This is

discussed further in the next section.

2.3.3 Power Measurement Support

This reference system design caters to power monitoring requirements for implementing

harvested-energy management by using additional components besides the harvesting

subsystem. A ZXCT1010 high-side current monitor [137] is used to monitor PV panel’s

output current by converting the current flow to a single-ended voltage drop across a

2Ω sense resistor. The on-board 10-bit ADC of the ez430-RF2500 is used to sample

this voltage to measure the PV panel current. The battery and PV panel voltages can

also be monitored using the on-board ADC. A Maxim DS2438 battery monitor [90] is
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Figure 2.20: Efficiency of MAX1724 regulator from datasheet with output volt-
age 3.3V (reproduced from [48]).

used as a Coulomb counter to measure the net charge going in/out of the NiMH battery

besides other variables, as indicated in Fig. 2.14. With the aim of measuring the average

current drawn by the application workload using the low-overhead technique in [33], the

switching pulse output of MAX1724 is connected to the Timer A input of MSP430.

However, this technique was found to be impractical for measuring the application’s

energy consumption because of the difficulty in continuously correlating the fluctuating

energy storage voltage (input voltage of the MAX1724) with the measured switching

frequency. To estimate the application energy consumption, the model of application

activity is used with corresponding values of current draws measured off-line using an

oscilloscope or high-fidelity multimeter, such as the average current drawn in idle and

active modes of the ez430-RF2500 wireless sensor node.

2.4 Concluding Remarks

Since the energy management implementation is dependent on the characteristics of

harvesting system components, Chapter 2 discussed the design consideration in selection

and integration of these components from the aspect of the efficient realisation of a

harvesting subsystem. The concepts of harvesting supply subsystem design discussed in

this chapter are referenced in Chapter 4 that discusses modeling of system components,

and in Chapters 5 and 6 which consider effective design of harvested-energy management

policies. This chapter also described a reference photovoltaic energy harvesting system
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implementation that is used as a concrete example for system modeling validation in

Chapter 4 and evaluating harvested-energy management policies in Chapters 5 and 6.



Chapter 3

Effective Short-Term Solar

Harvested-Energy Prediction

As outlined in Chapter 1, energy harvesting presents different set of system design choices

than battery powered electronic systems. Compared to a battery powered supply the

amount of energy available is not limited, but unlike a tethered power supply, the amount

of energy available at different times can vary and may not be completely predictable.

The variability in harvested-energy supply is a challenge in system design since it is

difficult to guarantee that the system’s energy consumption demand is matched with

harvested-energy supply at all times to achieve perpetual operation with maximum

performance. An energy buffer (battery or a supercapacitor) can only smooth the effect

of these variations on the application workload [146] but to match consumption with

supply requires that consumption should be adapted according to available energy [102,

65, 113, 103, 154, 39]. The capability to predict future energy incomes enables designing

energy management policies that can schedule energy consumption of the application

workload in such a manner that utilisation of incoming energy can be maximised while

ensuring that total consumption does not exceed the supply [102, 65, 113, 103, 39]. Such

policies can prevent wasted energy due to undesirable overflow of energy storage and

also prevent unexpected depletion of stored energy resulting in complete shutdown of

the system. This has been termed in literature as ’energy neutral’ mode of operation

[65, 154].

The purpose of harvested-energy prediction is to know how much energy will be har-

vested in a certain period in future. This is different from knowing how much energy is

stored at present, as commonly used in battery powered systems to determine system

lifetime. In general, the combined knowledge of future energy harvesting and stored

energy can be used to adaptively schedule an application workload and this will be dis-

cussed in Chapter 5 and 6. The manner in which the predicted energy knowledge is

utilised in an energy harvesting application depends upon the optimisation objective.

67
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Figure 3.1: Sample profiles for outdoors (Setup O-1) and indoors (Setups A-
D) locations receiving solar energy. The graphs on left show measurements
from different days overlayed, while graphs on right show average and standard
deviation (Reproduced from [39]).

For example, in [65] the knowledge of total expected energy in a day is used to calculate

the maximum budget while the knowledge of specific time slots in a day is used to in-

crease efficiency of energy utilisation in a system with lossy energy storage. In [129, 119],

the expected time to harvest a given amount of energy is used to decide when to schedule

tasks having a certain consumption requirement. In [103, 39], the knowledge of future

energy is used to allocate energy in uniform manner while preventing underflow.

As discussed in Chapter 1 (Section 1.3), this thesis focuses on solar energy harvesting

systems. The amount of solar energy received at different times in a day and across days

can vary significantly as shown in Figure 3.1. To manage this variability, this chapter

focuses on effective short-term prediction of solar harvested-energy within a day based

on historical data. State-of-the-art research in solar energy prediction with low resource

requirements is considered in detail and the best approach is identified. The main con-

tribution of this chapter is a systematic approach for parameters evaluation of solar
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energy prediction algorithm to empirically determine the achievable accuracy and im-

plementation overhead. This is achieved by using an effective error evaluation technique

to evaluate the algorithm performance with different sizes of prediction intervals. Based

on evaluation results, guidelines are given for prediction algorithm parameter selection

to ensure high accuracy across different real solar energy profiles. The prediction algo-

rithm computation overhead is determined using measurements on the reference wireless

sensor platform (Chapter 2). Harvested-energy management can also utilise long-term

prediction (a day or more ahead) depending on the approach [106]. However, accurate

long-term prediction is not achievable using historical harvested-energy data only due to

the influence of multiple weather effects [59]. Appendix B reviews possible approaches to

long-term solar energy prediction for wireless sensors based on weather forecasts [140]

and history of weather effects [59]. Also, a low-overhead generic prediction approach

that can be used for prediction of other energy sources is reviewed in Appendix B.

The chapter is organised as follows. Section 3.1 mentions key considerations for imple-

mentation of harvested-energy prediction, Section 3.2 discusses characteristics of solar

radiation, and Section 3.3 discusses low-overhead prediction approaches for solar energy

harvesting. Section 3.4 discusses parameters evaluation of short-term solar harvested-

energy prediction algorithm and Section 3.5 concludes the chapter.

3.1 Key Considerations for Harvested-Energy Prediction

Prediction Error The utility of any energy management decision making is dependent

upon the accuracy of prediction outcomes. In context of energy harvesting, an over

estimation of future energy can lead to depleted energy storage and ultimately

disruption of system activity. On the other hand, an underestimation can result

in poor utilization of harvested-energy once the energy store is full and further

energy cannot be stored.

Although a large average error will in general lead to poor performance, the re-

quirement of an acceptable average error depends upon an application’s objectives.

For example, if the the prediction algorithm is able to track the energy source in

a manner that the effect of under and over estimation are neutralised over a short

interval of time, it is possible that the application load can utilise the harvested

energy without incurring shortages or overflow of energy stored.

Length of Prediction Slot and Horizon The interval over which the energy is being

predicted is termed as the prediction slot. The distance of this slot from current

time is called the prediction horizon. For example, if the energy is being predicted

over one hour then the prediction slot is 1 hour, and if this is two hours ahead from

current time then the horizon is two hours. In short-term prediction, the energy

is predicted over the next slot (horizon is zero). In general, the accuracy becomes
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poor as the prediction slot increases as shown in Section 3.4. The simple techniques

discussed in Section 3.3 can achieve reasonable accuracy for short predictions slots,

while long-term prediction requires different approach to obtain acceptable error

as discussed in Appendix B.

Implementation Cost Most energy harvesting applications are wireless sensor nodes

that have limited computational resources, specially memory. Even if the available

memory is not a limitation, the overhead in terms of energy consumed for predic-

tion computations can be an issue if the prediction activity significantly increases

an application’s energy budget. Hence, it is highly desirable that these overheads

should be minimised.

Measurement Support and Prediction Error Feedback The predicted value

uses history of measurements of actual energy received. Any error in measure-

ments carries over to prediction outcomes. Depending upon harvester type,

accurate measurement of incoming energy can require sampling of harvester’s

voltage and/or current at a certain resolution that is sufficient to capture the

variations in harvester’s output. This requires dedicated circuitry and analog-

to-digital conversion of sampled values of current and voltages. Furthermore,

to implement closed loop control, the prediction error needs to be tracked [65].

The ability to do this is also dependent on fidelity of energy measurement

support. Chapter 2 (Section 2.2.8) details the system support for measurement of

harvested-energy.

3.2 Characteristics of Solar Energy

Solar radiation follows a well defined diurnal cycle and under clear sky (sunny) conditions

the amount of radiation during a day can be predicted accurately using models such as

the scaled astronomical model described in [59] based on angle of inclination of the PV

panel with respect to sunlight, the time of the day, day of the year, location (latitude)

and attenuation factor. Figure 3.2 shows the trends of solar radiations at a fixed location

at four different times of the year under ideal conditions. It is evident that the maximum

amount of solar radiation and its duration during a day depends on time of the year.

The weather effects such as the movement of cloud, atmospheric turbidity etc. [59] affect

the actual radiation conditions at different times of the day and across days. Figure 3.3

shows the measured radiation values at 10am for nearly 1200 consecutive days. It can be

seen that besides the slowly changing trend due to seasonal changes over a year, as also

shown in Figure 3.2, there is a significant random variation across consecutive days due to

atmospheric factors, which makes it difficult to accurately predict the future harvested-

energy based just on the knowledge of ideal conditions. Since these atmospheric factors

depend on current local weather, the prediction accuracy can be improved by taking
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Figure 3.2: Power output of solar panel over a day under clear (ideal) conditions
during different seasons in a year (Reproduced from [12]).
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Figure 3.3: Plot of solar radiation value at the same time of the day over 1200
days using data available from [114].

in to account the observed or forecasted local conditions. The prediction techniques

described in the next section attempt to correlate the most recent conditions with past

averages in order to increase the prediction accuracy.

3.3 Short-term Solar Energy Prediction

This section discusses solar energy prediction algorithms proposed in the literature for

predicting within a day (short-term). The techniques are compared to identify the most
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effective approach.

3.3.1 Exponentially Weighted Moving Average (EMWA)

Kansal et al. [65] were the first to propose this simple solar energy prediction algorithm

to support their harvested-energy management approach. Moser et al. [106] used similar

prediction in their proposed adaptive power management framework, among others. The

method exploits the diurnal cycle of solar energy and can adapt to the slow changing

seasonal variations (Figure 3.2). The predictor is based on the observation that energy

generation during a given time slot of day is similar to that generated at the same

time period on previous days. A historical summary (weighted average) of the energy

generation profile during the day is maintained by dividing a day into (N) discrete time

slots of duration T minutes. The value of the current harvested-energy in a given slot

is added to a weighted average of the energy received at that time of the day during

all previous days. The weights are exponential, resulting in decaying weights for older

data. Let Ei(d) denote the value of energy generated in slot i as observed at the end

of that slot in current day d. The historical average EWMAi maintained for slot i is

given by:

EWMAi(d+ 1) = αEi(d) + (1− α)EWMAi(d) (3.1)

Thus, for predicting the harvested-energy value of future slot in the next day (d + 1),

EWMA sums the currently measured harvested energy to the previous predicted value,

weighted with α and 1 − α, respectively. The value of α determines the contribution

of current measured value. If the value of α is high (close to 1), the current measured

value maintains more importance in the sum and vice versa.

3.3.2 Weather Conditioned Moving Average (WCMA)

The EWMA approach predicts the value of energy to be harvested during a particular

time slot of the day as a weighted average of the energy received during the same time

slot over previous days. This approach can give accurate predictions for consistent

weather conditions, however, changing weather effects resulting in a mix of cloudy and

sunny days (Figure 3.3) can introduce significant prediction errors. For instance, a

sudden cloudy day can occur after a number of sunny days and the EWMA approach

will not be able to account for this change resulting in over-prediction. Similarly, a

partially cloudy (or sunny) day will also result in large prediction errors. Recas et al.

[129] proposed an improved solar energy predictor that not only takes into account the

historical conditions at a certain time of the day but also adjusts the prediction for the

changing weather conditions throughout a day. Noh et al. [113] use a variant of this
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Figure 3.4: Graphical depiction of the WCMA prediction algorithm.

approach for prediction in their minimum variance energy allocation. The algorithm is

described in Figure 3.4 and explained next.

As in case of EWMA, a day is discretized into N equal duration time slots. Incoming

power sampling and prediction are performed once per slot and the slot’s length is the

prediction interval. The algorithm [129] maintains a matrix ED×N of historical measured

power values e(i, j) ∈ ED×N of the last D ∈ Z
+ days’ slots. It also stores a vector of

measured power values ẽ(j) ∈ ẼN of the current day’s elapsed slots. The matrix ED×N

and the vector ẼN are shown in Fig. 3.4. Suppose that at present n ∈ N slots have

elapsed on the current day shown shaded in Fig. 3.4 and ẽ(n) is the measured energy at

the end of slot n. The energy ên+1 during slot n+1 (marked with a ’?’, Fig. 3.4) needs

to be predicted. In Fig. 3.4, µD(n+1) denotes mean of measured energies of n+1 slots

in the past D days. The predicted power is a combination of present slot power ẽ(n)

and the average µD(n+ 1) of predicted slot (n+ 1):

ên+1 = α · ẽ(n) + (1− α) · µD(n+ 1) · ΦK (3.2)

In Equation 3.2, α is a weighting parameter with value 0 ≤ α ≤ 1. The determination

of α and other algorithm parameters is explained in Section 3.4. µD(j) is the average of
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power measured at the beginning of slots j ∈ N in the past D days:

µD(j) =

∑D
i=1 e(i, j)

D
(3.3)

ΦK is a conditioning factor for µD(n+ 1) and it quantifies the current day’s conditions

relative to the previous days. It is a function of parameter K ∈ Z
+, which is the number

of slots considered before slot (n + 1) of the current day (Fig. 3.4). ΦK is a measure

of how much brighter or cloudier the current day is compared to previous days [129].

It is evaluated using Equation 3.4, which is a weighted average of ratios η(k) ∈ HK

(Equation 3.5), where each ratio η(k) compares the current day’s measured power (of

a slot) to past days’ average. The weights θ(k) ∈ ΘK (Equation 3.6) decrease from 1,
K−1
K

, K−2
K

and so on to 1
K

starting from slot n, since slots earlier than n are assumed

to be less correlated to the future slot (n + 1) [129]. A value of ΦK greater that one

implies that the measured values of last K slots of the current day are greater than the

mean of past D day values, which represents a sunny day and vice versa.

ΦK =
(ΘK)T ·HK∑K

k=1 θ(k)
(3.4)

η(k) =
ẽ(n−K + k)

µD(n−K + k)
(3.5)

θ(k) =
k

K
(3.6)

To motivate the contribution of this chapter, the role of algorithm parameters needs

has to be understood. Note that the predicted value (Equation 3.2) is obtained from

two terms: the first of these terms is labeled the persistence term in this discussion

and the second one is the conditioned average term. The persistence term determines

how much slot n power value contributes directly to the predicted value, while the

conditioned average term is the contribution of average of past (n+1)th slots scaled by

the conditioning factor ΦK . The parameter α weighs these two contributions. As shown

in Fig. 3.4, the parameter D controls how many past days influence the predicted value,

while the parameter K determines the influence of previous slots of the current day.

Thus, the predicted value and its accuracy depends on the values of these parameters’ (α,

D, K). The values of parameters α, D, and K that minimise the average error is termed

as the ‘optimised set’. This is determined by evaluating Equation 3.2 using different

values of each parameter over a target solar power data set to find the minimum value

of an error function. The contribution of this chapter is determination of this optimised

set by selecting an error function and simplifying the parameter determination across
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Table 3.1: An illustrative example of WCMA prediction. ‘?’ indicates the future
value to be predicted.

Day slot n− 2 slot n− 1 slot n slot n+ 1

4 277 272 221 263

3 350 353 347 347

2 345 346 349 353

1 249 255 314 289

Current 342 256 230 ?

µD 305 306 307 313

HK 1.12 0.84 0.75

ΘK 0.33 0.67 1.00

different data sets. Section 3.4 presents the details of the proposed parameter evaluation

approach.

To illustrate the steps in the WCMA prediction algorithm an example is presented in

Table 3.1, which gives a snapshot of the measured energy values of four consecutive slots

of the past four days. Suppose that the values of algorithm parameters are: α = 0.7,

D = 4 and K = 3. The current day’s measured energy values for three slots are also

given and the value of the fourth slot ’?’ needs to be predicted. Based on these past days

values, the means µD of each slot are given. The next row gives the ratios η(k) using the

values of current day’s measured energy and past mean. The required values of weights

θ(k) are 1, 0.67 and 0.33. The value of ΦK using vector ΘK and HK is calculated as:

ΦK =
(1.12, 0.83, 0.75) × (0.33, 0.67, 1.00)

Σ(0.33, 0.67, 1)
= 0.84 (3.7)

Finally, the predicted value is calculated to be:

ên+1 = 0.7 · 230 + (1− 0.7) · 313 · 0.84 = 240 (3.8)

3.3.3 Other Prediction Approaches

A number of techniques have been proposed in the literature for forecasting of short-

term solar radiation based on time-series forecasting using Autoregressive models and its

variants [130, 9], artificial neural networks (ANN) [93, 92], and using combination of two

dimensional linear filters and ANN [46]. These are powerful general purpose techniques,

however, which require a large amount of historical data and/or are computationally

intensive, thus not suitable for implementation in resource constrained low-power energy

harvesting systems. The two approaches discussed in Sections 3.3.1 and 3.3.2 are simple

techniques that exploit smart observations regarding the solar energy generation model.
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In [12], the authors investigate the use of neural networks and 2-D linear prediction

filter for forecasting of short-term solar harvested-energy for low-power applications and

compare it to the WCMA method. The reported results indicate that both 2D linear

filter and neural network approaches achieve less accuracy than the WCMA algorithm

at a much higher computation cost. Appendix B reviews long-term prediction/modeling

of solar energy and a generic prediction approach for other energy sources.

3.4 Evaluation and Parameters Optimisation of WCMA

Prediction Algorithm

In Section 3.3.2, an effective short-term solar harvested-energy prediction approach was

described. The accuracy of the prediction algorithm is dependent upon parameters such

as the length of prediction interval and window sizes of historical energy source data

samples used. At the same time, these parameters also determine the overhead of per-

forming prediction algorithm operations and memory requirement for storing historical

power samples. Since harvested power is often limited, it is important to minimize the

energy consumption overhead of harvested-energy management activity, including pre-

diction. The effectiveness of harvested-energy management is sensitive to the accuracy of

prediction algorithm. This has been acknowledged in previous works [65, 106, 113, 129],

nevertheless, there is a lack of clear justification how the prediction accuracy should be

best quantified. In previous works, the choice of prediction parameters have been based

largely on specific cases, and no comprehensive evaluation has been presented across

multiple data sets.

This section presents a systematic approach for evaluation of prediction accuracy of solar

harvested-energy and applies this to evaluate achievable accuracy of WCMA algorithm

described in Section 3.3.2 using multiple real solar energy data sets. The algorithm

performance is measured by varying the energy harvesting source sampling rates (or

prediction slots) and trade-off in prediction accuracy and cost is obtained based on im-

plementing prediction algorithm on actual hardware. The results are compared across

different data sets to give guidelines to simplify prediction algorithm’s parameters selec-

tion, which ensures that high accuracies can be achieved without the need to determine

parameters for different profiles. Finally, the case for dynamic parameters selection is

motivated and it is shown that on average greater than 10% higher accuracies can be

achieved compared to the static selection of parameters.

3.4.1 Prediction Error Measurement

This section discusses an error evaluation technique that accurately models the predic-

tion error and is intuitive to allow comparison of prediction algorithm across different
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Figure 3.5: A section of solar power samples profile showing slot boundaries,
samples per slot, slot energy calculation, and mean slot power

solar power data sets. It is suggested how predicted output should be compared so that

the result is representative of the actual error and which error function to use for com-

puting averaged error to model the overall losses in prediction. To motivate the error

calculation technique described in this section, Figure 3.5 shows a section of measured

solar power profile of a day. Slot boundaries are indicated and in each slot M power

samples are available. For instance, if slot length is T = 30 minutes (N = 48) and

sampling resolution of available data is 5 minutes then M = 6. Power samples at start

of each slot are indicated and these are used by prediction algorithm (Section 3.3.2) to

predict future slot power. The energy received during a slot n can be obtained from its

mean power ēn by ēn × T . Harvested-energy management system estimates the energy

of slot n by using the predicted power value ên+1 as ên+1 × T .

In previous works [65, 129], the prediction error of a slot n (error′n) is expressed as:

error′n = en+1 − ên+1 (3.9)

Since predicted power is used to estimate a slot’s energy, it is intuitive to compare the

predicted power to mean power of a slot to express prediction error:

errorn = ēn − ên+1 (3.10)

The value of ēn will be more accurate if solar power samples data is available at a high

resolution (e.g., 1 minute resolution compared to 5 minutes). This leads to realistic

modeling of prediction error when using Equation 3.10.

Since determination of prediction accuracy needs to account for prediction error out-

comes of a large number of sample points, a suitable average error function is required.
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Root Mean Squared Error (RMSE) is a commonly used measure of determining estima-

tion accuracy [47], however, RMSE is sensitive to large outliers and its value is dependent

on scale of data. This makes use of RMSE non-intuitive for evaluating harvested-energy

prediction since sudden large fluctuations in solar energy profile are difficult to model

with simplistic (heuristic) prediction algorithms and may give large error values (out-

liers) that can bias the average results. Mean Absolute Error (MAE) does not suffer

from this aspect but it is also data scale dependent, making comparison of prediction

performance across different solar power data sets non-intuitive. In this work, the Mean

Absolute Percentage Error (MAPE) function is used (Equation 3.11) since it is indepen-

dent of data scale.

MAPE =
1

T

∑∣∣∣∣
errorn
ēn

∣∣∣∣ (3.11)

In Equation 3.11, T is the the total number of predicted values. Similarly, MAPE′ is

defined as used in [129] based on error′n instead of errorn (see Equation 3.9 and 3.10)

and it will be used to compare prediction algorithm’s parameters optimisation results

(Section 3.4.3). Since solar energy arrives in large bursts mainly during mid day, for

harvested-energy management it is relevant to measure accuracy of prediction during

this time. Therefore, night-time values (zero) where prediction is accurate but not useful,

and small values at start/end of a day where prediction errors are not meaningful for

evaluating prediction performance, should not be included in average prediction error

calculation (Equation 3.11). This prevents the average prediction error to be influenced

by values outside region of interest. This is achieved by only including those sample

values in the average error calculation that are at least 10% of the peak value.

3.4.2 Evaluation Setup

The prediction algorithm (Section 3.3.2) is evaluated using publicly available solar ir-

radiance data of ten different sites [114], out of which six sites (Table 3.2) are selected

that demonstrate variety in solar energy profile variations. The use of multiple sites with

large of number of recorded observations (365 days) attempts to validate the proposed

algorithm over long term deployment conditions (different number and distribution of

sunny and cloudy days in each irradiance trace) and independent of the deployment

location.

To present the algorithm evaluation results, the range of values used for the algorithm

parameters are: N = {288, 96, 72, 48, 24}, 0 ≤ α ≤ 1, 2 ≤ D ≤ 20 and 1 ≤ K ≤ 6. These

values are exhaustive to capture the main trends as shown by results in the following

sections. For a given N , the objective is to find the optimised set of prediction algorithm

parameters α (weighing factor), K (previous slots) and D (number of past days) for

each solar power data set, which minimizes the average prediction error, MAPE. The
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Table 3.2: Details of the data sets used.

Data Set Location Observations DAY S Resolution

SPMD CO 105,120 365 5 minutes

ECSU NC 105,120 365 5 minutes

ORNL TN 525,600 365 1 minute

HSU CA 525,600 365 1 minute

NPCS NV 525,600 365 1 minute

PFCI AZ 525,600 365 1 minute

Turn on internal voltage 

reference. Go to sleep to allow 

settling time (45ms)

Launch A/D conversion (few 

s) and go to sleep

Disable Vref, perform 

prediction, and go to sleep until 

next sampling

A/D Conversion Interrupt

Vref Wake Up Interrupt

Sample 

Wake Up 

Interrupt

Figure 3.6: Description of power value sampling and prediction sequence.

evaluation is performed for days 21 to 365 as this allows matrix of past days samples

ED×N used in the prediction algorithm to be filled for D = 20, and it also ensures

that an equal number and same sample values are used for average error calculation

irrespective of number of past days (D).

To evaluate the prediction algorithm on actual hardware, the following set-up has been

used [55]:

• Test board: MSP-TS430PM64.

• Microcontroller: TI MSP430F1611 (3V@5MHz).

• Compiler: TI Code Composer Essentials version 3.2.

Fig. 3.6 shows the steps in computation of prediction algorithm in hardware. Most of

the time, micro-controller remains in deep sleep mode in which only the Wake-Up timer

is running. The MSP430 wakes up according to the number of predictions per day (N),

enables the voltage reference used in Analog-to-Digital (A/D) conversion and waits in

sleep mode until the voltage settles. It then launches the A/D conversion and waits for it

to complete (again in sleep mode). When A/D conversion is complete, it shuts down the

voltage regulator, executes the prediction algorithm and re-enters in deep sleep mode.
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Table 3.3: Prediction error and parameter values using different error evalua-
tions at N = 48 for six solar power data sets.

Data set α D K MAPE′ MAPE α D K MAPE
SPMD 0.2 19 1 42.07% 17.77% 0.7 20 1 15.80%
ECSU 0.2 20 2 32.89% 15.36% 0.7 20 3 13.45%
ORNL 0.4 20 3 36.61% 18.04% 0.7 20 3 17.22%
HSU 0.4 20 3 26.90% 14.99% 0.7 18 3 14.01%
NPCS 0.0 15 1 17.17% 11.43% 0.6 20 2 8.06%
PFCI 0.2 20 3 13.93% 8.22% 0.6 20 3 6.59%

3.4.3 Evaluation Outcomes

Having proposed the error evaluation function in Section 3.4.1, the difference in results

is presented between average prediction error measurement using MAPE (Equation

3.11), which uses average slot power to calculate error, compared to MAPE′, which

uses error between estimated and actual sampled power at the beginning of slot. Table

3.3 shows two sets of optimisation results for α, D and K with N = 48 samples per

day for different solar power data sets. In the first set, MAPE′ has been used as the

cost function (MAPE value is also calculated for these configurations), the second set

has been obtained by minimizing MAPE function. Note that the values of average

prediction errors for MAPE are significantly lower compared to MAPE′. Also, the

obtained values of prediction algorithm parameters (α, D, and K) differ between the

two error evaluations, especially the value of α. Furthermore, it can be seen that if

MAPE is calculated with set of parameters obtained using MAPE′, MAPE values

are higher than those obtained in the second set, indicating that the obtained set of

parameters using MAPE′ are not optimised.

Next, the prediction algorithm is evaluated using different values of prediction slots.

The aim is to address the following two issues:

1. How much influence does varying prediction slot or sampling rate per day (N)

have on prediction accuracy and associated overhead?

2. Based on analysis across multiple solar power data sets, can some guidelines be

determined to simplify tuning of parameters α, K and D independent of specific

data set?

To address the first issue, Table 3.4 shows prediction error for five values of N and the

optimised values of parameters K, α and D for each of six data sets. As can be seen for

all data sets, prediction accuracy increases with increase in N , with predictions errors

less than 9% in all cases at N = 288, a gain of up to 9% compared to N = 48. Fig. 3.7

graphically depicts the trends in MAPE with N for all data sets.
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Table 3.4: Prediction results at different values of N for six solar power data
sets.

Data Set N α D K MAPE MAPE@K = 2

SPMD 288 1 n/a n/a 0† 0†
96 0.8 20 1 10.2668% 10.39%
72 0.8 20 1 12.3556% 12.47%
48 0.7 20 1 15.7999% 16.10%
24 0.6 12 2 20.35% n/a

ECSU 288 1 n/a n/a 0† 0†
96 0.8 20 2 9.39% n/a
72 0.8 20 3 11.11% 11.19%
48 0.7 20 3 13.45% 13.51%
24 0.6 19 1 18.24% 18.51%

ORNL 288 1 n/a n/a 8.31% n/a
96 0.8 20 3 14.42% 14.47%
72 0.8 20 4 15.72% 15.88%
48 0.7 20 3 17.22% 17.43%
24 0.6 12 2 21.43% n/a

HSU 288 0.9 20 1 6.00% 6.01%
96 0.8 20 4 10.80% 10.88%
72 0.8 20 5 12.11% 12.30%
48 0.7 18 3 14.01% 14.11%
24 0.7 12 2 19.19% n/a

NPCS 288 0.9 20 1 3.91% 3.92%
96 0.7 20 3 6.78% 6.80%
72 0.6 20 2 7.40% n/a
48 0.6 20 2 8.06% n/a
24 0.5 20 1 8.88% 9.11%

PFCI 288 0.9 20 4 3.45% 3.46%
96 0.7 20 5 5.64% 5.77%
72 0.6 20 4 5.92% 6.08%
48 0.6 20 3 6.59% 6.68%
24 0.5 10 2 8.97% n/a

n/a: not applicable
†N=288 is not defined for this data set since the resolution of data set samples is 5
minutes
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Figure 3.7: Performance of prediction algorithm using different values of N

Table 3.5 gives the energy consumption of power sampling (A/D conversion) and predic-

tion algorithm execution at some parameters’ configurations. The energy consumption

during system sleep mode per day is also given. As can be seen, the A/D conversion

for sampling the power consumes the bulk of energy and prediction algorithm uses an

additional 4µJ to 9µJ depending upon its parameters’ values. Taking 5µJ as roughly

the typical energy consumption of prediction algorithm, the total energy consumption

per day of prediction activity is given in last row of Table 3.5. If this is compared in con-

text of energy consumption of sleep mode, it is interesting to note that the total energy

consumption of the sampling and prediction activity combined for N = 48 (2.880mJ

per day) is still small compared to the total energy consumption of sleep mode (356mJ

per day), indeed just 0.8%. Considering the extreme of N = 288 (17.28mJ per day), it

is 4.85% of sleep mode energy consumption. Comparing the increase in overhead with

increase in accuracy, it can be seen that using N = 288 achieves an average error of

less than 9%, or an improvement of 7-10% in average error compared to N=48 in high

variability data sets (Table 3.4). Fig. 3.8 gives the total energy consumption at different

values of N per day as a percentage of the sleep mode energy consumption.

Table 3.4 shows that as value of N approaches 288, the value of α tends to 1. Value of

α ≈ 1 implies that prediction algorithm is mainly relying on the currently sampled power

value to determine the predicted value, and α = 1 essentially means that current value

can be used to predict the energy. These results show that using high values of N , need
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Table 3.5: Energy consumption of power sampling and prediction algorithm.

Hardware Activity Energy/Cycle

A/D conversion 55µJ

A/D conversion + Prediction (K=1, α=0.7) 58.6µJ

A/D conversion + Prediction (K=7, α=0.7) 63.4µJ

A/D conversion + Prediction (K=7, α=0.0) 61.5µJ

Low power (sleep) mode 1.4µA@3V 356mJ per day

A/D conversion 48 samples per day@55µJ 2640µJ per day

A/D conversion + prediction 48 times per day@60µJ 2880µJ per day

4.85%

1.62%
1.21%

0.81%
0.40%

288 96 72 48 24

N

%
O
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Figure 3.8: Overhead of prediction algorithm at different values of N as a
percentage of sleep mode power consumption per day

for using the prediction algorithm is reduced but at the same time energy consumption

overhead is dominated by power sampling of ADC and not by prediction activity.

Next, the issue of simplifying tuning of prediction algorithm parameters across different

solar power profiles is addressed to achieve low average errors across different data sets:

• D: Fig. 3.9 shows the values of MAPE versus D at N = 48 using values of

α and K obtained in Table 3.4. It can be seen that beyond a certain D value,

further gains in accuracy are small. D can be set to value of 10-11 irrespective of

the data set used to obtain low MAPE while conserving samples storage memory

requirement of prediction algorithm.

• α: Table 3.4 indicates that α = 0.5 to 0.6 gives minimum average error at N = 24,

and forN = 288 α ≈ 1 is desirable. For other values ofN in between, 0.7 ≤ α ≤ 0.8

with 48 ≤ N ≤ 96 gives the minimum average error. These trends are graphically

summarised in Figure 3.10.
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Figure 3.9: Trends in MAPE with increasing D for different solar power data
sets
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• K: The last column of Table 3.4 show that K = 2 gives an average error that is

very close to minimum error value obtained for all data sets as graphically depicted

in Figure 3.11.

3.4.4 Prediction with Dynamic Parameters Selection

In Section 3.4.3 it was shown that increasing the harvested-power sampling rate (N)

always results in higher prediction accuracy at a higher energy consumption overhead.

It was also shown that as more number of past days (D) are considered, the average

prediction error decreases noticeably initially, with the rate of decrease soon becoming
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sets

Table 3.6: Results for dynamic parameters selection varying both α and K, only
K at a fixed α and vice versa.

Static K+α K only α only
Data Set N MAPE MAPE α MAPE K MAPE

SPMD 96 10.27% 4.25% 0.4 7.31% 6 5.48%
72 12.36% 5.13% 0.3 8.54% 6 6.47%
48 15.80% 6.43% 0.3 10.63% 6 8.21%
24 20.35% 6.95% 0.3 13.08% 3 11.21%

ECSU 96 9.39% 3.76% 0.3 6.32% 6 4.85%
72 11.11% 4.44% 0.3 7.40% 6 5.68%
48 13.45% 5.37% 0.3 8.92% 6 6.93%
24 18.24% 6.16% 0.3 11.25% 3 10.37%

ORNL 288 8.31% 3.85% 0.2 6.07% 6 4.68%
96 14.42% 6.40% 0 9.35% 6 7.69%
72 15.72% 6.72% 0 10.09% 6 8.10%
48 17.22% 7.38% 0.1 11.34% 6 9.26%
24 21.43% 7.30% 0.2 12.94% 3 12.03%

HSU 288 6.00% 2.75% 0.3 4.46% 6 3.43%
96 10.80% 4.60% 0.1 7.19% 6 5.76%
72 12.11% 5.15% 0.2 8.14% 6 6.49%
48 14.01% 5.52% 0.2 9.32% 6 7.36%
24 19.19% 5.92% 0.3 11.21% 3 10.11%
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insignificant. It can also be noted that across different data sets as well as at differ-

ent values of N for a given data set, the average prediction error was minimized for

combination of parameters α and K that varied for these different cases. From these

observations, it can be concluded that although there is a fixed trend in average error

values when N or D are varied, the average error value with a given K and/or α depends

on variations in solar power profile. In other words, for a given value of N and D, values

of K and α may be varied at different points in a profile to minimize error at these

points compared to using certain fixed values that minimize the average error across the

whole profile (Section 3.4.3).

To demonstrate the potential gains in prediction accuracy by dynamically varying α

and K, Table 3.6 gives the values of average errors with dynamically changing both α

and K, changing only K at a given α and vice versa. These error values are obtained

by minimizing the error obtained at each prediction by dynamically selecting the value

of adjustable parameter(s). Average error obtained using static parameters setting is

also given (from Table 3.4) for comparison. When K is dynamically changing, a fixed

value of α has been chosen for which average error is minimum among other values of

α. The same consideration has been made when α is changed. Note that maximum

gains in average error as compared to average error of static parameters selection are

achieved when both K and α are adapted, followed by adapting only α at a given K.

Furthermore, these gains of dynamic algorithms compared to static algorithm increase

as N is decreased. This is a useful outcome since the implementation overhead of

dynamic adjustment will be minimized at a smaller N . It is interesting to note that the

dynamic algorithm accuracy at N = 48 is higher than the accuracy of static algorithm at

N = 288. It should be noted that the indicated error values with dynamic parameters’

selection are minimum achievable since an ideal approach to select best parameters at

every point is used. These results indicate that it is promising to develop a dynamic

parameters selection algorithm that can achieve less than 10% average error without the

need to use higher sampling rates to minimize overhead.

3.5 Concluding Remarks

Harvested energy prediction is an important component for realisation of harvested-

energy management because of the variable supply of harvested-energy. This chapter

discussed low computation and energy overhead prediction approaches suitable for low-

power wireless sensor systems. The chapter focused on solar energy prediction and pos-

sible approaches for both short-term and long-term prediction are discussed. A problem

with application of prediction algorithm is the determination of best values of associated

parameters. The contribution of this chapter was parameters optimisation of short-term

solar energy prediction to minimise the average prediction error and guidelines for de-

termination of parameters across different input profiles. It was shown that values of
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parameters D, K and α can be chosen according to N independent of the specific solar

energy data set. This allows the algorithm to be used under different input conditions

without the need to evaluate the required parameters. The solar energy prediction algo-

rithm presented in this chapter is used in Chapter 6 to propose an energy-management

policy to achieve uniform performance of energy harvesting systems under the variability

of solar energy supply.





Chapter 4

Modeling of Photovoltaic Energy

Harvesting Systems

As outlined in Chapter 1 (Section 1.1), the energy management determines the alloca-

tion of harvested-energy to the application workload such that the energy supply and

consumption are matched to achieve perpetual operation under a variable supply of

harvested-energy. This is also referred as ‘energy neutral’ mode of operation [65]. Chap-

ter 3 focused on harvested-energy prediction to minimise uncertainty in the supply to

enable application workload to be adapted according to expected energy supply. Chapter

2 discussed the design of photovoltaic energy harvesting supply and storage subsystem,

identifying the system components and their design considerations, such as maximising

the energy transfer efficiency between supply and consumption. Given a certain con-

figuration of the harvesting supply and storage subsystem, this chapter considers the

problem of how to achieve the desired match between supply and consumption under

the non-ideal characteristics or losses of system components. As a motivating example,

consider the general architecture of a photovoltaic energy harvesting system in Figure

4.1. Now consider an energy management policy with the objective of matching ap-

plication workload energy consumption with harvested-energy. If this policy measures

harvested-energy as output of the PV panel, it will fail to achieve the desired objective

as it does not consider non-ideal characteristics (or losses) of system components such

as input regulator, energy storage and output regulator (Figure 4.1) that affect supply

of PV panel and application workload demand. Furthermore, a fixed value of system

efficiency may not be sufficient due to the varying efficiency of a specific component as a

function of its input and output as mentioned in Chapter 2 (Section 2.2.7). Hence, a bet-

ter correlation between supply and demand can be achieved if the non-ideal behaviour

of each system component is considered, and its variation (if any) based on component’s

input/output (or inter component dependency). This chapter addresses this by iden-

tifying the contribution of individual system component on supply or demand through

modeling. The intention is not to propose novel models for different components, but to

89
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Figure 4.1: A naive attempt at matching supply and demand by considering
only PV panel output and application workload consumption.

identify the characteristics that influence the supply or demand and selection of suitable

models that achieve this purpose. The proposed approach to modeling the system and

its individual components is validated against empirical measurements using the refer-

ence system configuration described in Chapter 2 (Section 2.3). The applicability of this

modeling to optimising harvested-energy management is discussed in Chapter 5.

This chapter is organised as follows. Section 4.1 discusses the related work and places this

work in context of previous works. Section 4.2 discusses the role of each component in

the system model from the perspective of energy management and describe the selected

modeling approach. In Section 4.3, the complete system model is validated using the

reference system configuration by considering a case of matching supply and demand.

Section 4.4 concludes the chapter.

4.1 Related Work and Contributions

A number of works [102, 103, 76, 39] on energy management abstract the details of

energy harvesting system and focus mainly on the spatio-temporal variability of energy

supply and application specific optimisation objectives [77, 76, 103, 102, 80, 81]. In

these cases the system model consists of an energy supply modeled as a series of values

representing the available energy at different times, which replenishes an ideal buffer of a

given size, while the application depletes the buffer according to its activity costs. Other

works model the inefficiency in the system as single parameter by acknowledging that

the energy available to be buffered is less than harvested, and that the modeled input

energy already accounts for this factor [154]. The limitation of this abstract system
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model is that it cannot assist an energy management policy to correctly manage de-

mand and supply in a real system. This is because practical management of supply and

demand requires knowing what constitutes supply and demand, and given a specific re-

alisation of an energy harvesting subsystem as discussed in Chapter 2, the contribution

of individual components needs to be determined. Furthermore, the system (compo-

nent) losses can be dynamic and this has been considered in case of energy storage in

[65], which presents a more realistic system model that accounts for charge/discharge

efficiency of rechargeable batteries and observe that energy supplied by PV panel can

be consumed directly without discharging the battery if supplied power is greater than

demand. Based on this system model, an energy management policy is proposed in [65]

to minimise battery discharge and therefore the cost to replenish battery for maintaining

energy neutral operation. For systems using supercapacitors as energy storage, leakage

models have been presented in [131, 164] and leakage-aware energy management has

been presented in [164] to counter its effect.

As mentioned in Section 4, the aim of this chapter is not to propose novel models of

system components but to identify the required parameters and their possible variations

for each system component through modeling to better match the demand and supply

using energy management. This is necessary because certain parameters can have a

dominating influence compared to others depending on the choice of components that

make up the system (Chapter 2). For example, in case of energy storage rechargeable

batteries have very small self-discharge while self-discharge of a supercapacitor cannot

be neglected (Section 2.2.5). Furthermore, this chapter also focuses on how to obtain

the value(s) of identified parameters given the specific components selected. This is

important because the values of parameters and their variation can be different amongst

different instances of the same system component, e.g., the specific type of voltage

regulation used to supply power to the application workload. The next sections discuss

the modeling of each system component and the interdependency between components

that describes the overall relationship between supply and demand.

4.2 System Modeling

In Chapter 2 (Section 2.2), the role of each system component to be modeled was

discussed. In this section, the requirements of modeling from energy management per-

spective and the selected modeling approach for each component is discussed. Results

are presented to validate the modeling using specific instances of the component. Figure

4.2 shows the complete system and key energy flows between different components. Ta-

ble 4.1 gives the description of these energy flows. The energy input Prad (irradiation)

is converted by the photovoltaic (PV) panel output (Ppanel) and this is made available

through the input regulator block (Preg in) for replenishing the energy storage (Pchg) and

consumption of application workload (Pload). The application load is connected through
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Figure 4.2: System model showing the input/output power flow between differ-
ent components.

Table 4.1: System energy flows and efficiencies.

Metric Description

Prad Power of incident irradiation

Ppanel Power produced by PV panel

Preg in Power produced by input regulator

Preg out Power demand of output regulator

Pchg Power stored in energy storage

Pdischg Power extracted from energy storage

Pload Energy consumed by load

ηenergy store Efficiency of energy storage

ηreg in Efficiency of input regulator

ηreg out Efficiency of output regulator

the output regulation block (Preg out) to input regulator and energy storage. Depending

on the load demand and harvested-energy, the load can be supplied from the input reg-

ulator Preg in, the energy storage Pdischg or both. Harvested-energy management policy

is implemented on a processing unit that is part of the workload block and it adjusts

the power consumption of load (Pload) by monitoring energy harvested, energy stored,

and energy consumption. Using this complete system model, the simulation evaluates

system states in discrete time steps in terms of the energy flow of each component. The

next section describes the simulation environment followed by details of modeling of

each system block.

4.2.1 Simulation Environment

The system modeling has been implemented using MATLAB due to its ease of data

types handling, visualisation support and rich library of functions for commonly needed
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initializations()
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for each simulation step

get_energy_store_voltage()

determine_solar_panel_state()

calculate_supply_power()

calculate_output regulator_power()

determine_net_charge_discharge()

update_energy_storage_state()

invoke_energy_management_policy()

end for

Figure 4.3: Simulation outline of system blocks shown in Figure 4.2.

modeling tasks. Fig. 4.3 gives an outline of system simulation using interconnection of

system components shown in Fig. 4.2. The modeling approach is inspired by a recent

work by Jeong [59] in which the system is modeled at the level of abstraction of energy

flows between system components based on their transfer characteristics. This also suits

the aim of this chapter, which is to model the influence of each component characteristics

on supply and demand. Each system component is modeled using a modular approach

by encapsulating functionality within functions or scripts. A specific instance of a given

component such as photovoltaic panel, voltage regulator etc. is implemented in a sepa-

rate file so that different instances of a given component can be interchanged according

to chosen system configuration. The interconnection of components with each other

is implemented using function calls and a sequence of statements for interdependency

checks. The simulator uses a specific configuration of an energy harvesting system along

with user-defined components data to model the system behavior. The overall system

configuration and interconnection between system components is realised using a sepa-

rate system module file. This file coordinates the event driven execution of system state

updates according to the steps given in Section 4.2.9. The resolution used for time-steps

dictates the computation interval and consequently the estimation accuracy. Appendix

C gives the MATLAB code for the top-level simulation scripts and components of the

system, which are discussed in the following sections.

4.2.2 Energy Source

For evaluating energy management policies, it is critical that the modeling of environ-

mental energy can capture the variations of the targeted deployment environment. For

photovoltaic energy harvesting, the input light energy is called irradiance, expressed in

Watts/m2 or smaller units. The energy available at a location can be modeled as a

series of irradiance values over time. These values be given as input to the PV panel

model (Section 4.2.3) to determine the output power. Historical irradiance data sets
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with 1 minute interval samples for many locations around the world are publicly avail-

able such as from US NREL [114] website. Another approach to modeling solar energy

is to use a generic model of solar radiation, with location and time of the year as input

[59]. However, this approach only models ideal weather conditions and doesn’t account

for random weather effects or variability. Jeong [59] has discussed how these effects can

be included to make this model closer to real conditions. It should be noted that the

output of this model has to be scaled according to the specific PV panel being used.

4.2.3 PV Panel

A PV panel output power is a function of the incident light conditions, temperature

and terminal voltage. The operating point at a given light intensity and temperature is

defined by the terminal voltage and current. This operating point of panel is determined

by configuration used to connect the panel to rest of the system as explained in Section

4.2.4. This is important from viewpoint of energy management since change in terminal

state of connected component(s) such as energy storage can change the operating point

and thus amount of energy harvested, even under constant illumination conditions. The

power output of panel dictates how much energy is available to energy management for

manipulating consumption and energy store recharge. For an accurate reproduction of a

PV panel behaviour, the change of operating points according to change in illumination

conditions and panel terminal characteristics needs to be modeled.

The PV panel output is modeled according to the following: (1) input irradiance, (2)

PV-panel characteristics (IV-curve), (3) the operating point of the panel (terminal volt-

age). To obtain the PV panel output power, the IV-curve at the given illumination is

needed and the operating point needs to be determined. The IV-curve is a non-linear

relationship between a panel’s terminal voltage Vpanel and its current output Ipanel:

Ipanel = IV Curve(Vpanel) (4.1)

Given this IV-curve, a solar panel’s output power Ppanel is given by:

Ppanel = Vpanel · Ipanel (4.2)

The operating voltage Vpanel of the solar panel connected to rest of the system is ob-

tained by modeling the solar panel as a voltage controlled current source. The Vpanel is

determined by the output connection of the PV panel. This is either a regulating diode

connected to energy storage or an input power regulator block such as a maximum power

point tracker (refer to Section 4.2.4).
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Ipanel

VpanelIRp

Figure 4.4: Single-diode model of the theoretical PV cell and equivalent circuit
of a practical PV device including the series and parallel resistances (adapted
from [155]).

To model the IV-curve of the PV panel, the single-diode model [155] with shunt (RP )

and series (RS) resistances (Figure 4.4) is used as it achieves good fit with the empirical

IV-curve [155]. Using this model, the IV relationship can be expressed by using the

formula:

Ipanel = Ipv −

Id︷ ︸︸ ︷
I0

[
exp

(
Vpanel +RSIpanel

Vta

)
− 1

]
−

IRp︷ ︸︸ ︷
Vpanel +RSIpanel

RP
(4.3)

where, Ipv and I0 are the photovoltaic and saturation currents, respectively, of the array

and Vt = NskT/q is the thermal voltage of the array with Ns cells connected in series,

k is the Boltzmann constant, q is the electron charge constant, T (in Kelvin) is the

temperature of the p − n junction, and a is the diode ideality constant. To obtain the

I-V curve of a specific panel using this formula, the parameter values (RP , RS , Ipv

and I0) need to be determined. A number of different approaches have been proposed

in the literature to determine these parameters. The approach proposed by Villalva

et al. [155] is selected due to its practicality as it requires only four parameters to

obtain the IV-curve: the open circuit and maximum power voltages (Voc and Vmp), and

short circuit and maximum power currents (Isc and Imp). These four parameters are

commonly available in most PV panel datasheets or can be easily determined empirically

at a given irradiance level. This approach also models the shift in maximum power point

according to different input conditions, which is important for modeling losses from shift

in maximum power operating point. The authors have made the modeling code written

in MATLAB publicly available for download [155] and is reproduced in Appendix C.

Figure 4.5 show the IV and PV-curves of a Solarex MSX-005F PV panel using measured

and modeled values. It can be seen that the modeled curve fits the measured data with a

maximum error within 5%. Thus, compared to the simple approach that models the PV

panel as its maximum power scaled by the input irradiance [154], the selected modeling
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(b) Modeled and measured PV curves.

Figure 4.5: Solarex MSX-005F PV panel characterisation.

approach accounts for both the influence of external environment and system state on

PV panel output.

4.2.4 Input Power Regulation/Conditioning

With respect to energy management, it is important to note that harvested power is

determined by the configuration of this block. Modeling of input regulator should con-

sider how it controls the PV panel operating voltage and take into account the efficiency

of power transfer of input regulator to determine the actual power delivered from the
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Figure 4.6: Connection of solar panel to energy storage through a Schottky
diode.

PV panel. Since the input regulator is an interface between the PV panel and the en-

ergy storage, its modeling has to formulate the power transfer relationship depending

on the operating point of PV panel and voltage of energy storage. As mentioned in

Chapter 2 (Section 2.2.7.2), this transfer relationship depends on what configuration is

used between the PV panel and energy storage.

The simplest case to model is that of a direct connection through a diode to prevent

reverse current flow in to the panel (Figure 4.6). In this case, the solar panel volt-

age (Vpanel) is determined by the voltage of the energy storage (Venergy store) and the

threshold voltage of the diode (Vthreshold schottky) with the following equation [59]:

Vpanel = Venergy store + Vthreshold schottky (4.4)

If the panel output current Ipanel is greater than the diode conduction threshold, then

the harvested power supplied to energy storage (Preg in) is given by:

Preg in = Venergy store · Ipanel (4.5)

For other cases in which the input regulator consists of either a fixed voltage regulator

(buck/boost converter) for fixing the PV panel voltage or a dynamic power point tracking

circuit, the modeling needs to consider:

(1) How the operating point of the PV panel is determined, as a function of regulator

construction, environmental energy being received, and voltage of energy storage [59,

141]:

Vpanel = f (Regulation type, Prad, Venergy store) (4.6)
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Figure 4.7: Connection of solar panel to energy storage via an input regulator.

(2) The efficiency of power delivered, usually as a function of input (PV panel) to output

(energy store) voltage difference and PV panel current [141]:

ηreg in = f (Vpanel, Venergy store, Ipanel) (4.7)

Different approaches are possible for modeling these characteristics. A very detailed

circuit level model using SPICE or Simulink [144] can be used to simulate the detailed

behaviour such as transients at start-up, load changes, and feedback of switching con-

troller. However, from the perspective of matching supply and demand, the focus is on

modeling of steady-state changes in power transfer efficiency (Equation 4.7) and how the

PV panel terminal voltage can be determined (Equation 4.6) given the energy store volt-

age and other inputs depending on the regulator type. To achieve this, some relationship

can be constructed that expresses these values in terms of the inputs. Since a variety

of input regulator configurations are possible as discussed in Section 2.2.7.2 (Chapter

2), some examples are used to illustrate this. To model the efficiency of the regulator

ηreg in, a relationship can be constructed from the efficiency data measured empirically

or derived from curves provided in the manufacturer data sheet. For example, consider

a maximum power point tracking regulator described in [141]. For this regulator the

voltage of the PV panel is determined using a maximum power point tracking circuit.

The efficiency of this regulator can be obtained from the transfer curves as a function of

PV panel output power and supercapacitor voltage as shown in Figure 4.8. As can be

seen since these curves are non-linear, it is not easy to express these using a formula. To

address this, piecewise linear interpolation can be used [59]. Next, another example is

used to illustrate the modeling of Equation 4.6. Suppose that a step-down converter and

Schottky diode constitute the input regulator (Figure 4.7) to fix the PV panel operating

point to a certain voltage with supercapacitor as energy storage. Now, depending on

the voltage of energy store Venergy store, the following two cases determine the PV panel

voltage [59]:
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Figure 4.8: Efficiency curves of a MPPT input regulator [141] versus superca-
pacitor voltage and panel output power (Reproduced from [141]).

1. Constant input-voltage mode: When the output voltage of the input regulator

Venergy store is below a certain level Vreg in thres, the PV panel voltage Vpanel remains

constant irrespective of the voltage of the supercapacitor:

Vpanel = Vreg in on + Vthreshold schottky = const, if Venergy store ≤ Vreg in thres (4.8)

where, Vreg in on represents the constant voltage value. Vreg in on and Vreg in thres de-

pends on the specifics of step-down converter used.

2. Pass-through mode: When the output voltage of the input regulator Venergy store

exceeds the threshold Vreg in thres, the PV panel voltage begins following the voltage of

energy store (Venergy store):

Vpanel = Venergy store + Vthreshold schottky, Venergy store > Vreg in thres (4.9)

The reference system design used in this thesis uses a direct connection of PV panel

through a diode for reasons discussed in Section 2.3. In this case, the behaviour is

simple to model and is governed by Equations 4.4 and 4.5.
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4.2.5 Energy Storage

For modeling of energy storage from viewpoint of energy management, it is important

to consider the following:

1. Losses in energy transfer (ηenergy store): For energy neutral operation, these

losses have to be included in the total energy that needs to be replenished.

Edischg = ηenergy store · Echg (4.10)

2. Terminal voltage characteristics (Venergy store): The change in terminal volt-

age of the energy storage during charging and discharging influences both the effi-

ciency of output voltage regulator (Section 4.2.6) and the energy output from the

PV panel (Section 4.2.4). Hence, energy management needs to account for these

changes in input and output energies according to state of energy storage. The

voltage-to-energy relationship (V to E), or vice verse, describes the relationship

between the voltage and the energy level of the energy storage.

Venergy store = E to V (Eenergy store)⇔ Eenergy store = V to E(Venergy store)

(4.11)

3. Estimation of stored energy (Eenergy store) and leakages (Eleakage): Besides

knowing what is currently available, it is also important to know how much of this

can be available for consumption in future according to a given consumption rate.

This is also affected by leakage over time-scale of interest.

These characteristics depend upon the type of energy storage. Energy storages can be

classified into two main categories with respect to modeling requirements: supercapaci-

tors and rechargeable batteries.

4.2.5.1 Supercapacitors

Supercapacitors are commonly modeled using the ideal supercapacitor relationship of

stored energy and voltage:

Eenergy store =
1

2
C · V 2

energy store (4.12)

Supercapacitors are generally characterised as having relatively high self-discharge com-

pared to rechargeable batteries [131, 164]. In this regard, the leakage rate modeling
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Figure 4.9: Self discharge of supercapacitors showing changing voltage vs time
(Reproduced from [131]).

approach of [131] is used, using measured voltage-time data provided by authors of

[131]. Based on the empirically observed behaviour of self-discharge as shown in Figure

4.9 for SAMWHA Green Cap supercapacitor [35], the leakage of supercapacitors is mod-

eled as a non-linear (exponential) function of voltage [131, 164]. The voltage-time graph

for supercaps of different capacities is given in Figure 4.9. This method is based on the

observation that the energy level of a supercapacitor monotonically decreases and that

self-discharge is highly correlated with the voltage. From the data plotted in Figure 4.9,

the leakage power of the supercapacitors can be approximated numerically from:

E(VC) =
CV 2

2
⇒ Pleak(VC) ≈

∆E(VC)

∆t
=

C∆V 2
C

2∆t
(4.13)

where ∆V 2
C is the difference of supercapacitor voltages V 2

C at time t and V 2
C at time

t + ∆t. The corresponding results are shown in Figure 4.10. The noise in the lower

voltage regions is due to the noisy measurement of the slowly decreasing voltage. Note

that power is shown in logarithmic scale, leading to an exponential behavior of leakage

power:

Pleak = P0 · expα·VC (4.14)

where, P0 and α are constants and their values are obtained from exponential least

squares curve fitting [131]. The authors in [131] determined estimations according to

Equation 4.14 for supercapacitor of various capacities. The results are shown in Figure

4.11. Appendix C gives the model for estimating the leakage using this approach.
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Figure 4.10: Measured leakage power of different sizes of supercapacitors (Re-
produced from [131]).

 

Figure 4.11: Estimated leakage power of different sizes of supercapacitors ac-
cording to Equation 4.14 (Reproduced from [131]).
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Figure 4.12 shows that the self-discharge rate can also vary according to how long the

supercapacitor is held at a given voltage level [158]. Furthermore, it has been shown

that the supercapacitor stored energy and voltage relationship cannot be accurately de-

termined by using the ideal capacitor relationship [158, 15]. In [158], the supercapacitor

behaviour is modelled using a RC ladder circuit with a voltage-dependent capacitance

in its first branch. Based on this model, it is shown the supercapacitor terminal voltage

and stored energy characteristics depend on the previous charge and discharge history.

In [15], the authors show that over a large number of charge-discharge cycles, deviation

of supercapacitor voltage-energy behaviour from the ideal capacitor equation becomes

negligible. Based on this, the modeling approach selected in this work uses the ideal

capacitor equation for voltage-to-energy relationship. Self-discharge is more difficult to

quantify under the random level of charging and discharging experienced by a typical

harvesting system. Accurate modeling of supercapacitor leakage and stored energy is an

area of active research. However, from energy management perspective it is important

to consider that all recent works [131, 164, 15, 158] note that leakage is only noticeable

when the supercapacitor is charged up close to its maximum voltage, and can be ig-

nored practically at lower voltages, which depends on the specific capacity and voltage

range of supercapacitor. In this thesis, the exponential model [131] of leakage is used

due to its ease of implementation, low complexity and ability to capture the general

trend of observed self discharge as shown in Figures 4.9 and 4.12. Based on practical

validations discussed in Section 4.3, this model was found to give higher self-discharge

than observed under the conditions of experiment. Supercapacitors have a high average

efficiency (greater than 95%) and can be practically ignored for modeling.

4.2.5.2 NiMH Rechargeable Batteries

For modeling energy management, a battery model capable of modeling the stored charge

and voltage-capacity relationship is desired. Since NiMH batteries are most commonly

used, this section focuses on modeling this type of battery. Accurate modeling of voltage-

capacity relationship of rechargeable batteries is complicated by the fact that this rela-

tionship is non-linear and cannot be simply modeled by a single formula. Furthermore,

it is dependent upon whether the battery is being charged or discharged as well as the

rate of charging/discharging current. Figure 4.13 shows the capacity-to-voltage profiles

for a Varta 150H NiMH battery. A number of battery models have been discussed

in literature out of which the battery model proposed by Chen and Rincon-Mora [23]

fulfils the modeling requirements mentioned. The authors present characterisation of

Lithium-ion and NiMH battery and determine the equations for model parameters as

a function of state-of-charge (SoC) and current. They note that NiMH batteries have

a significant dependence on current and the model parameters are a function of both

SoC and current. Although this model demonstrates a high accuracy, it is a circuit

level model using variable resistors and capacitances and thus complex to simulate over
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Figure 4.12: Measured self-discharge of Panasonic 4.7F 2.3V supercapacitor
showing different rates of discharge according to charging conditions (Repro-
duced from [158]).

time scales of interest. An alternate approach is to use the empirically derived voltage-

capacity curves (Figure 4.13) for typical values of charge and discharge currents. For

example, voltage curves for discharge currents corresponding to sleep, active and radio

transmission modes of sensor nodes workload can be obtained as these represent the

typical loads. Similarly, charging curves within 0.1CA-0.3CA (safe limit) charging rate

can be used. Based on these curves and piecewise linear interpolation, the voltage and

capacity at any point can be approximated.

The average charge-discharge efficiency of NiMH batteries is taken as 66% based on

datasheet and self-discharge is assumed to be negligible under typical dynamic charg-

ing and discharging conditions. Note that since the battery can have different voltage

depending on whether it is being charged or discharged at any given time, the exact

state needs to be determined based on the net current (supply vs demand). The details

of this are given in Section 4.2.9 that discusses the overall interdependence between

components.

4.2.6 Output Regulator Modeling

With reference to energy management, it is necessary to know how much losses are

incurred depending on regulator input voltage for a given load power consumption.



Chapter 4 Modeling of Photovoltaic Energy Harvesting Systems 105

0 10 20 30 40 50 60 70 80 90 100
0.9

1

1.1

1.2

1.3

1.4

1.5

% Capacity

V
o
lt
a
g
e
 (
V
)

 

 

Charge (0.1C)

Discharge (0.2C)

Figure 4.13: Empirically observed NiMH battery charging (0.1C) and discharg-
ing (0.2C) state voltage curves against capacity.

These losses are usually variable and must be accounted in energy budgeting to ensure

correct energy neutral system operation. For instance, energy management may need

to reduce consumption in low efficiency operating regions to avoid poor utilisation of

harvested energy. Furthermore, some stored energy cannot be utilised when the energy

storage voltage falls outside the regulator operating threshold and this needs to be

modeled.

The modeling of output voltage regulator considers the following two issues, given the

values of voltage input to the regulator and the output load current:

• Power Efficiency: What is the efficiency of power transfer?

• Operating Range: Is the regulator operational under the given the input voltage

and current demand?

As mentioned in the case of input regulator modeling (Section 4.2.4), detailed perfor-

mance modeling of the output regulator is not the aim here. Instead a relationship and

set of conditions that expresses the power transfer efficiency and operating conditions

of the regulator are needed. These are commonly available in manufacturer data sheets

in the form of various graphs and can be used to build a model. These are mostly non-

linear and have different forms among different parts as shown in Section 2.2.7.1. The

piecewise linear interpolation method is used to capture these relationships for modeling

[59]. The model is given in Appendix C.
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4.2.6.1 Modeling Power Efficiency

The power efficiency of an output regulator ηreg out is a function of the energy storage

voltage Venergy store and the output load current Iload.

ηreg out = f (Venergy store, Iload) (4.15)

Figure 4.14 shows the estimation of efficiency of a MAX1724 regulator (Section 2.3

using piecewise linear interpolation based on the manufacturer-provided data. It can

be observed that the efficiency of the MAX1724 increases as the load current increases.

Furthermore, the efficiency of this regulator also increases with voltage and it reaches

the saturation point at around 2.5V.

The power drawn by the output regulator is obtained by power consumption of the load

Pload and output regulator efficiency ηreg out.

Preg out =
1

ηreg out
· Pload (4.16)

4.2.6.2 Modeling Operating Range

The operating range of the regulator can be modeled using the input voltage and maxi-

mum output current limits specified in the datasheet. First, the input voltage is checked

to confirm whether it lies in the manufacturer-provided input voltage range. The max-

imum load current of an output regulator varies depending on its input voltage. This

can also be modeled using interpolation when the maximum load current is provided for

a sampling of input voltages.

4.2.6.3 Validation

Table 4.2 shows empirically obtained values for MAX1724 output regulator for wireless

sensor load current values of 0.590mA (idle) and 20.06mA (active) for a range of input

voltages. In a system using a supercapacitor, the input voltage will vary according to

stored energy in the supercapacitor. Note that efficiencies are higher for active current

compared to idle current, except at low voltages. Furthermore, the efficiency changes by

more than 15% as the input voltage is reduced, thus decreasing the energy utilisation

efficiency of harvested-energy.
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Figure 4.14: Piecewise linear modeling of efficiency of MAX1724 regulator from
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Table 4.2: Measured output regulator efficiencies for different input voltages for
two load currents.

Input Current (mA) Efficiency %

Input Ideal Measured

Voltage (V) Idle Active Idle Active Idle Active

2.6 0.749 25.461 1.113 31.9 67.28 79.81
2.5 0.779 26.479 1.162 33.6 67.02 78.81
2.4 0.811 27.583 1.222 35.3 66.39 78.14
2.3 0.847 28.782 1.273 37.45 66.50 76.85
2.2 0.885 30.090 1.346 39.6 65.75 75.98
2.1 0.927 31.523 1.442 42.25 64.30 74.61
2 0.974 33.099 1.536 45.2 63.38 73.23
1.9 1.025 34.841 1.65 48.63 62.11 71.65
1.8 1.082 36.777 1.758 52.03 61.53 70.68
1.7 1.145 38.940 1.889 55.79 60.63 69.80
1.6 1.217 41.374 1.99 60.15 61.15 68.78
1.5 1.298 44.132 2.125 65.39 61.08 67.49
1.4 1.391 47.284 2.17 72.06 64.09 65.62
1.3 1.498 50.922 2.24 80.39 66.86 63.34
1.2 1.623 55.165 2.32 88.57 69.94 62.28
1.1 1.770 60.180 2.439 92.62 72.57 64.98
1 1.947 66.198 2.6 96.55 74.88 68.56
0.9 2.163 73.553 2.83 97.86 76.44 75.16

4.2.7 Workload and Energy Management

The application workload is the consumer of harvested energy and it includes all modules

that constitute a wireless sensor node (Chapter 1, Section 1.2) such as a microcontroller,

wireless radio, sensors, supporting peripherals and dedicated processing unit such as a

digital signal processor. An application consists of different tasks or activities, having a

number of power consumption levels. A simple approach for modeling application work-

load power is to average the power demand of different activities throughout the system

operation. For example, for the common case of an application workload duty cycled

between an active and idle state, the average current consumption Iload is calculated

using the value of duty cycle (DC) and the current demands of active Iactive and idle

Iidle states.

Iload = DC · Iactive + (1−DC) · Iidle (4.17)

Vload = Vreg out (4.18)

Pload = Vload · Iload (4.19)
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The shortcoming of this modeling is that it cannot accurately account for changes in op-

erating characteristics of the output voltage regulator and rechargeable battery because

they vary with the load current demand. For example, as discussed in Section 4.2.6 the

regulator efficiency can be quite different for idle (uA) and active (mA) currents. Also,

in case of modeling rechargeable battery, its terminal voltage is also a function of current

drawn (Section 4.2.5). Hence, accurate modeling of load needs to account for different

load currents drawn at different times. Instead of averaging, load power is calculated

using per activity current demand Istate:

Pload = Vload · Istate (4.20)

This introduces the problem of managing the simulation time step since a wireless sensor

node usually operates at many different current levels for short time intervals in its active

state, whereas it can spend a large proportion of time in idle state. If the lowest time

step is used, it will be inefficient to model the long term (multiple days) trends. A

solution to this is to implement discrete event driven simulation, as explained in Section

4.2.10. Furthermore, only order of magnitude changes in current drawn by load are

considered as different activities, e.g., change from µA to mA, or 10s of mA.

The functionality of application workload is modeled in terms of different activities in

a given time interval and the time spent per activity, e.g, the time spent in acitve

mode or in sleep mode. The implementation of energy management policy is modeled

behaviourally, based on specific policy being used. The outcome of energy management

can be an energy budget that is translated by the workload in its activity levels. It can

also be a parameter that directly decides the activity levels, e.g., a duty cycle.

4.2.8 Energy Monitoring Components

Modeling of energy monitoring components needs to consider parasitic energy overheads

and accuracy issues. The overheads introduced can me modeled in the following ways

depending on the placement of monitoring circuitry:

• Loss in power harvested from PV panel.

• Additional power drawn from energy storage.

• Additional power drawn via output regulator.

Furthermore, these losses can be constant over time or variable, varying according to

amount of power harvested or whether the monitoring circuit is idle or active. To

illustrate these with an example, consider some typical monitoring circuits such as the

current sense monitors used to calculate PV panel current output and battery monitor
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to measure battery parameters. During active state, a current sense amplifier will draw

some current from PV panel output for it’s operation, which depends on the amount of

current output from the panel. For example ZXCT1010 high side current monitor can

draw up to 0.1-1 mA, depending on voltage drop across the sense resistor. Similarly, a

DS2438 battery monitor IC has a quiescent current draw of 50-100 µA from the battery

being monitored during active state.

The accuracy modeling should consider the physical limitation of monitoring hardware.

For example, a ZXCT1010 current monitor will not be able to measure the PV panel

current, if the panel voltage drops below 2.5V (the minimum operating voltage). Sim-

ilarly, the DS2438 battery monitor cannot function if the battery voltage falls below

2.4V. In case of A/D converters used for sampling the voltages, errors due to offsets and

quantization may also be modeled.

4.2.9 Overall System Behaviour

Given the behaviour of each system component and their interconnections, the overall

system behaviour based on the interdependencies can be described as follows (also refer

to Figure 4.3 and Appendix C.1):

1. Given the current state of energy storage (Venergy store) and irradiance being re-

ceived by PV panel, the input regulator determines the PV panel operating point

Vpanel.

supercap_vol_temp = calc_supercap_mJ_to_V(supercap_energy_mJ(i,1),

supercap_capacitance);

panel_vol_temp = supercap_vol_temp + vf_schottky_init;

2. Using Vpanel, the PV panel output current Ipanel is determined from the IV-curve.

% interpolate for the given panel voltage from modeled I-V curve

panel_cur_temp = (interp1(V_panel,I_panel,panel_vol_temp))*1e3;

% turn off the Schottky diode if the forward-direction current

% is smaller than if_min_mA

if (panel_cur_temp < if_min_mA)

panel_vol_temp = 0;

end

% solar panel output power

panel_pow_temp = panel_vol_temp * panel_cur_temp;
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% power after Schottky diode and input regulator

reg_in_pow_temp = radiation_cur_temp * (panel_vol_temp -

vf_schottky_init);

3. Based on efficiency of input regulator ηreg in, the power delivered from input reg-

ulator (Preg in) is calculated.

% power after Schottky diode and input regulator

reg_in_pow_temp = radiation_cur_temp * (panel_vol_temp -

vf_schottky_init);

4. Given the current load current demand Iload, and input voltage Venergy store, the

output regulator efficiency ηreg out is determined to calculate the output power

Preg out.

% set the load current as the average value.

load_cur(i,1) = current_duty_cycle * load_active_mA +

(1-current_duty_cycle) * load_sleep_mA;

% determine the operating point of MAX1724 output regulator.

reg_out_vol_temp = calc_vout_MAX1724(supercap_vol_temp);

eff_reg_out_temp = calc_efficiency_MAX1724(supercap_vol_temp,

load_cur(i,1));

% load seen by output regulator

reg_out_pow_temp = load_cur(i,1) * reg_out_vol_temp / eff_reg_out_temp;

5. Difference of power delivered from the solar radiation and used by the load is

determined: Pnet = Preg in − Preg out

6. If the surplus is positive (Pnet > 0), System is in recharge state with energy of

Pnet ·∆t being charged to energy storage.

7. If the surplus is non-positive (Pnet < 0), System is in discharge state with energy

of −Pnet ·∆t being discharged from energy storage.

% available power from the solar panel

avail_pow_temp = max (0, reg_in_pow_temp - reg_out_pow_temp);

% power discharge from supercap

supercap_draw_temp = max (0, reg_out_pow_temp - reg_in_pow_temp);
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% net power from solar panel excluding load

net_temp = avail_pow_temp * eff_supercap -

supercap_draw_temp;

8. The next energy level and voltage of the energy storage is calculated:

Eenergy store = Eenergy store + Pnet ·∆t

Venergy store = E to V (Eenergy store) (4.21)

supercap_leakage_mJ(i,1) = min(supercap_max_mJ, ...

calc_100F_supercap_leakage_tuh(supercap_energy_mJ(i,1) / 1000,

delta_t) * 1000);

% calculate the supercap energy in the next step considering leakage

next_supercap_energy_mJ = min(supercap_max_mJ, supercap_energy_mJ(i,1) -

supercap_leakage_mJ(i,1) + delta_t * net_temp);

Since batteries can have different terminal voltage depending on charging or discharging

state, the above steps are calculated for using both charging and discharging states and

if either of these states result in net charge, then the charge state is selected.

4.2.10 Simulation Time-Step

The simulation time-step size influences the accuracy in modeling the effects of changing

harvesting supply, load power and computation of non-linear characteristics of system

components, e.g., voltage profile of battery, efficiency of regulator etc. However, using

small time steps can drastically increase the simulation time. The solution is to use

discrete event-driven simulation, such that the simulation time steps are decided based

on changes in states of various components. The time steps can be defined in terms of

events, which can be any of the following:

1. Change in harvester output power

2. Invocation of energy management policy to determine the load power consumption

3. Changes in power drawn by load (Section 4.2.7)

4. Crossing a knee point in piecewise linear model of a components

In practice it was found that using a simulation time step size of 30 seconds achieved

reasonable accuracy between measured and simulated output as shown in Section 4.3.
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4.3 System Model Validation

The selected modeling approach for each component and the interdependency between

components that define the various system energy flows was discussed in Section 4.2.

This section focuses on integrated validation of the complete system model to highlight

the impact of state-dependent losses and component interdependency on energy neu-

tral operation and energy utilisation. This is done by considering a system operation

scenario and comparing the measured values obtained from the reference system with

its simulated output. The reference photovoltaic energy harvesting system configuration

described in Chapter 2 (Figure 2.14) is used for obtaining experimental results and model

validation. Figure 4.15 shows the setup used for experiments and the energy harvesting

supply attached to the sensor node. The PV panel is connected to a heat sink and a fan

is used to keep the temperature from rising during experiments and panel characteri-

zation to avoid effects of temperature dependency. The intensity of input radiation is

controlled by varying distance of 40W incandescent bulb from the panel. Fluke 8846A

and Keithley 2002 high precision digital multimeters are used for measurements.

As a motivating case for validation and analysis, suppose that energy neutral system

operation is required. Two cases are considered to show how this requirement can be

violated by not accounting for factors that influence the energy flow (and vice versa).

Consider a given workload demand that needs to be met with harvested-energy. When

using energy management, the workload demand is normally decided based on the avail-

able energy. In this analysis, considering a fixed load demand and working backwards

to determine the required energy supply makes it simpler to focus on changes in factors

of interest without loss of generality. Suppose that the workload is operating at 50%

duty cycle (30 seconds active and idle periods) and the load current demands for idle

and active states (Section 4.2.6) are 0.590 and 20.06 mA, respectively. At an operating

voltage of 3.3V supplied by the output regulator, the average power consumption is

given by:

Pload = Vreg out · Iload avg (4.22)

= 3.3× (0.590 × 0.5 + 20.06 × 0.5)

= 3.3× 10.325 = 34.0725mW

Next, we consider the energy input required to match this load demand. Suppose that

the energy management policy which decides the load demand does not account for the

output regulator efficiency. Under this assumption, to meet the given load demand the

required supply (Preg out) is determined as:
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(a) Experimental Setup and instruments used.

(b) Reference energy harvesting system.

Figure 4.15: Validation setup.
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Pload = Preg out = Venergy store · Ireg out (4.23)

This is the input power to the output regulator, determined by the energy store voltage

Venergy store (Section 4.2.6). The energy storage in this case is a supercapacitor, and

suppose that its terminal voltage Venergy store is 2.6V. Thus, for the required input

power, the average value of input current Ireg out is given by:

Ireg out =
Preg out

Venergy store
=

34.0725

2.6
= 13.1048mA (4.24)

This input current is supplied by the PV panel (via input regulator) and/or energy

storage (Section 4.2.4). Under energy neutral operation, the harvested power Preg in

meets this demand and the average power (charged and discharged) through energy

storage should be zero:

Pchg = Pdischg (4.25)

Hence, the stored energy should be conserved under energy neutral condition and there

should be no net discharge of energy store. Having stated the case for required system

operation based on the proposed system model, this condition is tested empirically and

using simulation. This is done by setting the illumination level (desk lamp) to provide

the required Ireg out of 13.1048 mA at the supercapacitor voltage of 2.6V. Figure 4.16

shows the measured and simulated voltage of supercapacitor, under these conditions. It

can be observed in Figure 4.16 that net supercapacitor voltage is gradually decreasing

over time. The sawtooth pattern is due to charging and discharging of supercapacitor

since during load idle state the input power is higher than consumed power and vice

versa. The net decrease in voltage indicates that the input power is not sufficient to

conserve the stored energy. The model simulation output follows the trend of measured

results and the small difference from measured values are due to differences in simulated

and actual PV panel current, and modeled and actual efficiency of output regulator.

Note that effect of supercapacitor leakage is not shown in simulation results since the

exponential leakage model (Section 4.2.5.1) resulted in a steeper fall of supercapacitor

voltage than the measured output, indicating that the actual leakage is smaller.

To validate the contributing factors to the net discharge of supercapacitor voltage, the

output regulator efficiencies at the given input voltage Venergy store and load demands are

considered (Table 4.2). Thus, the required input power to match the load consumption

is recalculated by using measured input currents given in Table 4.2 to determine average

Ireg out as:
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Figure 4.16: Net decrease in supercapacitor voltage shown by the average trend
line due to ideal output regulator assumption, indicating that energy-neutral
operation is not achieved.

Figure 4.17: No change in net supercapacitor voltage as shown by the average
trend line, validating energy neutral operation.
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Ireg out = 31.9 × 0.5 + 1.113 × 0.5 = 16.5065mA (4.26)

To provide this revised Ireg out, the illumination level is increased. The measured and

simulated supercapacitor voltage is shown in Figure 4.17. It can be observed that a simi-

lar sawtooth trend of supercapacitor voltage as seen in Figure 4.16 is observed according

to the two states of workload operation, but there is no net change in supercapacitor

voltage over time. This implies that the input power, calculated using revised Ireg out

meets the load demand and the energy stored in supercapacitor is conserved. The mea-

sured supercapacitor voltage swing is wider than simulated one, however, the scale of

voltage on Y-axis indicates that the maximum difference is less than 4mV. Thus, the

simulated output trend matches the overall trend, which is the aim of proposed mod-

eling. Supercapacitor leakage is not included for the same reasons as mentioned in the

previous case.

In the first case (Figure 4.16) where energy neutral operation is violated, the decreasing

supercapacitor voltage will affect both the the overall efficiency of output regulator and

the PV panel operating point. Since the PV panel terminal voltage is linked with the

energy store voltage, the operating point of the PV panel shifts resulting in change in

harvested power. Hence, this case also highlights the interdependence of energy store

voltage on both input and output power, which is commonly abstracted in simple system

models. Depending on the specific PV panel and supercapacitor, these interdependencies

can further increase the mismatch between supply and demand due to the decreasing

efficiency of output regulator and decreasing output of PV panel.

It is noted that the exact behaviour of system depends on the property of selected

components. The configuration of input regulator dictates how the PV panel output

is influenced by the changes in battery voltage. Fixing the PV panel operating point

or using MPPT will result in different outcomes under the same conditions. Similarly,

the change in output regulator power transfer will also vary with the specific regulator

used. Using a battery instead of supercapacitor reduces the voltage swing with changes

in stored energy. Nevertheless, some specific relationships according to existing interde-

pendencies need to be taken into account by the energy management to ensure correct

energy neutral operation.

4.4 Concluding Remarks

This chapter considered the problem of achieving the desired match between supply and

consumption under the non-ideal characteristics or losses of system components. This

is addressed by identifying the contribution of individual system component on supply

or demand through modeling. The intention is not to propose novel models for different



118 Chapter 4 Modeling of Photovoltaic Energy Harvesting Systems

components, but to identify the characteristics that influence the supply or demand and

selection of suitable models that achieve this purpose. The system modeling has been

implemented using MATLAB and each system component is modeled using a modular

approach by encapsulating functionality within functions or scripts. The simulator uses

a specific configuration of an energy harvesting system along with user-defined com-

ponents data to model the system behaviour. The energy available at a location can

be modeled as a series of irradiance values over time. The approach for modeling PV

panel requires only four parameters to obtain the IV-curve, which are commonly avail-

able in most PV panel datasheets or can be easily determined empirically at a given

irradiance level. Modeling of input regulator should consider how it controls the PV

panel operating voltage and take into account the efficiency of power transfer of input

regulator to determine the actual power delivered from the PV panel. Since the input

regulator is an interface between the PV panel and the energy storage, its modeling has

to formulate the power transfer relationship depending on the operating point of PV

panel and voltage of energy storage. Energy storage is modeled based on losses in en-

ergy transfer and terminal voltage characteristics, and leakage. Different approaches are

used for supercapacitor and NiMH battery. The modeling of supercapacitor leakage uses

an exponential model, which was found to give higher leakage than actually observed.

For non-linear characteristics such as battery voltage-capacity profile and regulator effi-

ciency modeling, piecewise linear interpolation is used based on empirical or datasheet

provided data. The proposed modeling is validated by comparing the simulated out-

put with measurements from the reference system using an experiment for supply and

demand match under fixed conditions of demand. The modeling does not consider the

influence of temperature and its accuracy is governed by the accuracy of user data input

to the various models. The applicability of this modeling to optimising energy manage-

ment policy implementation is discussed in the Chapter 5 using case studies of energy

management policies. Furthermore, Chapter 6 discusses the application of this model

to decide the sizes of PV panel and required energy storage to meet a required demand

based on a given profile of energy harvesting source.



Chapter 5

Evaluation and Optimisation of

Energy Management Policies

As discussed in Chapter 1, the performance of wireless sensing applications scale with

energy consumption [65, 154, 165], with specific gains depending on the application func-

tionality. For example, a higher energy consumption can imply a higher fidelity of data

collection or event detection. This can be referred to as the Quality-of-Service (QoS),

and ideally maximum QoS is sought but due to fluctuations in harvested-energy, the

available energy supply needs to be considered. A harvested-energy management policy

adapts the energy budget of the application workload according to energy harvesting

supply to achieve perpetual operation while maximising performance. Figure 5.1 de-

picts the function of a generic energy management policy. The following objectives are

common among harvested-energy management policies [65, 154]:

Energy-Neutral Operation Due to the variability of harvested-energy, long-term

perpetual operation requires that the energy consumption of the application work-

load does not exceed the energy harvesting rate. The instantaneous mismatch

between supply and demand is smoothed by using energy storage, so that the ex-

cess energy is accumulated in energy storage and shortages are overcome from this

stored energy. On the other hand, the aim of energy management policies is to

actively manage demand-supply match by monitoring the energy resources of the

system to ensure long-term perpetual operation.

Maximising Energy Utilisation Since the application’s performance is dependent

on energy consumption, harvested-energy management policy should maximise

energy consumption while ensuring energy neutral operation.

As discussed in Chapter 1 (Section 1.2.3) and illustrated with an example in Chapter 2

(Section 2.2.4), duty cycling the application workload between active and idle states is a

119



120 Chapter 5 Evaluation and Optimisation of Energy Management Policies
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Figure 5.1: Generic functionality of energy management policy.

commonly used technique to minimise application’s energy consumption. For example,

in an application using duty cycling, 0.6 (or 60%) can be the maximum targeted duty

cycle providing maximum QoS while 0.01 (or 1%) is the least tolerable level of application

activity below which no QoS is obtained [65, 165]. In this case, a higher duty cycle

translates to a higher QoS and the objective of an energy management policy can be to

maximise the average QoS level over long-term.

To achieve the objectives stated above, an energy management policy needs to be aware

of energy supply and demand. The key question here is, how does an energy manage-

ment policy know what is actually available in order to decide what can be spent?. In

this regard, Chapter 4 discussed modeling of the non-ideal characteristics (losses and

interdependencies) of system components that influence supply and demand. Some ex-

amples of how these non-ideal characteristics of system components can impact energy

management are:

• Supply: The harvested power from a PV panel for a certain input light intensity

is not fixed since it can vary depending on the terminal voltage of the PV panel

(operating point). This can have implications on prediction of harvested-energy.

• Energy storage: The available stored energy is less than supplied due to the

sub-unity efficiency of energy storage or high leakage.

• Consumption: The actual energy consumed for a given application demand can

vary due to the change in losses based on factors such as varying efficiency of

output power regulator.

With few exceptions, harvested-energy management policies in the literature [102, 106,

103, 154] are presented at the algorithmic level and evaluated using system models at

a high abstraction level. These simplified system models do not account for losses and

their dependency on input/output of components. The goal of energy-neutral operation

cannot be achieved unless all non-ideal factors that affect the energy supply and demand

are not accounted for. These can differ between different possible energy harvesting and

storage subsystem designs (Chapter 2). Figure 5.2 depicts the model of an energy

management policy that takes this in to account.

Based on system modeling discussed in Chapter 4, this chapter evaluates harvested-

energy management policies to determine if these achieve their objectives on a given
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Figure 5.2: Generic function of optimised energy management policy.

energy harvesting system configuration. Each considered policy is first evaluated for

non-ideal characteristics that cause deviation from energy-neutral operation and opti-

mised in light of modeled characteristics. The goal of the first case study [65] is energy

neutral operation while minimising losses due to battery efficiency. It is shown that

these objectives cannot be achieved unless the actual demand is considered. Case 2

considers a supercapacitor leakage minimisation policy [165]. It is shown that other

non-ideal characteristics can overshadow leakage consideration and should be taken in

to account to maximise allocation of harvested energy. Case 3 considers a policy for

time-uniform allocation of harvested-energy [39]. The energy budget allocation of this

policy is optimised to meet energy-neutral operation depending on system configuration.

This chapter is organised as follows. Section 5.1 identifies general concepts that are

important for understanding evaluation of the case studies. Section 5.2 - 5.4 discusses the

three cases, giving the necessary background, system model, evaluation and optimisation

results. Section 5.5 concludes the chapter.

5.1 Optimisation Considerations for Energy-Neutral Op-

eration

The previous section discussed the objectives of energy management policies. These

objectives can be met by matching the demand with supply over time. However, real

systems modeled in Chapter 4 have non-ideal and interdependent components (input

conditioning, energy storage and output regulation) with losses that are dependent on

energy supply and operating point of components. To achieve energy-neutral operation

and maximise energy utilisation, these non-ideal factors and interdependence have to be

taken in to account. To generalise the dependence of supply and consumption efficiencies

on energy supply and operating state of components, this chapter identifies the following

aspects of supply and demand:

Efficiency of replenishing energy This refers to the amount of additional energy

required to replenish a certain amount of energy to energy storage. This cost
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or additional required energy can be due to efficiency of energy storage and/or

harvester. For example, the charging efficiency of energy storage dictates how

much extra energy is needed to replenish the energy storage by a given amount.

Also, the energy harvested by a PV panel is dependent on its operating point.

When connected to an energy storage such as a supercapacitor, replenishing the

supercapacitor from a nearly discharged state requires more energy due to less

efficient operation of the PV panel. Furthermore, the supercapacitor leakage can

also be grouped under this efficiency.

Efficiency of energy consumption This refers to the amount of additional energy

required for a given energy demand of application. This can vary due to the ef-

ficiency of output regulator being a function of input and output power. Also,

complementary to energy storage charging efficiency, energy discharged from en-

ergy storage has a higher cost (when it needs to be replenished) rather than energy

consumed from output of PV panel.

These efficiencies and their varying nature justify the use of models of system components

discussed in Chapter 4 for evaluation and optimisation of harvested-energy management

policies, which is the focus of this chapter.

5.2 Case 1: Maximising Energy Allocation Under Energy

Storage Losses

5.2.1 Background

The objective of this energy management policy [65] is to maintain energy-neutral op-

eration while maximising the energy allocated to application workload by minimising

charge/discharge losses of rechargeable battery. To achieve this, the total consumption

budget is determined based on prediction of future energy (Section 3.3.1, Chapter 3).

For predicting the harvested-energy, a single day is used as the prediction horizon, by

utilising the regularity of daily diurnal cycle of solar energy. Furthermore, the actual

harvested-energy is continually monitored to measure errors in prediction and consump-

tion is adjusted accordingly.

This energy management policy serves as a good case for evaluation and optimisation

because it needs to account for the relationship between energies harvested, stored and

consumed to achieve its target objectives. The system model used for formulating the

energy management policy is based on the Heliomote solar energy harvesting wireless

sensor node [124], which uses NiMH rechargeable batteries as energy storage. The sys-

tem configuration is similar to the system described in Chapter 2 (Section 2.3) with
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PV panel connected to the NiMH battery using appropriate charging/discharging pro-

tection, and the wireless sensor node is supplied a fixed voltage via a boost regulator.

For measurement of the voltage of PV panel and the input/output energy of battery, a

dedicated battery monitor IC (Maxim DS2438) is used. Although this energy manage-

ment policy was targeted for a real harvesting system (Heliomote), the supply-demand

relationships used to derive the system formulation doesn’t consider (or simplify) the

non-ideal characteristic of all components in the system. It should be noted that this

policy was only evaluated by simulation [65] using measured harvested-energy traces

and no validation on an actual system was reported. Furthermore, the following evalua-

tion shows that the selection of harvested-energy measurement approach in [124] cannot

correctly measure the harvested-energy, thus resulting in deviation from energy-neutral

operation.

5.2.2 System Model

This section discusses the formulation of system model used by Kansal et al. [65] and

the next Section presents optimisations based on the modeling discussed in Chapter 4.

This energy management policy aims to maintain energy neutral consumption of har-

vested energy while maximising energy available for consumption. The formulation of

this energy management policy model takes into account the non-ideal energy storage

with sub-unity charging (or discharging) efficiency ηenergy store. This implies that for

every unit of energy charged in requires 1
ηenergy store

of harvested-energy. This is an

important consideration because for maintaining energy neutral operation over a given

interval (single day), the final battery level should equal the initial value. Thus, any

battery energy discharged needs to be restored incurring the cost of battery efficiency.

Therefore, to maximise harvested-energy available for consumption, the battery dis-

charge should be minimised. To achieve the required energy allocation, a day is divided

into N discrete time slots and estimates of harvested energy in these time slots are

obtained using a prediction algorithm (Section 3.3.1). Let Ps(i) be the (predicted) har-

vested power in time slot i (1 ≤ i ≤ N), D(i) (Dmin ≤ D(i) ≤ Dmax) be the duty cycle

and Pc be the load power demand in active mode. In a time slot i, if Pc > Ps(i), then the

deficit Pc−Ps(i) is supplied by the battery stored energy (see Figure 5.3a). Consuming

energy in these slots is less efficient due to costly battery replenishment required. Hence,

the objective is to maximise harvested energy consumption during slots when the PV

panel output Ps(i) ≥ Pc (Figure 5.3b) since the energy consumed doesn’t incur the loss

of battery efficiency ηenergy store.

Using the predicted values, the policy determines those slots in which Pc > Ps(i) and

the battery will need to be discharged, called ‘dark’ slots. When allocating the total

harvested-energy budget (in energy neutral manner) these slots have a higher consump-

tion cost. To obtain the power consumption budget of a dark slot, consider that the
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(a) Time slot i with Pc > Ps(i) (dark slot).

Time Slot i

SleepActive

Battery

charge

(b) Time slot i with Ps(i) ≥ Pc

(sunny slot).

Figure 5.3: Two types of slots according to the values of Pc and Ps (adapted
from [65]).

difference Pc − Ps(i) has to be supplied by the battery, and given that the battery ef-

ficiency is ηenergy store, this implies that Pc−Ps(i)
ηenergy store

of energy has to be returned to the

battery. Thus, the energy consumption of dark slots if given by:

Pdark = D(i) ·

[
Pc

ηenergy store
+ Ps(i)

(
1−

1

ηenergy store

)]
(5.1)

On the other hand, those slots in which Ps(i) >= Pc are called ‘sunny’ slots. The energy

consumption of these sunny slots is given by:

Psunny = D(i) · Pc (5.2)

For energy-neutral operation over N slots, the following condition must be satisfied:

N∑

i=1

Ps(i) =
∑

i∈sunny

D(i)Pc+
∑

i∈dark

D(i)

[
Pc

ηenergy store
+ Ps(i)

(
1−

1

ηenergy store

)]
(5.3)

Furthermore, for maximising energy utilisation, the optimisation objective is:

max

N∑

i=1

D(i) (5.4)

For a given total harvested-energy budget, this objective can be attained by allocating

a higher duty cycles D(i) in sunny slots to consume energy more efficiently. Note that

the minimum duty cycle (Dmin) has to be allocated to dark slots and this is the limiting
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factor in minimising battery discharge as it dictates minimum energy that must be

consumed in each slot for achieving continuous operation of the workload.

5.2.3 System Model Optimisation

5.2.3.1 Measurement of Harvested-Energy

Since the energy management policy relies on measurement of actual harvested-energy

for prediction of future energy, the measurement model used is critical to ensure energy

neutral allocation since it affects the accuracy of prediction and prediction error mea-

surement. In the Heliomote system design [124], designed to support implementation of

this energy management policy, the harvested power (Pharvested) is measured as product

of PV panel voltage (Vpanel) and battery current (Ibatt) using a battery monitor IC [90]:

Pharvested = Vpanel · Ibatt (5.5)

Referring to the battery monitor datasheet [90], it is found that the battery monitor

measures the difference of charging and discharging battery current (Ibatt = Ichg −

Idis chg). This is not equal to the absolute harvested current output of PV panel Ipanel

(Section 4.2.3) since the power drawn by the node will result in Idis chg > 0.

Ibatt = Ichg − Idis chg (5.6)

Ipanel 6= Ibatt (5.7)

Idis chg depends on the activity of the workload, which is not constant as it varies depend-

ing on the allocated duty cycle. Furthermore, as given in Section 4.2.4, the harvested

power Pharvested is the product of battery voltage (Vbatt) and the input current Ipanel:

Pharvested = Vbatt · Ipanel (5.8)

Since Vbatt 6= Vpanel due to the presence of isolation diode or input regulation (Section

4.2.4), using the measurement setup used in [124] (Equation 5.5) will result in an incor-

rect measurement of harvested energy, causing the energy management policy to deviate

from expected outcomes. Hence, based on the correct modeling of interdependency of

components it is identified that the correct measurement of harvested-energy requires

values Vbatt and Ipanel. The Ipanel can be measured using a PV panel current monitor,

as employed in the reference system design discussed in Chapter 2.
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5.2.3.2 Efficiency of Output Regulator

This energy management policy is formulated based on a system model that accounts

for non-ideal energy storage, however it does not take into account the non-ideal charac-

teristics of the output regulator when transferring power to the workload. As discussed

in Section 4.2.6 (Figure 4.14), the efficiency of the output regulator ηout reg is below

100% in practice and it depends on the battery voltage (input voltage of regulator) and

output current of the application workload. Therefore, this needs to be accounted for

in the system model, otherwise the energy management policy’s allocation of total bud-

get will be optimistic, resulting in inability to maintain match between harvested and

consumed energy. Furthermore, this also affects the determination of ‘sunny’ or ‘dark’

slots based on difference of energy supply and demand (Section 5.2.2). This will cause

an eventual depletion of stored battery energy due to a deviation from intended energy

neutral operation.

Let ηout reg be the efficiency of the output regulator, which is a function of the energy

storage voltage (or stored energy) and the output current (or power) drawn by the

workload (Section 4.2.6). Considering the output regulator efficiency, the actual power

consumption given the state of battery and workload activity is given by:

Ṕc =
Pc

ηout reg
(5.9)

By using Ṕc in Equation 5.3, the correct energy flow from input to output is accounted

for. Depending on the actual type of regulator, the efficiency factor ηout reg can be

approximated by a constant. However, if this value if smaller than actual efficiency then

it will lead to under utilisation of energy and vice versa. For example, the efficiency of

output regulator is shown in Table 4.2 (Chapter 4) at different input voltage values, and

it can be seen that it also depends on load current.

5.2.4 Empirical Validation

Having identified the potential optimisations in light of the system model, this section

presents validation of optimisation in Section 5.2.3.2 using simulation and measurements

based on the reference system described in Chapter 2 (Figure 2.14). To achieve this,

an experimental setup is selected such that the effect of output regulator loss can be

isolated. The aim is to match a fixed application demand with PV panel energy supply

and observe the differences when output regulator losses are accounted and vice versa.

To simplify harvested-energy prediction, constant input radiation is used. Furthermore,

to isolate the influence of output regulator, the supply (lamp distance) is adjusted so that

input power is just equal to required load demand and all harvested-energy is allocated
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Figure 5.4: Simulated and measured change in battery stored charge for vali-
dating energy-neutral operation.

to the load, thus bypassing the influence of battery efficiency (Figure 5.3). Under these

conditions, if the supplied energy matches the load power consumption, the battery level

should not change appreciably from its initial level at start of experiment. The battery

level is monitored under the following two conditions: (a) Output regulator efficiency is

not accounted (as in [65]) to calculate the required input power and it is set equal to

load power drawn from regulator (3.31V @ 18.88mA = 62.49mW), (b) Output regulator

efficiency at given values of load current (18.88mA) and input battery voltage (2.6V) is

obtained from the model (Fig. 4.14, 82.47%). This value is used to adjust input PV

panel power needed to match supply with consumption.

Fig. 5.4 shows the simulated and measured change in battery charge when input power

is not adjusted for regulator efficiency (Condition a) and vice versa (Condition b). The

resolution of hardware battery monitor used for measurements is 0.244 mAh. As can

be seen, the battery level steadily decreases in Condition ’a’ indicating that value of

input power (2.6V @ 24.4mA = 63.44mW) is not sufficient to fully support the load

consumption and the deficit is being made up by battery energy. On the other hand,

Condition ’b’ shows a steady battery level when PV panel power (2.6V @ 29.4mA =

76.44mW) is adjusted to account for regulator efficiency. This indicates that the supply

is sufficient to meet the load demand. The battery capacity curve for simulation is

smoother than measured due to coarser resolution (quantisation effects) of actual battery

monitor. The simulated battery charge in Condition ’b’ shows a small increase indicating

a slight surplus in input energy. Since the resolution of physical battery monitor is less

than simulator model resolution, this increase cannot be observed in measured value.

It can be seen that the simulator output closely tracks the measured trends. This



128 Chapter 5 Evaluation and Optimisation of Energy Management Policies

Table 5.1: The differences in three system models used for evaluating and opti-
mising case 1.

Characteristic Model 1 Model 2 Model 3
Harvested
Power Mea-
surement

Using Equation
5.5

Same as Model 1 Using Equation
5.8

Output Regu-
lator Model

Ideal out-
put regulator
(ηreg out = 1)

Based on actual
efficiency data
(Figure 4.14)

Same as Model 2

Energy Man-
agement Pol-
icy

Assumes ideal
output regulator

Same as Model 1 Uses regulator
efficiency values
of 60% and 80%
for sleep and
active power
draw

experiment shows that to match workload power consumption with harvested energy

supply, the efficiency of output regulator under the operating conditions of input voltage

and output current should be factored in.

Note that in this experiment, the measurement of harvested-energy was based on the

correct model discussed in Section 5.2.3.1 and the effect of incorrect measurement is

not validated for sake of avoiding repetition since it is simple extension of experiment

described in this section.

5.2.5 Simulation

In Section 5.2.4, the impact of output regulator efficiency was experimentally validated.

In this section, the complete system model is simulated to compare the results of two

optimisations identified in Section 5.2.3 with results of original system model in [65].

To achieve this, three variants of system (Table 5.1) are considered for evaluating the

policy: Model 1 represents the original system model used in [65], Model 2 represents

the system modeling considered in Chapter 4 with no optimisations to policy. Model

3 implements the optimisations discussed in Section 5.2.3: (i) the output regulator

efficiency is accounted for, (ii) harvested-energy is correctly measured.

Figure 5.5 shows a comparison of the energy management policy results in terms of

average duty cycles allocated and battery capacity at end of a day between the three

models given in Table 5.1. As can be seen, the duty cycles allocated by models 1 and

2 are higher than model 3. The reason is that since models 1 and 2 assume an ideal

output regulator, the calculated energy demand for a given duty cycle is less than actual

energy consumed through the output regulator. Thus, higher duty cycles are allocated.

Furthermore, Figure 5.6 shows that the measured harvested energy by models 1 and 2

is higher than model 3 due to the differences in measurement as described in Section

5.2.3.1. The combined impact of measuring higher than actual harvested-energy and
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Figure 5.5: Comparison between results of three models for case 1 with respect
to average duty cycle and remaining battery energy.
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Figure 5.6: Comparison between harvested energy measurement between three
models. Models 1 and 2 consistently measure more energy than actually har-
vested.

assuming an ideal output regulator is that models 1 and 2 allocate higher duty cycles.

As a consequence, looking at battery level at end of a day (Figure 5.5b) it is found

that battery level for model 2 decreases rapidly indicating that model 2 is using more

energy than available and this difference is being made up by battery reserve energy.

The same is the case for model 1 but since an ideal regulator is used in system model,

the depletion of battery is less than model 1. Note that model 3 displays the least

reduction in battery due to correctly measuring the supplied energy and accounting for

output regulator efficiency. It should be noted that a common contributing factor to

battery depletion among all model variants is the inaccuracy of the harvested-energy

prediction algorithm used in [65] (Section 3.3.1), however, this is beyond the focus of

this evaluation since this is not related to system components and configuration. These

results clearly show that if the energy management policy is not based on the correct

model of energy harvesting subsystem, energy-neutral operation cannot be achieved due

to the mismatch of supply and demand.

5.3 Case 2: Supercapacitor Leakage-Aware Policy

5.3.1 Background

As discussed in Chapter 4 (Section 4.2.5.1), the modeled self-discharge rate (Pleak) of

a supercapacitor is non-linear function of voltage, which increases with supercapacitor

voltage and vice versa. This energy management policy [165] focuses on this behaviour of

supercapacitor leakage and the objective is to minimise the losses due to high leakage and
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thus maximise harvested-energy available for utilisation to application workload. This

is achieved by increasing the application workload (energy consumption) when leakage

is high rather than allowing the supercapacitor to leak energy in the high leakage state.

To realise this, the supercapacitor leakage value is determined using a leakage model

[165, 131] and based on this value of Pleak, the duty cycle D (or energy consumption) is

adjusted as:

△D+ = G · Pleak · Tdiff , Tdiff ≥ 0 (5.10)

△D− =
G

Pleak
· Tdiff , Tdiff < 0 (5.11)

Tdiff = Tactual − Ttarget (5.12)

In Equation 5.10 and 5.11, △D+ and △D− are positive and negative adjustments of

the duty cycle, respectively, G is constant gain factor and Tdiff is the difference of the

targeted and actual operating lifetime of sensor node based on the currently stored en-

ergy in the supercapacitor. Thus, the increase or decrease in energy consumption is

influenced by the leakage rate Pleak. The energy harvesting system reported in [165]

to present the results of this policy has the same configuration as the reference system

configuration discussed in Chapter 2 (Figure 2.14), i.e, a PV panel is connected to a

supercapacitor via a protection diode and the supercapacitor feeds a boost regulator.

This energy management policy has been selected for evaluation since it presents a

case where the interdependency between system components as identified in Chapter 4

requires consideration of losses in addition to the supercapacitor leakage to achieve bet-

ter harvested-energy utilisation. For the given energy harvesting system configuration,

these interdependencies are analysed in this case study based on the models of system

components discussed in Chapter 4.

5.3.2 System Model Evaluation

Given the reference system configuration (Chapter 2) and its system model (Chapter 4),

consider the influence of supercapacitor voltage on losses of components’ connected to it,

i.e., PV panel and the output regulator (Figure 5.7). As discussed in Section 4.2.3, the

harvested-power output from the PV panel is dependent on its terminal voltage Vpanel:

Ipanel = IV curve(Vpanel) (5.13)
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Ppanel = Vpanel · Ipanel (5.14)

For the given system configuration (with no input regulation), Vpanel is determined as

given in Section 4.2.4:

Vpanel = Vsupercap + Vforward schottky (5.15)

Thus, the voltage of supercapacitor (Vsupercap) determines the harvested-power for a

given input light intensity. Referring to the PV panel I-V curve in Figure 4.5, it can be

seen that the PV panel power output decreases when Vpanel shifts from the maximum

operating point value.

Now, consider the output voltage regulator connected to the supercapacitor. Its effi-

ciency ηreg out is a non-linear function of the supercapacitor voltage and output current

as discussed in Section 4.2.6:

ηreg out = f(Vsupercap, Iload) (5.16)

Preg out =
Pload

ηreg out
(5.17)

Figure 4.14 shows that the output regulator efficiency for a given load current decreases

with decrease in supercapacitor voltage, or in other words, Preg out increases. Finally,

the Pleak of supercapacitor is also a function of Vsupercap as discussed in Section 4.2.5.1:

Pleak = f(Vsupercap) (5.18)

Ppanel represents the input while Pleak and Preg out represent the outputs as shown in

Figure 5.7. These values of input and output power are dependent on the supercapacitor

voltage, in addition to the leakage. Since the energy management policy being evaluated

focuses only on change of Pleak with supercap voltage, the aim of this section is to

consider the changes in Ppanel and Preg out to consider the effect of interdependencies.

Let ∆Pleak, ∆Ppanel, and ∆Preg out be the changes in leakage rate, harvested-power

and consumed power, respectively, with decrease in supercapacitor voltage while other

factors such as input light intensity and load current are kept constant. The net effect

Pnet is given by:

Pnet = ∆Ppanel − (∆Pleak +∆Preg out) (5.19)
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Figure 5.7: Interconnection between the PV panel, supercapacitor and output
regulator, showing the interdependency between these system components.
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Figure 5.8: P-V curves for different input light intensities.

Thus, a positive Pnet represents a net gain in energy input with change in supercapac-

itor voltage and vice versa. Since the objective of this energy management policy is to

consume energy while accounting for the leakage rate rather than allowing the super-

capacitor to charge up, this may cause the energy harvesting subsystem to operate at

a Pnet value which is negative because reduction in leakage power is accompanied by

reduction in energy harvested and decreased output regulator efficiency. This depends

on the relative changes and their magnitudes. The next section analyses this using

the specific instances of supercapacitor, PV panel and output regulator as modeled in

Chapter 4.

5.3.3 Simulation

Figure 5.8 shows the modeled P-V curves of panel at different intensities of light while

Figure 5.9 shows the modeled leakage of a 100F supercapacitor [131] based on model in

Section 4.2.5.1. The output regulator efficiency change is shown in Figure 4.14a (Chapter

4). Figure 5.10 shows the plots of Pnet (Equation 5.19) and change in leakage rate ∆Pleak,

harvested-power ∆Ppanel, and consumed power ∆Preg out with decrease in supercapacitor



134 Chapter 5 Evaluation and Optimisation of Energy Management Policies

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

2

4

6

8

10

12

14
Supercapacitor Leakage vs Voltage

L
e
a
k
a
g
e
 (
m
W
)

Supercapacitor Voltage (V)

Figure 5.9: Leakage power versus 100F supercapacitor voltage.
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Figure 5.10: Changes in Pnet, harvested, leakage and regulator power with
supercapacitor voltage.

voltage at a fixed input radiation (20% of peak) and workload consumption (10% duty

cycle). It can be observed that the a change of supercapacitor voltage from 2.65V to

2.6V, there is a net gain of 4mW due to a larger decrease in supercapacitor leakage

power compared to loss in harvested power and output regulator efficiency. Until Pnet

is positive, there is benefit gained from increasing energy consumption and allowing the

supercapacitor voltage to drop. However, beyond 2.35V the reductions in leakage are

overcome by decrease in harvested power while change in regulator efficiency (around

10%) within this range has very little effect for the given value of the average load

current. Figure 5.11 shows the Pnet plots for different light intensities, indicating that

the loss of harvested power dominates Pnet with increase in input light intensity. This



Chapter 5 Evaluation and Optimisation of Energy Management Policies 135

11.21.41.61.822.22.42.6
-6

-5

-4

-3

-2

-1

0

1

2

3

4

Supercapacitor Voltage (V)

N
et
 P
o
w
er
 (
m
W
)

 

 

20%

40%

60%

80%

100%

Figure 5.11: Change in Pnet for different values of input light intensities.

harvested power can be utilised to provide more energy for operation of load and keep

the energy storage charged for periods when little or no energy is harvested. Thus,

the energy management policy can be optimised to account for this while adapting

the load power consumption (duty cycle). To understand how this can be achieved,

observe in Figure 5.11, that leakage loss is dominant within a certain voltage range of

supercapacitor. Within this range, the leakage loss should be avoided by consuming

energy, when Pnet > 0. Outside this high leakage region, the consumption doesn’t need

to be throttled based on leakage so that system operates near the energy efficient point

Pnet = 0. Clearly, the specific values discussed in this section depend on the chosen

PV panel, supercapacitor and output regulator, nevertheless, this evaluation shows that

considering only leakage power is not optimal and other losses needs to be considered

for improved management of harvested energy.

5.4 Case 3: Time-Fair Energy Allocation Policy

5.4.1 Background

For real-world wireless sensor applications using energy harvesting, it is desirable that

the harvested-energy should be allocated in a consistent manner over time despite of

variability of the harvesting source to maintain consistent workload. The energy man-

agement policy considered in this case uses a max-min fair energy allocation policy [39]

based on the principle of lexicographic maximisation, borrowed from the area of networks

in which it is applied to achieve fair bandwidth allocation [76]. The aim is to allocate
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the harvested energy as uniformly as possible with respect to time while maintaining

energy neutral operation. The policy uses knowledge of harvested-energy in different

time slots (of a day) and calculates the energy consumption budgets for these slot given

the knowledge of harvested energy over future time slots and initial stored energy [39].

In [39], the system model used to derive the policy and present numerical evaluation

is a simple one with non-ideal characteristic of energy storage and consumption not

accounted for. This section discusses the modifications to the system model necessary

to achieve time-fair energy allocation while maintaining energy neutral operation using

system model discussed in Chapter 4. The next section presents the original system

model and energy allocation policy, followed by the proposed modifications.

5.4.2 System Model and Energy Management Policy

Suppose a discrete-time model with time axis divided into K time slots and the energy

allocation decision is made at the start of a slot i (i = {0, 1, . . . ,K−1}). Let the energy

storage capacity be denoted by C, the amount of energy stored at start of slot i by

B(i) (0 ≤ B(i) ≤ C), and the initial and the final energy levels are denoted by B0 and

BK , respectively. The energy spending rate is denoted by s(i) and the effective amount

of energy a device can harvest from the environment is denoted in by Q(i). Let △ be

the quantisation factor used to increment energy allocation of a slot. Its value can be

decided to achieve a suitable tradeoff between quantisation inaccuracy of using a large △

value and computation overhead of using a small △ value. The changein energy storage

B(i) from slot i− 1 to i can be expressed as:

B(i) = min{B(i− 1) +Q(i− 1)− s(i− 1), C} (5.20)

Let the total amount of energy the device is allocated be Q̂, where Q̂ =
∑

iQ(i)+ (B0−

BK). Given this model formulation, the problem of allocating fair energy consumption

to slots with respect to time (time fair lexicographic allocation) is given by: Lexico-

graphically maximise s̃ = {s(0), s(1), . . . , s(K − 1)} subject to the following constraints:

s(i) ≤ B(i) ∀ i (5.21)

B(i) ≤ B(i− 1) +Q(i− 1)− s(i− 1) ∀ i ≥ 1 (5.22)

B(i) ≤ C ∀ i (5.23)

B(0) = B0; B(K) ≥ BK (5.24)

B(i), s(i) ≥ 0 ∀ i (5.25)
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Figure 5.12: The Progressive Filling algorithm for time-fair assignment of
harvested-energy [39]

Constraint 5.21 ensures that a node does not spend more energy than it has stored, 5.22

and 5.23 represent the storage evolution dynamics, and 5.24 sets starting storage level

to B0 and ensures that the final storage level is at least BK .

To solve this lexicographic assignment problem, [39] have proposed a Progressive Filing

(PF) algorithm (Figure 5.12), inspired by the algorithms of max-min fair flow control.

Let Afix to be the set of time slot indexes for which the lexicographically maximal

spending level s(i) has been determined. Starting with Afix = ∅ and s(i) ← 0 ∀ i,

the algorithm iterates through slots 1 to K, increasing the allocation of each slot by

△. When an increase in allocation s(i) for a slot i is considered, the algorithm verifies

(function check validity) that the increase would not result in shortage of energy

for other slots (the condition for fair allocation), or lack of final energy BK (for energy

neutrality). If either of these checks fails, the spending level of slot i gets fixed at s(i),

and the corresponding slot index i is moved to the set Afix. The progressive filling

continues for the slots that are not yet fixed. At the first iteration, since Afix = ∅, the

algorithm considers the entire K slots. With each iteration, at least one spending level

value s(i) is determined, and the corresponding index i is moved into the Afix set. In

each step of the algorithm, it either increases s(i) by △ or fixes the allocation of slot

i. The spending level of a slot is increased only when it does not interfere with the

spending of slots with lesser spending levels.

5.4.3 Proposed Refinement to the System Model

Based on a practical model of real systems (Chapter 4), two aspects are focused upon

to refine the energy management policy: energy storage and energy consumption.
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5.4.3.1 Energy Storage Model

The system model considered in Section 5.4.2 does not consider the efficiency of energy

storage ηenergy store when replenishing the energy storage during the allocation of total

energy budget Q̂ over K slots. Although this may be a reasonable assumption when

using supercapacitors which generally have low losses in charging, in case of rechargeable

batteries such as NiMH (Section 4.2.5.2) this is not valid. The consequence of this is that

for every unit of energy consumed from the energy storage 1
ηenergy store

units of recharge

energy to be replenished. Hence, if the energy storage efficiency is not accounted by the

policy in total energy allocation algorithm (Figure 5.12), the energy neutral constraint

5.24 may not be met in a real system since the energy storage will not be replenished to

the desired level BK at the end of slot K, i.e., B(K) < BK .

To account for the energy storage efficiency during energy allocation, we need to consider

the case when energy storage is discharged, i.e., B(i) < B(i− 1). Considering Equation

5.20, it is clear that this will occur if the spending rate s(i − 1) is greater than the

harvested-energy Q(i−1). In this case the deficit s(i−1)−Q(i−1) is supplied from the

stored energy B(i−1). To account for this in the policy when checking the validity of an

energy assignment (function check validity), the energy storage evolution (Equation

5.20) can be modified as:

B(i) = min{B(i− 1)−
s(i− 1)−Q(i− 1)

ηenergy store
, C} (5.26)

Equation 5.26 models the effect of energy storage efficiency as increase in effective energy

consumption of a slot in which energy storage is discharged. Hence, in the modified

policy Equation 5.26 is used when s(i−1) > Q(i−1) (line 3 of function check validity)

to model the change in stored energy.

5.4.3.2 Energy Consumption Model

In a typical system, the allocated energy s(i) is consumed by the workload through an

output regulator. As discussed in Section 4.2.6, the output regulator is non-ideal and

has a transfer efficiency of ηreg out that must be accounted for during energy transfer to

the workload. To account for this during energy allocation, given an energy allocation

s(i), the effective energy available to the workload ś(i) is given by:

ś(i) = ηreg out · s(i) (5.27)

Note that as discussed in Section 4.2.6, ηreg out is a function of both energy store voltage

input and output power to the workload. Since the energy store voltage is governed
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by stored energy B(i), and the workload power is determined by s(i), ś(i) needs to be

determined depending on the state of energy storage and output workload power.

Another issue is the operating range of output regulator depending on the input voltage

(of energy storage). For example, the MAX1724 regulator stops working below 0.9V

and this defines the Vmin of energy storage (Section 2.3). This is more important in case

of supercapacitors since they can be discharged below this voltage while batteries have

a higher voltage when fully depleted. Hence, when considering the total capacity C for

energy management policy, the Vmin determines the actual usable capacity Ć available

since the stored energy below Vmin cannot be used:

Ć = C − CVmin
(5.28)

Here CVmin
is the unusable capacity due to the minimum input voltage Vmin required

by the output regulator.

5.4.4 Simulation

This section presents simulation results of energy management policy using the model

of the reference system configuration (Section 2.3) to compare the effect of refinements

identified in Section 5.4.3. For modeling the energy source, irradiance data samples from

[114] are used. As the policy requires knowledge of input energy Q(i), perfect prediction

is assumed to ignore the influence of any prediction errors, because the focus is on the

system model refinements discussed in previous section. Thus, based on the reference

system design, the harvested input (Preg in) is assumed to be known to the policy in

advance. The discussion of results only focuses on the energy consumption and energy

storage aspects of the model. Two cases are considered, depicting the optimised and

non-optimised consumption.

We first consider the effect of energy consumption model refinements by considering a

system with 100F 2.7V supercapacitor energy storage. Figure 5.13 shows the profile

of the harvested-energy over a day given as input to the system (and predicted by the

policy). Figure 5.14 shows the initial supercapacitor voltage at the start of day and its

changes over time. It is required that energy be allocated in time-fair manner (Figure

5.12) while conserving the initial supercapacitor stored energy at the end of the day.

Since Vmin is 0.9V, the usable capacity Ć of the 100F supercapacitor is calculated ac-

cordingly. Based on the given input energy profile, the spending budgets calculated by

the policy for each time slot are shown with ‘+’ legend line. These budgets are used to

determine the duty cycles for each slot based on the given idle and active power demands

of workload. The non-optimised spending represents the ‘naive’ approach that allocates

the spending budget (to calculate the duty cycle) without accounting for efficiency of
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Figure 5.13: Comparison of optimised and non-optimised consumption for a
given budget. The non-optimised spending leads to dead-time due to deviation
from energy-neutral operation.

output regulator, while the optimised spending follows the changing regulator efficiency

to correctly allocate the spending budget. It can be seen in Figure 5.13 that the non-

optimised policy over allocates energy, exceeding the actual budget since it has not

factored in the losses in output regulator. The excessive energy drawn overly depletes

the supercapacitor and its terminal voltage falls below the output regulator operating

threshold (0.9V), resulting in unintended shutdown of the system (time 6-8). The sys-

tem recovers when supercapacitor has replenished sufficient energy to start the output

regulator. Furthermore, it can be seen in Figure 5.14 that the stored energy is not

conserved at the end of the day for the non-optimised allocation, resulting in deviation

from energy neutral operation. It should be noted that the extent of deviation from the

desired outcomes depends on the actual values of non-ideal factors such as the output

regulator efficiency in this case.

Next, we consider the effect of energy storage efficiency model on the results of the energy

management policy. We consider the reference system configuration with 2500mAh

NiMH batteries as energy storage (ηenergy store = 66%). Figure 5.15 shows the profile

of the harvested-energy over a day given as input to the system (and predicted by the

policy). Figure 5.16 shows the initial battery stored energy at the start of day and its

changes over time. It is required that energy be allocated in time-fair manner (Figure

5.12) while conserving the initial battery stored energy at the end of the day. Based on

the given input energy profile, the spending budgets calculated by the policy for each

time slot are shown in Figure 5.15. These budgets are used to determine the duty cycles
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Figure 5.14: Change in net supercapacitor voltage over the day. The non-
optimised policy is not able to meet the energy-neutral target for stored energy
at the end of day.
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Figure 5.15: Comparison of optimised and non-optimised energy allocations.

for each slot based on the given idle and active power demands of workload. The non-

optimised spending represents the ‘naive’ approach that allocates the spending budget

(to calculate the duty cycle) without accounting for efficiency of battery, while the

optimised spending uses the refinement presented in Section 5.4.3 to correctly allocate

the spending budget. It can be seen in Figure 5.15 that the non-optimised policy over

allocates the harvested-energy, by not accounting for the extra energy needed to replenish
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Figure 5.16: Change in net battery capacity over the day. The non-optimised
policy overconsumes energy leading to non-conservation of stored energy at end
of day.

the battery to the targeted level. The effect of this over allocation of harvested-energy

can be seen in Figure 5.16 which shows that the stored energy is not conserved at the end

of the day for the non-optimised allocation, resulting in deviation from energy neutral

operation. It should be noted that the extent of deviation from the desired outcomes

depends on the actual values of non-ideal factors such as the battery efficiency in this

case.

5.5 Concluding Remarks

This chapter evaluated and optimised selected harvested-energy management policies

based on the knowledge of non-ideal behaviour and interdependencies of system com-

ponents studied in Chapter 4. It was argued that effective energy management requires

consideration of various factors that influence the energy supply and demand for cor-

rect allocation of energy budgets. Based on the modeling discussed in Chapter 4, the

knowledge of non-ideal characteristics (losses and interdependencies) of various system

components is applied to optimise the considered policies to ensure energy-neutral op-

eration and to increase energy utilisation by minimising losses, if possible. The goal of

first case study [65] is energy neutral operation while minimising losses due to battery

efficiency. It is shown that these objectives cannot be achieved unless the actual demand

is not considered. Case 2 considers a supercapacitor leakage minimisation policy [165].

It is shown that other non-ideal characteristics can overshadow leakage consideration
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and should be taken in to account to maximise allocation of harvested energy. Case 3

considers a policy for time-uniform allocation of harvested-energy [39]. The energy bud-

get allocation of this policy is optimised to meet energy-neutral operation depending on

the system configuration. Although this chapter elaborated these concepts using specific

instance of harvesting subsystem and three examples of different energy management

policies, optimisation considerations for energy-neutral operation in terms of efficiency

of replenishing energy and energy consumption were identified, which are applicable to

any energy management policy and configuration of energy harvesting subsystem.





Chapter 6

Energy Management Policy for

Low-Variance Energy Allocations

As discussed in Chapters 1 (Section 1.2), many wireless sensor applications are expected

to maintain a certain quality-of-service (e.g., data collection rate). An energy harvesting

supply should be able to support this required performance (demand) to achieve per-

petual operation, while the application’s quality-of-service can be adapted depending on

the available energy resources using harvested-energy management policies to allocate

energy budgets (Chapter 5). Furthermore, achieving consistent application performance

is also a desirable feature [154, 140, 103, 39]. For example, it is more useful if the sensor

node uses the additional harvested-energy to increase its sampling and communication

rate in as uniformly as possible over time instead of sudden bursts of increased activity.

Similarly, in times of reduced energy supply the application should gracefully degrade

(Section 1.2), instead of abruptly scaling down its activity to the minimum or zero.

Furthermore, consistent duty-cycling of wireless radio to sense incoming data or pre-

vent packet collisions is a requirement of network protocols for reliable communications

[154]. However, due to the inherent variability of harvested-energy it may not be possi-

ble to achieve energy allocations that maintains constant application workload (energy

consumption) at all times, while also guaranteeing energy-neutral operation [103]. Fig-

ure 6.1 shows an example of low and high variance in allocation of duty cycles (energy

consumption) according to variation in harvested-energy over a single day.

Chapter 3 discussed short-term harvested-energy prediction algorithms to manage un-

certainty in supply while Chapters 4 and 5 have analysed the impact of non-ideal char-

acteristics of system components on demand and supply. Building upon these aspects,

this chapter addresses the above mentioned need for uniform operation of the system

under the time-varying energy supply. This can be achieved by allocating energy bud-

gets as uniformly as possible to the application workload. The aim of this chapter is to

realise an energy management policy for uniform energy allocation that takes advantage

145
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Figure 6.1: Examples of allocation of duty cycles over a single day with low and
high variance.

of the knowledge of future harvested-energy by utilising prediction techniques discussed

in Chapter 3. The proposed policy is based on two-step predictions of harvested energy;

using a low accuracy prediction of multiple time slots in a day and refining these initial

estimates using the WCMA algorithm discussed in Chapter 3. Since common sensor

nodes are resource (processing, memory and energy) constrained, the policy avoids com-

plex repeated calculations thus minimising the implementation overhead. The results of

the proposed policy are compared with other policies and it is shown that proposed policy

achieves lower variance in energy budget allocations and lower percentage of dead time

of the system, which is important to achieve the goal of perpetual operation. Further-

more, these performance metrics are influenced by size of PV panel and energy storage,

which can be considered as fixed input constraints under which the energy management

policy operates. Hence, this chapter also considers the influence of these constraints on

system dead times and variance of energy allocation.

The chapter is organised as follows. Section 6.1 discusses the performance metrics con-

sidered in this chapter. Section 6.2 presented related work and places this work in

context. Section 6.3 presents the proposed energy management policy while Section 6.4

presents results and analysis. Section 6.5 concludes the chapter.
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6.1 Performance Metrics

This section considers the relationship between application workload demand, energy

management policy and size of PV panel and energy storage. The aim is to justify the

energy management performance metrics used in this chapter to evaluate the results of

proposed policy in Section 6.4. For applications that are powered by energy harvesting,

the flexibility permitted in adapting the workload and hence energy consumption can

vary. As discussed in Chapter 1 (Section 1.2), if an application must operate at a certain

fixed workload (energy demand), clearly it cannot benefit from energy management.

In this case, the only solution to ensure uninterrupted workload operation is to size

the PV panel and energy storage according to the worst case of energy availability

and peak workload demand. Besides this case, if the application’s workload can be

adapted, the goal of energy management policy is to maintain energy-neutral operation

and maximise utilisation of harvested-energy (Chapter 5). Within these objectives,

the allocated energy budgets at different time intervals can be determined by different

objectives [65, 165] as shown by case studies in Chapter 5. In this chapter, the objective

is to minimise the variance of allocated energy budgets under a variable and uncertain

supply of harvested-energy. For example, in case of solar energy harvesting systems, the

goal can be to achieve as uniform as possible consumption during the whole day rather

than having a disproportionate activity during the day (due to higher available energy)

as compared to night time. It must be noted that due to the variability of harvested-

energy and limited capacity of energy storage, minimising variability of energy budgets

while maximising utilisation and avoiding dead times (no operation) can be conflicting

objectives. For example, attempting to keep the energy allocation constant under a

varying supply can result in wasted energy (poor utilisation) due to saturated storage or

suspension of application operation due to depleted stored energy. Since the goal is to

operate perpetually, minimising dead times is also an objective. Hence, harvested-energy

management considered in this chapter has three metrics:

Average utilisation of harvested-energy should be high to maximise application per-

formance.

Standard deviation of allocated harvested-energy should be low for uniform perfor-

mance.

Percentage dead time of application workload should be low to meet requirements

of near perpetual operation.

As the supply of harvested-energy is variable and not completely predictable, harvested-

energy management can aim to achieve these objectives in a best-effort manner. Fur-

thermore, the uniformity of consumption and percentage dead time is also influenced by

the size of energy storage with respect to harvested energy. For example, if the capacity
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of energy storage is relatively smaller than total harvested-energy during the day, the

harvested-energy management has to increase consumption during the day to ensure

high utilisation and prevent saturated storage resulting in non-uniform consumption.

Furthermore, the maximum energy storage may not be sufficient to sustain operation

during night time leading to system dead time. Similarly, during days of extremely low

harvested-energy sustaining continuous operation may not be possible and the only way

to reduce dead times is to increase the size of PV panel and/or energy storage so that

the system is able to harvest and store sufficient energy. Therefore, this chapter also

considers the selection of PV panel and energy storage size as a parameter while eval-

uating results of energy management policy. Selection of size of PV panel and energy

storage capacity is commonly termed as dimensioning [10] or capacity planning [146].

6.2 Related Work

6.2.1 Energy Management Policies for Time-Uniform Energy Alloca-

tion

The problem of uniform allocation of energy budgets to the application workload under

the variability of solar energy harvesting supply has been considered in [154, 103, 39, 113].

Vigorito et al. [154] proposed an adaptive duty cycling algorithm which monitors the

changes in stored energy to adapt energy consumption. For minimising the variance of

allocated duty cycles, a smoothing filter is used. Moser et al. [103] and Gorlatova et al.

[39] assume complete knowledge of variations of energy harvesting supply and propose

algorithms to allocate the harvested-energy as uniformly as possible. Noh et al. [113] use

prediction to estimate future harvested-energy and solve linear programming problem

to allocate energy with the objective of minimising variance. While the first approach

[154] assumes no knowledge of energy harvesting source and can be termed as (source)

model-free [39], the latter approaches [103, 113, 39] require a model of harvesting source

variations.

The energy source model-free algorithm of Vigorito et al. [154] is formulated as a

Linear Quadratic (LQ) Tracking closed-loop control problem for duty cycle adaptation.

Assuming discrete time steps, the algorithm aims to achieve energy neutral operation

by adjusting the energy consumption u (duty cycle) such that deviation of stored energy

Bt at time t from a targeted value B∗ is minimised over all discrete time-slots N , i.e.:

lim
N→∞

1

N
ΣN
t=1(Bt −B∗)2 (6.1)
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Figure 6.2: The Progressive Filling Algorithm (PFA) for assignment of
harvested-energy [39].

To minimise the variance, the duty cycle u calculated by the LQ tracking algorithm at

each time step is smoothed using exponentially weighted averaging with two parameters

α and β as follows:

ūt = ūt−1 + α(ut − ūt−1) (6.2)

ρt = βut + (1− β)ūt (6.3)

where ūt is the exponentially weighted average of calculated duty cycle u, and ρt is

the final smoothed output which is the weighted combination of ut and ūt. While α

smooths the output of the algorithm, β is used to select between the contribution of

smoothed and non-smoothed output of the algorithm. If α is close to 1 no smoothing

occurs while alpha close to zero (not zero) produces maximum smoothing. β determines

the contribution of smoothed value to the final duty cycle output. It should be noted

that since the objective of the LQ tracking algorithm is to adapt to changes in harvested

energy by varying the duty cycle, attempt to smooth these variations by using the two

parameters α and β can lead to poor utilisation of harvested-energy and increased dead

times of the system due to the reduced responsiveness of the policy output to variations

in energy supplied (Section 6.1). This algorithm involves simple computations in each

time step and has low implementation and energy consumption overheads. The results of

the proposed energy management policy in Section 6.4 are compared with this algorithm

using different values of α and β.

Next, energy allocation algorithms that utilise some model of harvesting source to obtain

future values of harvested-energy are considered. Among these, the algorithms in [103,
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39] allocate the time varying harvested-energy as uniformly as possible by assuming

knowledge of future energy supply. The algorithm by Gorlatova et al. [39] is called

Progressive Filling Algorithm (PFA), based on the principle of max-min fair allocation

of resources. This algorithm (Figure 6.2) was considered in Chapter 5 as case 3 of energy

management policy (Section 5.4.2) for optimisation in terms of supply and demand. The

input to the algorithms is a profile of harvested energy Q(i) over K discrete time slots

in future, an initial value of stored energy B0, the maximum storage capacity C and the

desired value of stored energy at the end of the optimisation interval BK (for maintaining

energy-neutral allocation). The algorithm allocates the harvested energy as uniformly

as possible by progressively incrementing the energy allocation of each time slot i by

an amount △, checking for underflow at every time step while ensuring that at the

end of K time slots, the stored energy is equal to BK . The other algorithm by Moser

et al. [103, 104] is called the Recursive-Decomposition algorithm and it requires the

same inputs to calculate energy allocations. It is a heuristic that smooths the energy

allocations among time slots by averaging the future values of harvested-energy, until

an underflow or overflow condition is encountered in some time slot. In this case the

previous allocations are adjusted to prevent these, and the algorithm continues from

the last slot in the same manner until the condition of stored energy of last time slot

slot is met. The overall smoothness of the resulting energy assignments of both these

policies are dependent on the size of energy storage used for a given harvested-energy

profile. The time complexity of both these algorithms is in the order of O(K2) but [39]

involves simpler operations in each time step. Note that these algorithms determine the

optimally uniform allocations and the proof is given [103, 39]. These works [103, 39]

do not give any specifics of how the knowledge of future energy can be obtained and

how to minimise the impact of errors in prediction of future values. The proposed

energy allocation policy is based on the PFA algorithm [39] and addresses the problem

of prediction of future values.

Another work that considers minimising the variance of allocated energy is by Noh et

al. [113], which formulates a linear programming problem using predicted values of

harvested energy in a day. The EWMA prediction algorithm (Section 3.3) is used to

predict the values of harvested energy in N discrete time slots of a complete day. Since

the error in EWMA prediction is high under highly variable conditions (as discussed in

Chapter 3), these predicted values of harvested energy in N future time steps ẼkmodN
hrv

are adjusted at each time slot i:

ẼkmodN
hrv = ϕĒkmodN

hrv , ∀ i ≤ k < N + i, whereϕ =
Ei−1

hrv

Ēi−1
hrv

(6.4)

where, ϕ is the ratio of harvested-energy in previous time slot Ei−1
hrv and it’s historical

average Ēi−1
hrv . Since the adjustment is done at every time step during a day, it requires

the linear programming solution to be re-evaluated at each time step. This may be
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feasible for the harvesting system considered in [113] which consists of low-end laptop

powered by two 105 Watts solar panels, but not for resource constrained sensor nodes

powered by small PV panels. The proposed policy also uses two step predictions to

refine the initial estimates, however, the optimised prediction algorithm discussed in

Chapter 3 is used and the resulting refinement at each time step is carried out using

simple calculations as discussed in Section 6.3.

The aim of the energy allocation policy proposed in this chapter is to obtain low-variance

energy allocation using simple computations suitable for resource constrained sensor

nodes. The proposed policy is based on the Progressive Filling Algorithm as it uses

simple computations. An initial prediction of a complete day is used to estimate the

energy allocations, which are later refined using the more accurate, one time-slot ahead

WCMA prediction algorithm discussed in Chapter 3. The results of the prediction

refinements are used to adjust the initial allocations in a low-cost manner that does

not use the Progressive Filling Algorithm at each time step. The next section gives the

details of the proposed policy.

6.2.2 Dimensioning of Energy Supply and Storage

The determination of the energy supply and storage capacities to ensure perpetual oper-

ation has been considered in previous works at different levels of abstraction. Kansal et

al. [65] derived a theorem for energy-neutral operation by abstracting the energy supply

and workload as functions of their average power (ρ), maximum (σh) and minimum (σl)

fluctuations from the average (burstiness) over some arbitrary operating period. Given

an energy storage of maximum capacity C and initial value of stored energy B0, with ef-

ficiency ηenergy store and leakage power ρleak, the theorem states that the energy-neutral

operation is guaranteed if:

1. The average power consumption ρload should not exceed the worst case of average

power supply ρsupply, which implies that all supplied energy ρsupply is consumed

through the non-ideal energy storage, thus being reduced by ηenergy store, in addi-

tion to leakage ρleak:

ρload ≤ ηenergy store · ρsupply − ρleak (6.5)

2. The required stored energy should be sufficient to cater to the worst case variation

in supply σl
supply and demand σh

load during any period:

B0 ≥ ηenergy store · σ
l
supply + σh

load

B ≥ B0 (6.6)
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Although this theorem gives design guidelines that are intuitive, the determination of

supply and load are highly abstracted and the calculations of σh and σl are not well

defined, which makes determination of actual sizes of PV panel and energy storage for

a given load demand not straightforward. Furthermore, this theorem only explicitly

considers the energy storage efficiency and leakage whereas there can be other non-ideal

characteristics that influence supply and consumption in typical energy harvesting sys-

tems as discussed in Chapters 2 and 4. This chapter presents an intuitive and realistic

manner of evaluating the size of PV panel and energy storage capacity based on simu-

lation of a complete model of photovoltaic energy harvesting system. This model of the

system discussed in Chapter 4 represents each component in the system, such as PV

panel, energy storage and power conditioning, by using parameters that correspond to

some chosen instances of these. Given this model of a specific PV harvesting system

and model of input supply of energy, the size of PV panel and energy storage is eval-

uated to determine whether the given load demand is met at all times under modeled

harvesting source. This detailed approach is practical since it takes into account a given

system configuration and the characteristics of each component on achievable results. A

system model based approach to explore the dimensioning of supply and storage is also

discussed in [10], but it uses a partial model of the system and the analysis only focuses

on fixed demand.

6.3 Proposed Harvested-Energy Allocation Policy

In Section 6.2.1 it was discussed that policies [103, 113, 39] utilising knowledge of

harvested-energy over several future time slots, e.g., time slots in a day (24 hours),

can achieve more uniform allocation due to the optimal approach to energy distribution

[103, 39]. However, for energy harvesting sources such as solar energy, obtaining this

knowledge by predicting future energy is a practical consideration in realisation of these

policies. The validity of the energy allocations obtained is dependent on the accuracy

of predicted values. Errors in prediction can lead to underflow of energy storage due

to over utilisation, resulting in unwanted shutdown of system, or in case of under util-

isation, less than achievable performance. Furthermore, the prediction based policies

require advance knowledge of many time slots (e.g., in a day or more) ahead to smooth

the allocated energy across these time slots [103].

In Chapter 3, two low overhead solar energy prediction algorithms were discussed, the

Exponentially Weighted Moving Average (EWMA) and the Weather Conditioned Mov-

ing Average (WCMA), for predicting the harvested-energy one time-slot ahead using a

past history of harvested energies. Accurate prediction of multiple time slots ahead in a

day is a more complex problem as discussed in Chapter 3. In this respect the simplistic

EWMA approach [65] has been be used in [65, 106, 113] for predicting harvested ener-

gies a full day ahead, but the accuracy of this method is only acceptable in consistent
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weather conditions. Under sudden fluctuations, such as in case of intermittent cloudy

conditions, this method has high prediction error (Chapter 3). The WCMA prediction,

on the other hand, predicts more accurately compared to EWMA but only does so for

only one time slot ahead.

The aim of this chapter is to realise an energy management policy for uniform energy

allocation that takes advantage of the knowledge of future harvested-energy by utilis-

ing prediction techniques discussed in Chapter 3. In this regard, the progressive filling

algorithm (PFA) is employed to determine estimates over K future time slots of a day.

To determine the estimates of harvested energy in each time slot i, a two step approach

is used. First, the moving average of every time slot’s harvested energies over the past

D days are input to the PFA to obtain the initial energy allocations. Since these allo-

cations are based on low-accuracy prediction (using moving average), these are termed

as ‘unrefined allocations’. These need to be refined to suit the actual harvested-energy

during the day as actual measurements of current day’s harvested energy are available.

One possible approach to this can be to measure the prediction error of a slot when

that slot’s actual energy has been measured and apply a positive or negative adjustment

to the remaining time slots depending on current prediction error [65]. Although this

approach helps to correct the energy allocations, it is a reactive approach and the re-

sulting corrections can be slow to prevent under or over utilisation of energy, depending

on the difference between the actual and predicted values. The proposed approach is

to determine more accurate predicted values of each time slots by using the WCMA

prediction algorithm discussed in Chapter 3. However, WCMA prediction only predicts

the harvested energy one time slot ahead since it uses some values of current day’s har-

vested energy (Section 3.3.2). Therefore, the issue here is how to use the most recent

WCMA prediction to adjust the previously decided energy allocations. One approach

can be to use the progressive filling algorithm to reallocate energies for all future time

slots every time a refined prediction of next slot is determined. This is costly in terms

of computations needed, but it is also important to adjust the energy allocations of all

future time slots to enable the system to quickly adjust to the current conditions. The

proposed approach is to calculate the difference of the refined and initial prediction of

the next time slot, and distribute this difference uniformly across all future time slots.

The justification for this approach is that it gradually distributes the predicted deficit

or surplus compared to the initial prediction uniformly among all remaining slots, thus

gradually adapting to the new predictions over time. Hence, this supports the aim of

achieving as uniform as possible allocations under variations and uncertainty of energy

supply.

Figure 6.3 gives the pseudo code of the proposed energy allocation policy and the al-

gorithm steps are explained as follow. At start of each day, let Qu(i) be the initial or

unrefined prediction of harvested energies of each time slot i (i = {0, 1, . . . ,K − 1}),
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For Each Day 

Qu [i] = MovingAverage (i),  0 ≤ i ≤ K-1 // Calculate initial prediction of all slots  

Qr = Qu           // Initialise refined estimates  

   s  = ProgressiveFillingAlgorithm (Qu)    // Calculate initial allocations 

for j = 0;  j ≤ K-1; j++;  do        // For each slot in a day   

      if j ∈ day slots; do        // If next slot has a non-zero average 

   // Refine its prediction using WCMA algorithm 

   Qr [j] = WCMA_prediction( j)  

   // Determine the difference from earlier estimate 

   Qdiff  = Qr [j] – Qu [j] 

   // Determine the adjustment factor for future slots 

   Qadj = Qdiff /(K-j) 

   // Apply the adjustment to future slots 

   s[i] = s[i] + Qadj,  j ≤ i ≤ K-1 

  

    

  

       

  

Figure 6.3: Pseudo code for the proposed energy allocation policy.

which are obtained using moving average of past D days historical values of harvested-

energies. Let s be the allocated energies obtained with the Progressive Filling Algorithm

based on Qu(i). For night time slots, these initial predictions will be accurate but for

time slots after day rise, more accurate predictions can be obtained using WCMA algo-

rithm discussed in Chapter 3. Suppose that for a slot j after day rise, refined prediction

Qr(j) is obtained using the WCMA prediction. The difference Qdiff = Qr(j) − Qu(j)

between the refined and initial predictions for time slot j is calculated. This is used

to calculate the adjustment value Qadj =
Qdiff

K−j
for the next K − j slots. Finally, the

allocated energies s(i) for slots j ≤ i ≤ K − 1 are adjusted:

s(i) = s(i) +Qadj ,∀j ≤ i ≤ K − 1 (6.7)

It should be noted that this approach is not a substitute for accurate initial predictions

but it enables better utilisation of harvested energy while reducing system dead time

as compared to the energy allocation based on only initial predictions or model-free

approach [154] as shown in the next section.

6.4 Experiments and Analysis

6.4.1 Setup and Methodology

To obtain results of the proposed energy management policy and compare these with

other policies, the energy harvesting system configuration described in Chapter 2 (Sec-

tion 2.3) and modeled in Chapter 4 (Section 4.3) is used. Furthermore, the supply and

demand considerations discussed in Chapter 5 for optimised implementation of energy

management policies are accounted for. The workload energy consumption is modeled

as a duty cycle between 0.0-0.9 with active and idle mode power consumptions as de-

scribed in Section 4.3. A year long solar energy profile from NREL NWTC data set
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[114] is used for modeling the energy harvesting source variations. This energy profile

exhibits variability in the form of long-term seasonal and short-term day-to-day fluctu-

ations. The WCMA prediction algorithm uses the optimised parameters determined in

Chapter 3. The total number of discrete time slots in a day for energy allocation (K)

are set to 48.

First, the proposed approach for evaluating the size of PV panel and energy storage is

presented. The aim is to determine if continuous operation can be achieved for a given

workload demand and input energy profile. Next, the influence of energy storage capacity

on the uniformity of energy allocations is shown, using the progressive filling algorithm

and assuming perfect knowledge of harvested-energy variations. Using the sizes of PV

panel and energy storage selected using this analysis, the proposed energy allocation

policy is evaluated in terms of the three performance metrics discussed in Section 6.1,

which are the mean and standard deviation of duty cycles (energy allocation), and

percentage of dead times (with zero duty cycle). To show the effectiveness of the energy

allocation adjustment method of the proposed policy, two variations of the proposed

policy are considered. The first, called ‘No Adjustment ’, does not adjust the energy

allocations obtained using the progressive filling algorithm based on initial predictions.

The second, called ‘Error Adjustment,’ adjusts the energy allocations based on prediction

error observed in the current slot and uniformly distributing the measured error value

over remaining slots. These alternate policies are used to show that the adjustment

method used in the proposed policy achieves better results. Another policy used for

comparison is the model-free approach in [154]. Finally, a ‘Perfect knowledge’ policy

that uses complete knowledge of harvested-energy profile is also used to compare with

results under zero prediction error.

6.4.2 Dimensioning of PV Panel and Energy Storage

This section discusses evaluation of size of PV panel and energy storage based on sim-

ulation of system model discussed in Chapter 4 with a given profile of input energy

supply. Starting with a given size of PV panel and energy storage, first the case of a

fixed workload demand is considered to illustrate how simulation results can be used.

Next, the progressive filling algorithm is used for adapting demand with full knowledge

of harvested-energy. The aim is to show the effect of energy storage size on the energy

allocations when maximum utilisation of harvested-energy is targeted rather than a fixed

demand.

Let the reference system configuration with a 100F super capacitor be the base con-

figuration. The 10 days solar radiation profile of NWTC [114] is used as input to the

system and the fixed demand is set to 1% duty cycle. Figure 6.4 shows the simulation

results with respect to time for 10 days. Both graphs depict the trend of supercapacitor

voltage (red) indicating the changes in stored energy, the top graph shows duty cycle
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Figure 6.4: Simulation results for 1% duty cycle target using 100F supercapac-
itor showing the system unavailability during days 3-4 and saturated superca-
pacitor during day 3.
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Figure 6.5: Simulation results using 200F supercapacitor and 1% duty cycle
indicating that workload is operational continuously.

(blue) while the bottom graph shows the harvested-energy profile (blue) discretised in 48

time slots. It can be observed that system is not able to maintain the required workload

demand and there is a period of unavailability at the end of day 3 (labeled on top graph)

until the system is able to harvest enough energy to resume operation again. This is

due to the depleted energy in the supercapacitor at the end of day 3, since the system

harvests significantly less energy in day 3 (labeled on bottom graph) as compared to

other days. To enable the system to maintain the given demand in this case, the energy

available needs to be increased by increasing the PV panel output and/or the energy

storage capacity. To determine which of these components should be adjusted, note that
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Figure 6.6: Simulation results for 5% duty cycle using 200F supercapacitor
indicating periods of system unavailability.

Figure 6.7: Simulation results for 5% duty cycle with 1.5x PV panel indicating
improved system availability and saturation of supercapacitor during day 2

during days 1 and 2 the supercapacitor remains fully charged during mid day (labeled

on top graph), which indicates that the PV panel is able to harvest more energy than

can be stored. Thus, if the capacity of energy storage is increased, then more energy

can be captured to be used when the harvested energy is insufficient, i.e., during day

3. Considering a 2x increase in supercapacitor capacity from 100F to 200F, the results

of simulation are shown in Figure 6.5. It can be seen that the increased supercapacitor

allows more energy to be captured, resulting in less discharge as compared to Figure 6.4.

Hence, the system is able to survive the poor supply of harvested energy as encountered

during day 3.
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Figure 6.8: Simulation results for maximum energy utilisation using 100F (top)
and 200F supercapacitor. There is higher variation in allocations using 100F
capacity.

Now consider the case when the desired duty cycle is increased to 5% and the 200F

supercapacitor is used as the base system. Figure 6.6 shows the simulation results for

the base configuration. It can be observed that due to the increased demand of energy

due to the higher duty cycle as compared to previous case, the system is not able to fulfill

the required demand at all times from the end of day 2 onwards. In this case, increasing

the energy storage cannot benefit since there is clearly shortage of harvested energy as

indicated by the supercapacitor voltage trend. Therefore, in this case the system can

benefit from an increased supply of harvested energy by selecting a bigger PV panel.

Figure 6.7 shows the results if the size of PV increased by 50%, effectively increasing the

PV panel output current (Chapter 2, Section 2.2.6). The increased size of panel enables

the system to meet the demand, except for day 3. Note that with the increased size of

panel, there is saturation of supercapacitor during days 1 and 2, resulting in energy not

captured. Thus, the system can now benefit from increase in supercapacitor size to be

able to operate continously.

The previous cases illustrated dimensioning using a fixed demand. Now, the maximum

energy utilisation is considered using the the Progressive Filling Algorithm. The goal

is to consider effect of energy storage size on the uniformity of allocation along with

dimensioning of PV panel. The same 10 days profile of input energy is used as before.

Figure 6.8 shows simulation results for 100F (top) and 200F (bottom) supercapacitors.

Note that the initial value of stored energy at start of day 1 and the targeted stored

energy level at the end of each day (for energy neutral allocation) is kept identical for

both these cases for a fair comparison. It can be seen that for 100F case (top graph)

the allocation has the greater variation due to less capacity to buffer energy during the

day, and there a higher energy allocation to utilise the harvested energy. On the other
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Table 6.1: Comparisons of proposed policy with other policies according to the
three metrics.

Policy Mean Duty Cyc Standard Dev. % Dead

No adjustment (Section 6.4.1) 0.0929 0.0869 31.2%

Error adjustment(Section 6.4.1) 0.0944 0.0989 24.2%

Proposed 0.0964 0.0874 19.4%

LQ [154] (α = n/a, β = 1) 0.1414 0.2489 1.5%

LQ [154](α = 0.0005, β = 0.75) 0.1301 0.2340 10.5%

LQ [154](α = 0.0005, β = 0.5) 0.1246 0.1919 29.4%

LQ [154] (α = 0.0005, β = 0.25) 0.1151 0.1504 40.1%

hand, the operation has to be suspended near end of day to keep the supercapacitor

charged-up to required level of stored energy at the end of day. A drastic improvement

in uniformity and system availability is observed if the capacity of supercapacitor is

doubled. At the same time more energy is captured since there is no saturation in this

case. Note that there is no activity during day 3 since the amount of harvested energy is

not enough to meet targeted stored energy level at the end of day 3. This is due to the

behaviour of progressive filling algorithm as it prioritises end of day energy conservation

while uniformly allocating energy. In this case, the size of PV panel can be increased so

that more energy can be harvested during day 3 for system to be operational.

6.4.3 Results of Proposed Policy and Comparison

The previous section discussed the evaluation of PV panel and energy storage sizes using

a fixed workload demand and using maximum energy allocation using progressive filling

algorithm. Based on these results, the base system configuration with 200F supercapac-

itor and 1x size the of PV panel is considered to evaluate the proposed energy allocation

policy. The duty cycles are set between 0.01 to 0.99 depending on the allocated energy

and the efficiency of the output regulator (Chapter 5, Section 5.4.3.2). For model-free

LQ tracking policy [154], the targeted stored energy level (B∗) is set at 60% and differ-

ent values of variance minimisation parameters α and β are tested (see Section 6.2.1 for

parameter descriptions).

Table 6.1 shows the results of different policies in terms of the three performance metrics.

First consider the top three rows of the table to compare the proposed policy with its

two near variants (Section 6.4.1). Note that the proposed policy achieves the highest

mean duty cycle and lowest dead time compared to these two variants. The standard

deviation of the No adjustment policy is slightly lower than the proposed policy, which

is explained shortly. It can be seen that in terms energy utilisation (mean duty cycle),

the proposed policy is only marginally better, however, in terms of system dead times

improvements of 10.8% and 4.8% is significant considering the total evaluation is over

364 days. This shows that the policy is able to adjust to shortages while consuming
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Table 6.2: Comparisons with perfect knowledge energy allocation policy accord-
ing to the three metrics.

Policy Mean Duty Cyc Standard Dev. % Dead

LQ [154](α = n/a, β = 1) 0.1742 0.2903 0.3%

LQ [154](α = 0.0013, β = 0.5) 0.1705 0.2376 34.99%

LQ [154](α = 0.0005, β = 0.5) 0.1404 0.2157 23.8%

Proposed 0.1414 0.1267 16.5%

Perfect knowledge (Section 6.4.1) 0.1674 0.1507 5.1%

No adjustment (Section 6.4.1) 0.1345 0.1288 28.2%

Error adjustment (Section 6.4.1) 0.1373 0.1393 22.3%

the available energy better than the other two close variants. Regarding the standard

deviation, it should be noted that the design of the proposed policy does not actively

minimise the variance but this is inherent in the uniform approach taken to distribute

the incoming energy. For to this reason, the higher standard deviation of proposed policy

is a by-product of its more responsive energy allocation adjustment property. In light of

this reasoning, it can be seen that the proposed policy performs noticeably better than

its two close variants in terms of energy utilisation and percentage of dead time.

Next, consider the results of LQ tracking algorithm [154]. It can be seen that this

algorithm performs significantly better in terms of both energy utilisation and percentage

of dead time, achieving just 1.5% dead time across 364 days. However, note that it has

a high deviation of duty cycles, roughly three times that of prediction based policies.

Since this algorithm output is parameterised in terms of α and β, which can be used

to reduce the variance, three other value combinations these parameters are attempted

to reduce the variance. Since β determines the contribution of smoothed duty cycles

while α performs the smoothing, a recommended value of α is used [154] while the

contribution of smoothed values β is varied from none (β = 1) to higher. As discussed

in [154], as standard deviation decreases, there is a large degradation in dead times

and mean duty cycles, since the algorithm becomes unresponsive to changes in supplied

energy fluctuations. In the last row of Table 6.1, note that the dead time increases

from 1.5% to 40.1% while the variance only decreases by less than half. These results

show that the prediction-less policy is better suited to quickly responding to changes in

supplied energy and not for minimisation of variability of allocated energy, where the

prediction based policies have an inherent advantage.

Table 6.2 shows the comparison of results with Progressive filling algorithm having

complete knowledge of harvested-energy profile. A separate set of results are obtained

than Table 6.1 because of the changes in the system model needed to model complete

knowledge of harvested-energy profile. Recall from Section 4.2.4 that the harvested

energy is dependent on the PV panel operating point and hence the supercapacitor

voltage for the given system configuration. Since the voltage of the energy storage

changes according to the energy consumed from it, the harvested energy is also influenced
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Figure 6.9: Comparison among different policies in terms of variation in al-
located duty cycles. The supercapacitor voltage is also shown for indicating
changes in stored energy and system dead times.

by these changes. Hence, unless the energy output of the PV panel is decoupled from

the voltage of energy storage, it is not possible to determine accurately how much energy

will be actually harvested in a given time slot. Hence, to implement perfect knowledge

of harvested energy, PV panel voltage and supercapacitor voltage is fixed in the system

model and this changes the amount of energy harvested for the same input profile of solar
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energy as used in previous results. For this reason, the results of other policies compared

in Table 6.1 are also recomputed based on modified system model. Comparing amongst

the top 4 rows of Table 6.2, it can be seen that the Perfect prediction policy obtains the

highest mean and lowest dead time, followed by the proposed policy. Note that standard

deviation of Perfect knowledge policy is higher than all prediction based policies, which

can be explained in the light of same reasoning as above, referring to the design of

the policy. This standard deviation value essentially represents the inherent fluctuation

of the harvested supply that cannot be overcome when attempting to allocate energy

uniformly even with perfect knowledge of input supply. Also note that the dead time

is not zero since the policy design prioritises energy conservation over energy spending

when it determines that the harvested energy in any single day is not even enough to

maintain the end of day stored energy target. Comparing the results of perfect prediction

with LQ tracking algorithm, it can be noticed that the LQ tracking algorithm is adept

at tracking the energy supply and maximising consumption but at the cost of very

high standard deviation. Comparing the LQ tracking algorithm results in row 3 with

the results of proposed policy note that, at similar values of mean duty cycles, the

proposed policy performs 30% better in terms of percentage dead times and has 41%

lower variability of allocated energy.

To provide insight in the results given in Tables 6.1 and 6.2, and to validate the reason-

ing above, Figure 6.9 shows a 10 day snapshot of the simulation results of the different

prediction based policies, which shows the allocated duty cycles and the changes in su-

percapacitor voltage over time. It can be observed that the Perfect knowledge policy

achieves no dead times during this interval as it adapts the consumption according to

the available energy. The policy allocates the available energy as uniformly as possible

given the the energy storage capacity and variability of harvested energy. Given an

initial value of stored energy at the start of the day, the pre-daytime consumption is

limited by this, meanwhile the consumption is increased during the rest of the day to

utilise the incoming energy in a uniform manner. In case of the no adjustment policy, it

achieves the lowest variation mainly because of unresponsiveness to variability, resulting

in higher dead times. The error adjustment policy is able to adapt to the variations

compared to no adjustment policy and adjustments, even leading to higher utilisation

compared to the proposed policy for instance during the first 4 days of the profile. How-

ever, the more drastic adjustments lead to less smooth consumption while dead times

are also increased. The LQ tracking policy [154] produces results with high variations in

duty cycles, essentially following the change in energy stored in supercapacitor resulting

in highly non-uniform consumption. The proposed policy gives the best performance by

gradually adjusting to the changes in harvested-energy to minimise the downtime. How-

ever, the limitation of inaccuracy of initial prediction is apparent during day 15, during

which the proposed policy is not able to adjust to significantly reduced energy supply

resulting in dead time of workload during most of the day. As mentioned in Section 6.3,

the adaptation approach of the proposed approach cannot completely compensate for
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errors in initial predictions but it enables better utilisation of harvested energy while

reducing system dead times as compared to the energy allocation based on only initial

predictions or model-free LQ tracking approach [154] as shown in Tables 6.1 and 6.2.

Further reductions in system dead times can be achieved by using conservative alloca-

tions initially during the day until the short-term prediction is able to better estimate

the current day harvested-energy.

6.5 Concluding Remarks

This chapter considered the problem of achieving uniform allocation of energy budgets

under the variability and uncertainty of energy harvesting supply to achieve uniform

performance. Utilising the prediction algorithms discussed in Chapter 3, this chapter

proposed a prediction based energy management policy for solar harvested-energy with

the objective of achieving low variance of allocated energy. The proposed policy is based

on two-step predictions of harvested energy; using a low accuracy prediction of multiple

time slots in a day and refining these initial estimates using the WCMA algorithm dis-

cussed in Chapter 3. Since common sensor nodes are resource (processing, memory and

energy) constrained, the policy avoids complex repeated calculations thus minimising

the implementation overhead. The results of the proposed policy are compared with

other policies and it is shown that proposed policy achieves lower variance in energy

budget allocations and lower percentage of dead time of the system, which is important

to achieve the goal of perpetual operation. Furthermore, these performance metrics are

influenced by size of PV panel and energy storage, which can considered as fixed input

constraints under which the energy management policy operates. Hence, this chapter

also considered the influence of these constraints on system dead times and variance of

energy allocation.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

Energy harvesting for powering autonomous wireless sensor applications is an attractive

solution to meet the goal of perpetual operation. However, the variability and uncer-

tainty of various sources of energy harvesting introduces challenges for design of such

system to achieve the desired goal. Many wireless sensor applications’ workloads are

inherently amenable to being adapted according to the energy resources available and in

these cases harvested-energy exploits this flexibility with the goals to maximise utilisa-

tion of harvested-energy to achieve maximum achievable performance while at the same

time not exceeding the limits of supplied energy to operate perpetually on available

supply. These objectives are generally known as maximum performance with energy-

neutral operation. Achieving these objectives requires (i) awareness and management

of the variability of the energy harvesting source, and (ii) matching the application

workload demand with energy supply. This thesis investigates these fundamental design

considerations of harvested-energy management. The choice of solar energy harvesting

systems is made in this thesis due to the low cost and ubiquity of PV energy harvesting

powered wireless sensor applications.

Chapter 1 considers the problem domain of the design of energy harvesting powered

wireless sensor applications to motivate the design considerations of harvested-energy

management. The contribution of this chapter is to highlight the interplay between

various components of the system, including the energy harvesting environment, the

wireless sensor application, and harvesting and storage subsystem, to show how the

choices of each component influences the selection of other system components. The

considerations for effective harvested-energy management are linked to choice of energy

harvesting source, applications’ characteristics and the design of energy harvesting sup-

ply and storage subsystem. This sets the stage for understanding the contributions of

this thesis.
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Chapter 2 considers the detailed design of photovoltaic energy harvesting supply and

storage subsystem and the goal is to consider the general architecture of various possible

designs. The contribution of this chapter is to identify the key requirements that influ-

ence the choices for various components that constitute the subsystem, such as the need

for high efficiency and capability to harvest a desired amount of energy to support the

application demand. Furthermore, the detailed behaviour of each component in terms

of its non-ideal characteristics, losses and operating interdependency with other com-

ponents is discussed. The chapter concludes by discussing the design of a reference PV

harvesting subsystem and the chosen application platform. This chapter sets the ground

to discuss modeling of the non-ideal characteristics of system components in Chapter 4.

The reference PV harvesting design is used in Chapter 4 to validate the modeling, and in

Chapters 5 and 6 as a specific instance of system model to discuss energy management

policies.

Chapter 3 considers the problem of variability of solar energy and discusses prediction

of harvested-energy as an approach to manage this. The variability in harvested-energy

supply is a challenge in design of energy management due to the difficulty in guaranteeing

a match between the system’s energy consumption budget and harvester’s output at all

times. The purpose of harvested-energy prediction is to know how much energy will

be harvested in a certain period in future. The amount of solar energy received at

different times in a day and across days can vary significantly. To manage this variability,

this chapter focuses on effective short-term prediction of solar harvested-energy within

a day based on historical data. For the state-of-the-art algorithm with low resource

requirements, this chapter targets the problem of determining the prediction algorithm

parameters to maximise accuracy across different solar energy harvesting test cases. The

contribution of this chapter is selection of an error evaluation function and systematic

approach for evaluation of prediction accuracy of solar harvested-energy to determine

optimised values of parameters applicable across different profile of input energy. The

prediction algorithm with these parameter values is used in Chapter 6 to design energy

management policy to achieve low-variance of energy budgets.

Chapter 4 considers modeling of photovoltaic energy harvesting system components with

the aim to achieve better correlation between supply and demand. This is addressed

by identifying the contribution of individual system component on supply or demand

through modeling. The intention is not to propose novel models for different compo-

nents, but the contribution of this chapter is to model the component characteristics and

interdependencies that influence the supply or demand by selection of suitable models

that achieve this purpose. The proposed approach to modeling the system and its in-

dividual components is validated against empirical measurements using the reference

system configuration described in Chapter 2 by considering a scenario of energy-neutral

system operation. The utility of this modeling to optimising harvested-energy manage-

ment policies is discussed in Chapter 5.
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Chapter 5 considers the influence of non-ideal system components on the objectives

of energy management policy with the aim to optimise energy management policy for

these factors. The contribution of this chapter is to evaluate selected harvested-energy

management policies to determine if these achieve their objectives on a given energy har-

vesting system configuration. Each considered policy was first evaluated for non-ideal

characteristics that cause deviation from energy-neutral operation and optimised in light

of modeled characteristics. The goal of first case study [65] is energy neutral operation

while minimising losses due to battery efficiency. It is shown that these objectives cannot

be achieved unless the actual demand is not considered. Case 2 considers a supercapac-

itor leakage minimisation policy [165]. It is shown that other non-ideal characteristics

can overshadow leakage consideration and should be taken in to account to maximise

allocation of harvested energy. Case 3 considers a policy for time-uniform allocation of

harvested-energy [39]. The energy budget allocation of this policy is optimised to meet

energy-neutral operation depending on the system configuration.

Chapter 6 considers the problem of achieving uniform allocation of energy budgets under

the variability and uncertainty of energy harvesting supply to achieve uniform perfor-

mance. Utilising the prediction algorithms discussed in Chapter 3, this chapter proposes

a prediction based energy management policy for solar harvested-energy with the ob-

jective of minimising the variance of allocated energy. The proposed policy is based on

two-step predictions of harvested energy; using a low accuracy prediction of multiple

time slots in a day and refining these initial estimates using the WCMA algorithm dis-

cussed in Chapter 3. Since common sensor nodes are resource (processing, memory and

energy) constrained, the policy avoids complex repeated calculations thus minimising

the implementation overhead. The results of the proposed policy are compared with

other policies and it is shown that proposed policy achieves lower variance in energy

budget allocations and lower percentage of dead time of the system, which is important

to achieve the goal of perpetual operation. Furthermore, these performance metrics are

influenced by size of PV panel and energy storage, which can considered as fixed input

constraints under which the energy management policy operates. Hence, this chapter

also considers the influence of these constraints on system dead times and variance of

energy allocation.

This thesis has investigated fundamental problems common to design of different types

energy harvesting powered applications. The contributions of thesis can be summarised

in two main aspects: (i) better management of uncertainty of energy supply through

improved predictions, and utilising this to achieve low variability in performance of en-

ergy harvesting systems, and (ii) optimised energy management policies that achieve

better match of application workload demand with energy supply, using system com-

ponents modeling and practical validations. Although these problems were addressed

by considering solar energy harvesting systems and applications, the identification of

characteristics of supply, harvesting subsystem and demand are applicable to design
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of energy management for other types of harvesting. Clearly, the breadth of differ-

ent aspects touched upon in this thesis have potential for in-depth exploration. Some

directions for such explorations is discussed in the next section.

7.2 Directions for Future work

The central implication of the work undertaken in this thesis is that the objectives of

harvested-energy management can only be achieved by considering harvested-energy

management and energy harvesting system design in an integrated manner. A variety of

harvested-energy management algorithms have been proposed in recent years to suit the

needs of individual applications, however, practical realisation of an optimised system

needs to take in to account the considerations discussed in this thesis. The fundamen-

tal objective is better match of demand and supply and in this regard, there are two

key future directions that can be addressed for optimised design of the overall energy

harvesting systems.

The first aspect is the design of the energy harvesting supply and storage subsystem.

As discussed in Chapter 2 and Chapter 6, given some constraints on size of PV panel

and energy storage, it it important to design the energy harvesting supply and storage

subsystem that meets the requirements of meeting a certain demand of the application

workload. Given a certain energy supply and storage capability of a system, energy man-

agement policy attempts to dynamically match demand and supply under variations of

harvesting supply. Since the design of PV energy harvesting systems is well understood

as discussed in Chapter 2, design automation can be implemented by building upon the

system modeling discussed in Chapter 4. This can aid in selection of system components

to assist in the system integration stage. Using a given input trace of environmental

energy values and an acceptable range of application consumption demand, the perfor-

mance of the system can be evaluated in terms of whether this demand can be met. The

automated tool can make use of library of system component models that incorporate

the non-ideal characteristics that influence the supply and demand. A related issue in

the systems design is integrating an energy harvesting subsystem from off-the-shelf com-

ponents to meet the consumption demands of a given application. This is difficult due to

the mismatches in component’s operating points as discussed in Chapter 2 and careful

selection of PV panel, energy storage and power converters is necessary to match the

operating requirements. This often results in waste of precious harvested-energy across

component interfaces. Off-the-shelf power conditioning solutions are not optimised for

low-power energy harvesting supplies and workload demands, resulting in higher losses.

Integrated solutions for supply subsystems that have high efficiencies according to the

power requirements of low-power energy harvesting can ease the design of energy har-

vesting systems.
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The second aspect is tighter integration of energy management policy with the underly-

ing harvesting subsystem for better demand supply match. As discussed in Chapters 4

and 5, this requires that the energy management policy be aware of supply and demand.

This is achieved by using a combination of measurements of voltages/current values and

accurate models of system components. Chapter 4 has discussed selection of suitable

models to characterise components for their losses in terms of their terminal character-

istics. Energy storage devices are complex entities and it has been recently shown [158]

that supercapacitors also exhibit non-linearities similar to rechargeable batteries. The

outcomes of energy management policies are based on the information available to it

regarding energy harvested, currently stored, lost and consumption rate. Consequently,

inaccuracies in these measured or modeled values will result in deviation from desired

system operation. The problem with off-the-shelf solutions for measuring these variables

is that they have a significant operating overhead compared to the workload’s demand.

Furthermore, they are not designed for measurement ranges and accuracy needed for

low-power energy harvesting applications. Hence, suitable low-overhead solutions for

measuring the system operating variables can enable implementation of robust energy

management.





Appendix A

Reference System Design

A.1 Schematic

A.2 Board Layout
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Figure A.1: Schematic of reference PV energy harvesting system.
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Figure A.2: Two layer board layout of reference PV energy harvesting system.





Appendix B

Other Techniques for

Harvested-Energy Prediction

B.1 Long-Term Solar Energy Prediction

Depending upon the requirements of energy management, estimates of energy for the

next days may be needed. For instance, [103, 104] presents adaptive energy allocation

policies which require knowledge of multiple days to uniformly allocate harvested-energy

with respect to time while [65, 39] use knowledge of one day ahead prediction to allocate

energy to different slots. The short-term WCMA prediction algorithm (Section 3.3.2)

uses the knowledge of current day’s energy values to improve prediction of the same day’s

future slot energy by adjusting the past average based on recent observations. Since the

next day’s slot values are not known in advance, this principle cannot be used to make

predictions for the next day. Note that EWMA (Section 3.3.1) or the moving average

step of WCMA (Equation 3.3) estimates the next day’s harvested energy in a simple

manner, however, the error in this approach can be very high since the next day can

be markedly different from the current day. Accurate long-term solar energy prediction

based on just currently observed harvested-energy is prone to high error, with exception

of continuously clear weather conditions, since other weather effects come in to play such

as changing cloud movement and atmospheric turbidity [59]. The aim of this section

is to review possible approaches for long-term prediction suitable for energy harvesting

wireless nodes.

In [59], a method is discussed for predicting the average energy harvested during a day in

future using a k-day history of weather metrics and an astronomical model of a clear day

radiation conditions (Section 3.2, Figure 3.2). The weather metrics used are horizontal

visibility and cloud cover since these effect the amount of sunlight received during a day

and the history of these metrics is commonly available for a given area from weather

stations [114]. Horizontal visibility is the distance that can be see horizontally with a
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maximum of 10 miles. Cloud cover is the percentage of the sky covered by clouds, and

is used to determine the cloudiness of the sky at a particular location. Let the ideal

solar energy at time t obtained from astronomical model be AST (t) and the weather

factor (horizontal visibility or cloud cover) be W (t), which is a number between 0 and

1. Then the solar energy prediction under the influence of weather factor is given by the

following product:

RW (n) = W (t) · AST (t) (B.1)

To predict the future day’s energy value, the first step is to calibrate the values of W(t)

based on the different possible values of the weather metric (cloud cover or visibility)

and its correlation with historically available data. For example, the different possible

values of cloud conditions can beW1=1 (clear), W2=0.8125 (partly cloudy), W3=0.5625

(scatter clouds), W4=0.25 (mostly cloudy) and W5=0 (overcast). For each of these

values, calibration factors (c) are derived which determine the correlation with actually

observed solar energy. Finally, a k-day history of RW (n) (RW HIST) is constructed

and the future value of RW (n) is obtained using the algorithm given in Figure B.1. The

authors in [59] report that using a cloud-based prediction model gave better results than

visibility-based model while maintaining a history of 3-7 days. The limitation of this

approach is that prediction for a specific time (hour) of the day in future is not possible

due to the aggregate historical data used.

The prediction approach presented in [140] relies on availability of weather forecasts of

cloud conditions at different times of day. These forecasts are available in increments of

three hours for up to 72 hours from national weather service. Similar to the approach

described above, the forecasts are assigned a numerical value between 0 and 1. This is

multiplied by the value of solar power harvested under ideal conditions to obtain the

predicted output. To derive the ideal power model, the power generated on a clear/sunny

day (MaxPower) in each months of the year is used to build a model using curve fitting:

MaxPower = a× (T ime+ b)2 + c (B.2)

Equation B.2 gives the power at different times of a day. The values of a, b and c are

determined for the different months of year as shown in Figure B.2. The predicted power

is obtained as:

Power = MaxPower × (1− SkyCondition) (B.3)



Appendix B Other Techniques for Harvested-Energy Prediction 177

Figure B.1: Algorithm to predict long-term solar harvested-energy using a his-
tory of weather effects (from [59]).

This prediction approach is limited by availability of weather forecasts and its accuracy

depends on the reliability of weather forecasts and their correlation with ideal power

output.

B.2 Generic Prediction Approach for Other Energy

Sources

The principle of prediction methods is to utilise some model that captures the correlation

between values of data series while smoothing the noise to determine a probable value.

For example, using averaging methods such as cumulative average, moving average or

weighted average (simple or exponential), a representative value from correlated points

can be obtained. However, averaging consecutive values can result in poor accuracy since

the data values may have trend or seasonality properties which need to be accounted

for [134].

Section 3.3.2 discussed a low overhead prediction method for solar energy that was

developed based on the understanding of the solar energy source, i.e., the diurnal cycle,

seasonal trend and weather effect fluctuations. By utilising the knowledge of energy
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Figure B.2: Profile for solar power harvested on clear and sunny days in January,
May, and September, and the quadratic functions f(x), g(x), and h(x) fitted to
each profile (Reproduced from [140]).

source behaviour, it is possible to develop to simple prediction methods that achieve

reasonable accuracy while being suitable for implementation on resource constrained

wireless embedded system. However, other energy sources such as wind and various

sources of vibration energy may not exhibit well defined patterns to enable determination

of correlation or periodicity, and thus not amenable to building a simple model. In these

cases, generic techniques capable of adapting to changes in energy source behaviour can

be used. Generic techniques such as neural networks, adaptive filters are more complex

in terms of computation and energy consumption depending on whether the training

of predictor model is done online or offline, and how the prediction model is adjusted

dynamically.

In this section, we discuss a generic prediction method that is inspired by the concept of

using prediction to minimise the transfer of sampled data from a wireless sensor to a base

station. The original concept is termed as a dual prediction scheme [13], in which both

the sensor node a base station use some generic prediction method such as time series

prediction or Kalman filter to determine the approximate value of sensed phenomenon.

The parameters (or coefficients) of prediction method are determined to minimise the

error using a window of past sampled values. As the wireless sensor can compare the

sampled value with the predicted value, it can trigger update of the prediction model

parameters when the prediction error between the sampled and predicted value exceeds a

threshold. In this manner, the generic prediction method used adapts to the variations

in source based on monitoring of the error magnitude and triggering a relearning of

prediction model parameters.
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Table B.1: Results of AR model based wind prediction with different orders and
error thresholds for AR parameter update.

Filter order Error threshold Average % Error

2 90% 38.88
2 50% 40.86
2 10% 43.12
3 90% 36.79
3 50% 43.59
3 10% 45.43

Persistence - 34.07

In [13], time series forecasting using AR models is used in which the sampled values of

harvested-energy is considered a time series. The prediction at time t + 1 is obtained

by regressing the value Xt of the time series χt at time instant t against the elements of

the time series at the previous p time instants (Xt−1,X − t− 2, . . . ,Xt−p):

ˆXt+1 = θ1Xt + θ2Xt−1 + . . .+ θpXt−p+1 (B.4)

where θ1, θ1, . . . , θp) are the AR coefficients or parameters and p is the order of the

AR model, thus denoted as AR(p). The parameters ΘAR(p),t = θ1, θ2, . . . , θp can be

computed by means of Recursive Least Square algorithm, which consists in a computa-

tionally thrifty set of equations that allows to recursively update the parameters ΘAR(p),t

as new observations Xt are available.

Figure B.3 shows an example of the use of AR model to predict temperature values. The

required prediction accuracy ǫ is set to 0.5 and a autoregressive (AR) model is used. It

can be observed that the predicted data are within ±0.5 of the real data up to the 1261st

time step. At time t=1262, the prediction error exceeds the tolerated threshold ǫ and

the prediction model is updated to take into account the recent acquired data and from

time t=1263 to t=1272, the predicted measurements are again close enough to the real

ones. At t=1273, the prediction error exceeds ǫ and the update procedure is repeated

again at t=1286.

The limitation of this prediction method is that it works reasonably for sources that

remain fairly stable but for highly variable sources, such as wind, the accuracy may

be hardly better than using a persistence model. Furthermore, the for highly variable

sources, the coefficients may need to change rapidly to keep up with the variations.

Table B.1 shows the results of using AR model of orders two and three with different

thresholds for recalculation of coefficients. It can seen that best results obtained with

error threshold of 90% with AR model of order 2 are worse than using a persistence

model, indicating that this approach does not produce useful results with highly variable

sources such as wind.
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Figure B.3: An example of AR model based prediction with dynamic coefficient
update (Reproduced from [13]).



Appendix C

MATLAB Models

C.1 Top-Level System File

1 % Description:
2 % Top-level System Simulation File
3 %
4 % Parameters:
5 % t - time vector (array format)
6 % radiation_rate - radiation intensities (array format)
7 % supercap_init_mJ - initial supecap energy level in mJ
8 %
9 % Returns: all values are in array format except
10 % supercap_energy_final_mJ
11 % supercap_energy_final_mJ - final supercap energy level ( mJ)
12 % radiation_cur - solar panel current with given
13 % radiation condition (mA)
14 % radiation_pow - solar panel power with given
15 % radiation condition (mW)
16 % net_supercap_energy_mJ - energy that is charged to the sup ercap (mJ)
17 % supercap_energy_mJ - supercap energy level (mJ)
18 % panel_vol - solar panel voltage (V)
19 % panel_cur - solar panel current at peak radiation (mA)
20 % panel_pow - solar panel power at peak radiation (mW)
21 % supercap_rel_energy_mJ - relative supercap energy level (percent)
22 % supercap_vol - supercap voltage (V)
23 % reg_in_pow - output power of input regulator (mW)
24 % eff_reg_out - efficiency of output regulator (0 to 1)
25 % reg_out_vol - output voltage of output regulator (V)
26 % reg_out_pow - output power of output regulator (mW)
27 % load_cur - load current draw (mA)
28 % load_pow - load power consumption (mW)
29 % avail_pow - available power from the solar panel (mW)
30 % supercap_draw - supercap power draw (mW)
31 % net - net power from solar panel excluding supercap draw (mW )
32 % surplus - excess power that is not charged into supercap (mW )
33 % is_charging - 1 if being charged, 0 otherwise
34 % status_load - 1 if load is operational, 0 otherwise
35 % status_reg_out - 1 if output regulator is operational,
36 % 0 otherwise
37 % supercap_leakage_mJ - energy leak from supercap (mJ)
38 %
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39 % Author:
40 % Mustafa Imran Ali - mia08r@ecs.soton.ac.uk
41 %
42 % initializes system-wide variables.
43 % calc_supercap_100F_init();
44 %
45 % % initializes variables
46 % get_HydroSolar_init();
47 % get_current_4V_100mA_panel_init();
48 %
49 % % calculate the size of time vector
50 % N = max(size(t));
51

52 panel_vol = zeros(N,1); % solar panel
53 panel_cur = zeros(N,1);
54 panel_pow = zeros(N,1);
55 radiation_cur = zeros(N,1);
56 radiation_pow = zeros(N,1);
57 supercap_energy_mJ = zeros(N,1); % supercapacitor
58 supercap_rel_energy_mJ = zeros(N,1);
59 supercap_vol = zeros(N,1);
60 supercap_lifetime = zeros(N,1); % supercap lifetimes
61 reg_in_pow = zeros(N,1); % input regulator
62 eff_reg_out = zeros(N,1); % output regulator
63 reg_out_vol = zeros(N,1);
64 reg_out_pow = zeros(N,1);
65 load_cur = zeros(N,1); % load
66 load_pow = zeros(N,1);
67 avail_pow = zeros(N,1); % system status
68 supercap_draw = zeros(N,1);
69 net = zeros(N,1);
70 net_supercap_energy_mJ = zeros(N,1);
71 surplus = zeros(N,1);
72 is_charging = zeros(N,1); % 1 if charging, 0 otherwise
73 status_load = zeros(N,1); % load operational status: 1 or 0
74 status_reg_out = zeros(N,1); % output regulator status: 1 or 0
75

76 supercap_leakage_mJ = zeros(N,1);
77 running_duty_cycle = zeros(N,1);
78

79 current_duty_cycle = 0; % node duty cycle (1%) * NEW*
80 next_supercap_energy_mJ = supercap_init_mJ;
81

82 for i=1:N,
83

84 supercap_energy_mJ(i,1) = next_supercap_energy_mJ;
85

86 % variables that will be calculated assuming charging mode
87 % or discharging mode.
88

89 supercap_vol_temp = 0;
90 reg_out_vol_temp = 0;
91 eff_reg_out_temp = 0;
92 radiation_cur_temp = 0;
93 radiation_pow_temp = 0;
94

95 supercap_vol_temp = calc_supercap_mJ_to_V(supercap_en ergy_mJ(i,1), supercap_capacitance);
96

97 % solar panel voltage
98 panel_vol_temp = supercap_vol_temp + vf_schottky_init;
99

100 % solar panel current
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101 radiation_cur_temp = (interp1(V_panel,I_panel,panel_v ol_temp)) * 1e3;
102 panel_cur_temp = radiation_cur_temp;
103

104 % turn off the Schottky diode if the forward-direction curre nt
105 % is smaller than if_min_mA
106 if (radiation_cur_temp < if _min_mA)
107 panel_vol_temp = 0;
108 end;
109

110 % solar panel output power
111 panel_pow_temp = panel_vol_temp * panel_cur_temp;
112 radiation_pow_temp = panel_vol_temp * radiation_cur_temp;
113

114 % power after Shottky diode and input regulator
115 reg_in_pow_temp = radiation_cur_temp * (panel_vol_temp - vf_schottky_init);
116

117 % override duty cycle calculated if near depletion
118 if supercap_vol_temp < 1.1
119 current_duty_cycle = 0;
120 end
121

122 running_duty_cycle (i,1) = current_duty_cycle;
123

124 % set the load current as the average value. * NEW*
125 load_cur(i,1) = current_duty_cycle * load_active_mA + (1-current_duty_cycle) * load_sleep_mA;
126

127

128 % determine the operating point of MAX1724 output regulator .
129 reg_out_vol_temp = calc_vout_MAX1724(supercap_vol_tem p);
130 if current_duty_cycle
131 eff_reg_out_temp = 0.7981;
132 else
133 eff_reg_out_temp = 0.6728;
134 end
135

136 % load seen by output regulator
137 reg_out_pow_temp = load_cur(i,1) * reg_out_vol_temp / eff_reg_out_temp;
138

139 % available power from the solar panel
140 avail_pow_temp = max (0, reg_in_pow_temp - reg_out_pow_te mp);
141

142 % power discharge from supercap
143 supercap_draw_temp = max (0, reg_out_pow_temp - reg_in_po w_temp);
144

145 % net power from solar panel excluding load
146 net_temp = avail_pow_temp * eff_supercap - supercap_draw_temp;
147

148 % determine whether it is in discharge or in charge
149 if (net_temp >= 0)
150 is_charging(i,1) = 1;
151 else
152 is_charging(i,1) = 0;
153 end
154

155 % set variables depending on whether in charge or in discharg e
156 supercap_vol(i,1) = supercap_vol_temp;
157 reg_out_vol(i,1) = reg_out_vol_temp;
158 load_pow(i,1) = load_cur(i,1) * reg_out_vol(i,1);
159 eff_reg_out(i,1) = eff_reg_out_temp;
160 reg_out_pow(i,1) = reg_out_pow_temp;
161 panel_vol(i,1) = panel_vol_temp;
162 panel_cur(i,1) = panel_cur_temp;
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163 panel_pow(i,1) = panel_pow_temp;
164 radiation_cur(i,1) = radiation_cur_temp;
165 radiation_pow(i,1) = radiation_pow_temp;
166 reg_in_pow(i,1) = reg_in_pow_temp;
167 avail_pow(i,1) = avail_pow_temp;
168 supercap_draw(i,1) = supercap_draw_temp;
169 net(i,1) = net_temp;
170

171 % toggle duty cycle
172 current_duty_cycle = ˜current_duty_cycle;
173

174 supercap_leakage_mJ(i,1) = min(supercap_max_mJ, ...
175 calc_100F_supercap_leakage_tuh(supercap_energy_mJ(i ,1) / 1000, delta_t) * 1000);
176

177 % calculate the supercap energy in the next step
178 % considering leakage
179 next_supercap_energy_mJ = min(supercap_max_mJ, ...
180 supercap_energy_mJ(i,1) ...
181 - supercap_leakage_mJ(i,1) ...
182 + delta_t * 3600 * net(i,1));
183

184 % relative supercap capacity
185 supercap_rel_energy_mJ(i,1) = supercap_energy_mJ(i,1) * 100 / supercap_nominal_max_mJ;
186

187 if (net(i,1) < 0)
188 net_supercap_energy_mJ(i,1) = net(i,1);
189 elseif (supercap_energy_mJ(i,1) < supercap_max_mJ)
190 net_supercap_energy_mJ(i,1) = net(i,1);
191 else
192 net_supercap_energy_mJ(i,1) = 0;
193 end;
194

195 % surplus
196 surplus(i,1) = net(i,1) - net_supercap_energy_mJ(i,1);
197

198 % validating the status of output regulator and mote.
199 status_reg_out(i,1) = is_MAX1724_operational(supercap _vol(i,1), load_cur(i,1));
200 status_load(i,1) = is_TelosB_operational(reg_out_vol( i,1));
201 end;
202

203 duty_cycle_init = current_duty_cycle;
204 supercap_energy_final_mJ = supercap_energy_mJ(N,1);
205 supercap_init_mJ = supercap_energy_mJ(N,1);
206

207 if DEBUG
208 fprintf( ’%-6.2f,\t %-6.2f,\t %-6.2f,\t %-6.2f,\t %-6.2f,\t %-6.2 f,\t%-6.2f,\t\t%-6.2f,\t %-6.2f,\t
209 sum(panel_pow(1:N,1)) * delta_t, ...
210 sum(radiation_pow(1:N,1)) * delta_t, ...
211 sum(reg_in_pow(1:N,1)) * delta_t, ...
212 sum(reg_out_pow(1:N,1)) * delta_t, ...
213 sum(load_pow(1:N,1)) * delta_t, ...
214 sum(avail_pow(1:N,1)) * delta_t, ...
215 sum(supercap_draw(1:N,1)) * delta_t, ...
216 sum(net(1:N,1)) * delta_t, ...
217 sum(surplus(1:N,1)) * delta_t, ...
218 supercap_energy_final_mJ, ...
219 mean(running_duty_cycle (1:N,1)) ...
220 );
221 end
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C.2 PV Panel Model

1 clear all
2 clc
3

4 %% Information from the MSX-005F solar array datasheet
5 Iscn = 141e-3; %Nominal short-circuit current [A]
6 Vocn = 4.04; %Nominal array open-circuit voltage [V]
7 Imp = 115.7e-3; %Array current @ maximum power point [A]
8 Vmp = 3.01; %Array voltage @ maximum power point [V]
9 Pmax_e = Vmp* Imp; %Array maximum output peak power [W]
10 Kv = -16e-3; %Voltage/temperature coefficient [V/K]
11 Ki = 0.15e-3; %Current/temperature coefficient [A/K]
12 Ns = 8; %Nunber of series cells
13 Gn = 1000; %Nominal irradiance [W/mˆ2] @ 25oC
14 Tn = 25 + 273.15; %Nominal operating temperature [K]
15

16 %% Constants
17 k = 1.3806503e-23; %Boltzmann [J/K]
18 q = 1.60217646e-19; %Electron charge [C]
19 a = 1.3;
20

21 %% Algorithm parameters
22 %Increment of Rs
23 Rsinc = 0.001;
24 %Initial value of "a"
25 %a = 1.0;
26 %Increment of "a"
27 %ainc = 0.01;
28 %Maximum tolerable power error
29 tol = 0.0001;
30 %Maximum number of iteractions for each value of "a"
31 nimax = 10000;
32 %Voltage points in each iteraction
33 nv = 200;

1 %This program evaluates the PV model for any T and G.
2 %You must run "adjust_model" first.
3 %%
4 % Inputs
5 T = 60; %Temperature [oC]
6 G = 880; %Irradiance [W/mˆ2]
7 % Constants
8 k = 1.3806503e-23; %Boltzmann [J/K]
9 q = 1.60217646e-19; %Electron charge [C]
10 % Thermal voltages
11 Vtn = k * Tn / q; %Thermal junction voltage (nominal)
12 T = T + 273.15;
13 Vt = k * T / q; %Thermal junction voltage (actual temperature)
14

15 %% Method of calculating Io
16 % Chose 1 to use the original method with (T/Tn)ˆ3
17 % Chose 2 to use the alternative method with KV and KI
18 method = 1;
19

20 %% Calculation of Io (method 1)
21 %This is the original Io equation generally found in the lite rature.
22 %This requires finding the optimal value of Eg.
23 %See details in:
24 %"Modeling and circuit-based simulation of photovoltaica arrays"
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25 if method == 1,
26 %Calculation of Eg and Io
27 Tmax = 75 + 273.15;
28 dT_ = Tmax - Tn;
29 Isc_ = ( Iscn + Ki * dT_ );
30 Voc_ = ( Vocn + Kv * dT_ );
31 Vt_ = k * Tmax / q;
32 Eg = log(Isc_ * Tnˆ3/Ion/Tmaxˆ3/(exp(Voc_/a/Ns/k/Tmax * q)-1)) * a* k* Tn* Tmax/q/(Tmax-Tn);
33 Io = Ion * (T/Tn)ˆ(3) * exp( q * Eg/a/ k * (1/Tn-1/T) );
34 end
35

36 %% Calculation of Io (method 2)
37 %This is the alternative Io equation suggested in:
38 %"Comprehensive approach to modeling and simulation of pho tovoltaic arrays"
39 if method == 2,
40 dT = T - Tn;
41 Isc_ = ( Iscn + Ki * dT );
42 Voc_ = ( Vocn + Kv * dT );
43 Ipv_ = (Rs+Rp)/Rp * Isc_; %% NEW %% UPDATED ON JUNE/2010 %%
44 Io = (Ipv - Voc_/Rp)/(exp(Voc_/Vt/a/Ns)-1); %% NEW %% UPDATED ON JUNE/2010 %%
45 end
46

47 %% Temperature and irradiation effect on the current
48 dT = T-Tn;
49 Ipvn = (Rs+Rp)/Rp * Iscn; % Nominal light-generated current
50 Ipv = (Ipvn + Ki * dT) * G/Gn; % Actual light-generated current
51 Isc = (Iscn + Ki * dT) * G/Gn; % Actual short-circuit current
52

53 %% Solving the I-V equation for several (V,I) pairs
54 clear V
55 clear I
56 V = 0:Vocn/nv:Vocn; % Voltage vector
57 I = zeros(1,size(V,2)); % Current vector
58

59 for j = 1 : size(V,2) %Calculates for all voltage values
60 % Solves g = I - f(I,V) = 0 with Newton-Raphson
61 g(j) = Ipv-Io * (exp((V(j)+I(j) * Rs)/Vt/Ns/a)-1)-(V(j)+I(j) * Rs)/Rp-I(j);
62 while (abs(g(j)) > 0.001)
63 g(j) = Ipv-Io * (exp((V(j)+I(j) * Rs)/Vt/Ns/a)-1)-(V(j)+I(j) * Rs)/Rp-I(j);
64 glin(j) = -Io * Rs/Vt/Ns/a * exp((V(j)+I(j) * Rs)/Vt/Ns/a)-Rs/Rp-1;
65 I_(j) = I(j) - g(j)/glin(j);
66 I(j) = I_(j);
67 end
68 end
69

70 %% I-V and P-V curves
71 % I-V curve
72 figure(3)
73 grid on
74 hold on
75 title( ’I-V curve’ );
76 xlabel( ’V [V]’ );
77 ylabel( ’I [A]’ );
78 xlim([0 max(V) * 1.1]);
79 ylim([0 max(I) * 1.1]);
80 %xlim([0 Vocn]);
81 %ylim([0 Iscn * 2]);
82 plot(V,I, ’LineWidth’ ,2, ’Color’ , ’k’ ) %
83

84 % P-V curve
85 figure(4)
86 grid on
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87 hold on
88 title( ’P-V curve’ );
89 xlabel( ’V [V]’ );
90 ylabel( ’P [W]’ );
91 xlim([0 max(V) * 1.1]);
92 ylim([0 max(V. * I) * 1.1]);
93 %xlim([0 Vocn]);
94 %ylim([0 Iscn * 2* Iscn]);
95 plot(V,V. * I, ’LineWidth’ ,2, ’Color’ , ’k’ ) %

1 % Matlab script for modeling a photovoltaic array
2 %
3 % Author: Marcelo Gradella Villalva
4 % Email: mvillalva@gmail.com
5 % University of Campinas, Brazil
6 %
7 % First version: May/2009
8 % Updated: June/2010
9 % Current version: March/2011
10 %
11 % If you like my work, please cite these two papers:
12 %
13 % M. G. Villalva, J. R. Gazoli, E. Ruppert F.
14 % "Comprehensive approach to modeling and simulation of pho tovoltaic arrays"
15 % IEEE Transactions on Power Electronics, 2009
16 % vol. 25, no. 5, pp. 1198--1208, ISSN 0885-8993
17 %
18 % M. G. Villalva, J. R. Gazoli, E. Ruppert F.
19 % "Modeling and circuit-based simulation of photovoltaica arrays"
20 % Brazilian Journal of Power Electronics, 2009
21 % vol. 14, no. 1, pp. 35--45, ISSN 1414-8862
22 %
23 % Visit: http://sites.google.com/site/mvillalva/pvmod el
24

25 %% Load PV device data
26 % Uncomment the line corresponding to the desired PV device:
27 data_MSX005F_2
28

29 %% Adjusting algorithm
30 plott = 0; %1 = Enables plotting during the algorithm execution
31 %0 = Disables plotting
32 % Reference values of Rs and Rp
33 Rs_max = (Vocn - Vmp)/ Imp;
34 Rp_min = Vmp/(Iscn-Imp) - Rs_max;
35

36 % Initial guesses of Rp and Rs
37 Rs = 0;
38 Rp = Rp_min;
39

40 % The model is adjusted at the nominal condition
41 T = Tn;
42 G = Gn;
43 Vtn = k * Tn / q; %Thermal junction voltage (nominal)
44 Vt = k * T / q; %Thermal junction voltage (current temperature)
45 %Ion = Iscn/(exp(Vocn/a/Ns/Vtn)-1); % Nominal diode satur ation current
46 %Io = Ion;
47 perror = Inf; %dummy value
48

49 % Iterative process for Rs and Rp until Pmax,model = Pmax,exp erimental
50 ni = 0;
51
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52 while (perror>tol) && (Rp > 0) && (ni < nimax)
53 ni = ni + 1;
54 % Temperature and irradiation effect on the current
55 dT = T-Tn;
56 Ipvn = (Rs+Rp)/Rp * Iscn; % Nominal light-generated current
57 Ipv = (Ipvn + Ki * dT) * G/Gn; % Actual light-generated current
58 Isc = (Iscn + Ki * dT) * G/Gn; % Actual short-circuit current
59 Io = (Ipv - Vocn/Rp)/(exp(Vocn/Vt/a/Ns)-1); %% NEW %% UPDATED ON JUNE/2010 %%
60 % Increments Rs
61 Rs = Rs + Rsinc;
62 Rp_ = Rp;
63 Rp = Vmp* (Vmp+Imp * Rs)/(Vmp * Ipv-Vmp * Io * exp((Vmp+Imp * Rs)/Vt/Ns/a)+Vmp * Io-Pmax_e);
64 % Solving the I-V equation for several (V,I) pairs
65 clear V
66 clear I
67 V = 0:Vocn/nv:Vocn; % Voltage vector
68 I = zeros(1,size(V,2)); % Current vector
69 for j = 1 : size(V,2) %Calculates for all voltage values
70 % Solves g = I - f(I,V) = 0 with Newton-Raphson
71 g(j) = Ipv-Io * (exp((V(j)+I(j) * Rs)/Vt/Ns/a)-1)-(V(j)+I(j) * Rs)/Rp-I(j);
72 while (abs(g(j)) > 0.001)
73 g(j) = Ipv-Io * (exp((V(j)+I(j) * Rs)/Vt/Ns/a)-1)-(V(j)+I(j) * Rs)/Rp-I(j);
74 glin(j) = -Io * Rs/Vt/Ns/a * exp((V(j)+I(j) * Rs)/Vt/Ns/a)-Rs/Rp-1;
75 I_(j) = I(j) - g(j)/glin(j);
76 I(j) = I_(j);
77 end
78 end % for j = 1 : size(V,2)
79

80 if (plott)
81 %Plots the I-V and P-V curves
82

83 %Current x Voltage
84 figure(1)
85 grid on
86 hold on
87 title( ’I-V curve - Adjusting Rs and Rp’ );
88 xlabel( ’V [V]’ );
89 ylabel( ’I [A]’ );
90 xlim([0 Vocn]);
91 ylim([0 Iscn]);
92

93 %Plots I x V curve
94 plot(V,I, ’LineWidth’ ,2, ’Color’ , ’k’ )
95

96 %Plots the "remarkable points" on the I x V curve
97 plot([0 Vmp Vocn],[Iscn Imp 0], ’o’ , ’LineWidth’ ,2, ’MarkerSize’ ,5, ’Color’ , ’k’ )
98

99 %Power x Voltage
100 figure(2)
101 grid on
102 hold on
103 title( ’P-V curve - Adjusting peak power’ );
104 xlabel( ’V [V]’ );
105 ylabel( ’P [W]’ );
106 xlim([0 Vocn])
107 ylim([0 Vmp* Imp]);
108 end % if(plott)
109

110 % Calculates power using the I-V equation
111 P = (Ipv-Io * (exp((V+I. * Rs)/Vt/Ns/a)-1)-(V+I. * Rs)/Rp). * V;
112

113 Pmax_m = max(P);
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114

115 perror = (Pmax_m-Pmax_e);
116

117 if (plott)
118 %Plots P x V curve
119 plot(V,P, ’LineWidth’ ,2, ’Color’ , ’k’ )
120

121 %Plots the "remarkable points" on the power curve
122 plot([0 Vmp Vocn],[0 Vmp * Imp 0], ’o’ , ’LineWidth’ ,2, ’MarkerSize’ ,5, ’Color’ , ’k’ )
123 end % if (plott)
124 end % while (error>tol)
125

126 if (Rp<0) Rp = Rp_
127 end
128 Ion = Io; %
129

130 %% Outputs
131 % I-V curve
132 figure(3)
133 grid on
134 hold on
135 title( ’Adjusted I-V curve’ );
136 xlabel( ’V [V]’ );
137 ylabel( ’I [A]’ );
138 xlim([0 Vocn* 1.1]);
139 ylim([0 Iscn * 1.1]);
140 plot(V,I, ’LineWidth’ ,2, ’Color’ , ’k’ ) %
141 plot([0 Vmp Vocn ],[Iscn Imp 0 ], ’o’ , ’LineWidth’ ,2, ’MarkerSize’ ,5, ’Color’ , ’k’ )
142

143 % P-V curve
144 figure(4)
145 grid on
146 hold on
147 title( ’Adjusted P-V curve’ );
148 xlabel( ’V [V]’ );
149 ylabel( ’P [W]’ );
150 xlim([0 Vocn* 1.1]);
151 ylim([0 Vmp* Imp* 1.1]);
152 plot(V,P, ’LineWidth’ ,2, ’Color’ , ’k’ ) %
153 plot([0 Vmp Vocn ],[0 Pmax_e 0 ], ’o’ , ’LineWidth’ ,2, ’MarkerSize’ ,5, ’Color’ , ’k’ )
154

155 disp(sprintf( ’Model info:\n’ ));
156 disp(sprintf( ’ Rp_min = %f’ ,Rp_min));
157 disp(sprintf( ’ Rp = %f’ ,Rp));
158 disp(sprintf( ’ Rs_max = %f’ ,Rs_max));
159 disp(sprintf( ’ Rs = %f’ ,Rs));
160 disp(sprintf( ’ a = %f’ ,a));
161 disp(sprintf( ’ T = %f’ ,T-273.15));
162 disp(sprintf( ’ G = %f’ ,G));
163 disp(sprintf( ’ Pmax,m = %f (model)’ ,Pmax_m));
164 disp(sprintf( ’ Pmax,e = %f (experimental)’ ,Pmax_e));
165 disp(sprintf( ’ tol = %f’ ,tol));
166 disp(sprintf( ’P_error = %f’ ,perror));
167 disp(sprintf( ’ Ipv = %f’ ,Ipv));
168 disp(sprintf( ’ Isc = %f’ ,Isc));
169 disp(sprintf( ’ Ion = %g’ ,Ion));
170 disp(sprintf( ’\n\n’ ));
171
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C.3 Supercapacitor Leakage

1 function energy_output = calc_100F_supercap_leakage_tuh(energy _begin, hour_elapsed)
2 %
3 % calc_100F_supercap_leakage(energy_begin, hour_elaps ed)
4 %
5 % Description:
6 % Calculates the energy leakage for 100F supercap using mode l of
7 % Christian Renner
8 %
9 % Parameters:
10 % energy_begin: energy level of the supercap at the beginnin g (in J)
11 % hour_elapsed: hour elapsed since the beginning
12 %
13 % Returns:
14 % energy_output: energy level of the supercap at the end (in J )
15 %
16 % Usage:
17 % calc_100F_supercap_leakage(600, 0.25);
18 %
19 % Author:
20 % Mustafa Imran Ali - mia08r@ecs.soton.ac.uk
21 %
22

23 %capacitance = 100; % 100 F
24 capacitance = 200; % 200 F
25 %capacitance = 350; % 350 F
26 %leak_current_mA = 0.1; % 0.3 mA
27 delta_t_sec = 1; % 1 sec
28 P0 = 9.3211e-12; % used with leakage model
29 alpha = 7.9298; % for leakage model
30

31 cap_energy = energy_begin;
32 cap_voltage = 0;
33 cap_leakage = 0;
34

35 % converting hour_elapsed in sec
36 time_end_sec = hour_elapsed * 3600;
37

38 % number of for-loop iterations
39 num_iterations = floor(time_end_sec / delta_t_sec);
40

41 % fringe time in case time_end_sec is not multiple of delta_t _sec
42 time_fringe = time_end_sec - num_iterations * delta_t_sec;
43

44 % trivial case when duration is less than or equal to minimum t ime unit
45 % no iteration is needed
46 if (time_end_sec < delta_t_sec)
47 cap_voltage = sqrt(2 * cap_energy / capacitance); % unit V
48 cap_leakage = P0 * exp(alpha * cap_voltage) * time_end_sec ; % unit J
49 next_cap_energy = cap_energy - cap_leakage; % unit J
50 cap_energy = max(next_cap_energy, 0); % unit J
51 else
52 for i=1:num_iterations,
53 cap_voltage = sqrt(2 * cap_energy / capacitance); % unit V
54 cap_leakage = P0 * exp(alpha * cap_voltage) * delta_t_sec ; % unit J
55 next_cap_energy = cap_energy - cap_leakage; % unit J
56 cap_energy = max(next_cap_energy, 0); % unit J
57 end
58

59 if (time_fringe > 0)
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60 cap_voltage = sqrt(2 * cap_energy / capacitance); % unit V
61 cap_leakage = P0 * exp(alpha * cap_voltage) * time_fringe ; % unit J
62 next_cap_energy = cap_energy - cap_leakage; % unit J
63 cap_energy = max(next_cap_energy, 0); % unit J
64 end
65 end
66

67 % Total energy leakage
68 energy_output = energy_begin - cap_energy;
69

C.4 Output Regulator Efficiency

1 function efficiency = calc_efficiency_MAX1724(v_in, i_load)
2 %
3 % calc_efficiency_MAX1724(v_in, i_load)
4 %
5 % Description:
6 % Calculates the power efficiency of MAX1724 using
7 % the given parameters.
8 %
9 % Parameters:
10 % v_in: input voltage
11 % i_load: output current draw
12 %
13 % Returns:
14 % efficiency: efficiency of MAX1724 between 0 and 1
15 %
16 % Usage:
17 % Eff_2_5V(i,1) = calc_efficiency_MAX1724(2.5, I_load2_ 5(i,1));
18 %
19 % Author:
20 % Jaein Jeong - jaein@eecs.berkeley.edu
21 %
22

23 efficiency = 0;
24

25 i_load_1_0 = [
26 0.010 0.020 0.030 0.040 0.050
27 0.060 0.070 0.080 0.090 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0 .800 0.900 1.000
28 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 20.000 30.0 00 40.000 50.000
29 ];
30

31 eff_1_0 = [
32 0.500 0.553 0.581 0.597 0.606 0.616 0.619 0.622 0.628 0.631 0.641 0 .647 0.650 0.653
33 0.656 0.659 0.663 0.663 0.666 0.675 0.681 0.684 0.688 0.691 0.694 0 .694 0.697
34 0.697 0.700 0.703 0.703 0.703
35 ];
36

37 i_load_1_5 = [
38 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090
39 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 2.000 3 .000 4.000 5.000
40 6.000 7.000 8.000 9.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000
41 ];
42

43 eff_1_5 = [0.538 0.606 0.634 0.656 0.666 0.672 0.675 0.678 0. 681 0.684
44 0.697 0.703 0.706 0.706 0.709 0.713 0.713 0.716 0.716 0.725 0.728 0 .731 0.734
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45 0.738 0.738 0.741 0.741 0.744 0.747 0.750 0.753 0.756 0.756 0 .759 0.763 0.763
46 ];
47

48 i_load_2_0 = [
49 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.200 0 .300 0.400 0.500
50 0.600 0.700 0.800 0.900 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8 .000 9.000
51 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100 .000 128.760
52 ];
53

54 eff_2_0 = [
55 0.575 0.644 0.684 0.706 0.719 0.728 0.731 0.734 0.738 0.741
56 0.753 0.759 0.763 0.766 0.769 0.769 0.769 0.772 0.772 0.778 0.781 0 .784 0.784 0.788
57 0.788 0.788 0.791 0.791 0.794 0.797 0.797 0.800 0.800 0.800 0 .803 0.803 0.803 0.806
58 ];
59

60 i_load_2_5 = [
61 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.200 0 .300 0.400 0.500
62 0.600 0.700 0.800 0.900 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8 .000 9.000
63 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100 .000 158.760
64 ];
65

66 eff_2_5 = [0.613 0.688 0.722 0.741 0.753 0.759 0.766 0.772 0. 775 0.778 0.791 0.797
67 0.800 0.800 0.800 0.803 0.803 0.803 0.806 0.809 0.813 0.816 0 .816 0.819 0.819
68 0.819 0.822 0.822 0.825 0.825 0.828 0.828 0.828 0.831 0.831 0.831 0 .834 0.838
69 ];
70

71 N = zeros(4,1);
72 N(1,1) = max(size(i_load_1_0));
73 N(2,1) = max(size(i_load_1_5));
74 N(3,1) = max(size(i_load_2_0));
75 N(4,1) = max(size(i_load_2_5));
76

77 vol = zeros(4,1);
78 vol(1,1) = 1.0;
79 vol(2,1) = 1.5;
80 vol(3,1) = 2.0;
81 vol(4,1) = 2.5;
82

83 eff = zeros(4,1);
84 eff(1,1) = interp1(i_load_1_0, eff_1_0, i_load);
85 eff(2,1) = interp1(i_load_1_5, eff_1_5, i_load);
86 eff(3,1) = interp1(i_load_2_0, eff_2_0, i_load);
87 eff(4,1) = interp1(i_load_2_5, eff_2_5, i_load);
88

89 if (i_load < i_load_1_0(1,1))
90 eff(1,1) = eff_1_0(1,1);
91 elseif (i_load > i_load_1_0(N(1,1),1))
92 eff(1,1) = eff_1_0(N(1,1),1);
93 end
94

95 if (i_load < i_load_1_5(1,1))
96 eff(2,1) = eff_1_5(1,1);
97 elseif (i_load > i_load_1_5(N(2,1),1))
98 eff(2,1) = eff_1_5(N(2,1),1);
99 end
100

101 if (i_load < i_load_2_0(1,1))
102 eff(3,1) = eff_2_0(1,1);
103 elseif (i_load > i_load_2_0(N(3,1),1))
104 eff(3,1) = eff_2_0(N(3,1),1);
105 end
106
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107 if (i_load < i_load_2_5(1,1))
108 eff(4,1) = eff_2_5(1,1);
109 elseif (i_load > i_load_2_5(N(4,1),1))
110 eff(4,1) = eff_2_5(N(4,1),1);
111 end
112

113 if (v_in >= 1.0 && v_in < 1.5)
114 if (i_load <= calc_max_iout_MAX1724(1.0))
115 efficiency = interp1(vol, eff, v_in);
116 else
117 error ’Output load is bigger than maximum of MAX1724’
118 end;
119 elseif (v_in >= 1.5 && v_in < 2.0)
120 if (i_load <= calc_max_iout_MAX1724(1.5))
121 efficiency = interp1(vol, eff, v_in);
122 else
123 error ’Output load is bigger than maximum of MAX1724’
124 end;
125 elseif (v_in >= 2.0 && v_in < 2.5)
126 if (i_load <= calc_max_iout_MAX1724(2.0))
127 efficiency = interp1(vol, eff, v_in);
128 else
129 error ’Output load is bigger than maximum of MAX1724’
130 end;
131 elseif (v_in < 1.0)
132 % input voltage of MAX1724 is out of range.
133 % represent it with the closest valid input.
134 if (i_load <= i_load <= calc_max_iout_MAX1724(1.0))
135 efficiency = interp1(vol, eff, 1.0);
136 else
137 error ’Output load is bigger than maximum of MAX1724’
138 end;
139 elseif (v_in >= 2.5)
140 % input voltage of MAX1724 is out of range.
141 % represent it with the closest valid input.
142 if (i_load <= i_load <= calc_max_iout_MAX1724(2.5))
143 efficiency = interp1(vol, eff, 2.5);
144 else
145 error ’Output load is bigger than maximum of MAX1724’
146 end;
147 else
148 error ’Input voltage of MAX1724 is out of range.’
149 end
150
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