Group and Total Dissipativity and Stability of different types of co-existing equilibrium points. Second, pre-existing
Multi-Equilibria Hybrid Automata stability conditions are adapted to illuminate the co-existence of
different types of equilibria by combining common and multiple
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Member, IEEE a hybrid automaton and give the definitiongrbup dissipativityfor
groups of locations of the hybrid automaton, @otl dissipativityfor

Abstract—Complex systems, which consist of different interdepende the WhOIE hybrld.automaton.. D,Iss!p,awlty of the groups of discrete
and interlocking subsystems, typically have multiple equibrium points locations will notimply the dissipativity of the whole hybrid automa-
associated with different set points of each operation modeThese ton. Additional cross-group-coupling conditions are established, and
systems are usually interpreted as hybrid systems. This pap studies common and multiple storage-like functions are used.
the conditions for dissipativity and some stability propetties of a class
of hybrid systems with multiple co-existing equilibrium points, modelled
as nonlinear hybrid automata. A classification of equilibria for hybrid
automata is proposed. The objective is to identify dissipate components Following [17], a hybrid automaton with inputs and outputs
as groups of discrete locations within the hybrid automaton formed
according to existing equilibria. An example is provided. H=(Q,E,X,U,Y, Dom,F,Init,G, R, h)

Il. PRELIMINARIES

Index Terms—Dissipativity theory, energy control, hybrid automata, 5 3 model for a hybrid system with:
control systems, computational methods.

o Discrete locations Q = {q1, g2, ..., qn.}-
» Continuous state, input and output spacesX’ C R", U/ C R™
I. MOTIVATION and)y C RP.

Many questions still remain unanswered in the modelling ande Continuous inputs: for eachg; € Q, there is one input space
analysis of switched and hybrid systems with myriad interdependent U, C U, and =, c o Uy,
and interlocking subsystems. These subsystems are entire systems énTransitions: £ C @ x Q, with E a finite set of edges.
themselves, not only different operation modes from the whole sys-» Location domains for eachg; € Q, there is one continuous
tem. In this scenario, the hybrid system has many different equilibria  state spacet,, C X, with J, ., Xy, = &', and Dom : Q@ —
and some subsystems probably have no equilibrium point. Ignoring 2%%. Dom(q;) C &,,.
these details may lead to oversimplification. The real potential ofe Continuous dynamics F = {fy(x,u) : ¢ € Q} is a
hybrid automata lies in the capability to capture the dynamics of collection of vector fields such thaft,, : &y, x Uy, — Ay,.
these kinds of systems: this is the motivation behind this work. Eachfy(x,-) is Lipschitz continuous ort,, in order to ensure
More general than switched systems, hybrid automata explicitly that in eachy; the solution exists and is unique.
consider the influence of the transition from one subsystem to anothes Set of initial states: Init C quEQ i X Xy CTQ XX
through guards, as well as impulses in the states represented by Guard maps. G : E — 2.
reset functions. We here define a framework to deal with multiple « Reset mapsR: E x X xU — 2%, For eache = (¢i,¢;) € E,
isolated equilibria in nonlinear hybrid automata and characterize some x € G(e) andu € Uy, R(e,x,u) C Xy,.
stability and dissipativity properties. The conditions proposed in this. Continuous outputs y = h(qi,x,u), h: Qx Xy, XUy, — Vo, -
paper for stability and dissipativity can be automatically checked For eachq; € @Q, there is one output spacg,, € ), and
using recent formal verification techniques for hybrid systems [1]. Y=UyeqYa

Dissipativity in switched systems has been studied by means ofconsider the execution off, ¢ = (7,¢,x), with hybrid time
common storage functions [2] and, with less restriction, multiplgajectory+ = {[t;,#/]}, € T, and T the set of all hybrid time
storage functions [3]. The expanded results of these are given,in [#hjectories [18]. We highlight that for all < i < N, ¢; < ¢} = t;41.
[5], [6], and within the framework of differential inclusions [7]. Tteer o ) ) )
are also studies of feedback passivity of continuous and discrete-tifgfinition 1. Aninput sequence of S a collectiong, = (7, u)
switched systems [8], [9]. Dissipativity in hybrid automata has ndYith hybrid time trajectoryr = {[t;, ]}~ € T, and the mapping
attracted as much attention. Within hybrid systems, dissipativity h¥s 7 — U, satisfying
been successfully applied to study the asymptotic stability of compactl) Initial condition . u(to) € Uy,) With (g(to), x(to)) € Init
sets in a general class of jump systems (see [10], [11] and refeenc ~ andx(to) € Dom(q(to)).
therein), the control of interconnected impulsive systems [12], or the2) Continuous evolution For all i: V¢ € [t;, ], q(t) is constant
control of impact mechanical systems [13]. The analysis of switched ~andVt € [t;,17), u(t) € Uy, is continuous.
and hybrid systems with multiple equilibria is less common [14], 3) Discrete transitions For all e = (q(t;),q(ti+1)) € E, i €
[15], [16]. Our approach differs because we provide an altemativ. =~ {0, 1,..., N — 1} 3u(tiy1) € Uy(r, ) u

framework for hybrid automata, with reference to complex larggsefinition 2. An output sequence off is a collectiong, = (r,y)

scale systems with different types of discontinuities, multiple isolatgg, hybrid time trajectoryr = {[t;,t]]}~, € T, and the mapping
equilibria, and non-identical subsystem dynamic structures — whigh. - .y, " satisfying T

allows having different continuous state space for every subsystem
In this work, we do not consider Zeno equilibria as in [15].

In brief, the contribution of this paper is three-fold. First, we
establish a framework within nonlinear hybrid automata to define

1) Initial condition. y(to) € Vyu,) With y(to) =
h(q(to), x(t0), u(to)), and (q(to),x(to)) € Init, x(to) €
Dom(q(to)), u(to) € Uy(s)-

2) Continuous evolution For all i: V¢ € [t;,t;], ¢(t) is constant,

Work supported by the EPSRC projé2¥VERSE: A New Kind of Control andVt € [t;, t;) we have thay () = h(q(t), x(t), u(t)), h is

for Hybrid Systems(EP/I001689/1) and the RCUK grant EP/E50048/1. smooth,y (t) € Yy, x(t) € Dom(q(t)), andu(t) € Uy
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eva. navarro@s. man. ac. uk. D.S. Laila is with the Faculty of En- L A q/ 1/2 ATy B Yt
gineering and the Environment, The University of Southamptdighfield, Vo) X(ti) = G(e) and u(ti) € Uy, and Iy (tip1) €
Southampton SO17 1BJ, UKL | ai | a@ot on. ac. uk Va(t:4,) Obtained by using(ti41) € R(e,x(t;),u(t;)). m



An executiong, an input sequenceg, or an output sequencg,
is finite if 7 is a finite sequence ending with a closed interval, that
is N < oo, In = [tn, ty] With £y < oo, and isinfinite if 7 is (i)
a finite sequence ending with an infinite intervd¥ (< oo, In =
[tn, ), ty = oo) or (i) an infinite sequenceN = o). The set
of executions with initial condition(q(to), x(t0)) IS Eq(te).x(to))-
It is 5{;@0)“%)) for finite executions o7 ;) x(x,)) for infinite
executions.

For any ¢ € Q, we consider T|g =
{tais taiy -+ tais -+ tain 5 4(tai) = gk € N}, as the
sequence of times when the locatign becomes ACTIVE, and
Tl|qi = {t/qilat/qiga . '7t::1ika LR téliMq, 5 (I(tqik) = 4, k € N}l as

the sequence of times when the locatignbecomes INACTIVE,

with Ny, and M, the number of entrances to and exits fram g 1.
respectively. For instance, #f€ [tq;, , g, ] € 7, ¢ is active, for the
kth time. We also usd”|¢ to denote the sequence of times when i . 5
ai becomes inactive to change to another locatign We define stick, stands forSy = {|s'| < 0}, sticky for Go = {las| <

15-location hybrid automaton of the closed-loop drillstring.

I(T|g:) as the set of time intervals during which locatign is % lueax)| < Ts‘i}’_ slivi rfor_Si = {s0 > ab, Sh‘pg for
active: that iSI(T|qi)=UNfi o £ ] Gy{zs > 5},4—51113r for g, = {s" < -4}, and slip, for
Consider the following SIC);slte?ng' o {wa < —0}; tr™ denotesGy. = {lzs| < 9, uea(x) > T, }, and
: tr~ denotesG® = {|z3| <6, teq(x) < —T, }.
x(t) = f(x(t),u(t)), y(t) =h(x(t),u(t)), (1) Note that in the specification of the domains, to avoid numerical
x(k+1) = F(x(k),ulk), yk) = Hx(k),uk)), (2) problems with zero detection in the simulation, we define a neigh-

bourhood around zero with a small> 0.
with x € R", u € R™, y € R” andf, h, F, H are smooth mappings  The letters on the edges represent theguards ofH: a < GJ N
and maps. The system (1) is dissipative w.r.t. the supply rate functigh, b < G% N S, ¢ < Gi NSy, de Gin Si,es G N St
s(y,u), with ['|(s(y(c),u(0))|do < 00,Vt > 0, if there exists @ f < G2 N S", g < GLNS, he GL NS, i« G NS,
positive definite storage function : R* — R, such that for ango  j o {x € R®: |z3] > 6} N SH k< {x € R®: |z3] > 6} NS~
and anyt; > to, the following relation is satisfied for alt(¢o) [19]: 1< {x €R3: |z3] > 6} NS,

Vi(x(ts)) — V(x(to)) §/ s(y(o),u(0)) do, ¥(x,u). (3) IV. CLASSIFICATION OF EQUILIBRIA

to
Inspired by [21], we propose several types of equilibria, and split

1 . ) .
For V € C', inequality (3) is equivalent to [19], the discrete locations aff into groups, depending on these equilibria

BS(X) f(x,u) < s(h(x,u),u), vx e R",Vvu e R™.  (4) (see Fig. 2).
X
The system (2) is dissipative w.r.t. the supply rate functighthere
exists a positive definite storage functidf such thatvz(0), Vk € X, .
{0,1,2,...} [20]:
X,
Vx(k+ 1)) = Vx(k)) < s(y(k), u(k), Y(x(k), u(k).  (5) <L
I1l. A M OTIVATING EXAMPLE X

To illustrate the results in this paper, we consider a simplified
model of the torsional behaviour of a conventional vertical oilweffig- 2. An example of the division of the state spacef a hybrid automaton
drillstring that has multiple equilibria and is given in [17]. The™ith 5 discrete locations, 3 groups of locations and 3 grogilibria. The
o . . . o . unique equilibrium point within grougs belongs togs and g4. Moreover,
system may exhibit self-excited stick-slip oscillations depending O, N X, # 0.
the values of the control input to the system,and the weight on
the bit, W,p, which is a varying parameter. The drillstring witha
constant can be modelled assdocation hybrid automaton [17].  Definition 3. X, € R" is a non-virtual equilibrium of a discrete
As also shown in [17], the oscillations in the system can be elimocation ¢i € Q if: () Ju,, € U, such thatfy, (X, dq,) = 0
nated using a switching controller that drives the angular velocity 80d Xq; € cl(Xq,); (i) Ve € (¢: x Q) N E with Xq; € G(e),
the top-rotary system to a desired valug. > 0. The switching (€, Xq;, Uq;) = {Xq; }. Xq, is isolatedif it has a neighbourhood in
control mechanism is driven by the changing sign of a functiofa; Which contains no other equilibria. The equilibrium output for
s"(x,t), which is an integral function of the angular velocitiesd IS ¥q, = h(a,Xq;, g, )- u
Based on this model, the closed-loop system, given in [17], can Bgfinjtion 4. x,, € R™ is a virtual equilibrium of locationg; € Q
represented by thé5-location hybrid automaton of Fig. 1, with: Ty, € Uy, such thatfy (X, 1) = 0 and Xq, & cl(X,,), but
Xq. € cl(Xy.) for someg; € Q, q; i |
q1 = {slip;", slip'}, g2 = {slip, slip; }, gz = {slipy, , slipy }, “ (%) % E€Q 8 74

_ _ Definition 5. Let N, be the number of discrete locations of the
qa = {slipy, , slipy }, qs = {slip., stick:}, go = {sticky, stick,}, 4

hybrid automatonH. Consider a partitionP C @, with P =
qr = {slipy, , stick, }, qs = {sticky, slipy }, qo = {sticky, slip; }, {91,92,-.,gn,} and N; < Ng, such thatUj:\é}l g = Q and
qro = {tr*, slip}}, quu = {tr*, stick:}, q12 = {tr™, slip; }, NNs, g; = 0. Let N,, be the number of locations within each group
qi3 = {tr_75lipj_}7 qua = {tr~ stick.}, q15 = {tr~, slip; }. gi, with 1 < Ny, < Ng for all i. We associate with each group



gi: a subset of the state spacg,, such thathjegi Xy = Ay,
Uji"l Xy, = & and ﬂf\’:gl Xy = 0. Then,X,, € X, is a group
equilibrium for H if:

(i) There exists at least ong € g; for which X, is an isolated
non-virtual equilibrium forg;;

(ii) Xg; is the unique non-virtual equilibrium point for the discrete | et define@; := {g;

locations of the groupy;

Assumption 1. H switches from one location to another a finite
number of timesSy on any finite time interval. For any finite time
T, withtg < T < tn, and T € I; for some time interval; € 7,
there existsKr+ € Z*, such that during the time intervdto, 77,
Sy < K.

€ gj : Xg; is a group equilibrium and non-
virtual equilibrium of ¢}, T|Q; = {tqi,,tQiy, --->tQiy, ---; @S

(iii) X is not a non-virtual equilibrium for any discrete locationthe sequence of times when any location wittin becomes active

outside groupg;;
(iv) for e € (g; x gi) N E with Xy, € G(e), R(e,Xy,,-) = {Xq, };
(v) forall e € (g x (Q\ g1)) N E, Xg; ¢ G(e).

and|T|Qi| = Nin,qi- Consider(; as the set withinty; whereV,
is a Lyapunov function:

OV, (x
Remark 1. Condition (i) of Definition 5 allows a shared non-virtual Qq; = {X € Xy 1 qi € Qs ;;S )fq; (x,) < 0}7
equilibrium for several discrete locationg € g¢;. This also allows s (6)
locations with no equilibrium within the same group. Note that Qg = {Xg; } U ;.
ﬂq-Egi Xgy; can be a non-empty set, allowing the situation shown uEQU
in Ifig. 2. Now, we state a result on total stability of a group equilibrium

For instance, for tha5-location hybrid automaton shown in Fig.
1, we have:
o Virtual equilibrium for ¢; and g3 (for any value ofxs,, n
and )\), and fquS,qlo,qlg (onIy if T3y = %) Vi = (xgr

n  cp(zzr—n/N) Ty, (w3r—n/X n\T
1, b e + b T , T3r — X) .
o Virtual equilibrium for ¢2: Vo = (w3, — ¥ w +
Ty, (x3c+1/X) T
bk7t7 Tar + %) .
o Group equilibrium  within location ¢5: Xg, =
Cb13r+Tf+b(w3nWob) T
(g, ——— BT )T

Locations gs, g7, q11, q14, g4, q9, q12 and ¢15 have no equilibrium
point. All the discrete locations of th&s-location hybrid automaton
are grouped together ig .

V. TOTAL STABILITY OF GROUP EQUILIBRIA IN HYBRID
AUTOMATA

against all co-existing equilibria ifif for a particular case of hybrid
automata, in which executions start at a location whose domain
does not contain the domain of attraction of other group equilibrium
different fromx; .

Definition 8. Consider a hybrid automato/. Assume there is a
group equilibrium ofH, x,;, associated with the groug;, with X,

a non-virtual equilibrium ofg;, for at least oney; € g;. Then,H is
an Init-constrained hybrid automaton if

(a(to), x(t0)) € ((Qi x Qg) () Init), u(to) € |J U
4G EQ;
for all executions¢ = (7,¢,X) € Eq(to),x(ty)). and all input
sequence®, = (7, u). |

Theorem 1. (Total stability of a group equilibrium off) Consider
an Init-constrained hybrid automatof/. Let N, be the number
of groups of locations inH. ConsiderZ(7T|g;) as the set of time

The stability conditions presented in this section are adapttervals during which locationg; is active. Let definel’lg; =
from [22], [14], [23], [24] for nonlinear hybrid automata. Whilst in {tai,» teizs - - - ajy, - - -} @s the sequence of times when any location
these works, a different Lyapunov function is considered for ea&hdroupg; becomes active, arfl|gs = {tgs,, tes,, - - - tes, -} @S
subsystem, we have a different common Lyapunov function for ealflf sequence of times when any locationthat does not belong to
group of locations. We define lzall of radiusr > 0 around a point 9roupg; becomes active, witlh € gs, gs C @\ g;. Let Assumption 1
p € R"asB(r,p) = {x € R" : ||x —p| < r}, with || - || the hold.xg; is totally stable if there existV, group candidate Lyapunov
Euclidean 2-norm. functions{Vg,, ..., Vay, } such thatVo = (7, ¢,X) € Eqte).x(t0))
and V¢, = (7,u), the following conditions hold:

(i) Condition related to locations within g; for which X, is a
non-virtual equilibrium . vt € U, co. Z(T(¢:), Vg € Qi, and for
x(t) € Dom(g), u(t) € Uy, :
WOy, x).u(v) < 0. @
X
(i) Condition related to the entrances to anyg; for which x,; is
a non-virtual equilibrium . Vk € {1,..., Nin,qi — 1}:

ng (x(tQik+1))—ng (X(tQik)) <0 with tQikv tQik.H € T|Q1 (8)

(iii) Conditions related to locations of H for which X,; is not a

o ) ) o ... non-virtual equilibrium . For everyq: € Q \ Qi:
Stability is defined for any executions, whether finite or infinite, . } . .
a. There exists\ > 0 such that for every time, is active:

but attractivity is defined for infinite executions only since it is a
(9

property of convergence to a certain value.

with gr € Gr, and tz}ik = maxk{tQik S TlQl : tQik < tqu}
the last switch-on time before enterigg of any locationg; €
Qi, with 1o < 5, < tqr,. Note that ifg. € g; \ Qi, we
substituteVy, by Vg, in (9);
vVt € Z(T|q:),x(t) does not exhibit finite escape times, i.e.,
B, |x(t)||—o0 ast — te<co.

Definition 6. Givenxg, a group equilibrium ofH. %, € Xy, for
someg; € g; C Q, is:

(i) stable iff for all ¢ > 0 there existsi(e) > 0 such thatVe =
(7,4, %) € Eq(r) x(10))»

x(to) € B(6,Xg;) N Xyrg) = x(t) € B(¢,Xg;), VE € T.

(i) attractive iff there existsé; > 0 such thatv¢ = (7,¢,x) €
EGalto)x(to))s too = 2i(ti — 1),

X(to) S B(§1,§gj) n XQ(t0> = thm X(t) = igj.

—too

(iii) asymptotically stable if it is stable and attractive. ]

Ve (x(1)) < AV (x(£53,)), - for ¢ € [tar, tar,

Definition 7. Consider any group of locationg within H, and its
associated group equilibriunk,; € Xy, with Xy, = quegj Xy -
A function Vg, : Xy — R such that: (i) Vy; is continuously
differentiable within every: € gj; (i) Vi, (x) > 0, ¥x € A5 \{Xg, 5
(iii) Vi;(x) = 0 & x = Xg, is referred to asgroup candidate
Lyapunov function for the groupg; of H. ]

b.



(iv) Cross-group-coupling conditions when enteringg; from any
other group.

a. For every groupgs C Q \ gj, if Jtgs,, With tgs, € T'|gs:

‘/gj (X(tgjk )) < Vga (X(t;sk))7 (10)

Vigj, € T'|g; for which any location ofj; becomes active com-

*

ing from any location of grougs, with ¢, = maxj{tgs, €
T|gs : tgs, < tgj t the last time when a location withigs
became active before entering any locationgpf

b. Condition on resets. For everfys, q;) € E, with ¢s € gs C

Q\ gj andg; € g;:
Vi (x7) = Vi (x(te

qsyk

(11)

)) <0,
for all t,,, € T'|¢} such thatx(t,, ) € G(gs,q), x*

R(qs,qj,x(tésk), u(t&sk)), u(tquk) € Uy, with tquk the time
whengs becomes inactive to change to agye g;.

(i) Condition related to the entrances to locations within g;.
Vk € {1, ey Nin,gj — 1}:

ng (X(tgjk+1 )) - ng (x(tgjk)) < S(Y(tgjk)v u(tgjk))7

With tgj, , tejp,, € T|gj, and s = Sqj (v (tei ), ultei,)) if g € g;
became active at;, . [ ]

(13)

Condition (12) is equivalent to the dissipation inequality (4), and
must be verified for all time intervals that every discrete location in
g; is active. Furthermore, condition (13) generalizes for dissipative
systems the passivity conditions given in [3]. This is an extra
condition which guarantees that the switching sequence only adds
a bounded amount of energy into the system. Since sequences of
values of the group storage functions are considered in discrete time,
it is more appropriate to use the dissipation inequality for discrete-
time systems (5). The time gap between consecutive entrances to
any ¢; in gj includes the time wheg; is active and inactive. Thus,

The total stability conditions can be strengthened to total asympr3) considers the energy stored by the location while inactive, and is

totic stability as stated next.

bounded by the supplied energy calculated at the most recent entrance

Theorem 2. (Total asymptotic stability of a group equilibrium of 10 ;-

H) In addition to conditions of Theorem 1, if7) is a strict

Inspired by the results of [4] and [5], condition (12) can be relaxed

inequality and one of the following conditions is satisfied for affS follows.

¢ = (1,4,X) € EQu,) (1) and their associated infinite input pefinition 10. Let Ny, and Mj; be the number of entrances to and
sequences(i) condition (8) is substituted by the fact that for all exits fromg;, respectively; and consider the set-up of Definition 9.

@ € Qi the sequencé Vg, (x(tqi,))} converges to zero ak — oo;
or (i) for someg; € Qi, the setT'|q is finite andq(t) = ¢ for all
t e [tqiNqi,oo), with tain, € T|g; the last switch-on time fog;,
thenx,, is a totally asymptotically stable equilibrium of I in the
sense of Lyapunov. [ ]

Remark 2. The case of having the same non-virtual equilibrium
point for all the locations offf is a special case of our grouping of

locations.

VI. DISSIPATIVE GROUPS WITHIN A HYBRID AUTOMATON AND

TOTAL DISSIPATIVITY

We introduce the notion ofiroup dissipativityfor each group of
locations of H andtotal dissipativityfor the whole hybrid automaton.

Two key differences from previous works are: 1) multiple isolated

A group of locationgy; of H is weakly group dissipativew.r.t. the
supply functionss (y, u) of all g; € gj, if:

(i) Condition on discrete locations Vg; € g;, and Vvt € 7 for which
q(t) = g;, the followings hold instead of12):

a. If Ny = My;:
Ng
DD | Vi (xltiy,) = Vi (xe(tay, )~
Vaqj€gj k=1 / (14)
,K .‘uk Sq; (y(7),u(r)) dT:| <0.

b. If No; > My, then the execution has entergdand remains
there until terminal timety, with ¢y > taing » taing € Tlaj
is the last switch-on instant time qf, and: '

equilibria are present in the system, and some locations might have no
equilibrium, 2) due to the nature of hybrid automata, jumps between
locations at switching times are considered. We use multiple storage
functions, different for each group, whilst a group of locations will
share a common storage function.

To study the dissipativity in hybrid automata, we can exploit the
dissipativity of groups of locations to state the dissipativity of the
whole hybrid automaton. This is done by establishing appropriate
input and output relationships between the groups of locations.

Definition 9. LetT'|g; be the sequence of times when any location of
group g; becomes active ant¥;, ¢ the number of these entrances to
any locationg; € g;. Under Assumption 1, a group of locatiogsof

H is group dissipative w.r.t. the supply functions,, (y, u) defined
for eachg; € g, if there exists a group storage-like functidf, (x) i
satisfying the conditions of a group candidate Lyapunov functioh
such that for all executions = (7,¢,X) € Eq(ty),x(to)), and all

Ng;
DD Vi (X(ty,)) — Vi (Xt ) —
Vq;€g; k=1 (15)
!
- [y amdr| + 3 By <o
Lai Va;€gj
with

BQJ' = ng (x(ti\l)) - ng (x(tQJqu ))_

-/ N () dr

b
QJqu

ii) Condition related to the entrances to anyg; € g;. Condition
3) is satisfied.

input and output sequences, = (7, u), ¢, = (7,y), the followings
hold:
(i) Condition on discrete locations Vg; € g; and V¢ € 7 for which
q(t) = g;:

Ve (x(1))

gaiquj (x(t),u(t)) < sq;(y(t), u(t)),

with x(t) € Dom(q;), u(t) € Uy, y(t) € Vq;-

(12)

With conditions (14) and (15), during the time intervals anyis
active, the balance of stored and supplied energy; & allowed to
grow for all ¢; € g;, and the dissipativity of each group is obtained
as the total balance of stored and supplied energy whengaely;
is active.

To expand group dissipativity to the whole hybrid automaton, we
define total dissipativity.



Definition 11. Let T'|gs = {tgs;,tesy - -
quence of times when any location of graugecomes active. Under dissipative withs,, (y,u) = y™u, Vg € Q.

. lgs, ...} be the se-

Assumption 1, the hybrid automatdn is totally dissipative w.r.t. a

set of supply functionésq, (y, u), . ..

set of group storage-like functioqd/, (x), ..., Vey, (x)} satisfying

the conditions of a group candidate Lyapunov function, such that f

all ¢ = (7,q,%) € Eqto) x(t)), and all ¢, = (7,u), ¢, = (7, y):

(i) Condition on groups of locations All g; are group dissipative,

with

1<j< N,

(ii) Cross-group coupling when changing from one groupgs to
another g;. Vg; andVgs C Q \ gj, if Jtgs, , With tes, € T'|gs, Such

that:

a. Vigj, € T'|g; for which any location ofj; becomes active com-

ing from any location of grougs, with t;, = maxy {tes, €
T|gs : tgs, < tgj, } the last time when a locations within
any groupgs was active before entering any location gf

ng (X(tgjk)) = Ve, (X(t;sk)) < Sqq (y(t;sk)v u(t;sk))- (16)

Condition on resets. For every € g; and everygs € gs such
that (¢s, ;) € E:

Vey (x7) = Vi, (x(tas,)) < . (¥(tas,), utss,),

for all t,,, € T'|¢} such thatx(t,, ) € G(gs, q), x" =
R(gs, 45, %(t4s, ), u(tis, ) ¥ (L, ) € Vao, ul(tas,) € U, With
tqs, the time wherys becomes inactive to change to amye
gj. | |

7

s Sanyg (y,u)}, if there exists a

Vg € g;. The hybrid automatord! is totally passiveif it is totally
[ |

From the classical theory of dissipative systems [20], it is well
known that dissipative systems exhibit some stability properties
for some specific inputs, outputs and supply functions. Similarly,
flom our dissipativity definitions, we can conclude some of the
stability properties given in Section V for particular classes of hybrid
automata. For example, if a hybrid automatéh which is Init-
constrained to some groug is totally dissipative with respect to
supply functions{sq, (y,u),...,sqy, (y,u)} which are zero for
zero inputs (i.e.Vgqi, sq; (h(gi,x,0),0) = 0,Vx € Xy,) then for
somegq € gj, the equilibrium point of the zero-input dynamics
x = fq;(x,0) coincides with the group equilibrium pois,;, and
Xg; is totally stable.

VII. DISSIPATIVITY PROPERTIES IN THE EXAMPLE

We will check if thel5-location hybrid automaton is totally passive
WLt sq, = yqu, With yq, = z1 — 23 for ¢ € {1,2,3,4,5,7},
and y,;, = x1 for all other locations.z; and x3 are the angular
velocities of the top-rotary system and the bit, respectively, and
xz2 is the difference between the two angular displacements. For
all the locations,u = WepRs [Mcb + (s, —Mcb)exp_rfg%],
with R, > 0 the bit radius,ps,,ue, € (0,1) the static and
Coloumb friction coefficients associated with the Hit< ~, < 1
and vy > 0. Note that there is only one group of locations,
and we choose the following group storage-like functidf;

1 — 2 — 2 — 2 s —
Note that conditions (16) and (17) are required to take into accoui]t[(gc1 —Tgy )+ (02 = Ty )"+ +(23 — Ty, 5)°], With X, as

the impact of the stored and supplied energy at one group in the p&f!
on the stored energy in the most recently active group of locatio

These conditions are only checked when we change group.

Definition 12. The hybrid automato# is weakly totally dissipative
under all the assumptions considered in Definition 11 if one of the
following conditions holds:

(i) At least one group location is weakly group dissipative, and thg 1

others are group dissipative.
(i) All the group locations are group dissipative, and instead 16)
and/or (17) we have:

o Vgj,Vgs # g;, with ¢, as in Definition 11, the following holds

instead of (16):

>

ngk :gj become
active aftergs

Ing (x(taiy ) — Veu (x(tgs,)) —
(18)
—Sqs (y(tgsk)7u(t;sk)):| S 07
Vg € gi,V95,Vgs # gi, Vgs € gs such that(gs, q;) € E, the

following holds instead o{17):

qj
Mgy

>

(Ygs: (gs,q5)EE) k=1

ng (X+ )7ng (X(tzlsk )) -

(19)

—Sas (Y(tilsk)v u(t:}sk)):| SO,

Vb, € T'|¢ such thatx(t), ) € G(qs,q_j), x:
R(q87qj7x(tquk)7u(ti15k))f y € yCIs7u € uqS’ Wlth MQ: the
number of exits froms to ¢;, andt,,, the time whenys changes

asy
to g; € g;. |

Definition 13. A group of locationsg; of H is group passiveif

it is

group dissipative w.r.t. the supply functions (y,u) = yTu,

yen at the end of Section IV. The parameters used dre=

222 kg m2, Jy = 471.9698 kg m?, Ry = 0.155m, k; = 861.5336

Nm/rad, ¢; = 172.3067 N m s/rad, ¢, = 425 N'm s/rad, c, =
50 Nm s/rad, pie, = 0.5, jts, = 0.8, = 107¢ v, = 0.9, vy =
1. We will show howzs., A andW,,, affect the passivity of.

Group storage-like function Vg ] v, (z)/dt — s,,(y,u)

“f a G2 g
LY 5]
1t 99 20004 f‘/ /
V(1 T S
15 ._‘.(112 qi o qy.:, -
H 5 -4000 :
80§ H
ol § ) -6000) i
o b 5 10 15 20 25 30 -sooofi { q12
i 42 —10000‘5/
ah s ;
Yane -12000
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Fig. 3. Thelb5-location hybrid automaton is weakly totally passive for:
A=0.9, Wop, = 20kN andzs, = 12rad/s.

Fig. 3 shows the case whet# is not totally passive but only
weakly totally passive. In Fig 4, we show the case in which the
trajectories of H converge to the group equilibrium point g,
although it is non-totally passive. For the non-passive locations,
condition (12) does not hold; and far, condition (14) of weak
passivity also fails. Finally, for the stick-slip situation shown in Fig.
5, H is not totally passive because conditions (12) and (16) do not
hold for gs.

VIIl. CONCLUSIONS

We propose a new classification of equilibria in hybrid automata
and based on this, a partition of the continuous state space is given.
Some stability properties of co-existing isolated equilibria for a type
of hybrid automata are given, leading to what is called total stability.
Finally, group and total dissipativity properties of hybrid automata are
proposed. The example illustrates how the use of hybrid automata can
be useful in the analysis of complex hybrid systems.
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Fig. 4. Thel5-location hybrid automaton is: 1) weakly totally passivehwit
A= 0.9, Wop = 20kN andz3, = 12rad/s, in grey thick lines; 2) non-
totally passive, but with trajectories convergingatg, with A = 0.9, W, =
65 kN andzs, = 12rad/s; 3) non-totally passive with stick-slip oscillations
with A = 0.9, W,p, = 20kN andzs, = 1rad/s.

Group storage-like function V‘h vy, (z)/dt — S(Ii( Y, u)
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Fig. 5. Stick-slip situation for thé5-location hybrid automatoni! is not

totally passive for smalks,’s.

APPENDIX

Proof of Theorem 1 If the conditions for total stability foi,,

hold, the stability ofx,;, as given in Definition 6, is guaranteed. We

divide the sketch of the proof into four cases.
Case 1 The executions only visit one location for whish,; is a

non-virtual equilibrium. From condition (7), the proof corresponds tﬂ3]

the well-known proof of stability for smooth systems.

Case 2 The executions travel along locations (all or some location
within g; for whichx,; is a non-virtual equilibrium. With conditions
(7) and (8), the proof follows the same arguments as Branick
proof of Theorem 2.3 in [22] considering the common candid
Lyapunov functionV, (x) for all the locations withiry;. In addition,
(7) and (8) ensure that after a reset in every change of locatigns
decreased/maintained — just as in [24]. Therx #tarts inB(J,Xg;)
just before the reset, then" starts inB(4,%,;), and hencex™ stays
in B(e,Xg;) at the time of the reset, with € (0,¢). In brief, V,
decreases or is maintained as time progresses.

Case 3 The executions switch between locations, within the same

group, that do not contai®,; and the locations for whickk,; is a
non-virtual equilibrium. Sincéq(to), x(t0)) € ((Qi x Qg;) N Init),
we will always start afl,;, a discrete location whose domain satisfie
condition (7). Bearing in mind conditions @ase 2and conditions
(iii) .a and (iii) .b of our Theorem 1, the proof follows the sam

arguments as given in Theorem 1 of [23] for the case of haviqu]

a common Lyapunov function and switchings with resets.

b2

arguments as those given in the proof of Theorem 1 and Corollary 1
of [14], we can prove thak does not move away from the union of
the closed level sets for all the group candidate Lyapunov functions
of H. In addition, from conditions of Theorem 1, it is ensured that
3t* > 0, such thatvt > ¢*, x(t) remains close t&g, if x(t) starts
close tox,.
Proof of Theorem 2 It follows similar steps to the proof of

Theorem 1.
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