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Abstract—Complex systems, which consist of different interdependent
and interlocking subsystems, typically have multiple equilibrium points
associated with different set points of each operation mode. These
systems are usually interpreted as hybrid systems. This paper studies
the conditions for dissipativity and some stability properties of a class
of hybrid systems with multiple co-existing equilibrium points, modelled
as nonlinear hybrid automata. A classification of equilibria for hybrid
automata is proposed. The objective is to identify dissipative components
as groups of discrete locations within the hybrid automaton, formed
according to existing equilibria. An example is provided.

Index Terms—Dissipativity theory, energy control, hybrid automata,
control systems, computational methods.

I. M OTIVATION

Many questions still remain unanswered in the modelling and
analysis of switched and hybrid systems with myriad interdependent
and interlocking subsystems. These subsystems are entire systems in
themselves, not only different operation modes from the whole sys-
tem. In this scenario, the hybrid system has many different equilibria
and some subsystems probably have no equilibrium point. Ignoring
these details may lead to oversimplification. The real potential of
hybrid automata lies in the capability to capture the dynamics of
these kinds of systems: this is the motivation behind this work.
More general than switched systems, hybrid automata explicitly
consider the influence of the transition from one subsystem to another
through guards, as well as impulses in the states represented by
reset functions. We here define a framework to deal with multiple
isolated equilibria in nonlinear hybrid automata and characterize some
stability and dissipativity properties. The conditions proposed in this
paper for stability and dissipativity can be automatically checked
using recent formal verification techniques for hybrid systems [1].

Dissipativity in switched systems has been studied by means of
common storage functions [2] and, with less restriction, multiple
storage functions [3]. The expanded results of these are given in [4],
[5], [6], and within the framework of differential inclusions [7]. There
are also studies of feedback passivity of continuous and discrete-time
switched systems [8], [9]. Dissipativity in hybrid automata has not
attracted as much attention. Within hybrid systems, dissipativity has
been successfully applied to study the asymptotic stability of compact
sets in a general class of jump systems (see [10], [11] and references
therein), the control of interconnected impulsive systems [12], or the
control of impact mechanical systems [13]. The analysis of switched
and hybrid systems with multiple equilibria is less common [14],
[15], [16]. Our approach differs because we provide an alternative
framework for hybrid automata, with reference to complex large-
scale systems with different types of discontinuities, multiple isolated
equilibria, and non-identical subsystem dynamic structures – which
allows having different continuous state space for every subsystem.
In this work, we do not consider Zeno equilibria as in [15].

In brief, the contribution of this paper is three-fold. First, we
establish a framework within nonlinear hybrid automata to define
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different types of co-existing equilibrium points. Second, pre-existing
stability conditions are adapted to illuminate the co-existence of
different types of equilibria by combining common and multiple
Lyapunov-like functions. Finally, we identify dissipative parts within
a hybrid automaton and give the definition ofgroup dissipativityfor
groups of locations of the hybrid automaton, andtotal dissipativityfor
the whole hybrid automaton. Dissipativity of the groups of discrete
locations will not imply the dissipativity of the whole hybrid automa-
ton. Additional cross-group-coupling conditions are established, and
common and multiple storage-like functions are used.

II. PRELIMINARIES

Following [17], a hybrid automaton with inputs and outputs

H = (Q,E,X ,U ,Y, Dom,F , Init, G,R, h)

is a model for a hybrid system with:

• Discrete locations: Q = {q1, q2, . . . , qNq}.
• Continuous state, input and output spaces:X ⊆ Rn, U ⊆ Rm

andY ⊆ Rp.
• Continuous inputs: for eachqi ∈ Q, there is one input space

Uqi ⊆ U , andU =
⋃

qi∈Q Uqi .
• Transitions: E ⊆ Q×Q, with E a finite set of edges.
• Location domains: for eachqi ∈ Q, there is one continuous

state spaceXqi ⊆ X , with
⋃

qi∈Q Xqi = X , andDom : Q →

2Xqi . Dom(qi) ⊆ Xqi .
• Continuous dynamics: F = {fqi(x,u) : qi ∈ Q} is a

collection of vector fields such thatfqi : Xqi × Uqi → Xqi .
Eachfqi(x, ·) is Lipschitz continuous onXqi in order to ensure
that in eachqi the solution exists and is unique.

• Set of initial states: Init ⊆
⋃

qi∈Q qi ×Xqi ⊆ Q×X .
• Guard maps: G : E → 2X .
• Reset maps: R : E×X ×U → 2X . For eache = (qi, qj) ∈ E,

x ∈ G(e) andu ∈ Uqi , R(e,x,u) ⊂ Xqj .
• Continuous outputs: y = h(qi,x,u), h : Q×Xqi×Uqi → Yqi .

For eachqi ∈ Q, there is one output spaceYqi ⊆ Y, and
Y =

⋃

qi∈Q Yqi .

Consider the execution ofH, φ = (τ, q,x), with hybrid time
trajectoryτ = {[ti, t

′
i]}

N
i=0 ∈ T , andT the set of all hybrid time

trajectories [18]. We highlight that for all0 ≤ i < N , ti ≤ t′i = ti+1.

Definition 1. An input sequence ofH is a collectionφu = (τ,u)
with hybrid time trajectoryτ = {[ti, t

′
i]}

N
i=0 ∈ T , and the mapping

u : τ → U , satisfying

1) Initial condition . u(t0) ∈ Uq(t0) with (q(t0),x(t0)) ∈ Init

andx(t0) ∈ Dom(q(t0)).
2) Continuous evolution. For all i: ∀t ∈ [ti, t

′
i], q(t) is constant

and ∀t ∈ [ti, t
′
i), u(t) ∈ Uq(t) is continuous.

3) Discrete transitions. For all e = (q(t′i), q(ti+1)) ∈ E, i ∈
{0, 1, . . . , N − 1}: ∃u(ti+1) ∈ Uq(ti+1). �

Definition 2. An output sequence ofH is a collectionφy = (τ,y)
with hybrid time trajectoryτ = {[ti, t

′
i]}

N
i=0 ∈ T , and the mapping

y : τ → Y, satisfying

1) Initial condition . y(t0) ∈ Yq(t0) with y(t0) =
h(q(t0),x(t0),u(t0)), and (q(t0),x(t0)) ∈ Init , x(t0) ∈
Dom(q(t0)), u(t0) ∈ Uq(t0).

2) Continuous evolution. For all i: ∀t ∈ [ti, t
′
i], q(t) is constant,

and∀t ∈ [ti, t
′
i) we have thaty(t) = h(q(t),x(t),u(t)), h is

smooth,y(t) ∈ Yq(t), x(t) ∈ Dom(q(t)), andu(t) ∈ Uq(t).
3) Discrete transitions. For all e = (q(t′i), q(ti+1)) ∈ E, i ∈

{0, 1, . . . , N−1}: y(t′i) = h(q(t′i),x(t
′
i),u(t

′
i)) with y(t′i) ∈

Yq(t′
i
), x(t′i) = G(e) and u(t′i) ∈ Uq(t′

i
), and ∃y(ti+1) ∈

Yq(ti+1) obtained by usingx(ti+1) ∈ R(e,x(t′i),u(t
′
i)). �
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An executionφ, an input sequenceφu or an output sequenceφy

is finite if τ is a finite sequence ending with a closed interval, that
is N < ∞, IN = [tN, t

′
N] with t′N < ∞, and is infinite if τ is (i)

a finite sequence ending with an infinite interval (N < ∞, IN =
[tN, t

′
N), t

′
N = ∞) or (ii) an infinite sequence (N = ∞). The set

of executions with initial condition(q(t0),x(t0)) is E(q(t0),x(t0)).
It is EF

(q(t0),x(t0))
for finite executions orE∞

(q(t0),x(t0))
for infinite

executions.
For any qi ∈ Q, we consider T |qi =

{tqi1 , tqi2 , . . . , tqik , . . . , tqiNqi
; q(tqik) = qi, k ∈ N}, as the

sequence of times when the locationqi becomes ACTIVE, and
T ′|qi = {t′qi1 , t

′
qi2

, . . . , t′qik , . . . , t
′
qiMqi

; q(tqik) = qi, k ∈ N}, as
the sequence of times when the locationqi becomes INACTIVE,
with Nqi and Mqi the number of entrances to and exits fromqi,
respectively. For instance, ift ∈ [tqik , t

′
qik

] ∈ τ , qi is active, for the
kth time. We also useT ′|

qj
qi to denote the sequence of times when

qi becomes inactive to change to another locationqj. We define
I(T |qi) as the set of time intervals during which locationqi is
active: that is,I(T |qi) =

⋃Nqi
k=1[tqik , t

′
qik

].
Consider the following systems:

ẋ(t) = f(x(t),u(t)), y(t) = h(x(t),u(t)), (1)

x(k + 1) = F(x(k),u(k)), y(k) = H(x(k),u(k)), (2)

with x ∈ Rn, u ∈ Rm, y ∈ Rp andf ,h,F,H are smooth mappings
and maps. The system (1) is dissipative w.r.t. the supply rate function
s(y,u), with

∫ t

0
|(s(y(σ),u(σ))| dσ < ∞, ∀t ≥ 0, if there exists a

positive definite storage functionV : Rn → R, such that for anyt0
and anytf > t0, the following relation is satisfied for allx(t0) [19]:

V (x(tf))− V (x(t0)) ≤

∫ tf

t0

s(y(σ),u(σ)) dσ, ∀(x,u). (3)

For V ∈ C1, inequality (3) is equivalent to [19],

∂V (x)

∂x
f(x,u) ≤ s(h(x,u),u), ∀x ∈ Rn, ∀u ∈ Rm. (4)

The system (2) is dissipative w.r.t. the supply rate functions if there
exists a positive definite storage functionV , such that∀x(0), ∀k ∈
{0, 1, 2, . . .} [20]:

V (x(k + 1))− V (x(k)) ≤ s(y(k),u(k)), ∀(x(k),u(k)). (5)

III. A M OTIVATING EXAMPLE

To illustrate the results in this paper, we consider a simplified
model of the torsional behaviour of a conventional vertical oilwell
drillstring that has multiple equilibria and is given in [17]. The
system may exhibit self-excited stick-slip oscillations depending on
the values of the control input to the system,u, and the weight on
the bit,Wob, which is a varying parameter. The drillstring withu a
constant can be modelled as a5-location hybrid automaton [17].

As also shown in [17], the oscillations in the system can be elimi-
nated using a switching controller that drives the angular velocity of
the top-rotary system to a desired valuex3r > 0. The switching
control mechanism is driven by the changing sign of a function
sr(x, t), which is an integral function of the angular velocities.
Based on this model, the closed-loop system, given in [17], can be
represented by the15-location hybrid automaton of Fig. 1, with:

q1 = {slip+b , slip
+
r }, q2 = {slip+b , slip

−

r }, q3 = {slip−b , slip
+
r },

q4 = {slip−b , slip
−

r }, q5 = {slip+b , stickr}, q6 = {stickb, stickr},

q7 = {slip−b , stickr}, q8 = {stickb, slip
+
r }, q9 = {stickb, slip

−

r },

q10 = {tr+, slip+r }, q11 = {tr+, stickr}, q12 = {tr+, slip−r },

q13 = {tr−, slip+r }, q14 = {tr−, stickr}, q15 = {tr−, slip−r }.
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Fig. 1. 15-location hybrid automaton of the closed-loop drillstring.

stickr stands forSr
0 ≡ {|sr| ≤ δ}, stickb for Gδ

0 ≡ {|x3| ≤
δ, |ueq(x)| ≤ Tsb}, slip+r for Sr

+ ≡ {sr > δ}, slip+b for
G+{x3 > δ}, slip−r for Sr

− ≡ {sr < −δ}, and slip−b for
{x3 < −δ}; tr+ denotesGδ

+ ≡ {|x3| ≤ δ, ueq(x) > Tsb}, and
tr− denotesGδ

− ≡ {|x3| ≤ δ, ueq(x) < −Tsb}.
Note that in the specification of the domains, to avoid numerical

problems with zero detection in the simulation, we define a neigh-
bourhood around zero with a smallδ > 0.

The letters on the edges represent the12 guards ofH: a ⇔ Gδ
0 ∩

Sr
0, b ⇔ Gδ

− ∩ Sr
0, c ⇔ Gδ

+ ∩ Sr
0, d ⇔ Gδ

0 ∩ Sr
+, e ⇔ Gδ

− ∩ Sr
+,

f ⇔ Gδ
+ ∩ Sr

+, g ⇔ Gδ
0 ∩ Sr

−, h ⇔ Gδ
− ∩ Sr

−, i ⇔ Gδ
+ ∩ Sr

−,
j ⇔ {x ∈ R3 : |x3| > δ} ∩ Sr

0, k ⇔ {x ∈ R3 : |x3| > δ} ∩ Sr
−,

l ⇔ {x ∈ R3 : |x3| > δ} ∩ Sr
+.

IV. CLASSIFICATION OF EQUILIBRIA

Inspired by [21], we propose several types of equilibria, and split
the discrete locations ofH into groups, depending on these equilibria
(see Fig. 2).
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Fig. 2. An example of the division of the state spaceX of a hybrid automaton
with 5 discrete locations, 3 groups of locations and 3 group equilibria. The
unique equilibrium point within groupg3 belongs toq3 and q4. Moreover,
Xq3

⋂
Xq4 6= ∅.

Definition 3. xqi ∈ Rn is a non-virtual equilibrium of a discrete
location qi ∈ Q if: (i) ∃uqi ∈ Uqi such thatfqi(xqi ,uqi) = 0
and xqi ∈ cl(Xqi); (ii) ∀e ∈ (qi × Q) ∩ E with xqi ∈ G(e),
R(e,xqi ,uqi) = {xqi}. xqi is isolatedif it has a neighbourhood in
Xqi which contains no other equilibria. The equilibrium output for
qi is yqi

= h(qi,xqi ,uqi). �

Definition 4. xqi ∈ Rn is a virtual equilibrium of locationqi ∈ Q
if ∃uqi ∈ Uqi such thatfqi(xqi ,uqi) = 0 and xqi 6∈ cl(Xqi), but
xqi ∈ cl(Xqj) for someqj ∈ Q, qj 6= qi. �

Definition 5. Let Nq be the number of discrete locations of the
hybrid automatonH. Consider a partitionP ⊂ Q, with P =
{g1, g2, . . . , gNg} and Ng ≤ Nq, such that

⋃Ng

i=1 gi = Q and
⋂Ng

i=1 gi = ∅. LetNgi be the number of locations within each group
gi, with 1 ≤ Ngi ≤ Nq for all i. We associate with each group
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gi a subset of the state spaceXgi such that
⋃

qj∈gi
Xqj = Xgi ,

⋃Ng

i=1 Xgi = X and
⋂Ng

i=1 Xgi = ∅. Then,xgi ∈ Xgi is a group
equilibrium for H if:
(i) There exists at least oneqi ∈ gi for which xgi is an isolated
non-virtual equilibrium forqi;
(ii) xgi is the unique non-virtual equilibrium point for the discrete
locations of the groupgi;
(iii) xgi is not a non-virtual equilibrium for any discrete location
outside groupgi;
(iv) for e ∈ (gi × gi) ∩ E with xgi ∈ G(e), R(e,xgi , ·) = {xgi};
(v) for all e ∈ (gi × (Q \ gi)) ∩ E, xgi /∈ G(e). �

Remark 1. Condition (i) of Definition 5 allows a shared non-virtual
equilibrium for several discrete locationsqi ∈ gi. This also allows
locations with no equilibrium within the same group. Note that
⋂

qj∈gi
Xqj can be a non-empty set, allowing the situation shown

in Fig. 2.

For instance, for the15-location hybrid automaton shown in Fig.
1, we have:

• Virtual equilibrium for q1 and q3 (for any value ofx3r, η
and λ), and for q8, q10, q13 (only if x3r = η

λ
): v1 = (x3r −

η
λ
, cb(x3r−η/λ)

kt
+

Tfb
(x3r−η/λ)

kt
, x3r −

η
λ
)T.

• Virtual equilibrium for q2: v2 = (x3r −
η
λ
, cb(x3r+η/λ)

kt
+

Tfb
(x3r+η/λ)

kt
, x3r +

η
λ
)T.

• Group equilibrium within location q5: xg1 =

(x3r,
cbx3r+T+

fb
(x3r,Wob)

kt
, x3r)

T.

Locations q6, q7, q11, q14, q4, q9, q12 and q15 have no equilibrium
point. All the discrete locations of the15-location hybrid automaton
are grouped together ing1.

V. TOTAL STABILITY OF GROUP EQUILIBRIA IN HYBRID

AUTOMATA

The stability conditions presented in this section are adapted
from [22], [14], [23], [24] for nonlinear hybrid automata. Whilst in
these works, a different Lyapunov function is considered for each
subsystem, we have a different common Lyapunov function for each
group of locations. We define aball of radiusr > 0 around a point
p ∈ Rn as B(r,p) = {x ∈ Rn : ‖x − p‖ < r}, with ‖ · ‖ the
Euclidean 2-norm.

Definition 6. Givenxgj a group equilibrium ofH. xgj ∈ Xqi , for
someqi ∈ gj ⊆ Q, is:
(i) stable iff for all ǫ > 0 there existsδ(ǫ) > 0 such that∀φ =
(τ, q,x) ∈ E(q(t0),x(t0)),

x(t0) ∈ B(δ,xgj) ∩ Xq(t0) ⇒ x(t) ∈ B(ǫ,xgj), ∀ t ∈ τ.

(ii) attractive iff there existsδ1 > 0 such that∀φ = (τ, q,x) ∈
E∞

(q(t0),x(t0))
, t∞ =

∑

i(t
′
i − ti),

x(t0) ∈ B(δ1,xgj) ∩ Xq(t0) ⇒ lim
t→t∞

x(t) = xgj .

(iii) asymptotically stable if it is stable and attractive. �

Stability is defined for any executions, whether finite or infinite,
but attractivity is defined for infinite executions only since it is a
property of convergence to a certain value.

Definition 7. Consider any group of locationsgj within H, and its
associated group equilibriumxgj ∈ Xgj , with Xgj =

⋃

qi∈gj
Xqi .

A function Vgj : Xgj → R such that: (i) Vgj is continuously
differentiable within everyqi ∈ gj; (ii) Vgj(x) > 0, ∀x ∈ Xgj\{xgj};
(iii) Vgj(x) = 0 ⇔ x = xgj , is referred to asgroup candidate
Lyapunov function for the groupgj of H. �

Assumption 1. H switches from one location to another a finite
number of timesSH on any finite time interval. For any finite time
T , with t0 < T ≤ tN, and T ∈ Ii for some time intervalIi ∈ τ ,
there existsKT ∈ Z+, such that during the time interval[t0, T ],
SH ≤ KT.

Let defineQi := {qi ∈ gj : xgj is a group equilibrium and non-
virtual equilibrium of qi}, T |Qi = {tQi1 , tQi2 , . . . , tQik , . . .} as
the sequence of times when any location withinQi becomes active
and |T |Qi| = Nin,Qi. ConsiderΩgj as the set withinXgj whereVgj

is a Lyapunov function:

Ωqi =

{

x ∈ Xqi : qi ∈ Qi,
∂Vgj(x)

∂x
fqi(x, ·) ≤ 0

}

,

Ωgj = {xgj}
⋃

qi∈Qi

Ωqi .
(6)

Now, we state a result on total stability of a group equilibrium
against all co-existing equilibria inH for a particular case of hybrid
automata, in which executions start at a location whose domain
does not contain the domain of attraction of other group equilibrium
different fromxgj .

Definition 8. Consider a hybrid automatonH. Assume there is a
group equilibrium ofH, xgj , associated with the groupgj, with xgj

a non-virtual equilibrium ofqi, for at least oneqi ∈ gj. Then,H is
an Init-constrained hybrid automaton if

(

q(t0),x(t0)
)

∈
(

(Qi × Ωgj)
⋂

Init
)

, u(t0) ∈
⋃

qi∈Qi

Uqi .

for all executionsφ = (τ, q,x) ∈ E(q(t0),x(t0)), and all input
sequencesφu = (τ,u). �

Theorem 1. (Total stability of a group equilibrium ofH) Consider
an Init-constrained hybrid automatonH. Let Ng be the number
of groups of locations inH. ConsiderI(T |qi) as the set of time
intervals during which locationqi is active. Let defineT |gj =
{tgj1 , tgj2 , . . . , tgjk , . . .} as the sequence of times when any location
of groupgj becomes active, andT |gs = {tgs1 , tgs2 , . . . , tgsk , . . .} as
the sequence of times when any locationqs, that does not belong to
groupgj becomes active, withqs ∈ gs, gs ⊂ Q\gj. Let Assumption 1
hold.xgj is totally stable if there existNg group candidate Lyapunov
functions{Vg1 , . . . , VgNg

} such that∀φ = (τ, q,x) ∈ E(q(t0),x(t0))

and ∀φu = (τ,u), the following conditions hold:
(i) Condition related to locations within gj for which xgj is a
non-virtual equilibrium . ∀t ∈

⋃

qi∈Qi
I(T |qi), ∀qi ∈ Qi, and for

x(t) ∈ Dom(qi), u(t) ∈ Uqi :

∂Vgj(x(t))

∂x
fqi(x(t),u(t)) ≤ 0. (7)

(ii) Condition related to the entrances to anyqi for which xgj is
a non-virtual equilibrium . ∀k ∈ {1, . . . , Nin,Qi − 1}:

Vgj(x(tQik+1
))−Vgj(x(tQik)) ≤ 0, with tQik , tQik+1

∈ T |Qi. (8)

(iii) Conditions related to locations of H for which xgj is not a
non-virtual equilibrium . For everyqr ∈ Q \Qi:

a. There existsλ > 0 such that for every timeqr is active:

Vgr(x(t)) ≤ λVgj(x(t
∗

Qik
)), for t ∈ [tqrk , t

′

qrk
], (9)

with qr ∈ gr, and t∗Qik
= maxk{tQik ∈ T |Qi : tQik ≤ tqrk}

the last switch-on time before enteringqr of any locationqi ∈
Qi, with t0 ≤ t∗Qik

≤ tqrk . Note that if qr ∈ gj \ Qi, we
substituteVgr by Vgj in (9);

b. ∀t ∈ I(T |qr),x(t) does not exhibit finite escape times, i.e.,
∄t, ‖x(t)‖→∞ as t → te<∞.
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(iv) Cross-group-coupling conditions when enteringgj from any
other group.

a. For every groupgs ⊂ Q \ gj, if ∃tgsk , with tgsk ∈ T |gs:

Vgj(x(tgjk)) ≤ Vgs(x(t
∗

gsk
)), (10)

∀tgjk ∈ T |gj for which any location ofgj becomes active com-
ing from any location of groupgs, with t∗gsk = maxk{tgsk ∈
T |gs : tgsk ≤ tgjk} the last time when a location withings
became active before entering any location ofgj.

b. Condition on resets. For every(qs, qj) ∈ E, with qs ∈ gs ⊂
Q \ gj and qj ∈ gj:

Vgj(x
+)− Vgs(x(t

′

qsk
)) ≤ 0, (11)

for all t′qsk ∈ T ′|
qj
qs such thatx(t′qsk) ∈ G(qs, qj), x+ =

R(qs, qj,x(t
′
qsk

),u(t′qsk)), u(t
′
qsk

) ∈ Uqs , with t′qsk the time
whenqs becomes inactive to change to anyqj ∈ gj. �

The total stability conditions can be strengthened to total asymp-
totic stability as stated next.

Theorem 2. (Total asymptotic stability of a group equilibrium of
H) In addition to conditions of Theorem 1, if(7) is a strict
inequality and one of the following conditions is satisfied for all
φ = (τ, q,x) ∈ E∞

(q(t0),x(t0))
and their associated infinite input

sequences:(i) condition (8) is substituted by the fact that for all
qi ∈ Qi the sequence{Vgj(x(tQik))} converges to zero ask → ∞;
or (ii) for someqi ∈ Qi, the setT |qi is finite andq(t) = qi for all
t ∈ [tqiNqi

,∞), with tqiNqi
∈ T |qi the last switch-on time forqi,

thenxgj is a totally asymptotically stable equilibrium ofH in the
sense of Lyapunov. �

Remark 2. The case of having the same non-virtual equilibrium
point for all the locations ofH is a special case of our grouping of
locations.

VI. D ISSIPATIVE GROUPS WITHIN A HYBRID AUTOMATON AND

TOTAL DISSIPATIVITY

We introduce the notion ofgroup dissipativityfor each group of
locations ofH andtotal dissipativityfor the whole hybrid automaton.
Two key differences from previous works are: 1) multiple isolated
equilibria are present in the system, and some locations might have no
equilibrium, 2) due to the nature of hybrid automata, jumps between
locations at switching times are considered. We use multiple storage
functions, different for each group, whilst a group of locations will
share a common storage function.

To study the dissipativity in hybrid automata, we can exploit the
dissipativity of groups of locations to state the dissipativity of the
whole hybrid automaton. This is done by establishing appropriate
input and output relationships between the groups of locations.

Definition 9. LetT |gj be the sequence of times when any location of
groupgj becomes active andNin,gj the number of these entrances to
any locationqj ∈ gj. Under Assumption 1, a group of locationsgj of
H is group dissipative w.r.t. the supply functionssqj(y,u) defined
for eachqj ∈ gj, if there exists a group storage-like functionVgj(x)
satisfying the conditions of a group candidate Lyapunov function,
such that for all executionsφ = (τ, q,x) ∈ E(q(t0),x(t0)), and all
input and output sequencesφu = (τ,u), φy = (τ,y), the followings
hold:
(i) Condition on discrete locations. ∀qj ∈ gj and ∀t ∈ τ for which
q(t) = qj:

∂Vgj(x(t))

∂x
fqj(x(t),u(t)) ≤ sqj(y(t),u(t)), (12)

with x(t) ∈ Dom(qj), u(t) ∈ Uqj , y(t) ∈ Yqj .

(ii) Condition related to the entrances to locations within gj.
∀k ∈ {1, . . . , Nin,gj − 1}:

Vgj(x(tgjk+1
))− Vgj(x(tgjk)) ≤ s(y(tgjk),u(tgjk)), (13)

with tgjk , tgjk+1
∈ T |gj, and s = sqj(y(tgjk),u(tgjk)) if qj ∈ gj

became active attgjk . �

Condition (12) is equivalent to the dissipation inequality (4), and
must be verified for all time intervals that every discrete location in
gj is active. Furthermore, condition (13) generalizes for dissipative
systems the passivity conditions given in [3]. This is an extra
condition which guarantees that the switching sequence only adds
a bounded amount of energy into the system. Since sequences of
values of the group storage functions are considered in discrete time,
it is more appropriate to use the dissipation inequality for discrete-
time systems (5). The time gap between consecutive entrances to
any qj in gj includes the time whenqj is active and inactive. Thus,
(13) considers the energy stored by the location while inactive, and is
bounded by the supplied energy calculated at the most recent entrance
to qj.

Inspired by the results of [4] and [5], condition (12) can be relaxed
as follows.

Definition 10. Let Nqj andMqj be the number of entrances to and
exits fromqj, respectively; and consider the set-up of Definition 9.
A group of locationsgj of H is weakly group dissipativew.r.t. the
supply functionssqj(y,u) of all qj ∈ gj, if:
(i) Condition on discrete locations. ∀qj ∈ gj, and∀t ∈ τ for which
q(t) = qj, the followings hold instead of(12):

a. If Nqj = Mqj :

∑

∀qj∈gj

Nqj
∑

k=1

[

Vgj(x(t
′

qjk
))− Vgj(x(tqjk))−

−

∫ t′qjk

tqjk

sqj(y(τ),u(τ)) dτ

]

≤ 0.

(14)

b. If Nqj > Mqj , then the execution has enteredqj and remains
there until terminal timet′N, with t′N ≥ tqjNqj

, tqjNqj
∈ T |qj

is the last switch-on instant time ofqj, and:

∑

∀qj∈gj

Nqj
∑

k=1

[

Vgj(x(t
′

qjk
))− Vgj(x(tqjk))−

−

∫ t′qjk

tqjk

sqj(y(τ),u(τ)) dτ

]

+
∑

∀qj∈gj

Bqj ≤ 0,

(15)

with

Bqj = Vgj(x(t
′

N))− Vgj(x(tqjNqj
))−

−

∫ t′N

tqjNqj

sqj(y(τ),u(τ)) dτ.

(ii) Condition related to the entrances to anyqj ∈ gj. Condition
(13) is satisfied. �

With conditions (14) and (15), during the time intervals anyqj is
active, the balance of stored and supplied energy ofgj is allowed to
grow for all qj ∈ gj, and the dissipativity of each group is obtained
as the total balance of stored and supplied energy when eachqj ∈ gj
is active.

To expand group dissipativity to the whole hybrid automaton, we
define total dissipativity.
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Definition 11. Let T |gs = {tgs1 , tgs2 , . . . , tgsk , . . .} be the se-
quence of times when any location of groupgs becomes active. Under
Assumption 1, the hybrid automatonH is totally dissipative w.r.t. a
set of supply functions{sq1(y,u), . . . , sqNq

(y,u)}, if there exists a
set of group storage-like functions{Vg1(x), . . . , VgNg

(x)} satisfying
the conditions of a group candidate Lyapunov function, such that for
all φ = (τ, q,x) ∈ E(q(t0),x(t0)), and all φu = (τ,u), φy = (τ,y):
(i) Condition on groups of locations. All gj are group dissipative,
with 1 ≤ j ≤ Ng.
(ii) Cross-group coupling when changing from one groupgs to
another gj. ∀gj and ∀gs ⊂ Q \ gj, if ∃tgsk , with tgsk ∈ T |gs, such
that:

a. ∀tgjk ∈ T |gj for which any location ofgj becomes active com-
ing from any location of groupgs, with t∗gsk = maxk{tgsk ∈
T |gs : tgsk ≤ tgjk} the last time when a locationqs within
any groupgs was active before entering any location ofgj:

Vgj(x(tgjk))− Vgs(x(t
∗

gsk
)) ≤ sqs

(

y(t∗gsk),u(t
∗

gsk
)
)

. (16)

b. Condition on resets. For everyqj ∈ gj and everyqs ∈ gs such
that (qs, qj) ∈ E:

Vgj(x
+)− Vgs(x(t

′

qsk
)) ≤ sqs

(

y(t′qsk),u(t
′

qsk
)
)

, (17)

for all t′qsk ∈ T ′|
qj
qs such thatx(t′qsk) ∈ G(qs, qj), x+ =

R(qs, qj,x(t
′
qsk

),u(t′qsk)), y(t
′
qsk

) ∈ Yqs ,u(t
′
qsk

) ∈ Uqs , with
t′qsk the time whenqs becomes inactive to change to anyqj ∈
gj. �

Note that conditions (16) and (17) are required to take into account
the impact of the stored and supplied energy at one group in the past,
on the stored energy in the most recently active group of locations.
These conditions are only checked when we change group.

Definition 12. The hybrid automatonH is weakly totally dissipative
under all the assumptions considered in Definition 11 if one of the
following conditions holds:
(i) At least one group location is weakly group dissipative, and the
others are group dissipative.
(ii) All the group locations are group dissipative, and instead of(16)
and/or (17) we have:

• ∀gj, ∀gs 6= gj, with t∗gsk as in Definition 11, the following holds
instead of (16):

∑

∀tgjk
:gj becomes

active aftergs

[

Vgj(x(tgjk))− Vgs(x(t
∗

gsk
))−

−sqs
(

y(t∗gsk),u(t
∗

gsk
)
)

]

≤ 0;

(18)

• ∀qj ∈ gj, ∀gj, ∀gs 6= gj, ∀qs ∈ gs such that(qs, qj) ∈ E, the
following holds instead of(17):

∑

(∀qs: (qs,qj)∈E)

M
qj
qs

∑

k=1

[

Vgj(x
+)−Vgj(x(t

′

qsk
))−

−sqs
(

y(t′qsk),u(t
′

qsk
)
)

]

≤0,

(19)

∀t′qsk ∈ T ′|
qj
qs such that x(t′qsk) ∈ G(qs, qj), x+ =

R(qs, qj,x(t
′
qsk

),u(t′qsk)), y ∈ Yqs ,u ∈ Uqs , with M
qj
qs the

number of exits fromqs to qj, andt′qsk the time whenqs changes
to qj ∈ gj. �

Definition 13. A group of locationsgj of H is group passive if
it is group dissipative w.r.t. the supply functionssqi(y,u) = yTu,

∀qi ∈ gj. The hybrid automatonH is totally passive if it is totally
dissipative withsqi(y,u) = yTu, ∀qi ∈ Q. �

From the classical theory of dissipative systems [20], it is well
known that dissipative systems exhibit some stability properties
for some specific inputs, outputs and supply functions. Similarly,
from our dissipativity definitions, we can conclude some of the
stability properties given in Section V for particular classes of hybrid
automata. For example, if a hybrid automatonH which is Init-
constrained to some groupgj is totally dissipative with respect to
supply functions{sq1(y,u), . . . , sqNq

(y,u)} which are zero for
zero inputs (i.e.,∀qi, sqi(h(qi,x, 0), 0) = 0, ∀x ∈ Xqi ) then for
some qi ∈ gj, the equilibrium point of the zero-input dynamics
ẋ = fqi(x, 0) coincides with the group equilibrium pointxgj , and
xgj is totally stable.

VII. D ISSIPATIVITY PROPERTIES IN THE EXAMPLE

We will check if the15-location hybrid automaton is totally passive
w.r.t. sqi = yqiu, with yqi = x1 − x3 for i ∈ {1, 2, 3, 4, 5, 7},
and yqi = x1 for all other locations.x1 and x3 are the angular
velocities of the top-rotary system and the bit, respectively, and
x2 is the difference between the two angular displacements. For

all the locations,u = WobRb

[

µcb + (µsb − µcb) exp
−

γb
vf

x3

]

,

with Rb > 0 the bit radius,µsb , µcb ∈ (0, 1) the static and
Coloumb friction coefficients associated with the bit,0 < γb < 1
and vf > 0. Note that there is only one group of locations,
and we choose the following group storage-like function:Vg1 =
1
2

[

(x1 − xg1,1)
2 + (x2 − xg1,2)

2+ +(x3 − xg1,3)
2
]

, with xg1 as
given at the end of Section IV. The parameters used are:Jr =
2122 kgm2, Jb = 471.9698 kgm2, Rb = 0.155m, kt = 861.5336
N m/rad, ct = 172.3067N ms/rad, cr = 425N ms/rad, cb =
50N ms/rad, µcb = 0.5, µsb = 0.8, δ = 10−6, γb = 0.9, vf =
1. We will show howx3r, λ andWob affect the passivity ofH.
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Fig. 3. The15-location hybrid automaton is weakly totally passive for:
λ = 0.9, Wob = 20 kN andx3r = 12 rad/s.

Fig. 3 shows the case whereH is not totally passive but only
weakly totally passive. In Fig 4, we show the case in which the
trajectories ofH converge to the group equilibrium point inq5,
although it is non-totally passive. For the non-passive locations,
condition (12) does not hold; and forq2 condition (14) of weak
passivity also fails. Finally, for the stick-slip situation shown in Fig.
5, H is not totally passive because conditions (12) and (16) do not
hold for q5.

VIII. C ONCLUSIONS

We propose a new classification of equilibria in hybrid automata
and based on this, a partition of the continuous state space is given.
Some stability properties of co-existing isolated equilibria for a type
of hybrid automata are given, leading to what is called total stability.
Finally, group and total dissipativity properties of hybrid automata are
proposed. The example illustrates how the use of hybrid automata can
be useful in the analysis of complex hybrid systems.
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Fig. 4. The15-location hybrid automaton is: 1) weakly totally passive with
λ = 0.9, Wob = 20 kN andx3r = 12 rad/s, in grey thick lines; 2) non-
totally passive, but with trajectories converging toxg1 with λ = 0.9, Wob =

65 kN andx3r = 12 rad/s; 3) non-totally passive with stick-slip oscillations
with λ = 0.9, Wob = 20 kN andx3r = 1 rad/s.
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Fig. 5. Stick-slip situation for the15-location hybrid automaton:H is not
totally passive for smallx3r’s.

APPENDIX

Proof of Theorem 1. If the conditions for total stability forxgj

hold, the stability ofxgj , as given in Definition 6, is guaranteed. We
divide the sketch of the proof into four cases.
Case 1. The executions only visit one location for whichxgj is a
non-virtual equilibrium. From condition (7), the proof corresponds to
the well-known proof of stability for smooth systems.
Case 2. The executions travel along locations (all or some locations)
within gj for which xgj is a non-virtual equilibrium. With conditions
(7) and (8), the proof follows the same arguments as Branicky’s
proof of Theorem 2.3 in [22] considering the common candidate
Lyapunov functionVgj(x) for all the locations withingj. In addition,
(7) and (8) ensure that after a reset in every change of location,Vgj is
decreased/maintained – just as in [24]. Then, ifx starts inB(δ,xgj)
just before the reset, thenx+ starts inB(δ,xgj), and hence,x+ stays
in B(ǫ,xgj) at the time of the reset, withδ ∈ (0, ǫ). In brief, Vgj

decreases or is maintained as time progresses.
Case 3. The executions switch between locations, within the same
group, that do not containxgj and the locations for whichxgj is a
non-virtual equilibrium. Since

(

q(t0),x(t0)
)

∈
(

(Qi×Ωgj)
⋂

Init
)

,
we will always start atΩgj , a discrete location whose domain satisfies
condition (7). Bearing in mind conditions ofCase 2and conditions
(iii) .a and (iii) .b of our Theorem 1, the proof follows the same
arguments as given in Theorem 1 of [23] for the case of having
a common Lyapunov function and switchings with resets.
Case 4. The executions travel along locations from different groups
with different group equilibria. In addition to conditions of the three
cases above, the cross-group-coupling conditions (10) and (11), one
for each different groupgs visited, are considered. Notice that in
this case, condition (9) is applied to any location in any group of
H for which xgj is not a non-virtual equilibrium. Following similar

arguments as those given in the proof of Theorem 1 and Corollary 1
of [14], we can prove thatx does not move away from the union of
the closed level sets for all the group candidate Lyapunov functions
of H. In addition, from conditions of Theorem 1, it is ensured that
∃t∗ > 0, such that∀t ≥ t∗, x(t) remains close toxg, if x(t) starts
close toxg.

Proof of Theorem 2. It follows similar steps to the proof of
Theorem 1.
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[16] S. Mastellone, D. Stipanović, and M. Spong, “Stability and convergence
for systems with switching equilibria,” inProc. 46th IEEE CDC, 2007,
pp. 4013–4020.
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