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Introduction

These notes are based on a lecture course given by the first author in the
Sedano Winter School on K-theory held in Sedano, Spain, on January 22-
27th of 2007. They aim at introducing K-theory of C∗-algebras, equivariant
K-homology and KK-theory in the context of the Baum-Connes conjecture.

We start by giving the main definitions, examples and properties of C∗-
algebras in Section 1. A central construction is the reduced C∗-algebra of a
locally compact, Hausdorff, second countable group G. In Section 2 we define
K-theory for C∗-algebras, state the Bott periodicity theorem and establish
the connection with Atiyah-Hirzebruch topological K-theory.

Our main motivation will be to study the K-theory of the reduced C∗-
algebra of a group G as above. The Baum-Connes conjecture asserts that
these K-theory groups are isomorphic to the equivariant K-homology groups
of a certain G-space, by means of the index map. The G-space is the universal
example for proper actions of G, written EG. Hence we procceed by discussing
proper actions in Section 3 and the universal space EG in Section 4.

Equivariant K-homology is explained in Section 5. This is an equivariant
version of the dual of Atiyah-Hirzebruch K-theory. Explicitly, we define the
groups KG

j (X) for j = 0, 1 and X a proper G-space with compact, second
countable quotient G\X. These are quotients of certain equivariant K-cycles
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by homotopy, although the precise definition of homotopy is postponed. We
then address the problem of extending the definition to EG, whose quotient
by the G-action may not be compact.

In Section 6 we concentrate on the case when G is a discrete group, and
in Section 7 on the case G compact. In Section 8 we introduce KK-theory
for the first time. This theory, due to Kasparov, is a generalization of both
K-theory of C∗-algebras and K-homology. Here we define KKj

G(A,C) for a
separable C∗-algebra A and j = 0, 1, although we again postpone the exact
definition of homotopy. The already defined KG

j (X) coincides with this group
when A = C0(X).

At this point we introduce a generalization of the conjecture called the
Baum-Connes conjecture with coefficients, which consists in adding coeffi-
cients in a G-C∗-algebra (Section 9). To fully describe the generalized conjec-
ture we need to introduce Hilbert modules and the reduced crossed-product
(Section 10), and to define KK-theory for pairs of C∗-algebras. This is done
in the non-equivariant situation in Section 11 and in the equivariant setting
in Section 12. In addition we give at this point the missing definition of ho-
motopy. Finally, using equivariant KK-theory, we can insert coefficients in
equivariant K-homology, and then extend it again to EG.

The only ingredient of the conjecture not yet accounted for is the index
map. It is defined in Section 13 via the Kasparov product and descent maps in
KK-theory. We finish with a brief exposition of the history of K-theory and
a discussion of Karoubi’s conjecture, which symbolizes the unity of K-theory,
in Section 14.

We thank the editor G. Cortiñas for his colossal patience while we were
preparing this manuscript, and the referee for her or his detailed scrutiny.

1 C∗-algebras

We start with some definitions and basic properties of C∗-algebras. Good
references for C∗-algebra theory are [1], [15], [40] or [42].

1.1 Definitions

Definition 1. A Banach algebra is an (associative, not necessarily unital)
algebra A over C with a given norm ‖ ‖

‖ ‖ : A −→ [0,∞)

such that A is a complete normed algebra, that is, for all a, b ∈ A, λ ∈ C,

1. ‖λa‖ = |λ|‖a‖,
2. ‖a+ b‖ ≤ ‖a‖+ ‖b‖,
3. ‖a‖ = 0⇔ a = 0,
4. ‖ab‖ ≤ ‖a‖‖b‖,
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5. every Cauchy sequence is convergent in A (with respect to the metric
d(a, b) = ‖a− b‖).

A C∗-algebra is a Banach algebra with an involution satisfying the C∗-
algebra identity.

Definition 2. A C∗-algebra A = (A, ‖ ‖, ∗) is a Banach algebra (A, ‖ ‖) with
a map ∗ : A→ A, a 7→ a∗ such that for all a, b ∈ A, λ ∈ C

1. (a+ b)∗ = a∗ + b∗,
2. (λa)∗ = λa∗,
3. (ab)∗ = b∗a∗,
4. (a∗)∗ = a,
5. ‖aa∗‖ = ‖a‖2 (C∗-algebra identity).

Note that in particular ‖a‖ = ‖a∗‖ for all a ∈ A: for a = 0 this is clear; if
a 6= 0 then ‖a‖ 6= 0 and ‖a‖2 = ‖aa∗‖ ≤ ‖a‖‖a∗‖ implies ‖a‖ ≤ ‖a∗‖, and
similarly ‖a∗‖ ≤ ‖a‖.

A C∗-algebra is unital if it has a multiplicative unit 1 ∈ A. A sub-C∗-
algebra is a non-empty subset of A which is a C∗-algebra with the operations
and norm given on A.

Definition 3. A ∗-homomorphism is an algebra homomorphism ϕ : A → B
such that ϕ(a∗) = (ϕ(a))∗, for all a ∈ A.

Proposition 1. If ϕ : A → B is a ∗-homomorphism then ‖ϕ(a)‖ ≤ ‖a‖ for
all a ∈ A. In particular, ϕ is a (uniformly) continuous map.

For a proof see, for instance, [42, Thm. 1.5.7].

1.2 Examples

We give three examples of C∗-algebras.

Example 1. Let X be a Hausdorff, locally compact topological space. Let
X+ = X ∪ {p∞} be its one-point compactification. (Recall that X+ is Haus-
dorff if and only if X is Hausdorff and locally compact.)

Define the C∗-algebra

C0(X) =
{
α : X+ → C |α continuous, α(p∞) = 0

}
,

with operations: for all α, β ∈ C0(X), p ∈ X+, λ ∈ C

(α+ β)(p) = α(p) + β(p),
(λα)(p) = λα(p),
(αβ)(p) = α(p)β(p),
α∗(p) = α(p),
‖α‖ = sup

p∈X
|α(p)| .
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Note that if X is compact Hausdorff, then

C0(X) = C(X) = {α : X → C |α continuous} .

Example 2. LetH be a Hilbert space. A Hilbert space is separable if it admits a
countable (or finite) orthonormal basis. (We shall deal with separable Hilbert
spaces unless explicit mention is made to the contrary.)

Let L(H) be the set of bounded linear operators on H, that is, linear maps
T : H → H such that

‖T‖ = sup
‖u‖=1

‖Tu‖ <∞ ,

where ‖u‖ = 〈u, u〉1/2. It is a complex algebra with

(T + S)u = Tu+ Su,

(λT )u = λ(Tu),
(TS)u = T (Su),

for all T, S ∈ L(H), u ∈ H, λ ∈ C. The norm is the operator norm ‖T‖
defined above, and T ∗ is the adjoint operator of T , that is, the unique bounded
operator such that

〈Tu, v〉 = 〈u, T ∗v〉

for all u, v ∈ H.

Example 3. Let L(H) be as above. A bounded operator is compact if it is a
norm limit of operators with finite-dimensional image, that is,

K(H) = {T ∈ L(H) |T compact operator} = {T ∈ L(H) | dimC T (H) <∞} ,

where the overline denotes closure with respect to the operator norm. K(H)
is a sub-C∗-algebra of L(H). Moreover, it is an ideal of L(H) and, in fact, the
only norm-closed ideal except 0 and L(H).

1.3 The reduced C∗-algebra of a group

Let G be a topological group which is locally compact, Hausdorff and second
countable (i.e. as a topological space it has a countable basis). There is a
C∗-algebra associated to G, called the reduced C∗-algebra of G, defined as
follows.

Remark 1. We need G to be locally compact and Hausdorff to guarantee the
existence of a Haar measure. The countability assumption makes the Hilbert
space L2(G) separable and also avoids some technical difficulties when later
defining Kasparov’s KK-theory.
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Fix a left-invariant Haar measure dg on G. By left-invariant we mean that
if f : G→ C is continuous with compact support then∫

G

f(γg)dg =
∫
G

f(g)dg for all γ ∈ G .

Define the Hilbert space L2G as

L2G =
{
u : G→ C

∣∣ ∫
G

|u(g)|2dg <∞
}
,

with scalar product

〈u, v〉 =
∫
G

u(g) v(g)dg

for all u, v ∈ L2G.
Let L(L2G) be the C∗-algebra of all bounded linear operators T : L2G→

L2G. On the other hand, define

CcG = {f : G→ C | f continuous with compact support} .

It is an algebra with

(f + h)(g) = f(g) + h(g),
(λf)(g) = λf(g),

for all f, h ∈ CcG, λ ∈ C, g ∈ G, and multiplication given by convolution

(f ∗ h)(g0) =
∫
G

f(g)h(g−1g0) dg for all g0 ∈ G.

Remark 2. When G is discrete,
∫
G
f(g)dg =

∑
G f(g) is a Haar measure, CcG

is the complex group algebra C[G] and f ∗ h is the usual product in C[G].

There is an injection of algebras

0 −→ CcG −→ L(L2G)
f 7→ Tf

where

Tf (u) = f ∗ u u ∈ L2G ,

(f ∗ u)(g0) =
∫
G

f(g)u(g−1g0)dg g0 ∈ G .

Note that CcG is not necessarily a sub-C∗-algebra of L(L2G) since it may
not be complete. We define C∗r (G), the reduced C∗-algebra of G, as the norm
closure of CcG in L(L2G):

C∗r (G) = CcG ⊂ L(L2G).

Remark 3. There are other possible completions of CcG. This particular one,
i.e. C∗r (G), uses only the left regular representation of G (cf. [42, Chapter 7]).
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1.4 Two classical theorems

We recall two classical theorems about C∗-algebras. The first one says that
any C∗-algebra is (non-canonically) isomorphic to a C∗-algebra of operators,
in the sense of the following definition.

Definition 4. A subalgebra A of L(H) is a C∗-algebra of operators if

1. A is closed with respect to the operator norm;
2. if T ∈ A then the adjoint operator T ∗ ∈ A.

That is, A is a sub-C∗-algebra of L(H), for some Hilbert space H.

Theorem 1 (I. Gelfand and V. Naimark). Any C∗-algebra is isomorphic,
as a C∗-algebra, to a C∗-algebra of operators.

The second result states that any commutative C∗-algebra is (canonically)
isomorphic to C0(X), for some topological space X.

Theorem 2 (I. Gelfand). Let A be a commutative C∗-algebra. Then A is
(canonically) isomorphic to C0(X) for X the space of maximal ideals of A.

Remark 4. The topology on X is the Jacobson topology or hull-kernel topology
[40, p. 159].

Thus a non-commutative C∗-algebra can be viewed as a ‘non-commutative,
locally compact, Hausdorff topological space’.

1.5 The categorical viewpoint

Example 1 gives a functor between the category of locally compact, Hausdorff,
topological spaces and the category of C∗-algebras, given by X 7→ C0(X).
Theorem 2 tells us that its restriction to commutative C∗-algebras is an equiv-
alence of categories,(

commutative
C∗-algebras

)
'
(

locally compact, Hausdorff,
topological spaces

)op
C0(X)←− X

On one side we have C∗-algebras and ∗-homorphisms, and on the other
locally compact, Hausdorff topological spaces with morphisms from Y to X
being continuous maps f : X+ → Y + such that f(p∞) = q∞. (The symbol op
means the opposite or dual category, in other words, the functor is contravari-
ant.)

Remark 5. This is not the same as continuous proper maps f : X → Y since
we do not require that the map f : X+ → Y + maps X to Y .
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2 K-theory of C∗-algebras

In this section we define the K-theory groups of an arbitrary C∗-algebra. We
first give the definition for a C∗-algebra with unit and then extend it to the
non-unital case. We also discuss Bott periodicity and the connection with
topological K-theory of spaces. More details on K-theory of C∗-algebras is
given in Section 3 of Cortiñas’ notes [12], including a proof of Bott periodicity.
Other references are [40], [43] and [50].

Our main motivation is to study the K-theory of C∗r (G), the reduced C∗-
algebra of G. From Bott periodicity, it suffices to compute Kj (C∗r (G)) for
j = 0, 1. In 1980, Paul Baum and Alain Connes conjectured that these K-
theory groups are isomorphic to the equivariant K-homology (Section 5) of a
certain G-space. This G-space is the universal example for proper actions of
G (Sections 3 and 4), written EG. Moreover, the conjecture states that the
isomorphism is given by a particular map called the index map (Section 13).

Conjecture 1 (P. Baum and A. Connes, 1980). Let G be a locally compact,
Hausdorff, second countable, topological group. Then the index map

µ : KG
j (EG) −→ Kj (C∗r (G)) j = 0, 1

is an isomorphism.

2.1 Definition for unital C∗-algebras

Let A be a C∗-algebra with unit 1A. Consider GL(n,A), the group of invertible
n by n matrices with coefficients in A. It is a topological group, with topology
inherited from A. We have a standard inclusion

GL(n,A) ↪→ GL(n+ 1, A)a11 . . . a1n

... · · ·
...

an1 . . . ann

 7→

a11 . . . a1n 0
... · · ·

...
...

an1 . . . ann 0
0 . . . 0 1A

 .

Define GL(A) as the direct limit with respect to these inclusions

GL(A) =
∞⋃
n=1

GL(n,A) .

It is a topological group with the direct limit topology : a subset θ is open if
and only if θ ∩ GL(n,A) is open for every n ≥ 1. In particular, GL(A) is a
topological space, and hence we can consider its homotopy groups.

Definition 5 (K-theory of a unital C∗-algebra).

Kj(A) = πj−1 (GL(A)) j = 1, 2, 3, . . .
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Finally, we define K0(A) as the algebraic K-theory group of the ring A, that
is, the Grothendieck group of finitely generated (left) projective A-modules
(cf. [12, Remark 2.1.9]),

K0(A) = Kalg
0 (A) .

Remark 6. Note that K0(A) only depends on the ring structure of A and so
we can ‘forget’ the norm and the involution. The definition of K1(A) does
require the norm but not the involution, so in fact we are defining K-theory
of Banach algebras with unit. Everything we say in 2.2 below, including Bott
periodicity, is true for Banach algebras.

2.2 Bott periodicity

The fundamental result is Bott periodicity. It says that the homotopy groups
of GL(A) are periodic modulo 2 or, more precisely, that the double loop space
of GL(A) is homotopy equivalent to itself,

Ω2GL(A) ' GL(A) .

As a consequence, the K-theory of the C∗-algebra A is periodic modulo 2

Kj(A) = Kj+2(A) j ≥ 0.

Hence from now on we will only consider K0(A) and K1(A).

2.3 Definition for non-unital C∗-algebras

If A is a C∗-algebra without a unit, we formally adjoin one. Define Ã = A⊕C
as a complex algebra with multiplication, involution and norm given by

(a, λ) · (b, µ) = (ab+ µa+ λb, λµ),
(a, λ)∗ = (a∗, λ),
‖(a, λ)‖ = sup

‖b‖=1

‖ab+ λb‖ .

This makes Ã a unital C∗-algebra with unit (0, 1). We have an exact sequence

0 −→ A −→ Ã −→ C −→ 0.

Definition 6. Let A be a non-unital C∗-algebra. Define K0(A) and K1(A) as

K0(A) = ker
(
K0(Ã)→ K0(C)

)
K1(A) = K1(Ã).

This definition agrees with the previous one when A has a unit. It also satisfies
Bott periodicity (see Cortiñas’ notes [12, 3.2]).
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Remark 7. Note that the C∗-algebra C∗r (G) is unital if and only ifG is discrete,
with unit the Dirac function on 1G.

Remark 8. There is algebraic K-theory of rings (see [12]). Althought a C∗-
algebra is in particular a ring, the two K-theories are different; algebraic
K-theory does not satisfy Bott periodicity and K1 is in general a quotient of
Kalg

1 . We shall compare both definitions in Section 14.3 (see also [12, Section
7]).

2.4 Functoriality

Let A,B be C∗-algebras (with or without units), and ϕ : A → B a ∗-
homomorphism. Then ϕ induces a homomorphism of abelian groups

ϕ∗ : Kj(A) −→ Kj(B) j = 0, 1.

This makes A 7→ Kj(A), j = 0, 1, covariant functors from C∗-algebras to
abelian groups [43, Sections 4.1 and 8.2].

Remark 9. When A and B are unital and ϕ(1A) = 1B , the map ϕ∗ is the one
induced by GL(A)→ GL(B), (aij) 7→ (ϕ(aij)) on homotopy groups.

2.5 More on Bott periodicity

In the original article [9], Bott computed the stable homotopy of the classical
groups and, in particular, the homotopy groups πj(GL(n,C) when n� j.

Fig. 1. Raoul Bott
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Theorem 3 (R. Bott [9]). The homotopy groups of GL(n,C) are

πj (GL(n,C)) =

{
0 j even
Z j odd

for all j = 0, 1, 2, . . . , 2n− 1.

As a corollary of the previous theorem, we obtain the K-theory of C,
considered as a C∗-algebra.

Theorem 4 (R. Bott).

Kj(C) =

{
Z j even,
0 j odd.

Sketch of proof. Since C is a field, K0(C) = Kalg
0 (C) = Z. By the polar

decomposition, GL(n,C) is homotopy equivalent to U(n). The homotopy long
exact sequence of the fibration U(n) → U(n + 1) → S2n+1 gives πj(U(n)) =
πj(U(n+1)) for all j ≤ 2n+1. Hence Kj(C) = πj−1(GL(C)) = πj−1(GL(2j−
1,C)) and apply the previous theorem.

Remark 10. Compare this result with Kalg
1 (C) = C∗ (since C is a field, see

[12, Ex. 3.1.6]). Higher algebraic K-theory groups for C are only partially
understood.

2.6 Topological K-theory

There is a close connection between K-theory of C∗-algebras and topological
K-theory of spaces.

Let X be a locally compact, Hausdorff, topological space. Atiyah and
Hirzebruch [3] defined abelian groups K0(X) and K1(X) called topological
K-theory with compact supports. For instance, if X is compact, K0(X) is the
Grothendieck group of complex vector bundles on X.

Theorem 5. Let X be a locally compact, Hausdorff, topological space. Then

Kj(X) = Kj (C0(X)) , j = 0, 1.

Remark 11. This is known as Swan’s theorem when j = 0 and X compact.

In turn, topological K-theory can be computed up to torsion via a Chern
character. Let X be as above. There is a Chern character from topological
K-theory to rational cohomology with compact supports

ch : Kj(X) −→
⊕
l≥0

Hj+2l
c (X; Q) , j = 0, 1.
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Here the target cohomology theory H∗c (−; Q) can be Čech cohomology
with compact supports, Alexander-Spanier cohomology with compact sup-
ports or representable Eilenberg-MacLane cohomology with compact sup-
ports.

This map becomes an isomorphism when tensored with the rationals.

Theorem 6. Let X be a locally compact, Hausdorff, topological space. The
Chern character is a rational isomorphism, that is,

Kj(X)⊗Z Q −→
⊕
l≥0

Hj+2l
c (X; Q) , j = 0, 1

is an isomorphism.

Remark 12. This theorem is still true for singular cohomology when X is a
locally finite CW-complex.

3 Proper G-spaces

In the following three sections, we will describe the left-hand side of the Baum-
Connes conjecture (Conjecture 1). The space EG appearing on the topological
side of the conjecture is the universal example for proper actions for G. Hence
we will start by studying proper G-spaces.

Recall the definition of G-space, G-map and G-homotopy.

Definition 7. A G-space is a topological space X with a given continuous
action of G

G×X −→ X.

A G-map is a continuous map f : X → Y between G-spaces such that

f(gp) = gf(p) for all (g, p) ∈ G×X.

Two G-maps f0, f1 : X → Y are G-homotopic if they are homotopic through
G-maps, that is, there exists a homotopy {ft}0≤t≤1 with each ft a G-map.

We will require proper G-spaces to be Hausdorff and paracompact. Recall
that a space X is paracompact if every open cover of X has a locally finite
open refinement or, alternatively, a locally finite partition of unity subordinate
to any given open cover.

Remark 13. Any metrizable space (i.e. there is a metric with the same under-
lying topology) or any CW-complex (in its usual CW-topology) is Hausdorff
and paracompact.

Definition 8. A G-space X is proper if

• X is Hausdorff and paracompact;
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• the quotient space G\X (with the quotient topology) is Hausdorff and para-
compact;

• for each p ∈ X there exists a triple (U,H, ρ) such that
1. U is an open neighborhood of p in X with gu ∈ U for all (g, u) ∈ G×U ;
2. H is a compact subgroup of G;
3. ρ : U → G/H is a G-map.

Note that, in particular, the stabilizer stab(p) is a closed subgroup of a con-
jugate of H and hence compact.

Remark 14. The converse is not true in general; the action of Z on S1 by an
irrational rotation is free but it is not a proper Z-space.

Remark 15. If X is a G-CW-complex then it is a proper G-space (even in the
weaker definition below) if and only if all the cell stabilizers are compact, see
Thm. 1.23 in [31].

Our definition is stronger than the usual definition of proper G-space,
which requires the map G × X → X × X, (g, x) 7→ (gx, x) to be proper, in
the sense that the pre-image of a compact set is compact. Nevertheless, both
definitions agree for locally compact, Hausdorff, second countable G-spaces.

Proposition 2 (J. Chabert, S. Echterhoff, R. Meyer [11]). If X is a
locally compact, Hausdorff, second countable G-space, then X is proper if and
only if the map

G×X −→ X ×X
(g, x) 7−→ (gx, x)

is proper.

Remark 16. For a more general comparison among these and other definitions
of proper actions see [7].

4 Classifying space for proper actions

Now we are ready for the definition of the space EG appearing in the state-
ment of the Baum-Connes Conjecture. Most of the material in this section is
based on Sections 1 and 2 of [5].

Definition 9. A universal example for proper actions of G, denoted EG, is
a proper G-space such that:

• if X is any proper G-space, then there exists a G-map f : X → EG and
any two G-maps from X to EG are G-homotopic.
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EG exists for every topological group G [5, Appendix 1] and it is unique up
to G-homotopy, as follows. Suppose that EG and (EG)′ are both universal
examples for proper actions of G. Then there exist G-maps

f : EG −→ (EG)′

f ′ : (EG)′ −→ EG

and f ′ ◦ f and f ◦ f ′ must be G-homotopic to the identity maps of EG and
(EG)’ respectively.

The following are equivalent axioms for a space Y to be EG [5, Appendix
2].

1. Y is a proper G-space.
2. If H is any compact subgroup of G, then there exists p ∈ Y with hp = p

for all h ∈ H.
3. Consider Y × Y as a G-space via g(y0, y1) = (gy0, gy1), and the maps

ρ0, ρ1 : Y × Y −→ Y

ρ0(y0, y1) = y0 , ρ1(y0, y1) = y1 .

Then ρ0 and ρ1 are G-homotopic.

Remark 17. It is possible to define a universal space for any family of (closed)
subgroups of G closed under conjugation and finite intersections [33]. Then
EG is the universal space for the family of compact subgroups of G.

Remark 18. The space EG can always be assumed to be a G-CW-complex.
Then there is a homotopy characterization: a proper G-CW-complex X is
an EG if and only if for each compact subgroup H of G the fixed point
subcomplex XH is contractible (see [33]).

Examples

1. If G is compact, EG is just a one-point space.
2. If G is a Lie group with finitely many connected components then
EG = G/H, where H is a maximal compact subgroup (i.e. maximal
among compact subgroups).

3. If G is a p-adic group then EG = βG the affine Bruhat-Tits building for
G. For example, βSL(2,Qp) is the (p+ 1)-regular tree, that is, the unique
tree with exactly p+ 1 edges at each vertex (see Figure 3) (cf. [47]).

4. If Γ is an arbitrary (countable) discrete group, there is an explicit con-
struction,

EΓ =
{
f : Γ → [0, 1]

∣∣ f finite support ,
∑
γ∈Γ

f(γ) = 1
}
,

that is, the space of all finite probability measures on Γ , topologized by
the metric d(f, h) =

√∑
γ∈Γ |f(γ)− h(γ)|2.
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Fig. 2. The (p+ 1)-regular tree is βSL(2,Qp)

5 Equivariant K-homology

K-homology is the dual theory to Atiyah-Hirzebruch K-theory (Section 2.6).
Here we define an equivariant generalization due to Kasparov [25, 26]. If X
is a proper G-space with compact, second countable quotient then KG

i (X),
i = 0, 1, are abelian groups defined as homotopy classes of K-cycles for X.
These K-cycles can be viewed as G-equivariant abstract elliptic operators on
X.

Remark 19. For a discrete group G, there is a topological definition of equiv-
ariant K-homology and the index map via equivariant spectra [14]. This and
other constructions of the index map are shown to be equivalent in [19].

5.1 Definitions

Let G be a locally compact, Hausdorff, second countable, topological group.
Let H be a separable Hilbert space. Write U(H) for the set of unitary

operators
U(H) = {U ∈ L(H) |UU∗ = U∗U = I} .

Definition 10. A unitary representation of G on H is a group homomor-
phism π : G→ U(H) such that for each v ∈ H the map πv : G→ H, g 7→ π(g)v
is a continuous map from G to H.

Definition 11. A G-C∗-algebra is a C∗-algebra A with a given continuous
action of G
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G×A −→ A

such that G acts by C∗-algebra automorphisms.

The continuity condition is that, for each a ∈ A, the map G→ A, g 7→ ga is a
continuous map. We also have that, for each g ∈ G, the map A→ A, a 7→ ga
is a C∗-algebra automorphism.

Example 4. Let X be a locally compact, Hausdorff G-space. The action of G
on X gives an action of G on C0(X),

(gα)(x) = α(g−1x),

where g ∈ G, α ∈ C0(X) and x ∈ X. This action makes C0(X) into a G-C∗-
algebra.

Recall that a C∗-algebra is separable if it has a countable dense subset.

Definition 12. Let A be a separable G-C∗-algebra. A representation of A is
a triple (H,ψ, π) with:

• H is a separable Hilbert space,
• ψ : A→ L(H) is a ∗-homomorphism,
• π : G→ U(H) is a unitary representation of G on H,
• ψ(ga) = π(g)ψ(a)π(g−1) for all (g, a) ∈ G×A.

Remark 20. We are using a slightly non-standard notation; in the literature
this is usually called a covariant representation.

Definition 13. Let X be a proper G-space with compact, second count-
able quotient space G\X. An equivariant odd K-cycle for X is a 4-tuple
(H,ψ, π, T ) such that:

• (H,ψ, π) is a representation of the G-C∗-algebra C0(X),
• T ∈ L(H),
• T = T ∗,
• π(g)T − Tπ(g) = 0 for all g ∈ G,
• ψ(α)T − Tψ(α) ∈ K(H) for all α ∈ C0(X),
• ψ(α)(I − T 2) ∈ K(H) for all α ∈ C0(X).

Remark 21. If G is a locally compact, Hausdorff, second countable topological
group and X a proper G-space with locally compact quotient then X is also
locally compact and hence C0(X) is well-defined.

Write EG1 (X) for the set of equivariant odd K-cycles for X. This concept was
introduced by Kasparov as an abstraction an equivariant self-adjoint elliptic
operator and goes back to Atiyah’s theory of elliptic operators [2].
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Example 5. Let G = Z, X = R with the action Z × R → R, (n, t) 7→ n + t.
The quotient space is S1, which is compact. Consider H = L2(R) the Hilbert
space of complex-valued square integrable functions with the usual Lebesgue
measure. Let ψ : C0(R)→ L(L2(R)) be defined as ψ(α)u = αu, where αu(t) =
α(t)u(t), for all α ∈ C0(R), u ∈ L2(R) and t ∈ R. Finally, let π : Z→ U(L2(R))
be the map (π(n)u)(t) = u(t − n) and consider the operator

(
−i ddt

)
. This

operator is self-adjoint but not bounded on L2(R). We “normalize” it to obtain
a bounded operator

T =
(

x√
1 + x2

)(
−i d
dt

)
.

This notation means that the function x√
1+x2 is applied using functional cal-

culus to the operator
(
−i ddt

)
. Note that the operator

(
−i ddt

)
is essentially self

adjoint. Thus the function x√
1+x2 can be applied to the unique self-adjoint

extension of
(
−i ddt

)
.

Equivalently, T can be constructed using Fourier transform. Let Mx be
the operator “multiplication by x”

Mx(f(x)) = xf(x) .

The Fourier transform F converts −i ddt to Mx, i.e. there is a commutative
diagram

L2(R) F //

−i d
dt

��

L2(R)

Mx

��
L2(R)

F
// L2(R) .

Let M x√
1+x2

be the operator “multiplication by x√
1+x2 ”

M x√
1+x2

(f(x)) =
x√

1 + x2
f(x) .

T is the unique bounded operator on L2(R) such that the following diagram
is commutative

L2(R) F //

T

��

L2(R)

M x√
1+x2

��
L2(R)

F
// L2(R) .

Then we have an equivariant odd K-cycle (L2(R), ψ, π, T ) ∈ EZ
1 (R).

Let X be a proper G-space with compact, second countable quotient G\X
and EG1 (X) defined as above. The equivariant K-homology group KG

1 (X) is
defined as the quotient

KG
1 (X) = EG1 (X)

/
∼,
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where ∼ represents homotopy, in a sense that will be made precise later (Sec-
tion 11). It is an abelian group with addition and inverse given by

(H,ψ, π, T ) + (H ′, ψ′, π′, T ′) = (H ⊕H ′, ψ ⊕ ψ′, π ⊕ π′, T ⊕ T ′),
−(H,ψ, π, T ) = (H,ψ, π,−T ).

Remark 22. The K-cycles defined above differ slightly from the K-cycles used
by Kasparov [26]. However, the abelian group KG

1 (X) is isomorphic to the
Kasparov group KK1

G(C0(X),C), where the isomorphism is given by the ev-
ident map which views one of our K-cycles as one of Kasparov’s K-cycles. In
other words, the K-cycles we are using are more special than theK-cycles used
by Kasparov, however the obvious map of abelian groups is an isomorphism.

We define even K-cycles in a similar way, just dropping the condition of
T being self-adjoint.

Definition 14. Let X be a proper G-space with compact, second count-
able quotient space G\X. An equivariant even K-cycle for X is a 4-tuple
(H,ψ, π, T ) such that:

• (H,ψ, π) is a representation of the G-C∗-algebra C0(X),
• T ∈ L(H),
• π(g)T − Tπ(g) = 0 for all g ∈ G,
• ψ(α)T − Tψ(α) ∈ K(H) for all α ∈ C0(X),
• ψ(α)(I − T ∗T ) ∈ K(H) for all α ∈ C0(X),
• ψ(α)(I − TT ∗) ∈ K(H) for all α ∈ C0(X).

Write EG0 (X) for the set of such equivariant even K-cycles.

Remark 23. In the literature the definition is somewhat more complicated.
In particular, the Hilbert space H is required to be Z/2-graded. However,
at the level of abelian groups, the abelian group KG

0 (X) obtained from the
equivariant even K-cycles defined here will be isomorphic to the Kasparov
group KK0

G(C0(X),C) [26]. More precisely, let (H,ψ, π, T, ω) be a K-cycle in
Kasparov’s sense, where ω is a Z/2-grading of the Hilbert space H = H0⊕H1,
ψ = ψ0 ⊕ ψ1, π = π0 ⊕ π1 and T is self-adjoint but off-diagonal

T =
(

0 T−
T+ 0

)
.

To define the isomorphism from KK0
G(C0(X),C) to KG

0 (X), we map a Kas-
parov cycle (H,ψ, π, T, ω) to (H ′, ψ′, π′, T ′) where

H ′ = . . . H0 ⊕H0 ⊕H0 ⊕H1 ⊕H1 ⊕H1 . . .

ψ′ = . . . ψ0 ⊕ ψ0 ⊕ ψ0 ⊕ ψ1 ⊕ ψ1 ⊕ ψ1 . . .

π′ = . . . π0 ⊕ π0 ⊕ π0 ⊕ π1 ⊕ π1 ⊕ π1 . . .
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and T ′ is the obvious right-shift operator, where we use T+ to map the
last copy of H0 to the first copy of H1. The isomorphism from EG0 (X) to
KK0

G(C0(X),C) is given by

(H,ψ, π, T ) 7→ (H ⊕H,ψ ⊕ ψ, π ⊕ π,
(

0 T ∗

T 0

)
).

Let X be a proper G-space with compact, second countable quotient G\X
and EG0 (X) as above. The equivariant K-homology group KG

0 (X) is defined
as the quotient

KG
0 (X) = EG0 (X)

/
∼,

where ∼ is homotopy, in a sense that will be made precise later. It is an abelian
group with addition and inverse given by

(H,ψ, π, T ) + (H ′, ψ′, π′, T ′) = (H ⊕H ′, ψ ⊕ ψ′, π ⊕ π′, T ⊕ T ′),
−(H,ψ, π, T ) = (H,ψ, π, T ∗).

Remark 24. Since the even K-cycles are more general, we have EG1 (X) ⊂
EG0 (X). However, this inclusion induces the zero map from KG

1 (X) to KG
0 (X).

5.2 Functoriality

Equivariant K-homology gives a (covariant) functor between the category
proper G-spaces with compact quotient and the category of abelian groups.
Indeed, given a continuous G-map f : X → Y between proper G-spaces with
compact quotient, it induces a map f̃ : C0(Y ) → C0(X) by f̃(α) = α ◦ f for
all α ∈ C0(Y ). Then, we obtain homomorphisms of abelian groups

KG
j (X) −→ KG

j (Y ) j = 0, 1

by defining, for each (H,ψ, π, T ) ∈ EGj (X),

(H,ψ, π, T ) 7→ (H,ψ ◦ f̃ , π, T ) .

5.3 The index map

Let X be a proper second countable G-space with compact quotient G\X.
There is a map of abelian groups

KG
j (X) −→ Kj (C∗r (G))

(H,ψ, π, T ) 7→ Index(T )

for j = 0, 1. It is called the index map and will be defined in Section 13.
This map is natural, that is, if X and Y are proper second countable G-

spaces with compact quotient and if f : X → Y is a continuous G-equivariant
map, then the following diagram commutes:
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KG
j (X)

f∗ //

Index

��

KG
j (Y )

Index

��
KG
j (C∗r (G)) = // KG

j (C∗r (G)).

We would like to define equivariant K-homology and the index map for EG.
However, the quotient of EG by the G-action might not be compact. The
solution will be to consider all proper second countable G-subspaces with
compact quotient.

Definition 15. Let Z be a proper G-space. We call ∆ ⊆ Z G-compact if

1. gx ∈ ∆ for all g ∈ G, x ∈ ∆,
2. ∆ is a proper G-space,
3. the quotient space G\∆ is compact.

That is, ∆ is a G-subspace which is proper as a G-space and has compact
quotient G\∆.

Remark 25. Since we are always assuming that G is locally compact, Hausdorff
and second countable, we may also assume without loss of generality that any
G-compact subset of EG is second countable. From now on we shall assume
that EG has this property.

We define the equivariant K-homology of EG with G-compact supports as the
direct limit

KG
j (EG) = lim−→

∆⊆EG
G-compact

KG
j (∆) .

There is then a well-defined index map on the direct limit

µ : KG
j (EG) −→ Kj(C∗rG)

(H,ψ, π, T ) 7→ Index(T ), (1)

as follows. Suppose that ∆ ⊂ Ω are G-compact. By the naturality of the
functor KG

j (−), there is a commutative diagram

KG
j (∆) //

Index

��

KG
j (Ω)

Index

��
Kj(C∗rG) = // Kj(C∗rG) ,

and thus the index map is defined on the direct limit.

6 The discrete case

We discuss several aspects of the Baum-Connes conjecture when the group is
discrete.
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6.1 Equivariant K-homology

For a discrete group Γ , there is a simple description of KΓ
j (EΓ ) up to torsion,

in purely algebraic terms, given by a Chern character. Here we follow section
7 in [5].

Let Γ be a (countable) discrete group. Define FΓ as the set of finite formal
sums

FΓ =

{ ∑
finite

λγ [γ] where γ ∈ Γ, order(γ) <∞, λγ ∈ C

}
.

FΓ is a complex vector space and also a Γ -module with Γ -action:

g ·

(∑
λ∈Γ

λγ [γ]

)
=
∑
λ∈Γ

λγ [gγg−1] .

Note that the identity element of the group has order 1 and therefore FΓ 6= 0.
Consider Hj(Γ ;FΓ ), j ≥ 0, the homology groups of Γ with coefficients in

the Γ -module FΓ .

Remark 26. This is standard homological algebra, with no topology involved
(Γ is a discrete group and FΓ is a non-topologized module over Γ ). They are
classical homology groups and have a purely algebraic description (cf. [10]).
In general, if M is a Γ -module then H∗(Γ ;M) is isomorphic to H∗(BΓ ;M),
where M means the local system on BΓ obtained from the Γ -module M .

Let us write Ktop
j (Γ ) for KΓ

j (EΓ ), j = 0, 1. There is a Chern character
ch: Ktop

∗ (Γ )→ H∗(Γ ;FΓ ) which maps into odd, respectively even, homology

ch: Ktop
j (Γ )→

⊕
l≥0

Hj+2l(Γ ;FΓ ) j = 0, 1.

This map becomes an isomorphism when tensored with C(cf. [4] or [32]).

Proposition 3. The map

ch⊗Z C : Ktop
j (Γ )⊗Z C −→

⊕
l≥0

Hj+2l(Γ ;FΓ ) j = 0, 1

is an isomorphism of vector spaces over C.

Remark 27. If G is finite, the rationalized Chern character becomes the char-
acter map from R(G), the complex representation ring of G, to class functions,
given by ρ 7→ χ(ρ) in the even case, and the zero map in the odd case.

If the Baum-Connes conjecture is true for Γ , then Proposition 3 computes
the tensored topological K-theory of the reduced C∗-algebra of Γ .

Corollary 1. If the Baum-Connes conjecture is true for Γ then

Kj(C∗rΓ )⊗Z C ∼=
⊕
l≥0

Hj+2l(Γ ;FΓ ) j = 0, 1 .
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6.2 Some results on discrete groups

We recollect some results on discrete groups which satisfy the Baum-Connes
conjecture.

Theorem 7 (N. Higson, G. Kasparov [22]). If Γ is a discrete group which
is amenable (or, more generally, a-T-menable) then the Baum-Connes con-
jecture is true for Γ .

Theorem 8 (I.Mineyev, G. Yu [38]; independently V. Lafforgue [29]).
If Γ is a discrete group which is hyperbolic (in Gromov’s sense) then the
Baum-Connes conjecture is true for Γ .

Theorem 9 (Schick [46]). Let Bn be the braid group on n strands, for any
positive integer n. Then the Baum-Connes conjecture is true for Bn.

Theorem 10 (Matthey, Oyono-Oyono, Pitsch [36]). Let M be a con-
nected orientable 3-dimensional manifold (possibly with boundary). Let Γ be
the fundamental group of M . Then the Baum-Connes conjecture is true for
Γ .

The Baum-Connes index map has been shown to be injective or rationally
injective for some classes of groups. For example, it is injective for countable
subgroups of GL(n,K), K any field [18], and injective for

• closed subgroups of connected Lie groups [27];
• closed subgroups of reductive p-adic groups [28].

More results on groups satisfying the Baum-Connes conjecture can be found
in [35].

The Baum-Connes conjecture remains a widely open problem. For exam-
ple, it is not known for SL(n,Z), n ≥ 3. These infinite discrete groups have
Kazhdan’s property (T) and hence they are not a-T-menable. On the other
hand, it is known that the index map is injective for SL(n,Z) (see above) and
the groups KG

j (EG) for G = SL(3,Z) have been calculated [45].

Remark 28. The conjecture might be too general to be true for all groups.
Nevertheless, we expect it to be true for a large family of groups, in particular
for all exact groups (a groups G is exact if the functor C∗r (G,−), as defined
in 10.2, is exact).

6.3 Corollaries of the Baum-Connes Conjecture

The Baum-Connes conjecture is related to a great number of conjectures in
functional analysis, algebra, geometry and topology. Most of these conjec-
tures follow from either the injectivity or the surjectivity of the index map.
A significant example is the Novikov conjecture on the homotopy invariance
of higher signatures of closed, connected, oriented, smooth manifolds. This
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conjecture follows from the injectivity of the rationalized index map [5]. For
more information on conjectures related to Baum-Connes, see the appendix
in [39].

Remark 29. By a “corollary” of the Baum-Connes conjecture we mean: if the
Baum-Connes conjecture is true for a group G then the corollary is true for
that group G. (For instance, in the Novikov conjecture G is the fundamental
group of the manifold.)

7 The compact case

If G is compact, we can take EG to be a one-point space. On the other hand,
K0(C∗rG) = R(G) the (complex) representation ring of G, and K1(C∗rG) = 0
(see Remark below). Recall that R(G) is the Grothendieck group of the cate-
gory of finite dimensional (complex) representations of G. It is a free abelian
group with one generator for each distinct (i.e. non-equivalent) irreducible
representation of G.

Remark 30. When G is compact, the reduced C∗-algebra of G is a direct sum
(in the C∗-algebra sense) over the irreducible representations of G, of matrix
algebras of dimension equal to the dimension of the representation. The K-
theory functor commutes with direct sums and Kj(Mn(C)) ∼= Kj(C), which
is Z for j even and 0 otherwise (Theorem 4).

Hence the index map takes the form

µ : K0
G(point) −→ R(G) ,

for j = 0 and is the zero map for j = 1.
Given (H,ψ, T, π) ∈ E0

G(point), we may assume within the equivalence
relation on E0

G(point) that

ψ(λ) = λI for all λ ∈ C0(point) = C ,

where I is the identity operator of the Hilbert space H. Hence the non-
triviality of (H,ψ, T, π) is coming from

I − TT ∗ ∈ K(H) , and I − T ∗T ∈ K(H) ,

that is, T is a Fredholm operator. Therefore

dimC (ker(T )) <∞,
dimC (coker(T )) <∞,

hence ker(T ) and coker(T ) are finite dimensional representations of G (recall
that G is acting via π : G→ L(H)). Then

µ(H,ψ, T, π) = Index(T ) = ker(T )− coker(T ) ∈ R(G) .
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Remark 31. The assembly map for G compact just described is an isomor-
phism (exercise).

Remark 32. In general, for G non-compact, the elements of KG
0 (X) can be

viewed as generalized elliptic operators on EG, and the index map µ assigns
to such an operator its ‘index’, ker(T ) − coker(T ), in some suitable sense
[5]. This should be made precise later using Kasparov’s descent map and an
appropriate Kasparov product (Section 13).

8 Equivariant K-homology for G-C∗-algebras

We have defined equivariant K-homology for G-spaces in Section 5. Now we
define equivariant K-homology for a separable G-C∗-algebra A as the KK-
theory groups Kj

G(A,C), j = 0, 1. This generalises the previous construction
since KG

j (X) = KKj
G(C0(X),C). Later on we shall define KK-theory groups

in full generality (Sections 11 and 12).

Definition 16. Let A be a separable G-C∗-algebra. Define E1
G(A) to be the

set of 4-tuples
{(H,ψ, π, T )}

such that (H,ψ, π) is a representation of the G-C∗-algebra A, T ∈ L(H), and
the following conditions are satisfied:

• T = T ∗,
• π(g)T − Tπ(g) ∈ K(H),
• ψ(a)T − Tψ(a) ∈ K(H),
• ψ(a)(I − T 2) ∈ K(H),

for all g ∈ G, a ∈ A.

Remark 33. Note that this is not quite EG1 (X) when A = C0(X) and X is
a proper G-space with compact quotient, since the third condition is more
general than before. However, the inclusion EG1 (X) ⊂ E1

G(C0(X)) gives an
isomorphism of abelian groups so that KG

1 (X) = KK1
G(C0(X),C) (as defined

below). The point is that, for a proper G-space with compact quotient, an
averaging argument using a cut-off function and the Haar measure of the
group G allows us to assume that the operator T is G-equivariant.

Given a separable G-C∗-algebra A, we define the KK-group KK1
G(A,C)

as E1
G(A) modulo an equivalence relation called homotopy, which will be made

precise later. Addition in KK1
G(A,C) is given by direct sum

(H,ψ, π, T ) + (H ′, ψ′, π′, T ′) = (H ⊕H ′, ψ ⊕ ψ′, π ⊕ π′, T ⊕ T ′)

and the negative of an element by

−(H,ψ, π, T ) = (H,ψ, π,−T ) .
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Remark 34. We shall later define KK1
G(A,B) for a separable G-C∗-algebras

A and an arbitrary G-C∗-algebra B (Section 11).

Let A, B be separable G-C∗-algebras. A G-equivariant ∗-homomorphism
φ : A→ B gives a map E1

G(B)→ E1
G(A) by

(H,ψ, π, T ) 7→ (H,ψ ◦ φ, π, T ) ,

and this induces a map KK1
G(B,C)→ KK1

G(A,C). That is, KK1
G(A,C) is a

contravariant functor in A.
For the even case, the operator T is not required to be self-adjoint.

Definition 17. Let A be a separable G-C∗-algebra. Define E0
G(A) as the set

of 4-tuples
{(H,ψ, π, T )}

such that (H,ψ, π) is a representation of the G-C∗-algebra A, T ∈ L(H) and
the following conditions are satisfied:

• π(g)T − Tπ(g) ∈ K(H),
• ψ(a)T − Tψ(a) ∈ K(H),
• ψ(a)(I − T ∗T ) ∈ K(H),
• ψ(a)(I − TT ∗) ∈ K(H),

for all g ∈ G, a ∈ A.

Remark 35. Again, if X is a proper G-space with compact quotient, the in-
clusion EG0 (X) ⊂ E0

G(C0(X)) gives an isomorphism in K-homology, so we can
write KG

0 (X) = KK0(C0(X),C) (as defined below). The issue of the Z/2-
grading (which is present in the Kasparov definition but not in our definition)
is dealt with as in Remark 23.

We define the KK-groups KK0
G(A,C) as E0

G(A) modulo an equivalence
relation called homotopy, which will be made precise later. Addition in
KK1

G(A,C) is given by direct sum

(H,ψ, π, T ) + (H ′, ψ′, π′, T ′) = (H ⊕H ′, ψ ⊕ ψ′, π ⊕ π′, T ⊕ T ′)

and the negative of an element by

−(H,ψ, π, T ) = (H,ψ, π, T ∗) .

Remark 36. We shall later define in general KK0
G(A,B) for a separable G-

C∗-algebras A and an arbitrary G-C∗-algebra B (Section 12).

Let A, B be separable G-C∗-algebras. A G-equivariant ∗-homomorphism
φ : A→ B gives a map E0

G(B)→ E0
G(A) by

(H,ψ, π, T ) 7→ (H,ψ ◦ φ, π, T ) ,

and this induces a map KK0
G(B,C)→ KK0

G(A,C). That is, KK0
G(A,C) is a

contravariant functor in A.
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9 The conjecture with coefficients

There is a generalized version of the Baum-Connes conjecture, known as the
Baum-Connes conjecture with coefficients, which adds coefficients in a G-C∗-
algebra. We recall the definition of G-C∗-algebra.

Definition 18. A G-C∗-algebra is a C∗-algebra A with a given continuous
action of G

G×A −→ A

such that G acts by C∗-algebra automorphisms. Continuity means that, for
each a ∈ A, the map G→ A, g 7→ ga is a continuous map.

Remark 37. Observe that the only ∗-homomorphism of C as a C∗-algebra is
the identity. Hence the only G-C∗-algebra structure on C is the one with
trivial G-action.

Let A be aG-C∗-algebra. Later we shall define the reduced crossed-product
C∗-algebra C∗r (G,A), and the equivariant K-homology group with coefficients
KG
j (EG,A). These constructions reduce to C∗r (G), respectively KG

j (EG),
when A = C. Moreover, the index map extends to this general setting and is
also conjectured to be an isomorphism.

Conjecture 2 (P. Baum, A. Connes, 1980). Let G be a locally compact, Haus-
dorff, second countable, topological group, and let A be any G-C∗-algebra.
Then

µ : KG
j (EG,A) −→ Kj(C∗r (G,A)) j = 0, 1

is an isomorphism.

Conjecture 1 follows as a particular case when A = C. A fundamental differ-
ence is that the conjecture with coefficients is subgroup closed, that is, if it is
true for a group G for any coefficients then it is true, for any coefficients, for
any closed subgroup of G.

The conjecture with coefficients has been proved for:

• compact groups,
• abelian groups,
• groups acting simplicially on a tree with all vertex stabilizers satisfying

the conjecture with coefficients [41],
• amenable groups and, more generally, a-T-menable groups (groups with

the Haagerup property) [23],
• the Lie group Sp(n, 1) [24],
• 3-manifold groups [36].

For more examples of groups satisfying the conjecture with coefficients see
[35].
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Expander graphs

Suppose that Γ is a finitely generated, discrete group which contains an ex-
pander family [13] in its Cayley graph as a subgraph. Such a Γ is a counter-
example to the conjecture with coefficients [20]. M. Gromov outlined a proof
that such Γ exists. A number of mathematicians are now filling in the details.
It seems quite likely that this group exists.

10 Hilbert modules

In this section we introduce the concept of Hilbert module over a C∗-algebra.
It generalises the definition of Hilbert space by allowing the inner product to
take values in a C∗-algebra. Our main application will be the definition of the
reduced crossed-product C∗-algebra in Section 10.2. For a concise reference
on Hilbert modules see [30].

10.1 Definitions and examples

Let A be a C∗-algebra.

Definition 19. An element a ∈ A is positive (notation: a ≥ 0) if there exists
b ∈ A with bb∗ = a.

The subset of positive elements, A+, is a convex cone (closed under positive
linear combinations) and A+ ∩ (−A+) = {0} [15, 1.6.1]. Hence we have a
well-defined partial ordering in A given by x ≥ y ⇐⇒ x− y ≥ 0.

Definition 20. A pre-Hilbert A-module is a right A-module H with a given
A-valued inner product 〈 , 〉 such that:

• 〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉,
• 〈u, va〉 = 〈u, v〉a,
• 〈u, v〉 = 〈v, u〉∗,
• 〈u, u〉 ≥ 0,
• 〈u, u〉 = 0⇔ u = 0,

for all u, v, v1, v2 ∈ H, a ∈ A.

Definition 21. A Hilbert A-module is a pre-Hilbert A-module which is com-
plete with respect to the norm

‖u‖ = ‖〈u, u〉‖1/2 .

Remark 38. If H is a Hilbert A-module and A has a unit 1A then H is a
complex vector space with

uλ = u(λ1A) u ∈ H, λ ∈ C .

If A does not have a unit, then by using an approximate identity [42] in A, it
is also a complex vector space.
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Example 6. Let A be a C∗-algebra and n ≥ 1. Then An = A ⊕ . . . ⊕ A is a
Hilbert A-module with operations

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),
(a1, . . . , an)a = (a1a, . . . , ana),

〈(a1, . . . , an), (b1, . . . , bn)〉 = a∗1b1 + . . .+ a∗nbn,

for all aj , bj , a ∈ A.

Example 7. Let A be a C∗-algebra. Define

H =
{

(a1, a2, . . .)
∣∣ aj ∈ A, ∞∑

j=1

a∗jaj is norm-convergent in A

}
,

with operations

(a1, a2, . . .) + (b1, b2 . . .) = (a1 + b1, a2 + b2, . . .),
(a1, a2, . . .)a = (a1a, a2a, . . .),

〈(a1, a2, . . .), (b1, b2 . . .)〉 =
∞∑
j=1

a∗j bj .

The previous examples can be generalized. Note that a C∗-algebra A is a
Hilbert module over itself with inner product 〈a, b〉 = a∗b.

Example 8. If H1, . . . ,Hn are Hilbert A-modules then the direct sum H1 ⊕
. . .⊕Hn is a Hilbert A-module with

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
∑
i

x∗i yi .

We write Hn for the direct sum of n copies of a Hilbert A-module H.

Example 9. If {Hi}i∈N is a countable family of Hilbert A-modules then

H =
{

(x1, x2, . . .)
∣∣xi ∈ Hi, ∞∑

j=1

〈xj , xj〉 is norm-convergent in A

}

is a Hilbert A-module with inner product 〈x, y〉 =
∑∞
j=1〈xj , yj〉.

The following is our key example.

Example 10. Let G be a locally compact, Hausdorff, second countable, topo-
logical group. Fix a left-invariant Haar measure dg for G. Let A be a G-C∗-
algebra. Then L2(G,A) is a Hilbert A-module defined as follows. Denote by
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Cc(G,A) the set of all continuous compactly supported functions from G to
A. On Cc(G,A) consider the norm

‖f‖ =
∥∥∥∥∫

G

g−1 (f(g)∗f(g)) dg
∥∥∥∥ .

L2(G,A) is the completion of Cc(G,A) in this norm. It is a Hilbert A-module
with operations

(f + h)g = f(g) + h(g),
(fa)g = f(g)(ga),

〈f, h〉 =
∫
G

g−1 (f(g)∗h(g)) dg .

Note that when A = C the group action is trivial and we get L2(G) (cf.
Remark 37).

Definition 22. Let H be a Hilbert A-module. An A-module map T : H → H
is adjointable if there exists an A-module map T ∗ : H → H with

〈Tu, v〉 = 〈u, T ∗v〉 for all u, v ∈ H .

If T ∗ exists, it is unique, and sup‖u‖=1 ‖Tu‖ <∞. Set

L(H) = {T : H → H |T is adjointable} .

Then L(H) is a C∗-algebra with operations

(T + S)u = Tu+ Su,

(ST )u = S(Tu),
(Tλ)u = (Tu)λ
T ∗ as above,

‖T‖ = sup
‖u‖=1

‖Tu‖.

10.2 The reduced crossed-product C∗
r (G, A)

Let A be a G-C∗-algebra. Define

Cc(G,A) = {f : G→ A | f continuous with compact support} .

Then Cc(G,A) is a complex algebra with

(f + h)g = f(g) + h(g),
(fλ)g = f(g)λ,

(f ∗ h)(g0) =
∫
G

f(g)
(
gh(g−1g0)

)
dg,
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for all g, g0 ∈ G, λ ∈ C, f, h ∈ Cc(G,A). The product ∗ is called twisted
convolution.

Consider the Hilbert A-module L2(G,A). There is an injection of algebras

Cc(G,A) ↪→ L(L2(G,A))
f 7→ Tf

where Tf (u) = f ∗ u is twisted convolution as above. We define C∗r (G,A) as
the C∗-algebra obtained by completing Cc(G,A) with respect to the norm
‖f‖ = ‖Tf‖. When A = C, the G-action must be trivial and C∗r (G,A) =
C∗r (G).

Example 11. Let G be a finite group, and A a G-C∗-algebra. Let dg be the
Haar measure such that each g ∈ G has mass 1. Then

C∗r (G,A) =
{∑
γ∈G

aγ [γ]
∣∣∣ aγ ∈ A}

with operations∑
γ∈G

aγ [γ]

+

∑
γ∈G

bγ [γ]

 =
∑
γ∈G

(aγ + bγ)[γ],

∑
γ∈G

aγ [γ]

λ =
∑
γ∈G

(aγλ)[γ],

(aα[α])(bβ [β]) = aα(αbβ)[αβ] (twisted convolution),∑
γ∈G

aγ [γ]

∗ =
∑
γ∈G

(γ−1a∗γ)[γ−1].

Here aγ [γ] denotes the function from G to A which has the value aγ at γ and
0 at g 6= γ.

Let X be a Hausdorff, locally compact G-space. We know that C0(X)
becomes a G-C∗-algebra with G-action

(gf)(x) = f(g−1x),

for g ∈ G, f ∈ C0(X) and x ∈ X. The reduced crossed-product C∗r (G,C0(X))
will be denoted C∗r (G,X).

A natural question is to calculate the K-theory of this C∗-algebra. If G is
compact, this is the Atiyah-Segal group Kj

G(X), j = 0, 1. Hence for G non-
compact, Kj(C∗r (G,X)) is the natural extension of the Atiyah-Segal theory
to the case when G is non-compact.

Definition 23. We call a G-space G-compact if the quotient space G\X (with
the quotient topology) is compact.
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Let X be a proper, G-compact G-space. Then a G-equivariant C-vector bundle
E on X determines an element

[E] ∈ K0(C∗r (G,X)) .

Remark 39. From E, a Hilbert module over C∗r (G,X) is constructed. This
Hilbert C∗r (G,X)-module determines an element in KK0(C, C∗r (G,X)) ∼=
K0(C∗r (G,X)). Note that, quite generally, a Hilbert A-module determines an
element in KK0(A) if and only if it is finitely generated.

Recall that a G-equivariant vector bundle E over X is a (complex) vector
bundle π : E → X together with a G-action on E such that π is G-equivariant
and, for each p ∈ X, the map on the fibers Ep → Egp induced by multiplication
by g is linear.

Theorem 11 (W. Lück and B. Oliver [34]). If Γ is a (countable) discrete
group and X is a proper Γ -compact Γ -space, then

K0(C∗r (Γ,X)) = Grothendieck group of Γ -equivariant C-vector bundles on X.

Remark 40. In [34] this theorem is not explicitly stated. However, it follows
from their results. For clarification see [6] or [16].

Remark 41. Let X be a proper G-compact G-space. Let I be the trivial G-
equivariant complex vector bundle on X,

I = X × C , g(x, λ) = (gx, λ),

for all g ∈ G, x ∈ X and λ ∈ C. Then [ I ] ∈ K0(C∗r (G,X)).

10.3 Push-forward of Hilbert modules

Let A, B be C∗-algebras, ϕ : A→ B a ∗-homomorphism and H a Hilbert A-
module. We shall define a Hilbert B-module H⊗AB, called the push-forward
of H with respect to ϕ or interior tensor product ([30, Chapter 4]). First, form
the algebraic tensor product H�A B = H⊗algA B (B is an A-module via ϕ).
This is an abelian group and also a (right) B-module

(h⊗ b)b′ = h⊗ bb′ for all h ∈ H, b, b′ ∈ B .

Define a B-valued inner product on H�A B by

〈h⊗ b, h′ ⊗ b′〉 = b∗ϕ(〈h, h′〉)b′.

Set
N = {ξ ∈ H �A B | 〈ξ, ξ〉 = 0} .

N is a B-sub-module of H�AB and (H�AB)/N is a pre-Hilbert B-module.
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Definition 24. Define H⊗A B to be the Hilbert B-module obtained by com-
pleting (H�A B)/N .

Example 12. Let X be a locally compact, Hausdorff space. Let A = C0(X),
B = C and evp : C0(X) → C the evaluation map at a point p ∈ X. Then
we can consider the push-forward of a Hilbert C0(X)-module H. This gives
a Hilbert space Hp. These Hilbert spaces do not form a vector bundle but
something more general (not necessarily locally trivial), sometimes called con-
tinuous field of Hilbert spaces [15, chapter 10].

11 Homotopy made precise and KK-theory

We first define homotopy and Kasparov’s KK-theory in the non-equivariant
setting, for pairs of separable C∗-algebras. A first introduction to KK-theory
and further references can be found in [21].

Let A be a C∗-algebra and let H be a Hilbert A-module. Consider L(H)
the bounded operators on H. For each u, v ∈ H we have a bounded operator
θu,v defined as

θu,v(ξ) = u〈v, ξ〉 .

It is clear that θ∗u,v = θv,u. The θu,v are called rank one operators on H. A
finite rank operator on H is any T ∈ L(H) such that T is a finite sum of rank
one operators,

T = θu1,v1 + . . .+ θun,vn .

Let K(H) be the closure (in L(H)) of the set of finite rank operators. K(H)
is an ideal in L(H). When A = C, H is a Hilbert space and K(H) coincides
with the usual compact operators on H.

Definition 25. H is countably generated if in H there is a countable (or
finite) set such that the A-module generated by this set is dense in H.

Definition 26. Let H0, H1 be two Hilbert A-modules. We say that H0 and
H1 are isomorphic if there exists an A-module isomorphism Φ : H0 → H1 with

〈u, v〉0 = 〈Φu,Φv〉1 for all u, v ∈ H0 .

We want to define non-equivariant KK-theory for pairs of C∗-algebras.
Let A and B be C∗-algebras where A is also separable. Define the set

E1(A,B) = {(H, ψ, T )}

such that H is a countably generated Hilbert B-module, ψ : A → L(H) is a
∗-homomorphism, T ∈ L(H), and the following conditions are satisfied:

• T = T ∗,
• ψ(a)T − Tψ(a) ∈ K(H),
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• ψ(a)(I − T 2) ∈ K(H),

for all a ∈ A. We call such triples odd bivariant K-cycles.

Remark 42. In the Kasparov definition of KK1(A,B) [25], the conditions of
the K-cycles are the same as our conditions except that the requirement
T = T ∗ is replaced by ψ(a)(T − T ∗) ∈ K(H) for all a ∈ A. The isomorphism
of abelian groups from the group defined using these bivariant K-cycles to the
group defined using our bivariant K-cycles is obtained by sending a Kasparov
cycle (H,ψ, T ) to (H,ψ, T+T∗

2 ).

We say that two such triples (H0, ψ0, T0) and (H1, ψ1, T1) in E1(A,B) are
isomorphic if there is an isomorphism of Hilbert B-modules Φ : H0 → H1 with

Φψ0(a) = ψ1(a)Φ,
ΦT0 = T1Φ,

for all a ∈ A. That is, the following diagrams commute

H0

ψ0(a) //

Φ

��

H0

Φ

��
H1

ψ1(a)
// H1

H0
T0 //

Φ

��

H0

Φ

��
H1

T1

// H1

Let A, B, D be C∗-algebras where A is also separable. A ∗-homomorphism
ϕ : B → D induces a map ϕ∗ : E1(A,B)→ E1(A,D) by

ϕ∗(H, ψ, T ) = (H⊗B D,ψ ⊗B I, T ⊗B I)

where I is the identity operator on D, that is, I(α) = α for all α ∈ D.
We can now make the definition of homotopy precise. Consider the C∗-

algebra of continuous functions C([0, 1], B), and set ρ0, ρ1 to be the ∗-
homomorphisms

C([0, 1], B)
ρ0 //

ρ1
// B

defined by ρ0(f) = f(0) and ρ1(f) = f(1). In particular, we have induced
maps

(ρj)∗ : E1(A,C([0, 1], B)) −→ E1(A,B) j = 0, 1

for any separable C∗-algebra A.

Definition 27. Two triples (H0, ψ0, T0) and (H1, ψ1, T1) in E1(A,B) are ho-
motopic if there exists (H, ψ, T ) in E1(A,C([0, 1], B)) with

(ρj)∗(H, ψ, T ) ∼= (Hj , ψj , Tj) j = 0, 1 .
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The even case is analogous, removing the self-adjoint condition T = T ∗.

Remark 43. As above, we do not require the Hilbert B-module H to be Z/2-
graded. The isomorphism between the abelian group we are defining and the
group KK0(A,B) as defined by Kasparov [25] is dealt with as before (see
Remark 23).

Hence we have the set of even bivariant K-cycles

E0(A,B) = {(H, ψ, T )}

where H is a countably generated Hilbert B-module, ψ : A → L(H) a ∗-
homomorphism, T ∈ L(H), and the following conditions are satisfied:

• ψ(a)T − Tψ(a) ∈ K(H),
• ψ(a)(I − T ∗T ) ∈ K(H),
• ψ(a)(I − TT ∗) ∈ K(H),

for all a ∈ A. The remaining definitions carry over, in particular the definition
of homotopy in E0(A,B).

We define the (non-equivariant) Kasparov KK-theory groups of the pair
(A,B) as

KK1(A,B) = E1(A,B)/(homotopy),
KK0(A,B) = E0(A,B)/(homotopy).

A key property is that KK-theory incorporates K-theory of C∗-algebras: for
any C∗-algebra B, KKj(C, B) is isomorphic to Kj(B) (see Theorem 25 in
[37]).

12 Equivariant KK-theory

We generalize KK-theory to the equivariant setting. An alternative definition
to ours, by means of a universal property, is described in Section 2 of Meyer’s
notes [37].

All through this section, let A be a G-C∗-algebra.

Definition 28. A G-Hilbert A-module is a Hilbert A-module H with a given
continuous action

G×H → H
(g, v) 7→ gv

such that

1. g(u+ v) = gu+ gv,
2. g(ua) = (gu)(ga),
3. 〈gu, gv〉 = g〈u, v〉,
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for all g ∈ G, u, v ∈ H, a ∈ A.

Here ‘continuous’ means that for each u ∈ H, the map G → H, g 7→ gu is
continuous.

Example 13. If A = C, a G-Hilbert C-module is just a unitary representation
of G (the action of G on C must be trivial).

Remark 44. Let H be a G-Hilbert A-module. For each g ∈ G, denote by Lg
the map

Lg : H → H, Lg(v) = gv .

Note that Lg might not be in L(H). But if T ∈ L(H), then LgTL−1
g ∈ L(H).

Hence G acts on the C∗-algebra L(H) by

gT = LgTL
−1
g .

Example 14. Let A be a G-C∗-algebra. Set n ≥ 1. Then An is a G-Hilbert
A-module (cf. Example 6) with

g(a1, . . . , an) = (ga1, . . . , gan).

Let A and B be G-C∗-algebras, where A is also separable. Define the set

E0
G(A,B) = {(H, ψ, T )}

such that H is a countably generated G-Hilbert B-module, ψ : A → L(H) is
a ∗-homomorphism with

ψ(ga) = gψ(a) for all g ∈ G, a ∈ A ,

and T ∈ L(H), and so that the following conditions are satisfied:

• gT − T ∈ K(H),
• ψ(a)T − Tψ(a) ∈ K(H),
• ψ(a)(I − T ∗T ) ∈ K(H),
• ψ(a)(I − TT ∗) ∈ K(H),

for all g ∈ G, a ∈ A. We define

KK0
G(A,B) = E0

G(A,B)/(homotopy) .

The definition of homotopy in Section 11 can be defined in a straightforward
way in this setting.

KK0
G(A,B) is an abelian group with addition and negative

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′),
−(H, ψ, T ) = (H, ψ, T ∗) .

The odd case is similar, just restricting to self-adjoint operators. Define
the set
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E1
G(A,B) = {(H, ψ, T )}

such that H is a countably generated G-Hilbert B-module, ψ : A → L(H) is
a ∗-homomorphism with

ψ(ga) = gψ(a) for all g ∈ G, a ∈ A ,

and T ∈ L(H), and so that the following conditions are satisfied:

• T = T ∗,
• gT − T ∈ K(H),
• ψ(a)T − Tψ(a) ∈ K(H),
• ψ(a)(I − T 2) ∈ K(H),

for all g ∈ G, a ∈ A.
We define

KK1
G(A,B) = E1

G(A,B)/(homotopy) .

KK1
G(A,B) is an abelian group with addition and inverse given by

(H, ψ, T ) + (H′, ψ′, T ′) = (H⊕H′, ψ ⊕ ψ′, T ⊕ T ′),
−(H, ψ, T ) = (H, ψ,−T ).

Remark 45. In the even case we are not requiring a Z/2-grading. The isomor-
phism to the abelian group defined by Kasparov [26] is given as in Remark
23. Our general principle is that the even and odd cases are identical except
that in the odd case the operator T is required to be self-adjoint but not in
the even case.

Using equivariant KK-theory, we can introduce coefficients for equivariant
K-homology. Let X be a proper G-space with compact quotient. Recall that

KG
j (X) = KKj

G(C0(X),C) and

KG
j (EG) = lim−→

∆⊆EG
G-compact

KG
j (∆) .

We define the equivariant K-homology of X, respectively of EG, with coeffi-
cients in a G-C∗-algebra A as

KG
j (X,A) = KKj

G(C0(X), A),

KG
j (EG,A) = lim−→

∆⊆EG
G-compact

KG
j (∆,A) .

13 The index map

Our definition of the index map uses the Kasparov product and the descent
map.
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13.1 The Kasparov product

Let A, B, D be (separable) G-C∗-algebras. There is a product

KKi
G(A,B)⊗Z KK

j
G(B,D) −→ KKi+j

G (A,D) .

The definition is highly non-trivial. Some motivation and examples, in the
non-equivariant case, can be found in [21, Section 5].

Remark 46. Equivariant KK-theory can be regarded as a category with ob-
jects separable G-C∗-algebras and morphisms mor(A,B) = KKi

G(A,B) (as a
Z/2-graded abelian group), and composition given by the Kasparov product
(cf. [37, Thm. 33]).

13.2 The Kasparov descent map

Let A and B be (separable) G-C∗-algebras. There is a map between the equiv-
ariant KK-theory of (A,B) and the non-equivariant KK-theory of the cor-
responding reduced crossed-product C∗-algebras,

KKj
G(A,B) −→ KKj (C∗r (G,A), C∗r (G,B)) j = 0, 1 .

The definition is also highly non-trivial and can be found in [26, Section 3].
Alternatively, see Proposition 26 in Meyer’s notes [37].

13.3 Definition of the index map

We would like to define the index map

µ : KG
j (EG) −→ Kj(C∗rG) .

Let X be a proper G-compact G-space. First, we define a map

µ : KG
j (X) = KKj

G(C0(X),C) −→ Kj(C∗rG)

to be the composition of the Kasparov descent map

KKj
G(C0(X),C) −→ KKj (C∗r (G,X), C∗r (G))

(the trivial action of G on C gives the crossed-product C∗r (G,C) = C∗rG) and
the Kasparov product with the trivial bundle

I ∈ K0(C∗r (G,X)) = KK0(C, C∗r (G,X)),

that is, the Kasparov product with the trivial vector bundle I, when A = C,
B = C∗r (G,X), D = C∗rG and i = 0.

Recall that
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KG
j (EG) = lim−→

∆⊂EG
G-compact

KKj
G (C0(∆),C) .

For each G-compact ∆ ⊂ EG, we have a map as before

µ : KKj
G(C0(∆),C) −→ Kj(C∗rG) .

If ∆ and Ω are two G-compact subsets of EG with ∆ ⊂ Ω, then by naturality
the following diagram commutes:

KKj
G(C0(∆),C) //

��

KKj
G(C0(Ω),C)

��
KjC

∗
rG

= // KjC
∗
rG.

Thus we obtain a well-defined map on the direct limit µ : KG
j (EG)→ KjC

∗
rG.

13.4 The index map with coefficients

The coefficients can be introduced in KK-theory at once. Let A be a G-C∗-
algebra. We would like to define the index map

µ : KG
j (EG;A) −→ KjC

∗
r (G,A) .

Let X be a proper G-compact G-space and A a G-C∗-algebra. First, we define
a map

µ : KKj
G(C0(X), A) −→ KjC

∗
r (G,A)

to be the composition of the Kasparov descent map

KKj
G(C0(X), A) −→ KKj (C∗r (G,X), C∗r (G,A))

and the Kasparov product with the trivial bundle

I ∈ K0C
∗
r (G,X) = KK0(C, C∗r (G,X)).

For each G-compact ∆ ⊂ EG, we have a map as above

µ : KKj
G(C0(∆), A) −→ KjC

∗
r (G,A) .

If ∆ and Ω are two G-compact subsets of EG with ∆ ⊂ Ω, then by naturality
the following diagram commutes:

KKj
G(C0(∆), A) //

��

KKj
G(C0(Ω), A)

��
KjC

∗
r (G,A) = // KjC

∗
r (G,A).

Thus we obtain a well-defined map on the direct limit µ : KG
j (EG;A) →

KjC
∗
r (G,A).
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14 A brief history of K-theory

14.1 The K-theory genealogy tree

Grothendieck invented K-theory to give a conceptual proof of the Hirzebruch–
Riemann–Roch theorem. The subject has since then evolved in different di-
rections, as summarized by the following diagram.

A. Grothendieck Riemann-Roch

Atiyah + Hirzebruch

��

K-theory in
algebraic geometry

J. F. Adams
Vector fields
on spheres

A. Connesxxppppppppppp

H. Bass
D. Quillen

J. H. C. Whitehead

''OOOOOOOOOOOO

K-theory
in topology

K-theory for
C∗-algebras

Algebraic
K-theory

Atiyah and Hirzebruch defined topological K-theory. J. F. Adams then
used the Atiyah-Hirzebruch theory to solve the problem of vector fields
on spheres. C∗-algebra K-theory developed quite directly out of Atiyah-
Hirzebruch topological K-theory. From its inception, C∗-algebra K-theory
has been closely linked to problems in geometry-topology (Novikov conjec-
ture, Gromov-Lawson-Rosenberg conjecture, Atiyah-Singer index theorem)
and to classification problems within C∗-algebras. More recently, C∗-algebra
K-theory has played an essential role in the new subject of non-commutative
geometry.

Algebraic K-theory was a little slower to develop [52]; much of the early
development in the 1960s was due to H. Bass, who organized the theory on
K0 and K1 and defined the negative K-groups. J. Milnor introduced K2. For-
mulating an appropriate definition for higher algebraic K-theory proved to be
a difficult and elusive problem. Definitions were proposed by several authors,
including J. Milnor and Karoubi-Villamayor. A remarkable breakthrough was
achieved by D. Quillen with his plus-construction. The resulting definition of
higher algebraic K-theory (i.e. Quillen’s algebraic K-theory) is perhaps the
most widely accepted today. Many significant problems and results (e.g. the
Lichtenbaum conjecture) have been stated within the context of Quillen alge-
braic K-theory. In some situations, however, a different definition is relevant.
For example, in the recently proved Bloch-Kato conjecture, it is J. Milnor’s
definition of higher algebraic K-theory which is used.
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Since the 1970s, K-theory has grown considerably, and its connections
with other parts of mathematics have expanded. For the interested reader, we
have included a number of current K-theory textbooks in our reference list
([8], [43], [44], [48], [50], [51]). For a taste of the current developments, it is
useful to take a look at the Handbook of K-theory [17] or at the lectures in
this volume. The Journal of K-theory (as well as its predecessor, K-theory)
is dedicated to the subject, as is the website maintained by D. Grayson at
http://www.math.uiuc.edu/K-theory. This site, started in 1993, includes a
preprint archive which at the moment when this is being written contains 922
preprints. Additionally, see the Journal of Non-Commutative Geometry for
current results involving C∗-algebra K-theory.

Finally, we have not in these notes emphasized cyclic homology. However,
cyclic (co-)homology is an allied theory to K-theory and any state-of-the-art
survey of K-theory would have to recognize this central fact.

14.2 The Hirzebruch–Riemann–Roch theorem

Let M be a non-singular projective algebraic variety over C. Let E be an
algebraic vector bundle on M . Write E for the sheaf (of germs) of algebraic
sections of E. For each j ≥ 0, consider Hj(M,E) the j-th cohomology group
of M using E.

Lemma 1. For all j ≥ 0, dimC H
j(M,E) < ∞ and for j > dimC(M),

Hj(M,E) = 0.

Define the Euler characteristic of M with respect to E as

χ(M,E) =
n∑
j=0

(−1)j dimC H
j(M,E) , where n = dimC(M) .

Theorem 12 (Hirzebruch–Riemann–Roch). Let M be a non-singular
projective algebraic variety over C and let E be an algebraic vector bundle
on M . Then

χ(M,E) = (ch(E) ∪ Td(M))[M ]

where ch(E) is the Chern character of E, Td(M) is the Todd class of M and
∪ stands for the cup product.

14.3 The unity of K-theory

We explain how K-theory for C∗-algebras is a particular case of algebraic
K-theory of rings.

Let A be a C∗-algebra. Consider the inclusion
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Mn(A) ↪→ Mn+1(A) a11 . . . a1n

...
...

an1 . . . ann

 7→

a11 . . . a1n 0
...

...
...

an1 . . . ann 0
0 . . . 0 0

 . (2)

This is a one-to-one ∗-homomorphism, and it is norm preserving. Define
M∞(A) as the limit ofMn(A) with respect to these inclusions. That is,M∞(A)
is the set of infinite matrices where almost all aij are zero. Finally, define the
stabilization of A (cf. [43, 6.4] or [50, 1.10]) as the closure

Ȧ = M∞(A) .

Here we mean the completion with respect to the norm on M∞(A) and the
main point is that the inclusions above are all norm-preserving. The result is
a C∗-algebra without unit.

Remark 47. There is an equivalent definition of Ȧ as the tensor product A⊗K,
where K is the C∗-algebra of all compact operators on a separable infinite-
dimensional Hilbert space, and the tensor product is in the sense of C∗-
algebras.

Example 15. Let H be a separable, infinite-dimensional, Hilbert space. That
is, H has a countable, but not finite, orthonormal basis. It can be shown that

Ċ = K ⊂ L(H),

where K is the subset of compact operators on H. We have then

Kj(C) = Kj(Ċ) ,

where Kj(−) is C∗-algebra K-theory. This is true in general for any C∗-
algebra (Proposition 4 below).
On the other hand, the algebraic K-theory of Ċ is

Kalg
j (Ċ) =

{
Z j even,
0 j odd,

which therefore coincides with the C∗-algebra K-theory of C. This is also
true in general (Theorem 13 below). This answer is simple compared with the
algebraic K-theory of C, where only some partial results are known.

The stabilization of a C∗-algebra does not change its (C∗-algebra) K-
theory.

Proposition 4. Let A be a C∗-algebra and write Kj(−) for K-theory of C∗-
algebras. Then

Kj(A) = Kj(Ȧ) j ≥ 0 .
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The proof is a consequence of the definition of C∗-algebra K-theory: the in-
clusions (2) induce isomorphisms in K-theory, and the direct limit (in the
sense of C∗-algebras) commute with the K-theory functor (cf. [50, 6.2.11 and
7.1.9]).

Remark 48. In the terminology of Cortiñas’ notes[12], Proposition 4 says that
the functors K0 and K1 are K-stable.

M. Karoubi conjectured that the algebraic K-theory of Ȧ is isomorphic
to its C∗-algebra K-theory. The conjecture was proved by A. Suslin and
M. Wodzicki.

Theorem 13 (A. Suslin and M. Wodzicki [49]). Let A be a C∗-algebra.
Then

Kj(Ȧ) = Kalg
j (Ȧ) j ≥ 0 ,

where the left-hand side is C∗-algebra K-theory and the right-hand side is
(Quillen’s) algebraic K-theory of rings.

A proof can be found in Cortiñas’ notes [12, Thm. 7.1.3]. In these notes
Cortiñas elaborates the isomorphism above into a long exact sequence which
involves cyclic homology.

Theorem 13 is the unity of K-theory: It says that C∗-algebra K-theory
is a pleasant subdiscipline of algebraic K-theory in which Bott periodicity is
valid and certain basic examples are easy to calculate.
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C. R. Math. Acad. Sci. Paris 334 (2002), no. 7, 533–538. MR MR1903759
(2003d:19007)

25. G. G. Kasparov, The operator K-functor and extensions of C∗-algebras, Izv.
Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719. MR MR582160
(81m:58075)



K-theory for group C∗-algebras 43

26. , Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91
(1988), no. 1, 147–201. MR MR918241 (88j:58123)

27. , K-theory, group C∗-algebras, and higher signatures (conspectus),
Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993),
London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cam-
bridge, 1995, pp. 101–146. MR MR1388299 (97j:58153)

28. G. G. Kasparov and G. Skandalis, Groups acting on buildings, operator K-
theory, and Novikov’s conjecture, K-Theory 4 (1991), no. 4, 303–337. MR
MR1115824 (92h:19009)
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Birkhäuser, Basel, 2005, pp. 269–322. MR MR2195456 (2006m:55036)

34. Wolfgang Lück and Bob Oliver, The completion theorem in K-theory for proper
actions of a discrete group, Topology 40 (2001), no. 3, 585–616. MR MR1838997
(2002f:19010)

35. Wolfgang Lück and Holger Reich, The Baum-Connes and the Farrell-Jones con-
jectures in K- and L-theory, Handbook of K-theory. Vol. 1, 2, Springer, Berlin,
2005, pp. 703–842. MR MR2181833 (2006k:19012)
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