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1 Introduction

The magnetic moment of a charged lepton is extracted from the vertex function describing

the interaction between the lepton and a photon in the limit of vanishing photon momen-

tum. The corresponding anomalous magnetic moment al is then defined as half the differ-

ence between the gyromagnetic factor g and its classical value of 2, i. e. al = (gl − 2)/2.

In the case of the electron the quantity is dominated by QED contributions. The one-

loop result was obtained by Schwinger more than sixty years ago [1], and since then ae
has reached an accuracy better than one part per billion on both the theoretical and the

experimental sides, which yield results in beautiful agreement (see section 3 of [2], and

references therein).

The anomalous magnetic moment mediates helicity flip transitions [3], which implies

that quantum corrections due to heavier particles of mass M , in the Standard Model

or beyond, are proportional to m2
l /M

2. For this reason the muon anomalous magnetic

moment aµ is regarded as a sensitive probe for effects of nearby New Physics. However,

by the same argument, given that mµ ≤ mπ, the hadronic contributions to aµ are large

and notoriously difficult to quantify. While the experimental and theoretical estimates

have each reached similar levels of precision of 0.5 ppm, a tension by 2 or 3 standard

deviations between theory and experiment persists [4, 5]. Before invoking New Physics as

the reason for this tension the theoretical result and, in particular, all contributions due

to hadronic effects, must be corroborated. The uncertainty is dominated mainly by the

hadronic leading order (aHLO
µ ) and secondly by the hadronic light-by-light contributions.

Currently aHLO
µ is estimated via a phenomenological approach based on the evaluation of

a dispersion integral. In the low-energy regime the spectral function in the integrand must
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be determined experimentally, either from the cross section e+e− → hadrons or from the

rate of hadronic τ -decays. Both methods suffer from different systematics [2, 5] and yield

results in slight tension among each other. None of them however reduces the discrepancy

between theory and experiment on aµ below the two standard deviation level. A purely

theoretical estimate of aHLO
µ from a first-principles approach is clearly desirable, and the

present work represents our first step in that direction by using the lattice regularization

of QCD.

The hadronic vacuum polarization contribution to aµ has received considerable atten-

tion from the lattice community in recent years. Initial studies have been performed in

the quenched approximation [6, 7] and in the theory with two [8] and three dynamical

flavours [9, 10]. Compared to the determination of “standard” quantities such as hadron

masses, quark masses and decay constants (see [11] for a review), lattice calculations of

aHLO
µ are extremely challenging. The relevant lattice quantity (the hadronic vacuum po-

larization discussed in the next section) receives contributions from quark disconnected

diagrams, which are intrinsically noisy and difficult to estimate with good statistical ac-

curacy at a reasonable numerical cost. Moreover, the dependence of the hadronic vacuum

polarization on the momentum transfer must be accurately traced down to momenta of or-

der m2
µ and beyond. This value is well below the lowest Fourier momentum (2π/L)2 which

can be reached in current lattice QCD simulations. As a consequence finite size effects may

conceivably be large on results obtained within the “standard” approach. In addition, the

vacuum polarization receives sizeable contributions from the low-lying vector resonances.

Those should be properly accounted for in simulations at sufficiently light quark masses for

the lowest vector meson to be a resonance and including the full dynamics of the strange

and charm quarks. Finally, as the contribution to aHLO
µ from isospin breaking effects may

be of the same size of its present uncertainty, those will have to be included in lattice com-

putations (possibly along the lines discussed in [12–14]) for them to have a crucial impact

on (g − 2)µ phenomenology.

In [15, 16] we have shown how (partially) twisted boundary conditions [17–19] can be

used to improve the momentum resolution in the connected part of the hadronic vacuum

polarization, and we have obtained an estimate of the disconnected contribution in Chi-

ral Perturbation Theory, thus addressing the first two systematic effects discussed above.

Here we report on numerical results obtained in that setup and show how the fits to the

momentum dependence of the vacuum polarization function get substantially stabilized in

this way, thereby improving the accuracy of our estimates. Partial results have already

appeared in [20, 21]. In addition we present a thorough investigation of all sources of sys-

tematic errors, including the modelling of the q2-dependence of the vacuum polarization,

chiral extrapolations, lattice artifacts and finite volume effects.

2 Definitions and lattice setup

The Euclidean hadronic vacuum polarization (VP) tensor is defined as

Π(Nf)
µν (q) =

∫
d4xeiqx〈J (Nf)

µ (x)J (Nf)
ν (0)〉 , (2.1)
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where J
(Nf)
µ (x) =

Nf∑
f=1

Qfψf (x)γµψf (x). For Nf = 2 the quark fields ψf (x) are taken

from the set (ψu, ψd) with Qf = (2/3,−1/3) denoting the electric charges in units of the

elementary one. For Nf = 2 + 1, f = (u, d, s) and Qf = (2/3,−1/3,−1/3). Euclidean

invariance and current conservation imply

Π(Nf)
µν (q) = (gµνq

2 − qµqν)Π(Nf)(q2) . (2.2)

For space-like momenta, the relation between Π
(Nf)
µν (q2) and the lowest order hadronic

contribution aHLO
µ to the anomalous magnetic moment of the muon has been derived in [6,

7, 22] and reads (suppressing the index Nf)

aHLO
µ =

(α
π

)2
∫ ∞

0
dq2 f(q2)Π̂(q2) , (2.3)

where

f(q2) =
m2
µq

2Z3(1− q2Z)

1 +m2
µq

2Z2
, Z = −

q2 −
√
q4 + 4m2

µq
2

2m2
µq

2
, (2.4)

and Π̂(q2) ≡ 4π2
[
Π(q2)−Π(0)

]
.

2.1 Lattice regularization

We perform our computation on a subset of the gauge configurations generated within

the CLS initiative [23] for two flavours of non-perturbatively O(a) improved Wilson

fermions [24] and using the standard Wilson plaquette gauge action. The simulation pa-

rameters are collected in table 1, including the values of the twist angle θ, whose rôle will

be explained below.

Following [7], we have implemented the one-point-split conserved vector current

V f
µ (x) =

1

2

(
ψf (x+ aµ̂)(1 + γµ)U †µ(x)ψf (x) − ψf (x)(1− γµ)Uµ(x)ψf (x+ aµ̂)

)
, (2.5)

where Uµ ∈ SU(3) represents the gauge link in the positive µ direction, and f is again a

flavour index. The lattice version of the vacuum polarization tensor then reads

Π(Nf)
µν (x) = a6

〈 Nf∑

f=1

(QfV
f
µ (x))

Nf∑

f ′=1

(Qf ′V
f ′
ν (0))

〉
. (2.6)

By Fourier transforming the expression above into momentum space one gets

Π(Nf)
µν (q̂) =

∑

x

eiq(x+aµ̂/2−aν̂/2)Π(Nf)
µν (x) , (2.7)

where qµ = 2πnµ/L and q̂µ = 2
a sin

(aqµ
2

)
with nµ ∈ 0, 1, . . . L/a − 1. We restrict our

attention to the case µ 6= ν to avoid mixings of the composite field Vµ(x)Vν(0) with lower

dimensional ones in the limit x→ 0. It then follows that Π
(Nf)
µν (q̂) fulfils the Ward identities

q̂µΠ(Nf)
µν (q̂) = Π(Nf)

µν (q̂) q̂ν = 0 . (2.8)
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T · L3 β mπ [MeV] a [fm] θ κs # meas.

A3 64 · 323 5.20 471 0.079 0.8; 1.8; 2.6 - 532

A4 64 · 323 5.20 362 0.079 0.8; 1.8; 2.6 - 800

A5 64 · 323 5.20 317 0.079 0.8; 1.8; 2.6 - 432

E4 64 · 323 5.30 601 0.063 0.8; 1.8; 2.6 0.13605 648

E5 64 · 323 5.30 447 0.063 0.8; 1.8; 2.6 0.13574 672

F6 96 · 483 5.30 324 0.063 0.4; 1.9; 2.3 0.13575 804

F7 96 · 483 5.30 277 0.063 0.4; 1.9; 2.3 0.13570 820

N4 96 · 483 5.50 541 0.050 0.8; 1.9; 2.6 0.13639 532

N5 96 · 483 5.50 431 0.050 0.8; 1.9; 2.6 0.13629 644

Table 1. Summary of simulation parameters. Measurements are performed on configurations sepa-

rated by 8 units of molecular dynamics time at least, where one molecular dynamic unit corresponds

to an evolution by τ = 1 in Hybrid Monte Carlo algorithms. The lattice spacings and the values of

the hopping parameter κs corresponding to the strange quark mass are taken from [25] and have

been determined using the definitions and some of the results in [26–28]. The values of the lattice

scale must be regarded as preliminary. The masses of the lightest pseudoscalar state mπ are taken

from [29]. The twist angle θ is applied in the spatial x-direction only.

Consequently on the lattice we can relate the scalar vacuum polarization to the tensor one,

by mimicking the continuum relation

Π(Nf)
µν (q̂) = (q̂2δµν − q̂µq̂ν)Π(Nf)(q̂2) . (2.9)

The scalar vacuum polarization extracted in this way approaches its continuum counterpart

with a rate proportional to a, where the O(a) effects appear due to off-shell contributions

in Π
(Nf)
µν (q̂).

After performing the Wick contractions in Π
(Nf)
µν (x) one realizes that connected as well

as disconnected quark diagrams contribute. We neglect here the disconnected terms, as

done in most of the existing lattice computations in the literature. In [8] such contributions

were included for almost half of the ensembles used and found to be negligible within the

quoted errors. Following the arguments in [16], the disconnected diagrams are expected to

decrease the value of Π̂
(Nf)
µν (q̂) by about 10%, which demonstrates the limited accuracy of

lattice calculations without their proper inclusion.

2.2 Twisting the connected part of the vacuum polarization

By modifying the spatial boundary conditions on the quark fields entering the vector cur-

rent it is possible to improve the momentum resolution in Π(Nf)(q̂2) and to access momenta

different from the integer multiples of 2π/L. Namely, imposing the condition

ψ(x+ Lk̂) = eiθkψ(x) (2.10)
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is equivalent to boosting the momenta in the quark propagator by θk/L. This technique

can be used to modify and refine the lattice dispersion relation of, for example, charged

pseudoscalar mesons, or of any momentum dependent quantity, as long as there are no

strong final state interactions [18]. This remains true, up to exponentially suppressed

finite size effects, for partially twisted boundary conditions [17–19], where only (some of)

the valence quarks satisfy twisted boundary conditions, while the sea quarks fulfil periodic

boundary conditions. Note, however, that the effect of partial twisting obviously vanishes

whenever it is applied to flavour-singlet quantities, as the vector current discussed above.

We have shown in [16] that, by introducing a sufficiently large number of valence

quarks degenerate with the u, d . . . flavours, the quark connected and disconnected parts

of the correlator Π
(Nf)
µν (x) can be rewritten as independent correlation functions in Partially

Quenched QCD. In such unphysical theories each quark diagram has an unambiguous field-

theoretic expression and well-defined continuum and infinite volume limits. The formula-

tion naturally turns the connected contribution into a correlator of flavour-off-diagonal

vector currents and thus twisting can be applied to induce arbitrary momentum. This

amounts to a simple modification of eq. (2.7) (restricted to its connected part) in which

qk → qk − θk/L and q̂ changes accordingly.

In practice we have applied twisting in the x-direction only and remained with periodic

boundary conditions in the other directions. The twist angles in table 1 have been chosen in

order to achieve a fixed and large density of q2 values between consecutive Fourier modes

and in order to reach a lowest non-zero q2 around m2
µ. For the Fourier modes we have

considered all the integers values between (0, 0, 0, 0) and (2, 2, 2, 2) in units of 2π/L.

3 Results

In order to compute aHLO
µ we must obtain a continuous description of Π(Nf)(q̂2) to determine

Π(Nf)(0) and Π̂(Nf)(q̂2) entering the integral in eq. (2.3). At each value of the lattice

spacing a we introduce a maximum momentum q̂2
max and adopt several different fit ansätze

for the low q̂2 region below q̂2
max. We additionally impose a matching condition with

perturbation theory at q̂2 = q̂2
max and hence use the perturbative expression to describe

the high q̂2 region.

The results for aHLO
µ at different values of the mass of the lowest pseudoscalar state

mπ are then extrapolated to the physical point using a functional form inspired by Chiral

Perturbation Theory.

3.1 Fitting procedure

In order to check for the stability of our results against variations in the fitting procedure

we use three different ansätze to describe Π(Nf)(q̂2) in the region 0 ≤ q̂2 ≤ q̂2
max:

A) a model-independent (2, 3) Padé ansatz defined by a degree 2 over a degree 3 poly-

nomial in q̂2 (ncoeff = 6), i.e.

Π(Nf)(q̂2) =
a(b2 + q̂2)(c2 + q̂2)

(d2 + q̂2)(e2 + q̂2)(f2 + q̂2)
, (3.1)
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B) a vector-dominance model with a single pole (ncoeff = 3), i.e.

Π(Nf)(q̂2) = a+
b

c2 + q̂2
, (3.2)

C) a vector dominance-model with two poles.1 This form (ncoeff = 5) has been suggested

and used in [10] and reads

Π(Nf)(q̂2) = a+
b

c2 + q̂2
+

d

e2 + q̂2
, (3.3)

subject to the additional constraint c2 < e2.

We perform correlated fits. For these to be reliable and to produce a meaningful correlated

χ2 large statistics is needed. In [30] a toy model was used to provide the thumb-rule

N >∼D2, where N is the number of measurements and D the number of degrees of freedom

in the fit. We therefore randomly select about 25 values of q̂2 and indeed observe stable

correlated fits as well as the absence of numerical problems when inverting the average

covariance matrix. The errors on the fit parameters are estimated and propagated to aHLO
µ

by performing the fits and the integral for each bootstrap sample. For the fit ansatz C we

compare in figure 1 the value of the smaller mass parameter obtained from the fit with the

mass measured from the exponential decay of the vector two-point function. We call the

latter naive vector mass, as it assumes the lightest vector meson to be stable at all values

of mπ considered. While this may not be the case for our most chiral points, for the sake

of this qualitative comparison such a definition seems nonetheless adequate. A separate

study will have to be devoted to the measurements of the vector resonance parameters

following [31, 32]. The figure shows overall reasonable agreement, with discrepancies which

stretch to 15% at most.

As a constraint on the high-q̂2 region we always include perturbation theory in the MS

scheme at the scale 2 GeV, using the leading-order expression in αs for Π(Nf)(q2) from [33].

Although the NLO in αs is available from the same reference, for our purposes it is enough

to include the leading-order, where in addition no internal fermionic loops appear and

therefore it is rather simple to apply the formulae to the case of two light dynamical

quarks and a quenched strange. In addition, as it will become clear in the following, the

perturbative contribution to aHLO
µ estimated in this way is extremely small. To evaluate the

perturbative formula we use the non-perturbative ΛMS parameter for Nf = 2 from [34] and

the non-perturbative renormalization factors in [35–37] to relate the lattice quark masses to

their values in the MS scheme at 2 GeV. As discussed in [7] the function Π(q̂2) computed on

the lattice and in the continuum dimensional regularization can differ by an un-physical and

non-universal integration constant. We fix the value of this scheme dependent constant by

matching the perturbative expression for Π(q̂2) to our non-perturbative data at q̂2 = q̂2
max.

Moreover the perturbative prediction diverges as q2 → 0 and therefore even after this step

perturbation theory can be expected to provide a good description of our data only at

1Up to a re-definition of the fitting parameters the ansätze B and C are equivalent to Padé approximations

of degree (1, 1) and (2, 2) respectively.

– 6 –



J
H
E
P
0
3
(
2
0
1
2
)
0
5
5

mV [GeV]

m2
π [GeV2]

m2
π,phys

mV measurement
fit C
PDG

0.7

0.8

0.9

1

1.1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 1. Comparison between the smaller mass parameter from fit ansatz C and the vector mass

measured from the vector two-point function as a function of m2
π.

aHLO
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q̂2
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Fit A
Fit C
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aHLO
µ / 10−10

q̂2
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Fit A
Fit C
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800

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Figure 2. Left: Fit results from the F6 ensemble using the ansätze A and C in the text, plotted

as a function of q̂2max. Right: Equivalent plot obtained by using the Fourier momenta only.

sufficiently large values of q̂2. We require the resulting function not only to be smooth but

also to have a smooth first derivative on the whole real axis, and in particular at q̂2 = q̂2
max.

Hence, the matching produces one non-trivial relation among the parameters in the fit

ansätze above, reducing their number npar from npar = ncoeff to ncoeff − 1.

The fit ansatz B always produces reduced χ2 larger than 5 and we therefore discard

it. We monitor the stability of the fit results for aHLO
µ in the way shown in the left panel

of figure 2 where, as an example, the values obtained from fits of type A and C to the

measurements performed on the F6 ensemble are plotted. A cut χ2/dof ≤ 2.5 is applied

in producing the figure. The two functions give compatible results for q̂2
max

>∼ 1.5 GeV2

and in the end we opt for the results from ansatz A on all the ensembles, as this yields
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fit A fit C

q̂2
max [GeV2] aHLO

µ χ2/dof aHLO
µ χ2/dof

A3 3.5 274.2(9.8) 0.96 282.4(9.1) 0.97

A4 3.5 304.2(13.5) 1.25 305.0(12.8) 1.12

A5 3.5 395.8(40.2) 0.84 384.3(30.1) 0.95

E4 5.5 197.0(5.8) 1.02 195.4(6.0) 0.88

E5 5.5 248.5(10.8) 0.83 255.6(13.6) 0.92

F6 2.4 346.3(19.0) 1.05 366.7(18.3) 1.19

F7 2.4 406.8(37.6) 1.15 382.8(24.5) 1.22

N4 3.9 253.4(5.2) 0.46 252.0(5.0) 0.65

N5 3.9 273.3(9.4) 0.53 276.2(11.2) 0.57

Table 2. Results for aHLO
µ in the Nf = 2 theory.

fit A fit C

q̂2
max [GeV2] aHLO

µ χ2/dof aHLO
µ χ2/dof

E4 5.5 236.8(6.6) 1.10 233.7(4.5) 0.89

E5 5.5 294.8(15.4) 0.89 291.3(12.3) 0.72

F6 2.4 404.5(19.7) 1.29 403.1(20.5) 1.39

F7 2.4 457.5(28.5) 1.13 452.1(28.1) 1.31

N4 3.9 303.2(6.3) 0.55 300.4(5.7) 0.73

N5 3.9 323.5(9.3) 0.59 330.3(10.8) 0.57

Table 3. Results for aHLO
µ in the theory with two dynamical light quarks and a quenched strange

quark.

in most cases the smallest χ2 values and the smallest errors on aHLO
µ . The values of

q̂2
max are chosen differently for different ensembles as the q̂2-ranges explored depend on

the lattice spacing and on L/a. Specifically the maximum momentum lies in the range

2.4 GeV2<∼ q̂2
max

<∼ 5.5 GeV2. In order to quantify the improvement brought by the use of

partially twisted boundary conditions we repeat in figure 2, right panel, the comparison

between fit ansätze A and C on the F6 ensemble but restricting the data to the Fourier

modes only. Twisting clearly helps in stabilizing the fits and the plateau values are reached

”earlier” in q̂2
max. This increases our confidence in the fitting procedure adopted. Statistical

errors are also slightly smaller in the left panel of figure 2 with respect to those in the

right one.

We summarize our results on aHLO
µ for the two-flavour theory and the case with an

additional quenched strange quark in tables 2 and 3 respectively.
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Π̂(2)(q̂2)

q̂2 [GeV2]

II III IV

periodic bc
twisted bc
Π̂
(2)
pert(q̂

2)

Π̂
(2)
fit (q̂2)

I

II
III

ahad
µ

m2
µ

0.2GeV2

Π̂
(2)
pert

Figure 3. Left: The subtracted vacuum polarization Π̂(2)(q̂2) computed on the F6 ensemble. The

blue solid is the result from fit ansatz A matched to two-loop perturbation theory (light blue line).

Right: The different contributions to aHLO
µ broken down to different momentum ranges (see text),

indicated in both panels by corresponding colours.

How statistical errors of order 5-10% come about can be easily understood from figure 3.

In the left panel we show the result for Π̂(2)(q̂2) together with the fit function (ansatz A)

and the perturbative curve for the F6 ensemble. The horizontal axis is divided into four

regions. Region I, is defined by 0 ≤ q̂2 < m2
µ (not visible on the left panel) where the

q̂2-dependence is only constrained by smoothness requirements on the fit function. There

is no direct measurement of the vacuum polarization function here, although we could have

tuned the θ-angle in order to penetrate this region. However, the error on the corresponding

value of the integrand in eq. (2.3) would have turned out to be larger than 100%. Region

II, where m2
µ ≤ q̂2 < 0.2 GeV2, is accessible only thanks to the use of partially twisted

boundary conditions; 0.2 GeV2 indeed coincides with the smallest Fourier mode on the F6

ensemble. Region III, 0.2 GeV2 ≤ q̂2 < q̂2
max, is the region which is accessible here by

Fourier modes. Region IV, q̂2 ≥ q̂2
max, is the “perturbative” region. The right panel shows

the relative contributions from the different regions to the integral in eq. (2.3). Since region

I contributes about 25% and is not constrained by any direct measurement of Π(2)(q̂2), its

uncertainty dominates the overall statistical error on aHLO
µ , with an ambiguity which, within

this approach, inevitably amounts to about 5%. The uncertainty on the contribution from

region II is of the same order but slightly smaller, whereas the uncertainties on regions III

and IV are sub-dominant.

3.2 Chiral extrapolations

We show our results for aHLO
µ in the Nf = 2 and the Nf = 2 plus a quenched strange

quark theories as functions of m2
π in figure 4. The blue curves represent our preferred

chiral fits and we will discuss in the following how those have been obtained. We start
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from the observation that in the mass-region explored a curvature is clearly visible in our

data. Indeed a linear fit in that region would fail in producing acceptable χ2/dof values.

We take the observed curvature into account in three different ways.

• We perform a chiral fit inspired by the functional forms derived at NLO in χPT

for different well known chiral corrections. These include a chiral logarithm, which

should account for the curvature.

• We re-analyze our data following the alternative procedure presented in [8], which is

expected to remove the curvature due to the lowest lying vector resonance.

• We impose a cut on the pion mass (< 400 MeV) and linearly extrapolate our data at

the four lightest values of mπ in the Nf = 2 theory. In doing so we negelect cutoff

effects and fit the β = 5.2 and β = 5.3 results simultaneously. Such a procedure

produces a value for aHLO
µ at the physical point which is well consistent with the

result from the χPT-inspired fit ansatz in eq. (3.5) although slightly lower (namely

aHLO
µ = 508 (62)).

We do not further discuss the third analysis and present in detail the approaches used for

the first two fitting procedures.

Since little is known about the functional form describing the dependence of aHLO
µ on

the light quark masses, we conservatively adopt a form inspired by χPT to extrapolate our

data to the physical point. Namely we use the fit function

aHLO
µ (mπ) = aHLO

µ (0) +B (amπ)2 + C (amπ)2 ln((amπ)2) , (3.4)

with aHLO
µ , B and C as free parameters. Such a functional form can be derived for the

connected part of aHLO
µ from the expressions for the (connected) vacuum-polarization ob-

tained in [16] at NLO in χPT. In addition, since our current set of ensembles covers a wide

range of pion masses at only one value of the lattice spacing (a = 0.063 fm), and in order

to avoid mixing of cutoff effects with chiral effects, we decide to extrapolate the β = 5.3

data only. The other data sets in table 1 are used to asses lattice artifacts and finite size

effects. Eventually, extrapolations to the continuum limit at fixed pion masses will have to

be performed before the chiral extrapolation.

The resulting curves are shown in figure 4. We find that the function describes the

whole set of data points quite well, even those which are not included in the fit. In the

two-flavour case we obtain at the physical point

aHLO
µ = 546 (62) · 10−10 [Nf = 2] , (3.5)

which is well consistent with the recent Nf = 2 result in [8], whereas the inclusion of a

quenched strange quark gives

aHLO
µ = 618 (58) · 10−10 [Nf = 2 + 1q] , (3.6)

where the errors are purely statistical.
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Figure 4. Left: The simulation results for the hadronic contribution to aµ computed using two

flavours, shown as a function of m2
π. The chiral extrapolation (blue curve) is performed for the en-

sembles at β = 5.3 using an ansatz motivated by chiral perturbation theory. Right: Corresponding

results for aHLO
µ including a quenched strange quark. The value from the PDG [38] is also shown

for illustration.

In [8] an alternative extrapolation procedure was proposed, with the aim of reducing

the mπ-dependence. It can be motivated starting from a vector dominance description of

Π̂(Nf)(q̂2), i.e.

Π̂(Nf)(q̂2,mπ) ∝ g2
V

q̂2

m2
V(mπ) + q̂2

, (3.7)

where the mπ-dependence is explicitly indicated. The quantity gV is related to the vector

decay constant fV by gV = fV/mV. The dependence of gV on mπ is neglected based on

the numerical observation in figure 1 of [39]. Eq. (3.7) then leads to

aHLO
µ ∝

∫ ∞

0
dq2f(q2)Π̂(Nf)(q2,mπ) ∝ g2

V

m2
µ

m2
V(mπ)

. (3.8)

It is easy to see that, by rescaling the argument of the function f from q2 to hq2, one

obtains

aHLO
µ,h ∝ g2

V

m2
µ

hm2
V(mπ)

. (3.9)

Under these assumptions the choice h =
m2
ρ

m2
V(mπ)

in [8] would therefore remove the depen-

dence on mπ (up to the mild one in gV) producing in addition the right physical result

since h→ 1 in that limit. Such a rescaling has the further advantage of making the dimen-

sionless quantity aHLO
µ,h independent from the lattice spacing [8], as opposite to aHLO

µ where

the lattice spacing value is needed to convert mµ in the weight-function f (see eq. (2.4))

to lattice units.

In order to estimate the uncertainty in our chiral extrapolation we perform the analysis

described above, using the naive vector mass to define h. Results for aHLO
µ,h are shown in

figure 5. We expect from the observation in the previous section on the high χ2/dof values

produced by the fit ansatz B (single vector dominance) that some dependence on mπ will
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Figure 5. Results and chiral extrapolations for aHLO
µ,h with h =

m2
ρ

m2
V(mπ)

Left: Nf = 2. Right:

Nf = 2+1q. In both cases the leftmost value shows the result from the corresponding extrapolation

in figure 4.

remain. However, the rescaling clearly renders such a dependence mild, its effect being

particularly strong for heavy pion masses. The curvature visible in figure 4 has almost

completely disappeared and we therefore linearly extrapolate the results from the three

smallest pion masses at β = 5.3 to the physical point. There is no obvious theoretical

reason why a non-linear dependence could not survive, however, we do not have a large

sensitivity to those terms in the mπ-range explored here. We obtain in this way the

following results at the physical point

aHLO
µ = 550 (42) · 10−10 [Nf = 2] , (3.10)

and

aHLO
µ = 626 (38) · 10−10 [Nf = 2 + 1q] , (3.11)

which are consistent with those in eqs. (3.5) and (3.6). Notice that, as a consequence of the

rather moderate chiral extrapolation performed, they are also compatible with the values

of aHLO
µ,h directly estimated at our most chiral point (F7 ensemble).

3.3 Residual cutoff and finite size effects

The set of our simulations covers a rather wide range of lattice volumes and lattice spacings.

We are therefore able to address the issue of finite volume effects and cutoff effects. This

study is not yet complete and should be extended to lower pion masses.

3.3.1 Cutoff effects

In general we expect O(a) discretization effects in aHLO
µ as the vacuum polarization receives

off-shell contributions and the lattice regularization used here is only on-shell improved.

Some indications on the size of cutoff effects can be gathered from figure 4, where at least for

low pion masses discretization effects appear to be rather small and below our statistical

errors. However, we believe it is more instructive to look directly at lattice artifacts in

Π̂(Nf)(q̂2), as those conceivably depend on q̂2. In figure 6 we compare the subtracted
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Figure 6. The subtracted vacuum polarization from two ensembles with roughly the same pion

mass mπ ' 450 MeV and size L ' 2.5 fm, but different lattice resolutions (a(A3) = 0.079 fm vs.

a(N5) = 0.05 fm).

vacuum polarization from the ensembles N5 and A3, which have rather similar spatial

extensions and pion masses but different values of the lattice spacing. As expected, lattice

artifacts mainly distort the function at large values of q̂2, in the region which contributes

little to aHLO
µ (see figure 3).

3.3.2 Finite size effects

As for the case of cutoff effects we look at finite size effects directly in Π̂(Nf)(q̂2), since

different states are expected to contribute to the vacuum polarization when q̂2 is varied

(see also [40]). In figure 7 (left panel) we compare the results from the E5 ensemble with

those from a simulation at the same bare parameters but different L/a (D5 ensemble, not

in table 1), specifically L/a = 24 instead of 32. Finite size effects are clearly visible in

this rather extreme setup (mπL ' 3.4 for D5), but they seem to drop below our present

statistical error as L is made larger, as the right panel of figure 7 shows. Note, however,

that in this second comparison both L and a differ.

4 Conclusions

We have presented a calculation of the leading hadronic contribution to the anomalous

magnetic moment of the muon on the lattice with two dynamical flavours and a quenched
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Figure 7. Comparison of results for Π̂(q̂2) at different values of L. Left: The lattice E5 (L/a = 32,

a = 0.063 fm) is compared to a L/a = 24 lattice with the same resolution (lattice D5, not used here

in the chiral extrapolation). Right: F6 (L/a = 48, a = 0.063 fm) vs. A5 (L/a = 32, a = 0.079 fm).

strange quark. We have discussed technical improvements, which led to a better deter-

mination of the external momentum dependence of the vacuum polarization Π̂(Nf)(q̂2).

Specifically, together with [41], this paper contains one of the first numerical applications

of partially twisted boundary conditions to a quantity containing flavour-singlet currents.

The approach follows from the theoretical setup devised in [16]. We restrict the compu-

tation to the connected part of Π̂(Nf)(q̂2) only. As it is clear that presently the accuracy

of lattice results is not yet at the level required by phenomenology, the main goals of this

paper are a precise assessment of the different sources of uncertainty and an estimate of

their size. The main results are listed in eqs. (3.5) and (3.6), where statistical errors only

are included. In the following we estimate the uncertainties due to the modelling of the

q2-dependence of the vacuum polarization, chiral extrapolations, lattice artifacts and finite

volume effects. These uncertainties are quantified by changing one ingredient at a time in

the conservative analysis procedure, which we have followed in producing our main results.

In detail, on top of the statistical error we identify the following sources:

• Fitting procedure. We repeat the entire analysis by using fit ansatz C instead of

ansatz A everywhere and obtain

aHLO
µ = 549 (55) · 10−10 [Nf = 2] , [ansatz C] , (4.1)

aHLO
µ = 615 (56) · 10−10 [Nf = 2 + 1q] , [ansatz C] , (4.2)

which suggests an uncertainty well below our statistical errors.

• Chiral extrapolation. By comparing the results in eqs. (3.5) and (3.6) to those in

eqs. (3.10) and (3.11), we conclude that at the moment this systematic cannot be

resolved with our statistical errors.

• Cutoff and finite size effects. As discussed in section 3.3 these effects appear to

be small at the volumes, masses and lattice spacings considered here, but a more

comprehensive study is required.
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• Uncertainty in the lattice spacing. In [25] the lattice spacing at β = 5.3 is given as

a = 0.063(3) fm, by combining statistical and systematic errors in quadrature. By

repeating the analysis of our (β = 5.3) data using a = 0.066 fm instead of a = 0.063 fm

we arrive at

aHLO
µ = 594 (66) · 10−10 [Nf = 2] , [a = 0.066 fm] , (4.3)

aHLO
µ = 671 (64) · 10−10 [Nf = 2 + 1q] , [a = 0.066 fm] . (4.4)

We will include this systematic by taking half the difference with respect to the results

in eqs. (3.5) and (3.6).

In general we see that at the moment most of these systematic effects, with the exception

of the uncertainty on a, are well below our statistical errors. They will become relevant

and will have to be more precisely estimated once the latter are reduced.

We quote as final results the values determined at β = 5.3, having used the other two

lattice spacings to estimate systematic uncertainties. No continuum extrapolation has been

performed yet. The present computation of the connected contribution to the anomalous

magnetic moment of the muon then gives

aHLO
µ = 546 (66) · 10−10 [Nf = 2] , (4.5)

and

aHLO
µ = 618 (64) · 10−10 [Nf = 2 + 1q] , (4.6)

where we have combined in quadrature statistical and systematic errors.

The overall error can definitely be reduced, as it is still statistics-dominated. However,

once it is evaluated, the contribution from disconnected diagrams, which is estimated

to be around 10% (see [16]), will become the main uncertainty. We therefore consider

studying the accuracy that can be reached on the numerical estimates of the disconnected

contribution as a priority. A combination of the methods discussed in [42–45] seems very

promising in this respect, and we have also started implementing similar techniques in the

context of mesonic three-point functions [46]. Further improvements include considering

lighter pion masses and enlarging the set of simulations at β = 5.5.
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