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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Marek Przedwojski

This thesis addresses currently open problems in the stability analysis and control of
discrete linear systems with clock synchronisation errors. Such errors can lead to insta-
bility of an overall system even in the case when it is composed of linear sub-systems
that are stable. Previous work in this general area has focused almost exclusively on
stability analysis and this thesis therefore focuses on the synthesis problem of how to
design control laws that ensure stability and performance of the overall system in the
presence of clock synchronisation errors and, in particular, on the robustness problem.
For many applications, intensive matrix computations are required and hence the time
complexity of the algorithms used is critical. A major part of the new results in this
thesis is the development of two new algorithms for undertaking the computations in the
case where uncertainty is present and an investigation of their merits relative to linear
matrix inequality and brute force alternatives. An identification method for detecting

the presence of clock synchronisation errors from system data is also developed.
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Chapter 1

Introduction

Advances in the underlying technologies, such as electronics and communications, have
enabled the design and implementation of complex systems composed of many sub-
systems and driven by a clock frequency. This is also one of the reasons why digital
control plays such a prominent role in control systems theory, design and implementa-
tion and often the assumption made is that the states of the sub-systems change at the
same time instances. However, in large scale systems and/or high speed circuitry this
assumption may be violated and signal propagation delays arise. These, in turn, can
cause sub-systems to change their states at different instances of time and hence the
presence of clock synchronization errors that alter the overall system behavior such that

the designed system is not actually implemented.

One more recent area where clock synchronization errors can arise is in the analysis of
models of swarms, which may be biologically inspired. A group of autonomous systems
can be modeled as interconnected sub-systems and if some or all of these operate at a
different clock frequency another form of clock synchronization errors can arise. The
implications of clock synchronization errors on systems is the subject area of this thesis
and the remainder of this chapter gives a general level introduction and describes the

layout of the following chapters.

1.1 Motivation

Digital systems are driven by a clock as illustrated in Figure 1.1. Subsystems change
their state (switches) driven by the rising or falling edge of the clock signal. In the ideal
situation switching of all the subsystems occurs simultaneously and instantaneously
(synchronously). If, however, this assumption is violated then the clock signal may
reach the subsystems at different time instances and thereby cause them not to change

their states simultaneously.
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Rising-edge Falling-edge

count coclirs hare count adours here
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FI1GURE 1.1: Typical system clock for digital systems.

Quartz
crystal

One case where this problem can arise is high clock speed circuitry due to signal propa-
gation delays and is known as the common clock case. A more general scenario involves
different clocks with different rates feeding the interconnected subsystems that is known
as the different clocks case. Asynchronous switching of subsystems has a very significant
effect on the overall system response and can destabilize a stable system, see Kleptzyn
et al. (1984). It is also important to distinguish these cases with instantaneous switching
from non-atomic switching, where the switching of a subsystem occurs in non-negligible
time. Stability in the first case was investigated by Lorand (2004). Next, some examples

are given.

Discrete-time market models.
We consider the situation of two countries A and B which each have a stock exchange.
Let x4 denote the price index in A and zp that in B country. If there is no connection

between these two countries the price indices obey
ZL‘A(]{J—Fl) :ZL‘A(]{I)—i—dA(k'), $B(k+1) :I'B(k')—f—dB(k), k:O7172a7

where the time index k is in days and d4, dp are random walks, i.e. independent random
variables d4(0),d4(1),... and dg(0),dg(1),..., which represent stochastic fluctuations
of the indices. In reality, the nature of the economies in each country influences that in
the other. Consequently suppose that if the price index changes by 10% in country A
then that in country B changes by 5%. Suppose also that if the price index changes by
10% in country B the corresponding change in country A is 1%. Then the following is

a model for these cases

Talk+1) = 2a(k) +0.1- 22E2BED gy (k) + da(k) = fa(wa, zp)
wp(k+1) = zp(k) + 0.5 - LAB=2al=D 05 (k) + dp(k) = fp (e, )

which is valid if the countries update the prices synchronously (at the same point in

time). Synchronous price updating is unlikely to arise in the real world due, amongst

other causes, to global time shifts. In particular, suppose that the stock exchange in

country A operates in daylight hours and that in country B in night hours. Suppose
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also, for simplicity, that the prices are updated once a day and that odd k correspond

to night hours in country B. Then the model becomes

x4 (k) y
Fe@atk).zp) | is even
[ zxalk+1 B L /B ’ -
ep(k+1) | - .
fa@alk).zs(R)) | g oda
\ L xB<k) ]
Such a system is termed asynchronous.
Asynchronous algorithms.
Consider a system of linear equations
Ax = b, (1.1)

for some matrix

ail a2 ... Qin
a1 a2 ... Qa9n

A= e R"”
anpl -+ .. Qpn

and vectors x € R", b € R". Now let

ail 0 0
0 a9 0
D =
0 0 app

and E = D — A and consider the following iterative algorithm assuming D invertible
x(k+1) =D 'Ex(k)+ D'b= A'z(k) + b (1.2)
If the algorithm converges the limit is the fixed point z € R”
z=D'Ez+ D 'b,

which is also a solution of the system (1.1). The algorithm (1.2) is termed synchronous
if the whole state vector « is created at the same time instance. However, in parallel
computing this may not be true and the state vector entries may be updated at different

moments of time leading to asynchronous algorithms.

Assume that n processors perform computations independently. The ith processor com-
putes only part x; of the state vector  which is held in a shared memory. The processors

have access to the full state but may operate at different clock rates T;, and let the time
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to compute x; be denoted by §t;. This general situation is illustrated in Figure 1.2.

X X,
Processor 1 @ﬂ
Shared

memory
X X5
Processor 2 66 W
——
X,
X3
X =

X XN XN
Processor N éﬂ

FIGURE 1.2: Asynchronous algorithms

Suppose that the time 0¢; is negligible and consider again (1.2). Introduce the time
index p that is incremented by one whenever an updating occurs. Then the evolution of

(k) may be described by the following model

N _ zi(p)  p¢ip)
ilp+1) { S diri(p) + Y, pei(p)

where i(p) C {1,...,n} describes which indices update simultaneously during pth event
4
the calculation of the state vector entry takes no time is unrealistic. In general §t;(p) > 0

and a;, b'j denote the entries in A’ and b’ respectively. However, the assumption that
if i € i(p). If we assume that the time index p is incremented by one whenever the
calculation starts then the model should involve delays because the new value is not
available to the other processors immediately and another calculation may start using a
past value of the state vector. Similarly, if the time index p is incremented whenever the
computation finishes and the new value is available to the other processors then in the
hypothetical situation a calculation may start before another, already started, finishes.

The situation is illustrated in Figure 1.3.

Regardless of the moments of time chosen as the incrementation of the time index p the

general model in this case is

| _ :C,(p) D ¢ Z(p)
ilp+1) { S dizi(p—d(p) + Y, pei(p)

for some bounded delays 0 < d(p) < d.
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Calculation of x2

Calculation of X1

) ptl pH

FIGURE 1.3: Switching of subsystems with non-negligible switching times. For the
calculation of x4 (p + 2) the value of & (p) is used instead of x(p + 1).

The stability of asynchronous algorithms have been extensively studied since the 1960s
due to its importance in parallel computation. The first stability results were published
by Chazan and Miranker (1969), see also the monographs by Bertsekas and Tsitsiklis
(1989) and Asarin et al. (1992).

Asynchronous Control

Assume that a digital controller operates with clock period 77 and the plant changes
state (switches) with period T,. Here we assume that the switching is instantaneous
and, for simplicity, that To = 2/3 - T1. We also assume that they are out of phase and
hence they never update synchronously. The updating scheme is illustrated in Figure
1.4.

p= 0 1 2 3 4 5 6

= -
1= L=

2 3 4 5 6 7 8 9

k=0

FIGURE 1.4: Plant and controller updating asynchronously. [ - plant updates, e -
input updates.

Assume the nominal system model is
x(k+1) = Axz(k) + Bu(k)

and consider the updating at time index k which is incremented by one each time a
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switching of occurs. Hence

x(1l) = Az(0) + Bu(0)
x(2) = Az(1) + Bu(1)
x(3) = Axz(2) + Bu(2) = Az(2) + Bu(1)
x(4) = Az(3) + Bu(3)
x(5) = Ax(4) + Bu(4)
x(6) = Axz(5) + Bu(b) = Ax(5) + Bu(4)
x(7) = Az(6) + Bu(6)
x(8) = Ax(7) + Bu(7)
x(9) = Ax(8) + Bu(8) = Axz(8) + Bu(7)

Starting from k = 2 for every 3 time increments the input does not update. Introduce
the time index p that is incremented whenever the input updates. From the controller

point of view we have

and hence for time index p

The controller has to stabilize a switched system and not the nominal plant. In the
general case there will be a series of interconnected plants operating on different clock
frequencies and a controller that is fed by its own clock. This situation is much more

complicated and a general model is derived next.
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1.2 General description

In the ideal situation the discrete-time system with no input satisfies

w(k+1) = f(z(k) ,

where € R” is the state vector and f : R"—R" is a nonlinear operator. The time
index k represents discrete moments of time {7', 27, ..., kT, ...} in which the state of the
system is changing. However, the assumption that the whole state vector is changing at
one point of time may sometimes be too strong to describe the dynamics of the system.
In the general setting we assume that the system consists of N subsystems. We assume

also that the subsystems correspond to the parts of state vector

Iy

TN

and that each subsystem «; is driven by a clock with a period 7;, ¢ = 1,...,N.
Now all the subsystems switch or update at discrete instances defined by the sequence
{T;,2T;,...,kT;,...} and these sequences may be different for different subsystems. By
the updating (or switching) of a subsystem we mean that the corresponding part of the
state vector is being recalculated to take new values. We also assume that switching

occurs instantaneously, see Figure 1.5.

X X,
Clock »| Subsystem 1 6 é

B X3 X,
Clock »| Subsystem 2 6$ o
x = |.

Clock »| Subsystem N 6 ﬂ

FI1GURE 1.5: Each subsystem is triggered by its own clock. Driven by the edge of the

clock signal a subsystem recalculates the corresponding part of the state vector. All

subsystems update at a different point in time. The whole state vector is available to
all of the subsystems.
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Suppose, for simplicity, that & € R? and there are two subsystems corresponding to x;
and x9 respectively. Assume also that the clock periods are equal T7 = 75 but are out
of phase in the sense that x; always updates always before z5. The updating will be

defined by the sequence
{1, T»,2T",2T5,,...}

and we introduce the time index p whenever an updating occurs. It is convenient to

introduce the following notation. For the operator f : R? — R? we define f (1y and fo)

fi(z) N | fil®) | n
fg(a:)]’ f{1}()—[ s ]7 foy (@) [f2<w)].

In general for f: R"—R"

f(x) =

]
fi(z)
f{...,i,..,,j,,,,}(ili): A P A A i T )
fi(@)

Tn

and

e at time T}
2(1) = [ f1((0))

22(0) ] = fy(2(0)).

e at time 75

#(2) = [ PN ] = (@) = (o © F ) (@ 0).

o ...
e at time (p+ 1)Ty

f1(=(2p))
x2(2p)

] =(Ffayofryofyo-ofyo fay)(x(0)).

p times

x(2p+1) = [

The system that results is completely different from its original synchronous counterpart

where

x(2p+1) = (fo---of)(x(0)).
2p+1 times
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Moreover, the response may be drastically different and a stable system can become
unstable under an asynchronous updating regime.

In general a system with clock synchronization errors is a discrete-time system with
original dynamics

w(k+1) = f(x(k)),

which updates according to

z(p+1) = fipy(xp),  ilp) C{1,...,n}

Assuming linear dynamics we obtain
z(p+1)=Apzp—1), ilp) S{l,...,n},

for some matrix A. For the case of i(p) = {...,p,...,q,...} the matrix A;,) is defined

as ~ _
0o ... 0 0
0 1 ... 0 0
apl apg e a,p(n_l) a;m
Aip) = ;
aq1 aq2 e aq(n_l) aqn
0 1 0
L 0 0 0 1

where a;; are the entries of A.

1.3 Organization of the Thesis

The problem of interconnected systems with clock synchronization errors has attracted
relatively little attention in the literature. The first work by Kleptzyn et al. (1984)
introduced a model and showed that even small synchronization errors can affect overall
system stability. In more recent work Lorand (2004) studied the stability properties of
different types of synchronization errors and in Lorand and Bauer (2005) a model was
proposed for a distributed system with different clock frequencies and its stability prop-
erties analyzed. A Toeplitz operator approach was used in Lorand and Bauer (2006b) to
address the problem of different clock frequencies in networked systems. Also a method
of identifying clock synchronization errors from the system output in the presence of a
common clock was developed. The overall aim of this thesis is to develop algorithms for
the analysis and control, or synthesis, of interconnected systems with clock synchroniza-

tion errors.
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In Chapter 2 a new model for studying clock synchronization errors in interconnected
systems is developed that differs from that used previously in that the structure is not
a priori assumed. This chapter then gives the results of a stability analysis of this new
model and in Chapter 3 stabilization by state feedback is developed by formulating
the general problem in terms of the computation of approximate polytopic uncertainty.
Chapter 4 gives the results of using norm bounded uncertainty in this problem domain
and Chapter 5 a method for estimating clock synchronization errors for systems with a
common clock. Chapter 6 considers the application of the developed methods to three
different areas and Chapter 7 gives the main conclusions of this thesis together with

directions for future research.



Chapter 2

Models for synchronization errors
in linear systems and open

research questions

In this chapter models to represent the effects of synchronization errors in linear systems
are developed for both the centralised and decentralised control cases. The differences
with previous work are explained and the chapter concludes with the introduction of

the open research questions addressed in the remainder of the thesis.

2.1 Centralized control

In this case we assume that a common input signal is fed to subsystems. The input signal
updates according to its own clock T independently of the subsystems clocks. This is
the most common possible implementation in which there is a single digital controller

that controls the whole system, see Figure 2.1.

2.1.1 The common clock case

We consider discrete-time linear time-invariant systems that are decomposed into sub-
systems. Each subsystem changes its state (switches) at certain time instances defined
by rising or falling edge of a clock signal. In the case of a common clock the clock signals
have the same frequency but could be out of phase, mainly due to signal propagation
delays (in distributed systems). A different case arises in multi-agent systems where
each agent is driven by a clock of common frequency but with a different phase shift.

Asynchronous switching leads to different system behaviour than in the synchronous

case. The subsystems switch at different points of time but the number of switching

11
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Clock out

Clock out

FIGURE 2.1: The common controller case.

events over a full clock period is constant. Figure 2.2 shows an example time-line for
two systems: synchronous and asynchronous. Updating events are marked by symbols

— triangles, squares and circles.

time

[l P a0 P ;)_’

FIGURE 2.2: Switching event pattern for synchronous and asynchronous systems. Sym-
bols: A—x; updates, [—x5 updates, O—-input updates. Systems: I- synchronous system,
II-system with synchronization error.

The switching event pattern is periodic due to constant phase shifts (If a clock signal
reaches a subsystem with small delay, this delay is constant). This simplifies the analysis
and results for what is the simplest case among all types of synchronization errors. Next

a model for this case is developed.
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We consider discrete-time linear time-invariant systems defined by state space model

x(k+1) = Ax(k)+ Bu(k)

| (2.1)
y(k) = Cx(k)+ Du(k)

where x(k) € R", u(k) € R™, y(k) € RP are the state vector, the input vector and the
output vector at time index k respectively. The matrices A € R™*", B € R"*™ C ¢
RP*™ D € RP*™ have constant entries. We assume that the basis of the state repre-
sentation is fixed and that every state vector entry zx; is fed by a clock with rate T;.
The input is driven by its own clock T'. The clock rates are equal but could be out of
phase and the time index is incremented by one whenever the input updates. In the case
when there are no synchronization errors the state variables update (i.e., new values are
calculated) at the same time instances. In the presence of synchronization errors, there
could be more than one event of updating over a full clock period. In this case, the state

space model (2.1) is no longer valid.

To model this latter behaviour, assume first that there are d events of switching (up-
dating) in one full clock period. The switching events are described by the sequence s

of mutually disjoint subsets of indices
s = (i1,%2,...,1q), 43 C{l,...,n}, j=1,...,d (2.2)

The subset i, &k = 1,...,d, contains the indices of the state variables that updated

simultaneously during the k-th event. These subsets satisfy
p#r = i,Ni,=0 for pr=1,....d (2.3)

and

d
U ij={1,...,n}, (2.4)
j=1

which means that all the state variables are updated over a full clock period. The set

of all possible sequences that describe switching events will be denoted by S.

Now assume that s defined in (2.2) describes the switching event pattern for the given
discrete-time linear system. When the j-th event occurs the state vector updates ac-

cording to
z! (k) = A2’ (k) + Bi,u(k), (2.5)

where 2°(k) = (k) and the model matrix A;, € R™*" e.g., giveni; ={...,p,...,q,...},
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is ) )
1 0 0 0
0 0
ap1r Ap2 ... ap(n_l) Apn
Ai]. = (2.6)
Qg1 Qg2 - -- aq(n_l) Agn
1 0
L 0 1 -
and ) )
bpr bp2 ... bp(m—l) bpm
Bij = (2.7)
bgi bga ... bq(m—l) bym
.. 0 0
| O 0o ... 0 0

This representation means that during the jth event only those state vector entries that
correspond to i; are updated. We assume that (k + 1) = z?(k) and the full new state

vector is created after all switching events. The resulting state space model is

x(k+1) = Asxz(k)+ Bsu(k)

) (2.8)
y(k) = Cuz(k)+ Du(k)
where the matrices A; € R™"™ and B, € R™ ™ are defined as follows
A=A, A (2.9)
and
B;=B,;,,+A;B;, ,+---+A;,---A;,Bj,. (2.10)

Example 2.1. Consider a 2nd order system with zero input and state matriz

A | 1 a2
az1 a2
Assuming that that first entry is updated before the second, the sequence s that describes

this event is

s = ({1}, {2}).
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Event 1: iy = {1}, and the state transition is

i u I
xd (k) 0 1 xa(k)

x1(k
:A{l}[ 18]

wgk

=

Event 2: ia = {2}, and the state transition is
ey(k) | _ | 10 w1 (k)
3 (k) azt az | | z3(k)
Lk
=A{2}[$1( ! ]
z5(k)
The state vector after one clock period is
_ 1 0 ) all ai12 .CUl(k)
a a2 0 1 xa(k)

z1(k
= A [ x;Ek; ] )

N

z1(k+1)
l’g(k‘ + 1)

fork=0,1,...

The work by Lorand (2004) gives a similar model with the structure of the subsystems

already imposed. In this model the state vector @ = [ «; J;=1,. N consists of vectors

x; € R™, Zf\;l n; = n, that are relevant to the ith subsystem. The matrices A and B
(2.1) are partitioned as A = [ Ayj |; j=1,..n with A;; € R"*" and B = [ B; |i=1,..N

with B; € R™>*™, In the model the sequence of subsets s’ = (i1, ...,%.) describes the

order in which subsystems update between two consecutive input updating events.

Each

subset i; C {1,...,N},i=1,...,e determines which subsystems update simultaneously

during the jth event. For given i; = {...,p,...,q,...} the asynchronous equation (2.5)

takes the same form as the new model in this section but the model matrices are

0o ... 0 0 0
0 1 ... 0 0 0
Api Ap Ap(n—l) ApN B,
A = , B =
Ag Agp Aq(n—l) AqN B,
0 0 0 0
i 0 1] . 0 |

(2.11)
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Similar reasoning now yields the state model updating of the form(2.8) with s = s’ and

BS/ = Bie —+ 141‘631'671 + -4 Aie .. 'AigBi1-

By appropriate selection of the set of allowable sequences 8 in the first case, i.e., for-
bidding some sequences, we can impose the subsystems structure that makes the two

models equivalent.

The number of synchronization errors

As discussed previously, the number of sequences s for a given n-order system can be
very large. To estimate this value for the common clock case, let 8,, denote the set of
allowable sequences for an n-order system. By the length of the sequence s € §,, we
mean the number of elements (sets) in this sequence. Let 7 (n) denote the number of

k-element sequences for an n-order system. Hence
mi(n) =1, n=12,...,
since for an n-order system there is only one sequence s; of length 1
s1=({1,2,...,n}).

Also for k > 1
mr(n) =0, forn <k

and the set S,, does not contain sequences of length greater than n. Also
mi(n) + ma(n) + - - + m(n) = card(8,)=: m(n),

where card(-) denotes the cardinal number.

Consider a sequence of length k for some n-order system

s = (’il,ig,...,’ik)

and suppose that another state variable is added to the system. The sequence s will
change in order to include the additional state, which may be placed in s either as an
element of the subset ij, j = 1,2,...,k, or before each i;, or after the i;. Thus every

k-element sequence for an n-order system generates k sequences of length k and k + 1
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sequences of length k£ 4 1 for n + 1-order system. Consider the following graph

m(n) — mmn) = mm+1)
N\
2m1(n)
ma(n) — +2m(n) = m(n+1)
N\
3ma(n)
pY
kmp—1(n)
m(n) —  4kmp(n) = m(n+1), n>k
N

(k+ D)mp(n)

Hence the equations are

m(n) = 1 n=12...

(n+1) 0 forn <k
Tr(n =
g kE(mg(n) + mp—1(n))  forn>k

2.12
} for k > 2. ( )

Equation (2.12) allows the construction of a simple algorithm evaluating the number of

synchronization errors m(n) for n-order system. The steps are as follows

e Step 1: Start with the vector

e Step 2: for each £k =2,3,....,n

At each iteration k£ construct the new vector
p(k) = [mi(k), ma(k), ..., m(k)],
based on the knowledge of p(k — 1) and (2.12).

e Step 3: The number of synchronization errors is given by

m(n) =1Tp(n) = m(n) +--- + mu(n).

The procedure is summarized in Algorithm 2.1.1.



Chapter 2 Models for synchronization errors in linear systems and open research
18 questions

Algorithm 2.1.1 Calculates the number of errors for given order of the system
function ERRORSNUMBER(n)
for k:=2,...,ndo
’R’l(k) !
forl:=2,...,k—1do
mi(k) < k(m(k —1) + m_1(k —1))

end for
(k) < k-m_1(k—1)
end for
p(n) « [m1(n), ma(n), .., ma(n) |7

m(n) < 17p(n)
return 7(n)
end function

As an example consider the case for n = 6, where

p(1) =[1] m(1) =1"p(1) =1
p(2) =[1,2]" m(2) =3
p(3)=1[1,6,6]T m(3) =13

p(4) =1, 14, 36, 24]T m(4) =75
p(5) = [1, 30, 150, 240, 120]T m(5) = 541
p(6) = [1, 62, 540, 1560, 1800, 720]T 7 (6) = 4683

For the estimation of 7(n), begin with m3(n) and the following equations
ma(n+ 1) = 2(ma(n) + m1(n)) =2me(n) +2, m(l)=0, n=1,2,...,

or
mo(n) — 2ma(n — 1) = 2, n=23,...

These equations can be written in the following form by successively multiplying by the

power of 2
mo(n) —2ma(n—1) = 2
27r2( —1)—22m(n—2) = 22
ma(n —2) —23m(n—3) = 23
2" 31y (3) — 2" 2w (2) = 272
2" 279(2) — 277 Imy(1) = 27t
m(l) = 0
Moreover L .
2422 4+2° 4. 42771 =2 :2722 _11 =2" -2
=0

and by summation
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In the case of m3(n)

_gnSy()
— 3n—27.‘_3(2)
m3(2)

3”747T3 (4)
3" 313(3)

and hence

371'2 (n — 1)
32ma(n — 2)
331ma(n — 3)

3" 37m9(3)
3n_277'2(2)
0

n—2 n—2
ma(n) = Bimy(n—i) =) 32" —2).
i=1 =1

In general for k <n

me(n) —kmg(n —1) = kmg_1(n—1)
kﬂk(n—l)—kzwk(n—Q) = /{27rk_1(n—2)
32mp(n —2) —Bm(n —3) = kmp_1(n—3)
Enh (k4 1) — k"R (k) = B Fm_q (k)
Enkm (k) — k"R (k- 1) = kMR (k—1)
m(k—1) = 0,
leads to
n—k+1 .
me(n) = Z kE'mi_1(n —1).
=1
also
(k) = kmp—1(k — 1)
and hence

mmn)=nn-1)---2-1

nl.

Consequently a lower bound for the number of clock synchronization errors is

m(n) > nl

This bound may be obtained in a different and simpler way.

Recall that every se-

quence of length k for an nth order system generates k sequences of length k& and

k + 1 sequences of length k + 1. Starting with the sequence ({1}) for n = 1 we obtain
for n = 2 one sequence ({1,2}) of length 1 and two sequences ({2},{1}), ({1}, {2})

of length 2.

Hence the system with 2 state variables has 1 4+ 2 = 3 different se-

quences. Further adding of a new state variable gives that sequence ({1,2}) generates
1 sequence ({1,2,3}) of length 1 and 2 sequences ({3}, {1,2}),({1,2},{3}) of length 2.
Similarly ({2},{1}) generates 2 sequences of ({2,3},{1}),({2},{1,3}) of length 2 and 3
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({3}, {2}, {1}),({2}, {3}, {1}),({2}, {1}, {3}) of length 3. The sequence ({1}, {2}) gives
({1,3},{2}),({1}, {2,3}) and ({3}, {1}, {2}),({1}, {3}, {2}),({1}, {2}, {3})-

This process may be represented as a binary tree; see Figure 2.3. The depth of the tree
equals n — 1. The value of 7(n) is calculated in the following way. For every leaf we
calculate the product of the values of the nodes at the path from the beginning to that

leaf. Summing up all the products for every leaf gives 7(n).

/ ®\
©) @
< Y o %

Y N ¥ N N N
ONONONRONONONONO

FIGURE 2.3: The tree expanded to the depth of three

As an example

m(l) = 1

m2) = 1+2=3

7(3) = 1+24+44+6=13

m4) = 14+2+4+6+8+12+18+24=175

The lower bound is obtained by calculating the product only for the leaf with the highest
value (i.e. m(n) > n!) The upper limit is obtained if we assume that the value at all

nodes equals the depth plus one. In this case products equal n! and we have 2"~ ! leaves

and hence
n! < 7(n) < 2" nl. (2.13)
Fitting a curve to points m(n), n = 1,2,...,20 gives the more realistic approximation
m(n) ~ [(V2)"nl], (2.14)

where |- | denotes the floor function. Table 2.1.1 shows the estimation for n = 1,. .., 20.
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n m(n) (vV/2)™n! 2=Dp)
1 1 1 1
2 3 4 4
3 13 16 24
4 75 96 192
5 541 678 1920
6 4683 5760 23040
7 47293 57021 322560
8 545835 645120 5160960
9 7087261 8211037 92897280
10 102247563 116121600 1.8579e+4-09
11 1622632573 1806428157 4.0875e+10
12 | 2.809157e+10 | 3.065610e+410 | 9.8100e+11
13 | 5.268583e+11 | 5.636056e+11 | 2.5506e+13
14 | 1.064134e+13 | 1.115882e+13 | 7.1416e+14
15 | 2.302832e+14 | 2.367143e+14 | 2.1425e+16
16 | 5.315655e+15 | 5.356234e+15 | 6.8560e+17
17 | 1.303708e+17 | 1.287726e+17 | 2.3310e+19
18 | 3.385535e+18 | 3.278015e+18 | 8.3917e+20
19 | 9.280159e+19 | 8.808046e+19 | 3.1889e+22
20 | 2.677688e+21 | 2.491292e+21 | 1.2755e+24

TABLE 2.1: Comparison of the number of synchronization errors

values.

with the estimated

60 T T T T

50 4
—— Number of errors v

. ,

--- Estimated values < 7

40 .. Upper bound // J

* ¥/"
yd
log A
30 /"// i
v
.
20 . / |
* V/*/
o

10| ///;// -

.
o
- L 1 1 L L 1 1
00 2 4 6 8 10 12 14 16 18 20

FIGURE 2.4: Comparison of the number of synchronization errors with the estimated
values on a logarithmic scale.

The number of possible matrices representing synchronization errors grows very quickly

with the order of the system.
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2.1.2 The case of different clocks

We consider again a discrete-time linear system decomposed into subsystems. Each
subsystem is fed by a clock but whose rates for the subsystems may be different. This
case is more complicated than the previous one since between two consecutive input
updating events there can be a variable number of switching events, see Figure 2.5 in
the case of two subsystems z; and xo with clock rates T and 75, respectively, where the
input clock rate T' € (T1,T%).

}—A—ﬁ_n—au—‘ DA)—a— li—

time

FIGURE 2.5: Switching event pattern for an example asynchronous system. Symbols:
A—z1 updates, (-5 updates, O—input updates.

Consider again the state space model (2.1). where every state vector entry z; is fed by a
clock with rate T;, i = 1,2, ...,n where T is the clock rate of the input. The clock rates
are not assumed to be equal and can be out of phase. We next derive the model that

captures the effects of asynchronous switching.

The basic assumption is that the state variable x; updates at time points determined by
the corresponding clock period T;. If a single state variable updates it means that its
new value is calculated without affecting the other variables. If we have simultaneous
updating of more than one variable, only the corresponding values are recalculated. In
order to capture the effects of asynchronous switching we introduce a time index k that
is incremented by one whenever the input updates and a sequence s(k) of mutually
disjoint subsets of indices. The sequence s(k) describes the switching event pattern over
a clock period [kT, (k + 1)T') and depends on the time index k. The basic assumption
employed is that input is constant during that clock period. Let k be fixed with

S(k):(il,...,id), ijg{l,...,n} j:1,...,d (2.15)

and hence d events of switching occur over full clock period.

The subsets in (2.15) contain indices of state vector entries that switch simultaneously
during the corresponding event. When the jth event of switching occurs the state vector

updates according to
z! (k) = A2’ (k) + B u(k), (2.16)

where 2°(k) = (k) and the model matrix A;, € R™*" for e.g. giveni = {...,p,...,¢,...}
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is ) i
1 0 0 0
0 0
ap1r Ap2 ... ap(n_l) Apn
A= | ... o L (2.17)
Qg1 Qg2 - -- aq(n_l) Agn
1 0
L 0 1 -
and i i
bpr bp2 oo bpm—1) bpm
B, =1 ... ... ... ... |- (2.18)
bgp b2 - bgim—1) bgm
L 0 0 ... 0 0 |

This means that during jth event the state vector entries that correspond to i; are

recalculated. We assume that x(k + 1) = (k). Back substitution gives the state space

model
w(k+1) = Aypz(k)+ Bygyu(k) (2.19)
y(k) = Cx(k)+ Du(k) ’
where for s(k) = (i1,...,1q)
A=Ay, Ay (2.20)
and
By =B, +Ai,Bi, , + -+ A, Ay,B;,. (2.21)

This is a time-varying system because the sequence s(k) may vary with time.

2.2 Decentralized control

In this case we assume that each subsystem has its own input and that input is triggered
by the sane clock as the subsystem. In other words updating the input for a subsystem
and updating the subsystem occurs simultaneously. The updated input is used by the
subsystem at the time of switching. Figure 2.6 gives a schematic of this case and each
subsystem is assumed to be equipped with a digital controller driven by the same clock

as the subsystem itself.
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Clock out

ey LT

Clock

Clock out

Clock out

FIGURE 2.6: The case with decentralized control. Each subsystem has its own micro-
controller that is triggered by the same clock.

Consider the nominal plant model
x(k+1) = Az(k) + Bu(k),

with state feedback law
u(k) = Ka(k),

resulting in the closed-loop system
x(k+1) = Ax(k) + BKx(k).

Introduce the time index p which is incremented when a switching occurs and assume

that every microcontroller produces the input

ui(p) = =un(p) = Kz(p), p=0,1,... . (2.22)

Such an updated input is produced only when it is needed by the subsystem. The
particular microcontroller uses the current state and provides the updated input only
for the switching subsystem. The system behaves equivalently as the one satisfying the

assumption in (2.22). The resulting model is

z(p+1) = A (x(p)) + By Kz(p),  i(p) C{1,...,n},
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with matrices A;) and By, for i(p) ={...,p,...,q,...} given by

0 0 0
0 1 0 0
ap1 Aap2 ... (Ip(n_l) Apn
Apy =1 . o o o (2.23)
Qg1 Qg2 .- aq(n_l) Ggn
0 0 1 0
i 0 0 1|
bpi bpz oo bpm-1) bpm
b bgz .o bym-1) bgm
L0 0 ... 0 0 |

Note that Bz(p)K = (BK)z(p)a
(the rows other than those specified by i(p) are zero). Finally we obtain the closed-loop

where index i(p) is in the sense of the definition of Bj

system
x(p+1) = (A+ BK);,x(p), i(p) C{1,...,n}.

Here the index i(p) has the meaning as in the definition of A, (the rows other than

those specified by i(p) are from the identity matrix).

The model above differs from the one proposed in Lorand (2004) since the subsystems’
structure is not assumed a priori. It is assumed that different state vector entries cor-
respond to different subsystems and hence all possible synchronization errors can be
considered. However, the subsystems’ structure may be imposed by restricting the set
of allowable sequences representing synchronization errors and making the model equiv-

alent.
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2.3 On the stability of systems with synchronization errors

2.3.1 Preliminaries

Consider a dynamical system
x(k+1) = f(x(k), k), x € R". (2.25)

A point z* € R" is an equilibrium point of (2.25) from time ko, if f(x*, k) = «* for all
k > ko.

Definition 2.1. A system (2.25) is called asymptotically stable around its equilibrium

ax* if it satisfies the following two conditions

1. Given any € > 0, there exists d; > 0 such that if ||x(ko) — *|| < d1, then ||z(k) —
x| <€, Vk > ko.

2. 302 > 0 such that if ||x(k) — =*|| < 02, then x(k) — x* as k — oc.

If the first condition of Definition 2.1 is satisfied then the equilibrium point is said to be
stable in the sense of Lyapunov. Otherwise it is unstable. If the system is asymptotically
stable and the second condition of Definition 2.1 holds for every do > 0 then it is termed
globally asymptotically stable otherwise it is locally asymptotically stable.

Consider a linear system

z(k+1) = Az(k). (2.26)

First observe that the zero vector 0 € R" is an equilibrium point of (2.26) since
0 = AO0.

Next assume that &* # 0 is an equilibrium of (2.26). This implies that * is an
eigenvector of A

x* = Ax”.
However, for all d; > 0 taking x(ko) = (1 + d2/2)x* (||x(ko) — x*|| < J2) gives

o
x(k)=(1+ 52)33*, for every k > k.

Hence the equilibrium x* # 0 cannot be asymptotically stable. The conclusion is that
linear systems can be asymptotically stable only around the origin. Moreover, asymp-
totically stable linear systems are globally asymptotically stable. In the rest of the
work only linear systems are considered and the term stability will refer to the global

asymptotic stability around the origin.
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2.3.2 Asynchronous algorithms

When considering stability of systems with clock synchronization errors the stability of
asynchronous algorithms is very applicable where a starting point for the literature is

Kozyakin (2003). Consider the iterative equation
x(k+1) = Ax(k), (2.27)

where € R" is the state and the matrix A = [a;j )i j=1,..n is known. Assume also
that n processors calculates the n state vector entries separately, i.e. the ith processor
calculates x; independent of the remaining processors. Suppose also that calculations are
performed at different instances of time. Introduce the time index p that is incremented
by one whenever any calculation is performed and a sequence of subsets i(p) C {1,...,n},
p = 0,1,... describing which state vector entries are calculated simultaneously during
the pth event. We say that the sequence of subsets i(p),p = 0, 1,. .. is admissible if every
i € {1,...,n} belongs to infinitely many subsets. This is equivalent to the condition

that every state vector entry is updated infinitely many often. The state vector satisfies
z(p+1) = Ajpz(p), (2.28)

where A;,,) is defined as in (2.17) or equivalently

i(p

N _ ) =i j ¢ i(p) . .
i(p+1) {Zﬁzlajkxk(p) icip) ji=1,....n, (2.29)

which models the evolution of the state in the case of asynchronous computations. More-
over, this equation can also model the autonomous system (2.27) for some clock syn-
chronization error s. We assume in general that clock synchronization error may be a
function of time, i.e. s = s(k), k =0,1,..., but can be represented by some admissible
sequence of subsets i(p),p = 0, 1,.... This happens, for example, in a system with dif-
ferent clock frequencies. Note that asymptotic stability of the asynchronous algorithm
(2.29) for all admissible sequences i(p) implies asymptotic stability of the system (2.27)

in the case of all synchronization errors.

The first major results in the stability theory of asynchronous algorithms relevant to

this work is Theorem 2.2. In this paper asynchronous algorithms of the form

' _ ) =) Jj ¢ i(p) - .
se+d) {Ezzl%kxk(p—d(p)) jeip) 7 b (230

are considered where 0 < d(p) < d are the delays, i.e., it is assumed that when calculating
the ith entry the ith processor has access only to past values of x represented by the

delay d(p). It is also assumed that the delays are bounded by some integer.

Theorem 2.2. Chazan and Miranker (1969). Assume that A = [a;j |1<i j<n is a matric
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with real entries. The asynchronous algorithm (2.50) is asymptotically stable in the class
of all admissible sequences i(p),p = 0,1,..., if and only if the spectral radius p(|Al]) < 1,

where |A| = [|aij| l1<ij<n-

A second important theorem is from Asarin et al. (1992).

Theorem 2.3. If the matriz A is symmetric, A = AT, then the asynchronous algorithm
(2.29) is asymptotically stable in the class of all admissible updating sequences i(p),p =
0,1,...if and only if p(A) < 1.

Although both theorems provide sufficient and necessary conditions for stability only
sufficient conditions may be used when considering stability of systems with clock syn-
chronization errors. This is due to the fact that the set of allowable clock synchronization
errors for a given system is usually a subset of the set of all admissible sequences of sub-
sets (after converting synchronization errors to an infinite sequence of subsets). Hence
a given system that is unstable for some admissible sequence may be stable in case of

all synchronization errors.

2.3.3 The control problem

Consider state feedback control for synchronous system in the form
x(k+1) = Az(k) + Bu(k). (2.31)

Theorems 2.2 and 2.3 may be used only in the case when the controller updates the
output immediately after a switching occurs. This can be implemented as decentralized
control. In the asynchronous algorithms setting the stabilization with a decentralized

controller takes the form

N _ %) j¢ip) .
s+ {zzl<a+bkz>jkxk(p> jei B T B3

where (a + bk);j,1 < i,j < n are the entries of the matrix A + BK and K is the

controller matrix. The corresponding full equation is
z(p+1) = (A+ BK);px(k) (2.33)
and both Theorems 2.2 and 2.3 can be used. Thus in order to ensure stability we require
A+BK =(A+BK)", p(A+BK)<1, (2.34)

or
p(lA+ BK]) < 1. (2.35)
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Consider the closed loop system
z(k+1)=(A+ BK)x(k).
Consider the candidate Lyapunov function
V (k) = x(k)T Px(k)

for a positive definite matrix P = PT > 0. Consider also the difference along the

trajectory

AV(k+1)=V(k+1) = V(k) =x(k+ )T Px(k + 1) — x(k)T Px(k)
(k)" (A+ BK)"P(A + BK)x(k) — z(k)T Px(k)
z(k)'[(A+ BK)'P(A 4+ BK) — Plx(k).

Then AV (k) < 0 and hence stability is guaranteed if
(A+BK)"P(A+ BK)—- P <0.

Applying the Schur’s complement formula now gives

—-p! (A+ BK) 0
(A+BK)?® -p |

and multiplying this last expression from the left and right by diag(I, P~!) now gives
—p! (A+BK)] [I 0 ]

I o0

0 P! (A+ BK)" ~-P 0 P!
B —p1 (A + BK) I o
| PY(A+ BK)T —I 0 P!

—p! (A+ BK)P!
= <0
P YA+ BK)" —-p!

and setting W = P~! and KW = N gives the stabilization condition

[ W AW + BN ] Zo (2.36)

WAT+ N'BT -w
If (2.36) is satisfied for matrices W = 0 and N, a stabilizing K is given by

K=Nw1
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Example 2.2. Consider the case when
x(k+1) = Axz(k) + Bu(k)
with
(1.2 00 —1.0 —0.2 —14 | [ —06 —04 01 00 —1.0]
07 03 —-1.1 08 0.2 -0.2 01 —-01 05 05
A=1|06 08 -08 -07 01|, B=| -05 -08 09 —-07 0.8
1.0 -02 —-12 —-08 04 0.3 —-0.7 —-06 08 0.6
| 1.3 0.0 —-1.1 1.1 —0.6 | 08 -05 —-01 08 0.8 ]

The system is unstable since p(A) = 1.7163. We will design a state feedback controller

using the condition (2.34). Since the matriz W in the condition (2.36) is symmetric the

equivalent condition is

AW - BN =WAT +

NTBT,

The following Matlab code implements the design objective (2.34) using the Yalmip parser

size(A,1); 1 = size(B,2);

sdpvar (n,n, ’symmetric’);
sdpvar(l,n,’full’);

W > 01;

% Stability condition

F = [F, [-W, A*W+BxN; WxA’+N’*B’, -W] < 0];
% Design objective
F = [F, AxW+Bx*xN <=
F = [F, A*xW+B*N >=

mo= = B
o

WkA’ + N’xB’ ];
WA’ + N2*B’ 1;
diagnostics = solvesdp(F);

display(yalmiperror(diagnostics.problem)) ;

W = double(W); N = double(N); K=N*inv(W);

Solving the problem with the SeDuMi solver (Sturm (1999)) gives a stabilizing K as

0.4642  0.4193 —1.0932

0.9160 —0.0770 —0.7493

K= | —15891 —-0.6732 1.1641
—2.1115 -0.2635  2.0734

0.3962 —0.2881  0.0720

—0.4846
—1.3596
—2.9090
—2.4474

0.3437

0.4698
—0.3958
2.2095
1.6116
—1.3026
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This state feedback control law stabilizes the plant since p(A + BK) = 6.9559 x 1076,
Also

[ —0.0009 —0.1995 0.1749  0.1072 —0.0908
—-0.1995 0.1322  0.1540 —-0.1208  0.0446
A+BK = (A+BK)T =10°x 0.1749  0.1540 —-0.1146 —-0.2330 —0.1661
0.1072 —-0.1208 —0.2330  0.3695 —0.1291

| —0.0908  0.0446 -0.1661 —0.1291  0.5705

and (2.35) is also satisfied since

[ 0.0009 0.1995 0.1749 0.1072 0.0908
0.1995 0.1322 0.1540 0.1208 0.0446
p(JA+BK|)=p | 107° x | 0.1749 0.1540 0.1146 0.2330 0.1661 | | = 8.54x107°.
0.1072 0.1208 0.2330 0.3695 0.1291
| 0.0908 0.0446 0.1661 0.1291 0.5705

Hence this state feedback control law also stabilizes the plant in the case of all possible

synchronization errors using the decentralized control scheme.

In the centralized control case the situation is quite different. The controller uses its own

clock and applying the state feedback control law gives the controlled system model

zj(p) j &i(p)

Y obey @kr(p) + o p_q (bk) jkzrk(p — d(p)) jeilp) j=1...,n.

%@+U={

(2.37)
Unfortunately conditions similar to those in Theorems 2.2 and 2.3 cannot be formulated
in the case of (2.37). The following example shows that these conditions do not guarantee
stability.

Example 2.3. Consider the system

x(k+1) = Az (k) + Bu(k)

5 6 10
A — y B =
7 8 0 1
and a clock synchronization error s = ({1},{2}). Assume the controller gain matriz to

be

with

K, =

—6.8 =79

—4.7 —5.6
0.2 0.1

]7 A+BK&:[a3&4l

Hence p(|A + BK|) = 0.5. The system dynamics in case of synchronization error s is

ok +1) = Agw(k) + Byul(k),
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where

5 6 10
A=A Apy = . By=AyBpy+Bpy = :
24 [35 50] 2B+ By [7 1]

but p(As + BsK1) = 1.66 and the closed loop system is unstable. Select the control law

matric Ko as

2 = (2.38)

—6.8 —=7.9

—4.9 -58
0.2 0.1

0.1 0.2
] . A{BK.- [ ] .
The closed-loop state matriz in the synchronous case is symmetric and with spectral
radius p(A+ BK) = 0.3. As in the previous case the closed loop system with synchro-

nization error is unstable since p(As + BsKo) = 1.17.

Centralized control is the most natural way of implementing a controller. However, the

theory does not support this case.

Centralized control implementations arise in many applications but, as yet, the case
when synchronization errors arise is not resolved and this thesis produces substantial

new results in this direction by addressing the following general questions

e Is it possible to stabilize the system against all synchronization errors using state
feedback?

e Can the design be completed in a computationally efficient way?

In the case of centralized control, stabilization by state feedback against all synchro-
nization errors means that all state matrices that arise have to be stabilized and as the
number of synchronization errors that can arise grows the performance of, for example,
Linear Matrix Inequality (LMI) solvers decays below any acceptable level. Chapters 3
and 4 of this thesis develop solutions to this problem by first formulating the problem
in terms of the polytopic and norm bounded uncertainty descriptions from linear model
based robust control theory. Chapter 5 then makes use of the behavioral approach to
systems theory to answer the question: is it possible to identify a clock synchronization
error given the system output 7 Chapter 6 then considers some topical applications
areas for the new results and finally Chapter 7 gives conclusions and areas for possible

future research.



Chapter 3

Stabilization using a polytopic

uncertainty setting

3.1 Introduction

Consider again the discrete linear system (2.1), which is asymptotically stable if, and
only if, the spectral radius (modulus of the largest eigenvalue) of the state transition
matrix A is less than one, or there exists a symmetric positive definite matrix P, written
P > 0, such that

ATPA-P <0, (3.1)

where “< 0” denotes negative definite.

From previous work Lorand and Bauer (2006a) and Kleptzyn et al. (1984), it is known
that synchronization errors can effect the stability of the overall system, i.e. a system
with no synchronization errors described by (2.1) can be stable but some of the sys-
tems (2.8) resulting from the presence of synchronization errors can be unstable. Also,
the exact time sequence of arriving signals to subsequent sub-systems is not known,
which makes stability analysis very difficult. We develop methods for this task by treat-
ing the complete set of possible systems as the effect of uncertainty on some nominal
model. This releases Lyapunov type methods from robust control of linear time-invariant
systems for use in this problem area where, in this chapter, a polytopic characterization

is considered.

3.2 Stability analysis

Consider a system described by (2.1) in the presence of uncertainty in the model of

the dynamics. Then one approach to robust control is to assume the system matrix A

33
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assumes values in a fixed polytope (see, for example, Boyd et al. (1994)):
A€ CO{Al, AQ, R ,AN},

where matrices Ay, Ao, ..., Ay are given vertices and

N N
CO{Al,AQ,...,AN}:{ZaiAi: Oéizo, Zazzl}
=1 =1

denotes the convex hull of Aj,..., Ay (the polytope of matrices with given vertices
Aj,...,Ay). To investigate stability in the presence of such uncertainty it is only
necessary to check if this property holds for the polytope vertices as this guarantees
that every system matrix formed from a convex combination of them is also stable Boyd
et al. (1994). Hence only the following set of Linear Matrix Inequalities (LMIs) needs
to be satisfied for robust stability to hold

AZTPAl —-P=<0 (32)

fori=1,2,..., N where P > 0.

For the system with no input and clock synchronization errors characterized by the

d-element sequence of events s = {i1,...,iq} i.e.
x(k+1) = Asxz(k),
the system matrix A, takes values in the polytope
As € Co{fA;:i=1,...,N}

Hence to check the stability for all possible synchronization errors it is sufficient to solve
the LMIs (3.2) for all vertices.

Consider now a discrete linear time-invariant system with clock synchronization errors

characterized by the d-element sequence of events s = {iy,...,iq}
x(k+1) = Asx(k) + Bsu(k),
where system matrices A; and B; take values in the polytope
[As Bs] € Co{[A; B;]:i=1,...,N}
and apply the state feedback control law
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Then
x(k+1)=(As+ BsK)x(k), (3.3)

where

A;+B;K € Co{A;+B,K :i=1,...,N}.

Hence (3.3) is stable if there exists a P > 0 such that the following set of inequalities is
satisfied
(A; + BBK)"P(A; + B,K)-P <0 i=1,... N. (3.4)

The difficulty now is that this last system is not linear with respect to the matrix K and
therefore cannot be easily solved numerically. However, using the Schur’s complement
formula and the approach in Crusius and Trofino (1999) we can replace (3.4) by the
following system of LMIs

-Q A;Q+ B;R

<0 i=1,...,N. 3.5
QAT + RTB,T -Q ' (3:5)

Also if this LMI system is feasible
K=RQ!

is a stabilizing control law matrix.

The solution of (3.5) can be conservative since we solve the system of LMIs with common
decision matrix @ (or Lyapunov function). To reduce this, it is possible to use, for
example, variable Lyapunov functions Boyd et al. (1994). Also, an estimate of the

number of sequences for a given n is, from (2.13),

n! < card(8) < 2" nl. (3.6)

The solution developed below consists of the following steps.

1. Calculate the vertices of a polytope that contains all product matrices representing

system behavior in case of synchronization errors.

2. Find a stabilizing control law by solving the set of LMIs (3.5) for the vertices

obtained in the previous step.

In order to efficiently compute the solution the number of the vertices of polytope com-
puted in the first step here should be significantly smaller than the number of product
matrices. Hence in order to manage the compromise between speed, accuracy and
number of vertices a new algorithm is developed and compared in tests against direct

computation.
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3.3 Estimation of the polytope uncertainty

The basis of the algorithm given below is to treat all the product matrices as vectors
and, by linear operations, to enclose them in a simple structure (a ball of unit radius)
and hence lessen the computational load incurred in obtaining the convex hull containing

them. Each step in this procedure is now detailed.

3.3.1 Preliminaries

Let R™*™ be the space of the m x n matrices with real entries. Define the invertible

map vec(-) : R™X™ — R™™ ag

mi1
mi o Manp
. . . Mm,1
vec : : : = (37)
mi2
Mm1 Mmn
- mmn -
and _ )
T
1 Tm4+1 -+ T(n—1)m+1
_ Xz Iy X 2 .. T(in—1)-
vee—1 m _ m+ (n—1)-m+2 ) (38)
Tm+1
T Tom .- Tnom
- xmn -

This map is linear, since for any a,b € R and matrices M, N € R™*"

vec(aM 4+ bN) = a - vec(M) 4+ b - vec(N).

Let M c R™*(+tm) denote the input set of compound product matrices, i.e.
M={[A;,,Bs,]:1<i< N},
where N = card(8) and define the matrix of input points
X =[x1,...,zN], x, = vec([As,, Bg]), k=1,...,N. (3.9)

The specific feature of the set X is that all the points lie on some hyperplane as il-

lustrated in Figure 3.1. However, in order to proceed, we need the points to span the
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FiGURE 3.1: Input points on a hyperplane. Translation about the center makes it a
subspace.

whole space. If we translate the hyperplane by a vector from that hyperplane we obtain

a subspace.

Introduce the point representing the center

c=x Zwl (3.10)

and the translated set
X.= [(:Bl —C),...,(fBN—C)]

Then the subspace spanned by X is denoted by R%, where d denotes the dimension of
the hyperplane. Let

B =[b,bs,....bg], bycR"™™ k=1 4d

be the orthonormal basis of the subspace R% given as columns of the matrix B. Then
BT .B =11 and let @' € R? denote the coordinates of & € R™"+™) in the basis B.
Assume also that this point lies on the hyperplane spanned by X, i.e.,

x=121by + -+ 2by = Bx'.

Hence
x=Bz', =Bz oo X.,=BX', X' =BTX.. (3.11)
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3.3.2 Convex hull algorithms

The convexity of a given set is an important property and is heavily used in many

optimization algorithms.
Definition 3.1. A set is convex if for every pair of points which are members of it a
line joining them is also in the set.
The joining line of two points ®; and xy is defined as

t(xe —x1) + o1 =txa+ (1 —t)xy, t€][0,1].
The line may be written as the linear combination of @1 and x4

a1 + asxe, a1 > 0,00 >0, o1 +az=1,
termed a convexr combination. The definition may be expanded to more points.
Definition 3.2. A linear combination of vectors Z?Zl a;x; 1s a convexr combination if
the coefficients «;, i = 1,...,d are nonnegative and » " ; a; = 1.
The definition of a convex combination leads to that for a convex polytope.
Definition 3.3. A convex hull for a set of points

X =[x,...,zy], @ €RY i=1,...,N,
denoted by Co(X) is the minimal (in the sense of volume) convex set containing X.
Definition 3.4. By a convex polytope described by vertices

V=A{vi,...,v,} v eRY, i=1,....,p,

we mean a convex hull of the vertices.

From this point onwards use of the word polytope means convex polytope. The polytope

described by vertices V is defined as the set of all convex combination of the vertices

{Zawi:vie\?,ai>0,i:1,...,p, Zai:1}.
] )

(2

This representation is called a vertex representation. An alternative definition of a
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polytope is the intersection of a set of half-spaces

a1y +--aq1 < hy

<L

a1pT1 + - Adp < hp.

The intersection of the supporting hyperplane and a polytope is a d — 1 dimensional
facet of the (d — 1)-face. A d — 2 dimensional ridge arises as the intersection of two
facets. In general a facet and a ridge are the generalizations of the face and edge and

forms a (d — 1)-face and (d — 2)-face in R?, respectively.
Algorithms.

Many algorithms exist for the case of d = 2 and d = 3 and the following have the widest

use.

e Brute Force. For d = 2. This method considers each ordered pair of points (p, q)
and then determines if all the remaining points lie within the half-plane lying to

the right of the directed line pg. The time complexity is O(n?).

e Graham scan. Graham (1972). First the points are sorted radially in O(nlogn).
The procedure starts with the left most point. This point is connected to all others.
Then, according to the angles in polar coordinates, the points are connected in
counterclockwise order. After obtaining a polygon it is converted to a convex hull
by a simple algorithm termed the three coin algorithm. The total complexity is

O(nlogn). The algorithm is illustrated schematically in Figure 3.2.

FIGURE 3.2: Graham scan algorithm

e Gift wrapping. The planar version of this algorithm is known as Jarvis march
Jarvis (1973). The extension for d = 3 is due to Chan and Kapur (1970) and
starts by computing the left most point. Then the algorithm performs a series of
pivoting steps to find the next vertex. From the current position the next point

chosen is the next vertex if it is the furthest point to the right when observing the
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remaining points from the current position. The algorithm is illustrated in Figure
3.3. The time complexity is O(nh) , where h denotes the number of vertices of the

hull. The algorithm may be generalized to higher dimensions.

FIGURE 3.3: The Jarvis march.

e Divide and Conquer. For d = 2 or d = 3 this is the generalization of the Merge-
Sort algorithm. The points are initially sorted by the x coordinate in O(nlogn)

time. The algorithm is as follows

1. If the number of points equals 3 use the brute force method.

2. Otherwise partition the set into two parts of equal number using the x coor-

dinate. Compute the convex hulls of the parts recursively.

3. Merge the two convex hulls .
The total time complexity is O(nlogn).

e Quick hull. This is a generalization of the Quick Sort algorithm. The basic
idea is to discard points that are not on the hull as fast as possible. It begins by
computing the points with the maximum and minimum x and y coordinates. By
connecting these points a convex quadrilateral is obtained. All points inside the

quadrilateral can be discarded. The idea is illustrated in Figure 3.4.

e Incremental algorithm. This algorithm operates by inserting one point at a
time and incrementally updating the hull. If the point is outside the hull all the
edges the point can see are deleted and the point is connected to its neighbours.
After processing all of the points the desired convex hull is obtained. The time
complexity is O(nlogn). The randomized version chooses the points at random.

This algorithm may be generalized to higher dimensions.
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Discarded
points

FIGURE 3.4: The Quick Hull algorithm.

e Monotone chain. The planar algorithm is due to Andrew (1979). The time
complexity is O(nlogn). Points are sorted lexicographically (first by x, then by
y). It runs from right most point to the left most point in counterclockwise order
constructing the upper (visible from the above) and the lower hull (the remaining

part). This algorithm is illustrated schematically in Figure 3.5.

— Upper hull

Lower hull

FI1GURE 3.5: The Monotone chain algorithm.

e Mariage-before-conquest (Kirkpatrick-Seidel algorithm). The planar vari-
ant of Divide and Conquer algorithm is due to Kirkpatrick and Seidel (1986). The
complexity is O(nlogh).

e Chan’s algorithm. For d = 2 or d = 3 this algorithm is due to Chan (1996).
The time complexity is O(nh). This algorithm combines two slower algorithms,

Graham’s scan and Jarvis’ match, to form one that is faster than either of them.

A Beneath-beyond technique is a method based on a theorem in Griinbaum (1961) and
simplified by Kallay (1981). This theorem allows the incremental processing of the points

in order to compute a convex hull.
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Theorem 3.5. (Simplified Beneath-Beyond) Let H be a convex hull in RY, and let
p be a point in R\ H. Then the facets F' of Co({p} U H) are such that:

o Fis also a facet of H if and only if p is below F

o F is not a facet of H if and only if its apex is p and its base is a ridge of H with

one incident facet below p and the other above p.
For any dimension the following algorithms are available

e Gift wrapping. A generalization of the Gift wrapping method Chand and Kapur
(1970).

e Divide and Conquer. The generalization of the Divide and Conquer algorithm

used in two or three dimensions combined with Beneath-Beyond Klimo (1988).

e The quick-hull algorithm. Barber et al. (1996). This algorithm combines the
2-dimensional Quickhull algorithm with the general-dimension Beneath-Beyond

technique.

Performance

Different implementations including C-based were used for an exemplary and relatively
small scale problem (8-dimensional with 10* points) in order to test the suitability of
these algorithms for the current problem. The problem took hours to execute in every
case and this questions their applicability in the current problem. Another issue corre-
sponds to the resulting convex hull with number of vertices depending on the number
of input points. In the ideal situation the number of vertices should depend only on the
dimension of the problem and not on the size of the input set. This would make the
approach to the current problem based on polytopic uncertainty description competitive
with the brute force LMI solution. Hence alternatives must be developed as detailed

next.

3.3.3 Minimum Volume Enclosing Ellipsoids

Computation of the enclosing polytope can now be performed in the subspace R?, where
d has been defined in the previous section, i.e. a reduced dimension vector space. The
starting point is to use any of the available methods to compute the minimal volume

ellipsoids, i.e. the matrix F and the point e, such that the set
EX(E,e)={ycR: (y—e)TE(y—e) <1} (3.12)

is of minimal volume and contains X’.
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The idea behind the method is: First solve a minimization problem with large number
of constraints (the uncertainty should contain all the given points) and then reduce the
number of constraints by the computation of the Minimum Volume Enclosing Ellipsoid
(MVEE) for the points. Once this stage is completed the constraints of the original
problem can be replaced by a formulation in terms of the constructed ellipsoid or the

ellipsoid can be used for significantly reducing the number of constraints.

MVEE are also known as Lowner-John ellipsoids John (1985) and can be computed
using known algorithms such as those based on the ascent method first order algorithms
Khachiyan (1996); Silverman and Titterington (1980). Second order methods that use
variants of the Newton method are given in, for example, Nesterov and Nemirovski
(1994) and Sun and Freund (2004).

The ellipsoid in general is defined as the image of a unit ball under an affine transfor-

mation, i.e. the set
E(A,e)={Ax+c:|z|. <1, xeRY

represents the ellipsoid centered at ¢ € R% The ellipsoid may also be defined as the

pre-image of a unit ball under an affine transformation
EQ.c)={zeR": A7 (@~ )2 = |Qz +b|| < 1},
where Q = A~! and b = — A~ 'e. Expanding the norm as the dot product
EE,c)={xcR:(x-c)QTQ(x—c)=(x—c)E(x —c) <1}
gives
E(A,c) = {ac eR: (- c)ATA (z—c)=(x—c)(AAT) (z —¢) < 1}

and hence
E=(AA")L.

Consider the ellipsoid £(A,0) centered at the origin as the image of the unit ball. The
key point in understanding the connection between the ellipsoid and the properties of a

matrix is the Singular Value Decomposition (SVD)

A=USV",
where the matrices
v
U:[ul, ud] vi=1| : |,
T
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are orthogonal and

S = diag(o1,...,04) =

0 ... og

The left singular vectors are the eigenvectors of AAT and can also be obtained by

eigendecomposition of the matrix E~! since E7! = AAT.

If we consider the ball of unit radius, the first operation V' transforms the ball to itself
since the orthogonal matrix V' represents rotation. The second operation S represents
scaling. The ball is transformed into an ellipsis with axes lengths defined by the singular

values o1, ...,04. The final operation U rotates the ellipse.

Let
e’i:[07“'7071ithentry707”-70]7 Zzl,,d

and fori=1,...,d

T
v
VT’UZ' = vV; = €.
Vg
Hence
A’UZ‘ = USVT’Ui = USeZ- = [ul, . ,ud] g;,€; = o;U;

and each axis o;e; is transformed into the axis o;u;, see Figure 3.6.

ih

Ny 4

FIGURE 3.6: Visualization of the matrix operation in R%. The right singular vectors
v1 and vs are transformed into o1, and oous, respectively.

\ 4

a1

Consider the volume of the ellipsoid where U and VT are only rotations,
vol E(A,0) = vol £(S,0).
The calculation of the volume is by the integral

vol £(S,0) :/ dz; - - - day,
£(S,0)
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or, transforming the coordinates z, = x; /0y, i = 1,...,d

VOIE(S,O):/ o1 0qda - dal; = By - det A,
B(0,1)

where B(0, 1) denotes the ball of unit radius centered at the origin and 3, its volume.
In the case when the matrix is not square we may consider the volume as the product

of nonzero singular values multiplied by Sg.

Consider the set

X:[Ccl,...,il:N].

Then the MVEE is a solution to the following optimization problem

minimizegverQp 1og det Q! =—logdet Q
subject to  ||Qxr +b|| <1, k=1,...,N

The constraints may also be written as
(Qzy +b)"(Qzy +b) —1 <0,
or, on applying the Schur’s complement formula, the LMIs

I Qzi +b

Quetb) 1 |-V

One solution method for this LMI is to use existing solvers such as SeDuMi Sturm
(1999). However, more efficient algorithms exist. In particular, the following algorithm

given in Khachiyan (1996), taken in turn from Kumar and Yildrim (2005), is considered.

For € > 0 the ellipsoid E(E, ¢) is a (1 + €)-approximation to MVEE of X Khachiyan
(1996); Kumar and Yildrim (2005) if

X CE&(E,c) and vol E(E,c) < (1+¢€)vol MVEE(X). (3.13)

Suppose also that the input points are mapped to Rt as

yk—[wf], k=1,...,N

and introduce
Y = [ty,,...,tyn]-

Note that the set Y is centrally symmetric and hence Khachiyan (1996); Nesterov and
Nemirovski (1994)
MVEE(X) = MVEE(Y) N %,
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where H is a hyperplane defined by
H={yeR™ :ys, =1}

Since Y is symmetric, MVEE(Y) is centered at origin and hence the original problem

is reduced to the following

minimizegyer pr  — log det M
subject to ngyk <1, k=1,...,N.

The positive definite matrix M* together with Lagrange multipliers A* € R are optimal
if
—(M*)7M I =
M(1—-yIMry,) = 0, i=1,...,N
yIM*y, < 1, i=1,...

where
N
IO =Y Ayl
i=1
and the dual optimization problem is

maximizegyer o, 10g det IT(w)

. T (3.14)
subject to y, My, <1, k=1,...,N.

The solution w* of this last problem is optimal if and only if the following conditions

are satisfied
yI(u) y; +s8 = t*,  i=1,....N

1Tu = 1

uisy = 0, i=1,...,N (3.15)
u* > 0
s¥ > 0

Taking the first condition and multiplying both sides by w; and summing up for i =

1,..., N gives
N N
Zy?ﬂ(u*)*lyi =tr (H(u*)1 [Z ufyﬂ;?]) =trI=d+1.
i=1 i=1

Hence t* = d + 1 and therefore

1
Cd+1

*

O(u*)™t, A= (d+ 1)u*.

In order to compute the solution for the original problem consider the original ellipsoid

MVEE(X) = {w eR?: <d}r1> (2", 1] M(u*)™* [ v ]} (3.16)

1
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and, by the definition of IT(u*),

Tw) = [ XU*XT Xu* ]

(Xu)T 1
T Xwr XU*XT - Xu*(Xu)T 0 I 0
1o o1 0 1] | Xur 1|’

where U* = diag(u*). Hence

)l — [ I 0 ] [ (XU* X" - Xu*(Xu)T)"" 0 ] [ I —Xu* ]

—(Xu")T 1 0 1
and substitution in (3.16) yields
MVEE(X) = {z e R?: (. — ¢")TQ*(x — ¢) < 1},

where )
Q =~ (XUX" - Xu'(Xu)") ', ¢ = Xu"

The problem (3.14) is solved iteratively by considering the linearization

maximizeoyer v Yonq iy () y;

subject to 1Tv =1, v>0

The feasible region is a unit simplex and hence the optimal solution is the unit vector

e; where

J = arg maXz‘:l,...,Ny;FH(uk)ilyi‘

Let

T -1
f = IMax Y (uk) ™ y;

and the next iteration is given by
up1 = (1 — Br)ug + Brey,
where [j is a solution to the following optimization problem
maximizeovers logdet II((1 — B)uy, + fe;)

and Khachiyan (1996)

kp— (d+1)
Br = ;
(d+1)(kk — 1)
with initial point
1
Uy = N - 1.



48 Chapter 3 Stabilization using a polytopic uncertainty setting

The algorithm runs until, Kumar and Yildrim (2005),
er < (1+ 6)2/d+1 -1,
where at each iteration £k —0,1,2,...

fkizmiH{UZ()iy;r( >H(uk)1yi§1+v:i:1,...,N}

d+1
Upon termination the algorithm returns a (1 + €)-approximation to MVEE(X)) (3.13).

The algorithm is summarized next.

Algorithm 3.3.1 Computing MVEE

1: function MVEEKHACHIYAN(X ,e)
2 i< 0, up <+ (1/N)1

3 while not converged do

4 J 4 arg max;_; Nyz T (ur) 'y,
5: Kk < max;—1 Ny} (ug) Ly,
6 B+ ;J;(%:l)n

7 upt1 < (1 — Bluy + Be;

8 end while

9: U = diag(u)

0 Q=1 (XUX" - Xu(Xuw)T)"
11: c=Xu

12: return (Q, ¢)

13: end function

PCA based method

The second moments, termed moments of inertia, are used in computer graphics to
determine the principal axes of a given set of points, Rocha et al. (2002); Prokop and
Reeves (1992). For equally weighted points [z1, x2] € R? the moments of order (p + q)

and a matrix of second moments are defined as

| m20 ma1
Mpg = Zx vi, = :

mi1 Moe2

In three dimensions the inertia tensor is used to find a best-fit ellipsoid Karnesky et al.
(2007). These particular examples are special cases of a more general method termed
Principal Component Analysis (PCA) Jolliffe (2002).

Consider the centered data set
Z T, [(xr—¢),..., (&N — )]

In this method the principal axes are taken as the left singular vectors of X', which are
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also the eigenvectors obtained by eigendecomposition of the matrix 3

S— Lx'xT—

N )

Mz

k_C T —C
k:

The matrix NX is also a matrix of second moments of X".

Consider the inertia tensor I in R? and let 7y = (z1, — ¢), then

=2

=> (Il - I—rg-7ri) = (rNE)- I - N%
k=1
and the eigenvectors of I are those of 3. We assume initially zero length of axes and
scale the ellipsoid in order to ensure it contains all the points. The scaling procedure is

described next.
Scaling of the ellipsoid

Assume that & € R? is a point outside the given ellipsoid E(P,c). Let the length axes
of the ellipsoid be given as o = [0y, ... ,O‘d]T. Then we need to set the new length of
the ellipsoid axes o’ = [01, ... ,UQ]T such that this point lies on the surface and the new

volume is minimal. Equivalently we need to solve the following problem.

minimizegyer o det P
subject to (z —¢)"P TP Y (x —c)=1 (3.17)
o1 >01,...,04g>0q

Consider the SVD
P = Udiag(o)V".

Since the axes of the ellipsoid are defined by the matrix U we transform the coordinates

by the inverse matrix in order to simplify the problem, i.e.,
¥ =U"x—c), P =U"P =diag(e)V".

The ellipsoid E(P’,0) is identical to &(diag(o),0), which has the simple description
Zle x?/0? < 1. The problem (3.17) now simplifies to the following, where squares are

taken for convenience:

. . . 2
minimizegyer o Hf 10’
2
subject to 7%, H=1 (3.18)
(3
o1 >01,...,04> 0y

See also Figure 3.7. The task is to find the lowest volume ellipsoid containing the new

point at the boundary.
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11 X

FIGURE 3.7: The point [z, y]T € R? lies on the boundary if 2?/02 + y/os = 1.
However, there are infinitely many ellipsoids satisfying this equation. The optimal one
with the lowest volume, denoted by the dashed line, satisfies #* /02 =y /o7 = 1/2, i.e.

o, = V2|z| and o, = v/2]y|.

Consider the auxiliary problem for s = [sq,..., s

.. . e
minimizegver s [ [7_4 512

2
subject to Y27 % =a

and define the Lagrangian

and partial derivatives

22
=5 [[2 - A yl—o, i=1,...

831 j#i

Multiplying each equation by s;/2 gives

Hs )\y’ = 7

I
—
u('b

Subtracting two equations with i # j gives (A > 0)

(3.19)
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and by the constraints Y7 ; < = a, the optimal solution is

2
Yi Yi
57 = e;’, or s = \/E|\/Za|,

where |- | denotes the absolute value. If we omit the last constraint in (3.18) the optimal
solution is given by setting o’/ = \/alm| However, some inequalities ¢’; > o; may be

violated and in this case we need to determine the set V of violated constraints
U/jSUj:>j€V, 7=1,...,d.

Then the auxiliary problem should be solved for the remaining variables and

12

Z%’
a=1-— -
o“

jev 7

This procedure is then repeated until none of the constraints is violated. In order to find
the optimal solution of (3.17), the algorithms given below can be used. These algorithms

also include the case when
o; =0, iEJog{l,...,d},

when the sum Z;‘i:l mZQ / 02-2 may not exist. However, the condition

d d 9
Ty
E |zi| >0 or g —>1
i=1 i=1 Ji
O’i:() 0'1750

is satisfied if and only if the point € R? is outside the ellipsoid &(diag(c),0). The
complete procedure for calculation of an approximation to MVEE is given in Algorithm
3.3.5 and is suitable for the case when o contains zeros and also if the points do not

span the whole space (points are lying on the hyperplane ).
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Algorithm 3.3.2 Fitting the axes
1: function FITAXES(x/,0)
2 a< 1,7+ {1,...,d}
3 repeat

4 e < card(J), V« @

5: for 2 €J do

6

7

8

9

O'IZ' < \/EIL\/%I
if o/; < 0; then
V%VU{Z‘}, o'y +— o;
: end if
10: end for
11: J<J=V, a<a—3 jev
;70

CL‘/

~. 00

g

LIS

12: until V=g
13: return o
14: end function

Algorithm 3.3.3 Scalling the Ellipsoid
1: function ScALEELLIPSOID(U 0o, ¢, X)
2: for k+1,...,N do
3: '« UT (x —c)
4 if 324 |2/| >0 or 2%:7&10 2/?/02 > 1 then

o;=
5 o + FITAXES(2',0)
6 end if

7: end for

8 return o

9: end function

Algorithm 3.3.4 Scaling the Ellipsoid - Overloaded method
function SCALEELLIPSOID(P,c, X)
(U,o,V )+ svD(P) > Singular Value Decomposition P = U - diag(e) - VT
o’ + ScaLEELLIPSOID(U, o, ¢, X)
P « U -diag(o’) - VT
return P
end function

Algorithm 3.3.5 Computing the approximation to MVEE
function MVEEPCA (X)

c + sz\il Ty > Center
N

3 g (@ — )z — )"

VDVl=3% > Eigendecomposition

U~V

o < ScALEELLIPSOID(U, 0, ¢, X)
P + U - diag(o)
return (P, c)

end function
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Remarks on complexity

The computation of the initial Enclosing Ellipsoid requires the computation of the SVD
of the data matrix X’ € RN with N >> d. The variant of the QR method Golub and
Kahan (1964) requires O(Nd?) operations. The second method requires the calculation
of the matrix X, which is O(Nd?), and the eigendecomposition , which using QR method
variant Golub and van Loan (1996) is O(d®). Summarizing (N >> d) the total com-
plexity of the first step is (Nd?). However, the second method is very sensitive to errors
although it may be faster. Lifted PCA method and relation to the Khachiyan

algorithm

A variant for the ellipsoid computation in higher dimensions is to map the inputs to

Rd—i-l
zk:[mk ] k=1,....N.

Define the second set based on Y as
Z_=[-z1,...,—2N]|, Zi=lz1,...,2N], Z=Z_,Z.],

where Z is centrally symmetric. The key observation Khachiyan (1996); Nesterov and
Nemirovski (1994) at this stage is that

MVEE(X) = MVEE(Z) N K, (3.20)
where H is the hyperplane
H={zeR¥M .z, =1}

Since Z is symmetric, MVEE(Z) is centered at origin. Thus the problem of finding
MVEE(Y) is reduced to the following

minimizegwer @ — logdet Q
subject to zEsz <1, k=1,....N

Recall that for € > 0 the ellipsoid E(E, ¢) is a (1 + €) approximation to MVEE(X) if
X CE(E,c) and vol E(E,c) < (1+¢€)vol MVEE(X). (3.21)

In the Khachiyan algorithm Khachiyan (1996) the (1 + €) approximation (3.21) is ob-

tained by constructing a series of ellipsoids
£(Q,;,0) = {z eRM . 2TQ,z < 1}

with
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where IT : RY s R@+D*(d+1) ig an operator such that
N

H(u) = Zukzkz;f.
k=1

The vector u; € RY is updated iteratively starting from

11
UO—N = NN

until the desired convergence is achieved. Note that the matrix X is used to form the
initial ellipsoid

1 p 1
E:NZ+Z$:H(uO), S(QO,O):{z€R+1:zT(d+1)E 1z§1},

whose axes are defined by the eigenvectors of the matrix 3. In this sense the method
based on PCA, when ’lifted’ to higher dimensions, forms the initial step of the Khachiyan
algorithm. However, the method developed in this section is supported by a scaling
procedure that determines the axes length and the resulting ellipsoid is different. Assume

that after scaling the ellipsoid
E(P,0) = {Pz izl <1, ze Rd“}

is obtained. On substituting

the alternative representation
E(E,0) = {z eRI: 2TE2 < 1}

is obtained. Using (3.24), the ellipsoid in RY is given as the set
E; e x <1
el e 1

mTEdm +axtet+elz+e<l.

{mGRd: [T 1]

and the ellipsoid equation yields

Now let ¢ = —E;le ( e = —E4c) and adding and subtracting ¢ E ¢ gives

2 Egx — 2TEjc— c"Egjx + ¢c'Egc — c"Ege+e < 1.
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Hence
(x —c)"Ey(x —c) <1+ cTEyc—e,

resulting in the ellipsoid equation

N

(@—c 1+cTEjc—e

(x—c) <1.

In R? the resulting ellipsoid has representation
E(M,c) = {:L' eRV:(x—e)"M(x—¢) < 1},

where the matrix M and center ¢, respectively, are

E,

M=
14+cTEjec—e

c= —E;le.

The representation of the ellipsoid as the image of a ball yields
E(Pg,¢c) = {Pyx+c:xzecRe x| <1},

where P = M2,

Numerical tests

Considering simple planar problems, note that the Lifted PCA and PCA produce dif-
ferent ellipsoids and they should be treated as separate methods. Example results are
given in Figure 3.8. The ellipsoid marked red produced by the PCA method and the
ellipsoid marked black obtained by Lifted PCA method have similar volume but they
are essentially different. The ellipsoid marked green is calculated by the Khachiyan

algorithm with a tolerance of e = 1073.

In the performance tests the following methods were compared.

LMI method (Interior Point method solver, SeDuMi Sturm (1999))

The Khachiyan algorithm with tolerance levels e = 101,102 and 1073, respec-

tively

PCA method

Lifted PCA method

We compared the volume of the ellipsoids and the time of execution. Recall that for the

ellipsoid defined as the image of a d-ball of unit radius

E(A,c){Ax+c:x eRY x| <1},
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MVEE Ellipsoids - 10° points

¥
Y P
3
* et S et .
b

T Khachiyan
PCA

Lifted PCA

Khachiyan
PCa
Lifted PCA

FIGURE 3.8: Approximations to MVEE in R? calculated by different methods. The
plots show that Lifted PCA does not necessary produce results close to the Khachiyan
or PCA methods.

the volume of the full dimensional ellipsoid is given by

/2

VOl(g) = /Bd det 147 /Bd = m,

where (34 is the volume of the unit d-ball. For two ellipsoids defined by A; and Ay we
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o7

introduce

4/ vol(E(A1))

YA/ A2 =

vol(€(As))

The ~-ratio determines by which factor axes of one ellipsoid must be multiplied in order

to have the same volume as the other, i.e.

vol(E(A1)) = volE(yAz2)).

LOG-VOLUME (POINTS=10?)

dim PCA | Lifted PCA | LMI (SeDuMi) | K. e=10"1 [ K. e=10"2 [ K. e = 1073
2 | 5.76551 5.79919 5.70872 5.42415 5.66259 5.70375

3| 5.53576 5.57044 5.42192 5.06427 5.37193 5.41605

4| 9.0760 9.0669 8.8831 8.5487 8.8296 8.8768

5| 10.7036 10.7794 20.0089 9.89259 10.1867 10.2355
10 | 23.9601 23.9586 38.9069 22.5006 22.791 22.8363
15 | 35.9185 35.8856 63.2548 33.3952 33.6709 33.7197
20 | 53.7483 53.9172 129.306 50.4073 50.6905 50.737
50 | 122.2612 122.5670 229.8759 114.8549 115.1406 115.1847

TIME (POINTS=10?)

dim PCA | Lifted PCA | LMI (SeDuMi) | K. e=10"1 [ K. e=10"% [ K. e = 1073
2 | 0.019254 0.014615 2.12466 0.023189 0.11345 1.04374

3| 0.01353 0.013749 3.56992 0.031978 0.199314 1.70919

41 0.0202 0.0171 4.2159 0.0581 0.3473 2.9575

5| 0.013582 0.014659 11.7073 0.071477 0.460068 4.04431
10 | 0.015525 0.01576 6.99843 0.268748 1.92072 17.1915
15 | 0.038233 0.024704 37.1233 0.583153 3.88356 38.7803
20 | 0.018632 0.019201 72.3632 1.02944 7.71546 74.8426
50 | 0.0482 0.0411 705.2070 8.2035 72.9755 729.6316

TABLE 3.1: Logarithm of volume and time of execution in seconds vs dimension for

103 points. K-Khachiyan algorithm, ¢ denotes tolerance.

Tables 3.1 and 3.2 contain results of tests performed on an Intel Core i3 under Linux.

Note that the LMI method was outperformed in every test and should not be used in this

application area. The Lifted PCA and PCA produce very similar results. Note also that

for the Khachiyan method the volume differs very slightly for different tolerance levels

but these greatly influence the time of execution. The Khachiyan method constructs a

series of ellipsoids

EiCéyC--- &, C-

which converges to the MVEE. Thus the volume grows with tolerance but very slightly

in these tests. The important fact is that the Khachiyan algorithm produces a lower

volume approximation for the MVEE and there is no guarantee that it contains all the

points. Next a comparison is given between
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LOG-VOLUME (DIM=10)

Points PCA | Lifted PCA | LMI (SeDuMi) | K. e=10"1 [ K. e=10"2 [ K. e = 1073
100 | 23.4219 23.4848 31.1792 21.4609 21.754 21.799
200 | 22.011 22.082 25.0948 20.2269 20.506 20.5529
500 | 24.7301 24.7398 73.3696 23.1999 23.487 23.5365

1000 | 28.2505 28.2243 53.2986 26.5686 26.8545 26.9015
2000 | 27.1666 27.1669 91.5111 25.7928 26.1025 26.1471
5000 | 25.9439 26.0212 55.9731 24.5013 24.8326 24.881

10000 | 26.7204 26.7354 55.4568 25.5825 25.8717 25.9157

TiME (DIM=10)

Points PCA | Lifted PCA | LMI (SeDuMi) | K. e=10"1 [ K. e=10"% [ K. e = 1073
100 | 0.005087 0.005072 1.01254 0.023846 0.213075 2.01656
200 | 0.003929 0.00494 1.5844 0.053168 0.401307 3.80675
500 | 0.017511 0.008626 4.61823 0.12975 0.905349 8.79397

1000 | 0.016124 0.016771 10.033 0.262211 1.8601 17.3088
2000 | 0.027962 0.028722 17.1304 0.509298 3.9045 35.2845
5000 | 0.064767 0.065532 42.7013 1.22875 9.11955 86.2326

10000 | 0.137571 0.129724 131.618 2.83523 19.7803 170.491

TABLE 3.2: Time of execution in seconds vs points in 10-dimensional space . K-

Khachiyan algorithm, e denotes tolerance.

DIMENSION (POINTS = 10%)

dim | PCA log-vol | K log-vol | ypca/k | PCA time | K time | PCA/K time ratio
10 28.6967 27.5247 | 1.12435 | 0.157498 | 2.85559 18.131

20 55.5204 53.0304 | 1.13258 | 0.151705 | 10.4567 68.928

50 128.301 121.802 | 1.13879 | 0.227958 | 91.6697 402.134

100 254.958 240.525 | 1.15526 | 0.336734 | 630.138 1871.32

200 767.512 741.3994 | 1.13947 | 0.817819 | 6919.89 8461.4

500 2136.05 - - 5.02039 - -

1000 4576.5 - - 35.6404 - -

PoiNTs (DIM=50)

points | PCA log-vol | K log-vol | vpca/k | PCA time | K time | PCA/K time ratio
102 118.799 109.601 | 1.20197 | 0.026503 | 0.22557 8.51111
103 132.215 122.26 | 1.22032 | 0.034145 7.9283 232.195
104 129.532 122.888 | 1.14211 | 0.202416 91.9413 454.219
10° 126.229 120.251 1.127 1.97794 923.628 466.964
106 136.440 129.801 1.132 19.8724 9426.294 474.341

TABLE 3.3: Logarithm of volume and time of execution in seconds vs dimension and
points. PCA - Lifted PCA, K - Khachiyan method with e = 1071,

e Lifted PCA

e Khachiyan with e = 107!

Table 3.3 gives the numerical results. These show that the time ratio depends on dimen-

sion of the space rather than the number of the points. For example in 200-dimensional
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space and for 10 points the first method is over 8000 times faster than the second.
The Lifted PCA method proved to be robust and fast even for high dimension and a
very large number of points. Both methods have much in common as it was shown
earlier. Sometimes it is reasonable to enrich the Lifted PCA with few iterations from
the Khachiyan algorithm in order to improve the results, depending on the dimension

of the space.

3.3.4 Choosing the vertices of the polytope

Assume the ellipsoid is defined by the positive definite matrix E and center ¢
E(E,c)={xcR?: (x—c)TE(x —c) <1}.
Using the Cholesky factorization method construct the matrix H such that
E=H"H

and let
z=Hy, f=He.

Then the image of the set £*(E, ¢) can be written as
H(E(E,c)) = {z € RY: (2 — f)T(z— f) <1} = B(f,1) (3.22)
and H : RY — R defined by
z=Hy y=H 'z,
maps the ellipsoid into the ball of unit radius centered at f. Also
Z=z—-f, z=2z+F,
transforms the ball centered at f into the ball centered at the origin.

Hypercube

The most simple way is to enclose the ball in a hypercube €. Define the 2% vertices as
[+1,...,+1]T. Then the construction is illustrated in Figure 3.9
The volume is given by

vol (@) = 24,
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FIGURE 3.9: Chosen point in R?.The presented figure is a cube (hexahedron).

Hyperdipyramid

Let k > 0 be fixed and D(k) denotes the convex set defined by the vertices

di(k)=Fk-e;, i=1,...,d,
where e; = [0,...,0, Lith entry; 0, - . - ,0]T. Equivalently
dy (k) [£,0,0,...,0]T
do(k) = [0,k,0,...,0/"
dg(k) [0,0,0,...,k]",
i.e.,

D(k):=Co{=xd; (k). ...,+da(k)}.

(3.23)

Now consider the points d;(k), i = 1,...,d with positive entries. These span the (d—1)-
dimensional hyperplane in R? and

p:[p17p27"'7pd]T€Rd

belongs to this plane if for some k
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- \\\\c >

FIGURE 3.10: Vertices \/;iej,j =1,...,d span the hyperplane. By the symmetry, the
closest hyperplane point to the origin d* has all coordinates equal.

By symmetry, the point d* of the plane that is closest to the center of the ball is the

point with equal coordinates, where these also have to satisfy (3.24). Hence

a = "

goe ey

IS
IS

and the distance to the origin is

k2 k2 k
d* = d—: _— = —
Il = \fd- =\ = =

and since this point belongs to the surface of the ball

=1 = k=+d.

Siks

By symmetry we also have that if we take the convex set D = D(v/d), then by the next
result the d-ball B(0, 1) is enclosed by D:
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Theorem 3.6. Let x € RY be a point that belongs to the d-ball B4(0,1). Then = belongs
to D.

PROOF: Since z € R? we have
3 =Y a2 <1
i

and it is required to prove that there exists a convex combination of the vertices of
D that equals x. Equivalently we need to prove the existence of a;1 > 0,52 > 0,
i=1,...,d such that

T = Z(am — ;) Vde;, Zam +ai2 =1

7 7

Hence fori=1,...,d

Vd

and a nonnegative solution a;1 > 0, ;2 > 0 to the problem (3.25) exists provided

(i1 — ai2)Vd = x; ( or (i1 — aig) = ””) (3.25)

||

7

i1+ oo > (3.26)

The solution for i = 1,...,d is of the form

Qg1

- . , . - - — ] >0, 3.27
’ Vd ’ ’ 2 <\/& Vd ( )

or, equivalently,

x; 1 /[ |x; T;
Qig =01 ——= >0, Oéi,122<| Z|+l) >0

and the solution satisfies the convexity condition
Y tain=) <2ai,1 - x’) => <2ai,g + x’) =1, (3.28)
i.e.,

1 X X
a1 ==+ —, or oy 3.29
Syt gty (o Toago) (320

i

Consider the following optimization problem

maximize ||z

subject to  |z||3 =1

where if * is an optimal solution then the point with absolute value entries x** = |z*|
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is also the optimal solution. Moreover, it is an optimal solution of the problem with

differentiable objective function

maximize ), x;

subject to ||z =1

Define the Lagrangian

2
z,0) =Y i+ A - 1)
i
and necessary conditions for optimality yield

0L(x, \)

=1+2\z; =0, i=1,...,d
(9951-

Subtracting two equations ¢ # j gives for A > 0

/\(:L‘i—l'j):o — T =X Z;’é]

and since ||z|2 = 1 we have

Hence

]:UZ| Vd
max E — =1, 3.30
lll2=1 Z ~ Jlallazt - Vd (3:50)

which implies

3 mcl <1 (3.31)

and also

Z*<1 or 1—2%20

By the convexity condition (3.28)

Zi:aw = % (1 - %) >0 (3.32)

There are infinitely many choices of oo > 0,4 =1,..., N, such that (3.32) is satisfied.

The coefficients ;1,9 =1,..., N can be determined from (3.27). The convexity condi-
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tion (3.28) is guaranteed by (3.32). The particular solution is for some k, 1 < k <d

fori=1,...,d, 1#k:

also
(0f, —af W=z, i=1,....d

and af; > 0,0, > 0 fori =1,...,d, i # k. By (3.31) we have that o} ; > 0 and

oz}c’2 > 0 and also

|24 il \ _
NG + (1 — ;%&) =1.

Hence if € B4(0,1) then & € D. This means the entire ball is enclosed by the convex

zz:oéi,l-i-aw = ’f;%’-i-z

i#k
hull of D and proof is complete. O

Figure 3.11 gives a graphical interpretation of the above result

FIGURE 3.11: Chosen point in R3.The plot is an octahedron (square dipyramid).
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Consider a d-dimensional simplex in R? defined by the d+1 points 0, d1(v/d), . . . , dg(v/d)

d
Ag= {[z1, ..., zq] " le <+Vd and z; > 0 for all i}.
i=1

Then vol(D(vd)) = 2%vol(A?) and the volume of the simplex is given by Sommerville
(1958)

1

vol(A\/E):d!det di(Vd) ... dy(vd) 0

1 1 1

By the Laplace expansion of the determinant with respect to the last column

V" q4?

1
d! dl T dl

vol(A ) = = det(VdI gy q) =

and hence for even d

ol(A ) d d d 1 d 42
V - — DY . - —_——
VI T g d—1 T d—d/2+1 (d/2)! " \d—d/2+1 (d/2)!"

or

d\" 1 27/
0.4 < (37) a7 =
For odd d
UA d d Vd 1 d O\ 14/2] 1 old/2]
vollAva) = 0 g1 a T w1 [ae - ([d/m) T2 < T2
Combining both these results gives
old/2]+1
VO](A\/E) < W
and hence A 5 <1 for large d
vol(D) < vol(€).
Moreover
old/2|+1
< i < =
0= i volldva) = i T
and
2ldr2)+
< i < Ii =
0= Jim volP) = fim 2 a7y =©
and

lim vol(C) = +o0.

d—o0

The number of vertices is 2d in comparison to 2¢ in the case of the hypercube.
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Improved hyperdipyramid

Further improvement may be obtained if redundant parts are eliminated. The d-
dimensional unit hypercube contains the entire unit radius ball and the improvement is
to include the common part of the polytope obtained earlier and the hypercube. Since

both polytopes contain all points , so does the common part
‘Dimp =DnNEC.

Consider the situation when the ball is centered at the origin and the vertices of a
polytope D are defined as £v/d-e;, i = 1,...,d where e; = [0,...,0, 1jy entrys 0, - .. ,0]T
are unit Cartesian vectors. The vertex v/d - e;. is now replaced by the set of vertices

located on the hyperplane x;, = 1 in the case of Diyyp, see Figure 3.12.

[
|
\\I‘I

FIGURE 3.12: The cutting plane in R3 for z.

Now consider the line between v/d - e;, and the other vertex Vd - e;, i # k
t-Vd (e, —e;) + Ve, teR.
This line cuts the hyperplane x;, = 1 at one point (t = 1/+/d)
Pri1 = €k + (Vd—1)e;
and when considering the line from the vertex —vV/d - e;, this point is

pk‘;i,? = €L — (\/& - l)ez
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Define the set
Pr={Pri1-Prio:i=1,....d, i#k}, card(Py)=2(d—1)
and the equivalent set for —v/dey, is
P=Ap i1 P pin:i=1,....d, i#k}, card(P_y)=2(d-1),

where

Py =—€ec+(Vd—1)e;, p_ji0=—e,—(Vd—1e;.

See Figure 3.13.

FIGURE 3.13: Consider the vertex v/de;. The straight lines coming from the vertices
Vde; and —v/de; have two common intersection points with the hyperplane z; = 1.

Lemma 3.7. Assume that the point & € R? belongs to D. Then

PROOF: Suppose that there exists a convex combination a; 1 > 0, a2 >0,i=1,...,d
such that

)

T = Z(ai,l — avi2)Vde;, Zai,l +a2=1
(2
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and note that
|z

NGk

Qa1 — gl =

Summing over i gives

"
1= Y a+aie =Y sl + laval = 3 Jas — azal = 3 21

and hence

O

Lemma 3.8. Assume that the point © € R? belongs to DNC. Then there exists a convex

combination o1 > 0, a2 > 0,4 =1,...,d of the vertices of D

€xr = Z(O@l — 041'72)\/&61', Zai’l + a0 = 1, (3.33)

K3 (2

such that
(ai,1+ai,2)\/g§ 1, i=1,...,d

PROOF: Let

ﬁ=<1—2'j%'>, 0<p<l,

where 8 > 0 is guaranteed by Lemma 3.7. Now let
vi =1— |z, i=1,...,d
and since x € € we have |z;| <1,i=1,...,d and ; > 0. Note also that
y=Y yi=d= |z >d- V.
i i
Using the ratio ;/~ introduce
Bizﬁ% >0, i=1,...,d

and define for i =1,...,d

06271 = ﬁ 5, 06172 5, if xX; Z 0
agl—@ 0472 |xi’—|—é, ifx; <0
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Moreover

and summing over ¢ gives

zi:ag,1+a;,2:zi:%+5=zi:

>:L

£ ||
va© (1 R

Also
||
oy Faly = \/% + Bi
_ g

_ M _ > i lwil 1 — [z

- +<l Vi )d—zim\

R N A
vit v \Ca=w

| 1=l 1

T Vd o Vdoo Vi

and it has been shown that for the point @ € D N € there exists a convex combination

of vertices from D such that
(a;,l‘i‘a;g)\/gﬁ L, i=1,...,d.

O]

Theorem 3.9. Let x € R? be a point that belongs to D N C. Then x belongs to the
polytope defined by the vertices

PLUP_LU---UPLUP_,.

PRrROOF: Consider the linear combination of the vertices from Py and P_j; with nonneg-

ative coefficients

Z (Oék,i,mk,m + Qi 2Pk 2 T ki 1P ki1 T a—k7i,2p7k,i,2)
itk
= § (Ohin + Qo — Qi1 — Q_fi2)€k

+ Z(ak,i,l Qg1 — g — Opi2)(Vd — 1)e;. (3.34)
itk

Let & be a point from the interior of D N € expressed as a convex combination of the
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vertices of D
T = Za@l\/gei — Oz@g\/ﬁei = Z(am — aivg)\/gei, lzi| < 1,i=1,...,d,
i i

where by Lemma 3.8 it can be assumed that
(0%1 + Oé@g)\/g < 1.
This fact will be used later and the combination is convex

Zai,l +ai2=1, @120, a22>0, 1=1,...,d (3.35)
i

and it will now be shown that x can be expressed as a convex combination of the vertices
from D and with the vertices v/des, and —v/dey, replaced by vertices from Py, and P_j,
respectively. For this the combination (3.34) must replace the (ag; — ak,g)\/gek in the

convex combination (3.35), i.e.

D kin + k2 — Ogin — O_pi2 = (g1 — ap2)Vd. (3.36)
ik

Let
0%,1\/& >0

1 —(ap1+op2) —

C“k,z\/;i >0
1 — (ap1 + ag2)

apil = Cragn,  apio=Ciaio, C1 =

a1 =001, a gio=Coqo, Cy=

and (3.36) is satisfied since

Z(am‘,l + 2 — Qi1 — Q_i2)
itk

= Z < 1V (g + a;2) — w2Vd (g + 0@',2))

o 1 — (ag1 + og2) 1 — (ag1 + og2)

(o1 — og2)Vd

11— (Ozk71 + ak72)
_ (ag1 — ar2)Vd
1 — (ag1 + og2)

= (ag1 — ak,g)\/g.

Z(ai,l + ;2)
i£k

(1 — (ag1 + )
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Note also that

Qi1 — Oki2 T QO i1 — Q2

ar1Vd
= : ;1 — Oy +
1_ (Oék,l n ak,2)( i,1 172)

_ (o + ag2)Vd (01 — i)
1-— (Ozk71 + Ozk72) vl w2

Oék,Q\/a

1 — (g1 + o2

] (i — @;2)

Hence the linear combination of the vertices from P, and P_; equals

Z (Oék,i,lpk,m + Q2P T Ok i1P i1 T Oé—k,i,zp_k,i,g)

ik
= (kg + Qri2 — O_pin — O_gi2)en
ik
+ ) (ki1 — Qg + Qg1 — api2)(Vd — 1)e;
ik

_ _ e (a1 + ar2)Vd o “ e
= (ag1 Oék,2)\/;i kt ; (1 ~ (an + ar2) (i1 Lg)) (Vd—1)e; (3.37)

and (a1 + Oékyg)\/g < 1. Now set

1— (ag1 + ar2)Vd
1 — (ag1 + og2)

/ /
a1 = C31, o0 =Cs042, C3= > 0.

Moreover

(o — el )V + (i1 — iz + gt — Qo) (Vd — 1)

_ 1= (ki1 + aniz)Vd (i1 + apiz)Vd
1 — (kg + oi2) 1 — (g1 + oni2)

(Oéi,l — Ozi,g)\/g + (061'71 — ai’z)(\/g — 1)

11— (o i,2)Vd i i
= (01 — Oéi,Q)\/;i (@i + 2>\f + (i1 & i2) (\/& — 1)]

1 — (o1 + oi2) 1 — (o + oi2)

(i1 — o 2)\/;1 1 —(ag,i1+ Oék,i72>\/a (g1 + ozk7,-72)\/3 (ka1 + g i2) ]
- Z7 Z?

1= (ki + aki2) 1— (pin +agio) 11— (i + ario)
[1— (ag,i1 + oui2)

|1 — (ag,in + oi2)

= (Cki’l — Ozi,g)\/g. (3.38)

= (ai,l - O‘i,2)\/;l

By (3.37) and (3.38) the combination of the vertices v/de; and —+v/de; with coefficients
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0‘2‘71 and 04272, respectively, and the vertices from P and P_j equal «, i.e.

Z( aGq — Qo) Vde; + Z i 1Pt + ki 2Ppi2 + O ki1 P i1 + Ok i2P ki 2)
1#£k 1#£k

= Z a1 — Vde; + (a1 — ap2)Vdey

i#k
+ Z (Qpin — Qhio + 0 pi1 — a_pi2) (Vd—1)e;
ik
= Z ( \f-i- (i1 — Qpio + il — api2)(Vd— 1)) e;
i#£k

+ (ap1 — apz)Vdey,

= Z(ai,l — i2)Vde; + (a1 — ap2)Vdey
itk

= Z(ai,l — i 2)Vde;

=
and the linear combination is convex

Z (042,1 + 042,2) + Z (ki1 + Qg+ pi1 + a_gi2)
ik ik

1— (a1 + ok Vd O‘k‘\/&
_ 1= (@nia + aniz) D (aig +aig) + . - D (i + i)

1 — (g1 + oni2) o (ki1 + i2) o

agipVd
+ 42 Z (i1 + i)

1 — (o + o) o

1-— i i d i i d
= ( (ki1 + 0n52)Vd + (o + o, ’2)f> Z (i1 + a5 2)

1 — (g1 + i) 1 — (ag,in + oi2) vy

1
= Z (ai,l + a’i,2)

1 — (oh,in + agi2) =
1
= I — (ki1 + ki
1 — (ki1 + Qki2) (= (o 42))

=1

Hence it has been shown that if the vertices \/Eek and —\/Eek are replaced by the vertices
P and P_j respectively then the point @ can be expressed as the convex combination
of the new vertices. Repeating the procedure for k =1,...,d enables x to be written as

the convex combination of vertices from Py, P, k=1,...,d. O

An example of the improved hyperdypiramid in R? is illustrated in Figure 3.14.
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FIGURE 3.14: Chosen point in R3.The presented figure is a tetradecahedron (14-sided
polyhedron).

Volume of Dy,

The polytope Dinp, is created from D by removing redundant 2d parts. Hence
vOl(Dimp) = vol(D) — 2d - vol(R),

where vol(R) denotes the volume of the redundant part. The redundant simplices are

given by
Ri = Co({Vder} UPy), R_j = Co({—Vder}UP_}), k=1,....d

Consider R and translate the Cartesian basis by the vector e;. The new coordinates

of the vertices in Py, are given as
Py = (1Y ' (Vd—1e;  j=1,2
The redundant part forms a half of the hyperdypiramid in the new coordinates
R = Co({(Vd — e} U{x(Vd—1)e;:i=1,...,d,i #k})
and since the hyperdypiramid is built of 2¢ simplices
Loa
vol(Ry) = 52 vol(A 5. 4).

Hence

vOl(Dimp) = 29 (Vol(A ) — d - vol(A )



74 Chapter 3 Stabilization using a polytopic uncertainty setting

and
0 < lim vol(Dipmp) < lim vol(D) = 0.

d—o0 d—o0

All of the transformations used in the analysis here are linear and invertible. Hence it
is routine to argue that the convex hull in R? remains convex in R”™*". The polytope
obtained is used to produce the set of LMIs. If these are feasible then we accept them

as a solution.

The final algorithm consists of the following steps:

1. Convert the matrices to vectors.
2. Translate the points about the center to obtain a subspace.

3. Form the orthonormal basis of the subspace spanned by the points and obtain the

new coordinates.
4. Calculate the MVEE containing all the points in the subspace.
5. Transform the MVEE into a ball of unit radius.
6. Choose the vertices of a polytope.

7. By back transformation obtain the vertices in a matrix space.

Algorithm 3.3.6 summarizes this procedure.

Algorithm 3.3.6 Returns a polytope containing given set of matrices
function HYPERDIPYRAMID([Ag, Bs, s € 8)
for k:=1,...,N do
xy, < vec([As, , Bg,])

end for

c & Zfil x;

X [(x1—¢),...,(xNn — )] > Translation about the center of mass

B «+ [by,...,by] > Calculate the orthonormal basis of span(X.)

X'+ B'X,

(P,e) < ELLipsoiD(X'). E < (PPT)™! > Calculate approximation to
MVEE(X")

E=H'H > Cholesky factorization

D = [Vde, + f,—Vde, + f,...,\/deq+ f,—/dey + f] > Hyperdypiramid

D+ H'D = [vy,...,vy] > Back-transformation

D «—[(vi+¢),...,(vag + )] = [v],...,v]

Vi=vec t(vl),i=1,...,2d
return {Vy,..., Vy}
end function
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Numerical tests

A comparison of the volumes is given in the Table 3.4. The reference volume of the unit
d-ball is given by
/2
1(B4(0,1) = ———

where I'(+) is the gamma function. A comparison of the number of vertices is given in

the Table 3.5.

dim vol(C) vol(D) | vol(Djmp) | vol(Bg(0,1))

2 4 4 3.314 3.142

3 8 6.928 5.359 4.189

4 16 10.67 8 4.935

) 32 14.91 11.06 5.264

6 64 19.2 14.25 5.168

7 128 23.05 17.23 4.725

8 256 26.01 19.66 4.059

9 512 27.77 21.27 3.299
10 1024 28.22 21.91 2.55
15 | 3.277e+04 16.58 13.76 0.3814
20 | 1.049e+06 4.413 3.854 0.02581
30 | 1.074e+4-09 | 0.05808 0.05397 2.192e-05
40 1.1e4+12 | 0.0001482 | 0.0001421 3.605e-09
50 | 1.126e+15 | 1.103e-07 | 1.076e-07 1.73e-13

TABLE 3.4: Volume of the polytopes in comparison to that of the d-ball of unit radius.

dim | vert(C) | vert(D) | vert(Dimyp)

2 4 4 8

3 8 6 24

4 16 8 48
) 32 10 80

6 64 12 120
7 128 14 168
8 256 16 224
9 512 18 288
10 1024 20 360
15 | 3.277e+04 30 840
20 | 1.049e+-06 40 1520
30 | 1.074e+09 60 3480
40 1.1e+12 80 6240
50 | 1.126e+15 100 9800

TABLE 3.5: Number of vertices of the polytopes.

Even though the advantage of Hyperdipyramid over Hyperdypiramid improved is some-

what small this may still be crucial in some cases.

The main advantage of Algorithm 3.3.6 is that is fast and requires the computation of

a much lower number of LMIs. If n is the state dimension of the system, the number



76 Chapter 3 Stabilization using a polytopic uncertainty setting

of vertices of the polytope is 2(n? — n). Consider a robust stabilization problem for an
nth order system against all the synchronization errors in the common clock case. The
controller should stabilize all the possible systems that arise due to the synchronization
errors. One way to obtain the solution is to solve a set of LMIs for all the possible
matrices. This method will be termed direct computation. The other way is to compute
a bounding hyperdypiramid and to solve a set of LMIs for vertices of the polytope. Table
3.6 gives a comparison of the time needed to compute the solution by both methods.

For the computation of MVEE the Khachiyan algorithm was used.

direct computation
n | computation | with new algorithm
avg time (sec) avg time(sec)
1 - R
2 0.187 0.3
3 0.829 0.7
4 10.109 2.8
5 148.14 11.2
6 12000 101.8
7 — 6000

TABLE 3.6: Time of solving the robust control problem for given n-order system with
synchronization errors.

Note that for n = 6 the method is over 100 times faster than direct computation and

this advantage will increase for n > 6.

3.4 Relaxed LMI conditions

The common Lyapunov function approach to stability and stabilization is very conser-
vative. We may relax the conditions by using a parameter dependent Lyapunov function
approach de Oliveira et al. (1999). However, it is only possible in the common clock case
when systems are time-invariant. For different clock frequencies the systems involved
are time-varying and may be described as switching systems. It is known that switching
between two stable systems may result in an unstable system. An example of this fact
for continuous-time systems is given in Leith et al. (2003). Example 3.1 gives a discrete

time counterpart.

Example 3.1. Consider the autonomous switching system
a(k+1) = Ayge(k), Ayp € {A1, A2}, x(k) € R?,
with switching signal

2 otherwise

a(k):{l if k is even
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-0.1 0.5 -0.2 -1.
A= , Ag= 0 ; .
—-1.5 —-0.2 0.5 —-0.1
The matrices are stable with spectral radius p(Ai) = p(Az) = 0.8775. However, the

switching system is unstable since

and

p(Al . A2) == IO(AQ . Al) = 2.28.

As Example 3.1 shows, the stability of each matrix does not guarantee the stability
of the switched system. Parameter-dependent Lyapunov function conditions can only
guarantee the existence of a Lyapunov function for each matrix separately. This is
insufficient in the case of different clock frequencies and only the existence of a common
Lyapunov function may provide stability. Hence the remainder of this section only

considers the common clock case.

3.4.1 Stability

Consider discrete-time systems described by the state space model
z(k+1) = A(a)xz(k), (3.39)

where A(a) is a member of a convex polytopic set

N N
A= { Ala): Ala) = Z%Az‘, Zai =1, a4 < O} . (3.40)
i=1 i=1

The following theorem de Oliveira et al. (1999) gives sufficient conditions for stability

based on the parameter dependent Lyapunov function.

Theorem 3.10. An uncertain system (3.39) is robustly stable in the uncertain domain

(3.40) if there exist symmetric matrices P; and a matriz G such that

P; AlGT

=0 3.41
GA, G+GT-P,; (341)

foralli=1,...,N.

Consider the linear discrete-time system

x(k+1) = A(x)x(k) + B(B)u(k), (3.42)
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where A(a) € A and B(f) is a member of the convex polytope defined by

M M
B= { B(p) : B(ﬁ)ZZﬁiBz‘,Zﬁi:l,ﬂiZO}. (3.43)
i=1 i=1
We search for state feedback matrix K such that
u(k) = Kz (k) (3.44)

and A(a) + B(B)K is asymptotically stable for all A(«) € A and B(p) € B.

Theorem 3.11. de Oliveira et al. (1999). The uncertain system (3.42) is robustly stable
in the uncertainty domains (3.40) and (3.43) if there exist symmetric matrices Pi; and

a matriz G such that

P;; A;G + B,L

-0 3.45
G'A'+L"B] G+G"- Py (34
foralli=1,...,N,j=1,...,M. If (3.45) is feasible then
K=LG " (3.46)
Consider a system
x(k+1) = Az(k) + Bu(k). (3.47)

Let 8 denote the set of all possible sequences describing the switching pattern for the
system (3.47). First all matrices Ag, By, s € 8 representing the system behaviour in case

of synchronization errors are computed. Next the following tests are performed:

e Test 1: Compute a common polytope for the matrices A; and B such that
| A, B, |eco{| 4 B |:i=1,... N}, (3.48)

using developed Algorithm 3.3.6. A controller is evaluated using a common quadratic

Lyapunov function approach and sufficient LMI conditions.

e Test 2: Common Lyapunov function conditions are used and a controller is

evaluated using matrices Ag and Bj as vertices of the polytope.

e Test 3: Compute two different polytopes for the matrices As; and B such that
A, ECO{Aiii: 1,...,N},

B,cCo{B,:j=1,...,M}, (3.49)

using the developed Algorithm 3.3.6. Parameter-dependent Lyapunov function

conditions are used in order to find a controller.
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e Test 4: Parameter-dependent Lyapunov function conditions are used but with

matrices A; and B taken as vertices of the polytope.

All the methods were tested in Matlab with summary results in Table 3.7

Test 1 | Test 2 | Test 3 | Test 4
0.07 0.02 0.72 0.45
0.18 0.24 | 89.54 | 80.13
0.58 1.70 * *

=W N B

TABLE 3.7: Average time of computation in seconds (x-few hours).

Methods based on parameter-dependent Lyapunov function (tests 3 and 4) are sig-
nificantly slower. The number of LMIs to be solved by common Lyapunov function
approach methods (tests 1 and 2) equals the number of vertices of the polytope whereas
the method based on parameter-dependent function needs to solve the number of LMIs
which is a second power of the number of vertices. Moreover, methods based on a com-
mon function solve a set of LMIs for two variable matrices which makes the number of
decision variables (the number of entries of matrices to find) constant. Conversely, in
every LMI used by methods based on parameter-dependent function there is an extra
variable matrix. In this case the number of decision variables is a linear function of the
number of LMIs and is not constant as in the first case. All these factors influence the

performance of algorithms.

The conditions based on the parameter-dependent function are also too conservative. If
the controller matrix K exists then Vsi, so € 8§ the matrix Ay, + B, K is stable. This is
far too strong for what is required. Much weaker condition such that Vs € § A;+ B; K
is stable guarantees the robustness of a controller against all the synchronization errors.

The conservativeness is reduced by the modification developed next.

3.4.2 Relaxed conditions with reduced conservativeness

Consider systems of the form
z(k+1) = A(a)x(k) + B(a)u(k), (3.50)
where the matrices [ A(a), B(«) ] belong to the convex polytope set

V={[Ala), Bl@)]:

N N
[A(e), B(a)] =) ol A, Bi],Zaizl,aiZO}. (3.51)
1=1 =1
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Theorem 3.12. The uncertain system (3.50) is robustly stable in the uncertainty do-

main (3.51) if there exist symmetric matrices P;, i = 1,..., N and a matriz G such
that
P; A;G+ B;L - (3.52)
G'A!+L"B] G+G"-P; ‘
foralli=1,...,N. If (3.52) is feasible then
K=LG". (3.53)
PROOF. Substituting (3.53) into (3.52) gives
P; A;+ B;K)G
T p (A + T ) > 0, (3.54)
G (AZ—f-BlK) G+G' — Py

which is a transposed version of the LMI of Theorem 3.10 and this proves the stability
of (A; + B;K) (for full details see proof of Theorem 3 in de Oliveira et al. (1999)).

If a control law (3.53) exists for a polytope bounding matrices | As, Bs | then it is
guaranteed that Vs € 8§ the matrix A; + B;K is stable.

The tests detailed above were also applied again with those under 3 and 4 modified to

use these new conditions. Table 3.8 gives the results in summary form.

n | Test 1 | Test 2 | Test 3 modified | Test 4 modified
2 0.07 0.02 0.36 0.29
3 0.18 0.24 1.5 1.05
4 0.58 1.70 24.47 26.58
5 2.10 | 33.54 342.07 *

TABLE 3.8: Average time of computation in seconds (x - few hours).

The method above is slower than those based on the common Lyapunov function because
still the number of decision variables depends linearly on the number of LMIs. However,
due to reduced conservativeness, this method can now give us a solution in more cases

than the common function methods.
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3.5 Disturbance attenuation control

3.5.1 Introduction

Consider the discrete-time system

z(k+1) = Ax(k)+ Bw(k)

: (3.55)
y(k) = Cz(k)+ Dw(k)

where x € R", w € R™ and y € RP. Let T'(z) denote the transfer-function matrix of
(3.55)
T(z)=C(z:I -A)"'B+D. (3.56)

Consider the continuous time signal z(¢) with Laplace transform X (s)

X(s) = /0 io (t)etdt,

where sampling the signal with period 75 = 1 gives

[e.9]
X(e®) = Z x(m)e .
m=0
Substituting z = e® we obtain one-sided (unilateral) Z-transform of a discrete signal

z(m)

m=0
Now consider for (3.55) the underlying continuous-time system with transfer-function
matrix T'(s) and frequency response matrix T'(jw). Similar reasoning based on sampling
with period T, = 1 leads to the frequency response matrix T'(e/*) with Hy norm defined

as

HT(Z)HQ = \/2171' /Z tr [T(ejw)HT(ejw)] dw,

where (-)f denotes the conjugate transpose. The Hs norm measures the steady-state

covariance (power) of the output response y = T'w to unit white noise input w
T3 = Jim Bly(®)y(®).  Elw(w(n)T] = ot - 7)1,
For a discrete system the H., norm is given by

T oo — max» T I
IT()llec = max o (T (™))

)

where o,.x denotes the largest singular value. This norm measures the peak gain across

all input/output channels.
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The following results are proved in, for example, Oliveira et al. (2002).

Theorem 3.13. (Hs norm): Assuming D = 0, the inequality | T(2)||3 < v holds if and

only if there exists symmetric matrices P and W such that

W CP
trace W < 7, >0, 3.57
<7 [PCT p ] (3.57)
P AP B
PAT P o0 | =0 (3.58)
BT 0 I

Theorem 3.14. (Hy, norm): The inequality ||T(2)||% < v holds if, and only if, there

exists a symmetric matriz P such that

P AP B 0
rPAT P o0 PCT
= 0. 3.59
BT o 1 DT (3:59)
0 CP D ~I

Theorem 3.15. (Extended Hs norm): Assuming that D = 0, the inequality | T(2)||3 <
~ holds if and only if there exists a matrix G and symmetric matrices P and W such
that

w CG
trace W < #, = 0, 3.60
=7 GCT G+GT-P (3.60)
P AG B
GAT G+GT-P o0 | -0 (3.61)
BT 0 I

Theorem 3.16. (Extended Ho, norm): The inequality ||T'(2)||% < v holds if and only

if there exist a matriz G and a symmetric matriz P such that

P AG B 0

GAT G+GT-P 0 G'cT

BT 0 Y =0 (3.62)
0 CG D I

is feasible.

Consider a system described by (3.55) with uncertainty such that matrix

o
M = (3.63)
C D
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takes values in a polytope ® defined as
N N
®={M(a): M(a) =) oiM;,;>0,> a; =1}. (3.64)
i=1 i=1

The following theorems are proved in, for example Oliveira et al. (2002) using the

parameter-dependent Lyapunov function approach.

Theorem 3.17. (Extended guaranteed Hj cost): If there exist symmetric matrices W,
P,,i=1,...,N and a matrix G such that

W, C,G

trace W; < 7, =0 3.65
7 Ge! G+GT-P; (3.65)

P; A;G B;
GA' G+GT-P;, 0 |0 (3.66)

BT 0 I

holds for all i = 1,..., N where the matrices A;, B;,C; and D; define the vertices of
the polytope M;,i =1,..., N then the inequality |T(2)||3 < v holds for all matrices M

i the domain ©.

Theorem 3.18. (Extended guaranteed Hy, cost): If there exist symmetric matrices P,
i=1,...,N and a matriz G such that

P; A;G B, 0
GA! ¢+GT"-pP;, o G'ct
BT 0 r pro | 0 (3.67)
0 CZ'G Di ’}/I

hold for i = 1,..., N and where the matrices A;, B;, C; and D; define the vertices of
the polytope ®, then the inequality | T (2)||%, < 7 hold for all matrices in the domain ®.

For the common Lyapunov function approach we have the following theorems Oliveira
et al. (2002)

Theorem 3.19. (Quadratic guaranteed Hy cost): If there exist symmetric matrices P,
W such that

W C,P
trace W < 7, =0 3.68
' =7 ! pcT P ] (3.68)
P AP B
PAT P o0 |>0, i=1,...,N, (3.69)
B o I

where the matrices A;, B;, C; and D; define the vertices of the polytope ®, Theorem
8.17 also holds.
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Theorem 3.20. (Quadratic guaranteed Ho, cost): If there exist a symmetric matriz P
such that
P A;P B; 0
rpA’ P o pPCt

B o 1 Df
0 C,P D, ~I

=0, i=1,...,N, (3.70)

where the matrices A;, B;, C; and D; define the vertices of the polytope ®, Theorem
3.18 also holds.

Corollary 3.21. From the Theorems 3.17 and 3.18 we may derive conditions for com-

mon Lyapunov function by assuming that P; =P, i=1,... N.

3.5.2 Controller design

Consider the system (3.55) with a control input w € R™ and an exogenous input w € R™

x(k+1) = Ax(k)+ Bu(k)+ Bw(k)

(3.71)
y(k) = Cx(k)+ Du(k)

and assume that the matrices take values in a convex polyhedron ® defined in (3.64),

ie.
A B
[ € . (3.72)
C D
Using the state feedback law
u(k) = Kx(k), (3.73)

(3.71) becomes
x(k+1) = (A+BK)x(k)+ Bw(k)

: (3.74)
y(k) = Cz(k)+ Dw(k)

where w € R™ is the exogenous input.

Theorem 3.22. (Common Lyapunov function Hy state feedback): There exists a con-
trol law of the form (3.73) such that the inequality | T (2)||3 < v holds if and only if there

exist symmetric matrices P and W and a matriz Q such that

W C.P
trace W < 7, >0, 3.75
<7 [ pc? P ] (3.75)
P AP+ B,Q B,
PA!'+ Q"B P 0 |>~0 (3.76)

Bl 0 I
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fori=1,...,N. The control law matriz is given by

K=QP ' (3.77)

PROOF: By substituting (3.77) into LMIs and using Theorem (3.19) we obtain the

result for the system with closed-loop system matrix (3.74).

Theorem 3.23. (Common Lyapunov function H, state feedback): There exists a con-
troller in the form (3.73) such that the inequality | T (2)||%, < 7 holds if and only if there

exist symmetric matric P and a matriz Q such that

PAT+ Q"B p 0 Pcl
T QB -0 (3.78)
B; 0 I D,
fori=1,...,N. The control law matriz is given by
K=QP " (3.79)

PROOF: By substituting (3.79) into LMIs and using Theorem (3.20) we obtain the

result for the system with closed-loop system matrix (3.74).

Theorem 3.24. (Parameter-dependent Lyapunov function Hy state feedback): There
exists a controller in the form (3.73) such that the inequality | T(2)||3 < « holds if and

only if there exist symmetric matrices P; and W, i =1,..., N and matrices G and Q
such that
4 C.G
trace W, < v, g - =0 (3.80)
GC;, G+G —P;
P; A,G+B,Q B;
GA'+Q"™B! G+GT-P; 0 | =0 (3.81)
BT 0 I
fori=1,...,N. The control law matriz is given by
K=QG™". (3.82)

PROOF: By substituting (3.82) into LMIs and using Theorem (3.17) we obtain the

result for the system with closed loop system matrix (3.74).

Theorem 3.25. (Parameter-dependent Lyapunov function H., state feedback): There
exists a controller of the form (3.73) such that the inequality | T(2)||3 < ~ holds if and
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only if there exist symmetric matrices P;, i =1,..., N and matrices G and Q such that
GA'+Q™B] ¢+G"-P;, o G'CT
' +f;2 P ' | =0 (3.83)
B; 0 I D;
fori=1,...,N. The control law matriz is given by
K =QG™. (3.84)

PROOF: By substituting (3.84) into LMIs and using Theorem (3.18) we obtain the

result for the system with closed loop system matrix (3.74).

The following results for the common Lyapunov function approach are obtained by
setting P; = P, W; =W i¢=1,...,N in the last two theorems.

Theorem 3.26. (Common Lyapunov function Extended Hy state feedback): There
exists a control law of the form (3.73) such that the inequality ||T(2)||%3 <~ holds if and

only if there exist symmetric matrices P and W, i = 1,..., N and matrices G and Q
such that
w C.G
trace W <, =0 3.85
=7 GeT G+GT-P (3.85)
P A,G+ B;,Q B;
GA'+Q'B! G+GT-P 0 | >0 (3.86)
B! 0 I
fori=1,...,N. The control law matriz is given by
K =QG™ . (3.87)

Theorem 3.27. (Common Lyapunov function Extended H,, state feedback): There
exists a controller of the form (3.73) such that the inequality | T(2)||3 < « holds if and

only if there exist symmetric matriz P, 1 =1,..., N and matrices G and Q such that
P A,G+ B,Q B, 0
GA'+Q"B! G¢+G"-P o0 G'c!
 TQBS G Ul (3.88)
B; 0 I D;
0 C,G D; ~I
fori=1,...,N. The control law matriz is given by

K =QG™ . (3.89)
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3.5.3 Numerical tests

For systems given by (3.55) we first compute the set Q of all possible system matrices

describing behaviour in the presence of synchronization errors

{5 5]

where § denotes the set of all possible sequences describing synchronization errors. We

AS BS

c b (3.90)

also compute a bounding polytope ® containing the set €2, i.e.

e

For timing tests we use following methods in order to find a stabilizing control law matrix

N

:Zaizl, a; >0, 1=

=1

A; B;
,..,NV,  QcCa. (3.91)
C D

e Direct - Computations are performed using elements of {2 as vertices of a poly-

tope.
e Polytope - Computations are performed using vertices of ®.
e CLF - Extended common Lyapunov function conditions are used.
e PDLF - Parameter-dependent Lyapunov function conditions are used.

The tests were performed separately for Hy and H, objectives and Tables 3.9 and 3.10

give the results obtained in a summary form.

CLF PDLF
n | Direct | Polytope | Direct | Polytope
2| 0.17 0.19 0.29 0.25
31 0.99 1.16 6.8 5.7
4 12 4.0 * *

TABLE 3.9: Timing results for Hy objective in seconds. (x - over 1 hour).

CLF PDLF
n | Direct | Polytope | Direct | Polytope
2| 0.37 0.44 0.46 0.43
3| 1.91 1.78 2.05 2.79
4| 5.65 2.46 * *

TABLE 3.10: Timing results for H., objective in seconds (* - over 1 hour).

These tests lead to the conclusion that the parameter dependent Lyapunov function
approach is suitable only for the common clock case and only for small dimensioned

problems.
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3.6 Conclusions

The stability and stabilization of linear systems with clock synchronization errors in-
volves working with a very large number of matrices generated by the state-space mod-
els. This chapter has shown how this problem can be addressed by the development
of results based on embedding the system model in the polytopic uncertainty structure
used in robust control. In general, the resulting tools lead to computational speed at the
cost of some volume redundancy. Supporting numerical tests establish that the overall

method is robust and suitable for large scale problems.



Chapter 4

Stabilization using a norm

bounded uncertainty setting

4.1 Introduction

This chapter considers the problem of finding the norm bounded uncertainty of the min-
imal volume enclosing a given set of matrices that is usually very large. The particular
focus is on the time taken to do the computation but at the expense of some volume
redundancy. As in the previous chapter, a new method based on computation of the
MVEE is developed by treating the norm bounded uncertainty as an ellipsoid in a vector
space. In comparison to existing methods Boyd et al. (1994) (p. 59) the polynomial

time complexity is reduced by one order.

The new results developed in this chapter make extensive use of the Frobenius norm
in the definition of the uncertainty. Uncertainty defined in this way as opposed to
the induced Euclidean norm and the result is some volume redundancy that cannot be
removed. In the robust control literature, there has been some work using the Frobenius
norm. In Lee et al. (1996) quadratic stability conditions were derived for continuous
time linear systems and the H., control of discrete time linear systems was considered
in Boukas and Shi (1998); You and Gao (2000), with Lo and Lin (2006) treating the same
problem for the continuous time case. All of this previous work only used a simplified

structure for the uncertainty and this limits its scope.

89
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4.2 Norm bounded uncertainty analysis

The system with norm bounded uncertainty may be written in the most general form

(4.1)

x(k+1) = Ax(k)+ B,p(k)+ Byu(k)+ B,w(k), x(0) = xg
q(k) = Cyx(k)+ Dgp(k) + Dgu(k) + Dgyw(k)
y(k) = Cyx(k)+ Dyyp(k)+ Dy,u(k) + Dy,w(k)
p(k) = Ak)qk), [Ak)] <1,

where (k) € R™ is the state vector, u(k) € R™ is the control input vector, w(k) € R™

is the exogenous input vector and y(k) € RP is the output vector. The last condition in

(4.1) is equivalent to
p' (k)p(k) < q" (k)q(k).

A block diagram representation of (4.1) is given in Figure 4.1.

\\q ;@P

.| E

FIGURE 4.1: Block diagram representation of a system with norm bounded uncertainty.

For the purposes of the chapter, the following description suffices

x(k+1) = Ax(k)+ Bpp(k) + B,u(k), x(0) = x
q(k) = Cqx(k)+ Dguu(k)
y(k) = Cx(k)+ Du(k)
p(k) = Ak)g(k), [Ak)] <1,

which may be rewritten as

z(k+1) = (A+ B,Ak)Cyz(k) + (By + ByA(k) Dy )ulk),
y(k) = Cz(k)+ Du(k), [AK)]| <1

A more compact description is
x(k+1) = Azx(k) + Bu(k),
where z(k) € R”, u(k) € R™ and [A B] € Q. The set Q is defined as

Q={[AB]+HF[E1E2:F'F <1},

z(0) = xo
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or

|A B]=[A B| + HF|E, E5) = |A B]+ HFE

for some F such that FTF < I.

Lemma 4.1. Let H, E be given real matrices of compatible dimension and suppose that
F satisfies FTF < I. Then for any ¢ > 0

HFE+E'FTHT <cHH" + ¢ 'ETE (4.2)
PROOF. Since
1o _1 T/ o _1
(e2H . zFE) (e2H —e 2FE> > 0, (4.3)
then by expansion
e 'E"F'FE +cHH" -~ HFE + E'FTH". (4.4)
Also
|IF| <1 e Max(FIF) <1 FTF<I (4.5)
and hence
¢ 'ETE+e¢HH" - ¢ 'ETF'FE + eHH" »~
- HFE+E'FTH? (4.6)
and proof is complete. ]

Stability of a linear discrete-time system with norm bounded uncertainty
Consider the state space model
z(k+1)=(A+AA)x(k)+ (B + AB)u(k), (4.7)

where
[AA AB}:HF[El E2}, FTF<T. (4.8)

Lemma 4.2. The system (4.7) is stable if there exists a scalar € > 0 and a matric
P = P" - 0 such that

(4.9)

—P '+ e¢HHT A
AT cETE - P <0.

PROOF. The system (4.7) is stable if there exists a symmetric positive definite matrix
P = PT ~ 0 such that

(A+AA)TP(A+AA)-P <O, (4.10)
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or

(A+ HFE\)TP(A+ HFE,) - P < O.

Applying the Schur’s complement formula to this last expression gives

—p! A+ HFE, ~0
AT+ ETFTHT -P
and hence
-p! A+HFE, | |-P' A
AT+ ETFTHT -P | AT —P

_l’_

(0

Applying Lemma 4.1 now gives

—pP! A+ HFE, . P71 A

AT + ETFTHT -P AT —P
T

H H o T
- rfo B0 m].

0] o

where € > 0 is a scalar. Hence
—pP! A+ HFE,
AT+ ETFTHT —-P
. P14+ eHHT A
AT e 'E{E, - P

and if there exists a scalar € > 0 and a matrix P = PT > 0 such that

[ —P '+ e¢HH" A

<0,
AT e 'ETE, - P ]

then (4.10) holds and the system (4.7) is stable.

Flo B ]+]o El]TFT[H]T<o.

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

O]

The following result gives sufficient conditions for stability of linear discrete-time systems

described by (4.7) with norm bounded uncertainty in terms of an LMI.
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Theorem 4.3. The linear discrete-time system (4.7) with norm bounded uncertainty
defined in (4.8) is stable if there exist matriz P = PT w0 such that

-P PA PH O
AP -P O ET
H™ o0 -1 o0

O E O -I

< 0. (4.17)

ProoOF. Consider the sufficient conditions given by (4.9). Pre and post-multiplying
(4.9) by diag(e%P,e%I) gives

2P O P '+ e¢HH" A
AT c'ETE, - P

P O —eP+2PHH™P cPA
x — . (4.18)

cATP ETE, —¢P

Now assume that P = eP and the sufficient condition of Lemma 4.2 is equivalent to

~-P+PHH'P pA
Tx T _ | <0, (4.19)
also o B ~ o
-P+PHH'P  PA | -P PA
ATP ETE,-P | | A™P -P
PH 0 I 0 H'P O
+ - (4.20)
0 E; 0 I O E;
and applying the Schur’s complement formula gives
-P PA PH O
ATP -P O E}
T = <0 (4.21)
H'P O -1 O
(0 E, O -I
and the proof is complete. O

Stabilization of a system with norm bounded uncertainty

Consider again the system (4.7) with norm bounded uncertainty defined by (4.8) and
apply the state feedback control law

u(k) = Kz(k) (4.22)

to give
z(k+1)=(A+AA+ (B+AB)K)x(k), (4.23)
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where
[AA AB|=HF[E, E,, F'F<I (4.24)

Theorem 4.4. The system (4.23) with norm bounded uncertainty defined by (4.24) is
stable under the state feedback control law (4.22) if there exist matrices Q = QT -0
and R such that the following LMI is feasible

-Q AQ+BR H 0
Q"A"+ R"B" -Q O Q'E/+R'E; | (4.25)
’ : :
H o) -1 0
o E\Q+E;R O -1

The stabilizing state feedback control law matriz is given by K = RQ™".

ProOF. Using the definition of uncertainty the system can be written as
z(k+1)=(A+BK + HF| E, + E2K |)xz(k+1)), (4.26)

or

z(k+1) = (Q+ HFE)x(k), (4.27)

where 2 = A+ BK and E = [E + E2K]. By Lemma 4.2 the system (4.27) is stable

if there exist a scalar € > 0 and a matrix P = PT = 0 such that

~-P '+ e¢HH" Q <0 (4.28)
ot ¢c'ETE-P ' ‘
Pre and post-multiplying this last expression by diag((%I ,eféPfl) gives
e2I O —P '+ eHH" Q
O ¢:3p! QT c'ETE_ P
y 6_%I O B
O e3P V|
_ —1P71 HHT —lﬂp—l
S ar et gt | <O (4:29)
e P Q e “PE EP " —¢ P
and let Q = QT = e 1P~! to obtain
- HHT Q
@ +T T T T @ < 0. (4.30)
QQ Q E' EQ-Q
Also
-Q+HHT QQ | -Q 9Q
QTQT QTETEQ - Q - QTQT _Q
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H O I O HT O
+[0 QTETHO I”o EQ]<O (3)

and applying the Schur’s complement formula yields

Q QQ H O
QTQT _Q O QTET
H" O -I O
O EQ O -I

< 0. (4.32)

Now let KQ = R and expand terms containing 2 and E to give

-Q AQ+BR H 0]

Q'AT + R"BT -Q O QEI+R'E; | (4.33)
HT o —I o) ‘ '
(0] E.Q+EsR O -1

If there exist matrices @ = Q' > O and R such that the above LMI is feasible then
the system (4.23) is stabilizable by the state feedback control law with K = RQ~! and
the proof is complete. O

4.3 Estimation of the norm bounded uncertainty

For systems with synchronization errors the problem is how to estimate the norm
bounded uncertainty for a given set of matrices { Ay, Bk}ff:l. Moreover, the best case
would be to compute the norm bounded uncertainty that is minimal in an appropriate

sense. A first definition of the problem is

minimizeovera B HE ~ M{HFE:FTF <TI})

. T (4.34)
subject to [Ap By|=[A B+ HFE, F F,<1I, k=1,...,N

In the remainder of this chapter, a new method is developed and compared to the
existing one. The conclusion being that this new method is more efficient in terms of
time complexity. The problem considered in this chapter is very important since stability
in the norm bounded uncertainty setting is only defined in terms of the matrices A, H
and E of the state space description (4.1). Hence only one LMI condition needs to be

checked but to progress it is necessary to define in what sense is the uncertainty minimal.

4.3.1 The measure of norm bounded uncertainty

An obvious measure, denoted by p in this thesis, is the volume of the set in the matrix

space. Assume that the matrices involved lie on a hyperplane in the matrix space. Then
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the volume is zero for every corresponding uncertainty and hence the problem is not
well defined. To remove this problem, several measures exist and the most attractive of
them is that in Boyd et al. (1994) (p. 59) where the diameter of the set € in the matrix
space is defined as

do =max {|F - G| : F,G € Q}.

In case of norm bounded uncertainty, the diameter may be expressed as
do = max {| HF\E — HF B : |F1]| < 1,]|Faf| < 1}

and is equal to

2\/ Max(HHD) Amax (ETE).
The following result gives an upper bound on the diameter.

Lemma 4.5. The diameter of the norm bounded uncertainty dg satisfies

dg < 2\/ Mar(HH )X poo(ETE).

PROOF. By definition of the induced Euclidean norm and since Apax(HT H) = Apax(HH )

VH [ 1B = \ A (HT H) Ao (7 E) = \/ A HHT )\ o (B” E)

and by the triangle inequality
|\HF1E — HF.FE| <|HF.E| + |HF.E|.
Hence exploiting submultiplicativity

I HFE|| < [[H|[|[F1l[| E] = [|HI[£]
|HFE| < ||H|||F2|[| Ell = [ H||||E|

and then

|HF,E - HF,E| < 2||H|||E| = 2\//\maX(HHT)/\maX(ETE).
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The following result establishes equality under some restrictions.

Theorem 4.6. The diameter dq of the norm bounded uncertainty is equal to

2\/ Amaz(HHT) Ao ET E).

PRrROOF. It is required to prove that

do = max{|HF\E — HF2E|| : |[F1[| < 1, [[Fo| <1} = 2| H|[| E|. (4.35)
Assume that Fo = —F; = F and F is orthogonal then

|HF1E — HF,E| = 2|HFE||.

Obviously

do = max{|HF\E - HF3E| : |[F1|| < 1,||F3|| <1} > 2| HFE|| (4.36)
Next it is shown that there exist an orthogonal matrix F™* such that

|HFE| > |H||E|

First note that for matrices A, B and ker B = {0}

/
|AB| = max |ABz| _ |ABz|| _ HAB,w |
lzl#0 ||| =1 ||| |||

for some @’. Hence if " = «’/||Bz’'|| then

1
|ABa"| _|ABy#zyl 18wy |AB2'| | AB2|

EZ N

: _
Igzgl ey 12 2]

In fact, it is possible to multiply &’ by every full rank matrix and since

Bl = | g | =
| B||
therefore
|ABz" | |ABz| |ABz|
1" = ax - '
" lz(#0 ||z IBzl=1 |||
Consequently
AB ABZx! ABx" AB
IAB| — max 14B2l _|AB2| _|ABo"| o ABw|

e = I P I T A P
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Next assuming that FE is a full rank matrix

| Hz| _ | HEz|

= max ——— 1 (4.38)
lzl=1 |lz||  |E=z|=1 [Ex|

IH| =

Combining (4.37) with the fact that for any orthogonal matrix F', ||E| = || FE||, gives

IE|| = |FE| = max |FEx| |FEx|

_ 4.39
=1 || |Ex|=1 |z (4.39)

Assume the maximums (4.38) and (4.39) hold for x; and @2, respectively, i.e. for some

1, 3 and any orthogonal matrix F

| HEz|| | FEx,|
|H| = =0 | Ez1| =1, 1Bl = ——— [[Exa| = 1. (4.40)
Bl (B2
Now consider the norm
_ HFE HFEx| || FE
\HEB| - o \HFE2l | |HFBa| |FEx|
l=l=1 ||l lzl=1 [[FEz| |
HFE FE
= max I _ z|| | :13|| (4.41)
|Ez|=1 |FEz| |
Since ||Ex;|| = |[Ez2|| = 1 there exists an orthogonal matrix F* such that
F*Ez, = Ex, (4.42)
and hence
|HFEa,|| |F*Ewy| |HEw| |F*Eal
- = : = | H| E]. (4.43)

| F* E,|| lzof] (| B 2|
Taking initially F' = F* and combining with (4.41) gives

HF*E F*E HF*E F*E
HFB| — o VEF Bl [FBe| | |HF x| |[F* B

= = ||H|||E|
|Ez|=1 |F*Ezx|| ||| | F*Exs| EN | HI[[| E|

(4.44)

Combining (4.36) and (4.44) gives
do > 2| HF"E|| > 2||HI|[| E|

and using Lemma 4.5, the diameter satisfies

do = 2| H|||E|| = 24/ Mnax (HH ) Ao (BT E).

O]

Although the diameter is a valid measure, some issue may arise. In particular there may

exist two uncertainties with the same measure where one is a subset of the other. This
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also makes the minimum non-unique. Next, a more natural measure of the uncertainty

is proposed starting from the fact that for every matrix F

FTF<I <+ |F|2<1. (4.45)
Define the unit uncertainty in a vector space as
Ly =vec({F € RV ||Flly < 1)) = {f € RY: [[vec ()2 < 1}, d=n(n+m),
where the operation vec(-) is defined in (3.7) and (3.8). The volume is given by

vol({F € R™ (™) - | F||y < 1}) = vol(Ty) = / 1-dfy---dfy = va
Ty

Consider the uncertainty Q@ = {HFFE : ||F|j2 < 1}, where the image of 2 under the

vec(+) operation is given by
vee(®) = {ET 0 H -+ [vec (f)]l» < 1)

and ® denotes the Kronecker product of the matrices A € R™*™ and B € RP*Y i.e.

a11B . e CLlnB
A® B:= : : € R™PX1,
amB ... amnB
Also the volume is given by
vec(§2)

The linear operation ET ® H maps the unit uncertainty I'y into vec(Q)) and the variables
in the integral (4.46) can be changed using

5 " Of1,- . fu)
D =(ETeH)T | ], ‘ Do ddl — det ET @ H.
, a(fla"'?fd)
fd fd
The set vec(Q2) is simply I'y in the coordinates f1,..., f; and hence the volume of € is

given by

vol(Q):/ 1-df1~-dfd:/ |det EY@ H|-df] ---df; = | det EY@ H|-yq. (4.47)
vec(Q) Ty

Since
[HFE:|F|; <1} = {~-HFE: |F|; < 1},
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ET ® H can be taken as positive definite (hence det ET ® H > 0 in a non-degenerated

case) and the original problem (4.34) is equivalent to

minimizeoyver A, B, H,E det ET @ H

subject to [Ar By] = [A B]+ HF,E,
FIF,<I, k=1,....,N
ETo H -0,

(4.48)

with the measure u({HFE : FITF <I})=detET @ H.

Let r = rank(ET ® H), where in the degenerate case r < d the objective function ( and
a measure that is taken) equals the product of the nonzero singular values of ETo H.

Moreover, the set {2 is convex.

Consider a unit uncertainty and a matrix F'(«) that belongs to a line segment aF'; +
(1 — O[)FQ, o€ [0, 1] ”Fl”g <1, ||F2||2 < 1. Then

[F(@)ll2 = [[oF1+ (1 — ) Falls < of[Fiflz + (1 - a)[[Fafs Sa+1-a=1

Hence the matrix and the line segment belongs to the uncertainty and therefore the unit
uncertainty is convex and by this fact the uncertainty 2 is convex since operations H
and E are linear. Consequently if the uncertainty contains the given set of matrices

then it also contains their convex hull.

{[ A, Bz‘]}f\il c) =

N N
CO({[AZ, Bz] f\;l) = {Zaz[A“ Bl] . Zai = 1,C¥i > O,i: 1,...,N} cQ
i=1 i=1

The problem (4.34) also describes a conversion between polytopic and the norm bounded

uncertainty.

4.3.2 Outer and inner approximation of the uncertainty

For all matrices F'
[ F ([ <[|F[2<| F| F,

where || - || and || - || denote the infinity and Frobenius norms, respectively. For the

sets

Qoo = {[A B| + HFE : |[F|s <1}, Qp={[A B+ HFE:||F|p <1}, (4.49)



Chapter 4 Stabilization using a norm bounded uncertainty setting 101

Qp CQ C Q. Also the image of the sets of (4.49) under the vec operation are

vec(Qso) = {vec([A B]) + ET @ H - vec(F) : ||vec(F)||oo < 1}
vec(Qr) = {vec([A B]) + ET @ H -vec(F) : |vec(F)|j2 < 1}

and since || F||r = ||vec(F')]||2, the Euclidean norm in the vector space equals the Frobe-

nius norm in the matrix space.

Noting that ET ® H is restricted to be positive definite, let ¢ = vec([A B]), f = vec(F)
and the set
PET®oH,c)={ET0oH -f+c:|flw <1} (4.50)

represents a hyper-parallelepiped as the image of a hypercube under a linear transfor-

mation. The volume is given by
vol(P) = 2. det ET @ H
Similarly, the set
EE"®H,c)={E"@H f+c:|fll2<1} (4.51)

represents an r = rank(ET ® H) dimensional ellipsoid in d dimensional space. Thus the
norm bounded uncertainty with the Frobenius norm may be represented by a special
class of ellipsoids in the vector space defined by the Kronecker product of two matrices.

The d dimensional ellipsoid may also be represented as
S(ET® H,c) = {m eR?: (z— o)T[(ET 9 H)(ET © H)"| Mz — ¢) < 1} . (4.52)

The volume of the ellipsoid in the case when r = d is given by

d/2

T — . T = ——
vol E(ET @ H) = B, -det EY @ H, B4 EIPESTE

where f; denotes the volume of the d-dimensional ball of unit radius and I'(-) is the

Gamma function. Moreover, the outer and inner estimation of € is given by
E(EY® H,c) Cvec(Q) CP(ET® H,c).

Also
Bq-det ET @ H < vol(Q) <2%det ET @ H

and the transformation considered is illustrated in Figure 4.2. The inner approximation

(ellipsoid) is used by the method developed in this thesis to compute the uncertainty.
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FI1GURE 4.2: The uncertainty € in the vector space. The hypercube and unit radius ball

is transformed by the E™ @ H operation into a hyper-parallelepiped and an ellipsoid,
respectively. The uncertainty in the vector space vec(2) contains the ellipsoid and is
enclosed by the hyper-parallelepiped.

4.3.3 LMI based method

This method was given in Boyd et al. (1994) (see p. 58) and solves the original problem
(4.34) in the matrix space. As the measure of the norm bounded uncertainty, either the

diameter of the set represented by

2/ Mnax (HH™ ) Ao (B ),

or
tr HHT +tr ETE

is used. Hence the method solves the following problem (with the second measure).

minimizegver X, H,E tr HH” +tr ETE
subject to X,=X+HFE, FIF,<I, k=1,...,N

The derivation is as follows.

Consider the polytope in terms of its vertices and a set 2
P=Co{Xy,....,Xn}, Q={X+HFE:F'F=<1I},

where H, E are assumed to be square. For simplicity it is also assumed that H is
invertible. The goal is to find the matrices H and E such that P C Q). Note that H and
E can be replaced by HU and V E where U,V are any orthogonal matrices, without
affecting the set €.

The vertex X belongs to the norm bounded uncertainty if there exists a matrix F;{Fk =
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I such that
X+ HF.E =Xy,

or
F.E=H (X, - X).

Consider a vector £ and hence
m=F,E{ = H (X, - X)E¢.
Therefore P C Q if for every £ and ¢ = 1,..., N, there exists 7 such that
Hr= (X, - X), mln <¢TETEE.
This gives the equivalent condition
(X, -X)"H"TH (X, - X)<E"E, k=1,...,N
and applying the Schur’s complement formula yields

E'E (X,-X)T

HH" >0, .
X,-X HH

] =0 k=1,...,N.
However, this is not a LMI in H and E, but V = EYE and W = HH" are symmetric

matrices and this gives an equivalent LMI in terms of X,V , W

0 k=1,...,N.

W - 0, [ v (X’“_X)T]

X —X w
Hence the problem considered is equivalent to

minimizegyer X, v, W trV+tr W
subject to (4.3),

which may be solved by existing SDP software. After obtaining a solution it necessary
to factorize V and W. Since the matrices are symmetric either Cholesky factorization
or the square root of a matrix can be used. Both factorization results represent the
same norm bounded uncertainty. Another implicit issue is that H and E must be
square. The matrix space method may be used to solve the original problem by taking
X =[Ag Bil, k=1,...,N and, after obtaining a solution, partitioning X = [A B].

First observe that the set
O={A+HFE:F'F<1I}

is invariant if H and FE are replaced by HU and V E, respectively, where U and V are
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any orthogonal matrices and
QO ={A+HUFVE:F'F<1I}=
—{A+HFE:F =UFV,F'F<T1}.
Observe that
F'F =VTFTUTUFV = V'F'FV < ViV =TI

and hence
O ={A+HFE:F'F <I}=q.

The LMI constraints for W = HHY,V = ETE are W = 0 and V = 0. Let G,D be
the Cholesky factorization of W and V respectively, such that

GG'=wW =HH", D'D=V =E"E,

which exist since the matrices W and V are positive definite. Assume that H, G and
E. D are invertible and define

Uy:=H 'G(G = HUgp), Up:=DE (D =UEgE).

Then, as shown below the matrices U iy and U g are orthogonal hence the following sets

are equal
Q={A+HFE:F'F<I}={A+GFD:F'F=<1}=0.
Observe that
W=HH'=H W=H'=H'WH T=I=>

=H'GG"TH "=1=UxU}, =1
and also
wl=@GeH) la=wl=cT'¢'=Gd'Wlg=I=
=G'H'TH'G=1=U,Uy=1.
Hence Uy is an orthogonal matrix. A similar proof holds for orthogonality of U g.

Consequently the matrices obtained by Cholesky factorization can be used in order to

describe the uncertainty.
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4.3.4 The new method

The new method is developed in the vector space setting where the input set of matrices

is mapped to a set of vectors

R+ M) 5 g = vec([ Ay Bi]), k=1,...,N
X =[x1,...,xn], rank(X)=d,

which are assumed to span the whole space (d = n(n +m)). In our approach the fact
that Qp is an ellipsoid in the vector space is used. We solve initially the problem of

finding a minimum volume ellipsoid representing 2z and containing all the points

minimizeover A, B, H,E log det (ET ® H)
subject to (1, — )T [(ET @ H)(ET @ H)T)| Yz, —¢) < 1,
k=1,...,N, c=vec([A B]).

The solution is finally obtained using the fact that Qp C ), resulting in matrices
A, B, H, E that represent the solution to the original problem (4.34).

The foundation of the method is the initial approximation of the MVEE, that is, the

suboptimal solution of the problem

minimizegyer Pe log det P

4.53
subject to (), — )" (PP Yz, —c) <1, k=1,...,N. (4.53)

One method for solving the MVEE is given in Khachiyan (1996), which computes a
(1 + ) approximation, that is, finds an ellipsoid (M, ¢) such that

vol E(M,c) < (1+¢)vol MVEE(X).

The computational time complexity of this method is given by Kumar and Yildrim
(2005) as
O(Nd*([(1 4 €)®/41) —1)7! + logd 4 loglog N)).

However, since the uncertainty ellipsoid 2 may not represent accurately the MVEE
of Khachiyan (1996), the computational time may be wasted. Better results can be
obtained using the developed Algorithm 3.3.5 based on PCA that produces a good

approximation to MVEE and with lower complexity, which is illustrated in Figure 4.3.

In the step 1 of this method the initial axes of the enclosing ellipsoid are computed and
in step 2 the axes length. In step 3, the ellipsoid representing uncertainty is fitted to the
one obtained in step 2 and in step 4 the axes length of the new ellipsoid are computed
in order to ensure it contains all the points. Step 5 then implements the contracting
operation shrinking using a simple procedure. At the end of these 5 steps matrices

representing the norm bounded uncertainty are obtained.
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1.Computing the axes .
Initial (based on PCA)

set

2.Computing axes length
(SCALEELLIPSOID) /i

3. Fitting the uncertainty 4.Fitting the axes 5. Switching from
ellipsoid (NBF1T) length (NBFIT) A e to | -%\2 and
|[P—E" ® H|p —min > final shrinking

—  [AB

H,E

FIGURE 4.3: Illustration of the new method.

Fitting the axes of the uncertainty ellipsoid

Assume that the Enclosing Ellipsoid (P, ¢) contains all the points. Consider the SVD
P =Udiag(a)V", U =[u1, ..., Unmim);

where the left singular vectors U together with the singular values o define the axes
of the ellipsoid. In order to fit the uncertainty to the ellipsoid we approximate in
the Frobenius norm the ellipsoid matrix by the Kronecker product of two matrices of

compatible dimensions. In particular, the problem solved is

minimizepverg gz~ ||P — E' @ H||p. (4.54)

Approximation with the Kronecker product

The solution is given in van Loan and Pitsianis (1993). After rearranging the matrix
P the initial point is obtained as a rank-1 approximation. As an example, consider the

matrices

a1 a2 aiz a4

a1 a2 Q23 Q24 b1 b2 c11 c12
A= . B-= . C= .
a3y asg2 aszz a4 ba1  bao C21 €22

G41 Q42 Q43 Q44

Hence, by rearranging the matrix A,

aip az21 Ga12 a2 b11

azr  a41 G32 A42 ba1 ~ T
|A-BRC|r = - Ci1 C21 Ci2 €22 = [|[A=bc||F.

a13 G23 Q14 Q24 b12

(33 Q43 034 Q44 bao
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In general, consider the matrices
AcR™" BeR™*X™  CecR™ ™ m=mi-ma, nN=mn1 Ny

and consider the uniform block partitioning of the matrix A as

A Ap A,
A21 A22 [N A2 n
A= ) ) ) . ' R Aij € R™M2X"2,
Aml,l Am1,2 s Aml,m

The rearrangement of the matrix A is defined as

A Vec(Al,j)T

and hence
|A-B®C|r=|RA) -bxcl|r, b=vec(B), c=vec(C).

Consider the SVD

A=RA) =UZVT =[uy,...,up]| 0 o2 ... 0

As the solution that minimizes |A — B ® C||r take
b=ou, c=wv;, B=vec'(b), C=vecl(c).

Next the solution is updated by solving a series of least squares problem (5 iterations
in the test implementation). It is proved in van Loan and Pitsianis (1993) that if C' is

fixed then the matrix B with entries defined as follows

tr(A;l;»C')

b= 92 i< 1< <,
VT ety ST sd=Em

minimizes ||A — B ® C||p. Similarly if B is fixed then the matrix C with entries

t(;\l B)

r(A;; ) )

i = ———, 1<i<mo, 1< 75 < ng,
Y tr(BTB) = = J 2

where (using Matlab notation)

:ﬁiij:A(i:mQ:m,j:nQ:n)
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minimizes ||[A — B ® C||p.
Fitting the length of uncertainty ellipsoid axes

Consider the SVD
E'=UpSpVY, H=UySyV},

where

S = diag(e1,...,entm), Su=diag(hy,...,hy).

By properties of the Kronecker product

E'@H=UgaUp) (Sg®8Su)-(VE®Vy)
and the lengths of axes of the ellipsoid are given as

Sp ® Sy = diag(e1hi,...,e1hy,e2h1, ..., entmhn).

However, after approximation by (4.54) there is no guarantee that the resulting ellipsoid

contains all the points. New axes lengths need to be computed by the scaling procedure
(0'1,..., O'In(n+m)) = ScaleEllipsoid(E* @ H, c¢)

and it is required to minimize the volume of the ellipsoid such that the new axes are
not less than those obtained in order to guarantee that it contains all the points. The

problem to be solved is

minimizegyer e, Pobj(e, h) = H?ilm [ | h?'””
subject to
ethy > o’y
ethy > o'y
(4.55)
ethn, > o'y
esh1 > 0'ppa
entmhn > J/n(n+m)

which, in general, is non-convex with bi-linear constraints. Considering groups of con-

straints with the same variables the functions € : R” — Rt can be defined

/ /
0 (i—1)n+1 O (i—1)n+2 oim
I , o T

ei(h):max{ }, i=1,....n+m

and n : R"t™ — R

/ / /

o' O nti 0 n(nt+m—1)+i .

ni(e) = max{ —, ce , i=1,...,n.
€1 €2 €nd+m
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Assume that

* *

e T = e, ety By BT

is the minimizer of (4.55). The necessary conditions for the optimum are
e’ =e€(h"), h"=n(e"), (4.56)

since otherwise one of the points [e(h*)T, R*T]T and [e*T, n(e*)]T would give a lower

value of the objective function whilst still satisfying constraints.

Theorem 4.7. Consider any point [€T, hT]T. Then

h n(e) Lk (noe)(h)
are stationary points satisfying (4.56).
PRrROOF: Consider 7;(€)
oo o’ _
n1(€é) = max {({1, ? ntl ey n(nfm Dt } (4.58)
eq €9 Ent+m
and since & = (e on)(e) = e(h) we have for i = 1,...,n+m
ol i - o i
g > G ntl > 2 (Dl (4.59)
h1 €
Hence n1(é) < hy and it is now shown that n(e) = hy.
Recall that 2y = 7, (e)
= Ul(i—l)n-H)
h1 :max{ 1= 1,...,n+m}
€;
and assume that the maximum holds for ¢ = i,,. Then
OJ(Z' —1)n+1)
e, = ———="-"> (4.60)
hy
and also
I . .
& =max{ ol o L (4.61)
h;
Consider j = 1,...,n,7 # i;,m, where since }sz =;(e)
hj > % fim—mt = 70/(“"; DUAE AP

€Cim hj
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That implies, together with (4.60) and (4.61) that é;,, = e;,, and also

/
O (i —1)n+1

2 = hy.

eim
Combining this last condition with (4.58) and (4.59) gives n1(€) = Repeatlng this
procedure for remaining n;(é), i = 2,...,n establishes that n(é) = h. Showing that
e(h) = e is straightforward since & = (e o n)( ) =e(h). O

For approximation purposes the method starts from the initial point
T T
e, nT]" =17, 17]", (4.62)

T
computes (4.57) and selects the one [éT, A" ]T that gives the lowest value of the objective

function.
Final contraction of the uncertainty

After fitting the length of the axes, the uncertainty is constructed using

E = Vpg-diag(éy,...,éntm) U
H = Uy - diag(hi,....hn) -V}
[A, B] = vec !(c).

The use of the induced Euclidean matrix norm in the definition of the norm bounded
uncertainty in comparison to the Frobenius norm for the ellipsoid results in some volume

redundancy. To reduce this redundancy, the following simple linear procedure is used.
Let fr = |[H *([Ag, By|—[A, B])E |y for k=1,...,N and define
fmax =max{fr:k=1,...,N} < 1.
Setting H' = fmax - H, or E' = f.y - E, and evaluating for k =1,..., N
= I1H"""([Ar. Bl - (A, B])E™|

gives
max{f,;:kzl,...,N}zl.

The approximated uncertainty is given by [A, B] and H', E and the method is summa-
rized in Algorithm 4.3.1.

Input points on a hyperplane

Assume that the input considered lies on an r-dimensional hyperplane, i.e.,

rank(X') = r < n(n +m).



Chapter 4 Stabilization using a norm bounded uncertainty setting 111

Algorithm 4.3.1 Fitting uncertainty to the ellipsoid

1: function FITNB(P,c)

2 MINIMIZEgorg. g ||P— ET ® H|| ¢

3: (Ug, Sg, Vg)=svD(E) > SVD Decomposition E = UESEVrg
4 (Ug, Sy, Vy)=svD(H) > SVD Decomposition H = Uy SV
5 o' + ScaLEELLipsoD(ET ® H, c)

: {2]“[@;?1))(1)]’[ﬂ“[(nigm}
7. if goni(é,h) < gobj(é, h) then

8: é=é, h=
: else
10: é=e, h=nh
11: end if
122 E+ Vg-diag(e) -Ug, H «+ Uy - diag(h) - V5
13: [A, B] <+ vec™(c)
14: for k:=1,...,N do
15 fo = |[H'([As, By —[A, B])E!;
16: end for

17: Jmax ¢ max{fx:k=1,..., N}, H < froax- H
18: return [A, B],H' | E
19: end function

Then in this case the resulting enclosing ellipsoid is of rank r and the matrix P has r non-
zero singular values. However, the Frobenius norm approximation (4.54) usually results
in a full rank matrix. The singular values play the role of the weights for the singular
vectors and better results can be obtained in this case if the remaining n(n + m) — r
singular values are set to some value and allowing them to be approximated. The

proposed heuristic value is
o; = 0.15 - min{o1,...,0.}, i=r+1,...,n(n+m) (4.63)

and hence the ellipsoid dimension is increased from r to n(n + m) by setting the length

of remaining axes to a nonzero value.
Computational complexity

The computation of the initial enclosing ellipsoid requires the computation of the SVD of
the data matrix X’ € RN with N > d. A variant of the QR method Golub and Kahan
(1964) implemented in LAPACK and used by Matlab requires O(Nd?) operations. The
alternative method of computing ellipsoid axes requires the calculation of the matrix
3, which is O(Nd?), and its eigenvalue-eigenvector decomposition which , by using a
variant of the QR method Golub and van Loan (1996), has a complexity O(d?).

Summarizing for N > d the total complexity of the first step in the new method is
(Nd?). The second method is very sensitive to errors although it may be faster than the

first and the approximate nature of the method makes it reasonable to use the second
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method in some cases. The complexity of the Fitting Axes algorithm in the worst-case
scenario is O(d?) and the scaling procedure is bounded by O(Nd?). The FitNB requires
O(Nd?) operations, including SVD, and hence the overall complexity is O(Nd?).

4.3.5 Numerical tests

The following tests compare the developed heuristic method with the existing method
based on LMI approach. Initially the problem is set using the Yalmip interface Lofberg
(2004) and then exported to SeDuMi. However, in the tests this time is ignored and only
that to solve the problem is considered. Also the comparisons are between the measure

of the uncertainty, which is taken as
p({[A, Bl+ HFE : FTF <I})=detE" @ H

and the computation times, respectively.

Define
n(namy| det EToH
B det EY @ H,,,’

where H and FE describe the norm bounded uncertainty obtained by the heuristic
method and H,, and FE,, that obtained by the LMI based method, respectively. The
coefficient y determines the factor by which all axes of the ellipsoid EX ® H,, should
be multiplied in order to have the same volume as the ellipsoid ET ® H. In terms of

uncertainty
pw{HFE :F'F<1})=u{yH,FE,,: FTF <1}).

The tests were performed on a computer with Intel Core i3 2.2Ghz and 3GB RAM
under Linux and MATLAB 2008a with SeDuMi 1.2. Representative results are given in
Figures 4.4 and 4.5 and Table 4.1.

TiME & MEASURE VS POINTS (DIM = 32)

Number SeDuMi | SeDumi | Heuristic Heur. | Sedumi | SeDuMi
of time meas. method | method time ¥
points (sec.) time (sec.) meas. ratio factor
1000 21.305 | 91.128 0.122 | 101.176 | 173.541 1.368
2000 49.592 | 92.083 0.187 | 99.923 | 265.142 1.277
5000 141.492 | 90.437 0.410 | 99.936 | 344.950 1.345
10000 332.365 | 92.401 0.776 | 99.318 | 427.785 1.241
20000 832.383 | 95.198 1.544 | 106.236 | 532.953 1.411
50000 | 2816.886 | 98.576 3.775 | 108.662 | 746.116 1.371
100000 | 12180.152 93.043 7.418 | 100.111 | 1641.977 1.247

The numerical simulation of the method shows that it outperformed SeDuMi in speed,

but at the cost of volume redundancy. For N = 10° points and d = 32 the new method
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SeDuMi time ratio vs points (dim=32)
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FIGURE 4.4: The ratio of the mean time of SeDuMi to the mean time of the developed
Heuristic method vs points.

SeDuMi time ratio vs dimension (N=3000)
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FI1GURE 4.5: The ratio of the mean time of SeDuMi to the mean time of the developed
Heuristic method vs dimension.

TIME & MEASURE VS DIMENSION FOR N = 3000 POINTS

SeDuMi | SeDuMi | Heuristic Heur. | Sedumi | SeDuMi

n | Dim time meas. method | method time 0%
(sec.) time(sec.) meas. ratio factor

3 18 41.781 49.365 0.219 | 54.627 | 190.372 1.339
4 32 75.629 95.284 0.282 | 103.279 | 267.381 1.283
5 50 | 158.393 | 150.621 0.382 | 162.507 | 413.888 1.268
6 72 | 254.429 | 221.111 0.480 | 248.506 | 529.537 1.463
7 98 | 412.109 | 311.797 0.645 | 341.200 | 638.212 1.349
8| 128 | 621.550 | 417.427 0.835 | 462.891 | 743.548 1.426
9| 162 | 946.934 | 528.711 1.160 | 569.284 | 815.922 1.284
10 | 200 | 1278.089 | 666.448 1.491 | 715.966 | 856.866 1.281

TABLE 4.1: Numerical data from the comparative tests.

was approximately 1600 times faster reducing the time of execution from over 3 hours
to few seconds. For d = 200 and N = 300 the method was almost 900 times faster. The

average uncertainty produced by the method was approximately 1.3 times greater that
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the one given by SeDuMi.

For a system with clock synchronization errors the number of possible systems with such
errors is given by (2.14) as v/2"n! where n is the order of the model. For n = 10 and
a system with an equal number of states and inputs, the problem of of estimating the
uncertainty is defined by N = 8.21 x 107 points and with dimension d = 200. Roughly
taking the execution time of SeDuMi is 300 hours (100 times longer than the case when
N = 10° and d = 32) and the execution time for the new method is 740 sec (100 times
longer than the case when N = 10° and d = 32). Overall, the estimate reduces from

12.5 days to a few minutes.

4.3.6 Conclusions

The method developed for the construction of norm bounded uncertainty is fast and
robust and allows for the solution of large scale problems. In the case of systems with
clock synchronization errors this new method has no alternative and in other applica-
tions it can be used as a method for fast approximation of the uncertainty as opposed
to the exact calculation, which is feasible only at the expense of an extremely long
computation time and is not compatible with robust controller design, where iterations
will be needed to arrive at an acceptable design for a given problem. Further research
should concentrate on developing stability conditions for the uncertainty defined by the

Frobenius norm.



Chapter 5

Estimation of synchronization

errors 1n the common clock case

5.1 Introduction

The analysis in the previous two chapters assumed that the system model and synchro-
nization errors were known. In many cases, however, the system may initially be running
as implemented and then an error arises. This, in turn, poses the question of whether
or not it is possible to detect errors from knowledge of the input and output, which is
the subject of this chapter. The results given make use of the behavioral approach to

linear systems theory and assume that the data is exact, i.e., noise free.

5.2 Preliminaries

Consider again the discrete-time linear system described by (2.1) with observability

matrix
C
CA
O1(A,C):= ) (5.1)
CAkfl
and also the Toeplitz matrix
[ D 0 0 ]
CB D .
Tw(A,B,C,D):= . . (5.2)
: .0
| cAF*B CB D |
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For simplicity of notation we also introduce augmented output and input vectors

y(1) u(l)
v | "2 | M (53
y(k) u(k)

Let T be the time axis and W the signal space. In the behavioural approach Polderman

and Willems (1998) a dynamical system is defined as a triple
¥:=(T,W,B),

with the behaviour B which is a subset of WT, where WT denotes the set of all maps
from T to W. Here T = N and we partition W as U x Y, where for w € W with
corresponding partition w = (u,y), v is an input and y is an output. The behaviour of
the system (2.1) can be defined as

(5.4)

th ist
B(AvB, C,D);: {(u7y) . ere exists } |

such that (2.1) holds
Note that the representation (2.1) is non-unique due to similarity transformations, i.e.,
B(A,B,C,D)=B(A'",B',C', D),

where

A =T7'AT, B =T'B, C'=CT, D' =D (5.5)

for any invertible matrix T' € R"™*",

5.3 Estimation of synchronization errors

Assume that the system defined by (2.1) has clock synchronization errors. Then the
system dynamics are of the form (2.8) where the matrices involved have unknown entries

for some s* € 8. Our purpose is to identify s* from a given finite trajectory
()= ((u (1), y* (), ., (@ (1), y*(T)).
The method of estimation is based on the fact that a solution (1) of the system
T =O01(A;,C)x(1) + Tr(As, Bs,C,D)UT, (5.6)

where Y7 and U7 are built from the trajectory (u*, y*)|r, exists for ' > n if and only if
(u*, y*)|7 is a trajectory of the system B(As, Bs, C, D). Hence we must search over all
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s € 8 for a compatible system (5.6). which, in turn, gives us a concrete computational
algorithm. The method is successful, however, if there is only one § such that a solution
exists, in which case we may conclude that s* = §. For such cases the synchronization

error s* is termed identifiable from the trajectory (u*,y*).

Similar cases

Consider (2.8) and a sequence s; = (i1,142,...,i4—1,%q) describing the switchings and the

corresponding state matrix

As, = AidAid—1 Ay Ay
Assuming that all matrices A;,, j =1,...,d are invertible, we have
Az'_dlAslAid = Ai_dlAidAid-l AL AL A
= Aid—lAid—Q T AilAid
=A,,.

Hence the matrix Ay, is similar to the matrix Ag, corresponding to the sequence sy =

(idy i1y -y 0d—2,94—1), i.€., s1 shifted to the right by 1. For A,

Al AGAL L = AT A A AGA A
=Aiy Aiy 5 Ay A
— A,

and hence this matrix is similar to Ay, corresponding to the sequence
83 = (Ig—1,0ds--01y---,0d—3,14—2), 1.e., so shifted right by one index. By repeating
the procedure until the original sequence is obtained back we see that all the matrices

corresponding to the shifted sequences are similar.

These similar cases are of special concern because the systems concerned may not be

distinguishable from each other based on I/O data as the following example illustrates

Example 5.1. Consider the system (2.1) with n = m = 3 and state space matrices

0.1 0.2 04

A=102 01 03], B = I343
0.3 0.1 0.2

C:[l 0 o], D =03

Consider three asynchronous cases described by the sequences 1) s1 = ({1},{2},{3}), 2)
sg = ({3},{1},{2}) and 3) s3 = ({2},{3},{1}), respectively. The corresponding state
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space model matrices are

01 02 04 ] 1 0 0
1)Ag=1] 002 014 038 |,Ba=| 02 1 0
| 0.032 0.074 0.358 | | 032 0.1 1 |
[ 022 0.24 008 ] 1 0 04 ]
2) Ay = | 0.134 0.178 0.076 |, Bea= | 0.2 1 0.38
03 01 02 | 0 0 1
[ 0.268 0.024 0.152 | 1 024 04 ]
3)As3=| 02 01 03 |,Bs=]0 1 0
| 032 0.01 023 | 0 01 1

In this case, the initial conditions

10 10 10
Daxo1 =110 |, 2)xo2=| 10 |, 3) xo3 = | 23.333
10 0 0

T
and the constant input u(k) = { 1 11 ] ,k=1,2,... correspond to the same output
in all three cases. That means that the equation (5.6) holds for all three cases. Therefore

these systems are not distinguishable from the trajectory (u,y).

5.4 Identifiability of clock synchronization errors

Let B denote the behaviour generated by a system with clock synchronization s, i.e.
Bs =B(As, Bs,C, D).
A solution to (5.6) exists if and only if (u*, y*)|r belongs to B, i.e.
Hw,y) € Bs,  (w,y)|r = (v, y%)|r, (5.7)

where w|7 denotes the restriction of w € WY to the interval [1,...,T]. Hence, there is

only one § € § such that (5.6) has a solution in the following case:

1. There is only one system B with m inputs and order of n containing the trajectory
(u*, y*).

2. The map s — By is injective, i.e., Vs1,89 € 8
S1 7& SS9 —— 331 7£ 'BSQ.
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Conditions on the trajectory

As illustrated by Example 5.1, the trajectory (u*,y*)|r can belong to two different
behaviours with m inputs and n states. In order to guarantee that there is only one
such behaviour, conditions on the trajectory must be imposed. Following Willems et al.
(2005) assume that

e the unknown data generating system is controllable,

e the trajectory (u*, y*)|r is exact (noise free),

e u is persistently exciting of order k = n + [ + 1, where [ is the order of the lag
Willems (1991), i.e., the matrix

u*(1 u*(2 u (T —k+1)
*(2 *(3 (T—-k+2
w—| @ u u*( +2) (5.5)
u (k) uw*(k+1) u*(T)

is full row rank.

Then the unknown system can be recovered from the trajectory (u*,y*). In other words
this condition is sufficient to guarantee that the obtained trajectory belongs to only one

system with m inputs and n states. This eliminates the problem with similar cases.
Conditions for injectivity of the map s — B

In order to determine the unknown clock synchronization error s* we need the following

condition: For all s1,s59 € 8§
s1#s2 = By # B, (5.9)

Equivalently for all s1, so € 8 such that s; # so there is no invertible matrix T' € R™*"
such that
T 'A,T=A,, T 'B,, =B,, CT=C,

ie.,
A, T=TA,,, B, =TB,,, CT=C. (5.10)

The condition (5.10) is a linear system of equations in the unknown transformation ma-
trix T. In order to check injectivity of the map s — Bg, however, O(card(S)?) systems
of this form have to be solved. This is impractical for realistic size problems, because
card(S) for n order system can be approximated by V2'n!. Therefore, the method in-
volves searching over all s € 8§ for a solution of (5.6). However, we have a simple, but
only necessary, condition for injectivity.

Assume that there is a zero coefficient in the state transition matrix of the system defined
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by (2.1), i.e., apy = 0, for some 1 < p,q < n. Let the sequence s1 = (i1, ...,%j,j41-..,%4),
with i; = {¢} and ;11 = {p}, describe the switching event pattern. This yields the state

space equations
:13](]{7) = A{q}a}j_l(k) + B{q}u(kz)
it (k) = A{p}mj(k) + B{p}u(k)

By substitution

mj+1(k:) = A{p}A{q}:L'j_l(k) + (B{p} + A{p}B{q})u(k) (5.11)

and therefore, the new value of the pth entry is calculated after the calculation of the
qth entry. But in the calculation of the pth entry the value of the ¢th entry is not used
(apg = 0). Nothing changes if these variables update simultaneously in one event. This

is a consequence of the facts that

A Ay = Apgy

and
A By = By = (B + Ay Bigy) = By gy

(which may be proved based on definitions (2.17) and (2.18) and the assumption a,, = 0).

The state transition (5.11) can be written as

ot (k) = A, g2’ (k) + By gu(k).
If we consider the sequence of length d — 1

Sp = (i1, ij—1,1; Utjo1sijp2s- - ia),

then both s; and s yield the same model. Therefore, if there is a zero entry in the
system matrix, then the map s — B, is not injective. By contraposition we obtain that
nonzero entries in the system matrix is a necessary condition for the injectivity of the

map s +— Bg.

5.5 Example

Consider the single-input single-output system

0.1 0.2 04 0.2
xk+1)=102 01 02 |z(k)+ | 04 | u(k)
0.3 0.6 0.6 0.3

y(k)=[1 0 o}m(k)
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The state transition matrix has nonzero entries so the necessary condition is satisfied.
Suppose also that the system has a synchronization error described by the sequence

s* = ({1}, {2}, {3}), giving the state space equations

0.1 0.2 0.4 0.2
ck+1)=] 002 014 028 |[x(k)+ | 044 |u(k)
0.042 0.144 0.888 0.624
y(k) = [ 10 O}m(k:) (5.12)

We aim to estimate the unknown s* by observing a trajectory of (5.12). For the original
system there are 13 different sequences so there are 13 candidate systems, all of which
are observable and controllable. By the identifiability condition of Willems (2007), the
number of observations should be T' > 4n+1 = 13. Hence we apply to the system (5.12)
the input

Us=[1, 2, 3, 4, 5 6, 7, 8 7, 8 7, 6, 5]7T,

in order to obtain 13 observations of the output assuming zero initial conditions. Then
by solving (5.6), we have that a solution exists only for the system represented by the

sequence
s3 = ({1112}, {3})-

Hence the synchronization error are correctly estimated.

5.6 Conclusions

This chapter has developed a method to identify synchronization error from input and
output of an asynchronously operating system that arises from propagation delays in
the operation of systems designed to operate under synchronization. The new algorithm
can be easily implemented using existing software packages. Future research should
aim to remove the assumption (1) and give conditions on the inputs that guarantee
identifiability of the unknown system. Also, the more realistic case when the data are

noisy should be treated.






Chapter 6

Representative applications

6.1 Introduction

As discussed earlier in this thesis clock synchronization errors can arise in large scale
systems, high speed circuitry, economical markets, biological models and many other
areas. This thesis has developed computationally efficient approaches to stability and
control of such systems drawing on methods from robust control theory and related
areas. This chapter considers the first application of these results to three problem

areas.

6.2 Multi-agent systems

Consider a system consisting of multiple agents acting as a swarm. In particular, suppose
that there are M agents with linear dynamics where the dynamics of agent i is governed
by the state space model

e[ 2] (z]o 2]

where i = 1,2,... M. The process input [u; wug]! is defined as

UL ) = f )|
U2 M\ |22 ], i 7

€2
where [e1, e2]7, i = 1,..., M denotes an independent input to each agent. It is also

assumed that
Z+wl=1-¢,

where € > 0 models the contractive behaviour of the agent’s movement. Working to-

gether the agents are required to meet at a specified point by executing rotation around

123
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and contraction towards the center. Note that if € = 0 then no contraction takes place.

The structure here is illustrated in Figure 6.1

F1GURE 6.1: The dynamics of each agent consist of rotation and contraction. Agents

alm to meet at one point which they calculate separately.

Introducing the vectors &’ € R*M and u’ € R*M as

(1) j+1 if j is odd
x; = 2 o j=12,..
(x2) if j is even
2
s (61)% lfJ ?s odd 1o
(e2) if j is even

enables the system model to be written as
z'(n) = A1z’ (n) — Ay - (Asx’(n) + u),

or

Zl},(n) = A1 (I — Ag) :c'(n) — Alu',

where

51 —W1 0 0
w1 (51
0o ... & —w
Al = *
0 W 51
0 0 v —wm
| 0 0 wv oM

2M

..2M
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and _ -
1 1
0 0
1 1
0 0
Ay = (6.2)
0 i 0
1 1
L 0 & 0 a7 |
Introducing
A=A -(I-A) B =-A, (6.3)
yields the state-space model
z'(n+1)=A'z2'(n)+ B'd. (6.4)

In order to deal with synchronization errors we assume that agents’ clocks are out of
phase but they have the same period 1. Then we can use the model of synchronization
errors with only minor modifications. We consider only those product matrices that are
relevant to the agent’s work , i.e. we assume that pairs z;, z;y1, ¢ =1,3,5,...,2M — 1.

work synchronously. Then we apply the algorithm to find an admissible controller.

Suppose that the parameters in the model here vary as follows
ec[0,1]  we0,Vi—¢ FHwi=1-c

Then in Figure 6.2 synchronization errors occur in the dark grey region, i.e. some prod-
uct matrices are unstable. The stable region is marked in light grey. Figure 6.3 illustrates
a case of agents movement in the presence of a synchronization error and with no control
applied. Figure 6.4 illustrates the movement in the presence of a synchronization error
and with control applied.

o 0.1 0.2 0.3 0.4

0.5 .
omega

FIGURE 6.2: Unstable region; dark grey, stable region: light grey.
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Consider the above system for M = 6 with
51':(5]‘ W = Wj i,j:1,2,...,6,

where € = 0.1819, w; = 0.9, §; = 0.09 and the system is controllable. If we assume that
each agent works synchronously and that synchronization errors only arise when agents
are performing common tasks, we have 4683 product matrices and some of them are

unstable.

FIGURE 6.3: Synchronization error with no control. The agents calculate the center at
different time instances and move towards different targets. In an extreme case they
can move away the center.

Using Algorithm 3.3.6 we can find a control law to guarantee that the closed-loop system
is stable independent of the synchronization errors. The computation time is 500 sec
as compared to 640 sec for direct computation and this advantage will increase with
a growing number of agents. The 500 sec computation arose from use of Khachiyan’s
algorithm for the computation of MVEE. This computation time is substantially reduced
if we use the new Algorithm 3.3.5, see Table 3.1.
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FIGURE 6.4: Synchronization error with control applied. This control forces the agents
to meet at one point independent of synchronization error.

6.3 Application to iterative learning control with synchro-

nization errors

Iterative learning control (ILC) is especially suited to controlling systems operating in
a repetitive, or trial-to-trial, mode with the requirement that a reference trajectory
Yref(p) defined over a finite interval 0 < p < o, where o denotes the trial duration, is
followed to a high precision. Examples of such systems include robotic manipulators
that are required to repeat a given task to high precision, chemical batch processes or,
more generally, the class of tracking systems. Since the original work, the general area
of ILC has been the subject of intense research effort. Initial sources for the literature
here are the survey papers Bristow et al. (2006) , Ahn et al. (2007). These papers
demonstrate that substantial progress has been made with many designs having seen at
least experimental benchmarking and there has also been extension to a novel health-
care application supported by clinical trial results Freeman et al. (2009); A.-M.Hughes
et al. (2009).

Given that ILC has been a successfully implemented learning strategy for one dynamic
system, leads to the question: If there are multiple similar agents, such as a fleet of
robots, is it possible to benefit from exchanging information during the learning process?

This question has recently received attention; see, for example, Schoellig et al. (2010)

The remainder of this chapter gives the first results on ILC design in the presence of syn-
chronization errors. ILC updates the input in the iterative manner operating on some
underlying system. In particular, it is assumed that the system can have a synchro-
nization error. The important question arises about robustness of ILC control strategy
against synchronization errors and whether the developed method can be applied in the

case when it is not.
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The analogy between Repetitive Processes and ILC

In ILC, a major objective is to achieve convergence of the trial-to-trial error. It is, how-
ever, possible that enforcing fast convergence could lead to unsatisfactory performance
along the trial, and here this problem is addressed by first showing that ILC schemes
can be designed for a class of discrete linear systems by extending techniques developed
for linear repetitive processes Rogers et al. (2007). This allows us to use the strong
concept of stability along the pass (or trial) for these processes, in an ILC setting, as a
possible means of dealing with poor/unacceptable transients in the dynamics produced

along the trials.

The system to be controlled is initially assumed to be adequately modeled by linear
time-invariant dynamics that, after sampling, can be represented by a controllable and
observable discrete linear state-space model defined by the triple {A, B,C}. In an ILC

setting this is written as

zp(p+1) = Azi(p) + Bur(p), 0<p<a-1
yi(p) = Czx(p), (6.5)

where on trial k, xp(p) € R" is the state vector, y.(p) € R™ is the output vector,
ur(p) € R" is the vector of control inputs, and the trial duration o < oco. If the signal
to be tracked is denoted by y,.r(p) then ex(p) = y,.;(p) — yi(p) is the error on trial
k, and the most basic requirement is to force the error to converge in k. In particular,
the objective of constructing a sequence of input functions such that the performance is
gradually improving with each successive trial can be refined to a convergence condition

on the input and error

lim [lexl| =0, lim [[ug — thoo]| = O,
k—ro00 k—o0
where || - || is a signal norm in a suitably chosen function space with a norm-based

topology.

Trial-to-trial error convergence does not require that (6.5) is stable since, for example, it
is easily shown that an update law of the form wy1(p) = ug(p) + Leg(p+1), where L is
an r X m matrix to be designed, gives this property provided p(I—CBL) < 1. The reason
for this is the finite trial duration over which even an unstable linear system can only
produce a bounded output. For cases where p(A) > 1, this allows for the production of
large errors for small values of k and/or large values of . Even if p(A) < 1 there could be
unacceptably large oscillations in the dynamics produced along the early trials for many
practical applications, such as a gantry robot whose task is to collect an object from a
location, place it on a moving conveyor, and then return for the next one and so on.
If, for example, the object has an open top and is filled with liquid, and/or is fragile in

nature, then unwanted vibrations during the transfer time could have very detrimental
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effects. In such cases there is also a need to control the along-the-trial dynamics.

If the plant is unstable, that is, p(A) > 1, or the along-the-trial dynamics are insuffi-
ciently damped, one option is to first design a stabilizing feedback control scheme for
the plant and then apply ILC to the resulting controlled dynamics. This chapter follows
an alternative route by using a 2D system setting for analysis and control law design.
Moreover, the repetitive process setting guarantees monotonic trial-to-trial error con-
vergence. The two directions of information propagation in the 2D system setting are
from trial-to-trial, indexed by k, and along-the-trial, indexed by p. There has already
been work in this setting using the well known Roesser Roesser (1975) and Fornasini-
Marchesini Fornasini and Marchesini (1978) state space models. For example, in Kurek
and Zaremba (1993) it was shown how trial-to-trial error convergence of linear ILC
schemes in the discrete domain could be examined as a stability problem in terms of
a Roesser state space model interpretation of the dynamics. In recent work Hladowski
et al. (2008, 2012) a repetitive process setting has been used to produce control laws
for trial-to-trial error convergence and control of the along-the-trial dynamics and the
resulting designs have been experimentally verified. The results in this section extend

this approach to the case of synchronization errors.

The unique characteristic of a repetitive process Rogers et al. (2007) is a series of sweeps,
termed passes, through a set of dynamics defined over a fixed finite duration known as
the pass length. On each pass an output, termed the pass profile, is produced which
acts as a forcing function on, and hence contributes to, the dynamics of the next pass
profile, or trial output in ILC. This, in turn, leads to the unique control problem where
the output sequence of pass profiles generated can contain oscillations that increase in

amplitude in the pass-to-pass direction.

Attempts to control repetitive processes using standard systems theory and algorithms
fail precisely because such an approach ignores their inherent 2D systems structure, that
is, information propagation occurs from pass-to-pass (k) and along a given pass (p), and
also the initial conditions are reset before the start of each new pass. To remove these
deficiencies, a rigorous stability theory has been developed Rogers et al. (2007) based
on an abstract model of the dynamics in a Banach space setting that includes a very
large class of processes with linear dynamics and a constant pass length as special cases,
including those described by (6.7) below.

In terms of their dynamics, it is the pass-to-pass coupling, noting again their unique

feature, which is critical. The process dynamics in this setting are described by
Y1 = Layy + bg1, k20, (6.6)

where y,, € E,, E, is a Banach space with norm || - ||, L, is a bounded linear operator
mapping FE, into itself, by 1 € Wy, W, is a linear subspace of F,, and the norm of
E, is denoted by || - ||. The term L,y represents the contribution from pass k to pass
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k+1 and by 1 represents terms that enter on pass k+ 1, that is, state initial conditions,

control inputs and disturbances.

Consider discrete linear repetitive processes described by the following state space model
over 0 <p<a-—-1,k>1,

zp(p+1) = Agzi(p) + Baug(p) + Baoyj_1(p)
yr(p) = Cazi(p) + Daur(p) + Daoys_1(p), (6.7)

where on pass k, xx(p) € R" is the state vector, y,(p) € R™ is the pass profile vector
and ug(p) € R" is the control input vector. To complete the process description, it
is necessary to specify the initial, or boundary, conditions, that is, the state initial
vector on each pass and the initial pass profile. Here these are taken to be of the form
Ti+1 = dit1, k> 0, and yo(p) = f(p), respectively, where the entries in the n x 1 vector
di1 are known constants and those in the m x 1 vector f(p) are known functions of p

over the pass duration.

The basic premise in ILC is to improve performance by directly adjusting the input used

on each new trial, and often this is expressed in the form

ugt1(p) = wk(p) + Augya(p), k > 0. (6.8)

Hence the problem is to develop an algorithm to select the adjustment Awugy1(p) to be
added to the input ug(p) used on the previous trial and thereby construct the current
trial input. In this paper, the approach used for the forms of Awuy1(p) considered is to
first show that the resulting controlled dynamics can be described by a discrete linear
repetitive process state space model of the form (6.7) and then apply the stability theory

to derive the corresponding control law design algorithm.

Introduce, for analysis purposes only the following vector for (6.5)

N1 (P + 1) = Tp41(p) — zx(p) (6.9)
and select Aug11(p) as
Augyi(p) = Kimgq(p+1) + Kaep(p+ 1) (6.10)
and hence
Mer1(p+1) = (A+ BK1)n,1(p) + BKaeg(p). (6.11)
Also

ert1(p) — ex(p) = CA(xx(p— 1) — 2pp1(p — 1)) + CB(up(p — 1) — upq1(p — 1))
=—-CAn, (p) — CBAu,1(p—1).
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Using (6.10) gives

€k+1(p) = —C(A + BKl)nk+1(p) -+ (I — CBKQ)ek(p). (6.12)
Introduce )
A = A+ BK,;
By = BK,
C = -C(A+ BK))
Dy = I-CBK,

Then (6.11) and (6.12) can be written as

M1 (0 +1) = Any1(p) + Boex(p)

§ g (6.13)
ex+1(p) = Cnypq(p) + Doer(p),

which is of the form (6.7) and hence the repetitive process stability theory can be applied
in the ILC case.

For the discrete linear repetitive processes considered, there are a wide range of stability

along the trial tests, such as the following in Rogers et al. (2007)

Theorem 6.1. A discrete linear repetitive process described by (6.7) is stable along the

trial if and only if

e p(Dg) <1
e p(Ag) <1

e all eigenvalues of G(z) = Cy(2I—Ay) ' Bgy+ Dy, V|z| = 1 have modulus strictly

less than unity

One approach to control law design for systems described by (6.7) is to use a Lyapunov

function approach which is detailed next.

Consider a Lyapunov function of the form
V(kap) = Vi(kap) + VQ(k7p)a
with

Vi(k,p) = i1 Pxy1(p)
Va(k,p) = yp Py (p),

where Py >~ 0, ¢ = 1,2 with associated increment
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Then stability along the trial holds if AV (k,p) < 0 for all k& and p which is equivalent

to the requirement that

®TP® - P <0, P =diag(Py,P>), (6.14)
where
A; B
=| "t T (6.15)
Cyqy Dy

This last condition is the 2D Lyapunov equation characterization of stability and even
though it has and identical structure to that for standard linear systems it is sufficient
only. If, however, the example considered is single input single output this equation is

necessary and sufficient for stability.

Theorem 6.2. Hladowski et al. (2008) The ILC scheme (6.13) is stable along the trial
if there exist matrices X1 >= 0, X9 = 0, Ry and Ro such that the following LMI is
feasible

-X, 0
0 —X
U —
AX,+ BR; Ry

~CAX,-CBR, X,-CBR;
X, A" +R/B" -X,A"C" -R{B"C"

RIBT X, - RIBTCT

. 0 < 0. (6.16)
—A]

0 -X,

If (6.16) holds, stabilizing control law matrices are given by

K, =R X', Ky=RyX,"

Iterative learning control in the presence of uncertainty in the plant dynamics proceeds
by assuming that the uncertainty is described by a particular structure. Theorem A.1
gives LMI based conditions for control law design in the case when the plant considered

has uncertainty of a polytopic type.

Example 6.1. Consider the case of (6.5) when

0.9672 —0.8006 0.7381 —0.2942 1.0797 |
0.2276  0.7791  0.2604 —0.7895 —0.8344
A= —-04045 1.0786  0.4765 0.7878 0.8748 |, B = I5xs,
—0.0516 0.2259 —0.9643 0.8008  0.6371
0.2298 —1.1144 -0.1776 —-0.1144 —-0.1320 |




Chapter 6 Representative applications

133

where p(A) = 1.71 and I denotes the identity matriz. In this case (6.14) is satisfied for

the matriz P = diag(P1, P3) where

[ 0.2027 0.0000 0.0000
0.0000 0.1870 0.0000

Py = | 0.0000 0.0000 0.2713

0.0000 0.0000 0.0000
| 0.0000 0.0000 0.0000

[ 0.2655 0.0000 0.0000
0.0000 0.2575 0.0000

Py = | 0.0000 0.0000 0.2726

and control law matrices

0.0000 0.0000 0.0000
| 0.0000 0.0000 0.0000

[ —1.1672  0.8006 —0.7381
—0.2276 —0.7791  0.2604

K, = 0.4045 —1.0786 —0.4765

[ 0.5231  0.0000
0.0000 0.5231
0.0000  0.0000
0.0000 0.0000
| 0.0000 0.0000

K,

0.05616 —0.2259  0.9643
| —0.2298  1.1144  0.1776

0.0000 0.0000 |
0.0000 0.0000
0.0000 0.0000
0.1928 0.0000
0.0000 0.2350

0.0000 0.0000 |
0.0000 0.0000
0.0000 0.0000
0.2665 0.0000
0.0000 0.2638

0.2942
0.7895
—0.7878
—0.8008
0.1144

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.5231 0.0000 0.0000
0.0000 0.5231 0.0000
0.0000 0.0000 0.5231

—1.0797 |

0.8344

—0.8748
—-0.6371

0.5320

(6.17)

(6.18)

Consider now the case with a common clock when there are 541 possible synchronization

errors (calculated by Algorithm 2.1.1). Computing the spectral radii of the matrices in

this case shows that all systems generated by the clock synchronization errors are not

stable. For 225 systems with errors and control law matrices (6.18) the spectral radius

of the matriz ® (6.15) exceeds one (p(®) > 1) which prevents the existence of a matriz
P satisfying (6.14). and hence there is no guarantee that the ILC scheme (6.13) with

synchronization error is stable.

For 7 systems with synchronization errors the second condition of Theorem 6.1 is not
satisfied and hence the ILC scheme is unstable. Using Algorithm 3.3.6 and solving the
set of LMIs (A.1) for the vertices of the polytope gives the following stabilizing control
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law matrices

[ —0.0259  0.7949 —0.7385  0.2899 —1.0795
—-0.2274 0.2130 —-0.2614  0.7893  0.8365
0.4007 —-1.0783  0.5150 —0.7874 —0.8727
0.0473 —0.2254  0.9600  0.1851 —0.6340

| —0.2296 1.1158  0.1796  0.1139  1.1231

K,

0.1390  0.0130 —0.0005  0.0105 —0.0001
—0.0001  0.0167  0.0027  0.0005 —0.0048
K;=10"%| 00091 —0.0001 0.0191 —0.0008 —0.0046 | . (6.19)
0.0105 —0.0011  0.0100  0.0304 —0.0065
| —0.0009 —0.0031 —0.0039  0.0009  0.0189

These control law matrices stabilize the system (6.5) for all synchronization errors, but
further numerical investigation establishes that the trial-to-trial error convergence is very

slow.

Solving the set of LMIs (A.1) for all matrices representing synchronization errors gives

the control law matrices

[ —0.9672  0.8006 —0.7381  0.2942 —1.0797
—-0.2276 —0.7791 —-0.2604  0.7895  0.8344
K, = 0.4045 —1.0786 —0.4765 —0.7878 —0.8748
0.0516 —0.2259  0.9643 —-0.8008 —0.6371

| —0.2298  1.1144 0.1776  0.1144  0.1320

[ 0.5231  0.0000 0.0000 0.0000 0.0000
0.0000 0.5231 0.0000 0.0000 0.0000
0.0000 0.0000 0.5231 0.0000 0.0000 { , (6.20)
0.0000 0.0000 0.0000 0.5231 0.0000

| 0.0000 0.0000 0.0000 0.0000 0.5231

K>

which results in much better performance. The volume redundancy arising in the polytope
results in control law matrices (6.19) with worse performance and prevents a solver
from finding a better solution for systems with synchronization errors, where (6.20)

demonstrates that such a solution exists for this plant.

If the norm bounded uncertainty description is used Theorem A.3 is the required back-

ground result.

Example 6.2. Consider again the plant of Example 6.1 and use the norm bounded
uncertainty to construct the set containing all matrices representing systems with clock
synchronization errors by employing Algorithms 3.3.5 and 4.3.1. In this case attempting
to find control law matrices using the LMIs of Theorem A.3 failed, which implies that the
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volume redundancy in this case prevents the computation of a solution for all systems

with errors, where again (6.20) demonstrates that such a solution exists.

6.4 Application to solving specific LMI control problems

LMIs are now a standard computational tool in many areas of control, signal processing
and other areas. Their importance in control theory has been greatly influenced by the
work of Yakubovich (1962, 1964, 1967). With the development of the efficient interior
point methods Nesterov and Nemirovski (1988, 1994) LMIs begun to be widely used in
control systems design and implementation, see for example Boyd et al. (1994). Many
currently LMI solvers implement interior point methods such as SeDuMi Sturm (1999)
which uses the primal-dual interior point method Sturm (1997) algorithm or MATLAB
LMILab that uses the projective method Nemirovski and Gahinet (1994), a variant of
interior point method. This section gives some initial result on the application of the
new algorithms developed in Chapters 3 and 4 to specific LMIs that arise in control

theory.

The results of Chapter 4 of the estimation of the norm bounded uncertainty provides a

suboptimal solution to the problem

minimizegwera 5 e p({HFE:F'F <TI})
subject to Xp=X+HFE, FIF,<1I, k=1,...,N,

where p(+) is the measure of the uncertainty under the vec(-) operation. The suboptimal
solution is obtained by finding the MVEE of specific structure, i.e., by solving the

problem

minimizeoverA, B, H,E VOI(E(ET ® H,vec([A, B]))
subject to vec(X}) € E(ET @ H,vec([A, B]), k=1,...,N.

This solution is also a suboptimal and a very close approximation to the solution of the
LMI problem

minimizegyver X, v,w trV4+tr W
\% (X, —X)T

subject to W > 0,
X, — X w

where V=ETE, W =HH".

Moreover, the tests results of Chapter 4 demonstrated that the new method developed
in this thesis can be up to 103 faster than the SeDuMi solver. Next it is shown how this

feature can be exploited in control applications.

Consider discrete linear time-invariant systems with no inputs and state dynamics de-
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scribed by
x(k+1) = Ax(k).

Consider also the candidate Lyapunov function for P = PT = 0
V(k) = z(k)* Px(k) > 0,

with associated increment

V(k+1)=V(k) =2k + 1) Px(k + 1) — (k)T Px(k)
xz(k)TATPAx(k) — x(k)* Px(k)

z(k)"(ATPA — P)x(k)

The condition AV < 0 is satisfied provided
ATPA-P <0,

or equivalently
P—-ATPA 0.

Applying the Schur’s complement formula gives

[ P AT ]
4| 0. (6.21)
A P

Moreover, if P = PT = 0 solves (6.21) then the system is stable.

Consider the class of switching systems described by
z(k+1) = A,z (k)

where
Ag(k) S {Al, Ay, ..., AN}

If a matrix P = PT = 0 exists such that

[P AT

A P_1]>0, i=1,...,N, (6.22)

then the switched system is stable. However, the condition (6.22) is not an LMI in P,
but multiplying both sides by diag(I, P) gives the following set of LMIs

I 0 P Al I 0 P A'P ,
) = -0, i=1,...,N. (6.23)
0 P|| A P 0 P pPA;, P

Consider also the Cholesky factorization P = Q'Q and suppose that the following
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problem has a solution

there exists  Ellipsoid &(QT ® Q71,0)
subject to  vec(A;) € int (E(QT Q1 0), i=1,...,N

where int(-) denotes the interior. Then there exist norm bounded uncertainty of the

form

A;=Q'F,Q, F'F;<I i=1,. N

and hence (6.22) is satisfied with P = Q'Q and P! = Q7 'Q 1 = (QTQ)~'. How-
ever, the method developed in Chapter 4 is not suited to finding such ellipsoids. First
it is required to find the MVEE €(A, 0) containing all the points. In the approximation

step in solving the problem
e . T 1
minimize |[A—- Q" ® Q™ '||r

we use the least squares framework to sequentially update the matrices involved whilst

still maintaining feasibility

o u(4lQ)
T @ QY

Q+ B, Q'+« (B")!

~T
tr(A,, QT
Cij:%, Q+—C!' Q'l+cC.
tr(QQ")
The next step is to scale the ellipsoid to obtain the axes’ length that guarantee the
ellipsoid contains all the points

(o},...,0"5) = ScaleEllipsoid(Q" ® Q~1,0)

TL2
and by SVD decomposition
S1 ... 0 1/81 e 0

QT=vsut, Ql=vswwt, s=|: .. |, 8t=]| : o
0 ... sy 0 ... 1/s,

)

the fitting step is different from that in Chapter 4. In particular, the volume of the

resulting ellipsoid is not an issue and hence the problem of fitting is reduced to finding
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a solution of the following system

/
- > On+1

sl (6.24)
or the system of linear inequalities

1>o0]
81>Ué$2
>
/

§1 > 0,5n
/
82>0‘n+181
>

Sy > 01’12 Sn
The necessary condition for the solution to exist is
o1 <1, o).9<1l, 0oh3<l, ... o.<L (6.25)
Considering any two equations for i # j gives
8i > O(i—1)n+jSjs  Sj > O(j—1)m+iSi» HJ=1,...,n, i# ] (6.26)
and hence s; > 0(;_1)4;0(j—1)n4:5i- Consequently the necessary conditions also include
1> 04 1nj0G-1nsis &I =1,...,m, @1F#]. (6.27)
Rewriting (6.26) in the following form
Sj

7>Si>0(i—l)n+j5j7 ,j=1,...,n, 27&]
T(G=1n+i

and for each i dividing the resulting equation by s; gives

> 8; > O(i—1)ntis zzl,,n (628)
O(j—1)n+i (i=1nts
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The solution of (6.28), and hence the solution of the complete system (6.24) exists if
(6.27) is satisfied. Therefore conditions (6.25) and (6.27) are necessary and sufficient for

the solution of (6.24) to exist and they can be combined into the equivalent condition

1> O'(ifl)n+j0-(jfl)n+ia Z,j = 1, NN (629)

The method does not necessarily need to evaluate the solution.In particular, it is suffi-
cient to determine if fitting is possible or not by checking (6.29). The complete procedure

is summarized as Algorithm 6.4.1.

Algorithm 6.4.1 Check stability of the switched system

1: function CHECKSTABILITY(Ag, k=1,...,N)
2 xp =vec(Ag), k=1,...,N
3 PR SV TLx)
4 VDVli=% > Kigendecomposition
5: U~V o=¢-1 > e-lowest possible float
6 P + U - diag(o)
7 A < SCALEELLIPSOID(A, 0, X)
8 Q1 > Initial ellipsoid can be determined also by Rank-1 approximation
9: ming = ”A—QT(X)Q_IHF
10: Q. +—Q
11: forit=1,..., Mazxlt do > Max iterations
12: fori,5=1,...,N do
13:
y L wPLeTh
Yooe(@hTe™
14: end for
15: Q+ BT, Q '« (BYH!
16: if ming > |A - QT ® Q|| then
17: Q.+ Q, ming + |A - QY 2 Q! > Store the best result
18: end if
19: fori,5=1,...,N do
20: T
tr(P;;Q")
Cij < VN
tr(QQ")
21: end for
22: Q+—C', Q'«cC
23: if ming > |A - QT ® Q|| then
24: Q.+ Q, minp + |A- QI ® Q! > Store the best result
25: end if
26: end for

27 o + SCALEELLIPSOID(QT ® Q; 1,0, X)
28: if Condition (6.29) is satisfied then

29: return STABLE > Stable
30: else

31: return UNDETERMINED > No conclusion possible
32: end if

33: end function
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Example 6.3. Consider the case of N = 20,000 5 x 5 matrices with randomly generated

entries where
max{p(A4;):i1=1,...,N} =0.64123

Algorithm 6.4.1 produced the result that this system is stable in 0.611 seconds. The same
result was obtained using SeDuMi and LMI conditions (6.23) in 89.107 seconds. Hence

the new method is faster.

6.5 Conclusions

This chapter has considered the application of the new algorithms developed in Chapters
3 and 4 to three representative problems. The results given established basic feasibility
but much further work is required in order to determine their true potential. This

general area will be discussed in the next chapter.



Chapter 7

Conclusions

7.1 Novel contributions

In Chapter 2 models to represent the effects of synchronization errors in linear systems
have been developed for both the centralised and decentralised control cases. Next the
stability of asynchronous algorithms has been addressed resulting in theorems that can
be applied to the second of these cases. These results do not apply to the centralized
control case and only a brute force method. In particular the only existing method was a
formulation of the stabilization problem in terms of LMIs for all state matrices that arise.
However, as the number of synchronization errors that can arise grows very quickly with
the order of the system, the performance of LMI solvers decays below any acceptable

level. This motivated research to answer the following open research problems

e Is it possible to stabilize the system against all synchronization errors using state
feedback ?

e Can the design be completed in a computationally efficient way ?

In Chapter 3 the solution of these problems in the presence of all clock synchronization
errors has been developed by exploiting the polytopic uncertainty description from robust
control theory. In particular, the complete set of possible systems is first written in
this setting of uncertainty on some nominal model, which in turn releases convex hull
algorithms for use in this area. Numerical tests then revealed that the efficiency of
these algorithms is not acceptable for even small scale problems. This then motivated
the development of the new algorithm for the computation of a polytope containing
given set of matrices, that balances the trade-off between the volume and the number

of vertices in the convex hull.

In this new algorithm the number of vertices depends on the dimension of the space but

not on the number of input matrices and this makes it suitable for large scale problems.
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Its computation is undertaken using the Minimum Volume Enclosing Ellipsoid that
can be performed using, for example, the method of Khachiyan from the literature. An
alternative method based on principal component analysis is another major contribution
of this thesis. To provide a comparison of relative computational efficiency extensive
numerical tests were first undertaken between the principal component analysis based
method and the Khachiyan algorithm. The test data given in Tables 3.1 and 3.2 confirm
that a speed up of the order 2 is possible. This factor also increases with increasing

tolerance level in the Khachiyan method.

A further comparison was undertaken between the brute force LMI method and the
polytopic description method with the Khachiyan algorithm. In this case the latter
again outperformed the former. Also if the ellipsoid construction algorithm is undertaken
using a method based on principal component analysis then even greater efficiency can

be achieved.

Chapter 4 treats the same problem as Chapter 3 but using norm bounded uncertainty
description from robust control. The method developed is fast and robust and allows
the solution of large scale problems. Numerical tests, see Figures 4.4 and 4.5, show that

this method markedly outperform the existing LMI formulation and solvers.

The analysis of Chapters 2—4 require the availability of a state space model of the plant
dynamics and knowledge of the clock synchronization errors that arise. In at least some
applications the clock synchronization error sequences may not be known. Hence if
synchronization error occur in operation a valid question to ask is can this be detected
from the knowledge of the plant input and output over a finite time duration. Chapter
5 has shown that he answer to this question is positive in the common clock case. In

other cases this question is still unanswered, and is discussed again in the next section.

This thesis has focused on answering basic research questions but it is also essential to
establish if they could be of use in applications. To this end, Chapter 6 gives basic
results in three areas. The first of these is one formulation of the general rendezvous
problem applicable to multi-agent systems. In this application a group of autonomous
vehicles aim to meet at one point and it is assumed that they operate asynchronously,
which is modelled by systems with clock synchronization errors. The new methods in
this thesis are then applied to compute a stabilizing state feedback control law. The
second application considers the problem of iterative learning control for systems with
synchronization errors which can also have a multi-agent aspect. Finally, some prelimi-
nary results have been developed on using these methods to speeding up the solution of

of an LMI that is generic to a number of control theory problems.



Chapter 7 Conclusions 143

In summary the novel contributions in this thesis are as follows

e An algorithm for estimating the number of clock synchronization errors in the
common clock case together with upper and lower bounds and an approximation

of this number in terms of the order of the system ( Chapter 2).

e An algorithm for the computation of the approximation to the minimum volume
enclosing ellipsoid based on principal component analysis with improved compu-

tationally efficiency over alternatives (Chapter 3).

e An efficient algorithm for the computation of a polytope containing a given set
of matrices. The number of vertices of the resulting polytope depends on the
dimension of the space but not on the number of input matrices which makes it

suitable for large scale problems (Chapter 3).

e An algorithm for the computation of the norm bounded uncertainty for a given
set of matrices. This algorithm is also suitable for large scale problems
(Chapter 4).

e A method of estimation of a clock synchronization errors from noise free out-
put trajectory together with some preliminary results on identifiability conditions
(Chapter 5).

e Basic feasibility results on the application of these new algorithms to three possible

application areas, including the computation of stabilizing control laws
(Chapter 6).

7.2 Directions for future research

The results in this thesis will be enhanced and extended by further research. In partic-

ular, the following major areas of work should be addressed.

e Fitting an uncertainty ellipsoid to an ellipsoid of lower dimension

In the method of Chapter 4 the problem of fitting an uncertainty ellipsoid defined
by (4.51) to the ellipsoid enclosing all the input points is critical. This was done
by approximation of the ellipsoid matrix with the Kronecker product of two others
and by fitting the length of uncertainty ellipsoid axes. In application to systems
with synchronization errors, the enclosing ellipsoid is not of full dimension, which
arises from the fact that input points (3.9) are located on some hyperplane, see
Figure 3.1. However, the approximation step most often results in a full rank
matrix and better results could be obtained in this case if the dimensions of the

approximated ellipsoid is increased by setting the length of remaining axes to a
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nonzero value. The proposed heuristic value is given by (4.63). Further research is
required to determine whether or not this value is the best possible. If, however,
such a theoretical justification cannot be established then an attempt should be
made to obtain at least an algorithm that has increased efficiency for this essential
task. This is of particular relevance for applications such as systems with clock

synchronization errors.

Fitting the length of the uncertainty ellipsoid axes

This task, which is part of the method developed in Chapter 4, requires the so-
lution of the optimization problem (4.55), which, in general, is non-convex with
bi-linear constraints. Necessary conditions for the optimum are given by (4.56) and
Theorem 4.7 shows that for any given starting point from the domain of solution
the stationary points (4.57), which are obtained by manipulating of coordinates of
the starting point, satisfy (4.56). The current method uses the particular starting
point (4.62) in order to find a suboptimal solution to (4.55). Further research is
needed on the problem of choosing the initial point resulting in a theoretical jus-
tification and/or an efficient algorithm that would give significantly better results

than the current method.

State space model of subsystems with non-negligible switching times

In the model developed in Chapter 2, on which all results in this thesis are based,
assumes that the switching of a subsystem is instantaneous, or the switching time
is negligible. This allows formulation of the state space model in the case of
centralized control. If in an application the switching times are not negligible this
will introduce delays into the dynamics and it is then not possible to couple the
subsystem models. An open research problem is the development of a model for

centralized control in such cases.

New approach to solving LMIs that arise from control theory problem

Chapter 4 has developed a method of estimating the norm bounded uncertainty
of a given example that is equivalent to solving a particular optimization problem
subject to LMI constraints of specific structure. This method gives a suboptimal
solution of this latter problem in a much faster way than existing LMI solver. Some
initial progress on exploiting this fact for LMI problems in control theory, outside
those considered in this thesis, has been given in Chapter 6. Further research is

required to determine the full potential of this initial results.

Estimation of a clock synchronization error from input-output data.

The estimation method developed in Chapter 5 assumed that the plant conidered
is noise-free and this assumption is unrealistic in some cases. Also, to guarantee
that the error is identifiable from the output two assumptions have been made, but

only a sufficient condition for the first and a necessary condition for the second
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are currently available. Hence there are many open research questions. These
include theoretical conditions for identifiability and efficient and well-conditioned

algorithms in the case where the noise cannot be neglected.

e Further application based studies.

Chapter 6 has given initial results on the application of the results in this thesis
to two application areas that are of considerable interest both in terms of control
theory and real world problems. There is a clear need to build on these initial
results to address other aspects crucial to eventual use, such as in-depth simulation

studies followed, where justified, by benchmark experimentation.






Appendix A

Iterative learning control for

systems with uncertain dynamics

The following results for iterative learning control in the presence of plant uncertainty

are used in Section 6.3.

Theorem A.l. Consider the system (6.13) and assume the matrices take values in a
polytope
[A, B] S CO([A“ Bz] D= 1,,N)

Then this system is stable along the trial if there exist matrices X1 = 0, X2 = 0, Ry
and Ry such that the following LMIs are feasible fori=1,..., N

-X1 0

-X
U, = 0 2
A; X1+ B;R; R,

~CA;X, - CB;R, X;-CB;R,
XAl +R{B] —-X,A]C" - R{B]C"

RIBT X, - R]B]C"
27 S <0. (A1)
—-X1 0
0 —X9
If (A.1) holds, stabilizing control law matrices are given by
K, =R X['! Ky=RX,;" (A.2)
ProOOF: Consider [A, B] € Co([A;, B;]:i=1,...,N) expressed as a convex combi-
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nation of the vertices

N
[A, B] =) ai[A;, B. (A.3)
=1

Since
v, <0, i=1,...,N,

taking the convex combination of (A.3) gives

N
Zai\l’i =W <0,
=1

which is (6.16) and guarantees stability along the trial of the ILC for (A.3) with control
law matrices given by (A.2). O

Consider the discrete linear repetitive process described by the state space model

zp1(p+1) = (A+AA)xp1(p) + (Bo + ABo)yi(p) + (B + AB)ugy1(p)
Yi1(p) = (C + AC)xp11(p) + (Do + ADo)y(p) + (D + AD)ug1(p)  (A4)

where matrices AA, AB, ABy, AC, AD, ADy represents the uncertainty defined as
H,

The following theorem (Paszke, 2002, Theorem 4.6) solves the stabilization problem for

AA ABy, AB

F[E1 B, Eg], FTF <1
AC AD, AD

such repetitive processes.

Theorem A.2. Suppose that a discrete linear repetitive process of the form (A.4) is

controlled by a law of the form

xr11(p) ] .

up1(p) = [ K, K, } [ v, (D)

Then the resulting controlled process is stable along the trial for all admissible uncer-

tainties if there exist matrices W1 = 0, Wo = 0, N1 and N of compatible dimensions
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and a scalar € > 0 such that the following LMI holds

[ Wy +2eH HT 2eH,HT AW, + BN,
2¢H HI ~Wy+2cH,HI CW,+ DN,
wiAT+ NITBT w,c?”+ NIDT -W,
WyB{ W,yDJ + No,D” 0
0 0 E.W{+ E3N;
I 0 0 0
BoW, + BN, 0 0 |
DyWy + DN, 0 0
0 wWiEl + NTET 0
—wy 0 WoEl + NITET <0
0 —el 0
E;Wy + E3N, 0 —eI ]

If this LMI condition is satisfied, stabilizing control law matrices matrices are given by

Ki=N,W;! K;=N,W,". (A.5)

Theorem A.3. Consider the system (6.13) and assume the matrices take values in the

norm bounded uncertainty set
[A, B]e{[ Ay, Bo]+HF|[E, E;]: F'F=<I}, (A.6)

for some matrices H, E1 and Eo. Then this system is stable along the trial if there
exist matrices W1 =0, Wo =0, N1 and No and a scalar € > 0 such that the following

LMI is feasible
~ ~ T
M FE
- =<0, (A.7)
E —eI
where
0 0 E\W,;+E;N;y E;N,
5_|0 0 “E\Wi-E:Ni -E;N,
00 0 0
00 0 0
and
-Wi+eHHT 0 AW, + BN, BN,
i 0 -Wy;+eCHH'C —~CAW,-CBN; W;-CBN,
| wAT+ NTBT —-w,ATCT - NTBTCT -W, 0
NIBT W, - NIBTCT 0 —-W,

If (A.7) holds, stabilizing control law matrices are given by

Ki=NW;! K;=N,W;. (A.8)
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PrOOF: Omitting uncertainty in Theorem A.2 gives the stability condition as

-W, 0 AW, B\W,

0 —Wy C’Wl bOWQ

AT - T 0
WA w.C -W; 0
WsBy W.D, 0 —W,

Substituting for the matrices A, By, C and D, yields

-W 0
0 ~W,
WA+ N{B" -W,A'C" - N{B'C"
NIB W, - NiBTC"
AW+ BN, BN,
~CAW,-CBN; W;,;—-CBN; 0. (A9)
-W, 0
0 -W,

The control law matrices are given by (A.5).

Consider now the case when the system (6.5) is uncertain and the uncertainty is modelled
by (A.6). Then ILC system is stable along the trial if

-W, 0 AW, + BN, BN,
0 -W, —-CAW,—-CBN, W,—-CBN,
wWiAT + NTBT —-w,A"C" — NTBTC" -W, 0 +
NIB W, - NiBTCT 0 W,
0 0 AAW, + ABN, ABN,
0 0 —CAAW, —CABN, —-CABN,
WiAAT + NTABT —-w,AATC" - NTABTCT 0 0 <0
NIABT —-NTABTCT 0 0

The second term on the left hand side in the above expression can be written as

H 0 00 F 0 0 O 0 0 E\W,+E;N, E;N,

OH CH 0 0 0 F 0 O 0 0 —E\W,—E;N, —E);N,
0 0 00 0 0 F O 0 0 0 0
0 0 00 0 0 0 F 0 0 0 0
0 0 00 FT 0o o0 o
N 0 0 00 o FT o0 o
W.El + NTE] —-W,Ef - NTE] 0 0 o o FT o
NIET —~NIE} 00 o o o FT
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HT 0 00
0 H'CT o0 o
X
0 0 0o
0 0 0o
Applying Lemma 4.1 now gives
0 0 0 O 0 O EWi,+ E>N, EsNo
1 0 0 00 0 0 —E.W;—-EsN; —E>N,
€ T T T T T T
WLET + NTET —-wW,ET-NTET 0 o 00 0 0
NTET —NTET 00 00 0 0
-Wi+eHHT 0 AW, + BN, BN,
4 0 -Wsy+eCHHTC —-CAW,—-CBN, W,—-CBN,
wW.,AT + NTBT —w.,ATcT - NTB'CT -W, 0
NTBT W, - NIBTCT 0 —-W,
15T = ~
=¢'E E+M<0.
By the Schur’s complement formula
~ ~T
M FE
N =<0, (A.10)
E —€I

which is (A.7) for this case, hence the ILC scheme (6.13) is stable along the trial with

control law matrices given by

Ki=NW;! K;=N,W,.
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