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Energetically stable singular vortex cores in an atomic spin-1 Bose-Einstein condensate
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We analyze the structure and stability of singular singly quantized vortices in a rotating spin-1 Bose-Einstein
condensate. We show that the singular vortex can be energetically stable in both the ferromagnetic and polar
phases despite the existence of a lower-energy nonsingular coreless vortex in the ferromagnetic phase. The
spin-1 system exhibits an energetic hierarchy of length scales resulting from different interaction strengths,
and we find that the vortex cores deform to a larger size determined by the characteristic length scale of the
spin-dependent interaction. We show that in the ferromagnetic phase the resulting stable core structure, despite
apparent complexity, can be identified as a single polar core with an axially symmetric density profile which is
nonvanishing everywhere. In the polar phase, the energetically favored core deformation leads to a splitting of
a singly quantized vortex into a pair of half-quantum vortices that preserves the topology of the vortex outside
the extended core region, but breaks the axial symmetry of the core. The resulting half-quantum vortices exhibit
nonvanishing ferromagnetic cores.
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I. INTRODUCTION

In the textbook examples of superfluids, liquid 4He [1]
and Bose-Einstein condensates (BECs) [2] of spinless or
spin-polarized atoms, quantized vortices occur as quantized
circulation around an empty vortex core whose size is
determined by a characteristic healing length. In a BEC of
atoms whose spin degree of freedom is not frozen by magnetic
fields [3], spin rotations and condensate phase combine to form
a larger set of physically distinguishable degenerate states.
This is analogous to liquid 3He where superfluidity is formed
by Cooper pairs of fermions that exhibit a nonzero spin and
orbital angular momentum, resulting in a rich phenomenology
of phases with different broken symmetries [4]. A variety
of different vortex configurations [5] and other defects and
textures [6] have been theoretically studied and experimentally
observed in the resulting multicomponent order-parameter
manifolds of superfluid liquid 3He. There are obvious parallels
[6] to similar objects in cosmology [7] and quantum field
theory [8].

Consequently, it is not surprising that in multi-component
BECs, there has been an increasing interest in theoretical
studies of topological defects and textures [9–39] as well
as vector solitons [40–47]. The theoretical work has been
produced in parallel with a rapid experimental progress on
spinor BECs, e.g., in controlled preparation of coreless spinor
vortices [48–50], in studies of spin-texture formation [51,52],
and in nonequilibrium vortex production during rapid phase
transitions [53].

An atomic spin-1 BEC exhibits two phases of the ground-
state manifold, ferromagnetic (FM) and polar, with distinct
broken symmetries. In the FM phase the ground state of
a sufficiently rapidly rotating atom cloud is formed by
nonsingular, coreless vortices in which the order parameter
is well defined everywhere [17,18,26,28,36]. Similar coreless
vortices were first described in superfluid liquid 3He [54,55]
and were recently experimentally phase imprinted on a spinor
BEC [49]. Due to the topology of the FM ground-state
manifold, which is defined by the group of spin rotations, it is

also possible to form a singular vortex [15,16], whose stability
and structure, however, are much less well understood.

Here we show that singular, singly quantized vortices can be
energetically stable in both the FM and polar phases of a spin-1
BEC. In the FM phase this is despite the fact that the coreless
vortex has a lower energy. Although a singular vortex would
also not be nucleated by rotation, once created, for example by
phase imprinting, it can be stabilized in a rotating trap. In the
polar phase, the singular vortex undergoes a core deformation
to a pair of half-quantum vortices in an extended vortex-core
region, where the broken order-parameter symmetry of the
polar ground-state manifold is restored (see Fig. 1).

In a singular defect the singularity of the order parameter is
contained by a defect core. Unlike in scalar superfluids, in the
spinor BEC this does not imply that the density must vanish:
it is also possible to accommodate the singularity by requiring
the spinor wave function to be orthogonal to the ground-state
manifold at the precise location of the singularity. The different
possibilities for the defect-core structure lead to an energetic
hierarchy of different characteristic length scales [23]: De-
pending on the ratio of the spin ξF and density ξn healing
lengths associated with the two interaction strengths of a spin-1
BEC, it can be energetically more favorable to force the order-
parameter value to be orthogonal to the ground-state manifold
at the defect singularity than to force the density to zero. This
can lead to unexpected core structures. In Ref. [23] it was
shown that in the polar phase of a spin-1 BEC a singular point
defect with a vanishing density at the singularity can sponta-
neously deform to a ring defect with a FM core and a nonvan-
ishing density. Recently symmetry classification using homo-
topy theory was used in the analysis of defect cores in Ref. [56].

In a spin-1 BEC the polar and FM phases differ by the
local expectation value of the spin magnitude. The size of
the filled vortex core is then determined by ξF , which defines
the length scale over which the spin magnitude heals when
locally perturbed. This is in general much larger than the
size ξn of a density-depleted vortex core. Large wave-function
gradients close to the defect singularity result in a large order-
parameter bending energy. Energetically, the system therefore
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FIG. 1. Schematic illustration of two vortex-core structures with
the same topology for a singly quantized singular vortex in the
polar phase of a spin-1 condensate. In (a) the atom density vanishes
at the vortex-line singularity with the core size determined by
the characteristic length scale ξn (healing length) associated with
the spin-independent interaction strength. In (b) the atom density
is nonvanishing in the core region, whose size is determined by
the characteristic length scale ξF of the spin-dependent interaction
strength. The vortex-line singularity has now split into two half-
quantum vortices with the atoms in the ferromagnetic phase at the
precise location of the singularities. In both panels we show the
nematic axis as dashed lines and the dotted line in (b) indicates a
disclination plane for the nematic axis. Inside the core region (shaded
area) of (b) the broken symmetry of the polar ground-state manifold
is restored (as explained in the text). Outside the core the topological
properties of the vortex are the same as those in (a).

prefers the larger core size and a nonvanishing atom density
with correspondingly lower bending energy. Outside the filled
core region of size ξF , the topology of the vortex is the same as
in the case of a zero-density vortex line. In that region the order-
parameter bending energy is not sufficient to excite the system
away from the ground-state manifold, and we find a well-
defined broken order-parameter symmetry of either the polar
or the FM phase. It is only inside the filled core of size ξF that
the vortex structure differs. Inside the core the order-parameter
bending energy restores the order-parameter symmetry of the
full spin-1 condensate wave function by exciting the system
out of the ground-state manifold by mixing the polar and FM
phases. In our numerical simulations this is indicated by a
continuously varying spin magnitude across the vortex core.

We show that in the case of a singular singly quantized FM
vortex the apparent complexity of the core can in this way be
explained as the formation of a single core with |〈F̂〉| = 0 at the
singularity: An initial singular vortex is formed by overlapping
vortex lines in the spinor components. As the system relaxes,
the density depletion is avoided by separating the vortex lines.
By a rotation of the spinor basis, the axial symmetry of density
profiles of the individual spinor components with perfectly
overlapping vortex lines is explicitly restored, and the vortex
is identified as one in which the spin vector winds by 2π around
a polar core. We find both axisymmetric and nonaxisymmetric
solutions for the singular vortex in the FM phase, indicating
close energetic degeneracy of the solutions.

In the polar phase, we use the same analysis to show how it is
energetically favorable for the system to spontaneously break
axial symmetry by splitting the core of a singly quantized
vortex into two FM cores. The resulting spinor wave function
shows a complex combination of vortex lines with highly

deformed anisotropic cores. However, by transforming the
spinor wave function to the basis specified by the direction
of the spin in the FM cores, the spinor structure is identified
as a pair of half-quantum vortices. Outside the deformed
core, the topology of the initial singly quantized vortex is
preserved. The splitting can be understood from the nematic
symmetry properties of the polar order parameter. A stable
nonaxisymmetric singular vortex with a nonzero superfluid
density at the core has been theoretically predicted [57,58]
and experimentally observed [59] in superfluid liquid 3He.

Here we analyze the energetic stability of the singular
vortices and explain the structures of their cores by numerical
simulations in the framework of mean-field theory. The paper
is organized as follows: In Sec. II we give a brief overview of
mean-field theory for the spin-1 BEC and explain the general
concepts used in our analysis. In Sec. III we demonstrate the
energetic stability and explain the core structure of a singular
vortex in the FM phase. Section IV applies a similar analysis
to study energetic stability and identify the core structure of a
singular vortex in the polar phase. We conclude with a brief
summary of our findings in Sec. V. Analytic properties of the
vortex solutions and the basis transformations are provided in
the Appendix.

II. SPIN-1 MEAN-FIELD THEORY

In our analysis of singular vortices of a spin-1 atomic BEC,
we consider the classical (Gross-Pitaevskii) mean-field theory
of a harmonically trapped system that results in a spatially
nonuniform atom density. In an optical trapping potential the
atomic spin is not frozen by magnetic fields and the spin-1
BEC is represented by a normalized three-component spinor
ζ (r) in the basis of spin projection onto the z axis. Together
with the density n(r) = |�(r)|2, this specifies the macroscopic
condensate wave function

�(r) =
√

n(r)ζ (r) =
√

n(r)

⎛
⎝

ζ+(r)
ζ0(r)
ζ−(r)

⎞
⎠ , ζ †ζ = 1. (1)

The Hamiltonian density in the frame rotating with frequency
� around the z axis is [2,9,60]

H = h̄2

2m
|∇�|2 + V (r)n + c0

2
n2 + c2

2
n2|〈F̂〉|2

+ g1n〈B · F̂〉 + g2n〈(B · F̂)2〉 − �〈L̂z〉, (2)

where V (r) is an external trapping potential, m is the
atomic mass, and 〈L̂z〉 = −ih̄�†(x∂y − y∂x)� denotes the
z component of the angular momentum operator. The spin
operator F̂, whose expectation value 〈F̂〉 = ζ †

αF̂αβζβ yields the
local spin vector, is given by a vector of spin-1 Pauli matrices.
The first two terms in the second line of Eq. (2) describe linear
and quadratic Zeeman shifts, respectively, in the presence of
a weak external magnetic field B. In this paper we assume an
axially symmetric harmonic confinement such that

V (r) = 1
2m

[
ω2

⊥(x2 + y2) + ω2
zz

2], (3)

from which we also define the transverse oscillator length
l⊥ = √

h̄/mω⊥.
The spins of two colliding spin-1 atoms may combine to a

relative angular momentum of either 0 or 2. This implies that
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the contact interaction results from two different contributions,
corresponding to the two scattering channels with different
s-wave scattering lengths a0 and a2. The two scattering
contributions lead to the two interaction terms in Eq. (2). The
strength of the interactions may be calculated using angular
momentum algebra, and we have c0 = 4πh̄2(2a2 + a0)/3m

and c2 = 4πh̄2(a2 − a0)/3m [2]. In addition the Hamiltonian
density (2) may include magnetic dipole-dipole interaction
terms that can influence the spin textures [51,61].

The spin-dependent interaction term c2 in Eq. (2) deter-
mines the spin magnitude in a uniform ground-state spin
distribution. If c2 < 0, as is the case for 87Rb, the spin-
dependent contribution to the interaction energy will favor
the FM state with |〈F̂〉| = 1 throughout the BEC. Conversely
if c2 > 0, as for 23Na, the polar state with |〈F̂〉| = 0 will be
favored.

The two interaction strengths c0 and c2 are each associated
with a characteristic length scale. From the spin-independent
interaction we can derive the healing length ξn = (8πc0n)−1/2

that defines the length scale over which the density heals
around a local depletion of the atom density [2]. This
phenomenon is similar in a scalar BEC, which exhibits a
healing length depending on the atom density and the scat-
tering length. Due to the spin-dependent interaction term, we
now, however, have an additional healing length, analogously
given by ξF = (8π |c2|n)−1/2. This defines the length scale
over which the spin magnitude |〈F̂〉| heals when locally
perturbed.

As in a scalar BEC, single-valuedness of the order param-
eter may be maintained at a defect singularity by requiring
that the density vanishes there. The size of the defect core is
then given by the healing length ξn. However, the spinor order
parameter makes it possible to maintain a nonzero density at
the cost of requiring that the wave function at the singularity
become orthogonal to the ground-state manifold. For example,
a singularity in the FM manifold where |〈F̂〉| = 1 can be
accommodated by having |〈F̂〉| = 0 on the vortex line. This
constitutes a local perturbation of the spin magnitude, and so
its length scale is determined by ξF , which is usually larger than
ξn. The energetic cost of the local change in spin magnitude
due to increased interaction energy may be offset by the lower
bending energy in the larger core.

The two phases of the spin-1 BEC are described by
very different order parameters, which leads to dramatically
different possible vortex states. In the following we shall
first consider the FM phase; we show that a singular, singly
quantized vortex can be energetically stable, and describe how
its core structure can be understood in terms of the energetics
of characteristic length scales (Sec. III). We will then apply
a similar analysis to show how the deformed core of a stable
singly quantized vortex in the polar phase can be identified as
a pair of half-quantum vortices (Sec. IV).

III. STABILITY AND CORE DEFORMATION OF
A SINGULAR FERROMAGNETIC VORTEX

We first consider vortices in the FM phase of a spin-
1 BEC. The system becomes FM when the interaction
term c2 < 0 in the Hamiltonian (2); energetically it is
then favorable to maximize the spin magnitude everywhere

in space, so that |〈F̂〉| = 1. A general FM spinor wave
function can be constructed from the representative spinor
ζ = (1,0,0)T with 〈F̂〉 = ẑ by incorporating a macroscopic
condensate phase φ and by a spin rotation U (α,β,γ ) =
exp(−iFzα) exp(−iFyβ) exp(−iFzγ ), defined by three Euler
angles. We obtain

ζ f = eiφU (α,β,γ )

⎛
⎝

1
0
0

⎞
⎠

= e−iγ ′

√
2

⎛
⎜⎝

√
2e−iα cos2 β

2

sin β√
2eiα sin2 β

2

⎞
⎟⎠ , (4)

where γ ′ = γ − φ. The local spin vector is then given by
〈F̂〉 = (cos α sin β, sin α sin β, cos β).

Order-parameter space is the manifold of energetically
degenerate spinors ζ . Degenerate FM spinors [Eq. (4)] differ
only by rotations in spin space given by the Euler angles α,
β, and γ ′. The order-parameter space therefore corresponds to
the group of three-dimensional rotations SO(3).

The topological stability of line defects is characterized by
the way closed contours encircling the defect map into order-
parameter space [62]. If the order-parameter space image of
such a closed loop can be contracted to a point, the defect is not
topologically stable. SO(3) may be represented geometrically
as S3 (the unit sphere in four dimensions) with diametrically
opposite points identified. The only closed loops that cannot be
contracted to a point are those connecting such identified points
an odd number of times (but these loops can all be deformed
into one another). There are therefore only two distinct classes
of vortices: singular vortices corresponding to noncontractible
loops, and nonsingular vortices corresponding to contractible
loops [9,60]. All the singular vortices with an odd-integer
winding number are therefore topologically equivalent to a
singly quantized singular vortex and all singular vortices with
an even-integer winding number are topologically equivalent
to a nonsingular vortex-free state. Mathematically, this is
indicated by the first homotopy group of SO(3), which has two
elements [π1(SO(3)) = Z2] that represent the two topological
equivalence classes for the vortices. Typical examples of a
nonsingular coreless vortex forming a continuous spin texture
and a singular spin vortex with radial and cross disgyrations
of the spin vector are schematically illustrated in Fig. 2.

In the FM phase, circulation need not be quantized [9]. A
striking manifestation of this fact is the possibility of having a
coreless vortex, which may be written

ζ cl = 1√
2

⎛
⎜⎝

√
2 cos2 β

2

eiϕ sin β√
2e2iϕ sin2 β

2

⎞
⎟⎠ , (5)

where ϕ is the azimuthal angle and the Euler angle β varies
with the radial distance ρ =

√
x2 + y2 from the z axis. The

spin texture is kept continuous by having β → 0 as ρ →
0. The coreless vortex carries angular momentum, yet can
be continuously deformed into a vortex-free state. Because
the FM order parameter is well defined and nonsingular
everywhere in space (a coreless vortex forms a continuous spin
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FIG. 2. (Color online) Schematic illustrations of FM vortex
states. (a) The nonsingular, coreless vortex is formed as a combined
disgyration of the spin vector (cones) and a spin rotation about the
local spin vector (indicated by the orthogonal vectors). The vortex
is nonsingular and the spin texture is continuous. (b) The singular
FM spin vortex is formed as a radially oriented disgyration of the
spin vector around the singular core, which is filled by the polar
phase. (c) The class of singular vortices contains several different
spin configurations, for example the cross-disgyration shown. They
can all be deformed to the singular spin vortex through local spin
rotations. (d) Energies of the stable coreless (lower line) and singular
vortices as functions of the frequency of rotation in an isotropic
trap using Nc0 = 1000h̄ω⊥l3

⊥ and Nc2 = −320h̄ω⊥l3
⊥. The coreless

vortex is lower in energy in the whole frequency range.

texture) the coreless vortex belongs to the class of nonsingular
vortices. It is the spinor-BEC analog of the Anderson-Toulouse
and Mermin-Ho vortices in 3He [54,55], which differ by
the imposed boundary conditions at the container wall. The
superfluid velocity [9]

v = h̄

mρ
(1 − cos β)ϕ̂ (6)

goes smoothly to zero at the center of the vortex but increases
away from it as β increases. The spin forms a characteristic
fountain texture. In the atomic gas, there is no hard container
wall, and the amount by which 〈F̂〉 turns as ρ increases from
the vortex center to the edge of the cloud is not fixed. The total
circulation can thus vary smoothly as the value of β at the edge
of the cloud adapts to the imposed rotation [63].

The simplest way to construct a singly quantized singular
vortex in the FM phase is as a 2π winding of the condensate
phase φ. The vortex can then be described by the spinor

ζ s = eiϕ

√
2

⎛
⎜⎝

√
2 cos2 β

2

sin β√
2 sin2 β

2

⎞
⎟⎠ , (7)

where the density is required to vanish on the singular vortex
line along the z axis (where all three spinor components are
singular). The Euler angle β is arbitrary but constant, giving

a uniform spin distribution (which, without loss of generality,
we assume to be in the xz plane such that α = 0 in Eq. (4)).

We may continuously deform ζ s into another vortex in
the same class of topological line defects through purely local
operations. For example we may rotate the spins into the radial
disgyration (2π rotation) of the spin vector shown in Fig. 2(b).
This spin structure is derived from Eq. (4) by letting α = ϕ

while γ ′ = 0,

ζ sv = 1√
2

⎛
⎜⎝

√
2e−iϕ cos2 β

2

sin β√
2eiϕ sin2 β

2

⎞
⎟⎠ , (8)

yielding a singular vortex with a circulation of the spin around
the core (spin vortex). This is similar to a radial disgyration
of the angular momentum in an analogous vortex structure in
3He [4]. The FM order parameter is still singular at ρ = 0
because a singularity is introduced in the FM spin vector.
At β = π we recover the vortex in Eq. (7) with only one
spinor component occupied. Further local rotations of the spin
allow us to construct additional members of the family of
singular FM vortices. If we locally rotate all spins through
π/2 around the z axis in Fig. 2(b) or Eq. (8), we change
from the radial to a tangential disgyration, where 〈F̂〉 = ϕ̂.
A spin vortex could also be constructed from Eq. (4) by
choosing α = −ϕ. The radial disgyration is then replaced
by the cross-disgyration illustrated in Fig 2(c). Because the
SO(3) order-parameter manifold allows only two topologically
distinct classes of vortices, all singly quantized, singular
vortices can be transformed into each other by local spin
rotations and this family of vortices is indeed quite large.

In order to determine the energetic stability of the vortex
configurations and stable vortex core structures, we numeri-
cally minimize the energy of specific vortex states belonging to
distinct topological equivalence classes. The energy relaxation
is done by numerically propagating a coupled set of Gross-
Pitaevskii equations derived from Eq. (2) in imaginary time
using a split-step algorithm [64]. We consider an isotropic trap
in a rotating frame with the nonlinearities Nc0 = 1000h̄ω⊥l3

⊥
and −640h̄ω⊥l3

⊥ � Nc2 � −10h̄ω⊥l3
⊥, where N is the total

number of atoms. As an initial state for a singular singly
quantized vortex we take the vortex of Eq. (7) in which case
each spinor component exhibits a singly quantized vortex line.
These all perfectly overlap with a vanishing density at the
core. We also perform an energy minimization of the coreless,
nonsingular vortex of Eq. (5). Coreless vortices have been
shown to exist in the ground state of sufficiently rapidly
rotating FM spin-1 BECs [17,18,26,28], and increasing the
rotation rate of a vortex-free cloud is predicted to result in
nucleation of coreless vortices in the system.

We find a single coreless vortex to be energetically stable in
a sufficiently rapidly rotating trap, as shown in the stability dia-
gram of Fig. 3(a). Figure 4(a) shows the characteristic fountain-
like spin texture of the stable vortex. At slow rotation speeds the
vortex exits the atom cloud and at faster rotation rates we ob-
serve nucleation of additional coreless vortices to the system.
The threshold rotation frequency is increased at stronger non-
linearities. Our findings are consistent with those in Ref. [18].

For the singular initial-state vortex the corresponding
stability diagram is displayed in Fig. 3(b). Although its core
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FIG. 3. (Color online) Energetic stability of the coreless (a) and
the core-deformed singular vortex (b) in an isotropic trap for varying
spin-dependent interaction strength c2 < 0. The spin-independent
interaction is fixed at Nc0 = 1000h̄ω⊥l3

⊥. Blue dots (•) indicate that
the vortex is energetically stable. A black plus (+) indicates where the
initial vortex leaves the cloud, whereas red crosses (×) mark where
additional vortices nucleate due to rotation. A blue (black) vertical
line marks c0/c2 	 −216 relevant for 87Rb [65]. Note that with the
parameters used here, this yields N |c2| = 4.6h̄ω⊥l3

⊥. The line thus
falls very nearly on top of the vertical axis and the two cannot be
distinguished in the figure.

structure is deformed during energy relaxation (as we will
discuss below), we find that the singular vortex is energetically
stable for a range of rotation frequencies at all investigated
values of c2. This energetic stability of the singular vortex
seems surprising since there also exists a stable coreless
vortex with lower energy at the same rotation frequencies and
nonlinearities. Our numerics also show that coreless vortices
will nucleate due to rotation, whereas singular vortices will not.
A comparison between the numerically calculated energies of a
stable coreless vortex and a stable singular vortex as a function
of the rotation frequency in an isotropic trap and with Nc0 =
1000h̄ω⊥l3

⊥, Nc2 = −320h̄ω⊥l3
⊥ is shown in Fig. 2(d). This

may be contrasted with the vortex energetics of coreless and
singular vortices in superfluid liquid 3He-A, where the singular
vortex has lower energy, but the energy barrier for nucleation
of the singular core is higher than that for forming a coreless
vortex [66]. Singular vortices can be created by cooling a
rotating normal fluid through the superfluid transition.

The coreless and the singular vortices belong to distinct
topological equivalence classes and they cannot be continu-
ously deformed into each other. For the singular vortex to

(a) (b)

FIG. 4. (Color online) Numerically calculated spin textures in
the stable FM vortex states in a rotating trap. The spin vector is
shown in a cut perpendicular to the z axis (the axis of rotation).
(a) The spin vector in the coreless vortex exhibits a characteristic
fountainlike structure and maintains |〈F̂〉| = 1 everywhere. (b) In the
relaxed singular vortex, the spin vector winds by 2π around the x

axis on a path encircling the singular vortex core (indicated by the
dot), in which |〈F̂〉| → 0. This texture can be continuously deformed
into that shown in Fig. 2(b).

decay, the rotation frequency has to be sufficiently slow so
that the vortex can exit the atom cloud and be replaced by
a nucleating coreless vortex that enters from the edge of
the cloud. We find a range of frequencies and nonlinearities
[Fig. 3(b)] for which the singular vortex remains in the
atom cloud and no additional coreless vortices nucleate. A
single, singly quantized singular vortex thus represents a local
minimum of the energy, topologically protected against decay
to the lower-energy coreless vortex.

After demonstrating that the singular singly quantized
vortex of Eq. (7) is energetically stable, we next study its
vortex-core structure after the energy relaxation. The resulting
vortex configuration with a stable vortex core is shown in
Fig. 5(a). The vortex lines in the different spinor wave-function
components have moved apart and no longer spatially overlap.
We show in Fig. 6(a) a one-dimensional (1D) density cut
along which the spatially separated vortices are aligned. The
vortex line of the ζ0 component is located at the center of the
trap and the vortices of the ζ± components are symmetrically
displaced from the center. This split-core solution appears to
break the explicit axial symmetry of the spinor-component
densities in Eq. (7). A similar core splitting has previously
been demonstrated in 2D numerical simulations in Ref. [16].
We will show below how it is beneficial to analyze the vortex
core using a spinor-basis transformation. In particular, after an
appropriate transformation we can easily identify the location
of the vortex, the nonvanishing atom density at the vortex-line
singularity, and the axially symmetric density profiles of the
spinor components in the new basis representation. In the
vortex configuration displayed in Fig. 5(a) we may then
identify the split-core vortex as spin winding around a core
of nonvanishing atom density.

In order to analyze the vortex configuration of Fig. 5(a) we
perform a basis transformation for the spinor wave function.

FIG. 5. (Color online) Split core of the singular FM vortex and
restoration of a single core with explicit axial symmetry of the spinor-
component densities illustrated by isosurfaces of the spinor wave-
function components n|ζ+|2 [red (medium gray)], n|ζ0|2 [green (light
gray)], and n|ζ−|2 [blue (dark gray)]. (a) In the spinor basis along the
z axis, the vortex lines in ζ

(z)
+ , ζ

(z)
0 , and ζ

(z)
− separate and the atom

density is nonzero everywhere. (b) The axial symmetry of the density
in each spinor component is restored by transforming the spinor to
the basis of spin projection onto the x axis. Vortex lines with opposite
circulation in ζ

(x)
± overlap. ζ (x)

0 (not shown) does not exhibit any vortex
line [cf. Fig. 6(b)]. See also the Appendix for a qualitative analytic
discussion of the relation between ζ (x) and ζ (z).
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FIG. 6. (Color online) (a) Densities in the three spinor compo-
nents ζ

(z)
+ (red line marked by +), ζ

(z)
0 (green line marked by 0), and

ζ
(z)
− (blue line marked by −) on the axis connecting the vortex lines

in the spinor components [cf. Fig. 5(a)]. (b) Densities in ζ
(x)
+ (red line

marked by +), ζ (x)
0 (green line marked by 0), and ζ

(x)
− (blue line marked

by −) on the same spatial axis after spinor-basis transformation. |〈F̂〉|
(black dash-dotted line) goes to zero in the vortex core (the apparent
nonzero minimum is due to the finite numerical resolution) which is
filled by ζ

(x)
0 , keeping the density nonzero everywhere.

We transform the split-core spinor to the basis where spin
is quantized along the x axis as ζ (x) = U−1(0,π/2,0)ζ (z),
explicitly indicating the spinor basis by superscripts. In ζ (x) the
vortex appears as an opposite winding of the phase in the two
components ζ

(x)
± . These vortex lines again overlap as shown in

Figs. 5(b) and 6(b). Crucially, there is no vortex line in ζ
(x)
0 , and

this component therefore fills the vortex cores of the two other
components so that the density is nonvanishing everywhere.
The single vortex core, which is readily apparent from Fig. 8,
is thus explicitly restored in ζ (x) by the transformation to the
“natural basis” of the vortex. We identify the spinor wave
function resulting from the basis transformation now as having
the same structure as the singular vortex, defined in Eq. (8).
In the Appendix we show how the core deformation and the
relation between ζ (x) and ζ (z) can be understood qualitatively
through an analytic treatment.

The spin structure of the stable vortex is shown in Fig. 4(b).
The vortex line is oriented along the z direction—the axis
about which the trap is rotating. However, the spinor takes
the form of Eq. (8) in the basis defined along the (corotating)
x axis. This vortex is singular, preserving the topology, and
can be reached from Eq. (7) by local spin rotations, and could
similarly be continuously transformed into the singular spin
vortex [Fig. 2(b)]. The stable vortex core Fig. 4(b) has a
broken spatial parity (the spin profile has an antisymmetric
spatial parity close to the vortex core). This spin profile is
nonaxisymmetric. We also find a stable axisymmetric vortex
core. This is achieved by starting energy relaxation from
Eq. (8), such that the radial disgyration of the spin vector is
present already in the initial state. The spinor components and
the resulting spin profile are shown in Fig. 7. The dependence
of the final configuration on the initial state indicates a close
energetic degeneracy of the two solutions.

To understand the vortex-core deformation it is also
beneficial to compare the initial-state singular vortex of Eq. (7)
to the vortex obtained in the energy minimization. In Eq. (7)
each spinor component exhibits a singly quantized vortex.
These overlapping vortex lines imply that the total density
n(r) must be zero on the singular line in order to maintain
single-valuedness of the order parameter. The size of the
vortex core is determined by the healing length ξn. The density
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FIG. 7. (Color online) Axially symmetric spin vortex. (a) Densi-
ties of the spinor components together with the spin magnitude along
a radial cut [lines and labels as in Fig. 6(a)]. The vortex lines in ζ±
overlap perfectly at the position of the vortex core. (b) Relaxed spin
profile in the xy plane, showing the characteristic radial disgyration of
the spin vector around the singular core. At large radii the spin vector
bends out of the xy plane. The vortex-line singularity is marked by a
dot at the center.

depletion can be avoided by splitting the vortex core such that
the vortex lines in the spinor components no longer overlap.
Since the total condensate density then does not vanish at the
vortex line where the order parameter is singular, we must
now require that the spinor wave function become orthogonal
to the ground-state manifold at the vortex singularity. In the
FM manifold |〈F̂〉| = 1, so at the vortex line we must have
|〈F̂〉| = 0, which represents the spin magnitude of the polar
phase.

The spin magnitude of the numerically calculated singular
vortex core is displayed in Figs. 6(b) and 8. We find that the
value of the spin magnitude indeed rapidly approaches zero
close to the vortex-line singularity (the small deviations from
zero are due to the spatial resolution of the numerics). This
indicates the formation of a polar vortex core, constituting
a local violation of the spin condition for the ground-state
FM manifold. An analytic description of the vortex solution
is provided in the Appendix. The size of the vortex core is
determined by the spin healing length ξF . The splitting is then

(a)

(b)

FIG. 8. (Color online) Spin magnitude |〈F̂〉|, showing the core
of the stable singular vortex of Fig. 6 in the FM phase, shown in
the xy plane (a) and yz plane (b). Outside the vortex core, |〈F̂〉| = 1
[dark red (dark gray)] in the FM order-parameter manifold. In the
core, the singularity is accommodated by enforcing |〈F̂〉| = 0 (white)
while maintaining nonzero density. The size of the core region is
determined by the spin healing length ξF .
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energetically favorable when ξF allows a larger core size (i.e.,
when ξF � ξn) such that the energy cost of violating |〈F̂〉| = 1
is smaller than that of depleting the density.

We find that the region where the spin magnitude deviates
from |〈F̂〉| = 1 extends over the entire core size, determined
by the spin healing length ξF . Outside the core region of the
vortex the symmetry of the spin-1 BEC is broken according to
the FM energy condition of the spin-dependent interaction
energy, so that we have |〈F̂〉| = 1. Close to the singular
vortex, however, the order-parameter bending energy restores
the symmetry of the full spin-1 BEC wave function (S5

determined by a normalized spinor wave function of three
complex components), mixing the FM and polar phases. The
bending energy is enhanced very close to the vortex singularity
due to the large density-gradient contributions that excite the
system from the FM ground-state manifold. An analogous core
deformation was previously found for a singular point defect in
a polar spin-1 BEC in Ref. [23]. In that case an isotropic point
defect with a vanishing density deformed to a ring defect with a
FM core. This effect is closely related to the deformation of the
core of a singular vortex in the polar phase described in Sec. IV.

In experiments a stable singular vortex could be prepared in
a controlled way by phase-imprinting the initial singular vortex
state of Eq. (7) in a rotating trap, so that the parameter values of
the system belong to the stable region of the stability diagram
displayed in Fig. 3(b). The initial-state vortex [Eq. (7)] is
composed of perfectly overlapping singly quantized vortices in
each of the spinor components. These could be phase imprinted
using previously realized experimental techniques [67–69].
The stability diagram also indicates the conditions under which
a singular vortex created in a phase transition [53] could
potentially be stabilized.

In the above analysis, we have allowed the magnetization
Mz = N+ − N−, where N± are the total populations of ζ±, to
vary during the relaxation process. This in principle allows
a spontaneous magnetization to develop in the system. In
experiments, dissipative relaxation of energy due to atomic
collisions may frequently conserve the magnetization. We
have therefore also performed calculations where a weak
magnetization is enforced throughout the energy-minimization
procedure. We find the relaxed vortex configurations of
Figs. 5–8, however, qualitatively similar to the ones where
no fixed magnetization was forced.

Thus far we have considered an isotropic trap. We find
that the results are qualitatively similar in an oblate trap
with ω⊥/ωz = 0.1. We find that also in this regime the
singular vortex represents a local energetic minimum and
is stable for a range of �, again despite the fact that a
lower-energy coreless-vortex solution exists. The parameter
regions allowing stable nonsingular coreless and singular
split-core vortices in the oblate trap are shown in Fig. 9. In
the oblate trap case the simulations with fixed magnetization
produce more symmetric vortex configurations than in the
simulations where the magnetization varies freely but the
qualitative features are the same in the two cases.

Application of a weak external magnetic field introduces
a Zeeman shift between the spinor components according to
Eq. (2). The spinor nature of the BEC is retained as long as
the applied field is not too strong, g1|B|,g2|B|2 � μ, where μ

denotes the chemical potential. In the case of a small linear
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FIG. 9. (Color online) Stability of the FM coreless (a) and
singular (b) vortices in a highly oblate trap, ω⊥/ωz = 0.1, with
Nc0 = 50h̄ω⊥l3

⊥ and −48h̄ω⊥l3
⊥ � Nc2 � −5h̄ω⊥l3

⊥. (Symbols as
in Fig. 3.)

Zeeman splitting g1|B| (taking B along the z axis) we find
that the coreless and singular vortices are both stable, with
the coreless vortex lower in energy. The Zeeman splitting will
tend to align the spins with the applied field. This causes
the energy of the coreless vortex to increase as maintaining
the fountainlike spin structure becomes energetically less
favorable. Thus we find that for g1|B| � 0.2h̄ω⊥ the coreless
vortex is no longer stable. The singular vortex, on the other
hand, remains energetically stable for all g1|B| considered
(up to 0.8h̄ω⊥), as shown in Figs. 10(a) and 10(b). For a
sufficiently large linear Zeeman splitting, the ideal spinor basis
to analyze the singular vortex core becomes the one defined
by the magnetic field.

A quadratic Zeeman splitting, on the other hand, does not
destroy the stability of the coreless vortex, but for g2|B|2 �
−0.1h̄ω⊥ the singular vortex is no longer energetically stable

0 0.1 0.2 0.3

0.1

0.3

0.5
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FIG. 10. (Color online) Effects of linear and quadratic Zeeman
splitting on the stability of the FM vortices in an oblate trap
(ω⊥/ωz = 0.1). In all panels Nc0 = 50h̄ω⊥l3

⊥ and Nc2 = −10h̄ω⊥l3
⊥.

(a) Stability of a coreless vortex in the presence of linear Zeeman
splitting. The vortex state becomes unstable for g1|B| � 0.2h̄ω⊥.
(b) The singular vortex remains stable despite linear Zeeman splitting.
(c) Stability of the coreless vortex in the presence of quadratic Zeeman
splitting. A stable region is found at all investigated values of g2|B|.
(d) Stability of the singular vortex in the presence of quadratic Zeeman
splitting. The vortex becomes unstable for a relatively small negative
g2|B|. (Symbols as in Fig. 3.)
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[Figs. 10(c) and 10(d)]. For a sufficiently large positive
quadratic Zeeman splitting, the ideal spinor basis to analyze the
singular vortex core is oriented perpendicular to the magnetic
field.

IV. STABILITY AND CORE STRUCTURE OF
A POLAR VORTEX

We now turn our attention to the polar phase of a spin-
1 BEC. In this case the interaction term c2 > 0 in the
Hamiltonian (2), and it is energetically favorable to minimize
the spin magnitude everywhere in space so that |〈F̂〉| = 0. We
take a representative spinor ζ = (0,1,0)T whose macroscopic
condensate spin quantization axis is oriented along the z axis.
The general spinor wave function may then be constructed
from the macroscopic condensate phase φ and the spin
rotations defined by the Euler angles (α,β,γ ) as

ζ p = eiφU (α,β,γ )

⎛
⎝

0
1
0

⎞
⎠ = eiφ

√
2

⎛
⎜⎝

−e−iα sin β√
2 cos β

eiα sin β

⎞
⎟⎠ . (9)

It is beneficial to introduce the unit vector d̂ =
(cos α sin β, sin α sin β, cos β) that defines the local direction
of the condensate spin quantization. We may then write the
spinor wave function in terms of d̂ as [23]

ζ p = eiφ

√
2

⎛
⎝

−dx + idy√
2dz

dx + idy

⎞
⎠ . (10)

The unit vector d̂ takes values on a sphere and the condensate
phase φ on a unit circle. The state of the spinor wave
function, however, remains unchanged when a π rotation of
φ is combined with inverting the d̂ vector, so that the states
ζ p(φ,d̂) = ζ p(φ + π, − d̂) are identical. These states must be
identified to avoid double counting, and the order-parameter
space is therefore [U(1) × S2]/Z2, from the condensate phase
and rotations of d̂, factorized by the discrete two-element group
Z2 due to the identification. The vector d̂ is thus taken to be
unoriented and defines a nematic axis [24].

A singly quantized vortex in the polar phase can be formed
as a 2π winding of the condensate phase φ around a closed
loop encircling the vortex core. Choosing the vortex line along
the z axis, we obtain

ζ 1 = eiϕ

√
2

⎛
⎜⎝

−e−iα sin β√
2 cos β

eiα sin β

⎞
⎟⎠ . (11)

However, the nematic order also allows the formation of a
vortex carrying half a quantum of circulation [11] (in analogy
to the half-quantum vortices in superfluid liquid 3He [4]),
constructed as a π winding of the macroscopic condensate
phase together with a d̂ → −d̂ rotation of the nematic axis
around a closed loop encircling the vortex core. For example,
we may have

ζ 1/2 = eiϕ/2

√
2

⎛
⎝

−e−iϕ/2

0
eiϕ/2

⎞
⎠ = 1√

2

⎛
⎝

−1
0

eiϕ

⎞
⎠ . (12)
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FIG. 11. (Color online) Stable core structure of the singular
vortex in the polar phase shown in the xy plane. (a),(b) Densities
in ζ

(z)
+ and ζ

(z)
0 , respectively. (c),(d) The corresponding phases. (ζ (z)

−
is identical to ζ

(z)
+ up to a global π phase shift.) The spinor wave

function exhibits vortex lines with highly deformed anisotropic cores
in the spinor components.

Circulation is thus quantized in units of π , half the circulation
of Eq. (11). This will be a crucial observation when we now
analyze possible deformations of the core of a singly quantized
vortex as energy is minimized.

In order to investigate the energetic stability of a singly
quantized singular vortex in the polar phase of a spin-1 BEC,
we numerically minimize the energy of the system in a rotating
frame. We follow the same procedure as in the FM case and
this time take a singular polar vortex of Eq. (11) with β =
π/4 and α = 0 as an initial state of the numerical relaxation.
As in the FM case of Eq. (7), the initial state is formed by
overlapping vortex lines in all three spinor components. Upon
minimizing the energy, the vortex cores of the individual spinor
components separate. However, compared with the FM case,
the splitting is now more complicated, as shown in Fig. 11.
The result is highly deformed anisotropic vortex cores in the
spinor components. The vortices in ζ+ and ζ− overlap, but
the one in ζ0 is displaced from the other two. There are no
simultaneous density minima in all three spinor components,
and the density is therefore nonzero everywhere. Similar split-
core solutions found by numerical calculation in a rotating
2D system [10] have resulted in some controversy regarding
the number of vortices in the individual spinor components
in the final configuration [16]. In the previous 2D studies the
stable core structures were not classified. Here we show now
how the split core in Fig. 11 can be identified as a topology-
preserving splitting of the singly quantized vortex into a pair
of half-quantum vortices as illustrated schematically in Fig. 1.
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FIG. 12. (Color online) Splitting of the singly quantized vortex
into two half-quantum vortices. (a) Spin magnitude |〈F̂〉| [color map
from white (|〈F̂〉| = 0) to red (dark gray) (|〈F̂〉| = 1)] together with
the spin vector (arrows), showing the FM cores with nonvanishing
density. The spins are antiparallel in the two cores. (b) Nematic axis
d̂(r) together with the vortex cores [indicated by green (light gray)
isosurfaces of |〈F̂〉|, with increasing spin magnitude indicated by the
color gradient inside]. Away from the vortex cores the topology of
the initial singly quantized vortex is preserved. In the core region, d̂
winds by π about each half-quantum vortex core. For visualization
purposes, the unoriented d̂ field is shown as cones. Here a quadratic
Zeeman shift has been introduced to ensure that d̂ lies in the xy plane
and the spins align with the z axis.

In the numerical simulations the initial state of a singly
quantized singular vortex in Eq. (11) is composed of three
perfectly overlapping vortex lines in each of the three spinor
components. The polar vortex consequently has a vanishing
density at the line singularity of the polar order parameter
of the spin-1 BEC. The singular vortex with zero density is
energetically unstable with respect to core deformation. As
the vortices of the individual spinor components move apart
during energy relaxation, the density becomes nonvanishing
everywhere in the vortex-core region. Similarly to the FM
vortex case, we must therefore require that the spinor wave
function becomes orthogonal to the ground-state manifold at
the vortex singularity. This indicates that we must have |〈F̂〉| =
1 on the vortex line. We show in Fig. 12 the numerically
calculated vortex core structure of a stable vortex whose initial
state is the singular singly quantized vortex of Eq. (11). The
displayed spin magnitude exhibits two clearly separated cores
in which the peak value increases to |〈F̂〉| = 1, indicating the
emergence of a FM core region for the vortex.

The formation of the FM cores can be understood from
the same argument used to understand the polar core of the
singular FM vortex in Sec. III and is illustrated in Fig. 1: The
singular polar vortex (11), which is used as an initial state in
the energy relaxation, implies a density-depleted core whose
size is determined by ξn. However, accommodating a singular-
ity of the polar order parameter by requiring |〈F̂〉| = 1 at the
vortex line means that the length scale, and thus the associated
bending energy, is determined by ξF . The energy of Eq. (11)
can thus be lowered by having a nonvanishing atom density
and by extending the core size from ξn to ξF . In the case of
a polar vortex this is achieved by spontaneously breaking the
axial symmetry and forming two FM cores by the mechanism
sketched in Fig. 1. The separation between the cores is of the
order of ξF , depending also on the angular momentum of
the system when it adjusts to the rotation frequency and on
the density gradient due to the trap.

We may analyze this symmetry breaking of the vortex core
by means of a basis transformation. We write the spinor in the
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FIG. 13. (Color online) Spinor wave function of the stable
singular vortex state from Fig. 11 after spinor-basis transformation
such that spin is quantized along the y axis. (a),(b) Densities in ζ

(y)
+ and

ζ
(y)
− , respectively. (c),(d) The corresponding phases. The component

ζ
(y)
0 (not shown) is unpopulated. The previously complex structure

can now be identified as a pair of half-quantum vortices.

basis of spin projection onto the axis given by the spin vector
in the FM core. For the case of Fig. 11(a), the spins in the
two cores align (antialign) with the y axis and we calculate
ζ (y) = U−1(π/2,π/2,0)ζ (z). The resulting spinor then shows
displaced vortex lines in ζ

(y)
± while the density vanishes in

ζ
(y)
0 (Fig. 13). In the new spinor basis, the vortex lines in ζ

(y)
±

coincide precisely with the spin maxima, as shown in Fig. 14.
We can now identify the core structure emerging from the

splitting of the singular vortex by comparing the spin-rotated
state ζ (y) with Eq. (12). We then find that each vortex line
in ζ (y) has exactly the form of a half-quantum vortex. The
split-core configuration may thus be interpreted as a splitting
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FIG. 14. (Color online) (a) Density profiles of the spinor com-
ponents on the axis connecting their density minima (cf. Fig. 11).
Lines are labeled with the spinor-component index. Note that |ζ±|
exactly overlap. (b) Spinor-component density profiles in ζ (y) after
basis transformation (cf. Fig. 11) plotted along the axis connecting the
half-quantum vortices. The spin magnitude |〈F̂〉| (black dash-dotted
line) shows the FM cores. Unpopulated ζ

(y)
0 is not shown.
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of the singly quantized vortex into a pair of half-quantum
vortices with FM cores. The topological charges of vortices
are here additive and topology is therefore preserved when the
singly quantized vortex splits into the pair of half-quantum
vortices. This can also be inferred from the behavior of the
nematic axis d̂. Figure 12(b) shows d̂ in a numerical solution
together with the FM cores of the half-quantum vortices.
Away from the vortices, there is no net winding in d̂ on a path
enclosing the vortices. However, on a path that encircles only
one vortex core, d̂ turns by π , indicating the emergence of a
disclination plane as indicated in Fig. 1.

As in the case of a FM vortex, the core deformation can be
explained in terms of the vortex topology and the energetic
hierarchy of different length scales (see Fig. 1). Outside
the vortex-core region of size ξF , where the order-parameter
bending energy is not sufficient to excite the system away from
the polar ground-state manifold, we have |〈F̂〉| = 0 and the
topological properties of the initial singly quantized singular
vortex are preserved. This is indicated by the unit winding
of the macroscopic condensate phase around any closed loop
encircling the entire vortex core and by the nematic vector
field outside the core region. It is only inside the core of size
ξF that the strong order-parameter bending energy restores
the symmetry of the full spin-1 condensate wave function by
exciting the system out of the polar ground-state manifold
and by allowing the complete range of spin values |〈F̂〉| from
0 to 1. The local deformation of the core is topologically
possible due to the nematic order of the polar phase, where the
axis d̂ is unoriented, with the opposite orientations d̂ = −d̂
identified. The core deformation mechanism of the vortex
line is related to the point-defect deformation into a singular
ring where the nematic order allows the spontaneous breaking
of the spherical defect-core symmetry [23]. In the B phase
of superfluid liquid 3He, a stable nonaxisymmetric singular
vortex with a nonzero superfluid density at the core was
theoretically predicted in Refs. [57,58] and experimentally
observed in Ref. [59]. The 3He A-phase core was explained
to consist of two half-quantum vortices. In the high-pressure
regime the axial symmetry of the vortex is restored but the core
can still remain in the A phase with a nonvanishing superfluid
density [70].

We find that the singular vortex splits into a pair of
half-quantum vortices by the mechanism described above
for all investigated parameter regimes. However, we find a
critical rotation frequency of � 	 0.3ω⊥ below which the
vortices start exiting the atom cloud. Figure 15 shows the
energetic stability of the half-quantum vortex pair obtained
from splitting of a singly quantized vortex in both isotropic
and oblate (ω⊥/ωz = 0.1) traps. The energetic ground state
of a rotating polar spin-1 BEC can consist of half-quantum
vortices [26,28], and increasing the rotation frequency leads
to nucleation of more half-quantum vortices in addition to the
split core of the initial singular vortex.

The splitting mechanism of the singly quantized vortex
is qualitatively similar also when a weak Zeeman splitting
due to a magnetic field is introduced. However, as shown
in Fig. 15(c), a linear Zeeman splitting of g1B � 0.4h̄ω⊥
causes the resulting pair of half-quantum vortices to become
energetically unstable at all rotational frequencies. By contrast,
the vortex pair remains stable above � 	 0.3ω⊥ for the entire
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FIG. 15. (Color online) Energetic stability of the split-core
singular vortex in the polar phase. (a) Stability in the isotropic trap
for varying c2 using Nc0 = 1000h̄ω⊥l3

⊥. The vertical line marks
the value c0/c2 	 31 for 23Na [71]. (b) Stability in the oblate trap
(ω⊥/ωz = 0.1) for varying c2 using Nc0 = 50h̄ω⊥l3

⊥. (c),(d) Stability
of the split-core singular vortex in the presence of linear and quadratic
Zeeman splitting, respectively. Increasing linear Zeeman splitting
renders the singular vortex unstable, whereas the stability is robust
against quadratic Zeeman splitting. In the slowly rotating region for
all panels, the instability of the split-core singular vortex may be
either towards the vortex-free state, or towards the state with a single
half-quantum vortex. (Symbols as in Fig. 3.)

range of quadratic Zeeman splittings considered (−0.8h̄ω⊥ �
g2|B|2 � 0.8h̄ω⊥) [Fig. 15(d)].

V. CONCLUSIONS

We have demonstrated that a singular, singly quantized
vortex can be energetically stable in the FM phase of a spin-1
BEC, despite the existence of a stable coreless vortex with
lower energy (increasing the rotation frequency in a vortex-free
BEC also leads to nucleation of coreless vortices). This implies
that, even though singular vortices would not be nucleated by
rotation alone, a singly quantized vortex created, for example,
by phase imprinting would remain stable in the rotating system.
This provides an interesting opportunity for controlled studies
of a singular vortex line in a ground-state manifold with a
broken SO(3) symmetry. Such a system supports only two
topological classes of vortices: those that can be locally
deformed to a vortex-free configuration and those that are
topologically equivalent to a singly quantized singular vortex.
Experimentally, one could phase-imprint overlapping vortex
lines in each of the three spinor wave-function components.
The resulting structure represents a singular spin-1 vortex with
a vanishing density at the vortex line. The core of such a vortex
then deforms to an energy-minimized configuration within the
same topological equivalence class.

The stable vortex core in the FM phase is formed by
nonoverlapping vortex lines in the three spinor components.
We have demonstrated that this seemingly complex core
structure can be understood in terms of a combination of
the vortex topology and the energetics of characteristic length
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scales. By deforming the core of a singly quantized, singular
vortex in the FM phase so as to maintain a nonzero density
everywhere, instead accommodating the singularity by forcing
|〈F̂〉| = 0, the gradient contribution to the energy is lowered.
The reason is that the size of the defect core is then determined
by the spin healing length ξF which is in general larger than
the characteristic size ξn of a defect core where the density
goes to zero. In other words, in the larger-core-size case with
a nonvanishing atom density, the gradient energy restores the
full symmetry of the spin-1 condensate wave function within
the core region. The system then simultaneously exhibits
two different order-parameter symmetries: maximal unbroken
symmetry inside the core of size ξF and a broken symmetry
(of the FM phase) outside the vortex core.

The core deformation mechanism results in a singular
vortex whose core is also filled with atoms in the polar phase.
The spin vector winds by 2π as the core is encircled. The
single vortex core can be explicitly restored in the spinor by
judicious choice of spinor basis.

In the polar phase, we have shown that a singly quantized
vortex is stabilized by a spontaneous breaking of axial
symmetry. The resulting stable defect is a pair of half-quantum
vortices with FM cores, which is stable in a sufficiently rapidly
rotating trap. The formation of the FM cores avoids depleting
the density in the vortex core. This is energetically favorable by
the same reasoning that was applied to explain the polar core
of the singular vortex in the FM phase. The resulting spinor
wave function is analyzed and the vortex structure identified
through a rotation of the spinor basis, so that in the rotated
basis the half-quantum vortices appear as separate vortex lines
in the ζ± components.
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APPENDIX: BASIS TRANSFORMATION FOR
THE FM VORTEX

In the numerical simulations we found that the singular FM
vortex relaxes to a stable configuration formed by nonoverlap-
ping vortex lines in the three spinor components, as shown in
Fig. 5(a). By an appropriately chosen basis transformation we
showed that this seemingly complex vortex structure can be
identified as a single, singular vortex with the line singularity
populated by atoms in the polar phase [Fig. 5(b)]. In this
Appendix we demonstrate this basis transformation through a
qualitative analytic treatment and show how the core structure
of the singular FM vortex may be identified.

For simplicity, we implement the basis transformation by
starting from the final configuration of the singular vortex with

a single vortex line as in Figs. 5(b) and 7 and rotating to the
configuration of nonoverlapping vortex lines in the three spinor
components [see, e.g., Fig. 5(a)]. The analytic expressions
become notably simpler in the case of the axisymmetric vortex
of Fig. 7 than with the one displaying a more complex spin
rotation in Figs. 4(b) and 5, but the basic principle of the
transformation is the same in both cases. In order to describe
the vortex of Fig. 7 we rewrite the singular vortex displaying
a radial disgyration of the spin vector ζ sv of Eq. (8) in the
following form:

ζ = 1√
2

⎛
⎜⎝

√
2(cos ϕ − i sin ϕ)f cos2 β

2

g sin β√
2(cos ϕ + i sin ϕ)f sin2 β

2

⎞
⎟⎠ . (A1)

Here we have introduced the profile function f (x,y) and the
notation

g sin β =
√

2 − f 2(1 + cos2 β). (A2)

The profile function f describes the mixing of the FM and
the polar phases in the core region of the vortex. For β 
= π

we obtain a radial disgyration with nonvanishing density at the
singularity (for β = π and f = 1 we recover a vortex with zero
density at the singularity). We assume f to be monotonically
increasing from 0 at the z axis (the vortex singularity), reaching
1 outside the vortex core of size ξF . For the numerically
minimized stable solution of Fig. 7 the parameter β is not
constant; close to the vortex core we have β 	 π/2 and far
away from the vortex β → π . The magnitude of the spin vector
may be evaluated from Eq. (A1), yielding |〈F̂〉| = f

√
2 − f 2.

At the line singularity |〈F̂〉| = 0, representing the polar phase,
and outside the core region |〈F̂〉| = 1, which corresponds to
the FM phase. In between |〈F̂〉| continuously varies between
these two values, indicating the mixing of the two phases.

When we perform the rotation of Eq. (A1) by the angle of
−π/2 with respect to the x axis, we obtain the spinor wave
function

ζ (−x) = 1

2

⎛
⎜⎝

f (cos ϕ − i sin ϕ cos β) + g sin β√
2f (− cos ϕ cos β + i sin ϕ)

f (cos ϕ − i sin ϕ cos β) − g sin β

⎞
⎟⎠ . (A3)

The spinor wave functions are of the form (x − x0) + iη(y −
y0), indicating that a singly quantized vortex line is located
at (x0,y0). The anisotropy of the vortex core is described by
the parameter η. The singularity in ζ

(−x)
0 therefore is on the

z axis, while those in ζ
(−x)
± are displaced to (∓x0,y0 = 0).

Here x0 is determined as the point at which f (x0,0) =
g(x0,0) sin β, resulting in f (x0,0) =

√
2/(2 + cos2 β). The

vortex configuration of Eq. (A3) with three spatially separated
vortex lines is analogous to that shown in Fig. 5(a).
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[33] V. Pietilä and M. Möttönen, Phys. Rev. Lett. 102, 080403

(2009).
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