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ABSTRACT. We construct a class of finitely presented groups withincwhhe iso-
morphism problem is solvable but the commensurability fmobis unsolvable. Con-
versely, we construct a class of finitely presented groupisinvivhich the commen-
surability problem is solvable but the isomorphism probismnsolvable. These are
the first examples of such a contrastive complexity behavithr respect to the isomor-
phism problem.

1. INTRODUCTION

The purpose of this paper is to study the relative algoritomuexities of the fol-
lowing two major group theoretical decision problems: th@morphism problem and
the commensurability problem.

Both of these problems have a long histary![12, 26], a mednirtgpological inter-
pretation [27| 5], and a number of famous solutions for djgeclasses of groups [13,
[20,21]. Itis also well known that these problems are undag&within the class of all
finitely presented groups. However their comparison froerligorithmic point of view
seems not to have been done up to now. Moreover, there hamenbegerous results
comparing decision problems dealing with elements in alsiggup, such as the word
problem, conjugacy problem, power problem, etc. (see,fstaince,[[18, 21]). In con-
trast, there have so far been no comparative results imgthie isomorphism problem.
We remedy this situation, by establishing the following wamplementary theorems:

Theorem 1.1. There exists a recursively enumerable cl&f finite presentations of
groups, with uniformly solvable word problem, such that ig@morphism problem is
solvable but the commensurability problem is unsolvabteiwihis class.

Theorem 1.2. There exists a recursively enumerable cl&of finite presentations of
groups such that the commensurability problem is solvabi¢ia isomorphism problem
is unsolvable within this class.
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These results can be contrasted with Thomas [30, Thm. 1Hd, skhowed that the
isomorphism and commensurability problems have the samelexity from the view-
point of descriptive set theory.

Let us now explain the terminology and the meaning of our rnta@orems.

A class % of finite presentations of groups hasiformly solvable word problem
if there is an algorithm which takes as input a presentaien%” and a word in the
generators of this presentation, and decides whether othiotvord represents the
identity element of the group given B

Two groupsGi, G, arecommensurabld there exist two subgroups of finite index
H; < G fori = 1,2, such thaH; andH, are isomorphic. It is not difficult to see that
commensurability is an equivalence relation.

Given a clas¥’ of finite presentations of groups, we say thatidemorphism prob-
lem is solvable withirg” [commensurability problem is solvable with4f if there is an
algorithm, taking on input two group presentations fréhand deciding whether or not
these presentations define isomorphic [commensurablapgro

Often, when considering the isomorphism problem, one ikilapat a certain clasg
of finitely presentedjroups This actually means the class of all finite presentations of
groups from¥. At first glance, it might seem that our Theoremd 1.1[ant leZame-
what more restrictive, as we are only picking out some spef@fily of presentations.
Let us clarify this issue.

Let ¢4 denote the collection of aIIAgroups defined via the presemtstin the class
¢, appearing in Theorefn 1.1, and &t denote the class d@ll finite presentations of
groups from#; (so clearlyé, C %Al). It follows immediaiely from Theoremn 1.1 that
the commensurability problem is unsolvable for the clas®f finite presentations of
groups, as it is already unsolvable within the subciéssOn the other hand, the iso-
morphism problem is still solvable within the cla‘&%. Indeed, given any presentation
P € ¢, one can start applying Tietze transformations to it; stangously we can start
writing down the finite presentations fro#i, because the clas$ is recursively enu-
merable. At each step we can compare the transformatioRs aftained so far, with
the presentations from the class, written down by this step. After finitely many steps
we will find a finite presentatio® € 41 which defines the same group (up to isomor-
phism) asP (see[19, 11.2.1])). This easily yields an algorithm thag¢mdifies a pair of
presentations frors1 which define the same groups as the given pair of presensation
in €. Taking the resulting pair of presentations4dh, we can then apply the algo-
rithm for deciding the isomorphism problem within the s@#ss%;. As such, we view
Theoreni 11l as a statement about the corresponding classupfsy; .

Similarly, let%, denote the collection of all groups defined via the presemsin the
classé, appearing in Theorem 1.2, and %é}Adenote the class @il finite presentations
of groups from4, (so again, we havé, C %2). By an identical argument to the one in
the previous paragraph, we have that the isomorphism proislansolvable in the class
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%,, but the commensurability problem is solvable. This allusgo view Theoreri 112
as a statement about the corresponding class of gegups

The fact that the isomorphism problem is unsolvable witlhi@ tlasszz implies,
in particular, that there are infinitely many pairwise neofmorphic groups withif¢,.
More precisely, the set of representatives of isomorphisisses of groups fror, is
not recursively enumerable. This fact is of particularieg¢ because it cannot be seen
directly from our construction of the clags below.

The proofs of both theorems rely on a combination of varicubedding theorems
from combinatorial and geometric group theory involvingtéty presented infinite sim-
ple groups and infinite groups with no finite quotients. Themi@dea is to start with a
single groupG and construct a clasg”, of mapping tori ofG, for which the isomor-
phism problem is directly related to the word problemdn Similarly, the commen-
surability problem inz” will be directly related to the torsion problem @ Thus the
solvability/unsolvability of the word [resp. torsion] golem in G will yield the same
for the isomorphism [resp. commensurability] problenyin

In Section[b we prove that there exist no recursive classegafps with decid-
able isomorphism or commensurability problems. This shthas the statements of
Theorem$ 1]1 arld 1.2 are optimal, as the recursively eninesckasses of groups we
construct in these theorems cannot be recursive.

Besides isomorphism and commensurability, there are otiteral equivalence rela-
tions on the class of finitely presented groups such as Vigamorphism, bi-Lipschitz
equivalence, quasi-isometry, etc. We discuss the cornepg algorithmic problems in
the last section, where we also state some open questions.

2. MAPPING TORI OF GROUPS WITHOUT PROPER FINITE INDEX SUBGROUPS

LetG be agroup ang € Aut(G) be an automorphism @. LetGy := G x4 Z denote
the associatethapping torus As a setGy = G x Z and the group product is defined
by (g,n)(d’,m) := (g- ¢"(d'),n+m), where¢" denotes the automorphism Gfwhich
is then-fold composition ofp, with the convention thap® = idg, whereidg Aut(G)
the identity automorphism ds.

We shall consider the class of grougg o = {G¢ | ¢ € q)}, where® is some subset
of Aut(G), and analyze the isomorphism problem within the correspandlass of
group presentations. We denote@yhe image ofp under the canonical epimorphism
Aut(G) — Out(G) := Aut(G)/Inn(G) onto the quotient of AYG) by the subgroup
consisting of inner automorphisms.

Proposition 2.1. Suppose that G is a group which has no epimorphisms @ntand
¢,y € Aut(G). Then the following are equivalent.

(i) Gy is isomorphicto G;
(i) 9 € Out(G) is conjugate to one of the two elememitgp ! € Out(G).
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Proof. Suppose thaby is isomorphic taGy via an isomorphism
P:GxyZ — Gy
Let1: G — Z be the homomorphism defined by the composition
G GxyZ -5 GxyZ 12,

with the natural inclusion and epimorphism maps. It folloihat T is trivial as by
hypothesis we know th& does not map onté. Therefore, the restriction @fto G has
image entirely contained i6 < Gy. Applying the same argument w1 and recalling
thatp~top = idg,, we can conclude thas maps theG-factor in Gy isomorphically
onto theG-factor inGy.

On the other hand, a generatoof the Z—factor inGy = G x4 Z has to map to a
generator under the composition

(1) =Z—GxpZ L5 GxyZ— 7.

Indeed, the composition mapy LN Gy — Z is surjective ap is an isomorphism.
SinceG < Gy is contained in the kernel of this map, the image is deterchimethe
image of the quotient groupy /G. However, such an image coincides wit) through
the short exact sequen¢é} — G — Gy—Z — {1}. Thus, the surjectivity 0Gy LN
Gy — Z implies thatt € Gy maps to a generatst! of the Z—factor inGy,.

Thus, in terms of the splittings, the isomorphigns of the form:

(x0) & (a(x),0)
(e1) & (g+1)
for anyx € G and some fixedr € Aut(G) andg € G (e € Gis the identity element).

Let us now focus on the case whege1) LN (g,1). Since the map is assumed to
be an isomorphism, it must preserve the relations of thegy@u Evaluatingo on the
relation (e, 1)(x,0)(e,1) "1 = (¢(x),0) yields the required constraint on the automor-
phisms. Indeed, evaluating the left hand side, we obtain

p((e1)(x0)(e1)™") = (g 1)(a(x).0)(y g ™"),~1) = (gy(a(x)g *,0),
while evaluating the right hand side, we obtain
P((6(x),0)) = (a(¢(x),0)).
We deduce that the automorphisne Aut(G) and the elemerg € G are related to the
given automorphismé, Y € Aut(G) as follows:
aop =cgolpoaq,

wherecy € Aut(G) is the inner automorphism defined &y(y) = gyg  for ally € G.
Passing to the outer automorphism group, we see that webiénaeéa o = Poa,
that is, the classeg andy are conjugate in O(G).
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Conversely, if the class@s @ € Out(G) are conjugate by son@e < Out(G), then one
can find an elemerge G so thata o ¢ =cgooa. Itis now immediate thaGy = Gy,
via the isomorphism map defined by, 0) — (a(x),0) and(e,1) — (g,1).

A similar analysis can be done in the cdegl) LN (g,—1). This yields the relation
aod =cgo @y loa, that is, the classeg and @ ! are conjugate in O(E). This
finishes the proof. 4

In order to facilitate the notation let us give the following

Definition 2.2. We will say that a grous is NFQ (‘No Finite Quotients”), if the only
finite quotient ofG is the trivial group.

Since every finite index subgroup contains a finite index raubgroup, a grou@
is NFQ if and only ifG has no proper subgroups of finite index. It is easy to see that
any NFQ groupG has no epimorphisms onia and thus it satisfies the assumptions of
Proposition 2.11. Basic examples of NFQ groups are infinitgpt groups.

To study the commensurability problem within the cla&s o, we need to know the
structure of subgroups of finite index in the correspondirgping tori. The following
observation shows that all such subgroups are “congruerigreups”

Proposition 2.3. Let G be a NFQ group, an¢ € Aut(G). Letm: Gy — Z be the
canonical projection onto th&—factor of the mapping torus. Assume thatHGy is
a finite index subgroup of g5 Then H= 11 (kZ) = G, where k is the index of H in
Gy (and in particular, H must be normal in £3.

Proof. By the assumptiongGy : H] < o, hence[G : (GNH)| < o, therefore kerr =
G < H asGis NFQ. This forced to be of the formmr1(kZ) for somek. The value of
k can then be easily deduced:
k=[Z:KZ] =[Gy : T H(KZ)] = [Gy : H],
as stated in the proposition. O
Combining Propositioris 2.1 ahd 2.3, we immediately obtain

Corollary 2.4. Let G be a NFQ group, an¢d € Aut(G). Then G is commensurable
with Gg, = G x Z if and only if the elemer € Out(G) has finite order.

Given two groupsA andB, consider their free produ& = AxB. For any element
ac Awe can define a natural automorphisgre Aut(G) by 14(x) := a xafor allx € A
andT,(y) := yfor all y € B. Note that(1,)k = 1 in Aut(G) for all k € Z.

Lemma 2.5. Suppose that B {1}, ac€ A and G= AxB. Thent, € Inn(G) if and only
if a belongs to the center of A.

Proof. Clearly, if a is central inA, thenty = idg € Inn(G). Conversely, suppose that
there isc € A such tha—lca+ cin A. Take anyb € B\ {1} and consider the element
g:=che G. Thent,(g) = a lcabis not conjugate tgin G = Ax B by the criterion for
conjugacy in free products (see [19, IV.1.4]). Henge Inn(G), as required. O
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Since the free product of two NFQ groups is again a NFQ grogsan put together
Proposition 2.1, Corollariy 2.4 and Leminal2.5 to achieve

Corollary 2.6. Let A and B be NFQ groups such thatB{1} and A has trivial center.
Then for G= Ax B and any a A the following are true:

e Gy, isisomorphic to G, if and only ifa=1in A,

e Gy, is commensurable with;g if and only if a has finite order in A.

3. WORD AND TORSION PROBLEMS INNFQ GROUPS

For a finite seiX, we useX* to denote the set of words with letters frofiL. Let
R be a set of words fronX* and suppose th& is a group given by the presentation
P=(X||R).

For a subseZ C X*, we say thewvord problem for Z in G is solvablé there is an
algorithm, which takes on input a wosd € Z and decides whether or not this word
represents the identity element Gf If Z = X*, then the word problem foZ in G
is simply known ashe word problem in G The word problem is one of the three
fundamental group-theoretical decision problems intoediby Max Dehn[12] in 1911
(other two being the conjugacy and the isomorphism probjeithss well known that
if the word problem foiG is solvable with respect to one finite generating set, then it
solvable with respect to any other finite generating s&.of

For an arbitrary subset C X*, one can also consider thersion problem for Z in
G, asking whether there exists an algorithm which inputs adwoeE Z, and decides
whether or notwv represents an element of finite orderGn This is closely related to
some decision problems considered by Lipschutz and Mitl§t8] (for instance, itis a
special case of theower problem

Proposition 3.1. Every finitely presented group H can be embedded into a fyre-
sented NFQ group A with trivial center. Moreover, if the wprdblem in H is solvable
then it is also solvable in A.

Proof. Take any infinite finitely presented simple gro8gfor instance, Thompson'’s
groupT orV [17], or seel[6], ]7,18,19] for other such groups) and considefrée product
G =SxS ThenGis NFQ and hyperbolic relative to these two copieS.of herefore, by
Theorem 1.1 from[3]H can be isomorphically embedded into some quot@of G.
Moreover, from the proof of this theorem, it follows ti@tcan be obtained frorAl « G
by adding only finitely many defining relations. Consequerds bothH and G are
finitely presented( will also be finitely presented. The gro@pis NFQ as a quotient
of the NFQ groupG. One can check that the center of the gr@ymbtained from([3,
Thm. 1.1], is in fact trivial. However, it is easy to bypasssily settingA := Q« Sand
observing thaA is still finitely presented, NFQ, has trivial center (as a4tavial free
product — se€ [24, 6.2.6]) and contains a copidof

Now, suppose that the word problemkhis solvable. Note that the same is true
in S because the word problem is solvable in any recursivelggmed simple group
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([19, IV.3.6]). By |3, Thm. 1.1] the grou above is hyperbolic relative to the family of
subgroups, consisting &f and two copies o8. ThereforeQ has solvable word problem
(seell14, Thm. 3.7] ot [22, Cor. 5.5]). Finally, the word plerh is solvable ilA= Q%S
by [19, IV.1.3]. O

Proposition 3.2. There exists a NFQ group;Awith trivial center and finite presentation
P1 = (X1]|Ry), and a recursively enumerable subset of words=2{z;,7,...} C X{
such that the word problem in;As solvable but the torsion problem for Zn A; is
unsolvable.

Proof. Let Hy be the center-by-metabelian group constructed by P. H§llSnp. 435].
Namely,Hop is generated by two elemerdash, subject to the relations

[[bi,bj],b] = 1, fori, j,k=0,+1,+2, ..., whereb := a"'bd, [x,y] := x "y 1xy, and

Gi,j = Citkj+k, fOr j>i, i,j,k=0,£1,£2,..., whereg j:= [bj,bj].

As Hall proved in[15, p. 435], the center &fy is the free abelian group with free
abelian basigdy, dy, ... }, whered; :==co, = [a "bd,b],r =1,2,....

Let (a,b|| Ry) be the above presentation fdg. Clearly this presentation is recursive.
Now, consider a computable (recursive) functibnN — N with non-recursive range
f(N) c N. LetH; be the quotient oHg by the central subgrou(cd?(n) | n € N) where

dr, r € N, are as above. Thefi; has the presentation

<a,b H Ro, ([a’f(”)baf(”), b])n, ne N> .

The groupH; will be recursively presented sin€® is recursively enumerable arfds
computable.

By abusing notation, we will continue writing b, b, d; for the images irH; of the
corresponding elements Blp. We can solve the word problem kiy as follows. Given
a wordw, over the alphabefa®™, b*'}, we want to determine whether= 1 in Hy.
First we compute the suimy(w) of all exponents o&in w. If g5(w) # 0, thenw # 1 in
H; as there is a homomorphismn: H; — (a), whose kernel is generated by i € Z,
such thatr (w) = afW) £ 1. If g5(w) =0, thenw € B:= (b;,i € Z) and we can re-write
w as a wordw in lettersb;, i € Z. If for somei € Z, &, (w1) # 0, then, againw # 1
in Hy, because its image will be non-trivial in the abelianizataf B. Otherwise,w
will represent an element of the cen@r= (dr,r € N) of H, and we can re-writev;
as a wordw, = dridr?---dy, wherel >0, 1< ry <rp<---<r, andnj € Z\ {0}

for j =1,...,1. Note thatC = @, n(dr) by definition. Ifl =0 thenw=w,; =1 in
Hy. If | > 0, thenwp, =1 in C if and only if the order ofdrj in Hy dividesn; for all
j =1,2,...,1. The latter can be verified as follows: for every positiveigtivm of n;,

we computef (m) and check if it is equal to;. If this happens for some divison of
nj, then the order otﬂrj in H1 is m, by construction, and sd}nji = 1. If this is true for all
j=1,...,1, thenw=w, = 1 inH;. As eachnj has only finitely many divisors, this can
be checked in finitely many steps. Finally, if thergjis {1,...,1} such that for every
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positive divisorm of nj, f(m) # rj, then the order ofl;; in H; does not dividen;, and
hencew =wy # 1 in Hj.

ThusH; is a finitely generated recursively presented group witkiadmé word prob-
lem. By a theorem of Clapham [[10, Thm. 6}; can be embedded in a finitely presented
groupHz with solvable word problem. Now we can use Proposition 3.&niedH,
into a finitely presented NFQ grouja, with trivial center and solvable word problem.
Let P, = (X1 ||Ry) be some finite presentation fé¢. SinceH; < A4, the generators
a,b of H; can be represented by some wowdsw, (respectively) in the alphabmlﬂ,
and hence every word in letters fropa™, b*} can be effectively re-written in letters
from Xlﬂ. So, for every € N we can effectively compute a word € X; representing
dr in Aq and seZ; := {z | r € N} C X{. By constructionZ; is recursively enumerable.

Suppose that the torsion problem oy in A; is solvable. Then for any € N we
can compute the worg € Z3, representingl, in A1, and check ifd; has finite order in
A;. But the latter happens if and onlyrife f(N). Thus we would be able to determine
whether or not belongs to the range df, contradicting the choice df. Therefore the
torsion problem foZ; in Az is unsolvable and the proposition is proved. O

The next statement suggests a construction which is in semgeopposite to the
construction of Propositidn 3.2.

Proposition 3.3. There exists a NFQ groupAwith trivial center and finite presentation
P, = (X2||R2), and a recursively enumerable subset of words=2{z;,25,...} C X3
such that every word fromoZrepresents an element of order at m@sn A, but the
word problem for Z in A is unsolvable.

Proof. Again, let us start with Hall's grouply, used in the proof of Propositidn 3.2,
keeping the same notation as before. EetN — N be a computable function with
non-recursive range. We now let; be the quotient oHp by the central subgroup
(d8.di(n) [N EN).

As before H; will be finitely generated and recursively presented, heatehe word
problem inH1 will be unsolvable (since the sét{N) is not recursive). By the celebrated
theorem of Higman[[16], one can embkld into a finitely presented groud,, and
applying Proposition 311, we can embdginto a finitely presented NFQ grou with
trivial center.

Let P = (X2||Rz) be some finite presentation f8p. Fix some wordsvy, ws € X3
representing the generat@s (respectively) oH; in Ay. Clearly there is an algorithm
which takes on input a word in the alphadet™!,b*!} and outputs a corresponding
word in the alphabelt(zi1 (substituting evena-letter byw; and everyb-letter byws,).
For eachr € N, letz € X5 be the word representindy € Hq, obtained this way, and
setZ :={z | r € N} C X5. Evidently the set of wordZ, is recursively enumerable
and every word from this set represents an elerdgnthich has order at most 2 i.
By constructionz = 1 in Ay if and only if d; = 1 in H1, which happens if and only if
r € f(N). Sincef(N) is non-recursive, we see that the word problemZgin A; is
unsolvable. O
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4. PROOFS OF THE THEOREMS
We are now ready to establish our two theorems.

Proof of Theorerh 1]1We start with the presentatidh = (X;||Ry) of the groupAy,

and the recursively enumerable set of waords= {z1,2,...,} C X{, which were con-
structed in Proposition 3.2. Take some infinite finitely préed simple grou® and
fix some finite presentatiofY || S) of it; recall that the word problem iB is solvable
by [19, IV.3.6]. Letzg € X{ be the empty word. For eache NU {0}, let d; denote
the element of\; represented by the € Z;; let G:= A; * B and letC; . ; be the cyclic
group of order + 1. Then the grou := Gy, x Cr1 has the presentation

Puri= (X, Y,t,u||R, S t i Mtz Ixz, tty My, umtx tux
u~tytuy, utttut, U forall x € Xg andy € V).

Since the setX1, Y, Ry andSare finite, for every € NU {0}, Py, is a finite presen-
tation of a group. Note that the presentatiyp defines the groupo = Gig, = G x Z.

Now, consider the class of group presentatighs= {Pi, | r ¢ NU{0}}. We can
make the following observations.

(a): the classs1 is recursively enumerable by definition.

(b): the word problem ir¢7 is uniformly solvable. This easily follows from the
fact that the word problem i6 = A; B is solvable and for eache NU {0},
G<K; andK; /G = Z x Cry1.

(c): the isomorphism problem withi#? is trivially solvable. This is because for
anyr € NU {0}, the abelianization of the groufy is isomorphic toZ x C; 1
(asGis NFQ), hence for ang € NU{0}, q # r, the grougK; is notisomorphic
to Kq since their abelianizations have different torsion subgso Thus any two
distinct presentations frofd; define non-isomorphic groups.

(d): the commensurability problem withi#; is unsolvable. Indeed, since the
index[K, : Gy, | =r + 1is finite, the groufK, is commensurable with the group
Gy, foreachr € NU{0}. So, if we could decide wheth& is commensurable
with Ko, then we would be able to decide whetl@y, is commensurable with
Gidg, Which, by Corollary 2.6, would imply that the torsion prebi forZ; in
G = A; xBis solvable, contradicting to the claim of Proposition 3.2.

Thus the class of group presentatigfissatisfies all of the required properties. [

Proof of Theoreri IJ2Now we start with the presentatid® = (X, || R,) of the group
Ao, constructed in Propositidn 3.3, and the recursively emabie set of word¥, =
{z1,22,...,} C X;. Take some infinite finitely presented simple grdipnd fix some
finite presentatiorfY || S) of it; then B will have solvable word problem[([19, IV.3.6]).
Let zp € X5 be the empty word. For eache NU {0}, letd, denote the element &%
represented by thg € Z, and letG := Az * B. Then the grous;, has the presentation

Por = (X, Y.t ||Re, S t 1 1tz %z, t 1ty My, forallx e X; andy e Y).
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Since the setX, Y, Ry, andSare finite, for every € NU {0}, P> is a finite presen-
tation of a group. As before, the presentatidp defines the grouig, = G x Z.

For the class of finite presentatio := {P>, | r ¢ NU{0}} we can observe the
following.

(a): the classs3 is recursively enumerable by definition.

(b): the commensurability problem withi#? is trivially solvable, because any
presentation from this class defines the gr@yp, for somer € NU {0}, which
is commensurable witlig, by Corollary{2.6, as the elemedt € Ay has finite
order by construction. Thus any two presentations fi@ntdefine commensu-
rable groups.

(c): the isomorphism problem withia is unsolvable. Indeed, according to Corol-
lary 2.8, for anyr € N, the groupGy, , defined byP,; is isomorphic toGig,
defined byP>, if and only if z = 1 in G. Thus the isomorphism problem
within %5 is equivalent to the word problem f@ in A, which is unsolvable
by construction.

Thus the clas$? satisfies all of the needed properties. O

5. MEMBERSHIP PROBLEM FOR SOME CLASSES OF GROUPS

The purpose of this section is to show that the claims of Témasr1.ll and 112 are
optimal; that is, the recursively enumerable classes ofiggove construct in these
theorems cannot be recursive. More precisely, supposemhatre given a class of
finitely presented groups?’, closed under isomorphism. The cla%s is said to be
recursive or, equivalently, thenembership problem t¢” is decidablgwithin the class
of all finitely presented groups), if there is an algorithnhieh takes on input a finite
presentation and decides whether or not the group definedidbpresentation belongs
to 7.

The next statement essentially shows that there is no gewisiss of groups satis-
fying the claim of Theoreri 111.

Proposition 5.1. Let.#” be a non-empty class of finitely presented groups with stdvab
isomorphism problem. The#” is not recursive.

Proof. Arguing by contradiction, suppose that™ is a non-empty recursive class of
finitely presented groups such that the isomorphism prohbtesolvable within.z".
Since % is non-empty, we can assume that we possess a finite preserdhsome
groupG € K. Let A be an arbitrary finitely presented group andldet= GxA. Then

H also finitely presented and a finite presentatiorafan be easily obtained from the
finite presentations d& andA. Now, by the assumptions, we can decide whether or not
H belongs to7". If H ¢ ¢, thenH is not isomorphic tds, hence the group is non-
trivial. If H € ¢ then one can apply the algorithm solving the isomorphisrblera in
2 to decide whether or nét = G. Evidently, ifH is not isomorphic t& thenAis non-
trivial. On the other hand, il = GthenrankH) =rank(GxA) =rank(G) +rank(A) =
rank(G) by Grushko-Neumann theorem (seel[19, IV.1.9]), where (@hkienotes the
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minimal number of elements required to generate the gugHence rankA) = 0,
i.e.,Ais the trivial group. Thus we have described an algorithnciliecides whether
any given finitely presented groupis trivial. But it is well-known that the triviality
problem is unsolvable within the class of all finitely pretgehgroups (see, for example,
[23, Thm. 2.2]). This contradiction proves the claim of thegmsition. O

Now we state a similar fact for the class of groups appearintheorent 1.12.

Proposition 5.2. Let.#" be a non-empty class of finitely presented groups with stdvab
commensurability problem. The#” is not recursive.

The proof of this statement will utilize the following lemma

Lemma 5.3. Let G and A be groups and let H- G« (AxA), F := G x (AxA). Suppose
that H and F are both commensurable to G. Then A is the trivialig.

Proof. First suppose thds is finite. SinceF is commensurable t6, it must also be
finite, henceAx Ais finite, which can only happen K is trivial.

Assume, now, thaG is infinite. If A is non-trivial thenAx A is infinite, hence any
finite index subgroup of itself contains a finite index subgroup that decomposes as a
non-trivial direct product (of a finite index subgroup@with a finite index subgroup
in AxA). While any finite index subgroup ¢f decomposes in a non-trivial free product
(by Kurosh theorem [19, IV.1.10]), and hence it cannot benisiphic to a non-trivial
direct product (see, for examplé, [19, Observation, p. 17ThereforeF cannot be
commensurable tBl; this contradicts with the assumption that they are bothroem
surable taG and the fact that commensurability is a transitive relatibinusA must be
trivial. O

Proof of Propositiof 5J2 As before, assume that there is a recursive cléswith solv-
able commensurability problem, and &tc 2" be some group with a given finite pre-
sentation. Suppose we are given a finite presentation ofraupd. Then we can easily
produce the finite presentations for the grobfps= Gx AxAandF := G x (AxA).

By the assumptions, we can decide whether orbhat 7" andF € 7. If at least
one of these groups does not belongi4g thenA is non-trivial. So, assume that both
H andF lie in .Z. Since the commensurability problem is solvable withify we can
decide ifH andF are commensurable ®. Evidently, if at least one of these groups is
not commensurable t@ thenA is non-trivial. So, we can further suppose that bidth
andF are commensurable 8. And Lemmd5.B shows that the latter can happen only
if Ais trivial. Thus, again, we produced an algorithm decidimgtriviality of A, which
leads us to the required contradiction. O

6. DECISION PROBLEMS IN GEOMETRIC GROUP THEORY

From the viewpoint of geometric group theory, besides tbenisphism and com-
mensurability relations, there are several other equinaeelations on groups which
are of natural interest:
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e Two finitely generated group&;,G, are virtually isomorphic(sometimes also
calledcommensurable up to finite kerngisthere exist a pair of finite index subgroups
H; < G;j, and some further finite normal subgrougs< H;, i = 1,2, with isomorphic
quotientsHi /N3 = Ha/Np.

e Two finitely generated group&;,G, are quasi-isometricif there exists a map
f : G1 — Gy and a constar > 0 so that for allk,y € G;

1
i(xy) =K <do(f(x), F(y)) <K-di(xy)+K
and theK-neighborhood of (G;) is all of G, (thed; are word metrics on th@;, i = 1,2).

e Two finitely generated groups ab&-Lipschitz equivalenif there is a bi-Lipschitz
map betweeliG1,d;) and(Gg,d,), where again the; are word metrics (this is equiva-
lent to the existence of a bijective quasi-isometry betwtbem - see Whyte [32]).

We can now state the corresponding decision problems:vitiigal isomorphism
problem (respectively,quasi-isometry probleror bi-Lipschitz problerjpasks whether
there exists an algorithm which, given two finite presenotatiof groups, can decide
whether or not they define virtually isomorphic (resp. gussmetric or bi-Lipschitz
equivalent) groups. Several of these problems have beedredtérom the viewpoint
of descriptive set theory by Thomas [28) 29| [30, 31]. Noté éhgroup is bi-Lipschitz
equivalent to the trivial group if and only if it is trivial,ral that it is virtually isomor-
phic, commensurable, or quasi-isometric to the trivialugra® and only if it is finite.
Since the problem of deciding whether a finitely presenteaigiis finite (or trivial) is
unsolvable (this follows from the famous Adian-Rabin treor see [2,11] and [23]), we
immediately obtain

Lemma 6.1. Within the class of all finite presentations of groups, théuel isomor-
phism, quasi-isometry, bi-Lipschitz, and commensurgiplioblems are all unsolvable.

It would be of some interest to study the relative compleaftihese various decision
problems. A straightforward consequence of the constn@ppearing in our proof of
Theorem 1P is the following:

Corollary 6.2. There exists a recursively enumerable class of finite ptasens of
groups within which the isomorphism problem is unsolvablg, the virtual isomor-
phism, quasi-isometry, and bi-Lipschitz problems aretaVi@lly) solvable.

Proof. In the notation from the proof of Theordm 1.2, fet:= {14 |r e NU{0}} C
Aut(G). Then the class of finite presentatigds, constructed in the proof of Theo-
rem[L2, defines the clasgc o = {Gy, |r € NU{0}} of finitely presented groups.
As we noticed above, any two groups from this class are coramrahle. And since
commensurable groups are automatically quasi-isometilithe groups ing o are
guasi-isometric to each other, and the quasi-isometrylpnobvithin %> is (trivially)
solvable.
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Moreover, none of the groujiy, , r € NU{0}, can contain a non-trivial finite normal
subgroup, for such a subgroup would have to map to the igamitder the canonical
projectionGy, — Z, and hence it would have to be a normal subgroup in the group
G = A2 xB. But a non-trivial free product does not have any non-ttifirate normal
subgroups. This tells us that within the cla®g ¢, two groups are virtually isomorphic
if and only if they are commensurable. Therefore the virisamorphism problem
within %> is also (trivially) solvable.

Finally, noting thatG = A, x B is non-amenable, as a non-elementary free product,
and embeds into eve@y, , r € NU{0}, we see that all the groups in the clagg ¢ are
non-amenable. The work of Block and Weinber@ér [4, Thm. Baplies that the groups
in this class all have vanishing 0-dimensional uniformlytémomology. Whyte’s thesis
[32, Thm. 1.1] then implies that commensurability betweey avo groups from’7g o
can be promoted to a bi-Lipschitz equivalence. We conclbdedll the groups o7 ¢
are bi-Lipschitz equivalent to each other, so that the pisthitz problem withirés is
also (trivially) solvable. O

More generally, we expect that these various decision problare fundamentally
unrelated to each other (with the possible exception of tHedschitz problem, in
view of Whyte's thesis [32]). To be more precise, we susgetdiven any two disjoint
subsets of these decision problems, one can find a recyrsweimerable class of finite
presentations of groups such that any problem from the fitstiese subsets is solvable
within this class, while problems from the second subseatnensolvable.

In another vein, these algorithmic problems are also opewdious natural classes
of groups. For instance, one could focus on certain classkgtizes within a fixed
semi-simple Lie groups of non-compact type. If th&®-rank of G is > 2, and one
restricts to uniform lattices (so that the quasi-isometgbtem is trivially solvable),
is the isomorphism problem or commensurability problenvaiole? If one focuses
on G =SQn,1), n > 4, and restrict to non-uniform lattices (so that the isorhcsm
problem is solvable, by Dahmani and Grovies [11]), is the cemsurability problem
(equivalent to the quasi-isometry problem, by Schwart3)[&6lvable or not? Surpris-
ingly, these questions do not seem to have been considetied literature.
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