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ABSTRACT. We construct a class of finitely presented groups within which the iso-
morphism problem is solvable but the commensurability problem is unsolvable. Con-
versely, we construct a class of finitely presented groups within which the commen-
surability problem is solvable but the isomorphism problemis unsolvable. These are
the first examples of such a contrastive complexity behaviorwith respect to the isomor-
phism problem.

1. INTRODUCTION

The purpose of this paper is to study the relative algorithm complexities of the fol-
lowing two major group theoretical decision problems: the isomorphism problem and
the commensurability problem.

Both of these problems have a long history [12, 26], a meaningful topological inter-
pretation [27, 5], and a number of famous solutions for specific classes of groups [13,
20, 21]. It is also well known that these problems are undecidable within the class of all
finitely presented groups. However their comparison from the algorithmic point of view
seems not to have been done up to now. Moreover, there have been numerous results
comparing decision problems dealing with elements in a single group, such as the word
problem, conjugacy problem, power problem, etc. (see, for instance, [18, 21]). In con-
trast, there have so far been no comparative results involving the isomorphism problem.
We remedy this situation, by establishing the following twocomplementary theorems:

Theorem 1.1. There exists a recursively enumerable classC1 of finite presentations of
groups, with uniformly solvable word problem, such that theisomorphism problem is
solvable but the commensurability problem is unsolvable within this class.

Theorem 1.2. There exists a recursively enumerable classC2 of finite presentations of
groups such that the commensurability problem is solvable but the isomorphism problem
is unsolvable within this class.
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These results can be contrasted with Thomas [30, Thm. 1.1], who showed that the
isomorphism and commensurability problems have the same complexity from the view-
point of descriptive set theory.

Let us now explain the terminology and the meaning of our maintheorems.
A classC of finite presentations of groups hasuniformly solvable word problem

if there is an algorithm which takes as input a presentationP ∈ C and a word in the
generators of this presentation, and decides whether or notthis word represents the
identity element of the group given byP.

Two groupsG1, G2 arecommensurableif there exist two subgroups of finite index
Hi 6 Gi for i = 1,2, such thatH1 andH2 are isomorphic. It is not difficult to see that
commensurability is an equivalence relation.

Given a classC of finite presentations of groups, we say that theisomorphism prob-
lem is solvable withinC [commensurability problem is solvable withinC ] if there is an
algorithm, taking on input two group presentations fromC and deciding whether or not
these presentations define isomorphic [commensurable] groups.

Often, when considering the isomorphism problem, one is looking at a certain classG
of finitely presentedgroups. This actually means the class of all finite presentations of
groups fromG . At first glance, it might seem that our Theorems 1.1 and 1.2 are some-
what more restrictive, as we are only picking out some specific family of presentations.
Let us clarify this issue.

Let G1 denote the collection of all groups defined via the presentations in the class
C1 appearing in Theorem 1.1, and let̂C1 denote the class ofall finite presentations of
groups fromG1 (so clearlyC1 ⊂ Ĉ1). It follows immediately from Theorem 1.1 that
the commensurability problem is unsolvable for the classĈ1 of finite presentations of
groups, as it is already unsolvable within the subclassC1. On the other hand, the iso-
morphism problem is still solvable within the clasŝC1. Indeed, given any presentation
P∈ Ĉ1, one can start applying Tietze transformations to it; simultaneously we can start
writing down the finite presentations fromC1, because the classC1 is recursively enu-
merable. At each step we can compare the transformations ofP, obtained so far, with
the presentations from the classC1, written down by this step. After finitely many steps
we will find a finite presentationP′ ∈ C1 which defines the same group (up to isomor-
phism) asP (see [19, II.2.1])). This easily yields an algorithm that identifies a pair of
presentations fromC1 which define the same groups as the given pair of presentations
in Ĉ1. Taking the resulting pair of presentations inC1, we can then apply the algo-
rithm for deciding the isomorphism problem within the subclassC1. As such, we view
Theorem 1.1 as a statement about the corresponding class of groupsG1.

Similarly, letG2 denote the collection of all groups defined via the presentations in the
classC2 appearing in Theorem 1.2, and let̂C2 denote the class ofall finite presentations
of groups fromG2 (so again, we haveC2 ⊂ Ĉ2). By an identical argument to the one in
the previous paragraph, we have that the isomorphism problem is unsolvable in the class
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Ĉ2, but the commensurability problem is solvable. This allowsus to view Theorem 1.2
as a statement about the corresponding class of groupsG2.

The fact that the isomorphism problem is unsolvable within the classC2 implies,
in particular, that there are infinitely many pairwise non-isomorphic groups withinG2.
More precisely, the set of representatives of isomorphism classes of groups fromG2 is
not recursively enumerable. This fact is of particular interest because it cannot be seen
directly from our construction of the classC2 below.

The proofs of both theorems rely on a combination of various embedding theorems
from combinatorial and geometric group theory involving finitely presented infinite sim-
ple groups and infinite groups with no finite quotients. The main idea is to start with a
single groupG and construct a classK , of mapping tori ofG, for which the isomor-
phism problem is directly related to the word problem inG. Similarly, the commen-
surability problem inK will be directly related to the torsion problem inG. Thus the
solvability/unsolvability of the word [resp. torsion] problem in G will yield the same
for the isomorphism [resp. commensurability] problem inK .

In Section 5 we prove that there exist no recursive classes ofgroups with decid-
able isomorphism or commensurability problems. This showsthat the statements of
Theorems 1.1 and 1.2 are optimal, as the recursively enumerable classes of groups we
construct in these theorems cannot be recursive.

Besides isomorphism and commensurability, there are othernatural equivalence rela-
tions on the class of finitely presented groups such as virtual isomorphism, bi-Lipschitz
equivalence, quasi-isometry, etc. We discuss the corresponding algorithmic problems in
the last section, where we also state some open questions.

2. MAPPING TORI OF GROUPS WITHOUT PROPER FINITE INDEX SUBGROUPS

LetG be a group andϕ ∈Aut(G) be an automorphism ofG. LetGϕ :=G⋊ϕ Z denote
the associatedmapping torus. As a set,Gϕ = G×Z and the group product is defined
by (g,n)(g′,m) := (g ·ϕn(g′),n+m), whereϕn denotes the automorphism ofG which
is then-fold composition ofϕ, with the convention thatϕ0 = idG, whereidG ∈ Aut(G)
the identity automorphism ofG.

We shall consider the class of groupsKG,Φ =
{

Gϕ | ϕ ∈ Φ
}

, whereΦ is some subset
of Aut(G), and analyze the isomorphism problem within the corresponding class of
group presentations. We denote byϕ the image ofϕ under the canonical epimorphism
Aut(G) ։ Out(G) := Aut(G)/Inn(G) onto the quotient of Aut(G) by the subgroup
consisting of inner automorphisms.

Proposition 2.1. Suppose that G is a group which has no epimorphisms ontoZ, and
ϕ,ψ ∈ Aut(G). Then the following are equivalent.

(i) Gϕ is isomorphic to Gψ ;
(ii) ϕ ∈ Out(G) is conjugate to one of the two elementsψ,ψ−1 ∈ Out(G).
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Proof. Suppose thatGϕ is isomorphic toGψ via an isomorphism

ρ : G⋊ϕ Z−→ G⋊ψ Z.

Let τ : G→ Z be the homomorphism defined by the composition

G →֒ G⋊ϕ Z
ρ

−→ G⋊ψ Z։ Z,

with the natural inclusion and epimorphism maps. It followsthat τ is trivial as by
hypothesis we know thatG does not map ontoZ. Therefore, the restriction ofρ to G has
image entirely contained inG6 Gψ . Applying the same argument toρ−1 and recalling
that ρ−1 ◦ρ = idGϕ , we can conclude thatρ maps theG-factor in Gϕ isomorphically
onto theG-factor inGψ .

On the other hand, a generatort of theZ−factor in Gϕ = G⋊ϕ Z has to map to a
generator under the composition

〈 t 〉= Z →֒ G⋊ϕ Z
ρ

−→ G⋊ψ Z։ Z.

Indeed, the composition mapGϕ
ρ

−→ Gψ ։ Z is surjective asρ is an isomorphism.
SinceG 6 Gϕ is contained in the kernel of this map, the image is determined by the
image of the quotient groupGϕ/G. However, such an image coincides with〈 t 〉 through

the short exact sequence{1} → G →֒ Gϕ։Z→ {1}. Thus, the surjectivity ofGϕ
ρ

−→

Gψ ։ Z implies thatt ∈ Gϕ maps to a generators±1 of theZ−factor inGψ .
Thus, in terms of the splittings, the isomorphismρ is of the form:

(x,0)
ρ
7→ (α(x),0)

(e,1)
ρ
7→ (g,±1)

for anyx∈ G and some fixedα ∈ Aut(G) andg∈ G (e∈ G is the identity element).

Let us now focus on the case where(e,1)
ρ

7−→ (g,1). Since the mapρ is assumed to
be an isomorphism, it must preserve the relations of the group Gϕ . Evaluatingρ on the
relation (e,1)(x,0)(e,1)−1 = (ϕ(x),0) yields the required constraint on the automor-
phisms. Indeed, evaluating the left hand side, we obtain

ρ
(
(e,1)(x,0)(e,1)−1)= (g,1)(α(x),0)(ψ−1(g−1),−1) =

(
gψ(α(x))g−1,0

)
,

while evaluating the right hand side, we obtain

ρ
(
(ϕ(x),0)

)
=

(
α(ϕ(x)),0)

)
.

We deduce that the automorphismα ∈ Aut(G) and the elementg∈ G are related to the
given automorphismsϕ,ψ ∈ Aut(G) as follows:

α ◦ϕ = cg◦ψ ◦α,

wherecg ∈ Aut(G) is the inner automorphism defined bycg(y) = gyg−1 for all y∈ G.
Passing to the outer automorphism group, we see that we have to haveα ◦ϕ = ψ ◦α,

that is, the classesϕ andψ are conjugate in Out(G).
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Conversely, if the classesϕ,ψ ∈Out(G) are conjugate by someα ∈Out(G), then one
can find an elementg∈ G so thatα ◦ϕ = cg◦ψ ◦α. It is now immediate thatGϕ ∼= Gψ ,
via the isomorphism map defined by(x,0) 7→ (α(x),0) and(e,1) 7→ (g,1).

A similar analysis can be done in the case(e,1)
ρ

7−→ (g,−1). This yields the relation
α ◦ ϕ = cg ◦ ψ−1 ◦ α, that is, the classesϕ and ψ−1 are conjugate in Out(G). This
finishes the proof. �

In order to facilitate the notation let us give the following

Definition 2.2. We will say that a groupG is NFQ (“No Finite Quotients”), if the only
finite quotient ofG is the trivial group.

Since every finite index subgroup contains a finite index normal subgroup, a groupG
is NFQ if and only ifG has no proper subgroups of finite index. It is easy to see that
any NFQ groupG has no epimorphisms ontoZ, and thus it satisfies the assumptions of
Proposition 2.1. Basic examples of NFQ groups are infinite simple groups.

To study the commensurability problem within the classKG,Φ, we need to know the
structure of subgroups of finite index in the corresponding mapping tori. The following
observation shows that all such subgroups are “congruence subgroups”:

Proposition 2.3. Let G be a NFQ group, andϕ ∈ Aut(G). Let π : Gϕ ։ Z be the
canonical projection onto theZ−factor of the mapping torus. Assume that H6 Gϕ is
a finite index subgroup of Gϕ . Then H= π−1

(
kZ

)
∼= Gϕk, where k is the index of H in

Gϕ (and in particular, H must be normal in Gϕ).

Proof. By the assumptions,[Gϕ : H] < ∞, hence[G : (G∩H)] < ∞, therefore kerπ =

G6 H asG is NFQ. This forcesH to be of the formπ−1(kZ) for somek. The value of
k can then be easily deduced:

k= [Z : kZ] = [Gϕ : π−1(kZ)] = [Gϕ : H],

as stated in the proposition. �

Combining Propositions 2.1 and 2.3, we immediately obtain

Corollary 2.4. Let G be a NFQ group, andϕ ∈ Aut(G). Then Gϕ is commensurable
with GidG

∼= G×Z if and only if the elementϕ ∈ Out(G) has finite order.

Given two groupsA andB, consider their free productG = A∗B. For any element
a∈A we can define a natural automorphismτa ∈Aut(G) by τa(x) := a−1xa for all x∈ A
andτa(y) := y for all y∈ B. Note that(τa)

k = τak in Aut(G) for all k∈ Z.

Lemma 2.5. Suppose that B6= {1}, a∈ A and G= A∗B. Thenτa ∈ Inn(G) if and only
if a belongs to the center of A.

Proof. Clearly, if a is central inA, thenτa = idG ∈ Inn(G). Conversely, suppose that
there isc∈ A such thata−1ca 6= c in A. Take anyb∈ B\{1} and consider the element
g := cb∈ G. Thenτa(g) = a−1cabis not conjugate tog in G= A∗B by the criterion for
conjugacy in free products (see [19, IV.1.4]). Henceτa /∈ Inn(G), as required. �



Isomorphism versus commensurability for a class of finitelypresented groups 6

Since the free product of two NFQ groups is again a NFQ group, we can put together
Proposition 2.1, Corollary 2.4 and Lemma 2.5 to achieve

Corollary 2.6. Let A and B be NFQ groups such that B6= {1} and A has trivial center.
Then for G= A∗B and any a∈ A the following are true:

• Gτa is isomorphic to GidG if and only if a= 1 in A;
• Gτa is commensurable with GidG if and only if a has finite order in A.

3. WORD AND TORSION PROBLEMS INNFQ GROUPS

For a finite setX, we useX∗ to denote the set of words with letters fromX±1. Let
R be a set of words fromX∗ and suppose thatG is a group given by the presentation
P= 〈X‖R〉.

For a subsetZ ⊆ X∗, we say theword problem for Z in G is solvableif there is an
algorithm, which takes on input a wordw ∈ Z and decides whether or not this word
represents the identity element ofG. If Z = X∗, then the word problem forZ in G
is simply known asthe word problem in G. The word problem is one of the three
fundamental group-theoretical decision problems introduced by Max Dehn [12] in 1911
(other two being the conjugacy and the isomorphism problems). It is well known that
if the word problem forG is solvable with respect to one finite generating set, then itis
solvable with respect to any other finite generating set ofG.

For an arbitrary subsetZ ⊆ X∗, one can also consider thetorsion problem for Z in
G, asking whether there exists an algorithm which inputs a word w ∈ Z, and decides
whether or notw represents an element of finite order inG. This is closely related to
some decision problems considered by Lipschutz and Miller in [18] (for instance, it is a
special case of thepower problem).

Proposition 3.1. Every finitely presented group H can be embedded into a finitely pre-
sented NFQ group A with trivial center. Moreover, if the wordproblem in H is solvable
then it is also solvable in A.

Proof. Take any infinite finitely presented simple groupS (for instance, Thompson’s
groupT orV [17], or see [6, 7, 8, 9] for other such groups) and consider the free product
G=S∗S. ThenG is NFQ and hyperbolic relative to these two copies ofS. Therefore, by
Theorem 1.1 from [3],H can be isomorphically embedded into some quotientQ of G.
Moreover, from the proof of this theorem, it follows thatQ can be obtained fromH ∗G
by adding only finitely many defining relations. Consequently, as bothH andG are
finitely presented,Q will also be finitely presented. The groupQ is NFQ as a quotient
of the NFQ groupG. One can check that the center of the groupQ, obtained from [3,
Thm. 1.1], is in fact trivial. However, it is easy to bypass this, by settingA := Q∗Sand
observing thatA is still finitely presented, NFQ, has trivial center (as a non-trivial free
product – see [24, 6.2.6]) and contains a copy ofH.

Now, suppose that the word problem inH is solvable. Note that the same is true
in S, because the word problem is solvable in any recursively presented simple group
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([19, IV.3.6]). By [3, Thm. 1.1] the groupQ above is hyperbolic relative to the family of
subgroups, consisting ofH and two copies ofS. ThereforeQ has solvable word problem
(see [14, Thm. 3.7] or [22, Cor. 5.5]). Finally, the word problem is solvable inA= Q∗S
by [19, IV.1.3]. �

Proposition 3.2.There exists a NFQ group A1, with trivial center and finite presentation
P1 = 〈X1‖R1〉, and a recursively enumerable subset of words Z1 = {z1,z2, . . .} ⊂ X∗

1
such that the word problem in A1 is solvable but the torsion problem for Z1 in A1 is
unsolvable.

Proof. Let H0 be the center-by-metabelian group constructed by P. Hall in[15, p. 435].
Namely,H0 is generated by two elementsa,b, subject to the relations

[[bi,b j ],bk] = 1, for i, j,k= 0,±1,±2, . . . , wherebi := a−ibai, [x,y] := x−1y−1xy, and

ci, j = ci+k, j+k, for j > i, i, j,k= 0,±1,±2, . . . , whereci, j := [b j ,bi].

As Hall proved in [15, p. 435], the center ofH0 is the free abelian group with free
abelian basis{d1,d2, . . .}, wheredr := c0,r = [a−rbar ,b], r = 1,2, . . . .

Let 〈a,b‖R0〉 be the above presentation forH0. Clearly this presentation is recursive.
Now, consider a computable (recursive) functionf : N → N with non-recursive range
f (N) ⊂ N. Let H1 be the quotient ofH0 by the central subgroup〈dn

f (n) | n∈ N〉 where
dr , r ∈ N, are as above. ThenH1 has the presentation

〈
a,b

∥∥∥R0,
(
[a− f (n)baf (n),b]

)n
, n∈ N

〉
.

The groupH1 will be recursively presented sinceR0 is recursively enumerable andf is
computable.

By abusing notation, we will continue writinga,b,bi,dr for the images inH1 of the
corresponding elements ofH0. We can solve the word problem inH1 as follows. Given
a wordw, over the alphabet{a±1,b±1}, we want to determine whetherw = 1 in H1.
First we compute the sumεa(w) of all exponents ofa in w. If εa(w) 6= 0, thenw 6= 1 in
H1 as there is a homomorphismα : H1 → 〈a〉, whose kernel is generated bybi , i ∈ Z,
such thatα(w) = aεa(w) 6= 1. If εa(w) = 0, thenw∈ B := 〈bi, i ∈ Z〉 and we can re-write
w as a wordw1 in lettersbi, i ∈ Z. If for somei ∈ Z, εbi(w1) 6= 0, then, again,w 6= 1
in H1, because its image will be non-trivial in the abelianization of B. Otherwise,w
will represent an element of the centerC := 〈dr , r ∈ N〉 of H1, and we can re-writew1
as a wordw2 ≡ dn1

r1 dn2
r2 · · ·d

nl
r l , wherel > 0, 16 r1 < r2 < · · · < r l , andn j ∈ Z \ {0}

for j = 1, . . . , l . Note thatC =
⊕

r∈N〈dr〉 by definition. If l = 0 thenw = w2 = 1 in
H1. If l > 0, thenw2 = 1 in C if and only if the order ofdr j in H1 dividesn j for all
j = 1,2, . . . , l . The latter can be verified as follows: for every positive divisor m of n j ,
we computef (m) and check if it is equal tor j . If this happens for some divisorm of
n j , then the order ofdr j in H1 is m, by construction, and sod

n j
r j = 1. If this is true for all

j = 1, . . . , l , thenw= w2 = 1 in H1. As eachn j has only finitely many divisors, this can
be checked in finitely many steps. Finally, if there isj ∈ {1, . . . , l} such that for every
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positive divisorm of n j , f (m) 6= r j , then the order ofdr j in H1 does not dividen j , and
hencew= w2 6= 1 in H1.

ThusH1 is a finitely generated recursively presented group with solvable word prob-
lem. By a theorem of Clapham [10, Thm. 6],H1 can be embedded in a finitely presented
groupH2 with solvable word problem. Now we can use Proposition 3.1 toembedH2
into a finitely presented NFQ groupA1, with trivial center and solvable word problem.
Let P1 = 〈X1‖R1〉 be some finite presentation forA1. SinceH1 6 A1, the generators
a,b of H1 can be represented by some wordsw1, w2 (respectively) in the alphabetX±1

1 ,
and hence every word in letters from{a±1,b±1} can be effectively re-written in letters
from X±1

1 . So, for everyr ∈ N we can effectively compute a wordzr ∈ X∗
1 representing

dr in A1 and setZ1 := {zr | r ∈N} ⊂ X∗
1 . By construction,Z1 is recursively enumerable.

Suppose that the torsion problem forZ1 in A1 is solvable. Then for anyr ∈ N we
can compute the wordzr ∈ Z1, representingdr in A1, and check ifdr has finite order in
A1. But the latter happens if and only ifr ∈ f (N). Thus we would be able to determine
whether or notr belongs to the range off , contradicting the choice off . Therefore the
torsion problem forZ1 in A1 is unsolvable and the proposition is proved. �

The next statement suggests a construction which is in some sense opposite to the
construction of Proposition 3.2.

Proposition 3.3.There exists a NFQ group A2, with trivial center and finite presentation
P2 = 〈X2‖R2〉, and a recursively enumerable subset of words Z2 = {z1,z2, . . .} ⊂ X∗

2
such that every word from Z2 represents an element of order at most2 in A2 but the
word problem for Z2 in A2 is unsolvable.

Proof. Again, let us start with Hall’s groupH0, used in the proof of Proposition 3.2,
keeping the same notation as before. Letf : N → N be a computable function with
non-recursive range. We now letH1 be the quotient ofH0 by the central subgroup
〈d2

n,df (n) | n∈ N〉.
As before,H1 will be finitely generated and recursively presented, however, the word

problem inH1 will be unsolvable (since the setf (N) is not recursive). By the celebrated
theorem of Higman [16], one can embedH1 into a finitely presented groupH2, and
applying Proposition 3.1, we can embedH2 into a finitely presented NFQ groupA2 with
trivial center.

Let P2 = 〈X2‖R2〉 be some finite presentation forA2. Fix some wordsw1,w2 ∈ X∗
2

representing the generatorsa, b (respectively) ofH1 in A2. Clearly there is an algorithm
which takes on input a word in the alphabet{a±1,b±1} and outputs a corresponding
word in the alphabetX±1

2 (substituting everya-letter byw1 and everyb-letter byw2).
For eachr ∈ N, let zr ∈ X∗

2 be the word representingdr ∈ H1, obtained this way, and
setZ2 := {zr | r ∈ N} ⊂ X∗

2 . Evidently the set of wordsZ2 is recursively enumerable
and every word from this set represents an elementdr , which has order at most 2 inA2.
By construction,zr = 1 in A2 if and only if dr = 1 in H1, which happens if and only if
r ∈ f (N). Since f (N) is non-recursive, we see that the word problem forZ2 in A2 is
unsolvable. �
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4. PROOFS OF THE THEOREMS

We are now ready to establish our two theorems.

Proof of Theorem 1.1.We start with the presentationP1 = 〈X1‖R1〉 of the groupA1,
and the recursively enumerable set of wordsZ1 = {z1,z2, . . . ,} ⊂ X∗

1 , which were con-
structed in Proposition 3.2. Take some infinite finitely presented simple groupB and
fix some finite presentation〈Y‖S〉 of it; recall that the word problem inB is solvable
by [19, IV.3.6]. Letz0 ∈ X∗

1 be the empty word. For eachr ∈ N∪{0}, let dr denote
the element ofA1 represented by thezr ∈ Z1; let G := A1∗B and letCr+1 be the cyclic
group of orderr +1. Then the groupKr := Gτdr

×Cr+1 has the presentation

P1,r :=
〈
X1,Y, t,u

∥∥R1,S, t−1x−1tz−1
r xzr , t−1y−1ty, u−1x−1ux,

u−1y−1uy, u−1t−1ut, ur+1, for all x∈ X1 andy∈Y
〉
.

Since the setsX1, Y, R1 andSare finite, for everyr ∈ N∪{0}, P1,r is a finite presen-
tation of a group. Note that the presentationP1,0 defines the groupK0

∼= GidG
∼= G×Z.

Now, consider the class of group presentationsC1 := {P1,r | r ∈ N∪{0}}. We can
make the following observations.

(a): the classC1 is recursively enumerable by definition.
(b): the word problem inC1 is uniformly solvable. This easily follows from the

fact that the word problem inG= A1 ∗B is solvable and for eachr ∈ N∪{0},
G⊳Kr andKr/G∼= Z×Cr+1.

(c): the isomorphism problem withinC1 is trivially solvable. This is because for
any r ∈ N∪{0}, the abelianization of the groupKr is isomorphic toZ×Cr+1
(asG is NFQ), hence for anyq∈ N∪{0}, q 6= r, the groupKr is not isomorphic
to Kq since their abelianizations have different torsion subgroups. Thus any two
distinct presentations fromC1 define non-isomorphic groups.

(d): the commensurability problem withinC1 is unsolvable. Indeed, since the
index[Kr : Gτdr

] = r +1 is finite, the groupKr is commensurable with the group
Gτdr

for eachr ∈ N∪{0}. So, if we could decide whetherKr is commensurable
with K0, then we would be able to decide whetherGτdr

is commensurable with
GidG, which, by Corollary 2.6, would imply that the torsion problem for Z1 in
G= A1∗B is solvable, contradicting to the claim of Proposition 3.2.

Thus the class of group presentationsC1 satisfies all of the required properties.�

Proof of Theorem 1.2.Now we start with the presentationP2 = 〈X2‖R2〉 of the group
A2, constructed in Proposition 3.3, and the recursively enumerable set of wordsZ2 =
{z1,z2, . . . ,} ⊂ X∗

2 . Take some infinite finitely presented simple groupB and fix some
finite presentation〈Y‖S〉 of it; thenB will have solvable word problem ([19, IV.3.6]).
Let z0 ∈ X∗

2 be the empty word. For eachr ∈ N∪{0}, let dr denote the element ofA2
represented by thezr ∈ Z2 and letG := A2∗B. Then the groupGτdr

has the presentation

P2,r :=
〈
X2,Y, t

∥∥R2,S, t−1x−1tz−1
r xzr , t−1y−1ty, for all x∈ X2 andy∈Y

〉
.
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Since the setsX2, Y, R2 andSare finite, for everyr ∈ N∪{0}, P2,r is a finite presen-
tation of a group. As before, the presentationP2,0 defines the groupGidG

∼= G×Z.
For the class of finite presentationsC2 := {P2,r | r ∈ N∪{0}} we can observe the

following.
(a): the classC2 is recursively enumerable by definition.
(b): the commensurability problem withinC2 is trivially solvable, because any

presentation from this class defines the groupGτdr
, for somer ∈ N∪{0}, which

is commensurable withGidG by Corollary 2.6, as the elementdr ∈ A2 has finite
order by construction. Thus any two presentations fromC2 define commensu-
rable groups.

(c): the isomorphism problem withinC2 is unsolvable. Indeed, according to Corol-
lary 2.6, for anyr ∈ N, the groupGτdr

, defined byP2,r is isomorphic toGidG,
defined byP2,0, if and only if zr = 1 in G. Thus the isomorphism problem
within C2 is equivalent to the word problem forZ2 in A2, which is unsolvable
by construction.

Thus the classC2 satisfies all of the needed properties. �

5. MEMBERSHIP PROBLEM FOR SOME CLASSES OF GROUPS

The purpose of this section is to show that the claims of Theorems 1.1 and 1.2 are
optimal; that is, the recursively enumerable classes of groups we construct in these
theorems cannot be recursive. More precisely, suppose thatwe are given a class of
finitely presented groupsK , closed under isomorphism. The classK is said to be
recursive, or, equivalently, themembership problem toK is decidable(within the class
of all finitely presented groups), if there is an algorithm, which takes on input a finite
presentation and decides whether or not the group defined by this presentation belongs
to K .

The next statement essentially shows that there is no recursive class of groups satis-
fying the claim of Theorem 1.1.

Proposition 5.1. LetK be a non-empty class of finitely presented groups with solvable
isomorphism problem. ThenK is not recursive.

Proof. Arguing by contradiction, suppose thatK is a non-empty recursive class of
finitely presented groups such that the isomorphism problemis solvable withinK .
SinceK is non-empty, we can assume that we possess a finite presentation of some
groupG ∈ K. Let A be an arbitrary finitely presented group and setH := G∗A. Then
H also finitely presented and a finite presentation ofH can be easily obtained from the
finite presentations ofG andA. Now, by the assumptions, we can decide whether or not
H belongs toK . If H /∈ K , thenH is not isomorphic toG, hence the groupA is non-
trivial. If H ∈K then one can apply the algorithm solving the isomorphism problem in
K to decide whether or notH ∼=G. Evidently, ifH is not isomorphic toG thenA is non-
trivial. On the other hand, ifH ∼= G then rank(H) = rank(G∗A) = rank(G)+ rank(A) =
rank(G) by Grushko-Neumann theorem (see [19, IV.1.9]), where rank(G) denotes the
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minimal number of elements required to generate the groupG. Hence rank(A) = 0,
i.e.,A is the trivial group. Thus we have described an algorithm which decides whether
any given finitely presented groupA is trivial. But it is well-known that the triviality
problem is unsolvable within the class of all finitely presented groups (see, for example,
[23, Thm. 2.2]). This contradiction proves the claim of the proposition. �

Now we state a similar fact for the class of groups appearing in Theorem 1.2.

Proposition 5.2. LetK be a non-empty class of finitely presented groups with solvable
commensurability problem. ThenK is not recursive.

The proof of this statement will utilize the following lemma:

Lemma 5.3. Let G and A be groups and let H:=G∗(A∗A), F := G×(A∗A). Suppose
that H and F are both commensurable to G. Then A is the trivial group.

Proof. First suppose thatG is finite. SinceF is commensurable toG, it must also be
finite, henceA∗A is finite, which can only happen ifA is trivial.

Assume, now, thatG is infinite. If A is non-trivial thenA∗A is infinite, hence any
finite index subgroup ofF itself contains a finite index subgroup that decomposes as a
non-trivial direct product (of a finite index subgroup inG with a finite index subgroup
in A∗A). While any finite index subgroup ofH decomposes in a non-trivial free product
(by Kurosh theorem [19, IV.1.10]), and hence it cannot be isomorphic to a non-trivial
direct product (see, for example, [19, Observation, p. 177]). ThereforeF cannot be
commensurable toH; this contradicts with the assumption that they are both commen-
surable toG and the fact that commensurability is a transitive relation. ThusA must be
trivial. �

Proof of Proposition 5.2.As before, assume that there is a recursive classK with solv-
able commensurability problem, and letG∈ K be some group with a given finite pre-
sentation. Suppose we are given a finite presentation of any groupA. Then we can easily
produce the finite presentations for the groupsH := G∗A∗A andF := G× (A∗A).

By the assumptions, we can decide whether or notH ∈ K andF ∈ K . If at least
one of these groups does not belong toK , thenA is non-trivial. So, assume that both
H andF lie in K . Since the commensurability problem is solvable withinK , we can
decide ifH andF are commensurable toG. Evidently, if at least one of these groups is
not commensurable toG thenA is non-trivial. So, we can further suppose that bothH
andF are commensurable toG. And Lemma 5.3 shows that the latter can happen only
if A is trivial. Thus, again, we produced an algorithm deciding the triviality of A, which
leads us to the required contradiction. �

6. DECISION PROBLEMS IN GEOMETRIC GROUP THEORY

From the viewpoint of geometric group theory, besides the isomorphism and com-
mensurability relations, there are several other equivalence relations on groups which
are of natural interest:
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• Two finitely generated groupsG1,G2 are virtually isomorphic(sometimes also
calledcommensurable up to finite kernels) if there exist a pair of finite index subgroups
Hi 6 Gi , and some further finite normal subgroupsNi E Hi , i = 1,2, with isomorphic
quotientsH1/N1

∼= H2/N2.

• Two finitely generated groupsG1,G2 are quasi-isometricif there exists a map
f : G1 → G2 and a constantK > 0 so that for allx,y∈ G1

1
K

d1(x,y)−K 6 d2
(

f (x), f (y)
)
6 K ·d1(x,y)+K

and theK-neighborhood off (G1) is all ofG2 (thedi are word metrics on theGi , i =1,2).

• Two finitely generated groups arebi-Lipschitz equivalentif there is a bi-Lipschitz
map between(G1,d1) and(G2,d2), where again thedi are word metrics (this is equiva-
lent to the existence of a bijective quasi-isometry betweenthem - see Whyte [32]).

We can now state the corresponding decision problems: thevirtual isomorphism
problem(respectively,quasi-isometry problemor bi-Lipschitz problem) asks whether
there exists an algorithm which, given two finite presentations of groups, can decide
whether or not they define virtually isomorphic (resp. quasi-isometric or bi-Lipschitz
equivalent) groups. Several of these problems have been studied from the viewpoint
of descriptive set theory by Thomas [28, 29, 30, 31]. Note that a group is bi-Lipschitz
equivalent to the trivial group if and only if it is trivial, and that it is virtually isomor-
phic, commensurable, or quasi-isometric to the trivial group if and only if it is finite.
Since the problem of deciding whether a finitely presented group is finite (or trivial) is
unsolvable (this follows from the famous Adian-Rabin theorem, see [2, 1] and [23]), we
immediately obtain

Lemma 6.1. Within the class of all finite presentations of groups, the virtual isomor-
phism, quasi-isometry, bi-Lipschitz, and commensurability problems are all unsolvable.

It would be of some interest to study the relative complexityof these various decision
problems. A straightforward consequence of the construction appearing in our proof of
Theorem 1.2 is the following:

Corollary 6.2. There exists a recursively enumerable class of finite presentations of
groups within which the isomorphism problem is unsolvable,but the virtual isomor-
phism, quasi-isometry, and bi-Lipschitz problems are all (trivially) solvable.

Proof. In the notation from the proof of Theorem 1.2, letΦ := {τdr | r ∈ N∪{0}} ⊂
Aut(G). Then the class of finite presentationsC2, constructed in the proof of Theo-
rem 1.2, defines the classKG,Φ =

{
Gτdr

| r ∈ N∪{0}
}

of finitely presented groups.
As we noticed above, any two groups from this class are commensurable. And since
commensurable groups are automatically quasi-isometric,all the groups inKG,Φ are
quasi-isometric to each other, and the quasi-isometry problem within C2 is (trivially)
solvable.
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Moreover, none of the groupsGτdr
, r ∈N∪{0}, can contain a non-trivial finite normal

subgroup, for such a subgroup would have to map to the identity under the canonical
projectionGτdr

։ Z, and hence it would have to be a normal subgroup in the group
G = A2 ∗B. But a non-trivial free product does not have any non-trivial finite normal
subgroups. This tells us that within the classKG,Φ, two groups are virtually isomorphic
if and only if they are commensurable. Therefore the virtualisomorphism problem
within C2 is also (trivially) solvable.

Finally, noting thatG = A2 ∗B is non-amenable, as a non-elementary free product,
and embeds into everyGτdr

, r ∈N∪{0}, we see that all the groups in the classKG,Φ are
non-amenable. The work of Block and Weinberger [4, Thm. 3.1]implies that the groups
in this class all have vanishing 0-dimensional uniformly finite homology. Whyte’s thesis
[32, Thm. 1.1] then implies that commensurability between any two groups fromKG,Φ
can be promoted to a bi-Lipschitz equivalence. We conclude that all the groups inKG,Φ
are bi-Lipschitz equivalent to each other, so that the bi-Lipschitz problem withinC2 is
also (trivially) solvable. �

More generally, we expect that these various decision problems are fundamentally
unrelated to each other (with the possible exception of the bi-Lipschitz problem, in
view of Whyte’s thesis [32]). To be more precise, we suspect that given any two disjoint
subsets of these decision problems, one can find a recursively enumerable class of finite
presentations of groups such that any problem from the first of these subsets is solvable
within this class, while problems from the second subset areall unsolvable.

In another vein, these algorithmic problems are also open for various natural classes
of groups. For instance, one could focus on certain classes of lattices within a fixed
semi-simple Lie groupG of non-compact type. If theR-rank of G is > 2, and one
restricts to uniform lattices (so that the quasi-isometry problem is trivially solvable),
is the isomorphism problem or commensurability problem solvable? If one focuses
on G = SO(n,1), n > 4, and restrict to non-uniform lattices (so that the isomorphism
problem is solvable, by Dahmani and Groves [11]), is the commensurability problem
(equivalent to the quasi-isometry problem, by Schwartz [25]) solvable or not? Surpris-
ingly, these questions do not seem to have been considered inthe literature.
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1973.
[21] C. F. Miller, III. Decision problems for groups—surveyand reflections. InAlgorithms and classifi-

cation in combinatorial group theory (Berkeley, CA, 1989), volume 23 ofMath. Sci. Res. Inst. Publ.,
pages 1–59. Springer, New York, 1992.

[22] D. V. Osin. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic
problems.Mem. Amer. Math. Soc., 179(843):vi+100, 2006.

[23] M. O. Rabin. Recursive unsolvability of group theoretic problems.Ann. of Math., 67:172–194, 1958.
[24] D. J. S. Robinson.A course in the theory of groups, volume 80 ofGraduate Texts in Mathematics.

Springer-Verlag, New York, second edition, 1996.
[25] R. E. Schwartz. The quasi-isometry classification of rank one lattices.Publ. Math. Inst. Hautes
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