Anaerobic digestion of two biodegradable municipal waste streams
Anaerobic digestion of two biodegradable municipal waste streams
Landfill avoidance for organic wastes is now a high priority worldwide. Two fractions of the municipal waste stream were considered with respect to their potential for diversion through controlled anaerobic digestion. The physical and chemical properties of source segregated domestic food waste (ss-FW) and of the mechanically-recovered organic fraction of municipal solid waste (mr-OFMSW) were analysed, and their methane yields determined in both batch and semi-continuous digestion. Methane potentials were compared with predicted values based on biochemical composition, elemental analysis and carbon mass balance, and the differences explained by compositional analysis of feedstocks and digestates. The ss-FW had a higher percentage biodegradability and higher energy potential on a dry weight basis due to the high proportion of proteins and fats in this waste, although the energy potential of the mr-OFMSW was slightly higher on a wet weight (WW) basis. The mr-OFMSW showed very stable digestion characteristics, whereas the ss-FW had a high digestate ammoniacal-N concentration and volatile fatty acid accumulation leading to some process instability. Digestates from semi-continuous trials with mr-OFMSW had high concentrations of potentially toxic elements (PTE) and a lower nutrient content than ss-FW digestate, making the former unsuitable for application to land used in food production
municipal solid waste, food waste, methane potential, calorific value, nutrients, toxic elements
166-174
Zhang, Yue
69b11d32-d555-46e4-a333-88eee4628ae7
Banks, Charles J.
5c6c8c4b-5b25-4e37-9058-50fa8d2e926f
Heaven, Sonia
f25f74b6-97bd-4a18-b33b-a63084718571
15 August 2012
Zhang, Yue
69b11d32-d555-46e4-a333-88eee4628ae7
Banks, Charles J.
5c6c8c4b-5b25-4e37-9058-50fa8d2e926f
Heaven, Sonia
f25f74b6-97bd-4a18-b33b-a63084718571
Zhang, Yue, Banks, Charles J. and Heaven, Sonia
(2012)
Anaerobic digestion of two biodegradable municipal waste streams.
Journal of Environmental Management, 104, .
(doi:10.1016/j.jenvman.2012.03.043).
Abstract
Landfill avoidance for organic wastes is now a high priority worldwide. Two fractions of the municipal waste stream were considered with respect to their potential for diversion through controlled anaerobic digestion. The physical and chemical properties of source segregated domestic food waste (ss-FW) and of the mechanically-recovered organic fraction of municipal solid waste (mr-OFMSW) were analysed, and their methane yields determined in both batch and semi-continuous digestion. Methane potentials were compared with predicted values based on biochemical composition, elemental analysis and carbon mass balance, and the differences explained by compositional analysis of feedstocks and digestates. The ss-FW had a higher percentage biodegradability and higher energy potential on a dry weight basis due to the high proportion of proteins and fats in this waste, although the energy potential of the mr-OFMSW was slightly higher on a wet weight (WW) basis. The mr-OFMSW showed very stable digestion characteristics, whereas the ss-FW had a high digestate ammoniacal-N concentration and volatile fatty acid accumulation leading to some process instability. Digestates from semi-continuous trials with mr-OFMSW had high concentrations of potentially toxic elements (PTE) and a lower nutrient content than ss-FW digestate, making the former unsuitable for application to land used in food production
Text
Anaerobic_digestion_of_two_biodegradable_municipal_waste_streams___Zhang_et_al,_scholar_text.pdf
- Accepted Manuscript
More information
e-pub ahead of print date: 12 April 2012
Published date: 15 August 2012
Keywords:
municipal solid waste, food waste, methane potential, calorific value, nutrients, toxic elements
Organisations:
Centre for Environmental Science
Identifiers
Local EPrints ID: 338988
URI: http://eprints.soton.ac.uk/id/eprint/338988
ISSN: 0301-4797
PURE UUID: 28ca3ea7-757e-468e-83ef-21092f3c9179
Catalogue record
Date deposited: 21 May 2012 12:51
Last modified: 15 Mar 2024 03:15
Export record
Altmetrics
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics