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Increasingly large volumes of space-time data are collected everywhere by mobile

computing applications, and in many of these cases temporal data are obtained by

registering events, for example telecommunication or web traffic data. Having both

the spatial and temporal dimensions adds substantial complexity to data analysis and

inference tasks. The computational complexity increases rapidly for fitting Bayesian

hierarchical models, as such a task involves repeated inversion of large matrices. The

primary focus of this paper is on developing space-time auto-regressive models under

the hierarchical Bayesian setup. To handle large data sets, a recently developed

Gaussian predictive process approximation method (Banerjee et al. [1]) is extended

to include auto-regressive terms of latent space-time processes. Specifically, a space-

time auto-regressive process, supported on a set of a smaller number of knot locations,

is spatially interpolated to approximate the original space-time process. The resulting

model is specified within a hierarchical Bayesian framework and Markov chain Monte

Carlo techniques are used to make inference. The proposed model is applied for

analysing the daily maximum 8-hour average ground level ozone concentration data

from 1997 to 2006 from a large study region in the eastern United States. The

developed methods allow accurate spatial prediction of a temporally aggregated ozone

summary, known as the primary ozone standard, along with its uncertainty, at any

unmonitored location during the study period. Trends in spatial patterns of many

features of the posterior predictive distribution of the primary standard, such as

the probability of non-compliance with respect to the standard, are obtained and

illustrated.
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concentration, space-time modelling.
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1 Introduction

Many organisations collect spatial and spatio-temporal data routinely and on a regular

basis for a variety of reasons. It has been estimated that up to 80% of all data stored

in corporate databases may have a spatial component [2]. To gather intelligence from

such large space-time data and to fully exploit the space-time dependencies for making

predictive inference, there is an urgent need to develop fast and efficient statistical

methods capable of handling large data sets. Spatio-temporal models, specified at the

highest spatial and temporal resolutions, provide the capability for making inference

at any aggregate spatial and/or temporal levels. For example, a model specified for

the daily data can easily be aggregated to make inference on monthly or annual time

scales and can also allow one to estimate the associated uncertainties in a coherent

manner. Similarly, data modelled on a high resolution spatial scale can easily shed

inferential light on any spatially aggregated quantity.

Incorporating both spatial and temporal correlations into the Bayesian hierar-

chical models is a challenging task, but this is the one that is receiving increasing

interests from modellers from many fields of research and applications, see e.g., the

recent book by Cressie and Wikle [3] and the references therein. Hierarchical dy-

namical spatio-temporal models are often specified to achieve the various modelling

objectives. This paper will focus on the hierarchical auto-regressive models, see e.g.,

Sahu et al. [4] as a simpler sub-class of the dynamical spatio-temporal models since

these are often found to be the best models among a large class of models under a

variety of model choice and predictive model validation criteria, see e.g., [5]. Sahu and

Bakar [6] show that these models also enjoy superior theoretical predictive properties

and they also fit and validate better in real life modelling situations.

The hierarchical auto-regressive models, however, are not suitable for analysing

large data sets observed over vast study regions such as the eastern United States

(US). The problem here lies in inverting high dimensional spatial covariance matrices

repeatedly in iterative model fitting algorithms. This is known as the big-n problem

in literature (see e.g., Banerjee et al. [7]). The early approaches to solve the big-

n problem are mostly ad-hoc as some data are either un-used or repeatedly used,

e.g., [8] uses local kriging, [9] proposes subsampling from a large spatial dimension

by a moving window approach. The gradual methodological improvement comes

from the use of different approximation techniques of kriging equations, see e.g., a

space-filling approach with geo-additive models by [10], a moving average technique

by [11], and techniques based on using basis functions by [12]. Approaches based

on spectral analysis to approximate the likelihood function have also been proposed

by many authors, see e.g., [13] and [14]. Hartman and Hössjer [15] propose another

technique based on efficient computations using sparse matrix calculation algorithms

by exploiting the Gaussian Markov random fields ([16]) approximations. Reich et al.

[17] use a spatial quantile regression approach by considering a non-Gaussian process
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in their models. They are able to reduce the dimension of the data by hierarchical

modelling of a smaller number of estimated quantile parameters from the original

observations.

Multi-resolution spatial models, see e.g., [18], [19], [20] are also able to provide

fast model fitting and can also capture non-stationarity in the data. However, these

models can be problematic to capture possible heterogeneity effects across vast spatial

regions. Modelling spatial covariance functions with a low rank matrix ([21]) and

a moderate rank matrix ([22]), fixed rank kriging ([23], [24]) can also handle the

large data sets but there are several problems associated with the choice of the basis

functions and their interpretations. A simpler approach based on an approximation

using the Gaussian predictive processes (GPP) for modelling multivariate spatial data

has been proposed by Banerjee et al. ([1]) and later on modified by [45]. This method

does not require sub-sampling of the data and neither does it require specification of

complex spatial basis functions.

Motivated by the need to model large data sets, this paper extends the GPP

approximation technique of [1] to include auto-regressive terms of the latent under-

lying space-time process. This auto-regressive process is defined at a set of a smaller

number of knot locations within the study region and then spatial interpolation, i.e.

kriging, is used to approximate the original space-time process. The model is fully

specified within a hierarchical Bayesian setup and is implemented using Markov chain

Monte Carlo (MCMC) techniques.

The paper illustrates the method by analysing a very large data set that recorded

the daily maximum 8-hour average ground level ozone concentration from 1997 to

2006 from a large number of monitoring sites located in the eastern US. Results from

this study include a spatially interpolated model based map, first of its kind to our

knowledge, showing the probability of non-compliance with respect to the primary

standard in each of the years 1999-2006. The paper also compares the predictive

performance of the GPP based model and the fully specified AR model of [4] using a

moderately large subset of the full data set where both models are feasible. There is

a considerable literature on space-time modeling of ground level ozone see e.g., [25],

[26], [27], [28], [29], [30], [31], [32], and [33]. However, none of these articles model

daily ozone concentration data for ten years observed over our study region of the

eastern US using space-time models.

The rest of this paper is organised as follows. Section 2 provides exploratory anal-

ysis of the ozone concentration data set that we model in this paper. The hierarchical

space time auto-regressive models for the big-n problem are developed in Section 3.

Section 4 provides many different sensitivity analyses of the proposed method and

also compares its performance with the currently available auto-regressive models

([4]) fitted to a subset of the original large data set. Analysis of the full eastern US

ozone concentration data set using our methods is performed in Section 5. Section 6

sketches the relevance of this research to business and industry. Section 7 provides
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a few summary remarks and an appendix contains the full conditional distributions

needed for implementing the Gibbs sampler.

2 Exploratory analysis

We consider the daily maximum 8-hour average ozone concentration data obtained

from 691 monitoring sites in our study region in the eastern US. These sites are

made up of 646 urban and suburban monitoring sites known as the National Air

Monitoring Stations/State and Local Air Monitoring Stations (NAMS/SLAMS) and

45 rural sites monitored by the Clean Air Status and Trends Network (CASTNET).

Out of the total 691 sites we set aside data from 69 randomly chosen sites for model

validation purposes and use the data from the remaining 622 sites to fit the models.

To relate ozone concentration with meteorological data we also have collected data

from 746 weather monitoring sites within the study region. Figure 1 provides a map

of the locations of these modelling, validation and weather monitoring sites.

We analyse daily data for T = 153 days in every year during May to September

since this is the high ozone season in the US. We consider these data for the 10

year period from 1997 to 2006 that allows us to study trend in ozone concentration

levels. Thus we have a total of 1, 057, 230 observations and among them approximately

10.44% are missing which we assume to be at random, although there are some annual

variation in this percentage of missingness.

The daily ozone concentration levels range from 0.22 to 246.22 in parts per billion

(ppb) with a mean of 50.41 ppb. Figure 2 provides a side by side boxplot of the daily

measurements for the 691 sites for each of the 10 years. The plot shows a general

decreasing trend from 1997 to 2001, a peak in the year 2002 and then a decreasing

trend until 2004. Slightly higher levels are seen in the last two years 2005 and 2006.

We model ozone on the square-root scale since it encourages symmetry and variance

stabilisation (see e.g., [4] and references therein), although other transformations such

as the logarithm is possible.

The main purpose of the modelling exercise here is to assess compliance with

respect to the primary ozone standard that states that the 3-year rolling average

of the annual 4th highest daily maximum 8-hour average ozone concentration levels

should not exceed 85 ppb, see e.g., [4]. Figure 3 plots the 4th highest maximum and

their 3-year rolling averages with a superimposed horizontal line at 85. As expected,

the plot of the rolling averages is smoother than the plot of the annual 4th highest

maximum values. The plots show that many sites are compliant with respect to the

standard, but many others are not. In addition, the plot of the 3-year rolling averages

shows a very slow downward trend. Both the plots show the presence of a few outlier

sites which are perhaps due to site specific issues in air pollution, for example due to

natural disasters such as forest fires.
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We consider three meteorological variables: daily maximum temperature in degree

centigrade, relative humidity and wind speed as covariates for modelling the ozone

concentration levels, following [34] and [4] who found these three to be the most

significant explanatory variables, see also [29]. These three variables, however, have

been observed at the 746 meteorological sites which do not coincide with the ozone

monitoring sites (see Figure 1). Moreover, we need to have the values of these ex-

planatory variables at a number of unmonitored sites for prediction purposes. We use

simple kriging independently for the three meteorological variables using the fields

package in R ([35]). This method is known to under-estimate the uncertainty in the

predictions, see e.g., [17]. To address these concerns [36] considers a multiple kriging

method where a new predictive value for each variable is generated independently

at each MCMC iteration from the underlying estimated model for kriging. In this

paper, however, we only report the results based on a single kriged value for each

meteorological variable. Sahu et al. [4] detail a method where the covariate values at

each time point are imputed using a separable multivariate spatio-temporal model.

However, their approach is not suitable for the big-n problem of the current paper as

discussed in the introduction. In their modelling developments, [4] use differences in

successive day’s meteorology as the covariates instead of the observations themselves

so that the auto-regressive model using previous day’s ozone levels can be adjusted by

increment in meteorological values. In our modelling developments below we are not

required to specify the models using the meteorological increments since we specify

the auto-regressive models for random effects.

3 Models

Let Zl(si, t) denote the observed value of the response, possibly after a transformation,

at location si, i = 1, . . . , n on day t within year l for l = 1, . . . , r and t = 1, . . . , T .

These two time indices can also be used to specify the hour within day or day within

month and so on. Let Zlt = (Zl(s1, t), . . . , Zl(sn, t))
′. Further, suppose that xlj(s, t)

denotes the value of the jth covariate, j = 1, . . . , p on day t in year l and let

Xlt =







x′

l(s1, t)
...

x′

l(sn, t)






.

With these general notations several versions of auto-regressive models are described

next.

5



3.1 Auto-regressive models developed by Sahu et al. [4]

We first write down the hierarchical auto-regressive models developed in [4]. The first

stage of their modelling hierarchy assumes the measurement error model:

Zlt = Olt + ǫlt, l = 1, . . . r, t = 1, . . . , T, (1)

where ǫlt = (ǫl(s1, t), · · · , ǫl(sn, t))
′ ∼ N(0, σ2

ǫ I). Here Olt = (Ol(s1, t), . . . , O(sn, t))
′

denotes the true value corresponding to Zl(si, t) where

Olt = ρOlt−1 +Xltβ + ζlt, l = 1, . . . r, t = 1, . . . , T. (2)

where ζlt = (ζl(s1, t), . . . , ζl(sn, t))
′ and we assume that ζlt ∼ GPn(0, σ2ψ(d;φ)) where

GPn(0, σ2ψ(d;φ)) denotes the n-dimensional Gaussian process with mean 0 and co-

variance function given by σ2ψ(d;φ) where σ2 and φ denote the common spatial

variance and the decay parameter, respectively and d denotes the distance. Here

ψ(d;φ) denotes the correlation function which we take to be the exponential correla-

tion function ψ(d;φ) = exp(−dφ) in our illustration, although other choices can be

adopted. The initial condition is given by

Ol0 = γ l + µl1, l = 1, . . . r, (3)

where 1 is the vector of dimension n with all elements unity and γ l = (γl(s1), . . . , γl(sn))′

is assumed to follow GPn(0, σ2
l ψ(d;φ0)) independently for each l = 1, . . . , r. Note that

these initial random variables Ol(si, 0) are centred at µl and not at zero since Ol(si, 0)

represent the true response. The model is completed by assuming µl ∼ N(0, 104) and

proper inverse gamma prior distributions independently for each σ2
l , see [4] for further

details. Henceforth, we shall denote this version of the AR models as ARHIER.

This version of the AR models is not suitable for adaptation with the GPP ap-

proximation proposed by [1] since each Zl(si, t) is paired with a true level Ol(si, t)

that cannot be reduced in dimension. Next we develop a modified version of these

models that will enable us to reduce the dimension of the random effects.

3.2 Modified hierarchical auto-regressive models

The ARHIER model assumes the AR model for the true values of the modelled

response Olt. Following [37] we modify this model so that the modified version does

not assume a true level Ol(si, t) for each Zl(si, t) but instead assumes a space-time

random-effect denoted by ηl(si, t). It then assumes an AR model for these space-time

random effects.

The top level general space-time random effect model is assumed to be:

Zlt = Xltβ + ηlt + ǫlt, l = 1, . . . r, t = 1, . . . , T. (4)
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where ǫlt ∼ N(0, σ2
ǫ I) where I is the identity matrix. In the next stage of the

modelling hierarchy the AR model is assumed as:

ηlt = ρηlt−1 + δlt, (5)

where δlt ∼ GPn(0, σ2ψ(d;φ)). The initial condition is assumed to be:

ηl(si, 0) ∼ GPn(0, σ2
0ψ(d;φ0)) (6)

where σ2
0 and φ0 are unknown parameters.

Note that the marginal mean of the random effects ηlt is zero, but the conditional

mean given ηlt−1 is no longer zero due to the auto-regressive specification (5). This

specification also implies a non-stationary marginal covariance function for ηlt that

does not need to be explicitly derived nor is it required since model fitting proceeds

through the conditional specification (5). Lastly, we note that higher order auto-

regressive terms can be included in (5). However, those are not considered here since

their inclusion will only weaken both the spatial and lag-1 temporal correlations

without providing significant additional descriptive ability.

3.3 Auto-regressive models with GPP approximations

The auto-regressive models specified in Section 3.2 create a random effect ηl(si, t)

in (4) corresponding to each data point Zl(si, t). This will lead to the big-n problem,

as discussed in the Introduction when n is large. To overcome this problem we propose

a dimension reduction technique through a kriging approximation following [1] as

follows. The main idea here is to define the random effects ηl(si, t) at a smaller number

of locations, called the knots, and then use kriging to predict those random effects at

the data locations. The auto-regressive model is only assumed for the random effects

at the knot locations and not for all the random effects at the observation location.

The method proceeds as follows.

At the top level we continue to assume the model (4), but we do not specify

ηlt directly through the auto-regressive model (5). Instead, we select m << n knot

locations, denoted by by s∗1, ..., s
∗

m within the study region and let the spatial random

effects at these locations at time l and t be denoted by wlt = (wl(s
∗

1, t), . . . , wl(s
∗

m, t))
′.

Discussion regarding the choice of these locations is given in Section 4.1. Assuming

an underlying Gaussian process independently at each time point l and t, [1] show

that the process ηlt can be approximated by

η̃lt = Awlt (7)

with A = CS−1
w where C denotes the n by m cross-correlation matrix between ηlt and

wlt, and Sw is the correlation matrix of wlt. Note that the common spatial variance

parameter does not affect the above since it cancels in the product CS−1
w . Also, there
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is no contribution of the means of either ηlt or wlt in the above since those means are

assumed to be 0.

The proposal here is to use the GPP approximation η̃lt instead of ηlt in the top

level model (4), thus we assume that:

Zlt = Xltβ + η̃lt + ǫlt, l = 1, . . . r, t = 1, . . . , T, (8)

where η̃lt is as given in (7). Analogous to (5), we specify wlt at the knots conditionally,

given wlt−1, by

wlt = ρwlt−1 + ξlt, (9)

where ξlt ∼ GPm(0, σ2
wψ(d;φ)) independently. Again we assume that wl0 ∼ N(0, σ2

l S0)

independently for each l = 1, . . . , r, where the elements of the covariance matrix S0

are obtained using the correlation function, ψ(d;φ0), i.e. the same correlation func-

tion as previously but with a different variance component for each year and also

possibly with a different decay parameter φ0 in the correlation function. Henceforth,

we shall call this model ARGPP.

A few remarks are in order. The above modelling specifications are justified using

the usual hierarchical modelling philosophies in the sense that the top level model is a

mixed model with mean zero random effects and these random effects have structured

correlations as implied by the spatial auto-regressive model at the second stage (9).

These two model equations, together with the initial condition, however, are neither

intended to, nor will ever exactly imply the auto-regressive model (5) for the original

random effects ηlt except for trivial cases such as the one where m = n and all the

knot locations coincide with the data locations. In general such a property can never

be expected to hold without further conditions. However, the full dimensional auto-

regressive model (5), if feasible, will provide a better fit than the proposed model

based on the GPP approximation. We also note that it is straightforward to work

with an alternative independent model for wlt instead of the auto-regressive model (9).

Such a model, however, does not keep any explicit provision for modelling temporal

dependence and, as a result will not be appropriate in many practical situations, and

is not considered any further in the paper.

3.3.1 Joint posterior details

Define N = nrT and let θθθ denote all the parameters βββ, ρ, σ2
ǫ , σ

2
w, φ, φ0, σ

2
l , l = 1, ..., r.

Further, let z∗ denote the missing data and z denote all the non-missing data. The

log of the joint posterior distribution for the models in equations (8) and (9), denoted
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by log π(θθθ, z∗|z) is written as:

−
N

2
log(σ2

ǫ ) −
1

2σ2
ǫ

r
∑

l=1

T
∑

t=1

(Zlt − Xltβββ − Awlt)
′(Zlt − Xltβββ − Awlt)

−
mrT

2
log(σ2

w) −
rT

2
log(|Sw|) −

1

2σ2
w

r
∑

l=1

T
∑

t=1

(wlt − ρwlt−1)
′S−1

w (wlt − ρwlt−1)

−
m

2

r
∑

l=1

log(σ2
l ) −

r

2
log(|S0|) −

1

2

r
∑

l=1

1

σ2
l

wl0S
−1
0 wl0 + log π(θθθ) (10)

where, log π(θθθ) is the log of the prior distribution for the parameter θ. We assume

the prior distributions βββ ∼ N(0, 104), ρ ∼ N(0, 104)I(0 < ρ < 1). Further, the prior

distributions for the variance parameters are: 1/σ2
ǫ ∼ G(a, b), 1/σ2

w ∼ G(a, b), where

the Gamma distribution has mean a/b. We shall choose the values of a and b in such

a way that guarantees a proper prior distribution for these variance components, see

Section 4 below.

3.3.2 Prediction details

According to the top-level model (8), the response Zl(s
′, t) at a new site s′ and time

l and t is given by

Zl(s
′, t) = xl(s

′, t)′β + η̃l(s
′, t) + ǫl(s

′, t), l = 1, . . . r, t = 1, . . . , T, (11)

where xl(s
′, t) denotes the covariate value at the new location at time l and t, and the

scalar η̃l(s
′, t) is obtained using the following equation, obtained analogously as (7),

η̃l(s
′, t) = c′(s′)S−1

w wlt (12)

where the kth element of the m by 1 vector c(s′) is given by ψ(d;φ) where d is the

distance between the sites s∗k and s′.

Prediction is straightforward under any MCMC sampling scheme. At each itera-

tion, j say, first, one obtains the approximation η̃
(j)
l (s′, t) calculated using the current

parameter iterates θ(j) and w
(j)
lt . The next step is to generate a new Z

(j)
l (s′, t) using

the model (11) and plugging in the current iterates θ(j) and w
(j)
lt . These MCMC iter-

ates are transformed to the original scale by using the inverse of the transformation

used to model the original response. Let q(·) denote this inverse transformation. For

example, if observations have been modelled on the square root scale then q(z) = z2,

so that we obtain the predictions on the original scale. The MCMC iterates on the

original scale are summarised as the prediction value at the end of the MCMC run,

and the uncertainty in this prediction value is also simultaneously estimated. This

ability to estimate the uncertainty of the predictions on the original scale is an essen-

tial attractive feature of the MCMC methods since no approximation or analytical

calculation or bootstrapping is required.
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3.3.3 Predicting the annual summaries

Aggregated temporal summaries are also simulated at each MCMC iteration using

the prediction iterate on the original scale, see e.g., [4]. For example, for each year l

we obtain the annual 4th highest maximum ozone value by calculating the 4th highest

value, denoted by f
(j)
l (s′), of the transformed q(Z

(j)
l (s′, t)), t = 1, . . . , T . The 3-year

rolling averages of these are given by

g
(j)
l (s′) =

f
(j)
l−2(s

′) + f
(j)
l−1(s

′) + f
(j)
l (s′)

3
, l = 3, . . . , r.

Following [4], we can also obtain covariate (meteorologically) adjusted trend values by

considering the random effects, η̃
(j)
l (s′, t) since these are the residuals after fitting the

regression model xl(s
′, t)′β(j). These realizations are first transformed to the original

scale by obtaining q(η̃
(j)
l (s′, t)). These transformed values are then averaged over a

year to obtain the covariate adjusted value, denoted by hl(s
′), for that year, i.e.

h
(j)
l (s′) =

1

T

T
∑

t=1

q(η̃
(j)
l (s′, t)).

A further measure of trend called the relative percentage trend (RPCT) for any year

l relative to the year l′ is defined by

100 × (h
(j)
l (s′) − h

(j)
l′ (s′))/h

(j)
l′ (s′)

is also simulated at each MCMC iteration j. The MCMC iterates f
(j)
l (s′), g

(j)
l (s′),

h
(j)
l (s′) and also any relative trend values are summarised at the end of the MCMC

run to obtain the corresponding estimates along with their uncertainties.

3.3.4 Forecasting

Forecasting is also straightforward under the MCMC methods. To obtain the one-step

forecasts at any location s′ we note that:

Zl(s
′, T + 1) = xl(s

′, T + 1)′β + η̃l(s
′, T + 1) + ǫl(s

′, T + 1), l = 1, . . . r,

where η̃l(s
′, T + 1) is to be obtained using (12). This requires wlT+1 which we obtain

using (9). Thus at each MCMC iteration we draw a forecast iterate Z
(j)
l (s′, T + 1)

from the normal distribution with mean xl(s
′, T +1)′β(j) + η̃

(j)
l (s′, T +1) and variance

σ
2(j)
ǫ . Similar forecasting using the Sahu et al. [4] method is more computationally

involved since for each new s′ that requires simulation Ol(s
′, t) for all t = 0, . . . , T +1.

Forecasting is no longer pursued in this paper, but is considered in a companion

paper [38].
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3.4 Software for computation

The methods developed above require careful programming as no suitable software

package is available for Bayesian hierarchical modelling of space-time data. The R

package spBayes developed by Finley et al. [39] can fit multivariate spatial models

but at the moment is not able to fit rich temporal data sets such as the ones intro-

duced in Section 2. We have developed the R package spTimer, see [40], in a com-

panion paper that will be available from the R archive network CRAN (http://cran.r-

project.org/).

4 Results for a smaller data set

This section studies the sensitivity of the proposed model ARGPP and its performance

against the Sahu et al. model ARHIER using data from a smaller subset of four states

Illinois, Indiana, Ohio, and Kentucky. There is a total of 164 ozone monitoring sites

inside these four states that allows us to study the various issues in much detail

without having to undertake the large computational burden required to analyse the

full data set. Data from 16 randomly chosen sites are set aside for validation purposes,

although this choice is repeated 7 times in an experiment to see the effect of the choice

of these validation sites. The validation statistics, defined below, are based on daily

observations for 153 days in each of 10 years from the 16 hold-out sites. Out of these

24480 observations, 3472 (14%) are missing and have been excluded from calculating

the validation statistics. Figure 4 provides a map of the four states showing the

locations of the 164 ozone monitoring sites and the 88 meteorological sites and also

the locations of the 107 knot points for illustration.

Sensitivity studies are performed using two model validation criteria: the root

mean square error (RMSE) and the mean absolute error (MAE) summarising the

closeness of the out of sample predictions to observed values. The RMSE criterion is

the square root of the validation mean square error criterion given by:

VMSE =
1

krT

k
∑

j=1

r
∑

l=1

T
∑

t=1

(Ẑl(sj, t) − zl(sj, t))
2 (13)

where Ẑl(sj, t) is the model predicted value of Zl(sj, t) at year l and time t at the

validation site j, and k is the number of validation sites. In the calculations for VMSE,

the terms corresponding to the missing observations must be omitted; in such a case

the divisor must be adjusted appropriately as well. The MAE criterion is similarly

defined where the squares of the validation errors in (13) are replaced by the absolute

errors.

For model comparison purposes we use the predictive model choice criterion

(PMCC), see e.g., [41], that is suitable for comparing models with normally dis-
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tributed error distributions and is given by:

PMCC =
n
∑

i=1

r
∑

l=1

T
∑

t=1

E(Zl(si, t)rep − zl(si, t))
2 +

n
∑

i=1

Var(Zl(si, t)rep), (14)

where Zl(si, t)rep denotes a future replicate of the data Zl(si, t). The first term in

the above is a goodness of fit term (G) while the second is a penalty term (P ) for

model complexity. The model with the smallest value of PMCC is selected among

the competing models. Thus, to be selected a model must strike a good balance

between goodness of fit and model complexity. The terms P and G are estimated

using composition sampling, at each MCMC iteration k we first draw parameter

values from the posterior distribution and then Zl(si, t)
(k)
rep from the model equations

conditional on the drawn parameter values.

In all our illustrations below we have diagnosed MCMC convergence by visual ex-

amination of the time-series plots of the MCMC iterates. We have also used multiple

parallel runs and calculated the Gelman and Rubin statistic ([42]) that was satisfac-

tory in every case. We have used 5000 iterations to make inference after discarding

first 1000 iterates to mitigate the effect of initial values.

4.1 Sensitivity study

Number of knots

To study the sensitivity of the out of sample predictions with respect to the number

of knots, we define five different sets of regular grid locations: 6 × 6, 8 × 8, 10 × 10,

12×12 and 14×14 over our study region of the four states. From these regular grids,

we only keep the points that fall inside the boundary of the four states. This gives

us the knots with 26, 40, 60, 107 and 138 locations respectively. Figure 4 illustrates

the case with with 107 knot locations.

Both the validation criteria: RMSE and MAE, provided in Table 1, show that

the ARGPP model is able to predict better for larger knot sizes. This is expected

since model fitting gets better with larger knot sizes, as noted previously in Section 3.

However, Table 1 also shows that the gains in the validation criteria are not substantial

beyond the knot size of 107. Henceforth, we shall adopt the set of knots with 107

locations to illustrate the results in this section.

Prior distributions

Bayesian model fitting and predictions are often influenced by the adopted prior

distribution. In our modelling efforts, we have always used vague prior distributions

for the mean parameters, hence our results are not sensitive to that choice. However,

we have used the proper gamma prior distribution with hyper-parameters a and b

for the two variance components σ2
ǫ and σ2

w. We have used three pairs of values

of a and b: (2, 1), (1, 1), (10, 10) that gave us RMSE values 6.07, 6.10 and 6.10

respectively. The corresponding MAE values were 4.37, 4.41 and 4.41 respectively.
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Hence, the predictions are not very sensitive to the choice of hyperparameter values

and henceforth we adopt the pair of values 2 and 1 for a and b.

Sampling method for φ

The choice of the estimation method for the spatial decay parameter, φ, has an

effect on the prediction results. In a classical inference setting it is not possible to con-

sistently estimate both φ and σ2
w in a typical model for spatial data with a covariance

function belonging to the Matèrn family, see [43]. Moreover, [13] shows that spatial

interpolation is sensitive to the product σ2
wφ but not to either one individually. That

is why, [44] choose the decay parameter using an empirical Bayes (EB) approach by

minimising the RMSE and estimate the variance parameter σ2
w conditionally on the

fixed estimated value of φ. Here we avoid the EB approach by sampling φ from its

full conditional distribution in two different ways corresponding to two different prior

distributions. The first of these is a discrete uniform prior distribution on 20 equally

spaced mass points in the interval (0.001, 0.1). Here, although time consuming, the

full conditional distribution is discrete and sampling is relatively straightforward, see

the appendix. The second strategy, corresponding to a continuous uniform prior dis-

tribution in the interval (0.001, 0.1) for φ, is the random walk Metropolis-Hastings

algorithm tuned to have an optimal acceptance rate between 20% to 40%, see the

appendix. In one of our implementations, we have been able to tune this algorithm

to achieve an acceptance rate of 32.4% that gave an RMSE value of 6.07. The RMSE

value for the discrete sampling method was 6.16. The respective MAE values were

4.37 and 4.46. Thus the Metropolis-Hastings method provides better validation re-

sults and henceforth this method is adopted.

Choice of hold-out data

Results may be sensitive to the particular hold-out data set. We study this as

follows. We randomly choose 10 different hold-out data sets, each of them consisting

of observations from 16 out of the 164 total monitoring sites in the study region of

four states. The RMSEs for these 7 hold-out data sets vary between 6.07 and 6.20

whereas the MAEs are between 4.36 and 4.55. This shows that the validation results

are not much sensitive to the choice of the hold-out data. Henceforth, we adopt

the original hold out data set that had the RMSE and MAE values 6.07 and 4.37,

respectively.

4.2 Comparison with the ARHIER model

This section is devoted to comparing the proposed ARGPP models with the ARHIER

models. Note that the ARGPP does not directly approximate ARHIER and hence the

latter is not likely to be uniformly better than the former, and hence this comparison

is meaningful. Both the models use the same three covariates, namely, maximum

temperature (MaxTemp), relative humidity (RH) and wind speed (WDSP). In both

the cases we also adopt the same prior distributions and use the Metropolis-Hastings
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sampling algorithm for sampling the spatial decay parameters. In the GPP based

proposed model we use 107 knot points as decided above.

The estimates of the parameters of the two models are provided in Table 2, except

for the parameters µl and σ2
l under the ARHIER model and σ2

l under the ARGPP

model, l = 1, . . . , r since those estimates are not interesting for model comparison pur-

poses. Both the models show significant effect of the three covariates, although the

effects get attenuated under the ARHIER model due to the presence of the temporal

auto-regression. Further discussion about these effects is provided in Section 5. How-

ever, there are large differences between the two models as regards to the estimates

of spatial and temporal correlations. The temporal correlation under the ARHIER

(0.523) is much larger than the same for the ARGPP model (0.092). This is due to the

fact that the auto-regressive model for the Sahu et al. version is assumed for the true

ozone levels which are highly temporally correlated, whereas the GPP based model

assumes the auto-regression for the latent random effects which are also significantly

temporally correlated but at a magnitude lower than that for the true ozone levels

in ARHIER. However, to compensate for this low value of temporal correlation, the

GPP based model has estimated a much higher level of spatial correlation since the

spatial decay of 0.0036 is much smaller for this model compared to the same, 0.012,

for the full hierarchical AR model. The estimates of the variance components, under

both the models, show that more variation is explained by the spatial effects than

the pure error.

The two models are compared using the PMCC and the two model validation

criteria: RMSE and MAE. We also report the nominal coverage of the 95% prediction

intervals for the out of sample validation data. These three validation statistics are

based on 21,008 (=24480–3472) daily observations as noted above. Model comparison

results presented in Table 3 almost uniformly give evidence in favour of the the

proposed GPP based models. Components of the PMCC show that the GPP based

model provides a much better fit than the ARHIER. Both the RMSE and MAE

are also better for the proposed model. However, the nominal coverage is slightly

smaller for the proposed method, but this is not much of a cause for concern since

both are close to 95%. The ARGPP model fitting requires about 2.24 hours of

computing time while the full ARHIER model takes about 7.86 hours. Thus the

ARGPP implementation requires less than a third of the computing time needed for

fitting the ARHIER model. In conclusion, the ARGPP model not only provides a

faster and better fit but also validates better than the ARHIER. In the next section,

for the full eastern US data, we shall only consider the GPP based model.

14



5 Analysis of the full eastern US data set

We now analyse the full eastern US data set introduced in Section 2. We use data from

622 monitoring sites to model and the data for the remaining 69 sites are set aside

for validation, see Figure 1. We continue to use the three meteorological variables

as covariates in the model. We choose the same prior and the Metropolis-Hastings

sampling method for the spatial decay parameter φ. To select the number of knots

we start with regular grid sizes of 12 × 12, 15 × 15, 20 × 20 and 25 × 25 and then

only retain the points inside the land boundary of the eastern US that gives us 68,

105, 156 and 269 points respectively. As in previous section we fit and predict using

the model with these knot sizes and obtain the two validation statistics: RMSE and

MAE in Table 4. As has already been seen in Section 4, the performance gets better

with increasing grid sizes, but the improvement in performance is only marginal when

the grid size goes up to 269 from 156. The much smaller computational burden with

156 knot points outweighs this marginal improvement in the validation statistics.

Henceforth we proceed with the grid size 156 in our analysis. Figure 5 provides a

map of the eastern US with these grid points superimposed.

Parameter estimates of the fitted model with 156 knot points are provided in

Table 5. All three covariates, MaxTemp, RH and WDSP, remain significant in the

spatio-temporal model with a positive effect of MaxTemp and negative effects of the

other two. This is in accordance with the results in the literature in ozone modelling,

see e.g., [4]. The auto-regressive parameter is also significant and the pure error

variance σ2
ǫ is estimated to be smaller than the spatial variance σ2

w. The spatial

decay parameter is estimated to be 0.0018 which corresponds to an effective spatial

range ([54]) of 1666.7 kilometers that is about half of the maximum distance between

any two locations inside the study region. The estimates of σ2
l for l = 1, . . . , r range

from 0.457 to 3.828 and are omitted for brevity.

We now turn to the validation of the ozone summaries: the annual 4th highest

maximum and the 3-year rolling average of these. Table 6 provides the validation

statistics. We also report the values of the validation statistics for these summaries

obtained using simple kriging using the fields package [35]. In this kriging method,

the daily ozone levels are first kriged and then those are aggregated up to the annual

levels to mimic our model based approach where we spatially predict on each day and

then aggregate the predictions up to the annual levels. As expected, the proposed

method is able to perform better in out of sample predictions than standard kriging

which is well known to be difficult to beat using model based approaches ([33]). This

shows that the model is very accurate in predicting the primary ozone standard based

on the annual summaries. Figure 6 examines this in more detail where the predicted

values of these summaries are plotted against the observed values. The plot provides

evidence of accurate prediction with a slight tendency to over-predict. The actual

over prediction percentage for the annual 4th highest maximum is 52% while the
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same for the 3-year rolling averages is slightly higher at 53% which are reasonable.

Hence we proceed to make predictive inference for the ozone standard based on these

model based annual summaries.

We perform predictions at 936 locations inside the land-boundary of the eastern

US obtained from a regular grid. At each of these sites we spatially interpolate the

daily maximum 8-hour average ozone level on each of 153 days in every year using the

details in Section 3.3.2. These daily levels are then aggregated up to the annual levels.

Figure 7 provides the model based interpolated maps of annual 4th highest maximum

ozone levels for the years 1997-2006. Observed values of these annual maxima from a

selected number of sites (data from all the 691 sites are not plotted to avoid clutter)

are also superimposed and those show reasonably good agreement with the predicted

values. Similarly, Figure 8 plots the model based interpolated maps of the 3-year

rolling averages of the annual 4th highest maximum ozone concentration levels for

the years 1999-2006. The 3-year averages increase slightly or remain generally at

a constant level from 1999 to 2003 and then decrease. The superimposed observed

values of these rolling averages are also in good agreement with the predicted values.

The uncertainty maps corresponding to the prediction maps in Figures 7 and 8 showed

larger uncertainty for the locations which are farther away from the monitoring sites

and are omitted for brevity. The predicted maps show a gradually decreasing trend on

ozone levels that can be attributed to gradual reductions in ozone precursor emissions,

specially in nitrogen oxides and volatile organic compounds – the main ingredients

of ozone. We study the meteorologically adjusted relative percentage trends (see

Section 3.3.3) in Figure 9 for 2006 relative to 1997. We observe most of these trends

to be negative except for a few sites.

The model based predictive maps of the probability that the 3-year rolling average

of the annual 4th highest maximum ozone level is greater than 85 ppb, i.e. non-

compliance with respect to the primary ozone standard, are provided in Figure 10.

The plots show that many areas were out of compliance in the earlier years e.g. in

1999-2003. However, starting in 2004 most areas started to comply with the primary

ozone standard and except for few areas shown in the maps. As mentioned above

this can be attributed to emission reduction policies adopted be many federal and

local government agencies. Another noticeable feature of the Figures 7 and 10 is that

the spatial patterns in the successive years maps change relatively slowly. This is

also expected as the annual 4th highest ozone levels and the 3-year rolling averages

of the annual 4th highest ozone levels change very gradually, see Figure 3 where the

observed values of these have been plotted.
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6 Relevance to business and industry

The hierarchical modeling methods developed in this paper allow accurate modeling

of localized spatial variation that may change over time. This in turn enables accurate

spatial prediction and inference at the highest spatial resolution at the point-level.

The general spatio-temporal modeling methods are widely applicable in any suitable

industrial example settings. For example, consider the industrial corrosion problem

where it is important to know the extent of corrosion at any particular location as

discussed in [46]. Corrosion is a common industrial problem that affects furnaces,

pipelines, storage tanks, valves, nozzles and many other systems in the oil and other

industries. The proposed dynamic space-time models enable early identification of

corrosion that may result in the initiation of preventative measures and accurate

forecasting of such events in the future. A concrete modeling example is outlined

below.

Consider the modeling of corrosion in a large industrial furnace as described in [46].

Health and safety concerns require inspection of the furnace at regular time intervals

and recording of the vessel wall thickness at a large number of sites in the furnace.

According to past experience of the experts, it is reasonable to assume that the wall

thickness will, on average, deteriorate continuously if operating conditions remain

constant, and that current corrosion rate is the best estimator of the future corrosion

rate. Therefore, the wall thickness is modeled with a locally linear trend as in (4)

with details modified as follows.

Let Z(s, t) denote the observed wall thickness value at a location s and time t.

We drop the subscript l since time here can be described by just one index t. We also

suppose that there are observed covariates, denoted by xl(s, t), that may help explain

corrosion in the wall thickness. For example, components of xl(s, t) may record the

furnace usage history in the period before time t, and/or an exposure characteristics

at location s at time t such as temperature. As in previous section we introduce two

sets of independent error distributions: one spatial, denoted by η(s, t), and the other

a measurement error, ǫ(s, t). As in (4) we can now write the model as:

Z(s, t) = x′(s, t)β(s) + η(s, t) + ǫ(s, t).

In this model β(s) are unknown spatially varying regression co-efficients that can

be estimated from the data. If, however, there are no measurable covariates present

then we can simply assume the time invariant intercept process β0(s) that signifies

the overall thickness that will remain even after the end of the life of the vessel. A

zero mean Gaussian process prior, see for example, [54] can be assumed for the β0(s)

process.

A suitable dynamic model must be assumed for the spatially correlated error

process η(s, t). Following the development in this paper we assume an auto-regressive

model as given in (5). This model for the spatial residuals is intuitively sensible
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here because of the above assumption that the wall thickness deteriorates on average

under constant operating conditions. This also justifies the auto-regressive models

proposed here instead of the random-walk models, see for example, [54]. The drift

term, x′(s, t)β(s), in the overall model can be used to accommodate any effects of

change in these conditions. The remaining model and prior distributions are assumed

to be the same as in Section 3. The problem of handling large spatial and spatio-

temporal industrial data, such as the wall thickness data, can be alleviated by the

GPP based modeling developments of this paper. Many specific implementation

parameters such as the knot size need to be chosen from a suitable sensitivity study.

The Bayesian spatio-temporal models can potentially solve a very important prac-

tical forecasting problem as follows. Often, it is of interest to assess the probability

that the wall thickness, Z(s′, t), at any location s′ at any future time point t is less

than a given threshold design value. These types of failure probabilities can be easily

estimated by the methods developed in Sections 3.3.2 and 3.3.4. Moreover, these

probabilities can be plotted on a map that can be continuously updated once new

data become available.

The model validation methods by using hold-out data provide automatic ways of

checking the full model and its assumptions. These out of sample validation statistics

can also be used to compare all the competing modeling strategies discussed in this

paper since the one of the main objectives of the modeling exercise here is to obtain

out of sample predictions and forecasts.

The discussion here points to the possibility that future investigations with real

data sets are likely to lead to fruitful results especially relevant to businesses and

industries. However, as is well known, the take-up of the stochastic models by the

businesses often does not proceed at a desirable fast pace due to the lack of availabil-

ity of suitable software packages that implement the methods. This is where the R

package spTimer that has been developed alongside this paper and is freely available

can help. This package can do the model fitting, prediction and forecasting for large

space-time data sets.

Lastly, we note that the substantive environmental modeling example of this pa-

per is also of direct relevance to many businesses and industries. For example, the

accurate spatial prediction of the long term trends in air pollution is likely to influ-

ence current and future emission reduction policies. These policies will directly affect

the method and the cost of industrial production which will have long-term repercus-

sions in the local economy. Further general discussions of the developed methods are

provided in the next section.
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7 Discussion

A fast hierarchical Bayesian auto-regressive model for both spatially and temporally

rich data sets has been developed in this paper. The methods have been shown to be

accurate and feasible for simultaneous modelling and analysis of a large data set with

more than a million observations using computationally intensive MCMC sampling

algorithms. The proposed auto-regressive models have been shown to validate better

than standard Kriging for out of sample predictions.

Specifically, the methods have been illustrated for evaluating meteorologically

adjusted trends in the primary ozone standard in the eastern US over a 10 year

period from 1997-2006. To our knowledge no such Bayesian model based analysis

exists for the same data and the same modelling purposes. An important utility of

the high resolution space-time model lies in the ability to predict the primary ozone

standard at any given location for the modelled period. This helps in understanding

spatial patterns and trends in ozone levels both at the meteorologically adjusted and

unadjusted levels which in turn will help in evaluating emission reduction policies

that directly affect many industries.

The proposed methods can also be used in conjunction with a spatio-temporal

downscaler model for incorporating output from numerical models as discussed in

[47] and [48]. The essence of the down-scaler model is to use the grid-level output

from numerical models as a covariate in the point level model such as (4). This type

of space and time varying covariate information enriches the regression settings like

the one in the ARGPP model (8) and in fact will allow us to estimate spatially and/or

temporally varying regression coefficients ([49] and [47]) in the model, see also [50]. A

downscaler model with or without our ARGPP approach, however, cannot be used for

assessing meteorologically adjusted trends since the outputs of the numerical models

are based on the meteorological data and including the meteorological data again in

the model will lead to multi-collinearity problems.

An R package, spTimer, has been developed for implementing the models for

analysing large volumes of space-time data and will be made publicly available from

the R archive network CRAN (http://cran.r-project.org/). The spTimer package with

its ability to fit, predict and forecast using a number of space-time models can be

used for modelling a wide variety of large space-time data.

Multivariate space-time modelling for large data sets is a challenging task. The

methods developed in this paper can be extended to cope with a multivariate space-

time random effect that can be specified using a linear model of coregionalisation, see

e.g., [51]. An alternative of this last method is to specify the multivariate response

conditionally, see e.g., [52] where ozone concentration levels and particulate matter

data have been modelled jointly.
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Appendix

The Gibbs sampler is implemented by repeatedly simulating the missing observations

and all the unknown model parameters from their full conditional distributions. The

joint posterior distribution (10) is used to derive the full conditional distributions

listed below.

• Any missing observation Z∗

l (si, t) has the full conditional distribution

N (x′

l(si, t)β + η̃l(si, t), σ
2
ǫ ).

• The full conditional distribution of β is N(∆χ,∆) where,

∆−1 =
1

σ2
ǫ

r
∑

l=1

T
∑

t=1

X ′

ltXlt + 10−4I,

χ =
1

σ2
ǫ

r
∑

l=1

T
∑

t=1

X ′

lt(Zlt − Awlt).

• The full conditional distribution of ρ is N(∆χ,∆)I(0 < ρ < 1) where,

∆−1 =
r
∑

l=1

T
∑

t=1

w′

lt−1Qwwlt−1 + 10−4

χ =
r
∑

l=1

T
∑

t=1

w′

lt−1Qwwlt

where Qw = Σ−1
w .

• The full conditional distribution of 1

σ2
ǫ

is given by:

G

(

N

2
+ a, b+

1

2

r
∑

l=1

T
∑

t=1

(Zlt −Xltβ − Awlt)
′(Zlt −Xltβ − Awlt)

)

• Similarly, the full conditional distribution of 1

σ2
w

is written as:

G

(

mrT

2
+ a, b+

1

2

r
∑

l=1

T
∑

t=1

(wlt − ρwlt−1)
′Qw(wlt − ρwlt−1)

)

• The full conditional distribution of wlt is given by: N(∆χ,∆) where

∆−1 =
1

σ2
ǫ

A′A+Qw + ρ2Qw
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χ =
1

σ2
ǫ

A′(Zlt −Xltβ) +Qwwlt−1 +Qwwlt+1,

for 1 ≤ t < T . For t = T , we have

∆−1 =
1

σ2
ǫ

A′A+Qw

χ =
1

σ2
ǫ

A′(Zlt −Xltβ) +Qwwlt−1.

• The full conditional distribution of wl0 is given by N(∆χ,∆) where,

∆−1 = ρ2Qw +Q−1
0

χ = ρQwwl1 + µlΣ
−1
0 1m,

where Q0 = Σ−1
0 .

• The full conditional distribution of σ2
l for l = 1, . . . , r is given by:

G

(

m

2
+ a, b+

1

2
wl0S

−1
0 wl0

)

.

• The full conditional distribution of φ is not available in closed form. The log of

the conditional posterior density (upto an additive constant) is given by:

log π(φ|...) = log π(φw)−
rT

2
log |Sw|−

1

2

r
∑

l=1

T
∑

t=1

(wlt−ρwlt−1)
′Qw(wlt−ρwlt−1)

Similarly, the log of the conditional posterior density of φ0 (upto an additive

constant) is given by:

log π(φ0|.) = log π(φ0) −
r

2
log(|S0|) −

1

2

r
∑

l=1

1

σ2
l

wl0S
−1
0 wl0.

When the prior distributions π(φ) and π(φ0) are assumed to be discrete that

the above conditional posterior distributions are also discrete having the same

mass points as those of the prior distributions. However, when the prior dis-

tributions are continuous we use a Metropolis-Hastings random walk algorithm

to sample from these conditional distributions. This algorithm is tuned to have

an optimal acceptance rate between 20% to 40%, see e.g., [53]. The algorithm

is implemented on the log-scale for φ, see [54] for further details.
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Knot size 26 40 60 107 138

RMSE 6.31 6.19 6.17 6.07 6.06

MAE 4.58 4.48 4.44 4.37 4.36

Table 1: Values of the two validation criteria for different knot sizes for the four states

example.

Parameter Mean SD 2.5% 97.5%

ARHIER

Intercept 4.447 0.061 4.346 4.541

Max.Temp. 0.016 0.001 0.013 0.018

RH –0.314 0.010 –0.325 –0.302

WDSP –0.061 0.002 –0.065 –0.057

ρ 0.523 0.002 0.519 0.526

σ2
ǫ 0.056 0.001 0.055 0.058

σ2
η 0.537 0.038 0.527 0.540

φ 0.0120 0.0006 0.0119 0.0121

ARGPP

Intercept 6.353 0.056 6.224 6.445

MaxTemp 0.060 0.001 0.057 0.063

RH –0.179 0.009 –0.198 –0.160

WDSP –0.033 0.001 –0.036 –0.031

ρ 0.102 0.003 0.095 0.109

σ2
ǫ 0.169 0.001 0.167 0.171

σ2
w 0.457 0.004 0.449 0.466

φ 0.0036 0.0001 0.0030 0.0041

Table 2: Parameter estimates of the two AR models.
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P G P+G RMSE MAE Coverage (%)

Full 90,807.32 41,077.80 131,885.10 6.82 5.04 93.50

GPP 40,893.51 28,143.46 69,036.97 6.07 4.37 92.88

Table 3: Model comparison results for the ARHIER and ARGPP models.

Knot Sizes

269 156 105 68

RMSE 6.41 6.42 6.78 7.09

MAE 4.73 4.75 5.02 5.26

Table 4: Two model validation criteria for different knot sizes

Mean sd 2.5% 97.5%

Intercept 6.817 0.101 6.604 6.991

MaxTemp 0.027 0.001 0.025 0.029

RH –0.243 0.004 –0.251 –0.234

WDSP –0.009 0.002 –0.013 –0.006

ρ 0.132 0.002 0.128 0.136

σ2
ǫ 0.266 0.001 0.265 0.267

σ2
w 0.729 0.014 0.708 0.770

φ 0.0018 0.0001 0.0017 0.0019

Table 5: Parameter estimates of the fitted GPP based AR model for the eastern US

data.

Annual 4th highest 3-year average

Kriging Model Kriging Model

RMSE 5.41 5.24 4.27 4.21

MAE 4.38 4.17 3.51 3.36

Table 6: Two validation criteria for the annual ozone summaries
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NAMS/SLAMS sites
CASTNET sites
Validation sites
Meteorological sites

Figure 1: A map showing the locations of the ozone concentration and weather mon-

itoring sites.
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Figure 2: Boxplot of daily maximum eight-hour ozone concentration levels by years.
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Figure 3: Time series plots of the ozone concentration summaries from 691 sites: (a)

annual 4th highest maximum and (b) 3-year rolling average of the annual 4th highest

maximum.

Fitted sites
Validation sites
Meteorological sites
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Figure 4: A map of the four states: Illinois, Indiana, Ohio, and Kentucky show-

ing 164 ozone monitoring sites consisting of 148 fitting and 16 validation sites, 88

meteorological sites and 107 knot locations.
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Figure 5: A map of the eastern US with 156 knot points superimposed.
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Figure 6: Scatter plots of the prediction against the observed values, (a): annual 4th

highest maximum, (b) 3-year rolling average of the annual 4th highest maximum.

The y = x line is superimposed.

30



70

75

80

85

90

95

100

79

81.9

62

91.9
68.576.1

105.5

9990.1

68.9

63.2

81.9

69.8

78.6

89.9

87 87.2

68.6 76.9

82.5

74.2

82.5

86

97.5

95.9

66.9
63.1

63.7

77.8
63.8

88.478

74.4

76.4

100.2

82

82.2

72.5

63

79.2

95.9

61.5

73

73.6

79.6

80.9
74.6

84.495.4

90.4

87.2

73.1

64.5

69

68.4

(a)

70

75

80

85

90

95

100

105

94

98.1

68.5

86.1
71.874.8

92

10298.8

93.1

76.4

97.9

85.2

88.1

96.4

98.2 99.8

73.6 83.9

78.9

76.2

91.6

89.7

103.5

100.5

79.4
66.5

68.4

48.5

86.5
85.4

91.582.5

84.5

77.6

84.4

90.2

89.9

72.5

64.8

82.5

91.9

71.5

82.2

94.2

79.5

96.5
95.8

79.896.4

96.5

103.4

77

76.1

77.5

62.5

88.2

83.6

(b)

75

80

85

90

95

100

105

91

85.6

73.8

96.1
73 77.1

106.2

97.897.1

75.4

69.6

86.1

76.8

81.6

103

102.5 90.5

75.2 94.2

80.5

80.9

100.1

90.5

89.6

96.6

68.8
76.9

74

58.5

98
81

88.880.1

83.1

80.9

101.5

97.5

89.5

73.8

68.6

82.1

84.2

74.8

82.1

90.1

84.2

82.2
84.6

9191.5

90

94.6

85.8

86.6

84.2

65.6

94.9

83.8
89.2

(c)

65

70

75

80

85

90

95

100

77.2

88.5

80

91.9
71.188.3

90.1

93.994.2

75.9

55.5

82.9

76.4

80.1

97.5

98 90.8

71 68.8

67.6

80.4

83.2

91.6

85.2

90

75.2
72.6

71.4

61.4

82.5
78.4

98.981.1

80.6

63.6

83

81

72.5

66.3

61.4

80.5

84.4

78

73.8

85.1

82.2

91.5
90.4

71.192.6

82.4

95.2

72.6

65.6

73.1

59.4

84.8

79.2
82.5

93.6

(d)

70

75

80

85

90

95

100

83.2

75.8

72.6

92.2
62.1 78

96

91.488.8

79

72.2

83.6

67.9

78.1

86.2

85.4 81.6

78 73.2

77.8

71.9

84.9

82.6

86.9

88.8

78.2
69.9

63.8

58

71.6
75.8

75.271.9

74.4

84.1

105.8

91.6

91.2

73.7

57.2

77.8

73.8

69.5

82

102.4

85.6

88.6
76.9

79.687.2

97.2

87.9

88

75.5

69.1

68.2

79.9

70.9
74.9

84.4

(e)

60

70

80

90

100

83

75

78.8

100
74.182.5

109

94.597.8

69.4

49.9

71.1

70.1

75.9

93.5

95.6 91.4

82 82.8

94.1

89.8

100.2

93.8

100.8

101.1

78.1
70.1

65.2

59.6

92.8
82.2

75.570.1

73.4

88.1

93.2

86.1

88.2

71.8

64.8

72.1

83.5

78.9

89

105

94.1

95.9
90.8

95

103.9

94.2

84

66.8

73.2

68.4

80.8

74.1
74.8

76.5

(f)

60

70

80

90

71.6

71.5

64.1

84.8
58.971.2

85.2

8479.9

68.6

50.8

78.2

67.6

74.4

80.5

83.8 74

71.4 75.6

77.2

77.5

83.6

90.4

90

101

73.2
68

63.2

51.1

72.1
62.7

74.877.2

70

69.8

89.6

89.1

87.1

71.1

59.4

65.5

85.2

67.4

73.8

92.8

95.6

81.5
70.9

82.183.1

99.5

82.8

77.1

68.5

74

58.1

72.2

69.5
68

77.4

(g)

60

65

70

75

80

85

71.6

74.8

59.9

78.6
59.972.4

86

75.480.5

75.5

51.1

77.1

69.8

76.8

86.1

84.8 80.6

63.2 62

65.5

70

73.9

69.2

74.6

75.8

71.2
64

58.6

58.9

62.2
60

82.574.8

75.8

70

83

75.1

75

62.9

55.6

67

67.4

62

77.2

79.4

69.9
66.1

72.170.9

81.9

70.6

60.9

64.1

61.1

68.5

71
71.2

70.6

(h)

65

70

75

80

85

90

71.6

70.8

60.9

96.5
86.5

104.4

81.277.9

67.5

59.4

76.9

68.2

84.6

82

87 80.9

76.1 73.4

84.8

86.4

86.9

80.4

87.8

80.1
73.5

62.5

72.5

69.4

80.868.9

69.2

70.6

87.9

86.8

77.3

77.1

66.1

74.9

79.6

69.8

90

78.4

72.6
72.8

93.2

79.9

70.1

73.5

57.4

76.6

67.4
74.4

82

(i)

65

70

75

80

85

90

74.1

85.5

67.6

89.8
78.8

87.9

85.483.4

72.2

70.6

76.8

73

77.9

77.2

96.1 83.1

71.1 64.4

78.4

75.8

73.9

79.6

77.6

75
63.9

59.6

69.8

63.1

88

65

82

80.6

72.5

72.6

63

78.5

91.4

67.2

83.8

71.6

67.9
75.4

86.8

66.1

65.2

66.8

60

76.2

63.5
79.2

82.9

(j)

Figure 7: Model based interpolation of the annual 4th highest maximum ozone levels

for 10 years, panel (a) for 1997 to panel (j) for 2006. Observed data from a few

selected sites, to enhance readability, are superimposed.
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Figure 8: Model based interpolation of the 3-year rolling average of the annual 4th

highest maximum ozone levels for 8 years, panel (a) for 1999 to panel (h) for 2006.

Observed data from a few selected sites, to enhance readability, are superimposed.
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Figure 9: Relative percentage trends for the meteorologically adjusted levels for the

year 2006 relative to 1997.
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Figure 10: Model based interpolated maps of the probability that the 3-year rolling

average of the annual 4th highest maximum ozone level is greater than 85 ppb for the

years 1999 panel (a) to 2006 panel (h). Observed 3-year averages from a few selected

sites, to enhance readability, are superimposed.
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