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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES
ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Market-based Task Allocation in Distributed Satellite Systems

by Johannes Gerhardus van der Horst

This thesis addresses the problem of task allocation in a distributed satellite
system. These spacecraft specialise in different functions, and must collaborate
to complete the mission objectives. The energy available for task execution
and communication is, however, extremely limited, which poses a challenging
design problem. I propose the use of a market-based, multi-agent approach to
achieve the necessary macro-level behaviour. The development and verification
of this allocation mechanism constitutes the first major objective of this thesis.

Although numerous examples of task allocation in related systems exist, I
found a worrying disconnect between our general, theoretical knowledge of task
allocation, and the specific application thereof. General analyses of abstracted
task allocation exist, and specific implementations have been constructed in a
heuristic way, but very little work navigates between these two extremes. My
second major objective therefore contributes to mapping the problem space.

The proposed task allocation mechanism is based on human labour markets
in order to obtain similar robustness and flexibility. It uses fully distributed
auctions to efficiently allocate tasks in volatile networks, without any global
knowledge of the system state. The energy required for communication is con-
stant, irrespective of the size of the network, resulting in a highly scalable
allocation mechanism.

To find the area in parameter space where market-based control is the more
suitable solution, when compared to a centralised approach, I characterised the
allocation mechanism in terms of network size, node failure rate, and robust-
ness. The relationship between communication cost and topology is explored
by looking at the overheads associated with different static topologies, and the
impact of communication distance. The ability of the allocation mechanism to
cope with realistic Keplerian dynamics is also confirmed. Finally, I investigate
the difference in performance between the allocation mechanism, as an exam-
ple of a cooperative market, and a competitive scenario where adaptive agents
compete to maximise their revenue. Results show that competitive markets are
subject to positive feedback loops which can result in inferior performance for
sparsely connected and heavily loaded networks.

This exploration of the system parameters is treated as a traversal of the
problem space, resulting in an emergent taxonomy of both problem and solution
elements.
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1

Introduction

This thesis is about coordinating a group of satellites that need to collaborate to

complete mission objectives. It may come as a surprise then, that my discussion

does not start with satellite design or orbital mechanics, but rather with the

work of Adam Smith on markets, because the challenge of managing such a

group of satellites is fundamentally a labour allocation problem.

In Adam Smith’s Wealth of Nations he identifies the division of labour as the

driving force behind increased productivity in economies. Specialisation also

results in greater interdependence: individuals in the economy have to rely on

others in their vicinity to supply the skills they don’t have (Slater and Tonkiss,

2001, Chapter 1). This leads us to the problem of the allocation of labour:

given the choice of a number of potentially suitable specialists, which one is best

suited to the task that needs allocating? Even if they are identical in terms of

skills, factors such as location, availability, reputation and coordination effort

can influence the decision. This is, in a nutshell, what this thesis investigates.

Given a dynamic community of specialised individuals and a stream of incoming

work, what system can we devise that would allocate tasks in an efficient and

effective manner?

Although an economy is perhaps the most obvious example, it is by no

means the only system where the allocation of tasks is a challenge. Social

insects, such as ants, termites and bees, display specialisation into different

castes with different roles. Tasks are clearly not allocated in any centralised way,

and yet an effective division of labour is achieved through the parallel activities

of largely autonomous individuals and the use of rather simple communication

mechanisms, e.g., for the recruitment of foragers to a new food source. The

colony as a whole can thus be viewed as a superorganism: an intelligent agent

in its own right with lifespan and abilities far exceeding that of its component

individuals (Oster and Wilson, 1979).

While the above examples display distributed coordination, many human

approaches to task allocation, such as governments and military organisations,

1



1. Introduction

rely on centralised or hierarchical command structures. In these systems knowl-

edge is transmitted to and analysed by a central authority — or multiple points

in the case of a hierarchical system — before the optimal course of action is

decided upon. Individuals are of limited autonomy and have tasks assigned to

them by a superior who is assumed to be in a more information-rich position.

The above systems vary in their structure and implementation, but they all

have task allocation as a core function, and as such have served as models for

designers facing similar allocation problems in the construction of technological

systems. The centralised approach has traditionally dominated in this sphere;

it may be that the idea of a single mind or coordinator fits most comfortably

into the patterns of Western thought (Resnick, 1997). In recent years interest

in decentralised systems has increased significantly with the hope that they

can provide us with ways of coping with our own increasingly complex and

interdependent technological systems. Interest in market-based coordination

(Smith, 1980; Huberman, 1988), swarm intelligence (Bonabeau et al., 1999) and

ant colony optimisation (Dorigo et al., 1996) has been growing steadily since the

1980s. These techniques are not only useful for solving existing problems: they

can also provide us with control methodologies for systems that have yet to be

realised, where scalability, robustness and self-organisation are highly desirable

characteristics.

1.1 The problem

This study is primarily motivated by the challenge of managing one such tech-

nological system; namely distributed satellites. Spacecraft have traditionally

consisted of monolithic structures. A positive feedback loop has driven these

designs to grow ever more complicated: to maximise value and reliability of al-

ready expensive projects, progressively more complex designs were developed.

This in turn increased development time, which further increased cost. To

counter this trend, the use of a number of modular, free-flying spacecraft has

been suggested (Brown et al., 2006; Barnhart et al., 2007). Costs are kept down

by keeping the spacecraft simple; this in turn means they can only complete

mission objectives by collaborating. Some of the spacecraft provide infrastruc-

ture, such as data processing or communication with the ground station, while

others fulfil payload functions, e.g., earth observation.

This approach offers numerous benefits, most of which translate to a greater

return on the money invested. The system as a whole is made more robust by

using redundant units, eliminating single points of failure and thus providing
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graceful degradation when component satellites fail. Resource sharing increases

efficiency by optimally utilising redundancy in the system. Risk can be lowered

by using multiple launches to deploy the system. Very large formations can

be formed in orbit, providing much larger structures than are feasible using

conventional approaches, which allow novel approaches to sensing. Significant

progress is being made in miniaturisation (Vladimirova et al., 2006; Barnhart

et al., 2006) and formation flight (Mueller and Thomas, 2005; Ferguson and

How, 2003) but a number of challenges still remain, including the question of

how to manage such an organisation of spacecraft.

Mission objectives can be decomposed into tasks that are executed by differ-

ent satellites. These tasks need to be allocated efficiently, while taking satellite

capabilities, their limited power and constrained communication into account.

Allocation is further complicated by changes in the group topology due to or-

bital mechanics, as well as the possibility of failure of individual nodes. The

scale of the system, ranging from tens to hundreds of satellites, may necessitate

spacecraft autonomy, but the system must still reliably complete the desired

mission objectives.

The complexity of this problem suggests the use of techniques based on bio-

logical or social complex systems. Market-based mechanisms offer a promising

solution to this allocation problem, in particular, the model of a labour market

seems very well-suited. In both distributed satellite systems and real-world

markets, individuals have to deal with limited information, changing communi-

cation topologies, and spatially distributed agents. In addition, the robustness

gained from having no central controller and the adaptive nature of the market

are extremely attractive properties for a satellite application. With this ap-

proach, component satellites bid for jobs that they are capable of completing.

By using their energy levels to calculate the bid value, they communicate their

relative fitnesses to the allocating satellite. Topological information is added

to the bid price by the spacecraft that relay bids, thereby helping to localise

allocation and minimize the amount of energy spent on communication.

This problem of how to manage such a system is what originally attracted

me to this area. However, I soon came to realise that the field of multi-agent

systems is not yet at the stage where a reliable, over-arching methodology has

been defined and validated, resulting in an alarming proliferation of systems

that are of relatively little use to others facing similar problems (I was by no

means the first one to come to this conclusion; see e.g., Chapter 10, Wooldridge,

2002). This led me to view my design process as part of the exploration of a

greater problem space. By understanding the implications of design decisions
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and constraints, we can relate different systems in this space, thereby contribut-

ing to the development of a responsible methodology for the field.

1.2 Traversing the problem space

The challenge of task allocation in a distributed satellite system sounds like a

traditional engineering problem: a number of physical and technical constraints

need to be taken into account by making a series of design decisions to satisfy a

set of operational requirements. One approach, popular in practice in the field

of multi-agent systems, would be to treat this as effectively a stand-alone prob-

lem. We begin with such theory as is available, and proceed guided by intuition

and experiment until we have a system that works well enough. The pressure

to produce a working system often precludes efforts to relate the particular case

to a more general theory of multi-agent systems.

But what happens if a similar, but slightly different problem needs to be

solved? Intuition suggests that a significant portion of one solution should be

applicable to closely related problems. But which portions? Will the design

decisions that had a satisfactory outcome in one context necessarily do the same

in another?

In surveying the literature relevant to the problem of task allocation in

distributed satellite systems, a large number of closely related applications came

to light. Spanning the fields of mobile robotics, distributed computing, wireless

sensor networks and logistics, these applications all share some characteristics

with the problem at hand. Given this multitude of specific cases, one would

expect to find a layer of work relating these solutions and abstracting them into

a generalised set of design guidelines and tools to better understand problems

and engineer applications. This space is, however, remarkably empty.

Of course the field of multi-agent systems is not devoid of theory, but the

most successful theoretical contributions are extremely abstract and concerned

with underlying principles, e.g., rational choice theory, game theory and logic.

However, mappings from abstract algorithms and mathematical performance

proofs to actual implementations that take into account the messiness of the

real world are few and far between.

Thus the field has a bimodal distribution of work, some of it very spe-

cific and some of it very general. This is graphically represented in Figure 1.1.

The management of data in the distributed databases system Mariposa (Stone-

braker et al., 1994) is an example of a specific problem, while a microeconomic

explanation about the optimality of markets would be a corresponding entry
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on the general side of the spectrum. We could describe work that progresses

from top to bottom as science, while moving in the opposite direction, from the

general to the specific, is engineering.

Specific
(Application)

General
(Theoretical)

EngineeringScience

Figure 1.1: Work related to task allocation in multi-agent systems can broadly
divided into two categories: application specific engineering problems (small
circles), and abstract, general theories and proofs (large circles). The space
between these poles is quite empty, apart from some taxonomies and a few
attempts at agent design methodologies: we still do not really know how to
design these systems. The work in this thesis traverses a section of this space,
as indicated by the blue arrow. This allows the design process to be utilised as
a way of exploring this space, as shown in more detail in Figure 1.2.

The central area is not completely empty; work that falls into this sec-

tion includes some taxonomies (Dudek et al., 1996; Gerkey and Matarić, 2004;

Lau and Zhang, 2003) that seek to generalise from specific problems, as well

as attempts that start from the theoretical end, e.g. Wooldridge (2002) and

Ehrentreich (2007). These efforts can be visualised as a slow vertical creep

from both the lower and upper clusters, in the hope that they will eventually

meet in the middle. The sparsity of the central zone implies that we still don’t

really know how to construct a good multi-agent system for a specific prob-
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lem. The vast majority of currently constructed systems appear to be based on

what the designers know, which intuitive approaches are naturally suggested

by the problem, what is currently fashionable, and what is readily fundable.

This approach does not contribute as much as it could to developing a prin-

cipled design methodology. However, a design methodology for such a large

and diverse problem space can not be developed overnight; instead it must be

preceded by diligent mapping of relationships between problems and solutions,

and other closely related problems and solutions. This map forms a necessary

first step towards the design methodologies that we need.

1.2.1 The design process

In designing a task allocation process for a distributed satellite system a portion

of the space in Figure 1.1 needs to be traversed, as represented by the marked

arrow. Figure 1.2 displays an abstraction of the process in more detail. An

initial model is constructed by drawing on available theory (e.g., social models

of task allocation, theory of auctions, etc.).

This model is general and can be applied to a number of related problems

in the field. The design process involves refining it by focusing in on a specific

problem — we take into account successively more detailed constraints and

commit to favoured design decisions at each stage. If we traverse Figure 1.2

from bottom to top, the breadth of our coverage narrows and we see that whole

families of systems are progressively eliminated from our consideration. If we

were to follow any one of these branches, we would reach a different point in

problem space. One of the outcomes of this approach is thus an emergent

taxonomy of closely related problems and suitable solutions.

The targeted problem of task allocation in distributed satellite systems is

very much a point on the specific side of this spectrum. I believe a signifi-

cant contribution can be made to the sparsely populated space in the middle

of Figure 1.1 by the design process outlined above. Even though this thesis

works up to a specific application, the contribution of significance to the wider

community is through exploring a problem space.

1.3 Objectives and overview

In the discussion thus far, I have identified the two major objectives of this

thesis, namely:

1. to develop a market-based task allocation solution for managing a dis-

tributed satellite system
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Abstract model

Target
Application

Design decision 1

Design decision 2

Design decision 3

Constraint 1

Constraint 2

Constraint 3

Related
Application 1

Related
Application 2

Figure 1.2: The design process can provide an emergent taxonomy of related
problems. As we refine a general model to be more specifically applicable, we
make design decisions and take constraints into account. These branches can
lead to different, but related points in the problem space.

2. to position my specific solution in a larger problem space describing the

allocation of complex tasks in dynamic environments with costly commu-

nication.

The first objective is primarily a design and engineering problem, but I believe

the design process can be used to help bridge the gap between our abstract

models of task allocation and the numerous applications where it is required

— this will be discussed in more detail in Chapter 2. We can now proceed to

a detailed discussion of how these objectives are met.

In Chapter 2, I explore the background literature relevant to this study.

An overview of the current state of distributed satellite systems is followed

by a discussion of task allocation in multi-agent systems. An important point

noted in this chapter is that work on task allocation in systems consisting of

multiple interacting agents seems to fall in either the abstract or specific camps

in Figure 1.1, with relatively little work falling between them. Completing my

second objective above is synonymous with providing analyses at intermediate
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levels of abstraction.

The specific design problem, namely task allocation in a multi-satellite sys-

tem, is addressed in Chapter 3. I develop a reference mission which allows us

to clearly identify the constraints on the system and the requirements for the

task allocation mechanism. An abstracted model of a human labour market

is used to develop an allocation model. This model is then mapped back to

the satellite problem, to define the market-based allocation model that is used

extensively throughout the rest of the thesis.

The behaviour of the market-based model is explored in more detail in

Chapter 4. By working through the allocation process and testing it on simpli-

fied problems, we verify that the system is indeed well-suited to the problem at

hand. The simplicity of the scenarios tested facilitates understanding of how

and why this approach is successful.

The subsequent three chapters are all concerned with what happens when

we change major parameters in the system. This realises the methodological

approach explained in Section 1.2.1. Essentially, what I am working towards is

a characterisation of which parts of a solution could stay constant and which

parts would have to change as we move along various axes in problem space.

Specifically, Chapter 5 describes the process used to find the space where

decentralised market-based control should be preferred above using a central

allocator, and vice versa. It is widely assumed that centralised allocation is

better suited to small systems, while distributed approaches make more sense

in large systems. Distributed satellite systems, however, fall between these two

extremes, with neither approach obviously superior. In this chapter I explore

this grey area by using an analytical description of the task allocation cost in

combination with simulation. The focus is not on proving the market-based

task allocation approach absolutely superior, but rather to acknowledge that

different approaches are required for different regions in the problem space.

The role of network topology is investigated in more detail in Chapter 6, as

it has a significant impact on task allocation success and the resulting allocation

overhead. I measure the costs associated with different spatial topologies. I then

explore the trade-offs between connectivity, system performance and energy

costs. The focus then shifts to the satellite domain to develop a mobility model

of a network subject to orbital mechanics. This is used to verify the performance

of the allocation mechanism in a realistic, dynamic environment.

The final modelling chapter, Chapter 7, addresses the fact that all the mod-

els up to this point have been cooperative. This is in contrast to real-world

markets, where agents are self-interested. I therefore compare the performance
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of the proposed task allocation mechanism against allocation in a competitive

market. This requires the development of an autonomous trading agent for

single-sided auctions in distributed markets with limited information. Experi-

ments show that the positive feedback integral to a competitive market results

in a worse allocation, especially for sparsely-connected communication topolo-

gies.

Chapter 8 reviews the results of the modelling chapters and considers the

implications for distributed satellite systems in particular, and for multi-agent

systems in general.
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2

Background

This chapter reviews the background literature applicable to task allocation in

distributed satellite systems. It provides an overview of the related work and

motivates the methodology employed, but most importantly it serves to affirm

the relevance of the primary objectives of this thesis. Firstly, the allocation of

labour in distributed satellite systems is a real problem that needs addressing:

traditional approaches to control as generally used in spacecraft engineering

fall short for various reasons. Secondly, it illuminates a serious shortcoming in

the literature relevant to task allocation in multi-agent systems, namely that

very little work bridges the gap between the general theories relevant to task

allocation and the specific application examples: we still don’t really know

how to construct these systems. I propose using the design process of a task

allocation mechanism to help connect these extremities.

The discussion starts with literature directly relating to satellite technology

to identify the constraints of the problem. It then moves on to a discussion

of multi-agent systems, positioning this thesis as using a multi-agent paradigm

to address a problem. A market-based approach to task allocation appears

very well suited to the specifics of the situation. The chapter concludes with a

discussion of the state of task allocation as a field, identifying the shortcomings

we are currently facing.

2.1 Distributed satellite systems

Since the launch of Sputnik in 1957 spacecraft sizes have been pushed up by

steadily increasing requirements. This has been accompanied by a correspond-

ing increase in development time, complexity, risk and cost (Barnhart et al.,

2007). To escape this trend, a drastic shift in mindset is required: instead of

treating a spacecraft as a monolithic structure, we can split it into a group of

smaller, simpler and less expensive satellites that collaborate to achieve mission

objectives. The advantages offered by such a configuration include improve-
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ments in performance, cost and survivability when compared to missions that

use single satellites (Brown and Eremenko, 2006).

2.1.1 Types of distributed satellites

Shaw (1999) defines the term distributed satellite system to be a system of many

satellites designed to perform a specific function in a coordinated way. This

includes several different types of mission configurations. “Distributed satellite

systems”(Bridges and Vladimirova, 2008) can be used as an umbrella term for

all of them, including:

Formation flight: Keeping spacecraft flying together with high accuracy, for

example as required for synthetic aperture radar applications (Mueller

and Thomas, 2005; Thanapalan and Veres, 2005; Ferguson and How,

2003).

Satellite clusters: Spacecraft that fly together in loose proximity to collabo-

rate on a mission (Lee et al., 2005). The exact position of the spacecraft

is not critical, but the individual spacecraft all contribute to the mission.

Fractionated spacecraft: The subsystems of a spacecraft are divided into

separate craft. These units have limited, but specialised capabilities, but

by cooperating can they perform as a single “virtual spacecraft” (Brown

and Eremenko, 2006).

The defining characteristic of all these systems is the use of multiple, interacting

satellites to satisfy a global demand. As soon as the satellites become inter-

dependent, the problem of task allocation in the multi-satellite environment

needs to be addressed.

2.1.2 Missions

TechSat-21 was a U.S. Air Force program that aimed to investigate the bene-

fits of a distributed satellite system. By distributing functionality over system

components, it was hoped to reduce costs and increase reliability. The pri-

mary mission objective was space-based radar, moving target indication and

geo-location (Burns et al., 2000; Chien et al., 2002). The program was can-

celled when funding was stopped. As part of the research, the “ObjectAgent”

infrastructure for distributed flight software was developed. Control is divided

in a hierarchy of agents, with increasing intelligence for higher level agents. The

agents exert centralised control over their respective domains; for example task

allocation, formation flight or sensing decisions. Redundant instances of agents,
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which are maintained on other spacecraft, are activated in case of component

failure (Mueller and Brito, 2003; Schetter et al., 2000; Zetocha et al., 2000).

DARPA’s System F6 program — Future, Fast, Flexible, Free-Flying, Frac-

tionated Spacecraft united by Information eXchange — serves to demonstrate

the technological and paradigmatic aspects of the responsive nature of frac-

tionated satellites. In a fractionated satellite the functional components of a

monolithic satellite, such as payload, power systems, data processing, com-

munication, etc., are separated onto free-flying spacecraft. These component

spacecraft have to share resources transparently to appear functionally equiv-

alent to the original design. The use of heterogeneous, interacting spacecraft

modules makes management of the system significantly more complex than

the relatively simple TechSat-21 mission. This should provide mission flexibil-

ity and responsiveness, as well as further improvements in robustness (Brown

et al., 2006).

The available information indicates that the System F6 program is pursu-

ing a networking model similar to that of the internet, with high power and

high bandwidth connections between satellites, which will greatly simplify the

control strategy (DARPA, 2010; Lobosco et al., 2008). Although System F6

is extremely promising as a potentially disruptive technology that can change

the face of the space industry in years to come, its strong focus on the benefits

of fractionation itself appears to overshadow consideration of the advantages

that collaborating spacecraft can provide. The relatively generous capabilities

of the first generation of spacecraft might lead to a management strategy that

limits its relevance to smaller spacecraft.

Bekey (2005) proposes the use of 1 000 to 100 000 free-flying pico-satellites

to form a radiometry antenna in geostationary orbit. A central receiver satel-

lite serves as a communication link to the ground. The control issues created

by the satellites are not explicitly addressed, but the design implies minimal

intelligence and decision-making on the part of the pico-satellites.

The von Karman Institute for Fluid Dynamics has initiated the QB50

project, an international network of 50 pico-satellites for multi-point measure-

ments of the thermosphere (QB50, 2010). The three to six month duration

makes the use of traditional spacecraft prohibitively expensive, instead they

plan to use the low-cost CubeSat platform (Heidt et al., 2000). A single Cube-

Sat has limited capabilities due to its small size (10 cm x 10 cm x 10 cm),

however, by equipping a group of satellites with identical sensors, they can still

be used for scientific purposes. The reliability of individual satellites is not a

critical concern, due to the large number deployed.
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2.1.3 Systems engineering

A major challenge is raised by these systems: how should we go about designing

them? Some attempts have been made in this direction, but in my mind the

matter yet is to be satisfactorily addressed. Part of the problem, I believe, is

that we still have not decided how the component satellites should interact.

Jilla (2002) investigates a systems engineering approach that can be applied

to distributed spacecraft systems. A large parameter space needs to be searched

to find a good solution; this makes enumeration and analysis impractical, and

multi-objective heuristics are used instead. This provides design teams with a

tool that can identify the most promising areas of the design trade space. Al-

though not explicitly addressing task allocation, the team composition question

covered here is important to my work.

An alternative view, suggested by Shaw (1999), is to treat the group of

satellites as an information network: all satellites are essentially involved in

collecting, processing and publishing of information. By analysing the system

in terms of the information flow, cost metrics can be developed. These metrics

provide a valuable tool for engineering these types of space systems. This

view shares some similarities with the task allocation approach suggested in

chapter 3, although my focus is more on energy consumption: all spacecraft

are networked individuals that process information.

2.1.4 Task allocation

A limited amount of literature exists that deals explicitly with task allocation in

a distributed satellite system. One example is the stigmergy-based task man-

agement system proposed by Tripp and Palmer (2010). The ground station

publishes a number of tasks to all satellites in the system, they then select

which ones to execute based on their own workload, the tasks that had been

earmarked by other satellites for execution, and the tasks that had been ex-

ecuted in duplication during the previous round. No direct communication

exists between the satellites, but they all need to interface to the ground sta-

tion. This approach results in a performance trade-off between decreasing the

duplicate execution of tasks and minimising the response time. The weighting

of these factors can however be changed rapidly while the system is online, to

respond to changing mission objectives. The ad-hoc task allocation also makes

the system robust to satellites joining or leaving the group. The authors argue

against the use of negotiation-based allocation mechanisms on the grounds that

the communication cost of negotiation is too high. I will show in chapters 3

and 5 that this is not necessarily true. Despite the potential of this approach it
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falls short in a number of ways, some of which will be addressed in this thesis.

The question of increasing the number of spacecraft in the system is, in my

opinion, only partially addressed. Although the authors suggest the use of a

hierarchy of spacecraft to cope with scaling, the behaviour of the allocation ap-

proach in systems with more than 18 agents is not demonstrated. In addition,

the spacecraft considered were fairly homogeneous: variation in individual be-

haviour was allowed, but the capabilities of the spacecraft were the same. Tasks

have different priorities, but are not constrained in where they are executed.

These aspects will be addressed more completely in this thesis.

The work of Si-wei et al. (2010) is also relevant, although limited information

is available: they present an extension of the contract net protocol (Smith, 1980)

for managing the behaviour of observation satellites. The bids are calculated to

take the available resources (energy, memory, abilities) and task characteristics

into account. To decrease communication cost, auction announcements are

only propagated to a subset of the satellites in the system. Allocation success

is demonstrated through simulation in a system consisting of seven satellites.

The use of a market-like mechanism appears well-suited to task allocation in

these systems, as discussed in section 2.4. However, the contribution made

by this paper is limited: the implementation overlooks a number of potential

problems such as local communication and true scalability.

2.1.5 Formation flight and control

In contrast to the relative absence of work on task allocation, the formation

flight and control problems have received significant attention. Wu et al. (2008)

use a multi-objective evolutionary algorithm to develop a routing scheme that

minimises signal delay and transmission power for communication between

satellites. It requires global knowledge of the system and is computationally ex-

pensive, limiting the responsiveness of the actual formation. Fully distributed

formation flight has been described by Pinciroli et al. (2008), where an artifi-

cial potential field is used to align satellites to a lattice. It achieves autonomy,

robustness and scalability by using a bottom-up approach. Self-organisation

has also been proposed in the in-orbit assembly of large structures (Ayre et al.,

2005; Izzo et al., 2005). None of the above work explicitly addresses task allo-

cation.

Mueller and Thomas (2005) use a multi-team framework for distributed

satellite cluster control. The cluster is divided into a hierarchical team struc-

ture as a compromise between fully centralised and decentralised approaches,

to decrease communication cost. Formation flight is managed in a distributed
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fashion using team level information instead of an accurate global state. For-

mation changes are handled by transmitting the desired state to all spacecraft

using the hierarchical structure. They reply with a cost vector that relates

to the remaining fuel percentage: the best assignment is determined by the

top-level node. However, team formation is not discussed (it is apparently con-

sidered static), nor is the control architecture applied to anything more than

formation flight — the payload functions of satellites are not considered.

2.1.6 Miniaturisation

The technologies used in construction of satellites determine the capabilities

of the resulting system. In recent years the use of products and processes de-

veloped for the consumer market in small satellites has increased dramatically.

Miniaturisation and integration of components decrease costs and reduce the

satellite mass (Vladimirova et al., 2006). This reduction in cost makes these

access to space much more affordable and accessible for small companies, ed-

ucational institutions and developing countries (Sweeting, 1992). Spacecraft

with a mass below 5kg have therefore become a realistic and much researched

goal — the extreme case of a satellite designed to be etched on a silicon wafer

is presented in Barnhart et al. (2007).

The capabilities of these satellites are necessarily more modest than those

of their larger cousins, both in terms of the mission possibilities and satellite

reliability. However, if these satellites are utilised in the distributed satellite

paradigm, they can also fill commercial and scientific niches, complementing

existing monolithic satellites (Barnhart et al., 2007). Currently, miniature

satellites serve as valuable educational tools: the low cost and relative simplic-

ity of a smaller spacecraft allow universities to expose students to the entire

spacecraft design cycle. For example, several universities have used CubeSats

as part of their curricula (Heidt et al., 2000). The low development and launch

costs of these satellites have also made them attractive as testbeds for flight-

testing new technologies and components without endangering high-value mis-

sions, as in the case of the QB50 mission described above, or as discussed by

Vladimirova et al. (2006).

However, the whole system does not scale equally well: power remains a

significant concern. Batteries are still heavy and relatively bulky, and with

decreasing surface area the availability of solar energy is also decreased. A

certain transmission power is still required to communicate with the ground

station, especially to download payload data.
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2.1.7 Discussion

The literature confirms that distributed satellite systems have an important

role to play in the space arena. Although the first steps towards these systems

have already been made, many challenges still remain. While mission design,

orbital dynamics and technological aspects have received some attention, ques-

tions surrounding the management of these systems have not been satisfactorily

addressed, thus confirming the relevance of my previously stated objective of

designing a task allocation mechanism for these systems.

In my opinion, a distributed system that consists of heterogeneous miniature

satellites holds great promise as an affordable paradigm for a significant segment

of the space market. However, this type of system requires an autonomous,

robust and adaptive management strategy that takes the constraints on the

system into account. Individual spacecraft have limited energy, which limits

their ability to communicate, both in transmission range and data volume.

Because wireless transmission consumes a significant amount of energy, it can

decrease the ability of the satellite to do useful work. However, it also needs

to communicate as collaboration is key to completing mission objectives. A

successful management strategy will allocate tasks in a manner that balances

these factors.

2.2 Multi-agent systems

In designing a mechanism that can manage such a distributed satellite system,

it may be tempting to focus on the characteristics of the individual satellites:

every one is a complicated electro-mechanical system in itself. While the en-

gineering of the spacecraft undoubtedly matters, I believe the design of the

system of spacecraft is even more important. The communication and interac-

tion between spacecraft to form an autonomous and robust whole is what makes

the distributed approach attractive in the first place. To design a distributed

satellite system, the design process should be focused on the system, not the

spacecraft.

The paradigm of multi-agents systems (MAS) provides a promising ap-

proach to constructing such a system: we define the interactions between agents

to achieve a global behaviour. Before rushing to the task allocation problem, I

would like to first situate it in a space populated by related systems. I firstly

show that task allocation is a very general problem encountered in a number of

natural systems: it should not be seen as confined to the technical realm, nor

should it be associated with a particular application. Despite these systems
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being apparently unrelated, the task allocation problems encountered are rec-

ognizably similar to that faced in a distributed satellite system. I then proceed

by classifying the multi-agent research area into three distinct directions, each

driven by a different motivation. Task allocation in distributed satellite systems

falls firmly into the segment interested in problem solving, but the overlap with

the subject matter in the other areas lend them some relevance.

2.2.1 A broad view

To encourage a system level view of the task allocation problem, I briefly discuss

three systems that accomplish it. Despite differences in function and organi-

sation, they all consist of a number of individuals, interacting with each other

and their environment, much like a distributed satellite system. These examples

come from biological and social systems; their variety illustrates the diversity

in possible solutions, ranging from highly decentralised control to strongly hi-

erarchical command structures.

In all of these systems task allocation is woven into the functioning of the

system. We are particularly interested in the structure and communication

mechanisms that allow these systems operate successfully. All of them have

evolved in response to specific environmental stimuli and the associated coordi-

nation problems. I deliberately chose non-technical systems to discuss here, to

place the focus on task allocation as a problem that is frequently encountered

in a variety of scenarios.

2.2.1.1 Social insects

Social insects, such as ants, termites and bees, present examples of societies that

are organised in a fully distributed manner, but manage to forage, reproduce

and survive, despite the lack of a single coordinator. Individuals interact locally,

based on local information, with complex group-level behaviour emerging at

a higher level. The colony as a whole can be viewed as a superorgansim: an

individual in its own right with survival and information processing capabilities

far exceeding that of its constituent parts (Oster and Wilson, 1979; Wilson and

Sober, 1989).

Individuals display morphological differentiation into castes, which each

caste fulfilling a specific role in the community. We also find task allocation

within castes, where specific members fulfil roles of varying complexity. An-

derson (2001) divided these into individual tasks, where an individual operates

alone; group tasks, where everyone is doing the same; team tasks, with distinct

subtasks that must be completed concurrently; and partitioned tasks, when
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subtasks must be completed concurrently. Communication is predominantly

local by using pheromone-based stigmergy, although more complex signalling

with higher informational content is also used, e.g., the waggle dance of honey

bees (De Marco and Menzel, 2005).

2.2.1.2 Markets

Markets allow buyers and sellers to exchange goods, labour and services. As

human society increased in complexity, with higher population densities and

better communication, markets have developed from physical places into a wide

variety of more abstract exchange structures. Some traditional mechanisms

such as Dutch flower auctions were retained, but we now also have markets that

are decoupled from physical goods and a physical location: modern derivative

markets, for example (Slater and Tonkiss, 2001). The properties of specific

markets are determined by the goods they trade and the communication and

transport connections between the traders. The market can be regarded as

“calculating” the allocation: for some problems and markets, optimal allocation

is possible. Markets encourage specialisation: by focusing on doing something

well, an individual can increase his returns. Economic agents in the system

therefore form a network of interdependencies, where everyone is reliant on the

other agents in the system.

Individuals are self-interested as they trade to primarily serve their own

needs, but this still results in an efficient global allocation of resources. If

unsatisfied demand exists in the market, a supplier will rise to provide it. This

lack of central control results in an extremely scalable system.

Money is a key enabler in this system. It facilitates exchange by being

highly substitutable, provides a standard for expressing value and allows for

storage of wealth. Additionally, through prices, it provides a level of infor-

mational abstraction between consumers and the chain of production (Cagan,

1958; Brunner and Meltzer, 1971). The abstraction allows us to, for example,

buy a cup of tea without having to take into account the long chain of suppli-

ers, from the tea plantation in India, through various intermediate agents that

provide shipping and packaging, to local retailers. All we do is decide whether

our valuation of a cup of tea is more than the asking price. By buying it we

then increase our personal utilities.

2.2.1.3 Military organisations

Organisations exhibit a wide variety of different forms of organisation, I focus on

military organisations because they are the polar opposite of the self-organising
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systems described above. Classical military command and control structures

generally display a strongly hierarchical topology. This structure relies on in-

stitutional authority, where one party perceives his or her relationship with

another to be institutionally established, where the appropriate interaction is

based on obedience. Information is transmitted to a central point (a higher

ranking officer), where it is combined with other information to make deci-

sions which in turn flow down the hierarchy for execution. Filtered information

is passed higher up the tree — the highest-level individual therefore has an

overview of the system, without having to cope with the large amounts of data

generated all over the organisation. To allow this abstraction, the lower-level

individuals are treated as being functionally equivalent and therefore largely

substitutable. The motivation behind this structure is to allow the deployment

of a vast number of units, while still maintaining the associated supply and

command chains.

Of course, this structure assumes good communication channels exist be-

tween the different levels of the hierarchy, even when units are spatially sepa-

rated. In fact, units with higher autonomy, such as special operations or guerilla

forces, usually operate in scenarios where communication is difficult or unreli-

able. To improve the reliability of the system, a line of succession is established

to maintain a command structure. If a high-level individual is killed or other-

wise prevented from making decisions, one of a predefined series of successors

assumes authority (Coakley, 1992).

2.2.2 Directions in multi-agent research

The above systems can all be regarded as multi-agent systems in the broadest

sense of the term: they consist of multiple agents that interact to form a greater

whole. A narrower definition of multi-agent systems is however more frequently

used, a definition that refers to the research field in computer science that arose

from distributed artificial intelligence.

The concept of an agent is fundamental to this field. As the name sug-

gests, the concept of agency is central, but a universally acceptable definition

is still under debate. The definition suggested by Wooldridge (2002, p.31) in

his introduction to the field provides a useful starting point:

“[an agent is] a computer system that is situated in some environ-

ment, and that is capable of autonomous action in this environment

in order to meet its design objectives.”

The most literal interpretation of a multi-agent system is therefore a system of
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such agents, interacting with each other and their environment. I will be using

this definition throughout the rest of the thesis when referring to a multi-agent

system.

Although it grew from an artificial intelligence (AI) base, the wide scope

of the field has also drawn researchers from the economics, distributed com-

puting, biology, political science and sociology communities, amongst others.

They brought with them a number of different perspectives on how multi-agent

systems can be utilised — e.g. Axelrod (2006) describes how agent-based mod-

elling builds bridges between different fields, with reference to his work on the

evolution of cooperation. While the different backgrounds provide a rich set of

ideas, they have also introduced some confusion: the objectives of multi-agent

systems for one research application are not necessarily the same as for another.

To address this, I have divided work in the field into three segments, accord-

ing to the motivation behind the research: intelligent agents, problem solving,

and agent-based modelling. These divisions are not exclusive, instead a large

amount of overlap exists between them. This thesis falls into the category

of problem solving, but some the work in the other segments is nonetheless

relevant.

2.2.2.1 Intelligent agents

At the time of writing, intelligent agents probably represents the most visible

portion of multi-agent systems research. The interest here lies in the intrinsic

properties of the agents themselves: how to manage with limited information,

how to force agents to be truthful, and how to respond to different environ-

mental signals. These agents are seen as representatives for their human owner,

and need to make similar decisions for them. When viewed in this manner, it

seems like a natural extension of traditional artificial intelligence research. A

fundamental assumption is that agents are self-interested, as introduced in the

seminal paper by Rosenschein and Genesereth (1985). This leads to a research

perspective that seeks to maximise the personal utility of a specific agent in a

multi-agent setting. The selfish nature of agents means game-theoretical ap-

proaches have been widely used to model and control the behaviour of agents.

Game theory has therefore become the dominant tool in this area; however, the

computational complexity of resolving large, multi-agent games can limit the

tractability of game-theoretic approaches.

The variety of multi-agent scenarios makes direct comparison of the different

agent strategies and implementations hard. The Trading Agents Competition

(TAC) (Wellman et al., 2003) presents a common ground for comparing agent
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performances. Having a published problem coordinates research effort and

provides a common metric for measuring performance. The classical variant of

TAC involves a travel shopping game, where traders combine flights, accom-

modation and entertainment into packaged trips for probabilistically generated

clients. The agents’ objective is to maximise the value of each trip. The re-

spective goods categories are traded in separate auctions through the day.

A wide range of agents have been developed, varying greatly in complexity

and specialisation. On the relatively simple end of the spectrum, we find agents

which result in realistic system dynamics, but with understandable interactions

— these types of agents therefore frequently also appear in agent-based mod-

elling work (Cliff and Bruten, 1998; Gjerstad and Dickhaut, 1998; Bagnall and

Toft, 2004). More complicated agents usually have strategies that are tailored

to specific scenarios, e.g., Gerding et al. (2007); Niu et al. (2008).

A more complete introduction to agent architectures is given in Wooldridge

(2002) and Shoham and Leyton-Brown (2008), while Kraus (2001) provides a

useful overview of different negotiation approaches.

2.2.2.2 Problem solving

An alternative approach to multi-agent scenarios is more interested in the ways

such a system could be used to address specific problems. In this approach the

functions of the individuals in the system do not interest the researcher as much

as their combined effect: it is the group-level behaviour that is the ultimate

measure of success.

In situations where the individuals cannot be fully controlled or trusted,

incentive-based approaches such as mechanism design (Hurwicz, 1973) can be

employed. This has been applied to real world problems, for example to de-

crease carbon dioxide emissions (Ellerman and Buchner, 2007). The difficulty

in doing it well is perhaps best illustrated by the auctions for wireless spectrum

licences, where governments wanted to maximise revenue. The allocation of 3G

licences in the United Kingdom was very successful (Binmore and Klemperer,

2002), while a similar auction for spectrum in Europe had a much smaller rev-

enue (Klemperer, 2002). The same principles have been used in markets of

electronic agents to encourage selfish agents to behave in a predictable manner,

primarily by incentivising truthfulness. However, the design of such mecha-

nisms remains an apparently delicate art, in many cases relying on assump-

tions such as individual rationality and complete information to succeed. In

some cases mechanism design is definitely needed to help order an otherwise

uncontrollable system, although in situations where the designer can control all
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functions a more direct approach to control is frequently sufficient.

A variant of the Trading Agent Competition Mechanism Design Tournament

focuses on market design. It is named CAT: an abbreviation for catallactics,

the science of economic exchange (Cai et al., 2009), and also the inverse of TAC

(the Trading Agents Competition). The tournament organisers provide a set of

traders that interact through a number of markets entered by competitors. The

traders decide in which markets they want to trade depending on the market

characteristics such as fees, pricing and clearing policy. The observations of the

2007 tournament are discussed in Niu et al. (2008).

In many technological systems the system designer is in the unique position

of being able to specify the behaviour of agents in the system. Although less

open than the systems described above, such systems are frequently easier to

manage. These agents can be seen as benevolent: although they may be self-

interested, they are as honest as the designer wants them to be, reveal as much

information as desired, and they follow the rules stipulated by the designer.

Of course, some independence is required to deal with the environment and

unforeseen events, such as failures, but the agents do not actively work against

the system designer. These systems can be managed using similar tools to

the open systems above (e.g., Rogers et al., 2004), but have also inherited the

legacy of distributed AI and distributed computing systems.

I believe the task allocation problem for distributed satellite systems can be

successfully addressed using the latter approach: a multi-agent system, where

nodes are autonomous and make selfish decisions, but work towards an im-

proved system state. Distributed task allocation is discussed in more detail

in section 2.4. Multi-agent systems as an approach to problem solving has

also been applied to coordination of robots, coordination of wireless sensor net-

works, routing in telecommunication networks, process control (Voos and Litz,

2000), as well as operations research. Some the more relevant applications are

presented in Section 2.5.

2.2.2.3 Agent-based modelling

The third component of research on multi-agent systems uses it as a tool to bet-

ter understand complex interactions in real-world systems. Researchers from

social systems (Moss, 2001; Gilbert, 2004), economics (Krugman, 1996; Tesfat-

sion, 2002) and biology (Emonet et al., 2005) are using simulated models to

test hypotheses and explore system-level behaviour.

One example of work in this area is the famous iterated Prisoner’s Dilemma

contest run by Axelrod and Hamilton (1981). The contest sought to under-
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stand how cooperation can arise in biological systems, between apparently self-

interested agents. Researchers from a number of fields submitted agents with

strategies that were pitted against each other.

In a broader sense, Gilbert (2004) argues for the use of agent-based mod-

els to simulate, investigate and understand complex social phenomena. Moss

(2001) similarly believes that agent-based models allow us to capture the source

of the properties observed at system level, unlike game-theoretical approaches

that primarily model these properties. Bedau (1997) makes probably the

strongest claim about multi-agent simulation: it is a necessary tool if we want to

study emergent system characteristics, as traditional mathematical or empirical

tools cannot be successfully employed. Agent-based models allow a construc-

tive approach to systems — instead of describing the behaviour of the system in

terms of abstract equations, low-level interactions between agents are defined

which lead to emergent global effects.

The work of systems modellers is of relevance primarily because it confirms

that man-made systems can exhibit desirable macro-level characteristics. In the

case of distributed satellite systems, we are particularly interested in robustness,

self-organisation and scalability. This also suggests that designing complex

technological systems requires simulation as part of the design process, to test

and understand the interdependencies between different components.

2.3 Decentralised task allocation

Task allocation is the process whereby a job is assigned to a particular agent

for execution. The challenge lies in matching the right agent to the right job,

to maximise global system performance.

The literature relating to decentralised task allocation spans several different

disciplines: multi-robot coordination, distributed computing, wireless sensor

networks, and operations research. The history and constraints of these fields

have largely determined the approaches followed. Task allocation in satellite

networks shares this problem space: in surveying the related work, I have

focused on the similarities and differences between the systems.

A few attempts at classifying this space have been made, but usually these

are field specific. Casavant and Kuhl (1988) composed a hierarchical struc-

ture of scheduling in distributed computing systems, while Dudek et al. (1996)

classified according to the architecture of multi-robot systems (e.g., communica-

tion topology, team structure, and team organisation). Seuken and Zilberstein

(2008) analysed five different formal frameworks to sequential decision mak-
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ing for distributed cooperative agents in decentralised problems, with an in

depth discussion of the performance and complexity of different optimal and

approximate techniques. I found the taxonomy of the underlying problems of

multi-robot task allocation by Gerkey and Matarić (2004) to be most aligned

with my objectives. They defined the following three axes:

Single-task vs multi-task agents: Agents can execute a single or multiple

tasks simultaneously.

Single-agent vs multi-agent tasks: Some tasks can be completed by one

agent, while others need multiple agents.

Instantaneous vs time-extended assignment: Instantaneous assignment per-

mits only instantaneous allocation of tasks, with no information about the

future. In time-extended allocation more information is available, such

as the distribution of future tasks or the set of all possible tasks.

These dimensions are satisfactory for multi-robot systems, but in reviewing the

literature I found the following additional parameters to be useful in describing

the more general problem space of task allocation in multi-agent systems.

Communication cost: In some networks bandwidth is effectively unlimited,

which makes communication costs negligible, while in others communi-

cating more than is necessary decreases system utility. The cost of trans-

mitting information therefore determines the amount and accuracy of

available information.

Group size: The number of agents in the group and the granularity with

which it is viewed determine the rules and behaviour that apply: there

is a non-linear relationship between the size and the laws that dominate

in a group, as argued elegantly by Anderson (1972). A small group (less

than ten agents) can feasibly be controlled either individually, or using

centralised control; neither of which will work for a large group (in the

hundreds to thousands range). The space in-between is an area where the

appropriate control mechanism can be contested.

Agent heterogeneity: Diversity in agent types allows role specialisation, while

homogeneous agents typically have greater redundancy. Heterogeneity

complicates the abstraction process because the specific properties of in-

dividuals must be taken into account when making decisions, which in-

creases the information content of the system.
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Distributed satellite systems span a portion of this space. The majority of

missions will involve single-task agents, with tasks requiring multiple agents to

complete (either consecutively or concurrently). In some cases task assignment

can be regarded as time-extended in the sense of Gerkey and Matarić (2004).

However, the flexibility allowed by the distributed satellite paradigm suggest

tasks will often be handled using instantaneous assignment, because the de-

tails of future tasks are unknown and roles may change at any time due to

component failure or changing mission objectives. For most applications, com-

munication costs will be high due to the power it requires. Initially group sizes

will be moderate, in the range of tens to hundreds, although massive systems

have also been proposed (e.g. Bekey, 2005). The component spacecraft will be

heterogeneous, but with some redundancy.

2.4 Market-based control

Market-based mechanisms provide an attractive set of tools for controlling task

allocation in multi-agent systems. Note, however, that a market-based ap-

proach to task allocation is just one option from a number of possibilities: co-

ordination using scheduling algorithms (Casavant and Kuhl, 1988), distributed

constraint optimisation (Modi et al., 2006) and coalition formation (Shehory

and Kraus, 1998), amongst others, all have a role to play in different scenarios.

My decision to focus on markets is motivated by their relevance to complex

systems, as well as my interest in developing socially-inspired approaches to

computing problems. In this section I provide an overview of market-based

control, and motivate why it is well suited to address task allocation in dis-

tributed satellite systems.

Markets and prices allow modern economies to allocate resources between

competing users (Begg, 2005, Chapter 1). Self-interested users trade labour

and resources to maximise their own gains, which simultaneously result in an

efficient global distribution of goods. In recent years researchers have started

to apply these principles to the control of multi-agent systems (Clearwater,

1996). By using an artificial currency, the relative value of resources and tasks

in the network can be established to find the best allocation. The market can

be regarded as calculating the allocation: for some problems and markets, the-

ory indicates that optimal allocation is possible. If we construct a market in

this manner, from the bottom up, it fits happily into the multi-agent systems

paradigm. It is closely related to agent-based computational economics and

automated trading, and requires use of knowledge from both disciplines (Tes-
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fatsion, 2002). Cliff and Bruten (1999) argue that these market-driven systems

display collective social adaptive behaviour, allowing autonomous adaptation

to a dynamic environment.

Kraus (2001) reviews game-theory and economics-based techniques used in

automated decision making and in negotiation for multi-agent systems. The

taxonomy by Gerkey and Matarić (2004) also deals with some aspects of market-

based task assignment, comparing it with combinatorial optimisation. Dias

et al. (2006) evaluated the status of market-based control, specifically for multi-

robot systems. They define market-based coordination in multi-agent systems

as having the following characteristics:

• The group has an objective that can be subdivided and spread between

components. The units in the group have a limited set of resources that

can be used to address the problem.

• A global objective function describes the system’s behaviour and quality

of solution.

• Every agent has an individual utility function, that quantifies the gain

(or cost) for executing a certain task. This function can use only local

information, but can take multiple factors into account, some representing

the cost of task execution, others representing the quality of the result.

• A mapping exists from the individual utility functions to the global ob-

jective function. It defines how individual actions will influence the global

objective.

• Resources and objectives can be redistributed between agents, using a

cost-based negotiation mechanism, such as an auction. Bids are computed

as a function of individuals’ utilities, and allocation is made to the agent

whose bid will maximise the global objective function.

Just as myriad types of human markets have developed, with different rules for

different applications; so a great variety of market models are used in control.

Although we are interested in artificial markets, contributions from mechanism

design and auction theory provide a link to the theoretical basis that validates

the approach.

A major challenge is the definition of individual rules that will lead to

the desired global behaviour. In the case of distributed satellite systems, this

means being sensitive to the capabilities and utilisation of individual nodes,

and minimising energy spent on communication, while still achieving robust
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system-level task throughput. I therefore review related literature with the

objective of identifying the definitions of utility functions and the types of

markets employed, and how this relates to emergent behaviour.

The contract net protocol (Smith, 1980) is a seminal, high-level protocol

for task distribution using a sealed-bid, first-price auction, which relies on con-

tracts. Tasks are announced in the system, agents place bids with valuations

based on their perceived utility, and the auctioneer node collects bids until the

task can be awarded. Davis and Smith (1983) further explore the use of the

protocol, with application to an area surveillance problem. Although no ex-

plicit economic notions are included in the bidding, the contract net protocol

inspired a significant amount of work that includes stronger market implemen-

tations. Miller and Drexler (1988) further explored the market-based approach,

with specific emphasis on the computational environment. Wellman (1996) in-

troduced “market-oriented programming”, where a computational economy is

used to derive the activities and resource allocations of a set of agents. By

using a framework that allows definition of a market structure and protocols

for deriving price equilibria, it is applied to a multi-commodity flow problem.

The generality of the implementation is attractive, due to the freedom it allows

in exploring the problem space.

Auctions present a particularly compelling type of market for our purposes:

they evolved to allocate goods and labour efficiently, and to function well with

limited communication and inaccurate information. The low communication

requirement is demonstrated in sealed-bid auctions, where agents do not know

the value of bids placed by other agents, yet can deduce the equilibrium price

of a commodity over repeated auctions. Gerkey and Matarić (2003) analysed

the communication complexity of sealed-bid auctions, finding that they are

well-suited to applications where communication is expensive, such as space

applications. The extreme case was demonstrated by Blumrosen and Nisan

(2002): the efficiency of auctions where only one bit of communication was

allowed was only slightly lower than completely unconstrained auctions. In

contrast to the work in this thesis, communication had no effect on the utility

of agents, nor was topology considered.

The effect of costly bids on the dynamics of sequential English auctions is

analysed in Daniel and Hirshleifer (1999). When bidding is free an incremental

increase in bid values is expected, which results in many bidding rounds before

bidders drop out. This is however at odds with the behaviour of bids in cor-

porate acquisitions, where bidding often proceeds in large jumps, significantly

decreasing the number of bidding rounds before a winner is found. They as-
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cribe this behaviour to expensive bids, due to the regulatory and administrative

costs associated with corporate deals. If bidding in the auction is treated as

a learning process, with bids as a costly signalling mechanism, an equilibrium

that maximises the rate of learning will economise on bidding.

Babaioff et al. (2009) investigated spatially distributed markets. For com-

puterised markets the physical location is irrelevant, but the transferral costs

of moving goods between different markets are significant. They present a wel-

fare maximising mechanism that takes the cost of these transfers into account.

The allocation calculation can be done in polynomial time. Although spatial

distribution is of relevance to my work, this work assumes negotiation is free

and therefore transfer costs and topology are known.

2.4.1 A note on terminology: market-based control

The label market-based control has been used to describe a variety of systems,

ranging from the open-ended markets envisioned by Waldspurger et al. (1992)

and Wellman (1993) to those that rather use markets as a metaphor for decision

making. The former class of systems implement a very real market, where ev-

erything is defined by the negotiation and exchanges between agents. Although

undoubtedly potentially very powerful from self-managing and robustness per-

spectives, the complexity of these systems makes them very hard to control

reliably and predictably. Some, such as Huberman (1988) and Brooks and

Flynn (1989), would argue that the lack of direct control is at least part of

the flexibility of these systems. We give up some verifiability and optimality

to increase robustness and adaptability. However, this paradigm shift still sits

uneasily with the current engineering establishment.

A more moderate view of market-based control is used in the second group,

where the market serves as inspiration, but the primary concern is still the

control of the system. I believe we can retain some of the attractive character-

istics offered by markets by borrowing the information flow and decision making

mechanisms. By limiting the strategic capabilities of agents and not allowing

prices to float freely, the volatility of the system can be limited. The market

then serves as a negotiation mechanism: bids are communication messages and

auctions a way of determining allocation. Most importantly, prices and money

provide a way of representing information upon which decisions can be based.

One obvious limitation of this approach is that the system can be susceptible to

exploitation by malicious agents, because the market environment is designed

to be safe. Systems where the designer does not have complete control over the

agents therefore require additional mechanisms to enforce compliance with the
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expected behaviour.

The proposed task allocation approach should be seen as market-based,

therefore falling into the second class of approaches. Although undeniably

inspired by the power of the open market, restricting some of the degrees of

freedom allows for more predictability as required for real-life problems. The

primary aim is to allocate tasks successfully, not to emulate a market accurately.

2.5 Applications

The market-based task allocation work described above relies heavily on the

theoretical grounding offered by economics, using analytical methods and game-

theoretic approaches to understand system behaviour. The literature does,

however, also provide a number of application examples. I will review a few of

the more significant ones here, in an attempt to identify approaches that can be

of use in the distributed satellite system problem. Note how relatively insular

these are: many acknowledge theoretical work as inspiration, but successful

implementation involves a combination of trail and error, experience and luck.

The characteristics of these applications are compared with a distributed

satellite system in Table 2.1.

2.5.1 Distributed computing

A large body of work exists that deals with the management of distributed

computing systems: high-performance computing (HPC), grid and cloud com-

puting. In these systems a large number of machines must be coordinated to

perform on-demand program execution. The resource availability on different

systems varies due to the allocation of tasks, or dissimilar underlying hard-

ware. The definition of optimal allocation varies according to the application:

in grid computing fair resource utilisation is important, while HPC data cen-

tres consider turn-around time and reliability as critical. Although the systems

can consist of a large number of geographically dispersed servers, high speed

communication channels exist between them, which allows more accurate in-

formation for decision making.

The management of such systems has traditionally been based on a queu-

ing theory approach, which assumes a central scheduler (Streit, 2001; Hoves-

tadt et al., 2003). These approaches have been largely successful, due to the

availability of communication and ample processing power. However, as ar-

gued by Bullock and Cliff (2004), the increasing complexity of information and

communication technology systems results in the emergence of unpredictable
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system-level behaviour. They claim that complex adaptive systems present a

suitable paradigm for managing these applications.

Chakravarti et al. (2006) proposed the use of a biological metaphor for

coordination: strongly mobile agents colonize under-utilised machines on the

network. The distributed computing system Spawn uses a market to allocate

computing tasks in a heterogeneous network (Waldspurger et al., 1992). The

system self-organises to distribute loads fairly by mapping idle resources into

currency. Another example is Mariposa, a distributed database system that

also uses an economic paradigm to address query execution and storage man-

agement (Stonebraker et al., 1994). Huberman and Hogg (1995) argue that a

computer network can be viewed as a “community of concurrent processes”, or

a computational ecology (Huberman, 1988). They further show that local rules

can lead to globally stable allocation behaviour (Hogg and Huberman, 2002).

Robinson (2002) presents the development of a market-based control sys-

tem to manage the workload in a simulated utility data centre. ZIP-trading

agents are used to allocated jobs in a continuous double auction; this achieves

efficient computational load-balance performance under a variety of scenarios.

Evolutionary algorithms are used to tune both the parameters of the individ-

ual agents, and the marketplaces through which they interact. A particularly

relevant feature of this work is the use of distributed markets — interactions be-

tween agents occur on topologically local markets. The topological constraints

are treated as a given, with no explicit mention of communication costs.

Autonomic computing appears to the currently fashionable incarnation of

adaptive, distributed computing. Kephart and Chess (2003) describe the vision

of autonomic computing as consisting of heterogeneous hardware from different

vendors, that can configure, pro-actively optimise, heal and protect itself in a

dynamic and unpredictable environment. This would be in contrast to the sta-

tus quo, where configuration and management are time-consuming procedures

requiring detailed knowledge of the other components in the system. The large

number of interdependent but manually-tuned parameters results in fragile sys-

tems that are vulnerable to cascading failures and external attacks. Different

approaches to achieving these goals are being explored, including agent-based

approaches (Jacyno et al., 2008; Kota et al., 2009) and heuristics inspired by

nature (Shackleton et al., 2004).

Although much of the work in distributed computing systems incorporates

the characteristics of the underlying infrastructure — such as servers, routers

and a communication network — the problem of distributing jobs and data

is very similar to the task allocation problem in distributed satellite systems.
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The most prominent difference is the relatively inexpensive communication in

most ICT systems: although bandwidth needs to be considered, the physical

topology of the network has little impact on its operation. The self-management

objective of the autonomic computing community is very relevant to our system,

as are the requirements of robustness and graceful degradation.

2.5.2 Wireless sensor networks

Literature relating to wireless sensor networks (WSNs) constitutes another in-

teresting domain. These networks consist of spatially distributed modules that

cooperatively measure the environment. Each module can sense information,

perform limited processing and relay data to other modules. The accumulated

data from all the nodes in the network provide a system-level view of the envi-

ronment. These networks usually consist of hundreds of sensing nodes, with a

central sink to extract data. Nodes often have a limited power supply, therefore

unnecessary communication shortens the node lifetime and decreases network

performance. Nodes function in different ways, depending on their position in

the network. Nodes near the perimeter have a sensing role, while those closer

to the source need to spend a greater proportion of their energy relaying the

measurements of others.

These networks are challenging to manage efficiently due to the scale of

the system, the high cost of communication, the frequently unknown topology,

the multiple roles nodes can assume, and node failures — all problems that

are faced by distributed satellite systems too. The main differences lie in the

information flow in the two systems: for satellites tasks are allocated to specific

individuals, while WSNs frequently rely on group measurements.

In many cases retrieving data is more important than knowing which node

measured it (Jamal and Kamal, 2004). This has led to the adoption of a

data-centric routing protocol by Intanagonwiwat et al. (2003), named directed

diffusion. A sensing task or subtask is publicised through the network, specify-

ing the data of interest. This sets up gradients along which measured data flows

back to the sink. Reinforcement is used to select the shortest paths, while data

aggregation (duplicate measurements are not propagated) and in-node process-

ing minimise communication. A negotiation-based routing scheme is presented

in Heinzelman et al. (1999): nodes use meta-data to eliminate the transmis-

sion of redundant data. Rogers et al. (2005) and Rogers et al. (2006) used

mechanism design to balance the conflicting needs of data sensing and data

routing in the network. Nodes need to transmit their own data to the sink, but

also spend some of their energy relaying measurements by other nodes. The

33



2. Background

described payment rule rewards the relaying of data from distant nodes, while

still encouraging locally sensed data. This gives a local decision rule that deliv-

ers good results. Hassanein and Luo (2006) improved communication reliability

by taking the remaining energy in nodes into account to prevent depletion, in

effect spreading the routing cost over the fittest nodes. The routing of data in

WSNs is analogous to task allocation in the distributed satellite network, as

the cost of routing needs to be distributed in a way that maximises network

utility. Furthermore, several of the energy optimisation approaches in WSNs

can be useful in satellite applications too (Vladimirova et al., 2008).

2.5.3 Multi-robot control

From a computational point of view, a multi-spacecraft system can be treated

as group of interacting robots that need to be autonomously coordinated. Re-

searchers of distributed robot coordination have extensively drawn on natural

metaphors, with varying levels of sophistication. Garnier et al. (2005) demon-

strated cockroach-like aggregation, while collaborative stick-pulling is discussed

in Lerman (2004). Minimisation of energy expenditure in a foraging task was

investigated by Campo and Dorigo (2007): a multi-foraging strategy was iden-

tified where efficiency is defined as a function of energy; robots then base their

behaviour on the expected global energy gain from foraging. Stigmergic com-

munication has also been used in task allocation (Bonabeau et al., 1999). White

and Helferty (2005) applied this to robotic soccer in the RoboCup competition

(Kitano et al., 1998), where robots choose their roles based on environmental

stimuli.

The information that can be extracted from the environment is, however,

limited. Explicit communication is necessary where knowledge of the internal

state of other agents, or the global status of the system, is required. This can

range from relatively simple signalling, such as used by Vaughan et al. (2000) for

resolution of spatial interference, to exchange of a significant volume of data, for

example in collaborative exploration where partial maps are shared (Konolige

et al., 2006). The use of markets, where robots base their bids on their fitness

for a task, lies between these extremes. An artificial currency allows robots

to make decisions based on their internal state and global information, which

is encapsulated in a single price figure, while relatively little communication

expenditure is required.

Gerkey and Matarić (2002) used a variant of the contract net protocol

(Smith, 1980) to coordinate embodied agents in “loosely coupled” and box-

pushing tasks. Roles are allocated using an auction, but the communication
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protocol assumes sufficient bandwidth to allow flooding of packets. Tasks are

randomly introduced to the system over time and assigned to the fittest robot

available. Zlot et al. (2002) presented the use of a market to manage efficient

exploration of an unknown area: robots compare their own cost of visiting a

waypoint against trading the task with a potentially better situated vehicle.

This is an instance of time-extended assignment, as robots can trade tasks

that need to be completed in the future. Target detection and allocation using

miniature aerial vehicles is presented by Sujit and Beard (2007). A distributed

auction is used to make decisions that take the kinematic and sensing con-

straints of the vehicles into account. In some of the above systems, attempts

at minimizing communication are made. However, in none of them is commu-

nication treated as an expensive resource, as is the case in distributed satellite

systems.

2.5.4 Operations research

Lessons can also be learned from operations research. Human organisations

typically consist of a heterogeneous collection of specialised agents that collab-

orate on larger problems. Communication can be inexpensive in small organi-

sations, but bureaucracy in large organisations or transport costs in physically

distributed systems can become prohibitively expensive. Chang and Harring-

ton (2000) compared centralised and decentralised organisation in retail chains.

They found that centralisation performs best in markets that are relatively ho-

mogeneous, while greater variation favours a decentralised approach because

local adaptation is necessary. Local variations in markets can in turn be as-

cribed to their isolation, either absolutely or due to high communication cost.

System reliability is the result of interaction between policy and investments

in infrastructure: Hsieh (2003) investigated the relationship between hardware

redundancy and optimal task allocation in a distributed computing network by

using a genetic algorithm and local search hybrid. Hardware cost and commu-

nication time are unified in a mathematical cost model, which is then minimised

while taking system reliability into account. Although the exploration of task

allocation, reliability and the system component space has great relevance to

management of a distributed satellite system, the level of abstraction in the

model fails to take many real-world aspects into account, such as allocation

overhead, topology changes, communication delays and imperfect information.

2.5.5 Call routing

Gibney et al. (1999) presented the use of market-based control for routing in
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telecommunication networks. Two sealed-bid auctions are used: slices of band-

width on links between nodes on the network are sold to path agents, while

a path market sells the slices of bandwidth to call agents to connect calls. A

first-price and Vickrey (second-price) auction are compared to a conventional

static routing algorithm. The first-price auction performed as well as static

routing, while the Vickrey auction did not show an improvement in efficiency

over the first-price auction. Vickrey auctions were originally introduced to pre-

vent counter speculation between agents, resulting in more efficient auctions

Vickrey (1961). However, as this model shows, in many closed artificial sys-

tems Vickrey auctions do not improve efficiency and are effectively unnecessary,

because the designer defines the agent strategies.

2.6 The state of task allocation in multi-agent

systems

In the preceding sections I presented the literature that is of relevance to the

task allocation problem. This literature spans a number of fields, because task

allocation is a problem common to many different applications. In this section

I would like to take a step back and analyse the shape of the task allocation

landscape and discuss its deficiencies. My most important observation is that a

gap currently exists between the work on the theoretical end of the spectrum,

and that dealing with applications: we, in effect, still don’t know how to build

these systems. I conclude by arguing that this shortcoming can be partially

addressed by using responsible design practices, thus motivating the second of

my major research objectives.

2.6.1 Where are we?

The vast majority of multi-agent task allocation cases cited above involve spe-

cific problems, for example multi-robot exploration or management of auto-

nomic computing systems. The specific nature of these examples encourages

solutions that deal with the characteristics of these problems. It can therefore

be hard to separate the task allocation component of the solution from the

additional infrastructure that allows it to function correctly.

At the other end of the scale is the portion of literature that deals with

high-level ideas that are more generally applicable. Most of these are derived

from economic theory or operations research, with much stronger mathematical

or theoretical bases. The generality is achieved through abstraction, so in the
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Specific
(Application)

General
(Theoretical)

EngineeringScience

Figure 2.1: Work related to task allocation in multi-agent systems can broadly
divided into two categories: application specific engineering problems (small
dots), and abstract, general theories and proofs (large circles). The space be-
tween these poles is quite empty, apart from some taxonomies and a few at-
tempts at agent design methodologies: we still don’t really know how to design
these systems. The work in this thesis traverses a section of this space, as indi-
cated by the blue arrow. This allows the design process to be utilised as a way
of exploring this space, as shown in more detail in Figure 2.2.

process the application level detail is lost. This could be seen as a fair trade-off:

after-all, we need the abstraction to better comprehend the system.

When I initially encountered this apparent wealth of related subject matter,

I was optimistic. Surely, with so many applications and a general theoretic

basis, the design process should be straightforward? However, I soon realised

that a vast gulf exists between the two extremities. For example, we have

elegant abstract models that can tell us much about the finer points of market

design, and we have extremely complex physical systems doing our bidding,

but we have no bridge connecting the two. My initial excitement quickly faded

when I realised that we still have no principled methodology for moving from a

specific problem to a trusted solution.

37



2. Background

This situation is graphically represented in Figure 2.1, reproduced from

Chapter 1. The large number of specific applications is represented using the

small dots at the top of the diagram, while the more general theorems can be

found at the lower end. Distilling the specific examples into something more

general can be seen as science, while movement in the opposite direction can

be described as engineering. The distribution of work is bimodal: we have a

large cluster at the top and another one at the bottom. The centre is, however,

noticeably empty, implying that a severe disconnect exists between the two

poles. I am not the first to make this observation: Wooldridge (2002, chapter

10) similarly concludes that the existing methodologies for designing agent-

based systems are “rather tentative”. The techniques he discusses are largely

derived from current software development methodologies. As such they offer

descriptions of the process, but do not offer any guidance in selecting the “right”

solutions.

We find ourselves in a situation where applications are “legitimately” de-

veloped without a glance at the theoretical side of things, as many designers

feel the gap is too great to be crossed. Another symptom of the problem is

that even those who would like to build on theoretical principles are faced with

a vast array of general concepts, with no map of which ones are applicable to

their specific problems. This is once again due to the fragmented nature of

our knowledge: we need paths linking the general side to specific applications.

Only by focusing on filling the empty space, can these issues be resolved.

The central area is luckily not completely empty. Over time the work on

either side will slowly grow towards the opposite end, hopefully meeting some-

where in the middle. Some taxonomies already provide an analysis of related

problems, such as the work by Dudek et al. (1996), Matarić et al. (2003) and

Gerkey and Matarić (2004), dealing with their specific domains. The compari-

son of different decentralised decision-making processes by Seuken and Zilber-

stein (2008) also falls in this space. A few engineering examples exist that

use a theoretical grounding to design multi-agent systems, as demonstrated

by Rogers et al. (2004), while Ygge and Akkermans (1999) identified the need

for empirical comparison of market-based control and other systems. These

examples are unfortunately few and far between.

2.6.2 How did we get here?

This state of affairs can be ascribed to a combination of a number factors; I

will describe the ones I find most relevant here.

The argument can be made that we are involved in a young discipline.
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Computer science is but a few decades old, and multi-agent systems have only

become a realistic prospect in the last twenty years. Operations research, as

a research field, has only existed since the Second World War. In comparison,

disciplines such as physics and chemistry can lay claim to a coherent narrative

developed over hundreds of years. The central ideas and methods of mature

academic fields were established by a combination of vigorous debate, careful

experimentation and categorisation. In the process core concepts were tested

again and again, and initially promising ideas were disproved and discarded.

While the perimeters of these fields are still contested, the base is sound. Given

this lack of time, it is therefore no wonder that our multi-agent task allocation

knowledge looks pale in comparison. Over time, we will hopefully continue to

fill in the empty parts of the space.

Or will we? I suspect that the modern incarnation of the academic system

also plays an important role in polarising this distribution. The basic problem

lies in the inter-disciplinary nature of the task allocation domain. Those work-

ing on the application end are generally specialists in their respective fields,

where task allocation is but one problem they encounter. These researchers

have little incentive to relate their work to the bigger picture in a disciplined

manner, as this requires a substantial investment of time and effort. In the

meantime it is still expected of them to be experts in their respective fields,

which results in relatively few people exploring the commonalities between dis-

ciplines.

On the general end of the spectrum, task allocation is usually encountered as

a more abstract concept. To enable themselves to generalise, these researchers

avoid the specifics. This too is understandable: the returns from having a work-

ing implementation is limited as we cannot use one example to prove a theory

correct. Then there is the time investment to consider: physical systems are not

trivial to implement. In both cases the academic system rewards specialisation

in existing fields; the attractions in becoming a task allocation specialist, with

knowledge of both theory and application, are slim. If the wide variety of goals

of people doing multi-agent research is added to this, then the scenario becomes

even more bleak. (Games such as TAC, CAT and the RoboCup competitions

do offer some relief here by providing a common problem and focusing research

effort, which results in a thorough exploration of a particular area in problem

space.)

Finally, we, the researchers, cannot be absolved of all blame. We are after

all the ones who make up this system. Perhaps we find it easier to add new

points to the space in Figure 2.1 than we do to order the space, connecting
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the already existing dots? The claim that something is “novel” is after all

much more exciting than saying “the space has been tidied up”. It is also often

easier to address a new problem than it is to spend days ordering the existing

literature.

2.6.3 What can be done?

To bridge the gap between the general and the specific, a two stage process

is required. Initially, similar problems and applications need to be identified

and related to each other. Once we have a better idea of problem space, we

can move on to formalise a design methodology. This methodology will allow

system designers to select an approach from the numerous options available.

This is the grand effort towards principled design of multi-agent systems, but

where does my contribution fit in? This thesis is concerned with a small part

of the problem space: I can therefore only address problems directly related

to distributed satellite systems. However, this should be done in a way that

contributes to the greater effort. By identifying the similarities and differences

between systems that are similar, the local problem space can be mapped. At

the same time, the methodological issues of relevance to system designers are

also explored, again with application to distributed satellite systems: how do we

navigate the design decisions as we move from the general to the specific? My

contribution should therefore be seen as one brick in the bridge across the gap

in Figure 2.1 — with sustained effort from the multi-agent research community,

we can develop the understanding and tools required for principled design of

these systems.

I believe that the systemic factors discussed above will continue to inhibit

research in the space between the general and specific ends of the task allocation

spectrum. Some brave individuals might make contributions, but until a critical

mass is reached in the central area, the vast majority of work will still be focused

at either end. Things may improve over time, but this shouldn’t stop us from

addressing the situation right now. This led me to pose the question: how can

we utilise our existing research work flows to improve the situation?

I therefore propose the use of my design and verification methodology to

help bring some order to this space. When designing a solution to a specific

problem, we start with a general model of the final result. As this model

is progressively refined by making design decisions or incorporating physical

constraints, it becomes a more and more accurate representation of the ultimate

solution. A key realisation is that the original, generic model can potentially be

mapped to a number of solutions, depending on the decisions and refinements
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we make. In this way we can see the design process as branching off at each

decision point, as shown in Figure 2.2 (reproduced from Chapter 1).

Abstract model

Target

Application

Design decision 1

Design decision 2

Design decision 3

Constraint 1

Constraint 2

Constraint 3

Related
Application 1

Related
Application 2

Figure 2.2: The design process can provide an emergent taxonomy of related
problems. As we refine a general model to be more specifically applicable, we
make design decisions and take constraints into account. These branches can
lead to different, but related points in the problem space. This represents a
more detailed view of the arrow indicating traversal in Figure 2.1.

The problem this thesis is addressing is definitely a point at the specific

end of the spectrum in Figure 2.1, but in the process of moving from the

general solution to the specific one, we will encounter wireless sensor networks,

distributed computing and other types of allocation problems. The design

decisions relate these applications to our allocation problem: by traversing the

problem space in this way we are, in effect, constructing a taxonomy based on

the decision points in the design process. This forms the second of my primary

objectives: helping to order the problem space surrounding my task allocation

problem, by situating my approach relative to other work and related systems.

In short, this boils down to responsible engineering. Throughout the design

process, decisions are verified through testing. By identifying the family of

systems we are excluding with a specific design choice we are also relating that

system to ours. The communicated results should not only describe where we
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ended up and how we got there, but perhaps most importantly, what related

problems we past on along the way.

2.7 Discussion

This chapter reviewed the background literature relevant to task allocation in

a distributed satellite system. A review of current space technology confirms

the need for a mechanism that addresses the management of multi-satellite

systems in a way that is robust, scalable, and conscious of the limited energy

available to the satellites. In my opinion, approaching it as a pure satellite

engineering problem is incorrect: it is the interactions between components that

determine the dynamics of the system. I therefore propose the use of a multi-

agent approach to task allocation. Specifically, market-based control offers a

promising solution to managing such a system: using an auction mechanism to

allocate tasks should allow for efficient and adaptive allocation with minimal

communication.

However, the literature also highlighted that we don’t really know how to

reliably map from our abstract models to the messiness of the real world, and

still have a working system. At the one extreme we have numerous specific

applications and at the other general theories regarding task allocation, but

we lack a bridge between these two parts. A basic step towards improving

this situation involves relating different task allocation problems and the types

of solutions that can be used to address them. To this end I propose using

a responsible engineering approach, where the decisions made during the de-

sign process provide links to closely related problems. In this way the design

and verification process can be used to help build a taxonomy of the space

surrounding task allocation in distributed satellite systems.

The work in this thesis should therefore be seen in the context of a larger

research effort into ways in which we can borrow from social and biological

systems to find ways of coping with our own increasingly complex technological

systems.
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Design of the task allocation model

This chapter describes the process followed to design the task allocation mech-

anism for the distributed satellite system. To better understand the challenges

of task allocation in this application, I first describe a mission scenario that will

serve as a model of the type of system that we’d like to control. Presenting a

specific model in this way forces us to specify exactly what we mean by “tasks”,

and helps to identify the constraints inherent to such a system. Furthermore,

the model provides a context for precise definitions of the objectives of success-

ful task allocation, namely maximized allocation, robustness and scalability.

With these aspects clearly defined, we then move to the other end of the design

spectrum: a series of abstract models of task allocation in human organisations

is presented. A simple model of task outsourcing is used to develop a market-

based allocation process, which is then related back to the distributed satellite

scenario, thereby defining the simulation model that is used in the rest of this

thesis.

3.1 Reference mission

The literature review showed that although several distributed spacecraft mis-

sions have been proposed, none have been flown yet. I therefore construct a

generic mission scenario to serve as a reference in the design procedure.

A group of small, low-cost satellites, numbering in the tens to hundreds,

is positioned in close proximity to each other in low earth orbit. The overall

mission objective is a combination of earth observation and measurements of

the space environment. The satellites are not homogeneous, but specialise in

various roles which correspond to different configurations of spacecraft.

The first two kinds of satellites form the payload component of the multi-

satellite system. In other words, they do the work the mission was designed for.

The earth observation part of the payload employs one class of pico-satellite,

where every individual is equipped with a camera which can be used for low-
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resolution photos of a wide area. Alternatively the image data can be combined

using super-resolution methods for higher resolution coverage of a narrow area

(Farsiu et al., 2003). The environmental measurements are taken with a number

of small satellites, each equipped with sensors to map the magnetosphere. The

simultaneous measurements allow for high resolution observations of spatial

and temporal behaviour of the Earth’s magnetic field — similar to Clarke et al.

(1996) and Friis-Christensen et al. (2006).

The third class of satellite provides the mission infrastructure that is used by

the payload spacecraft. Dedicated communication satellites are responsible for

communicating with the ground station: commands are uploaded to the satel-

lites, while telemetry and payload data are downloaded again. To achieve this,

the communication craft are equipped with high-gain antennas and amplifiers,

as well as non-volatile memory for storing data before downloading to earth.

Redundant instances of all the spacecraft are deployed simultaneously. If, for

example, three communication spacecraft are available they can all be used to

transmit data back to the ground station. If one of these spacecraft stopped

functioning the available bandwidth will be reduced, but communication can

still proceed.

The system receives a set of high-level commands while in contact with the

ground station, e.g. “photograph Rio de Janeiro” or “return magnetosphere

measurements”. Note that these commands do not have to specify the specific

satellite that will take the picture, or the satellites involved in measuring the

magnetosphere, instead just the function is specified. We need to abstract to

the functional level if we want to free the ground station from managing the

individuals in the group. It is of course possible to address the specific modules

in the system by aiming the request specifically at them, e.g. “measure status

of 0xfac3b3e5”, but this type of micromanagement should not constitute a

regular part of system operations.

As the group orbits around the earth, their formation varies periodically

due to individual spacecraft orbiting around the centre of mass of the earth, as

shown in Figure 3.1. In addition, non-periodic perturbations influence differ-

ent satellites in different ways: atmospheric drag effects, magnetic interaction

and solar pressure all depend on the characteristics of the individual satellites

(Larson and Wertz, 1999, Chapter 8). This continual change in topology has

a significant impact on the routing of communication within the group: main-

taining a map of the network topology requires constant communication and

processing.

Individual satellites are powered by a combination of photovoltaic cells and
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A
B

B

A

Figure 3.1: As two satellites, here labelled A and B, orbit around the earth
their relative positions change continuously due to both spacecraft orbiting
around the centre of mass of the earth. In a network of co-orbiting satellites,
the topology will change similarly.

batteries. Solar energy is collected while the spacecraft is illuminated and stored

in rechargeable batteries. When more power is needed than can be supplied

by the solar cells, for example when the spacecraft is in eclipse or while trans-

mitting data to the ground station, the accumulated energy in the batteries is

used. This raises an important constraint: allocation of tasks will substantially

decrease the energy available to a module, which regenerates relatively slowly.

This scarcity of power also implies that all communication will have a signif-

icant cost: the act of communicating decreases the energy available for task

execution. Furthermore, batteries can only store a finite amount of energy: if

they are fully charged, potentially useful solar energy cannot be captured.

3.1.1 Constraints

The distributed satellite system is subject to a number of constraints that de-

termine system operation and potential task allocation mechanisms. These

constraints range from mission design level issues, such as money, available

launch mass and mission objectives; to spacecraft design issues, for example

mechanical structure, attitude control and propulsion; to operational questions

such as ground support. When designing a multi-spacecraft system, the inter-

actions between satellites also need to be taken into account, as these play a

key role in determining the system-level behaviour. The most prominent con-

straints to be considered here are the inter-satellite data rate, processing power,

and the energy available to individual satellites.

The inter-satellite data rate determines the amount of data that can be

exchanged between spacecraft. Bandwidth is determined by the modulation

scheme, antenna design, system noise temperature, and transmission power.
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The first three parameters are usually fixed early-on in mission design, leaving

transmission power as the main factor determining the effective communication

range. A in-depth discussion on link design can be found in Chapter 14 of

Larson and Wertz (1999); for the purposes of this discussion it is sufficient to

note the importance of transmission power.

The second constraint under consideration is processing power. Component

satellites require sufficient processing power and memory to maintain network

information, process communication packets, and calculate allocation. The

exact amount required is determined by the allocation mechanism. Although

additional processing is relatively inexpensive, it will increase the power needs

of the spacecraft. To keep this reasonable, the computational requirements of

the task management approach should therefore be scalable.

This brings us to node energy. Satellites are self-contained entities, and as

a result all energy used is either stored or generated on-board. If we consider

smaller, simpler satellites, we find that the available power is extremely lim-

ited1. This energy is used on spacecraft housekeeping (determining position,

orientation, etc.), payload functions (taking photos or measurements) and, in

the case of a distributed satellite system, network-level management (task al-

location, network information). Because all these components compete for the

same energy, we see that communicating decreases the energy available for pay-

load functions. In allocating tasks, we need to balance the exchange of data

needed to achieve a good allocation against actually getting work done.

3.1.2 Abstraction

With the above scenario as a reference mission, we can now develop an ab-

stracted model that captures the relevant characteristics of distributed satellite

systems. A graphical depiction of the mission configuration is shown in Fig-

ure 3.2. A number of spacecraft communicate with their local neighbours to

form a network of specialised agents. This network can be represented as a

graph of agents, where vertices correspond to satellites and edges to commu-

nication links between them. The vertices are treated as agents, as they can

behave as autonomous actors, or respond to commands received from other

agents. The agents form a spatially distributed network where nodes only

have direct access to their neighbours, while communication with more distant

spacecraft takes place via chain of local connections. These agents need to

collaborate to complete complex tasks. A network representation of the same

1For a 100 mm x 100 mm x 300 mm cubesat, the orbital average power is approximately
6 W.
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Ground 
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Figure 3.2: Distributed satellite system consisting of three different types of
satellite: communication satellites to provide the interface with the ground
station, remote observation satellites and the space weather sensing payload.

scenario is given in Figure 3.3. Different colours are used to represent the types

of agents, each with a particular set of skills.

To allow better comparison to other multi-agent allocation problems, the

characteristics of the task allocation problem can be summarised as follows:

Multi-component tasks: Tasks consist of multiple, interdependent compo-

nents and are executed by a number of agents, each performing the task

component that it is equipped for.

Distributed task origins: There is no central source of all tasks; instead,

tasks can spawn at any node. Although tasks initially originate from the

communication nodes, subsequent task components can be generated by

any node, depending on the task structure.

Ad hoc task assignment: The sequence in which tasks will arrive is un-

known at design time. The structure of tasks is however assumed to

be known.
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Task execution: Agents are characterised by a current energy level. Suc-

cessful task execution will lower their energy levels, and agents will only

attempt a task if they have sufficient energy available.

Heterogeneous agents: No two agents are exactly the same: agents differ in

terms of the types of tasks they can execute, their resources (available

energy) and their location in the network.

Autonomous agents: Large systems are hard to manage at an individual

agent level; instead the agents need to autonomously manage themselves.

Benevolent agents: The agents are presumed to be self-interested and max-

imise their own gain, but they are also benevolent. They do not try

to exploit other agents by cheating, nor do they attempt to exploit the

system.

Limited energy: Agents have limited energy available to execute tasks and

communicate. By measuring the energy available on-board, they can

calculate their capacity for work. Energy can regenerate over time (e.g.

by using solar panels).

Agent failure: Agents can stop functioning at any time, due to lack of energy

(temporary) or physical failure (permanent). This has an impact on the

available resources in the system, and also influences the communication

topology.

Local communication: To conserve energy, most communication is with lo-

cal neighbours. Multi-hop routing is required to transmit messages to

more distant agents. Agents therefore rely on local information to make

decisions.

Communication cost: Communication requires a significant amount of en-

ergy, but the same energy could instead be used to perform payload func-

tions. A balance must be found between negotiation and doing work.

If an agent’s energy falls too low, it will be unable to communicate. We

distinguish between the cost of negotiation, which is significant but small,

and task transfer cost, which involves much more data and is therefore

up to several orders of magnitude larger.

Broadcast communication: Messages are transmitted to all the neighbours

of an agent, as a result of the wireless communication medium. The

energy cost to an agent is therefore the same whether it transmits to one
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Figure 3.3: Equivalent network for the distributed satellite system shown in
Figure 3.2. The different types of agents are represented using different colours:
brown for the ground station, grey for communication nodes, while the remote
observation spacecraft are coloured magenta and the space weather sensing
payload units are green.

or to all of its neighbouring agents. An addressed communication scheme

could be implemented on top of this, where recipient nodes filter incoming

messages and only respond to the relevant subset.

Spatial distribution Agents are distributed in three-dimensional space, which

determines the communication topology. A given transmission power

corresponds a maximum range for communication. Thus, by specifying

transmission power, we implicitly define a communication topology in

the form of a random geometric graph. The space can be regarded as

uniform in transmission characteristics, and clear from obstruction. Note

that there is no risk of the Earth occluding some parts of the network from

others and interrupting communication, due to the relatively small com-

munication ranges (under 10 kilometres) when compared to the altitude

of the satellites (more than 500 kilometres).
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Symmetric communication As reliable communication will require trans-

mission from both parties involved in a message exchange, I restrict my-

self to symmetric communication links. In other words, if node A can

communicate with node B, then B is also able to communicate with A. In

situations with asymmetric transmission powers, the communication link

will only be treated as valid if both parties can receive the other’s mes-

sages. All links in the communication graph are therefore bidirectional.

Volatile topology: The communication topology is volatile due to continuous

changes in the relative position of agents, as well as agent failures.

Scale: The number of agents in the system ranges from tens to hundreds of

agents.

The above characteristics position this problem as closely related to several

other multi-agent applications. The task allocation problem is quite similar to

resource allocation in distributed computing domains, but their communication

cost is effectively free. Wireless sensor networks have a very different task

structure, as they focus on measurements, but the communication cost problem

is nearly the same. Local communication is seen in social networks and mobile

ad hoc networks (MANETs). Mobile robotics can also share a subset of these

factors, depending on the application. These relationships will be explored in

more detail in subsequent chapters.

3.1.3 Task allocation objectives

At this point, with the system properties described, it is necessary to clearly

define the desired characteristics of the as-yet-unspecified task allocation mech-

anism. When expressed in the most general sense, we would like to allocate

tasks in a manner that maximises the amount of work done by the system. Ex-

pressed differently, the money that pays for the system should deliver the best

possible returns, despite agent heterogeneity, network scale and agent failure.

Most of the following points have already emerged from previous discussion, I

will now summarise and formalise them.

3.1.3.1 Maximising allocation

The most obvious requirement is that the number of tasks successfully allocated

is maximised. If a task consists of multiple components that are executed

separately, it can only be considered completed when all the subcomponents

have been executed. In a stable, observable system with free communication
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the allocation problem is relatively simple: it can be seen as an instance of the

bin packing problem (see Yao, 1980, for examples of algorithms). However, the

characteristics of the scenario described in Section 3.1.2 increase the complexity

of the problem.

Agents need energy for both communication and task execution. If all en-

ergy is spent on tasks, the agent will be unable to communicate, thus disrupting

the topology of the network. A fundamental problem is that agents have no

global view of the network; yet their actions can have a global impact. The

preferred allocation involves spreading tasks across the system in a manner that

takes the cost of remote communication into account.

This dependency on energy led me to use two different metrics for allocation.

Firstly, the number of tasks allocated is an obvious measure. However, if tasks

have different sizes or priorities, this approach does not capture the whole

picture. In addition, it is possible for two different systems to allocate the

same number of tasks — in this case a second metric of energy efficiency is

required. For two approaches that allocate an identical number of tasks, the

one that requires a smaller energy overhead is regarded as better, because it

has the potential to complete more tasks. In mission design terms, higher

efficiency translates to lower cost, with smaller power systems and lower launch

mass. Energy overhead is thus used to provide a more nuanced view of task

allocation performance.

3.1.3.2 Robustness

As the system becomes larger and more diverse, the probability of unforeseen

events in the network increases: agent failures, topology changes, changing work

loads and new mission objectives, for example. We define robustness as the

ability of the system to successfully allocate tasks, despite these disturbances.

In measuring robustness, I therefore look at the allocation performance, in

terms of tasks and energy, in the presence changes in the network structure.

3.1.3.3 Scalability

Network sizes will be in the range of tens to hundreds of nodes for the dis-

tributed satellite application, but larger systems are not impossible. To scale

well in this range, the task allocation mechanism should function autonomously,

while the total communication cost remains reasonable. Direct management of

agents by humans becomes prohibitively complex and expensive in larger sys-

tems. The ideal would be a system that acts as a superorganism: despite the

multitude of autonomous parts, the system as a whole is managed as a single
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individual. The detail of which module performs which component of the task

should be abstracted away from the operators and decided transparently by the

group of satellites.

The proportion of the energy budget devoted to communication is one of

the most visible indicators of the scalability of the system. A greater number

of agents can lead to more messages sent during negotiation; to avoid spending

all energy on communication, the communication overhead needs to grow in

sub-linear fashion with the number of nodes in the network.

3.2 Tasks

Before we can decide how to manage job allocation, we need to define a lan-

guage we can use to discuss tasks. The term task is generally used to specify a

unit of work that must be completed by the system, with different task types

corresponding to different operations. Tasks can be decomposed into subtasks:

atomic units that are executed by agents with different skills. I will assume

that this decomposition is known a priori, but that the order in which tasks

will arrive is not known. The work on task allocation in multi-robot systems by

Zlot (2006) informed much of my thinking around the representation of tasks,

although I will restrict myself to a simpler set of tasks. Instead of considering

boolean relations between task components, I will use deterministic task def-

initions, where one task component always results in a specific set of further

task elements.

3.2.1 Command flow example: building a house

The command structure of tasks can best be illustrated using a simple allocation

example: suppose a man wants to build a house. As the owner, he does not

know how to construct it, so he decides to contract someone to do the building.

The building process can be split into three different components:

• laying the foundations,

• building the walls, and

• constructing the roof.

These task components must be executed in sequence, but the command

structure can assume several different forms: one option using a single builder
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Figure 3.4: Graphical depiction of different command flows for the house-
building example. In (a), the owner assigns responsibility for the entire con-
struction to a monolithic entity with all the necessary skills. The case where
the manager manages every component is shown in (b), while the recursive
subcontracting command flow is shown in (c).

with multiple skills, and two alternatives which rely on specialists. When viewed

in the satellite domain, the first case is very similar to using a monolithic

satellite, while the last two cases are architecturally similar to the distributed

satellite problem, where specialised units need to be coordinated. A graphical

representation of the different command flows is given in Figure 3.4.

3.2.1.1 A single builder with multiple skills

In the first configuration, the owner approaches a number of builders to obtain

quotes. He selects one based in a combination of cost and promises of quality,

who then proceeds to build the entire house. Employing someone who is very

good at all the aspects of building is very expensive though. This cost is largely

53



3. Design of the task allocation model

due to the number of skills and amount of equipment the builder must maintain

to be proficient in all aspects of construction. Most of it is underutilised —

only a single task is performed at one time, yet all the builder’s resources are

allocated to one building project.

This approach is analogous to using a single, complex satellite: to be good

at everything a highly advanced system is required, but the entire system is

dedicated to a single objective. If the satellite is isolated and completely self-

reliant, this can be justified, but if others are around who could share resources,

a more efficient and robust allocation can be made.

3.2.1.2 Direct management

An alternative approach sees the owner contracting labour to different special-

ists. When the first contractor completes the foundation, the owner enlists a

builder who specialises in walls, after that one who is good at constructing

roofs. This works out less expensive than the single builder approach, because

everyone in the chain of construction is only occupied for the portion of time

where they are actually used — if another job becomes available after the foun-

dations have been laid, the first contractor can start work there while the walls

are still being erected. Different task components are therefore pipelined which

allows a higher throughput.

The owner still acts as building manager throughout: he communicates

all the information about the status of the foundations (e.g., dimensions, load

capacity, etc.) to the wall builder, and again all the wall information to the

one who constructs the roof. Although this allows a very high level of control,

this requires significant time and effort on the part of the manager. He needs

to select all the contractors and communicate with them in sufficient detail to

serve as interface between them. The greatest benefit of this approach is that

it offers fine-grained control over the construction process, however, this incurs

significant overhead on the part of the owner.

If this approach is applied to managing a distributed satellite system, we

will find a central manager spacecraft that can control a number of simpler

workers. The manager can use global information to realise optimal (or near-

optimal) system performance; however, the manager presents a single point of

failure, and the information processing requirements will be significant in larger

systems.
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3.2.1.3 Recursive outsourcing

In the final control flow model the owner contracts the specialist in foundations

to build the entire house. After laying the foundations, this specialist calls in

a wall specialist he trusts and contracts him to complete the house. When

his component is complete, the wall builder again finds a roofing specialist to

complete the remainder of the structure. At every stage the responsibility for

the task is transferred to the next person in the construction chain.

This approach utilises the skills of the individual builders to the full, both

in a technical and an informational capacity. On the technical side, all builders

can be specialists, which allows investment in their skills and equipment. In

addition, because one type of task component is usually followed by another

specific type, they learn about the next contractor in line: where they are, what

information they need, and how much they will cost. This “local information” is

potentially very useful: over time everyone builds up a model of their immediate

neighbourhood, which is used in quoting for new jobs.

The result is a robust system, mainly due to the following three factors:

1. Individuals are modular, which makes them substitutable. The function-

ality required is procured on an ad hoc basis, with no commitment to or

reliance on specific individuals.

2. There is no central control, therefore no single point of failure.

3. If demand for a new type of task were to arise, units can change their

associations (the links along which tasks are outsourced), which is signif-

icantly easier than developing new competencies.

This model is frequently seen in complex manufacturing contracts. For

example, a small engineering company is paid to build the test equipment that

is used to verify an instrumentation dial, constructed by another company, for

the cockpit of a passenger airliner. If the airliner constructor had to oversee

component procurement at the lowest level, the amount of administration would

completely swamp the whole construction process.

This distributed, self-organising command flow is very attractive when ap-

plied to the multi-satellite task allocation problem: it allows for specialised

units, an adaptable execution flow, scalability and robustness. I will combine

this approach with a labour market mechanism in 3.3 , but we first need to

define a notation that allows us to discuss tasks.
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3.2.2 Notation

Although relatively simple tasks, such as the construction example in sec-

tion 3.2.1, can be adequately described using natural language, we are quickly

pushed beyond the bounds of what can comfortably be expressed. Researchers

have therefore used directed graphs (Kota et al., 2009) or trees with logical

operators (Zlot, 2006) to describe the transitions between task components.

I have however found production rules, as used in context-free grammars, to

provide a clear and concise description of tasks at a level of detail suited to

this study. Note that this is primarily a descriptive tool: it contains the same

information captured by directed graphs or task-trees. The main attractions of

using a grammar are the brevity with which task structures can be described,

as well as the ease with which complex tasks can be generated. The reader is

not assumed to have any previous knowledge on formal grammars; the main

objective of this section is to convey the manner in which task elements will be

described in the rest of the thesis. If a more in-depth discussion to context free

grammars is required Kakde (2007, Chapter 5) provides a good introduction.

At the highest level, we use a task to denote a sequence of operations that

delivers a result. These operations are known as task elements or task compo-

nents (the terms task elements and task components are used interchangeably

in this thesis). The task elements can be seen as commands, for example “take

picture” or “build walls”. Every command has an action associated with it (the

taking of picture, or laying bricks to form a wall), and sometimes one or more

further commands that result from the action (e.g. “download photo data” or

“construct roof”). These offspring task elements are usually associated with

the transfer of control and of data that resulted from the previous action.

We can define the relationship between task elements formally using a con-

text free grammar described by the four-tuple G = (V, T, P, S), where:

1. V is a finite set of non-terminals that correspond to task elements (e.g.,

the command to execute a task element such as “build walls” in the house

building example).

2. T is a finite set of terminals representing the actual execution of the task

(building the walls).

3. P is the set of production rules that specify the relationship between

different task elements (e.g., the walls have been completed, now the roof

must be constructed).
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4. S is a set2 of start non-terminals, defining the tasks that are visible from

a position external to the system. The command “build a house” is an

example which then starts with the task element “lay the foundations”.

In our task allocation case, non-terminals correspond to task elements, i.e., the

command to do something; while the terminals represent the actual execution

of the task. Task elements are indicated using capital letters (A, B, C, etc.);

execution terminals use lower case (a, b, c, etc.). The production rules describe

the tree of hierarchical dependencies.

In referring to a task, we therefore refer to such a grammar and the resulting

execution tree. The possible tasks that can be executed by a system correspond

to the set of starting tokens, S. Allocation of a task Ti results in the execution

of one or more non-terminal task components (W ):

Ti → W

As our main focus here is on how one task element generates further task

components, we restrict production rules to have the following structure:

X → xS

The execution terminal is the leftmost character of the generated string (x),

optionally followed by one or more further task elements (non-terminals) in the

string S. This format is well suited to the outsourcing model used in this thesis:

an agent executes a task element then passes the result on to one or more other

agents for further processing. If an agent has the ability to execute a task x,

we will refer to that ability as the skill x.

As an example, we can now describe a task that consists of the elements a,

b and c which are be executed sequentially, such as the house building example

above. The production rules for this task are given by:

A → aB

B → bC

C → c

with S = {A}. The execution flow is graphically depicted in Figure 3.5.

A different task description might require a to lead to both b and c:

A → aBC

B → b

C → c
2Here I deviate from convention in having multiple starting points; these correspond to

different tasks.
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a b c
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Figure 3.5: Sequential task execution, where task elements follow each other
in a linear manner.

again with S = {A}. The resultant branching and parallel execution is shown

in Figure 3.6.

a

b

c

A B

C

Figure 3.6: Branching task execution, which results in two tasks elements
executed simultaneously.

Note that if we focus purely on the produced terminal sequences (abc) these

two grammars appear equivalent. However, if we take into account that the

execution of b and c in the second example effectively occur in parallel, the

resulting string can be either abc or acb. It is therefore important to keep in

mind that our interest here lies in the transitions that make up the task tree,

because that is what needs to be allocated.

Using production rules can easily describe an execution tree, but it can also

be used to describe more complex graph-like task dependencies where tasks

converge to a point. If data from several nodes needs to be merged by a single

unit, this can be accomplished by initially allocating a task that defines which

node will serve as the convergence point. When the individuals that generate

data allocate the subsequent task components, only the convergence node is

seen as suitable, and receives all components. The skill set of the convergence

node is therefore temporarily modified to allow convergence.

3.2.3 Task size

The last point in the description of tasks that needs to be defined is that of

task size. Two tasks of similar structure can have different sizes: building a

small cottage requires less work than a large villa. The size is an indication

58



3.3. Task allocation in a labour market

of the amount of resources (e.g., time, processing power, bricks, cement, fuel)

required for a particular instance of a task type. When considering a task

consisting of multiple components, I will assume the size relationship between

the task elements remains constant. If T2 is double the size of T1, and both

are instances of the task in Figure 3.5, the size of the task elements (a1, b1, c1)

of T1 will be double that of the corresponding elements (a2, b2, c2) of T2. The

work capacity of an agent is the sum of the task sizes it can execute.

When expressed in a satellite context, the task size reflects the amount of

energy required to execute a task element. For example, using the execution

flow in Figure 3.6, a task size of 1 will require 1 unit of energy to execute the

a component, and another unit for each of the b and c components. The total

cost of executing the task is therefore 3 units. The task size is set for every

instance of a type of task: a different instance of the same type of task might

have a size of 2, which will therefore result in a total energy expenditure of

6 units of energy. This convention focuses on the task execution cost for an

agent, and is therefore independent from the complexity of the task tree.

3.3 Task allocation in a labour market

In previous sections I described an abstracted model of the system we are

interested in and discussed tasks, skills and the task elements we use to define

the process. With these prerequisites covered, we can now develop the task

allocation mechanism. I will base my discussion on the dynamics of a human

labour market. Why a labour market? The use of a social metaphor is not

purely a pedagogical tool — I believe that when both systems are viewed from

a task allocation perspective, they are remarkably similar.

Human markets have certain characteristics due to the environment in which

they operate. Markets encourage specialisation to increase efficiency. Individ-

ual self-interest results in inherently decentralised systems: a large number of

individuals can therefore take part. These individuals have limited information,

but still manage to make decisions that are good enough and their interactions

result in a highly dynamic system. Similarly, for task allocation in distributed

satellite systems, we would like to handle large numbers of heterogeneous space-

craft, employ distributed control to enhance robustness, and work effectively

despite real-time changes in task load and mission objectives.

The market system that evolved in human societies resulted in characteris-

tics that are highly desirable for the satellite task allocation problem. I therefore

propose to recreate a similar mechanism in our technological system, to benefit
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from the same dynamics. The command flow will be similar to the recursive

outsourcing allocation described in section 3.2.1.3.

The discussion starts with a basic auction, which is then refined to more

accurately reflect the abstracted system in section 3.1.2 by including the topo-

logical and associated communication constraints.

3.3.1 Basic auction

The first, and most abstract, example uses a basic auction to determine alloca-

tion. Picture a fully-connected network of agents, one of which is an auctioneer

with tasks to assign, while the others are workers that will be assigned tasks.

The agents are initially homogeneous: there is no topology to distinguish be-

tween nodes, they have the same skills and work capacity, and therefore all are

equally capable of completing tasks.

A single-bid reverse auction is used to allocate tasks. To initiate the al-

location of a new task, the auctioneer announces it to the network. For the

moment, let’s assume the task consists of a single subtask:

A → a

The auction announcement is most efficiently communicated using a broad-

cast message to all the workers, thereby utilising the one-to-many broadcast

channel between agents. The workers return bids that communicate their suit-

ability for the allocation. The auctioneer then selects the lowest bid to identify

the best agent for the job and transfers the task to it. When the agent receives

the task, its work capacity decreases, but it is also rewarded financially. We

will use capacity as a general term to describe the availability of an agent in

terms of time and resources.

This approach relies on bids reflecting some system cost: if the auctioneer

assigns to the lowest bidder the global cost is minimised. But how should

worker agents calculate their bids? As our objective is to maximise the total

system utilisation as discussed above, the desired allocation would distribute

tasks evenly across the available workers. One way of achieving this is by having

the bids reflect the available capacity of the agent and the size of the task:

bid = size× capacity−1

This causes a task to be allocated to the agent with the greatest capacity: idle

agents (with capacity at 100%) will place lower bids than agents with lower

capacity (due to previously assigned tasks). Initially, all agents are equal, so
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allocation can go to anyone. The agent that receives the task has its capacity

decreased, so in the next allocation round, someone else will receive the task. As

a result the allocation resembles round-robin assignment, where all agents are

evenly utilised. Note that in economics literature, the terms “quote” or “ask”

would be preferred to “bid”, as this is a reverse auction. However, to maintain

consistency with the terminology used in the definition of the Contract Net

protocol (Smith, 1980), I will use “bid” to indicate the price quoted by worker

agents.

If we were to start with a range of initial capacities, this approach will start

by assigning tasks to the highest capacity workers first. As their capacity is

decreased to the level of other workers, these workers will also be assigned tasks:

having the bid structure communicate work capacity encourages equalisation

of resources across the network. Large tasks require more energy to complete,

the quoted price will therefore be scaled accordingly.

Note that the workers are not trying to outbid each other or mislead through

incorrect information. They are selfish in the sense that they try to maximise

a private utility function, but also benevolent in the sense described by Rosen-

schein and Genesereth (1985). Despite their benevolence the agents are all

still trying to maximise the amount of work they receive, but only by staying

within the defined rules of interaction. The differences between this cooperative

market and one where agents are truly selfish, with no regard for system-level

performance, will be explored in more detail in Chapter 7.

If more than one type of task needs allocation, we will need a community

of workers that have the necessary skills, but the allocation mechanism itself

is still valid with the added condition that workers only bid on tasks that they

are capable of completing. This basic auction is illustrated in Figure 3.7 for a

task of type a. Note how the bid value abstracts the network information: the

network topology, skills of workers and their capacity are all communicated in

the bid price.

We now expand the scenario to a multi-component task, which is sequen-

tially assigned to different agents. To determine the next allocation, an agent

can assume the role of auctioneer, eliminating the need to transfer the task

back to its origin. By allowing any node to be an auctioneer, this approach is

equivalent to the recursive outsourcing example in section 3.2.1.3.

The outsourcing costs of the future task components need to be taken into

account when bidding. The resulting bid calculation now assumes the form:

bid = (size× capacity−1 + outsourcing cost)

To determine this outsourcing cost the workers could perform a dummy auction,
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Figure 3.7: The view of the network that results from the basic auction. In (a)
the network topology, skills (a or b) and capacity (in percentage) of the workers
are given. (b) represents the auctioneers perspective of the network, where all
the information has been abstracted to bid values.

where potential contractors state what they will bid; however, it is expensive

from a communication point of view and not guaranteed to be accurate when

allocation eventually happens. Alternatively, and more simply, the worker can

use his history of outsourcing attempts to estimate the expected outsourcing

cost. The reduced communication and faster turnaround time makes this the

preferred approach in my model.

3.3.2 Spatial distribution

We now increase the complexity of the problem by introducing a network topol-

ogy that limits agents to only communicate with a subset of the other agents

in the system. The greatest difference between this scenario and the previous

one is that an auction will not reach all workers involved. Instead, messages

need to be relayed through other agents.

Imagine an auction, as described above, that fails because none of the work-

ers can accept the task, either due to insufficient capacity or due to lacking the

requisite skills. The task could be discarded as impossible to assign, but in-

stead the scope of the auction is enlarged: everyone notifies a few of their friends

about the pending task. Some of these friends are available, so the interme-

diate workers return to the auctioneer with a solution: they can facilitate the

allocation of the task by acting as middlemen. As a result the auctioneer will

now receive valid bids, despite none of his direct neighbours having capacity

available.

Two routes can be followed from here. In many human examples, a meet-

ing between the auctioneer and the prospective bidder would be arranged to
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3.3. Task allocation in a labour market

complete the allocation. This can be seen as creating a new connection be-

tween these agents. The second route involves cases where connections cannot

be changed quickly, or creating the link is expensive (for example, when new

equipment must be acquired and people trained). In these cases the inter-

mediate agent serves as a conduit between the auctioneer and the successful

bidder.

We can take it even further if we assume that the auctioneer is not interested

in who is executing the task, merely in assigning the task. The auctioneer then

treats the facilitating neighbour as if he was the final task destination, trans-

ferring both task and payment to him. The facilitator subsequently transfers

the task to the actual bidder. The usage of a middleman is not limited to only

one intermediate hop; we can expand it to form allocation chains across the

network. This approach is very attractive, as it allows us to abstract away the

topology of the network, thereby simplifying processing and allocation. Note

that this allocation process is task-centric: the objective of the auctioneer is

not to assign work to someone specific, instead he simply wants the work to be

completed. The allocation process in a spatially distributed auction is shown

in Figure 3.8, (a) to (c).

The relaying of auction messages has improved the allocation of tasks, but

has also resulted in increased communication. As stated before, communica-

tion decreases the capacity of agents to do what we really care about, namely

complete tasks. The first aspect of communication cost is on an agent level:

workers now spend time and resources facilitating deals that do not benefit

them, not even if the task is successfully allocated due to their effort. The

second problem is that the relaying of messages makes allocation to distant

nodes possible. While it is desirable to have this functionality, we would also

like the auctioneer to be capable of distinguishing between nearby and faraway

workers, because local allocation has a smaller system-level energy cost.

Human markets have, however, encountered these problems before. To ac-

count for the negotiation expenses, agents charge a commission fee for facilitat-

ing successful allocations. The commission addresses both the above concerns:

the intermediate agent is rewarded for resources committed to facilitating al-

location, and the auctioneer has an incentive to prefer nearby nodes because

distant nodes are more expensive. The effect of commission on the bid values

of Figure 3.8 is shown in Figure 3.8d. Note the difference in received bid val-

ues: without commission the $10 bids appear equivalent, even though the more

distant node will result in greater communication cost. With 10% commission,

however, the auctioneer will prefer the closer node.
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Figure 3.8: Auction across a network without commission as seen by auction-
eer. The true state of the network is shown in (a) with the corresponding
bids calculated by workers for a task of type a in (b). The auctioneer has no
topology information, instead it only receives a number of bids from its neigh-
bours which includes their own bids, and bids relayed from more distant nodes.
This is shown in (c) for the case without commission, while (d) again depicts a
system where all nodes add 10% commission to the bids they relay. Note the
differences in relayed bid values in the last two cases.

64



3.4. Simulation model

Not all instances of nodes acting as intermediaries result in successful allo-

cation however; lower cost assignment to a different node is frequently possible.

The human response is to charge a generous commission: if task allocation is

successful, the facilitator receives enough money to survive a number of failed

attempts. Different commission calculation strategies will be discussed in more

detail in the following section, when I describe the simulation model.

The use of intermediate agents can be seen as a streamlined version of

a repeated auction to do the allocation. The first auctioneer would assign

a task to one of his neighbours, but as the neighbour does not possess the

necessary skills to perform the task, he initiates his own auction to find a

suitable candidate. This process is repeated until the task reaches a viable

destination. Of course, such a model relies on the intermediate auctioneers to

know enough about the network to believe they can successfully outsource the

task. If we treat these intermediate auctioneers as facilitators, they fulfil the

same function, but with a much lower communication expenditure.

3.4 Simulation model

The labour market described above forms the abstract model at the base of the

design tree in Figure 2.2. It is a general description of an allocation process

which could potentially be mapped to a number of related scenarios. Whereas

many mechanism design problems focus on forcing agents to be truthful, the

problem here is subtly different. As agents are benevolent, they are also as-

sumed to be truthful. However, as system managers we do not have reliable

access to their utility valuations, i.e., how much energy they have for complet-

ing tasks. In addition, we cannot assume that their estimates of outsourcing

costs will be correct, because these are based on previous observations, not the

current state of the network. Instead of addressing various agent strategies, our

problem centres on the access to information in a dynamic environment with ex-

pensive communication. While I am interested in a distributed satellite system

application, I also need to be aware of the families of systems that are pruned off

as the design increases in specificity. As a first step, a realistic implementation

of the allocation mechanism must be defined. This forms the simulation model

used in the rest of the thesis, and also serves as an implementation reference

for physical systems.

The labour market above is used as a metaphor that inspires the solution to

the multi-satellite task allocation problem. I describe the complete model here

to provide a single, comprehensive overview of the task allocation system. In
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the following chapters I will explore particular components of the system while

assessing the allocation mechanism. At this point I would like to reiterate that

the validity of the mapping between these two scenarios is the result of the

similarity between them. Communication, topology and task constraints are

similar in both cases, because the task allocation problem should be seen as

much broader than the specifics of the respective domains.

A discrete event simulation is used to model the system: satellites are rep-

resented as independent agents, each with a set of skills that correspond to the

types of tasks it can execute. Agents measure their capacity (i.e., the amount of

work they can perform) by their available energy. They are spatially distributed

to form a network with local communication links between nodes. Tasks can

originate anywhere in the network, and can only be allocated to nodes with

sufficient energy and the correct skills.

We have already identified the energy spent on communication as a major

constraint on the work completed by the system. To accurately model this, the

simulation has to start on the packet level: every transmission must be tracked

to be able to measure communication cost. All packets require a finite time

to propagate between nodes, and all packets use energy for transmission. The

packets are built into a routing framework, upon which the negotiation and

allocation logic is constructed.

3.4.1 Task allocation

The auction protocol for a single task component is described using a message

sequence diagram in Figure 3.9; the various steps and associated actions will

be explained sequentially.

When an agent becomes aware of a task element that needs to be allocated,

it sends an auction announcement message to all nodes in the network through

flooding. If an agent receives more than one auction announcement packet for

the same auction due to cycles in the network topology, only the first packet is

propagated. This constructs a spanning tree across the network which will be

used for routing, as discussed in Section 3.4.4.

Relevant nodes, i.e., those with the appropriate skills and enough energy,

calculate bids that reflect their fitness: the bid value (B) is based on the ratio

of maximum (emax) to remaining energy (erem), plus the expected outsourcing

cost (cos), as discussed in 3.3.1. A scaling factor is applied to take the size of

the task component into account (z). Note that the task size also applies to

the size of the outsourced task components; the outsourcing cost is therefore
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also scaled by z as discussed in Section 3.2.3.

B = z

(
emax

erem
+ cos

)
(3.4.1)

This cost function communicates the available resources of the agents: under-

utilised agents will place inexpensive bids, while those that receive frequent allo-

cations increase their bids as their available energy decreases. By including the

expected outsourcing cost, information about the network in the vicinity of the

bidding agent is also communicated. Agents are benevolent: our objective is to

control the system by transmitting the minimum information; we are not mod-

elling bidding strategies for a competitive real-world market. Bids are routed

back to the auctioneer along the path of the original auction announcement.

The auctioneer assigns the task component to the agent with the lowest

bid and transmits an allocation-offer message. If the winning agent wants

to accept the offer, it returns an acknowledgement message, upon which the

auctioneer transfers the task and payment. If, however, the agent has changed

state since bidding by accepting another task component from a different source,

it transmits a negative acknowledgement to the auctioneer, who will then repeat

the auction up to three times. If no suitable agents exist, e.g., due to several

node failures or insufficient node energy, allocation will fail.

The outsourcing cost is calculated by averaging over the prices paid in

the last five outsourcing events, i.e., where the node that is currently bidding

previously acted as an auctioneer for the corresponding task type. Of course,

many other learning rules could also be used instead of this moving average filter

— the main desirable characteristic is that it rejects noise, while responding

quickly enough to changes in the system state. The moving average filter was

easy to implement and exhibited satisfactory performance. To bootstrap the

learning of the outsourcing cost, the history was populated with initial values

of 1. This is equivalent to assuming that the task can be outsourced to an

adjacent node with full capacity, i.e., the lowest cost outsourcing case. This

value is also low enough to ensure that the node does not exclude itself from

receiving an initial task by quoting too high a price. When a task is outsourced,

this value is updated to reflect the learned cost.

This strategy would work smoothly when a system contains a single auc-

tioneer. However, multiple simultaneous auctioneers exist in our system: tasks

can originate with any agent, multiple tasks will be in the system at any one

time, and tasks will of course be passed around the system as each component is

executed. With multiple auctioneers we potentially find conflicting allocation:

the best available node will be allocated several different tasks concurrently.
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Figure 3.9: Message sequence diagram describing the market-based task alloca-
tion flow, with time increasing from top to bottom. Node 1 acts as auctioneer,
while Node 3 is the successful bidder. The auction announcement messages are
flooded through the network; nodes capable of executing the task respond with
bids that convey their suitability. Bids are aggregated on the return path: only
the best bid is forwarded. The task is allocated to the lowest bidder and the
payment and task are transferred.
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Furthermore, this strategy does not take the topology of the network into ac-

count. If the auctioneer receives equal bids from two different nodes, he has

to decide between them. From a global efficiency point of view, we require

the auctioneer to prefer allocation to the closer node, but there is no way of

determining how far away they are.

To remedy these two concerns we need a localising force that will counter

the tendency to allocate all tasks in the system to the agent with the highest

energy level. Thus, when an agent relays a bid to the auctioneer the bid is

increased by a constant commission factor. Bids from far away will therefore

appear more expensive to the auctioneer, causing it to favour nearby nodes.

The resultant bid that is received by the auctioneer can be expressed as

Brx = z

(
emax
erem

+ cos

)
(1 + k)dbid (3.4.2)

where k is the commission value (between 0 and 1) and dbid the number of

hops the bid has been relayed. Note that, for k = 0, distance does not make

a difference to the received bid value. This approach does not completely

eliminate allocation collisions, but does reduce their occurrence substantially.

Note that commission does not necessarily have to be multiplicative —

I chose it based on the similarity to real-world financial transactions, where

commission is often levied as a percentage of the transaction cost. To best

capture the system-level energy consumption, additive commission could also be

used. However, for the transfer distances used in my experiments, the difference

between the two approaches is minimal.

In terms of communication cost, the negotiation packets (auction announce-

ment, bid, allocation and acknowledgement messages) are all relatively small,

in the order of tens to hundreds of bytes. Task transferral usually involves

more data, however, as the state of the task and any associated data must be

transferred. For example, if the task at hand involves the merging of images

from different sources, the image data needs also to be transferred, which re-

sults in orders of magnitude more data than the negotiation packets. In the

cost calculations in subsequent chapters I will therefore distinguish between the

cost of negotiation packets (ctx) and the cost of task transferral (ctf). To relate

these two values, we can express ctf as ctx scaled by a constant factor (α):

ctf = αctx

α therefore defines the difference in energy cost between negotiating an alloca-

tion, and transferring the task for execution.
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3.4.2 Optimisation

While the above scenario is promising in its task allocation ability, we can refine

it to more efficiently utilise the communication resources available. I achieve

this by limiting auction range and by aggregating bids.

The case for limiting the auction range is argued first. If an auctioneer

wants to allocate a task in a very large network with n workers, an auction

announcement will be propagated to all individuals (n messages). A subset of

these agents will respond, but in the worst case all n. Their bid messages are

relayed back to the auctioneer, resulting in up to n(n+1)
2 messages. The total

number of messages sent in the negotiation phase is therefore proportional to

n2. However, due to the high commission on long distance allocations, local

workers will be preferred. We can exploit this preference for local allocation

by limiting the propagation distance of the auction message through a time-

to-live (TTL)3 mechanism, without significantly impacting on the allocation

performance. The set of workers participating in an auction is called the auction

community, which covers an area up to dttl hops away from the auctioneer. The

number of workers participating in an auction will be n′, where n′ < n, with

the exact value of n′ determined by the network topology and dttl.

The second improvement involves aggregating bids to only relay the best

bid. If we refer back to Figure 3.8d, note that the auctioneer will receive

multiple bids from neighbouring workers that represent more distant bidders.

The relaying of these bid messages results in the n2 term identified above, which

in turn is the greatest contributor to the total communication cost. If workers

aggregate bids and only forward the winning bid for their local sub-trees, the n2

factor is replaced by n, drastically cutting the communication overhead. A more

detailed derivation of the communication complexity is given in Section 5.3.1.

Note the similarity between the aggregation of bids and data aggregation

used by Intanagonwiwat et al. (2003). In both cases only the required infor-

mation is transmitted to the destination: the auctioneer only needs to receive

the winning bid to make an allocation. An additional benefit of bid aggrega-

tion is that processing is spread across the network, thereby eliminating scaling

problems in that regard.

3.4.3 The global view

When the allocation process executes concurrently across the network, we find

that the system self-organises into zones of allocation around auctioneers allo-

3The term time-to-live is derived from the equivalent TTL mechanism used in internet
protocol packets.
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cating similar types of task components. The sizes of the zones are determined

by the distribution of bidding agents, their individual energy levels, the num-

ber of tasks injected into the system, and the topology of the network. This

auction mechanism is equivalent to a reverse sealed-bid auction, but it is truly

distributed. Not only do all agents have to act as temporary auctioneers, but

all agents in the auction area help to calculate the winner.

The topological constraints on information exchange is similar to the dis-

cussed in Robinson (2002) — the agents that make up a market are physically

co-located. One significant difference between Robinson’s work and mine is

that my allocation mechanism uses the relaying of bids to increase the size

of the auction community, while he treats the auction community as a given

with no explicit concept of communication cost. This means that my allocation

approach will cope better with sparse networks, where the local community is

very small, because relayed bids provide an efficient mechanism for enlarging

the auction community.

Currency is primarily used as a communication metaphor; no actual money

changes hands, nor can nodes go bankrupt or get rich. Our interest lies in

the management of the entire system, not in the success of an individual agent

(although agents do try maximise utility by allocating to worker that quotes

the lowest price). This view of prices for communicating the state of the system

recalls Hayek’s concept of price signals: the change in prices in a free market

communicates information to agents in the system which allows them to solve

the distributed allocation problem, even without knowing exactly what it is

(Hayek, 1945). In our case the price signals communicate the availability of

resources (agents with skills and enough energy), which in turn determines

the allocation patterns. If one area is exploited, prices will increase, causing

allocation to shift to another area. The allocation auction can therefore also

be seen as a particular type of negotiation mechanism.

3.4.4 Task-centric routing

This allocation mechanism makes no assumptions about the underlying routing

architecture and can therefore be implemented in a number of different ways.

However, the ad hoc information generated during an auction can be used to

implement a novel task-centric routing protocol that is closely integrated with

the task allocation mechanism.

In the majority of communication networks, routing is address-based: pack-

ets are sent from someone with a unique identifier, to another node with a differ-

ent identifier. To relay communication between these individuals, intermediate
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nodes use routing tables that describe how messages should be forwarded. The

information in these routing tables needs to be maintained to allow effective

packet delivery, which complicates network management in dynamic topologies.

For this reason, I propose the use of a task-centric routing for distributed satel-

lite systems; this is supported by the data-centric routing approach proposed

by Gnawali et al. (2005) for inter-satellite networks.

When it comes to task allocation we are no longer bound to using identities.

If an auctioneer wants to allocate a task, it is concerned with the capabilities

and resources of the potential bidder, not its name. In my task-centric routing

scheme communication is routed according to the task it is associated with,

which greatly limits the overhead. Paths are established on an ad hoc basis:

under normal conditions this would be prohibitively expensive, but as the re-

quired paths can be constructed using information visible during auctions, it

has no additional cost in the system. When auction announcement messages

are flooded through the network, a node will only forward the packets if:

1. it has enough energy to transfer a task,

2. the announcement message time-to-live has not been exceeded, and

3. the node has not forwarded an announcement packet for the particular

auction, i.e., the task identifier associated with the packet has not been

seen before).4

Packets will therefore propagate across the network over nodes with suffi-

cient energy to ensure reliable communication, forming a spanning tree across

the network. By only forwarding one packet for a particular auction, cycles in

the routing network are avoided.

In terms of implementation, a task-centric approach to routing can be re-

alised if all nodes maintain two tables. By indexing these tables with the task

identifier, the next hop for a packet can be determined as the packet travels

through the network. The first table is used for “upstream” routing: it con-

tains the next hop towards an auctioneer. When an auction announcement is

flooded across the network, the address of the transmitting neighbour is added

to this table, along with the task identifier. When bids and acknowledgement

messages are relayed, the node selects as destination the neighbour specified

4An alternative propagation rule relays packets if the path they followed to from the
auctioneer to the node is via higher capacity intermediaries than that followed by previous
announcement packets, with a trade-off for distance. This could help the system performance
by distributing communication to under-utilised nodes. In my simulations I only used the
shortest path propagation, as preliminary experiments did not suggest a significant improve-
ment for more advanced route construction approaches.
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in this table. The second table is the downstream routing table. Entries are

added to this table when the node relays a bid back towards the auctioneer.

Bids that are not relayed are not entered into the routing table. If an allocation

message is received, a node can use the downstream entry of the corresponding

task to relay it to the next neighbour, because bid aggregation only requires the

winning bid to be transmitted. The same applies to task transferral messages.

Information is only stored for the duration of an auction; the maximum

sizes of these tables are therefore fairly small, and the node can safely remove

routing information when an auction is complete. The sizes of the routing

tables are largely determined by the number of simultaneous auctions in which

the node is involved, which in turn depends on the network topology and dttl.

As a result, the processing requirements on intermediate nodes are minimal:

the tables are indexed using unique task identifiers, and data is only written to

the table on specific packet events.

This routing approach shares a number of similarities to the data-centric

routing approach used in directed diffusion (Intanagonwiwat et al., 2003): nodes

do not need to know the topology of the network, nor what other nodes are

out there. Routing tables are constructed using only local information — the

auction announcement and bid messages provide enough information for up-

and downstream routing. Whereas directed diffusion constructs a routing land-

scape in which the gradient shows the shortest path to the sink node, my routing

mechanism aims only to maintain a route between auctioneer and bidders until

the task is allocated.

3.4.5 Assumptions and limitations

As with any model, a number of assumptions are made in the abstraction

process. The model is valid for part of the parameter space for which these as-

sumptions hold. We need to clearly identify these assumptions before exploring

the model in any detail.

• The allocation mechanism assumes that a single task component needs

to be allocated per auction. If multiple tasks regularly needed concurrent

allocation multiple auctions would suffice, but a more efficient mechanism

could be designed.

• Communication is treated as deterministic and pair-wise bidirectional:

two nodes will communicate successfully if they are within range of each

other. In reality though, wireless communication is more accurately mod-
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elled as a stochastic process. This will need to be considered if systems

with unreliable communication systems are investigated.

• Sufficient bandwidth is assumed to be available to not warrant explicit

consideration in the model. The number of transmitted packets is fairly

low, confirming the validity of this assumption. This simulation should

therefore not be seen as an accurate model of systems with very low

bandwidth.

• This task model assumes that agents can estimate their own internal

energy cost in completing a task — this information is used in the when

bidding for task components. This is not unreasonable, as the resource

cost associated with a task can be characterised quite accurately. Note,

however, that agents still have to estimate their outsourcing costs, as this

information is unknown at the time of bidding.

3.5 Discussion

In this chapter I have described the development of a task allocation mechanism

inspired by human labour markets. A scenario of a distributed satellite system

was used as a starting point to build an abstracted multi-agent model. A subset

of the characteristics of this model is shared with other multi-agent allocation

problems, namely multi-component tasks, expensive communication, limited

energy, heterogeneous agents, a spatially distributed network, node failure, and

a volatile topology. The objectives of maximised allocation, robustness and

scalability were identified. Tasks were defined, and a task allocation model

described in terms of a labour market. This market serves as an inspiration to

the proposed task allocation mechanism for distributed satellite systems, which

was described in the final section.

Adam Smith identified markets as encouraging the division of labour and

resulting in specialisation of skills which leads to increased productivity. In

this system I invert the causal relationship between these elements: specialised

agents are a given, as they can increase the efficiency of the system. We then

define a market-like mechanism to handle the allocation of labour. The resulting

system exhibits the desirable characteristics of “natural” markets: efficiency,

robustness and scalability.

Although not explicitly designed as such, this system shows some similar-

ities with the contract net protocol (Smith, 1980) as well as the various other

market-based allocation schemes proposed over the years. The key distinguish-

ing features of my allocation scheme are the following:
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• The use of a spatially distributed auction to allocate tasks. The auction

mechanism is fully distributed, with nodes across the network involved in

calculating the winning bid.

• The inclusion of communication cost as a significant factor in system

efficiency.

• A novel commission parameter is used to localise allocation, and balance

energy expenditure between communication and task completion. This

does not require knowledge of the network size or topology.

In the following chapters I will further explore the behaviour of the alloca-

tion mechanism.
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4

Behaviour of the task allocation mechanism

The previous chapter presented the design process for the task allocation mech-

anism to be used in distributed satellite systems. This model is fairly complex,

with a number of interdependent parameters determined by both the applica-

tion (e.g., communication cost) and the allocation mechanism (e.g., dttl). Before

I explore the parameter space, it is necessary to discuss the basic dynamics of

the allocation mechanism. In this chapter I focus on the behaviour of the task

allocation mechanism in a number of basic scenarios. The experiments confirm

the suitability of the allocation mechanism for distributed satellite systems,

but also help us to understand how it works, thus providing a foundation for

understanding the more complex dynamics we will encounter in later chapters.

Thus, in order to gain familiarity with the allocation mechanism, this chapter

looks at both the way tasks are distributed out across the system and how the

it responds to node failure.

4.1 Task allocation

The primary objective of the system is to achieve effective allocation of tasks.

As discussed in the model design section, this requires that tasks be distributed

across nodes in a manner that is sensitive to the available energy of individuals,

while also taking the network topology and communication cost into account.

In this chapter I explore the qualitative behaviour of the allocation mechanism

through simulation.

4.1.1 Single auctioneer

As the behaviour of the system is our primary concern, I restrict the initial

scenario in a number of ways that make it easier to follow the allocation process.

The simplest allocation example is the case where we have an auctioneer at

one end of a linear network, as shown in Figure 4.1. The other nodes act as

homogeneous worker agents, with the same initial energy and skills. The tasks
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1 2 3 4 5 6 7 8 9

Figure 4.1: Linear network with one auctioneer, every node represents an agent.
The shaded node (1) acts as auctioneer and allocates tasks to the other nodes,
who all have the same capabilities. The task allocation mechanism favours
nodes that are located closer to the auctioneer, due to a combination of the
commission parameter and the effect of transmission cost.

are single element tasks, with the structure:

A→ a

Note that although any node could theoretically act as an auctioneer, this

simplified task structure means only the first node will allocate tasks. The

network topology is static, without node failures or mobility. Communication

has a fixed cost of 0.001 units per negotiation packet (ctx = 0.001), while task

transfer messages have a cost of 0.1 units (ctf = 0.1). One task is allocated

every 100 time steps, using the auction procedure described in the previous

chapter. Tasks initially have a size (z) of 1, at t = 5 000 time steps the task

size is increased to 2, thus increasing the load on the system. Commission is

set to 5%, i.e., k = 0.05. Nodes have a maximum energy capacity of 10 units,

if it falls below this level, it regenerates at a rate of 0.003 units per time step

per node. Three distinct states can be discerned if we observe the node energy

levels over time, as shown in Figure 4.2.

In the settling phase (t < 1 000), all the worker nodes start with the same

energy, and will therefore initially calculate the same bid value (B). As there

is no outsourcing cost, equation 3.4.1 reduces to give the bid value as:

B = z

(
emax
erem

)
(4.1.1)

Bid values therefore communicate the energy available to a specific agent. How-

ever, the value received by the auctioneer is modified by the commission pa-

rameter, which increases the cost of relayed bids with every hop:

Brx = z

(
emax
erem

)
(1 + k)dbid (4.1.2)

The auctioneer will therefore allocate the task to the nearest agent (Node 2 in

Figure 4.1). This process is repeated with further tasks and other nodes; chang-

ing energy levels will mean that occasionally a distant bid is more competitive

than a local one. The net result is that the allocation tends to cluster around
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Figure 4.2: Normalised energy levels over time for worker nodes in network
shown in Figure 4.1, the auctioneer is not shown. One task is allocated every
100 time steps, at t = 5 000 the size of the task is increased. The step changes in
energy show where tasks are allocated, nodes’ energy levels recover slowly over
time. Three distinct allocation phases can be observed: settling (t < 1 000),
steady state (1 000 < t < 5 000) and overload (t > 5 000).

the auctioneer. The strength of localisation is determined by the commission

parameter: a high commission (more than 20%) will concentrate tasks more

strongly around the auctioneer, a lower commission results in a flatter alloca-

tion over a greater number of nodes. This settling phase is usually observed as

a transient at the beginning of a simulation, or when task allocation is bursty.

The system reaches steady state when the amount of energy being added

to the system (e.g., satellites recharging their batteries using solar energy) is

equal to the energy being expended on work and communication. In this state

the tasks are allocated to nodes close to the auctioneer with an almost uniform

distribution. The energy consumption of the closer nodes is still greater than

the ones that are further away. This is because the closer nodes have to expend

a significant amount of energy relaying messages and transferring tasks to the

more distant nodes. The number of nodes in the allocation area is enough to

allow the incident (incoming) energy to match the cost of task execution and

communication. The unused nodes remain fully charged and cannot store any

of the incident energy.

An overload condition can be caused if the workload exceeds the energy
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1 2 3 4 5 6 7 8 9

Figure 4.3: Linear network with two auctioneers (nodes 1 and 9). Tasks are
allocated from both ends of the network to the worker nodes in between. All
workers have exactly the same capabilities (except for position); the resulting
allocation pattern sees Node 1 utilising workers 2 to 4, while Node 9 allocates
to the workers at 6 to 8. Node 5 accepts an approximately equal number of
tasks from both auctioneers.

added to the system: all nodes will eventually be fully exploited. However,

as the node energy levels decrease, the emax
erem

term grows dramatically, which

in turn decreases the localising effect of commission. As a result, we observe

a flattening of the allocation distribution as the mean node energy decreases.

The number of active nodes is therefore maximised for as long as possible. If a

node’s energy falls too low, it cannot accept more tasks or communicate until

it has recovered sufficiently. This condition can be seen in Figure 4.2 where

t > 5 000.

4.1.2 Multiple auctioneers

To demonstrate the interaction between multiple auctioneers, I briefly discuss

the allocation pattern that results from having two auctioneers at either end of

a linear network, as shown in Figure 4.3. The auctioneers allocate tasks at the

same rate. The other parameters of the example in Section 4.1.1 are kept the

same.

Two auctioneers cause tasks to arrive in the system from either end. The

allocation dynamics are very similar to the single auctioneer case, with alloca-

tion close to an auctioneer preferred. However, we observe that two zones of

influence form around the auctioneers: the one on the left only allocates tasks

up to the node in the centre of the network, while the area on the right receives

tasks from the other auctioneer. If a node is positioned exactly in the centre

between the auctioneers, allocation alternates between them (this assumes a

regular rate of task allocation that is the same for both auctioneers).

Note that there is no direct communication between the auctioneers. No

global knowledge is used to calculate this partitioning, nor does the centrally

located node notify either of them of the other’s existence. Instead, it emerges

from the low-level interaction between the nodes. A feedback loop is formed

by basing bids on the available energy: a node that receives work regularly is

less likely to be allocated more tasks. The bid values effectively communicate
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the state of the network to the auctioneer. The shape of the partitioning

is determined by the distribution of available skills, the energy levels of the

nodes in the vicinity, and the task load of the auctioneer. Variations in these

parameters will result in changes in the size and shape of the partitioning. For

example, if one auctioneer has twice as many tasks to allocate as the other, its

zone of influence will be significantly larger than the other’s. The dependence

on network topology also means allocation can adapt rapidly to failure of a

node. Note that the auctioneer does not keep a map of the agents in his area,

instead their energy levels serve as a distributed memory of their utilisation.

4.1.3 The role of commission

This thesis introduces commission as a useful parameter to abstract the spatial

properties of the network into a single value that can be used to influence

allocation. In the discussions above, I have already highlighted the localising

force of commission: it encourages local allocation by making relayed bids from

distant nodes more expensive. This can decrease the communication required

in task allocation and transfer.

Another effect of adding commission to bids is that it breaks symmetry ties.

If two tasks of the same type are auctioned simultaneously to overlapping auc-

tion communities, the fittest agent will place the lowest bids in both auctions.

With no commission, both auctioneers will allocate to this agent, but only one

will succeed. The other auction will therefore have to be repeated. While

this may seem like a minor effect, in networks that have mostly homogeneous

nodes, simultaneous tasks, multiple auctioneers, and where the auction com-

munity covers a significant portion of the network, these conflicting allocations

can occur frequently. When commission is not equal to 0%, however, many of

these conflicting allocations will be avoided. For the auctioneers to still receive

equal bids, the distance in hops from both auctioneers to the agent must be

the same too.

A special case occurs when the system has no commission (k = 0) and the

transmission cost is zero (ctx = 0): the allocation changes to a round-robin

pattern. With every allocation a node’s energy would be reduced to below that

of the other worker nodes, which results in subsequent tasks being allocated to

other nodes with a greater remaining energy.

Negative commission, where relayed bid values are decreased with every

hop, will amplify the distributive element of allocation, pushing task allocation

to the outer limits of the auctioneers’ zones. This could serve as a useful

mechanism to facilitate long-distance distribution of tasks, but investigating it
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is beyond the scope of this work.

An optimal value of k could be determined for a particular network, but it

is dependent on the topology, workload and energy regeneration characteristics

of the system. Even then, the relative benefit of different commission values is

small. The establishment of zones of allocation provides the largest component

of the performance gain, and this behaviour depends more on the existence

of commission than any particular value thereof. In my opinion, only stable

topologies will benefit significantly from optimising k. In the majority of cases,

a value between 5% and 20% should be sufficient, or at least provide a good

starting point for further optimisation.

4.1.4 Discussion

The above examples demonstrate the allocation dynamics that result from the

proposed task allocation strategy. Tasks are preferentially allocated close to

the auctioneer, in a manner that distributes energy consumption to maximise

network lifetime. This verifies the obvious primary requirement of the allocation

mechanism, namely that it must allocate tasks effectively.

Implicit groupings were observed to arise due to the spatial proximity of

specific agents, where repeated interactions can be observed. This partitioning

into zones of influence occurs without global information or decision making; it

is the emergent result of the interaction between agents. This could be seen as

an emergent form of the transaction cost theories for the existence and structure

of firms (Axtell, 1999). The sensitivity of the allocation to topology, workload

and agent availability, means the mechanism autonomously adapts to changes.

4.2 Robustness

Tasks are allocated according to the available energy of a node and the node’s

distance from the auctioneer. With the basic dynamics of the allocation mech-

anism described above, we can now consider the more challenging scenario of

node failures. The objective is once again to improve our understanding of dy-

namics that result from interactions between agents, while also confirming the

allocation mechanism’s potential for robustness. It should be noted, however,

that this is but a single point in parameter space: not enough to contribute to

an emergent taxonomy. I will therefore extend this investigation in the following

chapter.

The ad hoc nature of running a new auction for every allocated task means

the system will rapidly adapt to changes in topology, such as those caused by

82



4.2. Robustness

(a) (b)

Figure 4.4: Task distribution shifts to reflect changes in the network. In (a)
the dotted line shows the area in which the majority of tasks sold by each
auctioneer (shaded node) find their allocation. The nodes intersected by the
dotted line receive tasks from both auctioneers. If a node fails, we lose both its
capacity to complete jobs and its routing functionality. The relative distances
(measured in number of hops between nodes) and loading of nodes will change,
resulting in a new distribution of labour in the network (b).

node failures. As an example, the linear networks of the previous section are

expanded to a more realistic two-dimensional arrangement in Figure 4.4, which

demonstrates how the zones of influence will shift in the event of a node failure.

To quantify the robustness of the proposed market-based allocation ap-

proach, I compare it to idealised control strategies. I am specifically interested

in the effect of failures on the system level behaviour — I therefore use the

number of tasks successfully allocated as a metric. Robustness can then be

measured as the change in performance due to failures.1

4.2.1 Simulation setup

The market-based allocation scheme is used in a network with 100 nodes ar-

ranged in a 10 by 10 square lattice formation. Nine of the nodes act as sources

of tasks; the remaining 91 are worker nodes. To simplify the description of

time-dependent events, and relate the simulation to a space mission scenario, I

divide simulation time into “days” of 100 time steps each. Tasks are introduced

to the system at the beginning of each day at a rate of 9 tasks per day. Initially

each auctioneer receives one task for allocation, but they may fail just as worker

nodes can. In this case tasks continue to enter the system at a constant rate,

with excess tasks distributed randomly across the pool of remaining auction-

1The work in this section formed part of my paper submission to ECAL 2009 (van der
Horst et al., 2009).
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4. Behaviour of the task allocation mechanism

eers. Nodes have a uniformly distributed failure probability of 0.001 per day

per node. Approximately half the nodes fail after 800 days.

Whereas previous discussions used tasks of constant size, here I vary their

energy cost according to a Weibull distribution with shape parameter β = 2

and scale η = 2. The Weibull distribution is commonly used in simulation to

represent task durations. The distribution captures the idea that most tasks

will have a characteristic duration, with some outliers taking much longer, and

the shortest possible duration being logically bounded by zero (Law and Kelton,

2000). Duration can be treated as being equivalent to size (i.e., energy cost) in

this model.

The recharging of batteries from solar panels is implemented by increasing

nodes’ energy by 0.15 units per day, up to a maximum of 10 units per node.

The recharging happens continuously over the course of the day. Transmission

cost is set to 0.001 units per packet for negotiation packets (ctx), and 0.1 units

for task transferral (ctf). Commission (k) is fixed at 20%. The atomic task

structure used in Section 4.2.3 is used again:

A→ a

4.2.2 Candidate allocation schemes

Three alternative allocation strategies are used to compare robustness. I have

opted for idealised versions of centralised control, as they can provide a common

reference. Although the following systems could not be built the real world,

they do provide useful measures for comparison with other systems.

The ideal case represents the best possible performance; as such it provides a

theoretical upper-bound on allocation. This assumes an omniscient controller

that has perfect knowledge of the network: both topology and the internal

states of nodes. The controller can communicate cost-free with any node, with-

out being constrained by network topology. Allocation is effectively treated as

a bin packing problem: for every task, the controller finds the worker node with

the most remaining energy and assigns the task to it. The controller is con-

sidered immune against failure. This model corresponds to the most abstract,

mathematical view of the allocation problem.

In the centralised approach, we have an intelligent central controller that

controls a network of simpler workers. The level of realism is increased by rein-

troducing the network topology and transmission costs. This allocation scheme

approximates the performance of a central controller in a realistic network, and

is subject to most of the same constraints as the market-based approach. The

single controller node is positioned in the centre of the same lattice. The re-
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maining 99 nodes are workers, as opposed to 91 workers for the market-based

control case. The controller has perfect information about the energy levels

of nodes in the network, as well as the topology of the network — we ignore

the cost of maintaining this information. Tasks are again assigned as in the

ideal case, with the additional constraint that to allocate a job to a node, a

valid path must exist between the central controller and the selected worker

node. A path is valid if all nodes along it are active and have enough energy for

transmission. Just as in the market-based control case, nodes along the path

have their energy decreased by 0.1 units when communicating the allocation of

a task, however no negotiation packets are transmitted.

As the controller node in the centralised approach is a single point of failure,

we assume that in a real mission scenario, it would incorporate redundancy to

decrease its vulnerability. I therefore model this node as being immune to

failure in the centralised with immunity (CI) case. All other variables are the

same as used in the centralised approach.

4.2.3 Performance

The system was allowed to settle into steady state behaviour, as described

in Section 4.1.1, before enabling the failure of nodes. The number of tasks

successfully assigned was measured at intervals of 100 days and normalised

with respect to the steady-state performance of the ideal allocator. This was

repeated 80 times to obtain an average behaviour; the resulting performance is

shown in Figure 4.5.

The ideal system can be seen to form an upper bound on the allocation

success. It deteriorates over time as the number of failed nodes increases and

the system’s capacity to complete jobs decreases. The market-based approach

displays lower initial performance: due to the energy cost of communication it

accommodates only 76.9% of the tasks the ideal case does. The energy used on

communication could not be utilised in executing tasks, resulting in the lower

performance. Steady-state performance drops to 68.9% for both centralised

control schemes, because of the larger portion of the energy budget spent on

communication (the average path length when allocating tasks is greater than

with distributed allocation). Progressive node failure decreases the total capac-

ity of the network: allocation paths become longer and use more energy, and

the network is fragmented when all routes to functioning nodes are cut. This is

reflected in the steep slope of the centralised, CI and market-based control data.

The sensitivity of the network to failure of the central controller is significant,

as can be seen when comparing the centralised approach to CI.
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Figure 4.5: Performance and robustness of different allocation strategies. Net-
work performance is measured by the total number of tasks allocated, nor-
malised with respect to the steady-state performance of the ideal system. The
amount of work stays constant, while nodes fail with a uniform probability.
The ideal case provides an upper bound on the performance because it does
not take communication cost or network topology into account. The market-
based control allocation scheme (MBC) deteriorates faster than the ideal case,
but performs more efficiently than the centralised and centralised with immu-
nity (CI) approaches. The error bars indicate the standard error over 80 runs.

4.2.4 Robustness

We define robustness as the ability of the system to maintain steady-state

performance despite node failures. To compare the robustness of the different

systems, the results from Section 4.2.3 are normalised with regards to their

respective steady-state values (Figure 4.6).

The ideal case again provides an upper bound. The centralised case deterio-

rates rapidly, largely due to the whole network collapsing if the controller node

fails. The CI approach performs better, almost as well as the market-based ap-

proach. Both these approaches are subject to network fragmentation, but CI is

definitely more sensitive. Remember that I am proposing the market-based ap-

proach as an allocation mechanism for systems where centralised control is not

suitable. Seeing it outperform an allocator with global knowledge of the system

is therefore a strong confirmation of the viability of the distributed approach.

To express these results in terms of satellite mission reliability, we define a
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Figure 4.6: Robustness of different allocation strategies. In this experiment
the ability of the system to maintain its performance despite node failures is
measured. The performance data from Figure 4.5 is normalised with respect to
the steady-state performance of the respective allocation strategies. The ideal
case shows the theoretical maximum obtainable, if topology and transmission
cost have no influence. Market-based allocation (MBC) shows a more gradual
deterioration than either of the centralised approaches. The vulnerability of the
network due to failure of the controller node is clearly visible when comparing
the centralised case to CI case. The solid horizontal line indicates 50% of the
initial throughput, which can serve as an operational threshold for satellite
missions. The error bars indicate the standard error over 80 runs.

mission as operational while it delivers more than 50% of its initial throughput.

This is analogous to a satellite system that was designed to perform a certain

amount of work, and will remain useful until its capacity is decreased by half.

The centralised system reaches the 50% limit after 360 simulation days, the

immune-centralised at 525 days and the market-based approach at 605, making

it the most reliable of the three. In spite of having fewer worker nodes, the

performance of the market-based system is superior. This is not only related

to efficiency, but also to robustness. In particular, this is a result of having

multiple auctioneers which are able to adapt their allocation to changes in the

network topology and node utilisation. These results are especially promising

for distributed space applications. Launch mass will always be the dominant

factor in total mission cost and, assuming a given launch mass and spacecraft

of equal size, our results show that more work can be done more robustly using
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a market-based approach.

Additional experiments confirmed that the qualitative behaviour of the sys-

tem is robust to variations in parameter values. The qualitative observations

still hold, although some quantitative changes occur. For smaller networks, the

centralised and market-based performance results converge, because the alloca-

tion distance is decreased. If the ratio of transmission cost to task size changes,

the performance will increase (for smaller packets) or decrease (for larger pack-

ets) accordingly. These relationships are explored in more detail in the next

chapter.

4.3 Discussion

This chapter presented the dynamics of the task allocation mechanism designed

for the distributed satellite problem. The objectives were to demonstrate the

validity of the market-based allocation mechanism in terms of effectiveness and

robustness. In addition, this chapter serves as a foundation for the more com-

plicated scenarios presented later in the thesis, by building an understanding

of the allocation dynamics that result from the interactions between agents.

The discussion first focused on the distribution of tasks in a simple linear

network. The task allocation mechanism balances the distributive force of

energy-aware allocation against the localising effect of commission to allocate

tasks locally, but not over-exploit the nearest nodes. As a result the allocation

pattern is partitioned into zones around auctioneers, reflecting the available

worker nodes, energy and task loads. The novel commission parameter plays a

significant role in this by encouraging auctioneers to allocate tasks locally.

The second half of the chapter focused on the efficiency and robustness of

the system, by measuring the behaviour of the market-based allocation mecha-

nism against a number of idealised central allocation models. Node failure de-

creases the maximum number of tasks that can be allocated through decreased

resource availability (fewer workers are available) and network fragmentation.

The market-based approach was shown to perform well under these circum-

stances, slightly outperforming a centralised allocator with full knowledge of

the network, and faring significantly better than a central controller that is

subject to failure. The improvement in performance is a result of lower system-

level communication costs when assigning jobs, as well as improved robustness

due to the distributed and adaptive nature of the control system.

From a methodological point of view, it is important to note that the auc-

tioneers do not maintain a model of the system to keep track of where tasks are
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allocated, or how nodes perform. Instead the bid values tell them enough about

the part of the system they can influence to achieve a good allocation. The sys-

tem itself is therefore used as a model, by accessing the states of the nodes

when required. To take liberties with Alfred Korzybski’s famous expression, by

using auctions for allocation, our territory becomes the map.

When should system designers use the system as a memory? For it to be

feasible the cost of accessing the system should be low when compared to the

effort of building and maintaining a model. This implies a low communication

cost, or a highly dynamic system, or a system that requires a very complex

model. It also helps if an allocator only needs to take a part of the system into

account when calculating an allocation, as it reduces the amount of information

that needs to be transmitted. One drawback of this approach is a speed penalty:

for spatially distributed system accessing a model is always faster than accessing

the real system.

The approach is warranted in the case of distributed satellite systems, pri-

marily due to the unpredictable dynamics of the system. I would therefore

expect the approach to also be suitable to mobile robotics applications. Rout-

ing in computer networks usually relies on a hybrid model: a system model,

in this case routing tables, is used by default, but if routing fails the physical

system is queried to update the model. The model speeds up routing signifi-

cantly, and the network is stable enough to make it useful. At the other end

of the spectrum we find very stable systems that can best be managed using

detailed models, such as physical geography or telephone numbers. These sys-

tems change very slowly, and searching on the actual system is prohibitively

expensive. The use of models such as road maps and telephone directories is

therefore well-suited to help us navigate these systems.
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Scalability and robustness

In this chapter I explore the parameter space between the areas where we know

centralised allocation should be used, and where we think distributed control in

the form of my proposed market-based allocation approach is applicable. This

represents an early branch in the design process described in Section 2.6.3:

the selection of a specific control process has a significant impact on the final

system.1

The objective is to find ways of determining where each approach is most

suited to my generic model of task allocation, and demonstrate it specifically

with the distributed spacecraft problem. I do not want to demonstrate the

absolute superiority of one approach over the other — each has its own region

of applicability which I would like to define by mapping the relevant part of

parameter space. Although the number of nodes in the network is the most

obvious parameter to explore, performance also depends on the communication

cost and network volatility. This contributes to the exploration of the problem

space: the work in this chapter relates problems that are controllable using

centralised mechanisms to systems that are better suited to distributed control.

5.1 Motivation

Robustness and scalability are frequently used to motivate the usage of decen-

tralised approaches to controlling multi-agent systems. In recent years, how-

ever, distributed control has become an end in itself: a significant portion of

recent literature claims to be of merit primarily because it demonstrates the

application of such a technique. A separate community supports traditional

centralised approaches, where global knowledge of the system is assumed to be

indispensable. This is usually motivated by claims of verifiability or optimality.

The schism between these opposing viewpoints is exacerbated by enthusiasts of

1This chapter is based on work that was accepted to the Workshop on Self-Adaptive
Networks at the IEEE International Conference on Self-Adaptive and Self-Organising Systems
(van der Horst and Noble, 2010).
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either approach constructing problems that suit their preferred control archi-

tectures.

Distributed algorithms are implicitly designed for infinitely large systems

(e.g., Shehory and Kraus, 1998), but practical demonstrations of self-organising

control methodologies frequently only employ a modest number of agents. For

example Tripp and Palmer (2010) use up to eighteen satellites, while Krieger

et al. (2000) look at foraging with up to twelve robots. The performance of these

agents is extrapolated to make optimistic claims about large-scale behaviour.

While this approach is valid in a purely mathematical sense, the practicalities

of dealing with increased complexity are being neglected (Durfee, 2004).

At the same time there is an assumption that small systems will be ade-

quately addressed using centralised control. But this raises an important ques-

tion: when should a system be regarded as “small”, and when is it “large”? In

other words, when should we use centralised control, and when is distributed

control better? We can easily categorise the extremes, but the central space is

much less clear. This hazy middle-ground is also where a number of real- world

systems can be found, including the problem of task allocation in distributed

satellite systems.

As satellites have traditionally been monolithic entities, the centralised con-

trol mindset dominates the design of these systems. Subsystems are largely

autonomous in function, but not in decision making: for example the attitude

and orbit determination subsystem independently measures and computes the

spacecraft’s attitude and orbit parameters, but only when allowed to by the

central computer. This centralised mindset can easily be transferred to a dis-

tributed satellite system: a central “mother ship” monitors the other modules

and instructs them on what to do. While it offers attractive possibilities for ver-

ification and testing, we also know intuitively that this approach will struggle

to scale to thousands of modules. However, for the first generation of dis-

tributed satellite systems, which is envisaged to be much smaller (ranging in

size from tens to hundreds), centralised control presents a viable approach for

these systems: the optimal task allocation methodology remains unclear.

In this chapter I therefore compare centralised and distributed task alloca-

tion with the goal of finding this transition zone and understanding how it is

influenced by the scale of the system, the transmission cost, and robustness to

node failures.
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5.2 Centralised allocation

In this section I develop a centralised allocation mechanism to compare market-

based allocation against. This centralised approach is designed to serve as a

fair comparison: it is subject to the same transmission cost constraints as the

market-based allocation version, with reasonable fault-tolerance mechanisms.

A central controller uses global information to compute the best allocation.

The cost involved in building and maintaining the model used to calculate

allocations is of particular interest in this experiment. As stated previously,

the objective is not to prove one approach superior to the other, but rather

to find the regions of parameter space where either approach dominates. Note

that this centralised allocation scheme was designed to be comparable to the

market-based approach in all aspects. It is therefore significantly more detailed

and realistic than the approaches used to test robustness in Section 4.2. The

key distinction between the two implementations is that the previous one did

not take the communication cost of maintaining a system model into account;

instead it was assumed that this information was freely available to the manager

node. As I will demonstrate in this experiment, this cost can be significant if a

certain level of robustness is required in a system with failures.

The network consists of a manager that calculates allocations using a model

of the network, and a number of worker agents that execute tasks on command

from the manager. The workers have the same capabilities as for market-based

allocation: each has a specific skill and limited energy, some of which will be

spent on communication. The manager polls agents to keep track of the avail-

able energy of nodes, their respective skills, and the connections between them.

These messages are flooded through the network at regular status polling inter-

vals (τstatus); every worker responds with its status information. These packets

set up routes between the manager and all workers, and provides the manager

with the necessary information to update its network map, which includes the

capacity of nodes. As the manager knows the effect of all communication and

allocation in the network, it can accurately adjust its view of the network as it

progressively allocates tasks. However, external influences on the system, such

as node failures, cannot be predicted and require detection. Workers do not

maintain a map of the network: instead they only need to know how to reach

the manager, who will in turn provide them with routing instructions for a task

when they need it.

In describing the allocation process, we will rely on four classes of agents,

distinguished by the roles they fulfil. The originating agent is the one that

detects a new task and initiates the allocation process; the manager agent
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Ground Station

Ground Station

Node1

Node1

Manager

Manager

Node2

Node2

New task upload

New task notification

Calculate allocation

Task transfer instructions

Task transfer

Task received notification

Transfer success notification

Figure 5.1: Message sequence diagram describing the task allocation flow for
centralised control. Node 1 acts as originating node in this task allocation
sequence, while node 2 is the recipient. All messages are addressed messages, no
broadcast messages are sent. Messages can be relayed via intermediate agents
(not shown). The manager is updated at every step of the allocation flow to
maintain an accurate network model. Time increases from top to bottom.

maintains a model of the network topology and node states, which it uses to

determine allocations; the recipient agent is the agent that the task is allo-

cated to; while intermediate agents primarily relay messages between the other

agents.

As with market-based allocation, tasks are initially injected into the system

by the ground station. In the case of compound tasks, new task components

appear in the system when the preceding task element has been completed. The

relevant agent notifies the manager via intermediate agents upon detection of

a new task component that needs allocation. The manager then uses its model

of the network to determine the best allocation. The allocation instruction is

then transmitted back to the originating agent. The agent proceeds to transfer

the task to the receiving agent along a route specified by the manager. The

receiving agent acknowledges receipt by transmitting a task-received message

to the manager. The manager .now updates its model to reflect the energy

used in transmission and allocation, before relaying the acknowledgement to

the originating node, thereby closing the allocation loop. If the originating

node does not receive the allocation acknowledgement message within a pre-

determined time, it will repeat the allocation process. A message sequence

diagram describing this exchange is shown in Figure 5.1.

The manager agent relies on its model of the network, agent energies, and

resources to determine the best allocation. Upon receipt of a task allocation

request, the manager calculates, for every agent that possesses the necessary
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skills and sufficient energy, a figure of merit (Bcc):

Bcc = z
emax

erem
(1 + k)dtf (5.2.1)

where z is the task size, emax the maximum energy of the node, erem the re-

maining energy, k is the commission and dtf is the distance a potential task

transferral will have to travel. The manager selects the agent with the lowest

Bcc value for task allocation. As in the market-based control case, the allo-

cation therefore favours agents that are relatively underutilised and are close

to the originating agent. Note the similarity between this function and Equa-

tion 3.4.2, although Equation 5.2.1 does not estimate future outsourcing costs.

The elements of compound tasks are allocated one at a time on an ad hoc basis,

with the manager searching for the next suitable worker upon completion of

the preceding task element.

The ability to allocate tasks successfully in a changing environment depends

on the accuracy of the manager’s network model and on the workers knowing the

correct route to the manager. Both these factors are determined by the interval

between status polling messages (τstatus) sent by the manager agent. These

messages refresh workers’ routes and update the manager’s network model.

With a large τstatus the manager is effectively implementing open-loop control,

because it relies purely on its model of the system to allocate tasks. Smaller

values of τstatus provide more feedback, which improves the accuracy of the

model, but it also requires more energy for communication. τstatus therefore

acts as a robustness parameter, which should be adjusted to fit the node failure

rate.

The packet time-to-live distance (dttl) plays a similar role when using market-

based allocation. Large dttl values increase the size of the auction community,

which in turn improves the resilience of the allocation mechanism to failures. I

will use these two parameters to draw robustness comparisons in Section 5.5.

5.3 Bounds on task allocation cost

Calculating upper and lower bounds for the task allocation costs of the different

approaches allows us to make some predictions on where they might be relevant.

5.3.1 Market-based allocation

I start by developing an analytic description of the energy cost required to

allocate a single task component when using the market-based allocation ap-

proach. The most expensive allocation case occurs when all the nodes in the
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auction community place bids and the winning node is the maximum distance

away from the auctioneer. From the message sequence diagram (Figure 3.9),

we see that this will result in n′ auction announcement messages being broad-

cast. If all nodes in the auction community place bids, this will also result in

n′ bid messages, because each node only forwards the best bid it receives. To

allocate to the most distant node requires dttl messages for each of the alloca-

tion, acknowledgement, task transferral and task acknowledgement steps. The

worst-case total communication cost (cauc), measured on system level, required

to allocate a single task element is therefore:

cauc = 2n′ctx + 3dttlctx + dttlctf (5.3.1)

As discussed in Chapter 3, the transferral of tasks between nodes usually

requires more information, and therefore energy, than the transmission of ne-

gotiation packets (i.e., auction announcement, bid and acknowledgement pack-

ets). We can express the task transfer cost (ctf) in terms of the transmission

cost (ctx), by scaling ctx by a constant factor (α):

ctf = αctx (5.3.2)

The auction cost can than therefore be expressed in terms of ctx:

cauc = 2n′ctx + 3dttlctx + αdttlctx (5.3.3)

= ctx
[
2n′ + dttl(α+ 3)

]
(5.3.4)

In Equation 5.3.3, the first two terms represent the negotiation overhead,

while the last term describes the task transferral cost.

If nt tasks consisting of nk components each are allocated, an upper bound

on the total system cost over the duration of the experiment is given by:

cmbcmax = ntnkcauc (5.3.5)

= ntnkctx
[
2n′ + dttl(α+ 3)

]
(5.3.6)

We can see from this expression that the total cost of allocating tasks grows

linearly with the number of tasks (nt), and linearly with the number of agents

in the auction community (n′). The auction community is in turn a function

of the size of the auction community and the network topology — this will be

explored in more detail in Chapter 6. For a constant dttl and a fixed topology, n′

will also be constant: the system cost of task allocation is therefore independent
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from the number of nodes in the system. Communication cost ctx has a linear

relationship to cmbcmax , making it a significant driver of overall system efficiency.

Note that this analysis disregards the decrease in auction community size due

to the edges of the network. If this is taken into account, Equation 5.3.6 will

decrease further. This effect will be more significant for small networks, where

dttl is comparable to the network radius.

We can similarly find the lower bound on allocation cost by considering the

case where the auctioneer allocates the task to an immediate neighbour, who is

also the only bidder. This decreases the number of bid messages to one, while

the task transferral distance in Equation 5.3.6 is also reduced to 1. A lower

bound on the system level allocation cost is therefore:

cmbcmin
= ntnkctx(n′ + 4 + α) (5.3.7)

We can therefore conclude that this market-based task allocation mech-

anism will scale well, because the number of nodes in the network does not

determine the system level allocation cost. Instead, the size of the auction

community is the primary driver of the allocation cost, and this parameter is

frequently controllable by the system designer.

5.3.2 Centralised allocation

The worst-case cost for centralised allocation consists of two parts: an alloca-

tion component, and the cost of updating the model of the system used for

allocation.

The allocation component can be derived from Figure 5.1. The worst-case

cost will occur in a linear network topology, where a task needs to be transferred

from one end to another, and the auctioneer is located next to the receiving

node (Figure 5.2). For a single allocation, this configuration maximises the task

transferral distance (n), as well as the distance between the originating and the

manager nodes (n-1). The allocation cost is therefore given by:

calloc = ctx(n− 1) + ctx(n− 1) + ctfn+ ctx + ctx(n− 1) (5.3.8)

= ctx[3(n− 1) + αn+ 1] (5.3.9)

= ctx [n(α+ 3)− 2] (5.3.10)

If nt tasks of nk components each are allocated, an upper bound on the

total allocation cost over the course of an experiment is given by:

calloctotal = ntnkctx [n(α+ 3)− 2] (5.3.11)
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1 2

Manager

(n-1) hops 1 hop

Figure 5.2: Worst-case topology when using centralised allocation. The shaded
node acts a manager, node 1 is the originating node, and node 2 is the recipient.
This topology maximises the task transferral distance (n) and the communica-
tion distance between the manager and the originating node.

The centralised manager also requires status updates to maintain its model

of the system. A polling packet is flooded from the manager through the

network to update routes between nodes and the manager — this requires up

to n transmissions. Nodes reply to the manager with their skills and energy

levels which provide the data for updating the network model. The worst-case

update scenario again occurs in a linear topology, where the number of status

packets is given by n2−n
2 . If we assume the update packets are the same size as

negotiation packets, the energy cost of a single update (cstatus) is:

cstatus = nctx + ctx
n2 − n

2
(5.3.12)

= ctx

(
n+

n2 − n
2

)
(5.3.13)

=
1

2
ctx(n2 + n) (5.3.14)

The fact that these status updates occurs at intervals of τstatus, allows us to

calculate an upper bound on the total energy spent on updates of the course of

an experiment with duration T :

T∑
t=0

cstatus =
ctxT (n2 + n)

2τstatus
(5.3.15)

When combined with the total allocation cost (Equation 5.3.11), this gives

the worst-case, system-level communication expenditure:

ccc = calloctotal +

T∑
t=0

cstatus (5.3.16)

⇒ cccmax = ntnkctx [n(α+ 3)− 2] +
ctxT (n2 + n)

2τstatus
(5.3.17)

Note that cccmax is dominated by the n2 term that results from status up-

dates. This means that in systems with large n a great deal of energy will be

expended on maintaining the manager’s system model. In the case of open-loop
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control (τstatus → ∞), the allocation cost is linear with respect to all the pa-

rameters in the allocation term, including the number of nodes in the system.

As with market-based allocation, the system is also sensitive to the value of

ctx — in fact it will be even more sensitive due to the linear relationship with

system size (n) rather than the with the constant n′. For a small number of

nodes and a significant α, the first term of the expression will dominate, but as

the network scales the maintenance cost grows quadratically.

The centralised approach is also significantly more sensitive to the value

of α than market-based allocation. For centralised control, α is multiplied

by n, while market-based control is limited by dttl. In other words, the task

transferral distance is bounded by network size in the centralised case, instead

of being capped by the packet time-to-live distance.

For the lower bound, we consider the case where the originating node, man-

ager node and recipient node are all direct neighbours of each other. All com-

munication happens between these nodes, which results in an allocation cost

of:

calloc = 4ctx + ctf (5.3.18)

= ctx(α+ 4) (5.3.19)

The lowest status update cost results when the network is fully connected

— no relaying of status packets is necessary. In this case, as status update will

consist of n status request messages, and n responses, giving the status update

cost as:

T∑
t=0

cstatus =
2ctxTn

τstatus
(5.3.20)

A lower bound on the system-level cost is therefore given by the sum of

Equations 5.3.19 and 5.3.20:

cccmin = ntnkctx(α+ 4) +
2ctxTn

τstatus
(5.3.21)

This results in a much smaller allocation cost, but the maintenance cost remains

dependent on the number of nodes in the system, regardless of where tasks are

allocated. Note that this is a rather loose lower bound — in realistic scenarios,

allocation and communication will never be confined to the space immediately

surrounding the manager node. If the characteristics of a particular network

topology are known, the status update cost can be estimated more accurately.

99



5. Scalability and robustness

Table 5.1: Compound task structure used in experiments. The execution of
task elements (left-hand column) results in another task element (right-hand
column) that must be executed. Tasks are only considered complete if all the
task elements are successfully executed. Nodes have skills that are randomly
selected from the set a, b, c, d, e.

A → aB
B → bC
C → cD
D → dE
E → e

5.4 Experimental setup

The above analysis provides us with some insight on system performance under

ideal conditions, with a stable network topology. To measure the response

of the respective allocation strategies to node failure, I use simulation.2 The

objective of the experiment is to determine the relationship between robustness

and failure rate, and the system performance in terms of tasks allocated and

energy efficiency. The intention is not to optimise for a specific scenario: it

is my opinion that the resulting map of trade-offs parameters provides more

useful information to system designers, and offers a more complete view of the

problem space.

The test network initially consists of 225 agents in a 15 by 15 lattice topol-

ogy. Agents can communicate directly only with their immediate neighbours

to the north, south, east and west; communication to other agents must be re-

layed via these neighbours. Every agent has a skill or specialization randomly

selected with a uniform distribution from the set of types {a, b, c, d, e}. Two

compound tasks are injected into the network every 100 time steps, over a total

duration of 2 000 time steps. These tasks consist of five sequential components,

each of which requires one unit of energy to execute. The causal dependencies

between the components are shown in Table 5.1.

Transmission cost was fixed at 0.01 units for a negotiation packet and 1

for a task transfer packet, i.e., the value of α was 100. Even though the basic

model includes the possibility that agents will run out of energy, agents in the

simulation runs described have effectively been supplied with infinite energy.

This was done in order to separate the effects of node failure from node ex-

2For the simple network topology under discussion a analytical model of performance
could be built, with a stochastic element to capture failures, but it would be specific to the
network. The use of simulation allows multiple set-ups to be explored, and allows the dynamic
behaviour of the system to be captured.
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haustion, due to the large amount of energy used by the centralised allocation

approach. Thus the focus is effectively on the allocation overhead, rather than

the energy used in task execution.

5.4.1 Node failure

An agent is removed from the network when it fails: not only can it not perform

any work, but its connections with other nodes are broken, disrupting routing

and network topology. In this experiment an exponential distribution is used

to model agent failures, where the shape parameter (λ) is the failure rate.

f(t, λ) =

{
λe−λt t ≥ 0

0 t < 0
(5.4.1)

The failure rate (λ) is varied from 0 for no failures, to 10−4 for a mean of 192

observed failures over a full run of 2 000 time steps.

5.4.2 Robustness parameters

A higher failure rate requires greater robustness from the task allocation mech-

anism. With market-based allocation this is achieved by modifying the size

of the auction community. I therefore range dttl from 3 to 8, which results in

an auction community size ranging from 24 up to 144, although communities

limited by the edge of the network are smaller. Central allocation is more suc-

cessful if the model of the network is frequently updated when τstatus is small. I

explore a range of values from 10 to 200, as well as the case where only an initial

update occurs and tasks are allocated in an open-loop fashion. The experiment

was repeated 50 times and the mean value of the results used.

5.5 Results

To compare the two allocation approaches, we look at the mean number of

tasks successfully allocated, and compare it against the energy used to allocate

the tasks.

5.5.1 Task allocation success

A contour plot of the mean number of tasks successfully completed is shown in

Figure 5.3a for market-based allocation and Figure 5.3b for centralised control.

This is shown for a range of failure rates and a significant variation in the

robustness parameter (dttl for market-based allocation, τstatus for centralised
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control). Standard error values range from 0, when λ is small, to 0.951 for

market-based allocation and 0.707 for centralised allocation. Note the similarity

in the shape of the landscapes formed by the allocation schemes. Both exhibit

a strong deterioration as λ increases, due to the higher number of failures. The

decrease in performance is more rapid for centralised control. A top to bottom

deterioration is also visible — in both graphs the greatest robustness is shown

at the top. We observe that for small values of dttl market-based allocation

fails to allocate successfully even when no failures occur. Centralised control is

always successful in a network where no nodes fail.

5.5.2 Energy consumption

In some networks the amount of energy used by the system (individually and

cumulatively) has a tangible impact on the system’s performance and overall

cost. I have already described distributed satellite systems as having this char-

acteristic, as larger batteries and solar panels will increase launch mass and

mission cost. Although this experiment treats nodes as having infinite energy,

we can use the measured energy consumption to predict where the respective

allocation approaches will perform well.

Figure 5.4a shows the total energy usage when using market-based alloca-

tion over the same values of node failure rate and time-to-live range as shown in

Figure 5.3a. Note that for a given failure rate, increasing robustness by increas-

ing dttl results in higher energy usage. Figure 5.4b shows the total energy usage

for a centrally controlled system over the same values of node failure rate and

status update interval as shown in Figure 5.3b. Standard error values range

from 0.11 to 8.17 for market-based allocation, and 0.67 to 140.15 for centralised

control, with the higher values found in the high energy consumption area. As

expected, an increase in robustness comes at the expense of higher energy con-

sumption. In both of these figures it may appear at first glance that a higher

failure rate is good news. However, this decrease in energy usage only occurs

because fewer tasks are successfully allocated. The main distinction between

the two figures is that high levels of robustness in the centralised control case

are associated with extreme levels of energy consumption, nearly an order of

magnitude greater than for market-based control.

5.5.3 Conditions favouring either approach

When designing a task allocation system, some of the above parameters are im-

posed on the system designer, while others have to be selected. The cumulative
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Figure 5.3: Mean number of tasks successfully allocated over 50 runs using
market-based and centralised control, plotted for a range of node failure rates
(λ). The measurements are plotted against dttl for market-based control and
τstatus for centralised allocation, i.e., their respective robustness parameters,
with higher robustness at the top of the graph.
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(b) Centralised control

Figure 5.4: Mean energy used in allocating tasks over 50 runs using market-
based control (Figure 5.3a) and centralised control (Figure 5.3b) for a range of
node failure rates (λ). The measurements are plotted against dttl for market-
based control and τstatus for centralised allocation, i.e., their respective robust-
ness parameters. Note the large amount of energy required for frequent status
updates.
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effect of these parameters will determine whether a market-based or centralised

approach is to be preferred.

For example, suppose the above system is implemented in an environment

where the node failure rate is 1.5× 10−4 and we require an average allocation

success of 97.5% (39 out of 40 tasks). Referring to the task allocation graphs

(Figures 5.3a and 5.3b), we find that a market-based allocation approach re-

quires dttl ≥ 5 while the centralised approach requires τstatus ≤ 50. On the en-

ergy consumption graphs (Figures 5.4a and 5.4b), these points show expected

energy consumption of 610 units for market-based allocation and 1 500 for cen-

tralised allocation. In this particular case, market-based allocation is clearly

the preferred approach.

However, this is not always so: we can use Equations 5.3.6 and 5.3.17 to

estimate the network size for which centralised control and market-based con-

trol will be equivalent in performance. It follows that for smaller networks

centralised control will be favoured. Note that this is an approximate thresh-

old based on the expressions we derived for the bounds on allocation cost in

Section 5.3. For the two-dimensional lattice topology in this experiment, the

Manhattan geometry gives the number of nodes in the auction community as:

n′ =

dttl∑
i=0

4i (5.5.1)

For a given time-to-live distance, we can express this sum as:

n′ = 2
(
d2ttl − dttl

)
(5.5.2)

As a result, the upper bound on the total allocation cost when using market-

based control (Equation 5.3.6) changes to:

cmbcmax = ntnkcauc (5.5.3)

= ntnkctx
[
2(d2ttl − dttl) + dttl(α+ 3)

]
(5.5.4)

= ntnkctx
[
2d2ttl − 2dttl + αdttl + 3dttl)

]
(5.5.5)

= ntnkctx
[
2d2ttl + dttl(α+ 1)

]
(5.5.6)

while the lower bound can be derived from Equation 5.3.7:

cmbcmin
= ntnkctx

[
2
(
d2ttl − dttl

)
+ 4 + α

]
(5.5.7)

= ntnkctx
[
2d2ttl − 2dttl + 4 + α

]
(5.5.8)

The upper bound on allocation cost in a system with centralised control

can be similarly modified to incorporate the effect of the lattice topology. The
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maximum distance between the manager node and any worker node is
√
n,

while the maximum transfer distance is 2
√
n. This gives the upper bound on

allocation cost as:

calloctotal = ntnkctx
√
n(2α+ 4) (5.5.9)

The lower bound is still given by Equation 5.3.19:

calloctotal = ntnk(4ctx + ctf) (5.5.10)

= ntnkctx(α+ 4) (5.5.11)

The total status update cost can be determined much more accurately than

in Section 5.3.2, because the topology of the network is known, and does not

change. For a square lattice, (n−1) status request messages are flooded through

the network. If all nodes send a response, all the messages need to be relayed

back to the manager. For a two-dimensional lattice, the total number of mes-

sages is given by the sum of the Manhattan-distances between the manager

and every worker node in the network. In the case of a square lattice with the

manager located at the centre, the number of packets transmitted for a status

update can be expressed as:

nstatus =



(n− 1) +

√
n∑

i=0

4i2 −

√
n−1
2∑
i=0

2 (2i+ 1)
(√
n+ 2i+ 1

)
if n is odd

(n− 1) +

√
n+1∑
i=0

4i2 −

√
n
2∑
i=0

2 (2i+ 1)
(√
n+ 2i+ 2

)
−
√
n−1∑

i=
√
n
2

(4i+ 4)− 4
√
n

if n is even

(5.5.12)

An upper bound on the energy overhead when using centralised control is

therefore given by:

cccmax = ntnkctx
√
n(2α+ 4) +

ctxnstatusT

2τstatus
(5.5.13)

while the lower bound becomes:

cccmin = ntnkctx(α+ 4) +
ctxnstatusT

2τstatus
(5.5.14)
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Figure 5.5: The expected energy overhead for market-based (red) and cen-
tralised allocation (blue) as a function of network size. The shaded areas indi-
cate the difference between the upper and lower bounds. In large networks (the
area marked C), market-based allocation will be more energy efficient than
a centralised approach. For small networks (A) nodes, centralised allocation
will probably be preferred. The area where the ranges overlap (B) is more
ambiguous, and simulation will be required to determine the best strategy.

To visualise the effect of network size on the performance of the different

allocation mechanisms, I plotted the areas between the upper and lower bounds

for an example configuration in Figure 5.5. In the market-based allocation case

dttl is set to 5, while the centralised approach uses a status update interval of

50. In both cases α is 10 — this relatively small value puts the predicted energy

overhead in a relatively narrow band. All other parameters are kept as in the

experiment above. The intersection of the bounds for the different approaches

show where each would be preferred.

The scalability of the market-based approach is clearly demonstrated in the

figure: the energy overhead remains constant for all network sizes.3 In contrast,

the energy required by the centralised approach grows at approximately n
3
2 ,

primarily due to the increase in the number of status update packets.

For large networks, in the area marked C in Figure 5.5, the market-based

approach is clearly preferred. In contrast, small networks (A) are more suited

3The bound calculations do not take the effects of network edges into account; we can
therefore expect the overhead for the market-based approach to decrease in small networks.
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to centralised control. The area where the two approaches overlap (B) is am-

biguous as to which one would be preferred. In this area simulation is required

to determine the best task allocation mechanism. No special meaning should

be attached to these numbers: they are the result of the parameters of the

scenario and as the parameters change, the intersection will also shift.

An increase in node failures will increase the required energy for both allo-

cation approaches. However, as the previous section indicated, the centralised

approach is much more sensitive and therefore requires more energy. As a

result, the intersection area in Figure 5.5 will move to the left. A very sta-

ble network topology will similarly shift the point of ambivalence to the right,

making centralised control attractive on larger systems.

The effect of the topology is also demonstrated in this example: the
√
n and

d2ttl terms are determined by the lattice topology. For alternative topologies,

e.g., scale-free networks, these terms would be different, again shifting the point

of ambivalence. I will investigate the costs associated with different topologies

in more depth in Chapter 6.

For both allocation approaches, total energy usage scales linearly with com-

munication cost (ctx). This means that there will be no point of ambivalence

with respect to this dimension, except when ctx = 0. However, low ctx values

will make the energy difference between the two approaches less significant,

potentially allowing other parameters to dictate the best approach.

These calculations only apply to a specific failure rate (λ = 1.5 × 10−4).

For systems with a different λ, the required values for dttl and τstatus will follow

the contours in Figures 5.3a and 5.3b, which will in turn shift the curves in

Figure 5.5 up for increased communication, and down for decreased commu-

nication. A lower failure rate will increase parameter range where centralised

control would be preferred, while a more dynamic network will tend to favour

market-based allocation.

5.6 Discussion

Centralised control is traditionally used for controlling small systems, while self-

organising approaches, such as market-based control, have been proposed for

large systems. In this chapter I explored some of the parameters that determine

whether we should regard a system as “small”, or suited to central control; or

“large”, where distributed approaches will be better. The results confirm that

both distributed market-based control and centralised control have a place in

the tool kit of a system designer.
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5.6. Discussion

In terms of distributed satellite systems, this chapter demonstrated the

scalability and robustness of the market-based task allocation mechanism. In

situations where the network is volatile, a larger auction community is required

to ensure successful allocation. The system-level allocation cost is largely de-

termined by the packet time-to-live value. From a mission analysis perspective,

this implies that money can either be spent to decrease the failure rate of indi-

vidual satellites, thus decreasing the size of the required auction community; or

on larger power systems to accommodate the increased communication needed

for higher robustness on the level of the allocation mechanism.

An analysis of allocation costs was used along with simulation to map the

trade-off between successful task allocation and energy consumption for a range

of failure rates. This allows for unbiased selection of the most efficient allocation

approach. In addition, I demonstrated a method for estimating the boundaries

in parameter space that divide regions where one architecture or the other is

the most attractive.

Which parameters turned out to be the most important in determining the

appropriateness of each approach? The size of the network is a critical factor,

because the allocation costs of centrally controlled systems scale at a rate of up

to n2. In contrast, the market-based allocation approach is independent from

the number of nodes in the network, as it is primarily determined by the size of

the auction community. In this example system, I found that 10 to 150 agents

(zone B in Figure 5.5) was the zone of ambivalence between market-based and

centralised approaches. However, there is no suggestion that these figures are

any sort of magic number dividing small from large systems. The point is only

to demonstrate that it is possible to find this threshold for any given problem.

Network volatility, in the form of node failures, is also an important pa-

rameter, because the robustness measures required to deal with high volatility

consume a significant amount of energy. This is especially true for centrally

controlled systems. On the other hand, if the system is very stable, e.g., agents

are extremely reliable, robustness measures are not required which changes the

point of ambivalence dramatically: centrally controlled systems become much

more competitive. This is not only applicable to agent failures, but also to

changes in topology, or nodes changing their capabilities in a manner that

is unpredictable to the manager node. For market-based control, the packet

time-to-live determines the size of the auction community, and as a result the

system’s robustness to failure.

Whether communication cost should be regarded as significant depends on

the relative size of tasks and communication costs. If the total communication
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cost is orders of magnitude less than task sizes, or communicating does not

directly impact the ability of an agent to do work, the choice of allocation system

will be determined by other factors, such as implementation and verification

effort. When communication comes at some cost we will prefer one approach

to the other, but increases in communication cost will never lead to a switch in

the preferred option.

What does this tell us about related systems? It is clear that relatively

small and stable systems are best controlled using a centralised approach. Small

groups of mobile robots and smart electricity meters, where the communica-

tion topology doesn’t change dramatically, fall into this category. Although

other design constraints can influence the point of ambivalence between ap-

proaches, I would treat claims about the importance of distributed control for

these applications with caution. On the other hand, wireless sensor networks,

for example, are clearly better addressed using distributed control, due to the

scale and volatility of the system.
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6

Topology and communication cost

Communication cost is a persistent theme in this thesis. I use it to distinguish

distributed satellite systems from other networked computing systems, and to

relate them to wireless sensor networks. The cost of communication impacts

on the management of the system by making information expensive. Tasks

are preferentially allocated to local nodes, to minimise the cost associated with

multi-hop transfers. The propagation characteristics of radio waves mean that

multi-hop routing is more energy efficient than direct, long-distance communi-

cation; therefore I focus on communication networks that consist mostly of local

links. Communication cost forces us to take topology into account, but at the

same time the network topology also determines the impact of communication

cost on the system’s performance.

But what does this mean for a system designer? How connected should

a network be? When dealing with physical systems, how should nodes be

distributed? And how does the task allocation mechanism deal with a changing

topology? In cases where the topology is controllable, the design decisions

revolve around choosing a suitable topology for the system at hand. If the

topology is not under control it acts as a design constraint; the system designer

then faces the question of what the best management approach for a given

topology will be.

To be able to judge when a task allocation mechanism suits a particular

network topology, we need a better understanding of the interplay between

communication cost and topology. At one extreme we have fully-connected

networks, where information can be exchanged directly between any two nodes

without significant impact on the whole system. Networks with a large diam-

eter, where many hops are required to traverse from one end to the other, are

potentially much more sensitive to communication cost. Note also that in sys-

tems where communication is effectively free, e.g., the internet, the underlying

topology ceases to matter and all nodes appear equally accessible. In systems

with expensive communication, such as road transport networks, the topology
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6. Topology and communication cost

becomes the dominant concern.

To effectively answer these questions I investigate the relationship between

communication cost and topology in this chapter, with the focus on systems

managed using the task allocation mechanism described in Chapter 3. In the

case of distributed satellite systems, managing the system is challenging because

of the constant change in topology: not only are links continuously made and

broken, but the characteristics of the topology can vary greatly over the course

of an orbit. In the first section I measure the performance of different topologies

to identify the characteristics that contribute to system-level cost. The follow-

ing section investigates the trade-off in communication power against network

connectivity to determine how connected a network should be. Finally, I focus

more closely on distributed satellite systems: how can we accurately describe

the dynamic topology of such a system, and how does the constantly changing

topology impact the market-based task allocation mechanism developed in the

previous chapters.

6.1 The cost of different topologies

The topology of a network determines the number of packets transmitted dur-

ing allocation. For different topologies, the size of the auction community and

average task transferral distance vary. To better understand what makes some

topologies more attractive than others, I compare the allocation cost of four

different topologies and analyse their differences in performance. I specifically

focus on networks that are embedded in space, and where communication links

depend on this space, as this corresponds closely with the wireless communi-

cation model used by the distributed satellite system. The objective of this

section is to develop an understanding of why different topologies result in

different system-level allocation costs. This is used to explain the observed

behaviour in subsequent sections.

6.1.1 Candidate topologies

I will consider four topologies: a fully-connected network, a cubic lattice, and

two random geometric graphs, one in a cubic space and the other in an elon-

gated rectangular prism. The first two topologies are very regular, resulting in

allocation patterns that are easy to visualise and verify. The choice of networks

is determined by the fact that nodes are embedded in a three-dimensional space,

and that their connections are a function of this space, as will be discussed in

more detail in Section 6.2. This constraint render many other topologies ir-
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Figure 6.1: Different static network topologies used. For clarity networks con-
sisting of only 27 nodes are shown.

relevant: the networks that frequently receive attention in the graph theory

community, such as random graphs, scale-free and small-world networks, are

often impossible to realize in a pure three-dimensional space.

One reference case is provided by a fully-connected network. In this topol-

ogy all nodes are directly connected to all other nodes, i.e., the network diameter

is equal to one. For a network with n nodes, this results in n(n−1)
2 links, while

all nodes have a degree of n − 1. The system-level allocation cost is there-

fore constant: all negotiation packets reach their destination in one hop; the

task transferral similarly happens directly between the auctioneer and success-

ful bidder. An example of such a network consisting of 27 nodes is shown in

Figure 6.1a.

In a physical system, this represents a scenario where all nodes are within

direct communication range of each other. For nodes using broadcast communi-

cation, such as the radios used in a distributed satellite system, the one-to-many

nature of communication adds no extra cost to the transmitter. Communicating
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6. Topology and communication cost

with one node is therefore just as expensive as communicating with everyone.

However, the increase in traffic volume can require significant processing on the

part of the receivers, and can cause congestion due to the shared bandwidth.

The second network under consideration is the three-dimensional analogue

of the lattice formation used in previous experiments. This cubic lattice struc-

ture approximates a situation where only local communication is possible. The

lattice structure results in a network diameter of
√

3 3
√
n, while the degree of

most nodes is six, with only node degrees on the edges of the lattice being

smaller. The formation has many redundant routes, making it relatively ro-

bust to topological disruption. Figure 6.1b shows the topology.

The above networks present two cases at opposite ends of the parameter

space: one is densely connected, while the other is much more distributed

but still ordered enough for the dynamics to be understandable. A better

approximation of the topology of distributed satellite systems is given by a

random geometric graph (RGG, Dall and Christensen, 2002). The network

is constructed by placing a number of nodes at random locations in three-

dimensional space; two nodes are connected if the distance between them is not

greater than some threshold communication distance Rth. Connections in this

spatially distributed network are therefore deterministic and symmetric.

The network characteristics are determined by the node distribution and

communication range. For a large Rth, the network will resemble the fully-

connected network above, while the case where nodes are barely connected is

much more similar to the cubic lattice. Decreasing Rth further will result in

a sparse network, with a low number of connections and a high sensitivity to

topological change. Random geometric graphs can therefore be seen to traverse

the space between the fully-connected and three-dimensional lattice networks.

This topology is of course not restricted to distributed satellite systems — it can

also be applied to other distributed systems where the ability to communicate

is determined primarily by the spatial distance between nodes.

I consider two instances of random geometric networks: in the one, nodes

are distributed with a uniform probability in a cubic space (Figure 6.1c), while

in the other nodes are contained in an elongated rectangular prism, as shown in

Figure 6.1d. The first network is relatively well connected, with a large degree

and small diameter. In the elongated case the diameter increases significantly,

while the number of redundant paths in the network decreases. As I will show in

section 6.3, these networks reflect actual topologies encountered in distributed

satellite systems.
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6.1. The cost of different topologies

6.1.2 Performance comparison

The efficiencies of the different topologies are compared by simulating task allo-

cation. A fixed number of tasks are allocated and the energy used is measured.

The allocation overhead, i.e., the energy that was spent on message-passing

instead of task execution, is used to compare the different topologies.

For every run, a network consisting of 125 nodes was used to allocate 500

tasks using the market-based mechanism described in previous chapters. Each

task consists of 5 sequential components, where every component requires 1

unit of energy. Node skills are chosen uniformly at random from the 5 possible

task types at the start of a run.

The cost of transmitting a packet is 0.001 units of energy, while transferral

of a task requires 0.1 units. If a node relays a bid from a neighbour, it adds

10% commission to the bid value. Node energy regenerates at a rate of 0.006

units per time step, with every node capable of storing up to 10 units of energy.

These values were selected to represent a system where task execution requires a

significant amount of energy, task transferral is an order of magnitude cheaper,

and sending a negotiation packet is cheaper still. The energy regeneration rate

is enough to make node exhaustion unlikely, which allows us to focus solely on

topological effects.

For the cubic random geometric graph, nodes are positioned uniformly at

random in a cube with side lengths 1. The elongated random geometric graph

is generated by distributing the nodes randomly throughout a prism with di-

mensions 0.5:0.5:4 (compared to the unit cube). The volume is the same in

both cases, giving a uniform node density. A communication range (Rth) of

0.3 units determines which nodes are connected: this is large enough to ensure

the network usually consists of a single component. In the rare cases where a

single component did not result, a different network was generated.

An experiment consists of 50 runs, where each run has a different set of

node skills and, for the random topologies, node positions. The experiment

was repeated using transmission time-to-live (dttl) values ranging from 3 to 6

hops.

6.1.3 Discussion

The energy overheads for task allocation in the different topologies are shown

in the box and whiskers plots in Figure 6.2. The boxes extend from the lower

to the upper quartile of the data, with the red line indicating the median.

The whiskers show the extent of the data, with outliers marked separately.

The average allocation overhead is around 550 units. Note the compounding
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(b) dttl = 4
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(c) dttl = 5
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(d) dttl = 6

Figure 6.2: Energy used for different topologies over 50 runs. The box extends
from the lower to the upper quartile of the data, with the red line indicating
the median. The whiskers show the extent of the data, with outliers marked
separately. Increasing dttl increases the size of the auction community, which
causes the allocation overhead to go up. The cost of the fully-connected network
stays constant, because the entire auction community is directly connected to
the auctioneer.

effect of repeated communication: an apparently small ctx value adds up to a

significant amount when compared to the energy used in task execution.

The fully-connected network shows a narrow band of energy usage which

does not change with dttl. This distribution reflects the fact that the size of the

auction community remains the same across runs. The small variation that can

be observed in the allocation cost is due to the different compositions of the

networks used for test runs, which in turn changes the number of bid messages.

If we consider the other topologies, the allocation cost for the elongated

RGG is the lowest, while the cubic RGG is the most expensive. The lattice

topology performs somewhere in-between. For dttl = 3, allocation in all three

networks is less expensive than in the fully-connected case, but increasing dttl
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raises the cost, especially for the lattice and cubic RGG. By increasing dttl, the

size of the auction community is increased for the lattice and RGGs. This in

turn causes an increase in the number of negotiation messages, which makes

up the bulk of the increase in allocation cost. The task transfer cost similarly

shows an increase, but the vast majority of allocations are still close to the

auctioneer. This is characteristic of the relatively small set of node types in

this network — a node with the required skill can usually be found in the

vicinity of the auctioneer.

The elongated RGG exhibits a small increase in cost for increased dttl. This

is the result of the large diameter and small radius of this topology: an increase

in dttl adds a relatively small number of nodes to the size of the auction commu-

nity when compared to the other topologies. The high cost of well-connected

topologies should come as no surprise — the task allocation mechanism was

after all designed for sparse networks. The primary culprits for the sensitivity

to auction community size are the flooding of auction announcement messages

and the large number of bids that result.

In conclusion, these results demonstrate how different parameters determine

the allocation overhead. For random geometric graphs, the connection range

(Rth) and node density determine the connectivity. The network connectivity,

combined with the packet time-to-live (dttl), in turn governs the size of the auc-

tion community, which ultimately decides the allocation overhead. By taking

these parameters into account, a system designer can influence the allocation

overhead. While a network needs to be sufficiently connected to allow success-

ful task allocation and to be robust to changes, excessive connectivity will use

a significant portion of the available energy. The high allocation overhead in

well-connected networks suggests that a different approach may result in better

performance; however, the market-based allocation mechanism is well adapted

to sparse topologies.

6.2 Communication range and connectivity

When dealing with spatial networks, communication range affects the network

in three ways. Firstly, the communication range needs to be large enough to

ensure a reliable network is formed, on which tasks can be effectively allocated.

Secondly, the communication range is determined by the transmission power:

increasing the range in radio networks requires an increase in the transmis-

sion power, which in turn increases the energy cost of communication. Finally,

as shown in the previous section, networks that are well-connected generate a
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large number of negotiation packets which affects the system’s performance neg-

atively. Previous work on optimising communication distance between satellites

(Wu et al., 2008) primarily focused on balancing transmission delays induced

by packet relay against the communication cost of direct communication. In

this section, the focus is instead on the topological implications of optimis-

ing communication distance.1 What is an appropriate communication range,

given that range is determined by the transmission power and that the network

requires a sufficient degree of connectivity to function?

I use a simplified deterministic radio propagation model to decide when two

nodes can communicate. In this model transmission is isotropic and symmetric,

i.e., insensitive to direction and the same for all nodes. Communication can

therefore be visualised as taking place in a sphere with radius Rth around a

transmitting node. If the transmitting node transmits with power Ptx, the

power received by the second node (Prx) is dependent on the distance between

the nodes (r):

Prx =
Ptx

r2
(6.2.1)

If we assume that the receiving node has a threshold power level (Pth) below

which it cannot reliably communicate, the communication range of a node is

given by:

Rth =

√
Ptx

Pth
(6.2.2)

Furthermore, the energy expended in communication is proportional to the

transmission power; and as communication cost (ctx) describes the energy con-

sumed to transmit a packet, we find:

Rth ∝
√
ctx (6.2.3)

The resulting network topology is a random geometric graph, with the con-

nectivity determined by the communication power. This relationship between

communication cost and distance means that the energy impact of long distance

communication between nodes can become significant, while shorter distance,

multi-hop routing provides a more efficient option. However, if the communi-

cation distance is too small, the network will consist of multiple components

which will affect performance adversely. I use simulation to find the balance

between these two extremes. Although analytic methods could in theory be

used to derive stochastic models of connectivity, when additional constraints

such as compound tasks and orbital dynamics are considered, mathematical

1For a detailed discussion on communication architectures and link design in satellite
systems, refer to Chapter 13, Larson and Wertz (1999).
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Table 6.1: Compound task structure used in topology experiments. The ex-
ecution of task elements (left-hand column) results in another task element
(right-hand column) that must be executed. All components must be executed
before the task is complete.

A → aB
B → bC
C → cD
D → dE
E → e

methods quickly become unwieldy and often seemingly intractable. Simulation

offers an attractive way to capture the messy nature of real-world systems.

6.2.1 Experimental setup

In this experiment I map the effect of communication range by measuring the

allocation cost and the number of tasks completed for a range of Rth values.

An increase in Rth causes a corresponding increase in ctx, as described above.

A three-dimensional cubic space is used for this experiment; all dimensions

are scaled to fit in a unit cube. 125 nodes are placed uniformly at random in

this space, and connected based on their spatial proximity. A range of commu-

nication distances (Rth) from 0 to 1.7 units is used: at the lower end, no nodes

will be connected, while the upper end results in a fully-connected network.

The energy capacity of all nodes is 10 units. Batches of 10 tasks are uploaded

every 100 time steps, with 50 batches (500 tasks or 2 500 task components)

submitted over the course of one simulation run. System performance is mea-

sured by the number of tasks completed. The tasks consist of five components,

executing in a linear fashion, as defined in Table 6.1. Node skills are selected

from this set of possible task elements with a uniform distribution; we therefore

have approximately 25 of each of the five types of nodes.

Transmission cost is calculated by using the communication range according

to the inverse square relationship described above. Pth is set to 10−4, and Rth

ranges from 0 to 1.7 units (the length of the diagonal of a unit cube), so the

transmission power can be calculated as:

Ptx = Pth ×R2
th (6.2.4)

To relate Ptx to the transmission cost ctx, we scale it to so that the maximum

task transfer cost is equal to the cost of executing a single task component (1

unit), thus making these costs comparable. This gives:
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Figure 6.3: Communication cost (ctx) as a function of communication distance
(Rth). ctx is proportional to the square of R2

th, due to the underlying radio
propagation characteristics.

1 = ctx × α (6.2.5)

⇒ ctx =
Ptx

α× Ptxmax

(6.2.6)

The transfer packet size (α) is set to 100 and Ptxmax to 2.89 to ensure coverage of

the entire space. The value of ctx therefore ranges from 0 to 0.01, proportional

to the square of the communication distance, as shown in Figure 6.3.

Nodes’ energy levels increase by 0.006 units per time step. The maximum

amount of energy the system can therefore gain per time step is 0.75 units.

In comparison, the submitted tasks on average use 5×10
100 = 0.5 units of energy

per time step. We therefore expect the system to successfully allocate tasks

in cases with low communication cost (if the topology allows it), but higher

communication costs will exhaust nodes and cause task allocation to fail.

As the node positions are random, the resulting network topology and

system-level communication cost will vary between networks. Fifty runs were

used to generate the results presented below.

6.2.2 Experimental results

I measure global system performance by the number of tasks completed. The

box plot in Figure 6.4 shows how the communication range influences the
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Figure 6.4: Box plot of the number of tasks allocated for a range of commu-
nication distances (Rth) over 50 cubic random geometric graphs. The boxes
show the range of the lower to the upper quartile of the data, with the red line
indicating the median. The whiskers show the spread of the data within 1.5
quartiles of the median, while the markers indicate outliers. For low communi-
cation range values, no tasks are allocated. At Rth ≈ 0.25 the network reaches
the required degree of connectivity to successfully allocate almost all tasks. For
values of Rth > 0.8, the task allocation performance again starts to deteriorate.
In between these values we find a plateau of good performance.

number of completed tasks. The median is marked in red, the boxes indi-

cate the 25th and 75th percentiles, the whiskers show the lowest and highest

data within 1.5 times the interquartile range, with the markers showing outly-

ing data points. For very low values of Rth, no tasks are allocated, due to the

network being too disconnected. At an Rth of around 0.2 units, the network

connectivity reaches the threshold where many tasks can be allocated. Task

allocation quickly reaches a plateau where all 500 tasks are completed; this

stretches from 0.25 to 0.8. The allocation performance then deteriorates for

larger values of Rth.

To better understand this deterioration, we inspect the allocation overhead

graph over the same range of Rth (Figure 6.5). The allocation cost (calloc) is

calculated by subtracting the energy spent on successful task execution from

the total energy used by the network over the course of a run. At low values

of Rth we observe a small bulge in the allocation cost. This is due to task

components being allocated, but tasks not being completed. Although work is

being done, the energy expended does not contribute towards completed tasks.
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Figure 6.5: Mean allocation cost for range of communication distances (Rth).
For Rth < 0.3, some energy is spent on executing task components, but the
network is too sparse to successfully complete tasks, hence the small bump.
From Rth = 0.3 to Rth = 0.8, the network is connected enough to reliably
allocate tasks, but the increase in transmission power causes growth of the
allocation cost. For Rth > 1, the available energy in the system is exceeded,
decreasing the number of tasks completed and flattening the allocation overhead
graph. The error bars show the standard error over 50 runs.

From Rth = 0.25 onwards, the system enters the plateau where all tasks are

allocated. At this point the energy overhead is only 100 units, compared to

the 2 500 units expended performing the 500 tasks. However, with increasing

Rth, this overhead continues to grow, until the energy used in task allocation

and execution exceeds the total incoming energy in the system, around Rth =

0.8. This results in the decrease in task allocation visible for large Rth values

in Figure 6.4. Once again, this behaviour can be ascribed to the allocation

mechanism not assuming a well-connected network, which results in a very

large auction community. The correspondingly large number of bids, as well as

nodes’ attempts at propagating auction announcements, result in a significant

amount of traffic. For a well-connected network (large Rth), the growth in the

size of the auction community for an increase in communication range decreases,

resulting in the flattening out of the allocation energy curve for Rth > 1.

In terms of the network topologies discussed in the previous section, large

values of Rth correspond to the fully-connected network topology. Low values

of Rth result in barely connected components, making the system more similar

to the elongated RGG.
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Figure 6.6: Mean number of connected components against the communication
distance (Rth) for the 50 networks under test. Note the rapid change in con-
nectedness for Rth < 0.3: the network usually consists of only one component
for Rth greater values.
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Figure 6.7: Mean node degree against communication distance (Rth) for the 50
networks under test. Note that for Rth < 0.2 nodes have very few neighbours,
while for Rth > 1.1 the system is effectively fully connected.
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Figure 6.8: Box plot of the number of tasks allocated for a range of communi-
cation distances (Rth) over 50 cubic random geometric graphs with an increased
task load. The boxes show the range of the lower to the upper quartile of the
data, with the red line indicating the median. The whiskers show the spread of
the data within 1.5 quartiles of the median, while the markers indicate outliers.
For low communication range values, no tasks are allocated. The best alloca-
tion can be found at Rth ≈ 0.25, as the required level connectivity has been
reached, but communication cost is still minimal. For larger values of Rth, the
task allocation performance deteriorates rapidly, due to the increased size of
the auction community. Beyond Rth = 1, performance deteriorates more slowly
because the size of the auction community stops growing.

If we investigate the changes in the network structure across the range of

Rth, we find that for the 125 nodes randomly positioned in space, the topology

changes from being fully disconnected when Rth is 0, to fully connected for large

values of Rth. By looking at the number of connected components (Figure 6.6),

we see that the system achieves good allocation because of multiple, distributed

auctioneers, even if the network consists of more than one component, as is the

case for 0.15 ≤ Rth ≤ 0.25. From the distribution of mean degrees (Figure 6.7)

we can deduce that the network has a large diameter for these values of Rth.

We can also see that for values of Rth > 1.1, the network is fully connected —

the size of the auction community therefore approaches the size of the system.

These topologies are confirmed by the network diameter measurements (not

shown).
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6.2.3 Increased task load

The plateau in Figure 6.4 is due to a total load of 500 tasks being submitted

in the experiment. We can gain a better perspective on the true shape of

the allocation success graph by increasing the task load to exceed the system’s

capacity. An example of this is shown in the box plot in Figure 6.8 for the same

experimental set-up as before, but with the 40 tasks (instead of 10) uploaded

to the system every 100 time steps, for a total of 2 000 tasks. The experiment

was repeated 50 times, with different node positions for each iteration.

The best system performance can be found at Rth = 0.25, as indicated by

the peak in the curve. The wide range of measurements in this area is due to

the prominent role played by the network topology, as discussed in the previous

section. A rapid decrease in performance follows for 0.3 ≤ Rth ≤ 1, again due

to the increasing size of the auction community. The curve flattens out for

Rth ≥ 1, because the growth in the auction community stops, with only the cost

of transmission still increasing. Note that, because of the overhead associated

with the large task load, the system capacity is worse than in Figure 6.4.

6.2.4 Discussion

These results clearly demonstrate the importance of determining a suitable

communication range for radio networks where communication has a signifi-

cant cost, specifically in the context of market-based task allocation. There

is clearly a range of Rth where good allocation can be achieved with minimal

overhead. If Rth is too small, the network will be too fragmented to allow suc-

cessful task allocation. On the other hand, very large values of Rth require too

much power for transmission, and cause the increase in the number of negoti-

ation packets demonstrated in the previous section. The combination of these

factors results in exhausted nodes and more allocation failures. In between

these extremes we find an area where allocation succeeds, without spending

too much on communication. If we look at the total system capacity, a clear

peak can be observed where the network is connected enough for successful

allocation, and the communication cost is still minimal — this represents the

optimal communication distance.

As the lower end of this zone is determined by the connections between

nodes, we observe a rapid transition from poor allocation to excellent allocation.

The fall-off on the upper end is more gradual because it is a result of the system

running out of energy.

The exact location of this zone depends on a number of variables. The start

of this zone is determined by the spatial distribution of the nodes, which in turn
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6. Topology and communication cost

influences how easily they can communicate. The upper limit is dependent on

the difference between the amount of energy entering the network and the

energy used by the workload and the communication overhead. Multi-hop

communication means that this zone starts well before the network is fully

connected. The distributed nature of allocation means that the allocation can

succeed, even if the network is split into multiple components. These results

reconfirm the suitability of the market-based task allocation system for sparse

or disconnected topologies.

System designers would want to adjust communication range to position

the system on the plateau of good allocation. The ideal position is just inside

the successful allocation zone, towards the end with smaller communication

range. In this position the communication overhead is limited, resulting in the

most efficient system configuration. Of course, this opens up the possibility in

future work of using the nodes themselves to find their individually optimal

communication ranges by exploring the task allocation success graph. The dis-

tinct difference in allocation success when the communication range is sufficient

for good allocation, in comparison with too little or too much distance, lends

itself to adaptation on a local level. By adaptively searching for the smallest

communication distance where allocation still succeeds, a node could further

conserve energy.

6.3 Dynamic topologies

The above experiments describe the behaviour of different network topologies

and the effect of communication range on system-level efficiency. However,

all of these networks are still static. In this section I build a more accurate

picture of a realistic distributed satellite system by introducing a model of the

nodes’ movements. The mobility model is then used in simulation to show that

the task allocation mechanism is resilient to the changes in the network, i.e.,

allocation in a dynamic environment does not show a decrease in effectiveness

from the static case.2

In the discussion of node failure (Chapter 5) we also encountered a chang-

ing network, which may lead the reader to ask how this scenario differs. When

dealing with node failure, the network was eroded by failing nodes, resulting in

decreased connectivity and reduced capacity. In contrast, with orbital mechan-

ics the network capacity stays the same, but structural changes are much more

2The work in this section was presented at the AI in Space workshop at the International
Joint Conference on Artificial Intelligence (van der Horst and Noble, 2011); an updated and
extended version was subsequently published in Acta Futura (van der Horst and Noble, 2012).
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frequent. Previously, the focus was on the effective utilisation of a shrinking

pool of resources; in this section I look at large-scale topological change.

6.3.1 Keplerian mobility model

Mobility models are widely used in mobile ad hoc network (MANET) research

to represent the dynamic behaviour of a communication network composed of

mobile agents (Bai and Helmy, 2004; Camp et al., 2002). As the agents move

around, communication channels are formed between individuals in physical

proximity to each other; these links are broken again if they move apart. The

mobility model allows researchers to map the physical system to an abstract

communication network that changes over time.

Existing mobility models frequently rely on random movement to generate

a dynamic environment (e.g., Johnson and Maltz, 1996; Choffnes and Busta-

mante, 2005; Bandyopadhyay et al., 2007). In the case of a distributed satellite

system, however, we have good models that describe the dynamic behaviour of

objects in orbit: although the formation changes over time, it is not random.

Roughly co-orbiting satellites are subject to similar forces, with the variation

in their orbital parameters determining their respective trajectories. As a re-

sult, we can expect a greater spatial correlation between satellites than can

be expected for random movement. Their interactions are also periodic, with

approximately the same formation occurring once per orbit.

My mobility model solves the Keplerian equations to obtain the positions of

all satellites at a specific point in time; the relative distances between satellites

are then used to find the adjacency matrix of the communication network.

This adjacency matrix defines how nodes are connected to each other. It is

convenient to use an imaginary point on the reference orbit to position the

satellites around. This reference point orbits around the planet along with the

satellites and serves as an origin for a local Cartesian reference frame. The

use of this reference point is primarily a conceptual and visualisation aid, as

it focuses the attention on the position of the satellites relative to each other,

instead of the planet they are orbiting. The similarity in the satellites’ orbital

parameters means they orbit in a cluster, but that formation is not actively

maintained. The small differences in individual orbits will cause the satellites

to drift apart over time, which will require correction if the group is to stay

connected. On shorter time-scales the relative positions change dramatically,

thereby potentially posing a significant challenge to packet routing and task

allocation.

The steps required to determine the connectivity matrix at time t are the
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following:

1. Calculate the earth-centred Cartesian position uref of the reference point

at time t.

2. Calculate the Cartesian position ui for all satellites at time t.

3. Centre the coordinate system around the reference point by translating

all the satellite positions by −uref.

4. Calculate the distances between all satellites to obtain the distance ma-

trix.

5. Apply the connection function to the distance matrix to find the adjacency

matrix for the communication network.

The connection function captures the propagation characteristics for the

underlying communication medium. I will restrict myself to a deterministic

radio communication model: if two nodes are within a specified range of each

other, we assume they can communicate successfully. To use a more realistic

propagation model that incorporates noise and interference, only the connection

function needs to be changed.

By repeating these calculations over the course of an experiment, we find

the dynamical communication network topology. Note that steps 1 and 3 can be

skipped to optimise the calculation of only the communication network topol-

ogy.

From Chobotov (2002), the position of a satellite can be described in terms

of the Keplerian elements as:

xy
z

 = [R]

r cos θ

r sin θ

0

 (6.3.1)

where

[R] =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (6.3.2)
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Figure 6.9: Illustration of the orbital plane with Keplerian elements. The or-
bital plane (blue) intersects the Earth’s equatorial plane (pink) with inclination
i. The right ascension of the ascending node (Ω) is the longitude of the equa-
torial crossing measured from the First Point of Aries (à); while the argument
of perigee (ω) indicates the closest point to earth. The position of the satellite
is given by the true anomaly (θ).

with

R11 = cos Ω cosω − sin Ω sinω cos i

R12 = − cos Ω sinω − sin Ω cosω cos i

R13 = sin Ω sin i

R21 = sin Ω cosω + cos Ω sinω cos i

R22 = − sin Ω sinω + cos Ω cosω cos i (6.3.3)

R23 = − cos Ω sin i

R31 = sinω sin i

R32 = cosω sin i

R33 = cos i

where θ is the true anomaly, i the inclination, Ω the right ascension of the

ascending node (RAAN) and ω the argument of perigee. The sine term in

equation 6.3.1 describes the position of the satellite in its orbital plane (the

blue area in Figure 6.9), while equation 6.3.3 defines the orientation of the

orbital plane. The size of the semi-major axis (a) and eccentricity (e) of the

orbit determines the path circumscribed on the orbital plane.

As the Keplerian elements of the satellites vary slightly, they all have dif-

ferent orbital planes which intersect at the centre of the earth. A detailed

description on how to calculate the position of a satellite as a function of time
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(c) t = 0.5P
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(d) t = 0.75P
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Figure 6.10: Network topology over the course of one orbit for a system of 125
satellites. Note the drastic change in topology, ranging from tightly clustered
to sparse and elongated. The colour of nodes indicate specific satellites. P is
the orbital period. The parameters used to generate these figures are the same
as used for the simulation in Section 6.3.2.
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is given in Chobotov (2002), Chapter 4. For the purpose of this discussion, it

is sufficient to note the sine and cosine terms in equation 6.3.3. As these terms

differ between satellites, their relative positions will change periodically over

the course of an orbit.

6.3.1.1 Non-Keplerian disturbances

The above model assumes a spherical potential field, with no external distur-

bances, which is not strictly true. External disturbance torques, such as geopo-

tential, solar pressure, atmospheric drag, and electro-magnetic forces cause or-

bits to drift over time. The impact of these forces depends on both the orbits

and the physical properties of the satellites. Although these forces have an

important effect on the orbits of real satellites, I am primarily interested in the

short-term interactions between satellites, over time periods of less than one

orbit: how frequently are communication links formed between satellites, and

for how long do these links persist? On this scale, the dynamics that result from

Kepler’s equations dominate the relative positions exhibited by the individual

spacecraft.

The Keplerian model therefore captures the communication network dy-

namics with sufficient accuracy for our purposes; the non-Keplerian perturba-

tions are deliberately ignored.

6.3.1.2 Dynamics

The mobility model displays a complex oscillatory movement of satellites around

the reference point, due to the sine and cosine terms in equation 6.3.3. The

exact behaviour depends on the orbital parameters and variance thereof for

individual satellites. For specific parameter values that suppress the oscillatory

terms, stable relationships between satellites can be found, but the dynamic

connections dominate the communication network.

The resulting local communication network displays continuous variation in

topology and physical scale as spacecraft orbit around the earth, ranging from

well-connected to sparse and even disjointed. When the communication range

is small compared to the average inter-satellite distance, the network fragments.

On the other hand, if the communication range is comparable to the spatial

diameter of the satellite cluster, a well-connected network results.

In many cases the network topology ranges between these two extremes

within one orbit, as is demonstrated by the network resulting from a slightly

elliptical orbit in Figure 6.10. This clearly shows how the satellite formation

ranges from tightly clustered, as shown in Figure 6.10a, to being spread over
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Figure 6.11: Orbital dynamics result in continual change of the local neigh-
bourhood of a node, both in terms of the types of nodes and the topology. The
auctioneer is represented by the diamond, while nodes are coloured and labelled
according to their capabilities. If the network was static, the community would
instead remain constant.

a wide area (Figure 6.10c). Note the similarity between these topologies and

the random geometric graphs in Section 6.1 — from this we can deduce that a

significant variation in communication cost will be observed at different times

during the orbit.

Due to the shifting topology, the local network around a node allocating a

task changes continuously in terms of structure and composition, as shown in

Figure 6.11. To successfully allocate tasks, these changes need to be detected, or

the network mapped, at regular intervals. By using auctions to allocate tasks,

and relying on task-centric routing, these changes are transparently detected

and the latest network information taken into account.

This mobility model provides the test case for verifying our task allocation

mechanism, but it can also serve as a standalone mobility model for researchers

in mobile ad hoc networking to test different management and routing algo-

rithms.

6.3.2 Dynamic performance

I am interested in maximising the task allocation and allocation efficiency of

the system, because the more efficient the allocation mechanism is, the more

energy can be spent on performing payload operations. For this experimental

setup, all tasks can be successfully allocated, but the energy overhead due to

communication varies. By measuring the communication overhead, i.e., the

total energy consumed by the system over time, minus the energy spent on
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Table 6.2: Orbital parameters for the simulated distributed satellite system.
The reference orbit of the system has the parameters in the reference column,
while the values for individual satellites are calculated by adding a uniformly
distributed noise with the range shown in the error column.

Parameter Reference Error

Semimajor axis a 6878140 ±100 m
Eccentricity e 0.001 ±10−6 rad
Inclination i π

4 ±0.001 rad
RAAN Ω 0 ±0.001 rad
Argument of perigee ω 0 ±π

4 rad
Initial true anomaly θ0 −ω ±0.01 rad
Orbital period P 5 677 ±0.1 s

tasks, I can measure the impact of network dynamics.

To interpret the simulation results, a fair reference to compare against is

required. As the cost of allocation is strongly influenced by the network topol-

ogy, we need to select a topology that provides a fair comparison, even though

the dynamic network changes significantly over time. I therefore determine the

topology of the dynamic network at a random time t, then use that as a static

network for simulating allocation. If this is repeated for multiple t values, over

a number of networks, the mean of the results should give a good indication

of the performance without the effects caused by dynamics. This provides the

static case.

For additional references I also measure the allocation overhead in two ex-

treme cases: one when the satellites are spread out to the maximum extent to

form the sparse case, and the connected case, where they are clustered together

and well connected.

6.3.3 Experimental setup

A slightly elliptical, 500km reference orbit is used to define the orbits of 125

satellites, using the orbital parameters in Table 6.2. The initial positions and

orbits of the satellites are calculated by adding a uniformly distributed error to

the orbital parameters, as listed in the error column in Table 6.2. At t = 0, the

satellites are clustered around the perigee of the reference orbit, but as they

travel around the earth they spread out before clustering together again one

orbit later, as shown in Figure 6.10. The connection function uses a simple

thresholding comparison: if two satellites are within four kilometres of each

other, it is assumed that both parties can communicate with each other, i.e.,

Rth = 4 000m. A communication delay of 100 milliseconds is assumed: this is
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generous enough to include a realistic transmission and processing time, even for

busy or low-bandwidth nodes. Note that the use of physical orbital parameters

necessitates the use of a real time value as well; I therefore depart from the

abstract time units used in previous experiments.

Five new tasks are introduced to the system every 100 seconds; each task

consists of five components that are executed sequentially by different types of

satellites. All five components need to be executed for the task to be considered

complete. The system is simulated for one orbit, during which 280 tasks (1 400

task components) are allocated. Executing a task component uses 1 unit of

energy, transmitting negotiation packets uses 0.005 units, while transferring

a task between two nodes requires 0.5 units. Satellites’ energy regenerates

at an average rate of 0.005 units per second, to represent the recharging of

spacecraft batteries from solar panels. The maximum energy that can be stored

by any spacecraft is 10 units. These energy values represent a scenario where

communication is cheaper than task execution, but the cumulative energy cost

of communication forms a significant portion of the total energy expenditure.

The skills of the satellites are selected with a uniform probability from the

set of 5 task component types. Every satellite has only one skill, so the system

consists of approximately 25 satellites of each class.

The dynamic case uses the Keplerian movement model to modify the net-

work topology over time. The static case uses 20 different time values to gen-

erate different topologies for every run. As the orbits of individual satellites

are elliptical and satellites are clustered together at the start, the connected

case is found by using the network at t = 0. The sparse topology is found

halfway through the orbit, at t = 2 883. Fifty runs were used to generate the

results presented below. Note that both the composition of the network and

the positions of individual satellites were varied between runs.

6.3.4 Results

The total energy used in every run is measured, and the amount of energy

spent on successful task execution is subtracted. This allows the calculation of

the mean energy used in allocation by the negotiation and transfer packets, as

shown in Figure 6.12. The dynamic case required 1 323 units of energy, while

the static case required 1 347 units, approximately the same amount. The

sparse network used only 1 164 units, while the well-connected case required

1 512 units. The standard error on the measurements ranges from 1.6 to 2.8.

For comparison, task execution required 1 400 units of energy. Approximately

half the allocation energy is used for transferring tasks, while the remainder is
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Figure 6.12: Mean allocation overhead using dynamic, averaged static, sparse
and well-connected topologies over one orbital period. The dynamic network
requires approximately the same amount of energy to allocate as the average
static case,indicating that the . Standard error on the measurements ranges
from 1.6 to 6.2 (errors bars are not plotted due to their negligible size).

required by the large number of negotiation packets.

The results show that the market-based task allocation mechanism is not

adversely affected by the changing communication network; in fact, it slightly

outperforms the averaged static case. The reference cases clearly demonstrate

how the cost of allocation can vary within one orbit. The high cost associated

with the well-connected case can be ascribed to the large auction community

resulting from the small network diameter, as discussed in Section 6.1.

To understand how the allocation mechanism manages to maintain perfor-

mance in spite of the changes in the network, it helps to look at the lifetimes

of connections in the system. Figure 6.13b shows a histogram of connection

lifetimes: connections between nodes generally last on the order of hundreds

of seconds, orders of magnitude more than the auctions require. The network

state information is therefore valid for the duration of the auction, allowing

allocation to succeed. For comparison, the connection lifetimes for Rth values

of 1 000m and 8 000m were also calculated, and are displayed in Figure 6.13.

For smaller values of Rth the peak of the histogram moves to the left: there

are fewer connections made and most only last for a short period, resulting in

a relatively volatile network. As Rth increases the number of links and their
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Figure 6.13: Histogram of connection lifetimes for a group of 125 satellites
with 1km, 4km and 8km communication ranges, over the course of one orbit.
Note that the vast majority of connections in the 4km case last for hundreds
of seconds or more, thereby allowing auctions to succeed. For a smaller Rth

value, the number of connections and their lifetimes decrease. For larger values
of Rth we observe an increase in the average connection lifetime, to the point
where some connections persist for the duration of an orbit or longer.
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stability increase too, shifting the distribution to the right, even resulting in

links that persist for longer than the duration of an orbit. If the communication

range is increased even further the network will become fully connected.

Tests using a different number of satellites, or placing them in other orbits,

show similar results, as long as the component satellites have approximately

similar orbits. The network volatility is a result of the error with respect to

the reference orbit, which determines how far satellites move apart, and the

communication distance, which determines for how long connections can be

maintained.

6.3.5 Discussion

This experiment demonstrates that ad hoc, decentralised task allocation and

task-centric routing allow us to successfully manage task allocation in dis-

tributed satellite systems with realistic network dynamics.

The similarity in performance between the static and dynamic cases can

be ascribed to the ad hoc nature of the task allocation mechanism, as well

as the differences in time scales between allocation and network changes. In

addition, the allocation mechanism has limited memory about the system state

(only an average price for a task type), therefore it can adapt much faster than

the network changes. By holding an auction for every task component, the

current state of the local network is always used to determine allocation. This

approach is best suited to scenarios where the network changes more frequently

than tasks are allocated — the cost of holding an auction should be less than

the cost of incrementally tracking changes in the local community.

Despite the continuous movement of satellites, the average connection life-

time between two nodes in the communication network is significantly longer

than the duration of an auction. From the point of view of the auctioneer,

the local network is therefore effectively static during an auction, thus allow-

ing successful allocation. If network changes were to disrupt an auction, the

auctioneer can restart the auction to retry, with a high probability of success.

6.4 Discussion

This chapter investigated the impact of topological structure and dynamics on

system-level performance. I measured the allocation cost associated with dif-

ferent network topologies and explored the trade-off in communication range

versus allocation overhead. Finally, a mobility model of a multi-satellite sys-

tem was developed to measure the impact of realistic orbital dynamics on the
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communication network topology and the task allocation mechanism.

The experiments demonstrate the significant role played by the size of the

auction community in determining the total allocation cost — this is a direct

result of the flooding of auction announcement packets through the network.

Systems with a large auction community will be more expensive in terms of

task allocation, while sparsely-connected systems exhibit a significant saving in

communication cost, which leaves more energy for completing tasks. In terms

of communication range, we observe a distinct plateau of good allocation of a

range of Rth values, where all the tasks in the experiment could be allocated.

The lower end of this plateau is determined by the physical properties of the

network, while the upper end is largely a result of the energy used by the task

allocation mechanism. The system capacity shows a prominent peak at the

point where the network is connected enough to achieve good allocation, yet

still has low communication cost. The mobility model shows that the commu-

nication topology for a distributed satellite system can vary greatly over the

course of an orbit. The differences in orbital parameters result in a continuous

but cyclic change in the network. Despite the constant change, the task allo-

cation mechanism shows no deterioration in performance when compared to a

static equivalent. This result seems counter-intuitive, but makes sense when we

consider that there is no model of the network that might become outdated,

and the time scale of each auction is short enough that it effectively occurs on

a static network.

These experiments demonstrate how a system designer can go about mea-

suring the trade-offs in terms of topology and communication cost. Ideally, the

communication range and auction community size should be just large enough

to ensure reliable allocation. The lower bound on the zone of good allocation is

clearly visible as you move along the axis of increasing communication power;

increasing it significantly further will not result in an improvement in system

performance.

From a satellite engineering perspective, the primary result is that my task

allocation mechanism copes very well with the dynamic topologies that result

from realistic orbital mechanics: no negative impact is observed. Furthermore,

this resilience of the allocation mechanism to a changing network topology

implies that the requirements for fine-grained control of individual spacecraft

can partially be addressed on a network management level: instead of accurate

formation maintenance, coarse positioning of spacecraft to stay part of the

network is sufficient. This makes the use of smaller, simpler spacecraft viable

in distributed satellite scenarios, making it a more affordable enterprise. For
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system design, the ease with which the task allocation mechanism manages

network dynamics suggests that a large part of the modelling can be done

using a representative set of random geometric graphs as topologies. These will

provide a significant saving in computational cost if heuristic optimisations are

performed.

The above results also relate to other distributed system problems. The ex-

plicit focus on communication cost as a result of topology also features promi-

nently in wireless sensor networks, where similar trade-offs are required. The

adaptability to a changing network topology that stems from the use of ad hoc

information should apply equally to dynamic networks in WSNs. This raises

the question of when the benefits of ad hoc information are outweighed by the

cost of repeatedly gathering this information. The other relevant link is to

work on mobile ad hoc networks. The mobility model for distributed satellite

systems now provides us with a test platform to compare different routing and

control protocols developed specifically for terrestrial MANETs in our system.

The high cost observed for well-connected topologies suggests that the allo-

cation mechanism can be made more efficient by using an adaptive time-to-live

range – this will however require a mechanism to learn more about the net-

work on a node level. Monitoring the number of successfully allocated tasks, or

the volume of auction announcements received should provide a useful starting

point. The periodic nature of topologies produced by the Keplerian mobility

model also raises the question of whether the periodicity can be exploited to

optimise management of the system.

Although I believe that it is premature to draw firm conclusions, the slight

improvement observed in the task allocation cost of the dynamic network could

be a beneficial effect of systems with a constantly changing topology. Although

dynamics are usually regarded as a complicating factor in system management

(Durfee, 2004), the resulting change in the auction community means that failed

auctions are retried on a new set of nodes. Therefore, retried auctions can utilise

different nodes on every attempt, instead of waiting for nodes to recover to a

usable level. Further investigation is however required to determine whether

this phenomenon will have a significant effect on system performance.

139





7

Competitive markets

The preceding chapters are primarily concerned with the specifics of the pro-

posed market-based task allocation mechanism; in this chapter the focus shifts

to address broader questions around market-based control as a methodology.

The allocation mechanism in previous chapters is very much under the control

of the system designer, and can be seen as a rather artificial market. The de-

signer defines the utility function of individual nodes, and forces them to bid in

an informative manner. Although this results in the desired allocation, it also

raises the question of how a more “open” market with true competition would

perform. If agents could determine their own bidding strategy, would this result

in a better or worse allocation when compared to the utilisation-based approach

explored in previous chapters?

Proponents of the free market would suggest that a competitive market

could lead to further optimisation and increased adaptability. However, markets

can under certain conditions exhibit behaviours that are undesirable from a

control point of view (Hogg and Huberman, 2002). The simulation platform

developed over the course of this thesis allows us to put this to the test: how

does the management of a system using “enforced socialism” compare to self-

interested capitalism?1

The objective of this chapter is to compare the behaviour of a competitive

market to one using utilisation-based bidding. I am interested in how and why

they differ, and what the methodological implications are for market-based

control in general. To achieve this I develop an adaptive agent for a first-price

sealed-bid auction with common-value goods. The agent is subject to the same

communication constraints and auction mechanics used in previous chapters.

To investigate the relative performances of the two approaches, the number of

tasks allocated is measured for a fully-connected communication topology, as

well as for a range of less well-connected networks.

1In recent years this question has received an increasing amount of attention as “the
price of anarchy”, especially in the context of network routing and congestion games, e.g.,
Roughgarden (2005)
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To distinguish between the task allocation mechanism presented in previous

chapters and the competitive agents presented in this chapter, I introduce the

terms competitive and cooperative. Competitive or profit-based allocation indi-

cates a market where agents adapt their prices to maximise their own revenue,

within the bounds allowed by the available energy. If, however, agents use only

their energy levels to calculate bid values, as discussed in previous chapters, I

will refer to cooperative or utilisation-based markets.

7.1 Motivation

My exploration of competitive systems has two distinct motivations, which are

discussed in turn below. Firstly, from a pragmatic, engineering point of view,

open systems are sometimes unavoidable: they are a fact of life. Secondly, as

part of a methodological investigation, competitive systems represent a natural

conclusion as we move along the axis of increasingly distributed control.

There are cases where the system designer does not have the level of con-

trol required to define the interactions, motivation, strategies and behaviour of

individuals in his system. As part of the qualification effort that flows through

this thesis, I am therefore forced to ask how this constraint of limited con-

trol impacts on the design. More specifically, how does using a competitive

market to allocate tasks differ from a cooperative one in terms of performance

and suitability to different parts of the problem space? For example, it is

quite possible that multiple stakeholders might collaborate in constructing and

managing a distributed satellite system. As the size of the system increases,

the likelihood of different, self-interested parties joining it increases too. For

these multi-stakeholder scenarios a system of fair compensation according to

the work done must exist. A natural way to express agents’ contributions,

while still allowing for individual strategies, is to relate the bid values to actual

revenue for their owners. Compensation is therefore related to the demand

for certain skills, and the efficiency with which agents convert energy to work.

Because stake-holders are self-interested we can expect them to optimise their

agents’ bidding behaviour to maximise the revenue they earn, while presumably

minimising their contribution to the welfare of others. This is in contrast to

cooperative markets where bidding is used purely as a signalling mechanism to

coordinate system-level behaviour.

The second motivation stems from a view of open systems as the natural

conclusion to distributed control. If we have a multi-component system we want

to control, the most centralised solution involves a single controller directly
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managing all the other agents in the system. A more distributed approach

allows local decision making, but with a clearly defined global objective. If

we continue along this axis, we find open systems, where individuals have no

unified goal, but instead everyone “is continually making to better his own

condition”, to use Adam Smith’s phrasing (1776). Individuals decide how to

bid, and have their own private incentives that they optimise for. I therefore

compare competitive to cooperative markets to determine whether some parts

of the parameter space are more suited to one system or another.
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7.2 The structure of a competitive market

To convert the previously described market-based task allocation mechanism

to a competitive market, the bid calculation function needs to change to al-

low agents to actively try to win tasks, instead of conveying their degree of

utilisation. To keep the two systems comparable in terms of performance, the

types and number of communication packets allowed must remain the same.

I therefore retain the structure of the utilisation-based market, including the

first-price auction structure, communication constraints and optimisation fea-

tures such as bid aggregation; the only change is in how agents decide how

much to bid.

The auction structure remains the same as before: an agent with a task an-

nounces it to his immediate neighbours, who relay it to their neighbours until

the time-to-live of the announcement packet is exceeded. Agents with enough

energy and the necessary skills submit bids back towards the auctioneer. At ev-

ery node along the way, bids are aggregated and the best bid forwarded. With

every relay of a bid message, the bid value is multiplied by a fixed commission

value. The auctioneer selects the lowest bid, and assigns the task to the cor-

responding agent, and the same sequence as before follows: task acceptance,

task transferral and acknowledgement packets. If the task consists of multiple

components, they are once again outsourced to other agents in subsequent auc-

tions. The commission structure and distributed winner calculation is therefore

still applicable, and allows the different approaches to be compared. I restrict

the discussion to tasks of a constant size for all agents, which results in par-

ticular market dynamics — I will point these out through the course of this

chapter. The same measures of success as before are used again: how many

tasks are successfully completed, and how much energy is required to achieve

the allocation?

One significant implication of this market structure is that very little infor-

mation is available for agents to base their bids on. In most other work using

sealed-bid auctions all agents are informed of the closing price of the auction

(e.g., Bagnall and Toft, 2006), but due to the communication cost associated

with notifying the network, this information is not available in my system.

Agents are paid for contributing to completing tasks; in other words, con-

verting energy to work. As explained in the previous section, these payments

are used to calculate the revenue of the agents’ owners. Energy is replenished

at a constant rate, but the agent can only store a finite amount. There is no

incentive to store energy for future use, or to abstain from bidding in the hope

that prices will rise. The best strategy is to win as many jobs as possible, as
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long as an agent still makes a profit completing them.2

Instead of distributing tasks to evenly share the load, a competitive market

favours the agent most adept at winning jobs. Due to competition and constant

task sizes for all agents, we expect the competitive market to converge to an

equilibrium price, with effectively no profit for the agents involved. For identical

agents in the equilibrium condition, the allocation should be random with a

uniform distribution, as no agent has a competitive advantage over anyone

else.

Note that I am primarily interested in the performance of the system as

a whole (measured in terms of task completion) for the purposes of decen-

tralised control. This is in contrast to a focus on agent strategies, auction

revenues, or social welfare measurements that frequently dominate in agent-

based economics. The performance of the system is defined in terms of the

work completed, not the utilities of the individual agents.

The competitive agents focus on maximising their own profit, which can

result in sub-optimal system-level performance. For example, if a successful

bidder exhausts itself by winning a series of jobs to the point where it has

insufficient energy to transfer tasks, it can prevent access to a part of the

network that could otherwise be used, thus reducing the total system capacity.

This behaviour is discouraged in the utilisation-based allocation mechanism by

having agents increase their bids to reflect decreased energy levels. In economic

terms this decrease in performance can be seen as an externality, i.e., a cost

that is not captured in the allocation prices. This incentive structure, where

selfish behaviour is incentivised, possibly to the detriment of the global system,

is reminiscent of the “tragedy of the commons” described by Hardin (1968), and

much analysed in the economic literature (e.g., Marwell and Ames, 1979; Mason

and Phillips, 1997) and evolutionary biology (e.g., Axelrod and Hamilton, 1981;

Killingback et al., 2006) since then.

In economic terms, the competitive market is analogous to a hyper-capitalist

system with purely self-interested actors, where no-one is responsible for the

global good, yet everyone’s actions determine it. In contrast, the utilisation-

based market is close to a socialist utopia, where everyone contributes according

to their abilities. In both cases the system uses local information for decision

making, but in the socialist system, everyone has the global good at heart.

2This approach views the energy used in completing tasks as a cost, because the same
energy could in theory have been spent on a different task for which the agent would have
been paid.
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7.2.1 Why not mechanism design?

A reader with a background in market design may at this point wonder: “Why

not simply use mechanism design to achieve the desired allocation?” While

mechanism design is undoubtedly a valid approach to the problem, it is not

the objective of this chapter. A mechanism design approach would focus on

incentivising desirable behaviours, usually by changing the rules of interaction.

However, this is not always possible, for example in established systems, or in

the case of distributed satellite systems, where we want to minimize commu-

nication. While mechanism design could be used to find a market-structure

that incentivises the desired behaviour, I am more interested in how the per-

formance of the utilisation-based allocation mechanism defined in Chapter 3

changes when we move to an open market, and whether specific dynamic prop-

erties emerge as a result.

This chapter should therefore be seen as an investigation into the nature

of auctions for market-based control, specifically when taking place in spatial

networks. The following statement by Milgrom (1985) neatly summarises my

intent with this chapter:

Too much recent research effort in auctions has been simply apply-

ing the latest techniques (principally “mechanism design”) to ever

more complicated models; too little has been devoted to the very

real and important economic questions that auctions raise.

If we were to pursue a mechanism design approach, one possible solution

would be to rely on a payment structure similar to the bid calculation used

by the utilisation-based agents. To maximise the number of tasks allocated

across the system, a payment rule is required that will couple the global system

performance to local performance, by scaling the amount of money an agent

receives by the total number of tasks completed by the system. One way of

estimating the system-level utilisation using only local information, is to take

the agent’s own energy-levels into account which leads us back to a utilisation-

based bidding approach.

7.2.2 Desired allocation behaviour

The desired allocation behaviour requires the careful balancing of three different

objectives. The most obvious one is to minimise the allocation cost by allocating

tasks close to the auctioneer. Secondly, the system simultaneously needs to

prevent node exhaustion by spreading the allocation of tasks across a number

of agents. Finally, we need to maximise the incident energy in the system.
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Recall that agents have a limited energy storage capacity: once their batteries

are fully charged, they cannot store any more energy. In order to maximise the

incident energy on a system level, we therefore want as many agents as possible

to be capable of storing the incoming energy. In other words, it is preferable

to have two partially-used agents to a situation where one is fully-utilised and

one not at all, because when both are used, the system as a whole can receive

more incoming energy. Note that this condition only plays a role while some

of the agents are not utilised — when all agents are in use, they can all receive

incoming energy.

7.3 Trading agent design

The majority of work on adaptive agents focuses on continuous double auctions,

where both the buyers and the sellers adjust their prices (e.g, Vytelingum et al.,

2004; Chaggar et al., 2008). These auctions are efficient at allocating resources,

and are widely used in the real world. For the purposes of task allocation in dis-

tributed satellite systems however, the combination of communication cost and

task structure makes the use of a single-sided auction more attractive. As de-

scribed in Chapter 3, a reverse, first-price, sealed-bid auction allows allocation

with minimal communication.

While a large number of agents with varying degrees of complexity have

been developed for continuous double auctions, single-sided auctions have re-

ceived much less attention. Brandt and Weiss (2002) investigated the effects of

antisocial agents in a simple task allocation scenario to demonstrate the vul-

nerability of second-price sealed-bid auctions to competitors whose main goal

is not maximising profit, but inflicting losses on the other agents in the system.

In work that is highly relevant to this chapter Bagnall and Toft (2004,

2006) adapted agent learning strategies used in continuous double auctions to

sealed-bid auctions. Their implementations of ZIP-traders (Cliff and Bruten,

1997, 1998) and the history-based agents proposed by Gjerstad and Dickhaut

(1998) take the different information revelation and allocation processes for

single-sided auctions into account.

As the focus of this chapter is on market dynamics, rather than the strategies

of individual agents, I restrict my attention to reactive agents. More specifi-

cally, I adapt the single-sided ZIP-traders in Bagnall and Toft (2006) to my

task allocation scenario in order to accommodate three significant changes in

the market structure. Firstly, for task allocation, we are dealing with interde-

pendent goods, because agents have to outsource subsequent task components.
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Agents therefore need to learn an appropriate outsourcing cost in addition to

the market price, i.e., what other agents are bidding. Bagnall and Toft looked at

sealed-bid auctions where all agents could participate in auctions. In contrast,

my own focus on communication costs has led to transactions that execute on a

network with a specific topology, which decreases the information available to

agents. Furthermore, agents in the task allocation auction are not informed of

the winning bid price, which complicates the learning process. Instead of using

an estimated optimal bid to update their profit margins, they have to search

for the price point where their bids succeed.

Our competitive market should exhibit similar dynamics as would be ex-

pected from a real-world market consisting of self-interested individuals. Rel-

evant behaviours include learning of the market price; competition between

agents by varying bid prices; sensitivity to changes in the cost of task com-

ponents over time; and, on a macro-level, price behaviour that corresponds to

that predicted by competition economics. When the workload is less than what

could potentially be performed by the system, i.e., supply exceeds demand, we

expect the market-price to converge to a zero-profit state. Conversely, an over-

loaded system will be characterised by bid values and task costs increasing until

agents run out of energy.

7.3.1 Learning strategy

This study employs a reactive agent that uses only its internal state and the

state of the network to determine bid values, without any strategic planning.

The trading agent strategy is similar to that used by ZIP-traders, but needs to

be adapted for single-sided sealed-bid auctions in which the winning bid value

is unknown.

An agent knows its internal energy cost to execute a unit task (cint), but it

has to learn the outsourcing cost (cos) and a suitable profit margin (µ) for its

position in the network. As the true outsourcing cost is highly dependent on

the behaviour of other agents in the market and only observable through actual

outsourcing of task components, the agent maintains an estimated outsourcing

cost (ĉos), which it uses to calculate the bid value (B):

B = cint + µ+ ĉos (7.3.1)

The only environmental information available to an agent is its own bid-

ding history, whether a particular bid was successful, and the outsourcing cost

associated with previous task allocations. It must use this information to learn

suitable values for µ and ĉos, while these values are changing due to interaction
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with other agents. For convenience of analysis I retain the fixed commission

factors used in previous chapters: although agents earn money from relaying

tasks, they do not have to learn a suitable commission value.

I assume agents to be rational, i.e., they will not knowingly bid values that

will cause them to make a loss. They will therefore not bid below their internal

cost (B > cint) and they will never lower their outsourcing cost estimate to be

negative (ĉos ≥ 0). Finally, I also stipulate that the profit margin likewise can

never be negative (µ ≥ 0).

The learning problem can be illustrated by considering an auction from the

perspective of an agent. A new task is announced, so the agent calculates a

bid that takes its internal cost and estimated outsourcing cost into account,

and adds some profit margin to the bid. It then waits for a response from the

auctioneer. After a predetermined period of time the agent still has not heard

from the auctioneer, and must therefore assume that its bid has failed. In the

next auction, it will try a lower bid, but should this be done by decreasing its

profit margin, or its outsourcing estimate? One way to get an estimate of the

market price and outsourcing costs is to aggressively submit a low bid that can

win the auction, but there is always a danger the outsourcing costs may be high

enough to cause the agent to make a loss on the transaction.

ZIP traders face a similar challenge, but only in one dimension. They

retrospectively estimate an optimal bid for the precious auction, then update

their profit margin by the difference between their actual margin and the desired

margin. The margin updates are smoothed by an exponential infinite impulse

response filter (the momentum coefficient used by Cliff and Bruten, 1998),

which determines the learning rate of agents. For Bagnall and Toft’s single-

sided-auction ZIP traders, the optimal bid is derived from the publicly known

winning bid value.

As my agents do not have this information available, they have to rely on a

probing strategy to find a suitable bid value over multiple auctions. A simple

gradient descent rule allows them to find and converge upon the market price.

This process can be visualised as the traversal of a two-dimensional space,

as graphically represented in Figure 7.1. The horizontal axis corresponds to

the sum of the agent’s internal cost and profit margin, while the vertical axis

represents the estimated outsourcing cost. The bid value is given by the sum of

the x and y coordinates. If the bid is lower than the other bids in the auction,

the agent wins the task. The market value of the task is represented by the

blue line in Figure 7.1: it represents the combinations of values for (cint + µ)

and ĉos that would result in the agent winning an auction. Bids above the line
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Lose
Win

Start

Figure 7.1: Visualisation of the learning strategy used by competitive agents.
The horizontal axis represents the sum of the internal cost (cint) and the profit
margin (µ), while the vertical axis represents the estimated outsourcing cost
(ĉos). The bid value is the sum of the x and y coordinates. The market price is
indicated by the blue line: if the bid value is lower than the market price, the
agent will win the job, while bids above the line will lose. The arrows indicate
a series of changes to µ and ĉos while an agent searches for the market price.
In the zero-profit condition, the market price is the sum of cint and the true
outsourcing cost cos.

will lose.

For every auction, the agent computes a bid value based on its previous

experiences. At the end of the auction, the agent updates the variables based

on whether it managed to win the task or not, thereby moving to another point

in parameter space. As this process is repeated over a sequence of auctions,

the agent approaches the market equilibrium price. The market-price line will

gradually also move downwards until it reaches a zero-profit state (µ = 0), as

the agents are forced to bid below the previous market prices.

How can the agent go about learning the correct values? I will start with

a simple margin update rule borrowed from ZIP traders adapted to reverse

auctions: if an agent wins an auction, it knows it has bid less than all other

agents; it therefore increases its bid value in the next auction to increase its

profit margin. Similarly, if an agent loses an auction, it knows that it should

bid somewhere between its internal cost and its previous bid, i.e., it should bid

less in the subsequent auction.

The profit margin µ is used as the primary parameter for adjustment: it

is changed more rapidly and is used to explore the space, while ĉos changes

relatively slowly. This is because, although both ĉos and µ contribute equally
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to the bid value, the information we have about the variables is asymmetric.

The profit margin is expected to fluctuate as agents converge on the equilibrium

price, while ĉos is based on observations of actual task outsourcing. However,

if µ is 0, it cannot be decreased any further and therefore the agent adjusts ĉos.

The outsourcing cost estimate is updated whenever an agent allocates a

task. If we regard the allocation cost as a noisy signal of the true outsourcing

cost once the allocation prices have converged, repeated observations will allow

us to find a good estimate of the outsourcing cost. The agent filters the out-

sourcing cost estimate using a first-order infinite impulse response filter with

coefficient γos ∈ [0, 1]. For γos = 1, the agent has no memory, and always uses

the most recent outsourcing cost value as ĉos.

If we look at Figure 7.1, it is clear that the quickest path to the market price

is not to be found by moving in a horizontal direction by decreasing the margin

and then down by decreasing the outsourcing cost. Instead, it would be found

by directly to the nearest point on the win-lose line. This would imply that both

µ and ĉos are decreased simultaneously. However, the relative magnitude of the

decrease is unknown. To accommodate this, I therefore introduce a timeout

nos which also triggers an update of ĉos: if the agent has failed to win a job

in more than nos successive auctions, it decreases ĉos. This is to compensate

for the unfortunate state of affairs where the agent has a wildly inaccurate ĉos

value, as it has won no auctions. It therefore has not had the opportunity to

conduct an outsourcing auction and thus has no outsourcing cost information.

Finally, to describe the magnitudes of updates, every agent has its own ad-

justment size variables, one for the profit margin (∆µ) and one for the outsourc-

ing cost estimate (∆os). These are used to generate random values with which

to increase or decrease the parameters. The magnitudes of the adjustment vari-

ables determine how quickly an agent will traverse the parameter space, but

larger values can also result in noisy bid values, with significant under-bidding.

As this is a purely reactive agent, it is necessarily simple (and sometimes naive)

in how it calculates bids. More advanced strategies are certainly possible, but

they fall beyond the scope of this chapter.

Note that an agent will only place a bid if it has enough energy to complete

the task; its energy level does not contribute to the calculation of its bid value.

Once an agent has committed to a task, it has to complete the relevant task

components and outsource the others. If it cannot outsource the remaining

task components, the agent will suffer the energy penalty of completing a task

component and it will not receive any payment, as the task was not completed.3

3This assumes that an accounting layer exists that tracks where tasks are executed, which
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The update rules can be summarised as follows:

1. If the agent wins an auction, µ is increased by a value generated uniformly

at random from the range of [0,∆µ].

2. If the agent loses an auction, µ is decreased by a value generated uniformly

at random from the range of [0,∆µ].

3. If µ < 0, decrease ĉos by |µ| and set µ = 0.

4. When allocating a task, update ĉos with the amount paid (P ) to outsource

the task:

ĉos (t+ 1) = ĉos (t)× (1− γos) + P (t)× γos

5. If the agent has not won any auctions in the last nos auctions, decrease

ĉos by a value generated uniformly at random from the range [0,∆os]. Set

nos = 0.

6. If ĉos < 0, let ĉos = 0.

7.3.2 Dynamic behaviour

With the auction structure and learning strategy of the competitive agents

defined, we can now consider the dynamics that result from their interaction.

If a population of these agents are pitted against each other, they exhibit a

market-like dynamic that can serve as a valid model of a competitive market.

The winning bid prices for an example market using competitive agents are

shown in Figure 7.2.

If a group of agents were to start with random values for µ and ĉos, those

with low bid prices will initially win. As they outsource subsequent task compo-

nents, they learn the outsourcing prices charged by other agents. More accurate

estimates of the outsourcing cost therefore propagate from the agents at the

end of the outsourcing chain, back up to the first agents. Agents essentially

converge to an accurate estimate of the outsourcing cost (ĉos → cos), while also

competing to win jobs by lowering their margins (µ→ 0).

As a result, the bid prices are driven towards a zero-profit condition, where

agents bid the sum of their internal cost and the subsequent outsourcing costs.

This is shown in Figure 7.1 where the market price line intersects cos and cint.

The imperfect information about the outsourcing cost means that agents will

regularly underestimate the market price, and bid too low. Although this allows

the agent to learn the correct outsourcing cost, the agent may make a small

agent owners should be compensated, and by what amount.
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Figure 7.2: Winning bid prices over time for an example market of competitive
agents. Tasks consist of four sequential components; the price for each is shown
in a different colour. The blue component requires a green one to be outsourced,
which in turn results in a yellow one, and finally a red component, at which
point the task can be regarded as complete. Competition between agents drives
market prices from initially random values to the zero-profit condition, where
the bid price is the sum of an agent’s internal cost (1 in this case) and the
subsequent outsourcing costs. The final component has no outsourcing costs,
and therefore converges on a cost of 1. The prices for other components are
noisier, due to uncertainty about the outsourcing cost.

loss in the process. As a result of this uncertainty, the bid prices for task

components with outsourcing requirements vary around the convergence point.

The prices of task components with a longer outsourcing chain will vary more,

because of the accumulated uncertainty in the prices of subsequent components.

This phenomenon is clearly visible in Figure 7.2. Note that the convergence to

the zero-profit condition results from all agents having the same cint values.

If all agents have the same internal costs we find that allocation is randomly

spread between them in a round-robin-like fashion, as no agent holds a compet-

itive advantage. This convergence condition is promising from a task allocation

perspective because it provides a mechanism for distributing labour between

similar agents.

The rate at which the market learns the zero-profit price is determined by

the magnitude of ∆µ and ∆os, as well as the value of nos. The latter variable

is however dependent on the number of agents in the system: it reflects the
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probability that the agent will win a task in the zero-profit state. Once the

market has converged to an equilibrium price, for n′ in the auction community,

the agent should win on average 1
n′ of the auctions. However, as the number of

nodes in the network and the size of the auction community are both unknown,

a good value for nos can only be found on very long time scales.

Agents make most of their money by how well they respond to major

changes in the market: if they are good at adapting to a new market price,

they can use that information to increase their revenue. The bidding success

of an individual is determined by the values of its learning parameters as well

as its initial guesses for µ and ĉos. A large profit adjustment step, for example,

will enable the node to quickly adapt to the market price, but it may also cause

aggressive underestimation of the price once prices have converged, decreasing

the earnings of the agent. Furthermore, winning a task will give an agent up-

to-date information about the market price and outsourcing costs, thus giving

it a competitive advantage over agents who have not recently won a task.

There is much scope for optimising the parameters of individual agents to

perform well in a market, as done by Cliff (1998). My interest is however with

system-level behaviour, so I will limit my discussion to pointing out that some

parameter values will obviously result in poorly performing agents. Too much

memory (γos → 0) means that agents will be very slow to learn outsourcing

costs. Similarly, if the adjustment parameters (∆µ and ∆os) are too small,

converge will take many auctions. If, however, the adjustment steps are large,

a noisy convergence state will result, with significant underestimation of the

market price and oscillation around it. Finally, if the outsourcing timeout nos

is too small, agents will aggressively lower their outsourcing estimates, until the

market price converges on cint because ĉos approaches zero. In the following

experiments parameter values are randomly generated from ranges that result

in suitable behaviour, but they are not actively optimised, as the system-level

behaviour does not change significantly.

7.4 Fully-connected market

In the first experiment I compare the behaviour of utilisation-based allocation

against competitive bidding. A control case where bidders bid random values is

used as a reference. The experiment measures the energy levels in the system

over time for the three different allocation approaches and relates it to the

number of tasks allocated.

To remove possible topological effects, the allocation takes place on a fully-
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connected network. This forms a single marketplace, where all agents can be

equally involved in bidding, thus maximising the competition. As a result of the

fully-connected topology, all agents have equal access to all the information in

the system. We therefore expect allocation to be better (globally more efficient)

than it will be in a distributed market.

The differences in bid calculation mean that the agents cannot be compared

by pitting them directly against each other in a single market: the utilisation-

based agents are not competitive at all, and will easily be under-bid by the

competitive agents. I therefore investigate their performance by using separate

markets, each consisting of only one type of agent.

7.4.1 Setup

The system consists of 50 agents in total: 10 individuals are drawn from five

different skill types. Tasks are uploaded to the system from a ground station at

a rate of 5 per 100 time steps for the first part of the experiment, representing

a lightly loaded system. At t = 10 000, after 100 uploads, the workload is

doubled to 10 tasks per 100 time steps. Tasks consist of 5 components that are

sequentially executed, as shown in Table 7.1. The run terminates at t = 20 000.

All agents have the same task execution cost (cint) of 1 energy unit per task.

Negotiation packets (ctx) cost 0.001 units and task transferral (ctf) packets 0.1

units.

The incoming energy (Einc) is set to 0.01 per agent per time step, which is

sufficient for the lightly loaded part of the experiment, but not enough for the

overload condition. Agents can store up to 10 units of energy, and they start the

experiment fully charged. All agents can communicate directly with all other

agents, as the communication network is fully connected. The commission and

packet time-to-live values therefore do not have any effect.

The competitive agents bid as described in Section 7.3, using a randomly

generated set of values for their parameters. The initial values for µ and ĉos were

chosen uniformly at random from [0, 10], while ∆µ was selected from [0, 0.2].

The values for ∆os and γos were randomly selected from [0, 1] and nos ranged

from 15 to 25. These values result in the bidding behaviour seen in Figure 7.2.

The utilisation-based agents use their energy levels and expected outsourcing

cost to compute bids, as described in previous chapters. The random bidders

respond to an auction announcement with a value picked uniformly at random

from the range [cint, 10]. They do not calculate outsourcing estimates, nor

do they take their energy levels into account beyond checking that they have

sufficient energy for task execution. Note that the different types of agents
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Table 7.1: Compound task structure used in competitive allocation experiment.
The execution of task elements (left-hand column) results in another task el-
ement (right-hand column) that must be executed. All components must be
executed before the task is complete.

A → aB
B → bC
C → cD
D → dE
E → e

never compete against each other: every type interacts only with a community

of the same type.

7.4.2 Energy measurements

The energy levels of all agents are captured over the duration of a run, and

repeated for 50 runs. Figure 7.3 shows a percentile plot of the cumulative

results for competitive, utilisation-based and random bidding. The minimum

to maximum energy range over all runs is given by the lightly-shaded band,

while the darker zone ranges from the 25th to 75th percentiles. The median

energy is indicated by the solid blue line.

The graphs display four distinct phases over the course of the experiment.

At the start of a run there is a transient initial phase, until allocation settles into

the steady-state pattern for a light task load. When the task load is doubled

at t = 10 000, another large transient is observed, before the system settles

into a new steady state with substantially lower energy. The initial transient

is most visible for the competitive market in Figure 7.3a, peaking at t = 2 000.

This response reflects the period during which the competitive agents converge

on the market price. From t = 2 000 to t = 10 000 we see the 25th percentile

recover while the median stays the same. This period corresponds to the zero-

profit state in the market. The increase in workload at t = 10 000 causes the

median energy in the market to decrease, along with the 25th to 75th percentile

band. The decrease is due to the workload exceeding the incoming energy in the

system, thus forcing agents to use their stored energy to complete tasks. The

decrease stops around t = 13 000 when the stored energy is depleted, before the

network settles into the new steady-state condition, where some tasks cannot

be completed, due to insufficient energy.

In this overloaded phase, the type A agents from Table 7.1 are always ex-

hausted, and sometimes incapable of executing a task. The subsequent task
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Figure 7.3: Energy over time using three different bidding approaches. The
task load is doubled at t = 10 000. The solid line shows the median energy of
fifty agents over 50 runs. The lightly shaded area indicates the minimum and
maximum range of agents’ energy, while the darker zone shows the range from
the 25th to 75th percentile. Note the narrow energy range for utilisation-based
bidding in comparison to competitive bidding.
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components are therefore not executed, thereby decreasing the load on the

agents responsible for task components B to E. As a result, the energy of these

agents will increase, as can be seen in the gradual upwards curve of the median

energy. Experiments where task allocation was run for longer showed the me-

dian energy settling at around 4 units, with a minimum of 0 and a maximum

of 10, for all three cases. When the system is overloaded, tasks are allocated

more on node availability than the value of their bids, because there is so little

network capacity available. As a result, the behaviour of the three allocation

approaches looks rather similar for t > 15 000.

A qualitative comparison of the graphs for different allocation approaches

reveal a number of obvious differences. Broadly speaking, we observe a signifi-

cant difference between competitive and utilisation-based task allocation, while

the random market is somewhere in between.

Most significantly, the median agent energy when using utilisation-based

allocation is always higher than for competitive allocation, confirming the hy-

pothesis that the utilisation-based approach would be more efficient. The be-

haviour of the 25th to 75th percentile band hints at how the improvement is

achieved. For utilisation-based allocation, the system acts to equalise the ener-

gies of agents. The relative similarity in node energies shows in the narrowness

of the 25th to 75th percentile band. For the competitive bidders, this band is

much wider, because node energy does not directly influence bidding. When

using random bidders, the width of the band is between that of other two

cases. With agents choosing bid values from the same range, allocation will be

uniformly distributed between agents, in effect approximating a round-robin al-

location. It should therefore come as no surprise to see energy dynamics which

are somewhat similar to the utilisation-based approach.

The minimum-maximum ranges of the different approaches reinforce what

the 25th to 75th percentile band shows. In the competitive market we can

see that for almost the entire duration of the experiment, at least one node

has no energy, while another is fully charged. For utilisation-based allocation,

the minimum energy hovers around 7 units for the lightly loaded part of the

experiment, only decreasing significantly when the workload doubles. However,

at the same time we also see the maximum energy decrease, from 10 to 7.5 at

t = 15 000. Random bidding results in a minimum node energy around 2 for the

first half of the experiment, decreasing to 0 when the task load increases. The

maximum energy, however, stays at 10, suggesting that the energy distribution

is not as equal as with utilisation-based allocation.

Another notable feature is the overshoot visible on the 25th percentile of the
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initial transient of the competitive market; the other approaches do not display

this phenomenon. The overshoot is due to a combination of agent competition

and their learning of the network price. Initially, at t < 1 000, only a few agents

have succeeded in winning a job. They then use the knowledge of the market

price to win more jobs, thus reducing their own energy even further causing

the dramatic decrease in both minimum and 25th percentile values. Over time,

other agents eventually lower their bids enough to also win tasks, causing work

to be distributed more evenly. This can be seen in the recovery of the 25th

percentile from t = 2 000 to t = 5 000.

Finally, note that the rate of decrease in the median energy (i.e., the slope of

the transient at t = 10 000) is the steepest for the competitive market, followed

by the random market, while the magnitude of the slope in the utilisation-

based case is smaller still. The difference can most clearly be seen in the

steepness of the slope of the energy median in Figure 7.3a when compared to

Figure 7.3b. For a fixed task load and incoming energy level (Einc), the slope

is determined by the number of agents that can store more energy. The narrow

energy distribution in the utilisation-based system means that a greater number

of agents have spare capacity to store more energy. For the competitive system,

however, some agents are almost empty while others are full: as a result the

system cannot store as much of the incoming energy, causing a significantly

steeper slope. The random market is, once again, between these two extremes.

7.4.3 Tasks allocated

If we look at the number of tasks allocated, we find that the utilisation-based

network outperforms the other two approaches with a mean of 1 419.16 tasks

per run (standard error = 0.22) out of a possible 1 500. The random bidder is

next with 1 401.62 tasks (standard error = 0.64); followed by the competitive

market with 1 371.84 (standard error = 0.65). The small standard error values

can be ascribed to this experiment using a fully connected network, i.e., there

are no topological effects that influence task allocation success.

If we investigate where performance diverged for the different cases, we find

that their performances in the steady-state regimes are the same. However, in

the second transient, where the networks move from having sufficient energy

for task allocation to not having enough, the competitive approach depletes

its stored energy first. This is partly due to it having a slightly lower median

energy at the start of the transient, but primarily because its energy decreases

much faster than either the utilisation-based market or the one with random

bidders. From this we can deduce that, although the performance differences
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are small for this scenario, for a highly dynamic workload the utilisation-based

allocation approach will do significantly better than the competitive one.

7.5 Spatially distributed markets

In this section I investigate what happens when we move from a fully-connected

to a spatially distributed market where network topology plays a significant role.

While the previous section provides a useful reference for understanding the dy-

namics of the system, distributed markets are directly relevant to distributed

satellite systems as the high cost of communication makes fully-connected mar-

kets undesirable.

To determine the effect of topology I measure the number of tasks allocated

for a range of network topologies with different degrees of connectivity. By

keeping the workload constant and varying the incoming energy, the response

of the system to different levels of utilisation can be measured. A utilisation-

based market is simulated under the same conditions to serve as a comparison

and allow identification of the part of parameter space where one approach

would be preferred to the other.

7.5.1 Setup

This experiment uses a very similar configuration as that of the previous section:

50 agents consisting of 10 individuals for each one of 5 task component types.

Tasks arrive at a ground station at a constant rate of 5 per 100 time steps,

using the same task structure as in Table 7.1, resulting in 25 task components

per 100 time steps. All task components cost 1 energy unit to execute. Agents

can store up to 10 units of energy, and they start the experiment fully charged.

For every competitive agent, the parameter values were randomly generated

using the same ranges as in the previous section.

The agents are distributed uniformly at random in a three-dimensional cube

with sides of length one. If two agents are closer than the communication range

(Rth), they are connected. This forms a random geometric network similar to

the topologies used in the previous chapter. The three-dimensional position of

the agents does not change throughout the simulation to avoid effects due to a

dynamic topology. A network that consists of a single connected component is

used in all cases.

By varying the communication distance the network changes from barely

connected to almost fully connected, allowing us to measure the performance

across a range of network connectivity values. A minimum Rth of 0.2 results
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in networks with a mean diameter of 9 and mean degree of 5.09, while the

maximum Rth gives a mean diameter of 2.96, and a mean degree of 30.23. The

packet time-to-live distance (dttl) is fixed at 4 for all network topologies, while

the commission value is fixed at 0.1 per message repeat. Negotiation packets

cost 0.001 while task transfer packets cost 0.1, i.e., α = 100.

The incoming energy (Einc) ranges from 0.001 to 0.01 per agent per time

step. Note that increasing Einc is analogous to decreasing the workload as more

energy becomes available to complete the required tasks. Keeping the workload

constant, however, simplifies the interpretation of the experimental results, as

no additional scaling is required.

The experiment is repeated 50 times for all values of Rth and Einc, each

time with new agent positions and new agent parameter values. I measure the

number of tasks successfully completed and the energy remaining in the system

at the end of the simulation.

Based on the previous experiment, we expect to observe an area where

the system is under-utilised, i.e., the incoming energy exceeds the workload,

allowing all tasks to be completed. At the other extreme, we will observe an

overloaded system, where there simply is not enough energy available to satisfy

all task requests. We are interested in where the transition between these

zones occurs, and how it is influenced by the communication network topology.

We can calculate the expected transition point for an idealised system, without

topology or communication cost, by setting the energy used per time step equal

to the maximum incoming energy per time step, and solving for Einc:

(tasks)× (task components) ≤ (incoming energy)× (agents)

5

100
× 5 ≤ Einc × 50

⇒ Einc = 0.005

For an ideal system, we therefore expect to see the transition between all

tasks being allocated and allocation failing around Einc = 0.005. A more re-

alistic model that takes into account the energy spent on communication in a

network should therefore show a transition point at a slightly higher value of

Einc.

7.5.2 Results

We start by keeping the amount of incoming energy fixed, and focusing on

the effect of changing the connectedness of the market. The difference in the

number of tasks allocated for competitive and utilisation-based bidding is shown

in Figure 7.4. The incoming energy (Einc) was kept at 0.006, while the allocation
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success was measured for a number of increasingly connected networks. As

expected, the number of tasks allocated by both approaches increases as the

network becomes more connected. For Rth > 0.35, both approaches succeed

in allocating all tasks, but the focus of this experiment lies at the lower values

of Rth. We see that both allocation approaches deteriorate when connectivity

decreases, but that the competitive system fares significantly worse.
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Figure 7.4: Comparison of task allocation using utilisation-based (blue) and
competitive (green) task allocation. The connectivity of the network increases
along the axis, from relatively sparse to almost fully connected. The y-axis
shows the number of task completed. It is clear that using utilisation-based
market results in more successful task allocation for less well-connected net-
works. The error bars indicate the standard error.

This represents but one point on the incoming energy axis — we gain a

much better view of the larger landscape if we also consider a range of Einc

values, from 0.001 to 0.009. Figure 7.5a shows heat maps of the resulting task

allocation; Figure 7.4 should be seen as horizontal section across these graphs

at Einc = 0.006. Note once again that a small Einc value is analogous to a large

workload, because the amount of work required from the system exceeds the

available energy. Conversely, a large Einc value represents a system with a light

task load and enough energy to complete all tasks.

At first glance the task allocation results for both approaches look very

similar: when Einc is low, very few tasks are completed, and when it is high all

tasks are completed. However, the performance at the transition between these
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(a) Competitive bidding
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(b) Utilisation-based bidding
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Figure 7.5: Number of tasks allocated for competitive (a) and utilisation-based
bidding (b) over a range of communication distance (Rth) and incoming energy
(Einc) values. The difference between (a) and (b) is shown in (c), which high-
lights the superior performance of the utilisation-based approach for systems
with limited energy and low connectivity.
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zones differs, as does the behaviour when the network topology becomes less

connected. The expected limit of perfect allocation for an idealised system lies

at Einc = 0.005, and we can observe that the performance of the competitive

market starts to deteriorate at Einc = 0.006. For the utilisation-based market

it ranges from about 0.005 to 0.006, very close to the ideal-case performance.

Figure 7.5c literally plots the difference between the two approaches: it

shows number of tasks allocated using a utilisation-based market less the num-

ber tasks allocated using the competitive approach. This plot clearly demon-

strates that utilisation-based allocation performs well in a larger part of the

parameter space than the competitive market, because it allocates a larger

number of tasks for lower energy and decreased connectivity.

If we look at the 0 contour, we see that the number of tasks allocated is

the same for high energy, high connectivity scenarios. With decreasing energy

and a relatively high connectivity (Rth > 0.35), there is a distinct change and

a rapid increase in the difference, peaking at Einc = 0.005. In this area the

number of tasks allocated through competitive bidding starts to decrease, while

the utilisation-based allocation still performs well. If we decrease the incoming

energy even more, the difference between the two approaches also gradually

decreases, reaching 0 for Einc = 0.001. At very low values of Einc the majority

of the tasks completed successfully used energy that agents had at the start of

the simulation.

If we traverse the plot from highly connected to sparse, we start in a zone

(Rth > 0.35) where the connectivity does not influence the performance of

either allocation approach significantly. This indicates that the networks are

connected enough that more connections do not improve it. For lower connec-

tivity, however, performance does change: relatively slowly for utilisation-based

allocation, and faster for the profit-based bidders. This can be ascribed to crit-

ical nodes, which provide bridges between different clusters in the network,

being over-utilised causing network fragmentation.

By looking at the average energy levels at the end of the simulation, as

shown in Figure 7.6, we can better understand the reasons behind the perfor-

mance results. Competitive allocation shows a gradual decrease from Einc =

0.01 to Einc = 0.006, which corresponds to the area where the system manages

to allocate all tasks.

There is a slight increase in the amount of energy remaining in the system as

Rth increases, due to the lower task transferral costs associated with a better

connected network. In comparison, the utilisation-based allocation shows a

plateau of high energy which drops rapidly from Einc = 0.006 to Einc = 0.005.
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(a) Competitive task allocation
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(b) Cooperative task allocation

Figure 7.6: The mean energy levels after allocating 500 tasks for a range of
incoming energy (Einc) and communication distance (Rth) values. Competitive
bidding shows a gradual decrease as Einc decreases, reaching a minimum around
Einc = 0.006. When a cooperative market is used, the transition between having
enough energy (Einc > 0.005) and not having enough is very sudden, due to
the efficiency of this mechanism.

This transition demarcates the point where the incoming energy shifts from

being sufficient for the workload, to being not enough. The abruptness of the

change is again an indication of the efficiency of the utilisation-based approach

— it maximises the total incoming energy to allow the largest number of tasks

to be allocated.

In both allocation cases, the slightly higher energy at Rth = 0.2 indicates

that allocation failed, although enough energy was available. From this we

can conclude that the decrease in task allocation in this zone can be directly

ascribed to the sparse network topology.

165



7. Competitive markets

7.6 Discussion

In this chapter I investigated the difference in performance between utilisation-

based and profit-based task allocation. By adapting ZIP-traders to reverse,

first-price, sealed-bid auctions, I could compare competitive agents to the co-

operative ones developed in previous chapters. Simulation results demonstrate

that the cooperative agents are always at least as good or better than the com-

petitive ones in terms of the number of tasks allocated. While the allocation

success is similar for well-connected markets with sufficient energy, the differ-

ence is especially noticeable when we move to less well-connected networks, or

limit the energy available to agents in the system. This should come as no

surprise: the incentives for the cooperative agents were defined to be aligned

with a good global allocation, while the competitive agents were selfish and

short-sighted. What is significant, however, are the reasons for the different

behaviour, as it can tell us a lot about how we can use market-based control

and why it works.

7.6.1 Competitive vs. cooperative markets

Based on these results, we can now return to the questions that motivated this

chapter. Firstly, the engineering perspective: how does introducing a com-

petitive market change the system performance? The above results show that

the competitive market is comparable to cooperative allocation, as long as the

market is well-connected and has sufficient energy. For less well-connected mar-

kets, or scenarios where the incoming energy is not significantly more than the

work load, the performance of the competitive market decreases conspicuously

faster than the cooperative market. The decrease in performance is primarily

due to the inability of the competitive market to maximise the incoming en-

ergy, as can clearly be seen in the energy measurements. We can expect the

difference in performance to be increased by a dynamic task load, which will

make the cooperative approach superior in a larger part of the parameter space.

A more sophisticated utility function for the competitive agents may improve

their performance, but it will require some predictive ability to anticipate future

workloads.

One might ask: is this part of parameter space significant? For distributed

satellite systems and wireless sensor networks, we find ourselves faced with

lower connectivity and critical energy — exactly the part of parameter space

where cooperative allocation performs better. I would therefore argue that,

where possible, cooperative allocation mechanisms are preferred to competi-
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tive markets in distributed satellite systems. However, it should also be noted

that many applications do not fall into this part of parameter space, and can

therefore be adequately addressed by either approach.

The key characteristic of the cooperative market that allows it to perform

better is its tendency to distribute tasks across the network in response to

the utilisation of individual agents. This can happen because of the informa-

tion content in the bid values: high bids indicate agents that are undesirable

from a global perspective. In contrast, the information content in the bids of

competitive agents is relatively low, because they are bidding to win, not to

communicate their state.

Fundamentally, the difference in performance is due to the different feed-

back loops associated with the allocation approaches. When a competitive

bidder wins a job, its information about the system increases relative to the

other agents because it learns the market price, which the others do not know.

Knowing the market price increases the likelihood that our focal agent will win

future tasks, because it can place more accurate bids. As a result of the posi-

tive feedback loop, the energy of the winning agents will rapidly be depleted.

For a fully-connected network, the primary effect will be that the system-level

energy increase is suboptimal. However, for a more distributed communica-

tion topology the exhaustion of connecting nodes is also significant, as it leads

to network fragmentation. This explains the deterioration observed for low-

connectivity networks shown in Figure 7.5.

In contrast, allocation in the utilisation-based market is subject to a clearly

defined negative feedback loop: winning a task decreases an agent’s energy.

The decreased energy means that the agent’s next bid will be more expensive,

making it less likely to win a subsequent task. As a result, tasks are distributed

in such a way as to equalise the energy levels across the system. This can be

seen in the narrow energy distribution in Figure 7.3. Furthermore, because

the utilisation-based market distributes tasks between the available agents, the

number of tasks completed by an agent is related to the state of the network.

This forms another informational feedback loop, linking the behaviour of the

agent to the system.

7.6.2 Implications for market-based control

What are the implications for us, as users of market-based control? For con-

trolling technical systems, if we have a choice between a cooperative and com-

petitive market, I would recommend using the cooperative configuration. Com-

petitive markets contain no magic: instead they are noisy, subject to positive
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feedback, and generally hard to control. We are however inundated with good

news about competitive markets and their seemingly mystical properties to

achieve good allocations. Optimistically believing that all the properties of

real markets will save your system is similar to the naive view that evolution-

ary algorithms are anything more that a special case of stochastic search. While

competitive markets certainly have promising features, ideological motivations

for their use should be avoided: the system-level behaviour will only ever be as

good as we design it to be.

However, sometimes the use of a competitive market is warranted: markets

can determine the value of goods or services, offer open-ended incentives to

agents in the market, or the system designer might not be in a position to

specify all the behaviour. In these cases we should proceed with caution, while

paying special attention to the feedback loops in the system. A combination of

regulations and incentive engineering approaches, such as mechanism design,

have to be used to manage the system. Broadly speaking, we need ways of

coupling the utilities of individual agents to the system-level performance.

We should be careful to distinguish between the different features of market-

based systems; we can here identify two distinct components relevant to control

problems. The first component is the information flow in the system: what is

revealed and how it is communicated. This component was identical for the

competitive and cooperative markets in this chapter. The second component

is the incentive structure used by agents: this determines what decisions they

make. Here the two markets differed, with a corresponding difference in the

global performance.

Market-like mechanisms are very good at the first component, as they pro-

vide highly efficient means to disseminate information for decision making. The

amount of information can vary, from the information-poor auctions used above,

to continuous double auctions that contain considerably more information. I

believe this is one of the most attractive features of using markets for control.

The incentive component uses the information flow component to determine

the system-level behaviour. Are agents trying to optimise their own profit, or

do they have a system-level goal as a target? For competitive systems, we have

seen that this can result in stable equilibria, but that the system’s performance

would probably have been better had a cooperative mechanism been used. In

my opinion, a large number of distributed control problems can be adequately

addressed without relying on competitive incentives.
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7.6.3 Final considerations

The models of agents and markets used in this chapter have several limitations,

some of which point the way to questions for further exploration.

The number of agents in the system and their skills were fixed throughout

the experiments. In real-world markets a new agent, with a new skill, can fill a

niche at any time if a need is not met sufficiently. This provides an adaptation

mechanism that would make the market more flexible than the one described

above, and may improve performance.

The cost of task execution (cint) was the same for all agents in the experi-

ments. While this is a reasonable assumption for a man-made system, it does

not apply to real-world markets. A variance in the cost would be reflected

in the bid values, and it could therefore influence the task distribution. The

parameters used by the adaptive agents were not optimised to find the “best”

values for the learning algorithm. It would be particularly interesting to see if

the optimal parameter values are determined by the other individuals in the

market, or whether some depend on the structure of the market.

My usage of a market on a network made me aware of how little research has

been done on economies on networks, where communication between agents is

determined by the topology. Apart from some work on graph-based economies

(e.g., Kakade et al., 2004; Judd and Kearns, 2008; Goyal, 2009) and a few

publications on spatial economies (e.g. Fujita et al., 2001; Ladley and Bullock,

2005), the field is strangely empty if we consider the importance of trade links

and distribution networks. If information flow in the economy is determined by

the topology, the economy effectively consists of a series of overlapping markets.

How do prices propagate through this system, what are the implications for

convergence, and how do agents cope with the decreased information available

to them? Further investigation on spatially distributed auctions and auctions

with limited communication is required.

On the market-based control front, it would be interesting to explore the

trade-off in increasing the amount of information in a market against the im-

provement in system performance. In my work I focused on a minimal infor-

mation scenario, but it is possible that higher information markets exist where

the cost of the information is outweighed by the improvement in system per-

formance. An increase in information would also allow for more sophisticated

agent strategies, which will in turn modify the performance curves observed

above. Finally, in work that is closely related to the evolution of cooperation,

the space between the competitive and cooperative markets can be explored.

Is it possible to have stable cooperative or hybrid strategies or will markets,
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when given the opportunity, always tend towards a competitive state?
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Conclusions

This thesis started with the question of how to best manage a group of inter-

dependent satellites that are constrained in their energy and communication

abilities. Instead of focusing on the details of satellite design, however, I ap-

proached it as a multi-agent task allocation problem: a problem that can be

addressed by using a market metaphor. I quickly came to the conclusion that

much of the current work in task allocation in multi-agent systems can be di-

vided into two distinct groups, one general and one specific, with very little

work providing a bridge between these extremes. The design process can be

viewed as a traversal of this problem space, progressively narrowing the scope

of the model we are working with as we move from the general to the specific.

At the highest level, the primary objectives of this thesis can therefore be

defined as:

• Development of a task allocation mechanism that takes the constraints of

the distributed satellite system environment into account.

• Mapping a section of the problem space of task allocation in multi-agent

systems through the above design process.

The first of these involves an engineering problem, and provides a tool which

can be used to design and manage multi-satellite systems. The second objective

is concerned with the broader space of task allocation, and tries to provide some

structure to the segment of the problem space relating to multi-satellite systems

and similar applications.

The first objective is met by the market-based task allocation mechanism

I developed and verified over the course of this thesis. I not only present the

allocation mechanism, but also describe where it should be used, and perhaps

more importantly, where it should not be used. As part of the development

process, my experiments led to a number of guidelines that should help designers

of distributed systems cover the gap between the abstract and applied ends of

the spectrum of multi-agent systems, thereby addressing the second objective.
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8.1 Overview

I started by proposing a task allocation mechanism that takes multi-component

tasks, dynamic topologies, and expensive communication into account (Chap-

ter 3). This mechanism was developed from a reference mission scenario which

allowed the identification of constraints and requirements. By applying a model

of a human labour market to the abstracted system, an allocation mechanism

was derived. The mechanism was then mapped back to the distributed satellite

application to define the implementation details of the task allocation mecha-

nism in the rest of the thesis. The mechanism defines the routing and com-

munication layer required to successfully allocate tasks. Agents calculate their

bids by taking their own utilisation and skills into account. By adding a com-

mission percentage to bid values, topological information about the state of the

network is included in the prices. Routing information is generated on an ad

hoc basis as part of the auction. Winner calculation is distributed across the

network to minimise communication processing requirements.

In Chapter 4 I verified the suitability of the allocation mechanism by simu-

lating it in a few basic scenarios. The simplicity of these test cases also helped

us to develop a better understanding of the system-level behaviour of the mech-

anism.

The next three chapters broadly examined at where the market-based task

allocation mechanism should be used by focusing on the design decisions and

constraints related to specific parameters. The behaviour of the allocation

mechanism was explored in more detail in Chapter 5. An analytical descrip-

tion of the allocation mechanism was developed to show that the system-level

communication cost is constant with respect to the number of nodes in the sys-

tem, while it grows linearly with the size of the auction community. Simulation

was used to compare the allocation mechanism to a reference implementation

using a centralised allocator in the context of node failures. The robustness of

the mechanism can be adjusted by changing the size of the auction commu-

nity: the market-based approach performs significantly better in terms of the

number of tasks allocated and energy used for large systems where nodes can

fail. In smaller systems, or where the nodes and links are sufficiently reliable,

an accurate model can be maintained by a centralised controller, thus making

it a better solution for that section of parameter space.

Chapter 6 investigated the interplay between communication cost and net-

work topology. This was done by measuring the system-level cost associated

with different topologies: results show the potential detrimental impact of hav-

ing an unnecessarily large auction community. If the transmission power re-
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quired to create better-connected networks is taken into account, we observe

a clear zone of good allocation, bounded on the lower end by nodes’ connect-

edness, and on the upper end by the increasing energy cost associated with a

well-connected network. A mobility model that describes the Keplerian trajec-

tories of a group of satellites was developed to measure the effect of realistic

orbital mechanics. Due to the short time scales at which auctions happen, the

allocation mechanism functions at least as well for the dynamic case as when

using a static network.

Finally, in Chapter 7, I investigated the difference between the established

cooperative task allocation mechanism and a competitive market. This involved

the development of a competitive adaptive agent related to ZIP-traders, but

modified to single-sided auctions with outsourced, multi-component tasks. The

dynamics of these competitive agents show strong positive feedback in task

allocation: nodes that win some jobs tend to win more. This leads to an

uneven spreading of tasks and suboptimal system-level energy consumption.

When compared to the cooperative agents on a range of network topologies, the

cooperative solution outperforms the competitive one in networks with lower

connectivity and limited energy. This can be ascribed to the increased efficiency

of the cooperative markets because the task distribution is better from a global

perspective.

8.2 Traversing the problem space

The preceding chapters dealt with the motivation and design of a market-

based task allocation mechanism, followed by the exploration of significant

parameters. The focus on the specifics of the application, however, makes it

easy to lose sight of the larger problem space. In this section I therefore review

the path followed from a general model of task allocation, to the specifics of

the distributed satellite system application, with the objective of identifying

related systems.

In Chapter 3, I started with a high-level model of labour market. The use

of a market mechanism is based on economical theory about the suitability of

markets for distributed coordination problems. The use of a price mechanism

abstracts information, and allows efficient communication between agents. It

should be noted that at this point, the model could be applied to a range of

allocation problems, not just distributed satellite systems. By applying system

characteristics, either as design decisions or constraints, the general model is

pruned to the specifics of the application, as illustrated in Figure 1.2. However,
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these parameters also provide links to related systems, which allow us to situate

distributed satellite systems in a larger problem space.

Communication cost is the most prominent parameter I explored. Dis-

tributed satellite systems have high communication costs, but communication

is still possible: communication should therefore be minimised. If communi-

cation had a negligible impact on performance, factors such as topology and

system volatility could easily be detected and compensated for, assuming suffi-

cient computational power was available. System management is thus simplified

by the availability of up-to-date state information. One example is networked

computer systems with fast, reliable communication between nodes. On the

other hand, if communication was very expensive, it would be better to main-

tain a model of the system instead. However, this assumes that a sufficiently

accurate model can be built, and that modelling it is computationally feasible.

For systems with a significant level of unpredictable noise (e.g., node failures or

a dynamic topology), modelling is simply not practical, and some form of state

feedback is required. If the labour market model is applied to a system with

inexpensive communication, it moves much closer to work on the interaction of

agents in a single marketplace: more information is available, a greater number

of agents are involved and multiple bidding rounds become feasible. This is

significantly different from my allocation model, yet closely related through the

communication cost parameter.

In terms of scale, my allocation mechanism is targeted at large systems.

As discussed in Chapter 5, smaller systems can usually be better addressed

using traditional approaches such as centralised control. In my opinion, many

distributed robotics applications can safely be described as “small”, and are

therefore best not controlled using market-based or emergent mechanisms —

factors such as validation and verification makes centralised approaches partic-

ularly attractive. For large systems such as wireless sensor networks, however,

distributed approaches can offer the required level of performance, but often

without formal guarantees on quality. The boundaries between large and small

is often not clear, because other parameters, such as communication cost or

volatility, contribute to determine how manageable a system is.

If a network is very stable, a static model can usually be constructed to

assist in navigating or managing it. However, network volatility requires a

mechanism to detect and adjust to changes, whether it is due to failures or to

mobile nodes. My use of an auction provided this network information, other

approaches such as intermittently polling nodes for their status fulfil the same

function. If access to the system is fast enough, and only partial information

174



8.3. Contributions and implications

is required, as in the case of distributed satellite systems, ad hoc measurement

should be sufficient. Slower access and limitations on observability will instead

require more sophisticated models — examples include telephone directories

and road maps.

Topology plays a role when communication has a significant cost. A system

with higher connectivity is more robust to changes in the network, but fre-

quently also requires increased computation on the part of nodes to deal with

the increased information. Less well-connected systems are more sensitive to

changes: topology therefore plays a more significant role in overall system per-

formance, as illustrated in Chapter 6. Wireless sensor networks are similarly

sensitive to topology, as it determines both global performance and how much

information is available to manage the system. Electricity distribution grids

are also sensitive to changes in topology, but note that their information flow

is not dependent on the network structure.

The final parameter I considered was the difference in cooperative and com-

petitive markets. While the former relates the desired global behaviour directly

to local utility functions, it requires total control of the system. If we move

towards competitive scenarios, such as necessitated by multi-stake holder sys-

tems, systems become harder to control and require additional mechanisms to

elicit the correct behaviour. These types of systems are naturally much more

closely related to real-world social systems.

The above systems all share an axis in parameter space with distributed

satellite systems. By applying the discussed constraints to my generic model,

I arrived at a specific application. However, the proximity of the other sys-

tems is also important: only by mapping out the areas surrounding our design

trajectories can we gain the necessary understanding how different systems are

related. A thorough map of this space is required to allow us to progress to

constructing methodologies for designing multi-agent systems.

8.3 Contributions and implications

This thesis has led to the following contributions:

• For the satellite engineer community, I have demonstrated the suitability

of a market-based task allocation mechanism for managing distributed

satellite systems. This represents a point on the specific end of the design

space. The allocation mechanism is fully distributed, energy efficient,

scalable, and robust to node failure and changes in topology. A novel

commission parameter was devised in order to take expensive communi-
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cation into account, while recursive outsourcing is used to address com-

pound tasks. My verification efforts identified the relationships between

design constraints and system parameters in order to show the part of

the problem space where the allocation mechanism should be used. To

allow system designers to navigate through the multiple interdependent

parameters, I have provided a map of their interaction in Figure 8.1.

• In terms of market-based control, my comparison of cooperative and com-

petitive markets demonstrated the cost of selfish agents. Although in

some parts of parameter space we observe similar performance between

the two methods, selfish bidding is prone to suboptimal task allocation

due to the positive feedback loops inherent in the market. In contrast,

the utilisation-based approach uses negative feedback to distribute tasks

evenly, thereby improving the global system performance.

• For those interested in task allocation in distributed systems in general,

this thesis provides an analysis of the parameter space in which task al-

location mechanisms are embedded. By exploring the effects of network

size, robustness, communication parameters, and topology, the area in

which the proposed mechanism should be applicable has been identified.

This extends beyond the satellite problem to related systems ranging from

mobile robotics to wireless sensor networks — this can best be interpreted

as a large-scale map of the design space surrounding these systems. A

clear message throughout this thesis is that the best management ap-

proach is highly dependent on the parameters of the system at hand: a

number of different approaches all have a role to play.

• I also argue that there is a gulf between our high-level task allocation

knowledge and the actual mapping of it to specific problems. Our domain-

specific knowledge is generally tightly coupled to a specific application —

as a field, we need a bridge to span the gap. Responsible engineering

allows us to use the design process to address this problem, as I demon-

strated in this thesis, but persistent effort is required if we want to reach

the point where we have a principled methodology for controlling these

systems.

8.4 Limitations

As with any work of this nature, a number of limitations exist. Most of these

have been pointed out previously, but a brief review helps to define the space
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where my contributions are relevant, and the areas where this is not necessarily

the case.

• A specific type of task allocation was considered: task elements are allo-

cated to individuals. Alternative mission scenarios may require different

task structures, for example that all satellites execute a certain function

at a specific moment. While many of these scenarios can be realised with

the current system, it is possible that other protocols may provide higher

efficiency in these cases.

• It was assumed that the execution costs for task elements can be accu-

rately specified. In reality, a significant amount of modelling and mea-

surement is required to determine these values; however, I suspect it is

possible to characterise these values for specific systems, especially if a

task element model is used.

• In building the abstracted model in Chapter 3, I dealt primarily with
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small, heterogeneous spacecraft. If larger spacecraft are considered, specif-

ically ones where the available power is less of a constraint, we move to

a different position in problem space. From my exploration of the space

I believe that the market-based mechanism proposed here will still work

for this new case, but I suspect optimisations exist that can better exploit

the parameters of the new target system.

• A simple wireless communication model was used for packet transmis-

sion. Communication was considered to be deterministic and symmetric,

with no accounting for interference, bandwidth, signal-to-noise ratios or

asymmetric links. Although this model was sufficient for modelling the

network dynamics, much refinement is needed before accurate predictions

on the absolute cost of communication can be made.

• In my investigation of competitive markets, I only addressed reactive

agents. This does not encompass the entire scope of possible agent strate-

gies.

• Finally, the design process only traversed a relatively small segment of

the entire design space, thereby only relating a few problems by means

of a limited parameter set. This process needs to be repeated with many

different designs to obtain a better view of the family of distributed control

problems, and build a bridge that links them with our abstract models.

8.5 Future work

Although my research answered some questions, it also made me aware of a

number of ways in which it can still be extended. In keeping with the primary

objectives of the thesis, the future work can be divided into avenues that relate

to the engineering of multi-satellite systems, and into work that deals with task

allocation in general.

On the spacecraft engineering side, an increase in simulation detail and

eventual implementation on a hardware platform is required as the next steps

in the verification of the task allocation mechanism. This will also allow the

limitations around communication cost and task execution cost, as outlined

above, to be better understood. From a network management perspective,

mechanisms that verify the execution of allocated tasks are also required before

the system can be deployed. Adaptive protocols that optimistically conserve

energy by limiting communication distance should also be investigated, as they

can provide a significant improvement in the performance of the system. All
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of the above will naturally also impact upon mission design processes, most of

which are currently largely untested in this arena.

For readers primarily interested in task allocation, I believe that further in-

vestigation of spatially distributed auctions and negotiation with costly commu-

nication can lead to valuable contributions. In current literature most auctions

are assumed to be localised to a mostly common space, with the associated

theory developed for this case. In comparison, both the intelligent agents and

mechanism design communities have paid relatively little attention to effective

strategies and system dynamics for the case where nodes are distributed across

a network. The effects of costly communication in negotiation scenarios have

similarly not been adequately addressed. As demonstrated in this thesis, ex-

pensive communication changes the utility of agents in the system; sometimes

even for those agents not actively bidding or allocating tasks. A formal analysis

of how communication cost should influence decision making will be a signifi-

cant contribution to the field. The belief that similar environments will result

in similar allocation mechanisms is a core assumption underlying my work, but

it raises the question of how environmental parameters determine which type of

market or other allocation system is best suited to a specific allocation problem.

At a more abstract level, I believe further work is also required by all parties

to improve the state of the field of task allocation. As argued in Chapter 2,

a large gap currently exists between our abstract ideas of task allocation and

actual implementations, leading me to believe that we still do not know how

to efficiently map from our high-level knowledge to a specific solution. In the

work presented here I have contributed by relating some points in the problem

space, but to overcome this problem everyone in the field needs to contribute.

Why does this gap exist? In my mind it is to some extent symptomatic of

the dynamics of the system in which we research task allocation. Those dealing

with the engineering of applications are pushed to deliver working systems, as

it is the metric against which they are measured. A compounding factor the

large number of fields in which task (and resource) allocation is encountered.

Allocation is therefore seen as part of a different problem, not a problem in

itself. Those contributing to the general theories frequently come from more

abstract fields, which can make it hard to relate their work to applications,

especially the problems encountered in realistic settings. Individuals tend to

stay in their respective fields — they are required to be field specialists, not

task allocation specialists.

However, we cannot be absolved of all blame; we are still rational, inde-

pendent beings. I believe an important contribution can be made through
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responsible engineering, where the focus is not only on delivering a product,

but also learning about the space in which the problem is solved along the

way, as I demonstrated in this thesis. The dissemination of this knowledge is

crucial. Similarly, I believe greater emphasis is required on the commonality of

task allocation across number of fields. A broad perspective is required; blind

allegiance to approaches that are either long established or currently fashion-

able does not result in fair comparisons, nor does it increase our knowledge of

the field.

This thesis applied the ideas initially developed by Adam Smith, and ex-

tended by others, to manage our increasingly complex technological systems.

However, work like my own exists in parallel with another literature in which

those same ideas are combined with computational models to further our un-

derstanding of existing social systems. It seems both likely and desirable that

the two fields will benefit from greater cross-fertilisation in the years to come.
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