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ASYMPTOTIC SOLUTION OF A MODEL FOR BILAYER ORGANIC
DIODES AND SOLAR CELLS∗

GILES RICHARDSON† , COLIN PLEASE† , JAMIE FOSTER† , AND JAMES KIRKPATRICK‡

Abstract. Organic diodes and solar cells are constructed by placing together two organic
semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical
behavior of such devices has been successfully modeled numerically using conventional drift diffusion
together with recombination (which is usually assumed to be bimolecular) and thermal generation.
Here a particular model is considered and the dark current-voltage curve and the spatial structure
of the solution across the device is extracted analytically using asymptotic methods. We concentrate
on the case of Shockley–Read–Hall recombination but note the extension to other recombination
mechanisms. We find that there are three regimes of behavior, dependent on the total current.
For small currents—i.e., at reverse bias or moderate forward bias—the structure of the solution
is independent of the total current. For large currents—i.e., at strong forward bias—the current
varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers.
There is then a narrow range of currents where the behavior undergoes a transition between the
two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is
critical in determining where the transition occurs. The extension of the theory to organic solar cells
generating current under illumination is discussed as is the analogous current-voltage curves derived
where the photo current is small. Finally, by comparing the analytic results to real experimental
data, we show how the model parameters can be extracted from the shape of current-voltage curves
measured in the dark.
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1. Introduction. Organic materials are promising materials for many semicon-
ducting applications, for example, light-emitting diodes [9], field effect transistors [26],
sensors [25], and solar cells [10]. They are already widely applied in the xerographic
industry [6]. Their attraction is that they enable devices to be designed with similar
properties to those made from traditional semiconductors, such as silicon and gallium
arsenide, but at a fraction of the cost. This is primarily due to high throughput
processing techniques such as roll-to-roll printing and screen printing of organic inks.
A timely and exciting application of this technology, which is the main motivator for
this paper, is that such devices provide the possibility of very cheap large-scale solar
cells. There are many companies inching closer to making organic photovoltaic diodes
with energy efficiencies sufficient for commercialization [21, 22].

A solar cell converts solar energy into electrical power by (a) converting photons
into excited charges, (b) separating these charges, and (c) transporting them to an
external circuit. Under operation, positive charges flow in one direction and negative

∗Received by the editors February 25, 2011; accepted for publication (in revised form) September
18, 2012; published electronically November 15, 2012.

http://www.siam.org/journals/siap/72-6/82580.html
†School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK (g.richardson@

soton.ac.uk, c.p.please@soton.ac.uk, j.m.foster@soton.ac.uk). The second author’s work was sup-
ported by award KUK-C1-013-04, made by King Abdullah University of Science and Technology,
and by the EPSRC through grant EP/I01702X/1. The first and third authors’ work was supported
by the EPSRC through grant EP/I01702X/1.

‡OCCAM, University of Oxford, 24–29 St Giles’ Oxford, OX1 3LB, UK (kirkpatrick@maths.
ox.ac.uk). This author’s work was supported by award KUK-C1-013-04, made by King Abdullah
University of Science and Technology, and a James Martin fellowship.

1792



ASYMPTOTICS FOR BILAYER ORGANIC DIODES 1793

ones in the other. This inherent asymmetry is exactly the reason why photovoltaic
devices act as diodes, even in the dark. Therefore understanding the current voltage
characteristics of a solar cell in the dark is essential to explaining its behavior under
illumination.

In an inorganic solar cell, the asymmetry is achieved by doping [23, 17]. In
contrast, in an organic solar cell the asymmetry is created by using two different
materials with different affinities for charge: one material, known as the acceptor,
supports negative charges (free electrons), whereas the other, known as the donor,
supports positive ones (holes). The material properties which govern this behavior
are called the ionization potential (for donors) and the electron affinity (for acceptors).

A significant problem that influences the design of most organic solar cells is that
when light is absorbed it leads to the formation of an excited state consisting of a
bound charge pair (termed an exciton) which must reach the interface between the
materials in order to separate into a hole and an electron, thereby releasing its energy
as a usable electric current. However, excitons have a short lifetime. As a result they
are only able to travel a short distance before they recombine and their energy is lost
from the device. This distance is known as the exciton diffusion length and is typically
around 10 nm [10]. The material used in organic solar cells must be around 200 nm [10]
thick in order to absorb a large proportion of the solar spectrum. The existing solution
to this problem is to make solar cells 200 nm thick and to create an interface between
the two materials that is convoluted on the length scale of the exciton diffusion length.
Many theoretical studies [1, 3, 16] have therefore concentrated on the crucial role of
this convoluted morphology to determine efficiency but of necessity have required
numerical approaches in order to account for the complex geometry in the models.
Another approach has been to use a homogenized model where the intimate mixture
of the two physical materials is replaced by an effective medium [8, 11, 15].

We believe that analytical results relevant to these technologies would be valuable.
In order to properly account for complex morphology, it is essential to understand the
behavior of a simpler device with a known and well characterized morphology. We
therefore concentrate on bilayer devices where the device consists of two uniform layers
of material so that the device is planar and the interface is flat. Such bilayer organic
devices have been studied experimentally for example by [4, 20] and also modeled
numerically by authors including [1, 2, 5, 7].

The general approach to modeling these devices is to consider the steady state
and to treat charge transport in the donor and acceptor using a drift diffusion model.
Physically recombination and generation of charges is taken to occur in a layer at
the interface on a length scale compared to the size of molecules (1 nm). Two ap-
proaches are taken to account for this layer. In the first approach a special “mixed”
layer is assumed to exist at the interface. In this layer the current continuity equa-
tions include generation and recombination. Different authors use different internal
boundary conditions to account for the change in material properties. For example,
Barker, Ramsdale, and Greenham [1] exclude electrons and holes from crossing the
interface. Some authors account for jumps in the electric field due to dipole effects. In
[2] Brinkman et al. adopt an approach in this vein. Brinkman’s approach eliminates
the sharp interface by smoothly varying ionization potential and electron affinity in
the narrow interface layer. The second approach is to have a discontinuity in charge
fluxes and denisities. This approach has not yet receieved much attention, although
we note the work in [5], which also models a device with a sharp interface between
two materials. In this paper we adopt the latter approach. We show that the jump in
charge densities can be related to the jump in ionization potential and electron affin-
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ity. We also argue that the current flowing through the interface must be determined
by a local law at the interface that models thermal generation of, and bimolecular re-
combination between, electrons and holes; this is in contrast to the model formulated
in [5] in which bimolecular recombination is assumed to occur within the bulk but
not at the interface and where the interface hole/electron current depends solely on
the local hole/electron concentration at the interface and is controlled by thermionic
emission over an energy barrier. We deduce the general form that this recombina-
tion/generation law must obey to ensure that the solution is compatible with detailed
balance. We also argue that the jump in ionization potential and electron affinity
across the interface is so large that it is reasonable to neglect the free electron con-
centration in the donor and the hole concentration in the acceptor. We then analyze
the problem asymptotically in the physically relevant regime where the nondimen-
sional parameter δ (which gives a measure of the ratio of the recombination rate to
the diffusion rate) is small. Three distinct regimes for the resulting current flow are
identified and analyzed. The first is for small currents (in reverse bias or in moder-
ate forward bias) where the current-voltage curve is similar to that of a diode and
the current varies exponentially with voltage [23]. The second is for large currents (in
hard forward bias) where the current-voltage relationship is linear. The third is a nar-
row range of medium-sized currents where the behavior changes character smoothly
between the first and the third. Asymptotic solutions for the small and large current
regimes are derived analytically, while the intermediate current regime is shown to
be characterized by an exact solution to the model whose coefficients are found by
numerical solution of a set of transcendental equations. By comparing our analytical
solutions to experimental data we show that it is possible to fit the behavior of the
device at low and high voltages using the same model. Physically this result is sig-
nificant because it indicates that the series resistance in bilayer cells is dominated by
the resistivity of the materials themselves, whereas the diode behavior is dominated
by recombination at the interface.

2. Equations. The main electrical processes taking place in an organic diode
are charge transport in the bulk of both donor and acceptor materials and charge
generation and recombination at the interface between the two. Before formulating a
model for these processes it is helpful to review the physical mechanisms of electrical
conduction in a semiconductor. In a conventional inorganic semiconducting material
(such as silicon) the electrons have energies that predominantly lie in the valence
band (low energy) and as such are immobile, behaving like electrons in an insulator.
Above the valence band and separated from it by an appreciable energy gap there
is a conduction band into which some electrons may jump if they possess sufficient
thermal energy. Not only are electrons in the conduction band able to conduct elec-
tricity (and freely diffuse), but they leave a vacancy in the valence band (with net
positive charge) termed a hole, which is also mobile and so contributes to the net
electrical conductivity of the material. The energy of an electron at the lower edge of
the conduction band ψn and of a hole at the upper edge of the valence band −ψp are
not in general spatially independent, being affected by changes in material properties
and electric fields. The spatial dependence of the energy levels is illustrated in a band
diagram, such as that shown in Figure 2.1, and leads to a force on an electron −∇ψn

and on a hole ∇ψp which, when balanced with a “viscous drag,” gives rise to electron
and hole velocities down gradients in ψn and up gradients in ψp, respectively. In
addition, random thermal excitations lead to diffusive components of the motion for
both particles. In organic semiconductors the picture is slightly more complicated
because both electrons and holes typically lie in shallow (but highly localized) energy
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Fig. 2.1. Sketches of the band diagram for organic diodes in (I) forward bias and (II) reverse
bias showing the energy levels of the HOMO by solid lines and the LUMO edge by dot-dashed lines.
Arrows indicate the directions of the forces on electrons and holes due to variations in their electro-
chemical potential. At the semiconductor interface the jump in energy levels leads to migration of
electrons from the donor to the acceptor and migrations of holes in the reverse direction. In forward
bias the electric field tilts the LUMO and HOMO levels so that electrons flow toward the interface
in the acceptor and holes flow toward the interface in the donor; this leads to high concentrations
of these two species at the interface and to a high recombination current. In contrast, in reverse
bias, the electric field tilts the LUMO and HOMO levels the other way so that electrons in the ac-
ceptor and holes in the donor migrate away from the interface, thus limiting interface recombination
and ensuring that the current flowing in the device is primarily determined by generation on the
interface. Since recombination of the majority carriers (electons in the acceptor and holes in the
donor) at the interface typically controls current flow in the diode, much higher current flows can
be achieved in forward bias than in reverse bias.

wells, termed traps, and move by hopping from one trap to the next. In part because
of this difference in physics, it is unusual to refer to conduction and valence bands in
organic semiconductors. It is much more common (though far from universal) to refer
to the lowest unoccupied molecular orbital (LUMO), which plays a role analogous to
the conduction band in inorganic materials, and to the highest occupied molecular or-
bital (HOMO), which plays a role analogous to the valence band. The importance of
trapping in organic materials has led to the formulation of a variety of complex models
for charge transport in organic semiconductors, including multiple trapping models
[12], Gaussian disorder models [18], and atomistic models [14]. In this work (as in
many others treating organic devices [2, 3, 5, 7, 11]) the motion of electrons and holes
through the organic semiconductors is modeled by simple drift diffusion, allowing for
the possibility that the diffusion coefficient depends upon electric field, while account-
ing for the differences in electron affinities and ionization potentials of the materials by
letting these quantities be spatially dependent (see, for example, [23]). In the bilayer
device that we consider here both electron affinity and ionization potential are piece-
wise constant with a sharp jump at the acceptor-donor interface. This jump manifests
itself as a jump in the energy levels of the band edges ψn and ψp (as illustrated in
Figure 2.1) and leads to the marked preference of the holes for the donor (high ψp) and
of electrons for the acceptor (low ψn). Indeed, in a typical bilayer solar cell, the jumps
in energy are so large that the concentrations of holes in the acceptor and electrons
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Fig. 2.2. The geometry of the solar cell.

in the donor are vanishingly small which is an important factor in limiting (undesir-
able) recombination of charge carriers in the bulk. The jumps in electron affinity and
ionization potential also serve to dissociate excitons (generated by photo-absorption
in the semiconductors) into free electrons in the acceptor and free holes in the donor.

The primary mechanisms by which electric current passes from the acceptor
(where it is predominantly carried by electrons) through the interface into the donor
(where it is predominantly carried by holes) are believed, in photovoltaic devices, to be
the generation and recombination of electron-hole pairs [3, 11, 15]. The latter mech-
anism, which predominates where the current passes from the acceptor to the donor,
results either from thermal emission (of electron-hole pairs) or dissociation of solar
generated excitons (into electron-hole pairs). The former mechanism predominates
where current passes from the donor to the acceptor and is a result of bimolecular re-
combination on the interface between electrons in the acceptor and holes in the donor.

A schematic for a simple bilayer organic photovoltaic device lying between −L <
x < M with the interface at x = 0 between the electron acceptor material (−L < x <
0) and donor material (0 < x < M) is shown in Figure 2.2.

2.1. Current continuity equations in each material. In line with the dis-
cussion above we model the device by drift diffusion equations for electrons and holes
coupled to Poisson’s equation for the electric potential. We include the possibility of a
spatially dependent electron affinity and ionization potential to model the preference
of the donor material for holes and the acceptor for electrons but neglect any bulk
recombination between holes and electrons, since we assume recombination primarily
occurs on the acceptor-donor interface. The resulting one-dimensional equations take
the form

∂n

∂t
+
∂Fn

∂x
= 0,(2.1)

∂p

∂t
+
∂Fp

∂x
= 0,(2.2)

∂

∂x

(
ε
∂φ

∂x

)
= q(n− p),(2.3)

Fn = −Dn

(
∂n

∂x
+

1

kT
n
∂ψn

∂x

)
,(2.4)
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Fp = −Dp

(
∂p

∂x
− 1

kT
p
∂ψp

∂x

)
,(2.5)

ψn = µn(x) − qφ,(2.6)

ψp = µp(x) − qφ,(2.7)

where Fn is the flux of electrons, Fp is the flux of holes, n is the charge density of
electrons, p is the charge density of holes, and φ is the electric potential. The material
parameters in the problem are µp the ionization potential, −µn the electron affinity,
Dn the free electron diffusivity, Dp the hole diffusivity, k Boltzmann’s constant, T the
absolute temperature, ε the permittivity, and q the charge on an electron. We shall
term the functions ψn and ψp the energy levels of the LUMO and HOMO, respec-
tively, while noting that there is some dispute about the correct notation for these
quantities with some authors applying them to µn and µp instead.1 Electrons in the
LUMO experience a force down gradients in ψn while holes in the HOMO experience
a force up gradients in ψp. At the interface the jumps in ψn and ψp (resulting from
the discontinuities in µn and µp there) mean that electrons are attracted into the ac-
ceptor from the donor while holes experience a force in the opposite direction. Rough
sketches of the band diagram of an organic diode in both forward and reverse bias
are made in Figure 2.1. Note that the total current density J can be expressed as the
difference of hole and electron fluxes as follows:

J = q (Fp − Fn) .(2.8)

In inorganic materials the diffusion coefficients are usually taken as constant or
as functions of the material and temperature. However, unlike the movement of free
charges in an inorganic semiconductor, transport in an organic material is primarily
through charges jumping between nearby trap states. There is considerable interest
in modeling this transport process, and one of the simplest descriptions is provided
by the Poole–Frenkel model [23, 1, 3], where the diffusivities Dn and Dp are taken to
be functions of the local electric field. The form taken is usually

Dn

(
∂φ

∂x

)
= Dn,0 exp

(
γ

∣∣∣∣
∂φ

∂x

∣∣∣∣
1/2

)
, Dp

(
∂φ

∂x

)
= Dp,0 exp

(
γ

∣∣∣∣
∂φ

∂x

∣∣∣∣
1/2

)
,

where Dn,0, Dp,0, and γ are constants. More complex models can be derived account-
ing, for example, for a density of trap states in the material. Such a model results in
the fraction of charges which are free to move being dependent on the charge density
itself [12], so that the diffusivity depends directly on the charge density [24]. We do
not include such effects here noting that the error made in approximating Dn and Dp

by constants only becomes appreciable at very high fields.
The model above allows for general structures in the device, but here we are

interested in modeling two adjacent regions, each of a uniform material; therefore we
assume that the electron affinity and ionization potential are constant in each material
so that

µn =

{
µn− in x < 0,
µn+ in x > 0,

µp =

{
µp− in x < 0,
µp+ in x > 0.

(2.9)

where µn−, µn+, µp−, and µp+ are constants.

1These functions are also sometimes termed the electrochemical potentials; this is confusing since
the more standard definition of the electrochemical potentials includes an entropic contribution which
is a function (typically a log) of the species concentration.
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2.2. Organic-organic interface. Two key features must be taken into consid-
eration at the interface between two organic semiconductors. First there is a jump in
electron affinity and the ionization potential, and in order to preserve equilibrium at
the interface, this results in jumps in the electron and hole concentrations. Localized
interface charged states have been postulated at the interface (e.g., [1]), but here we
ignore such states and explicitly neglect the effect of any surface dipoles or charges
so that the electric potential and displacement field are both continuous across the
interface. Therefore we can write the jump conditions

[φ]x=0,

[
ε
∂φ

∂x

]

x=0

= 0,(2.10)

[logn]x=0 = −
[µn

kT

]

x=0
, [log p]x=0 =

[ µp

kT

]

x=0
,(2.11)

a result that has been previously noted in [5].
The second important feature of the organic-organic interface is that this is where

recombination, thermal generation, and photo-generation occur in the device. (For
brevity we shall henceforth refer to recombination and thermal generation as the
recombination rate.) Since the ionization potential and electron affinity differ by a
large amount the materials are nearly insulators, and there is negligible recombination
of electrons and holes in the bulk of the device. Electrons from the acceptor side are
able to recombine with holes from the donor side (at the interface) and vice versa.
The resulting recombination flux Rb results in jumps in the electron and hole current
fluxes. This is central to the behavior of this type of solar cell—this mechanism allows
the electron current in the acceptor to turn into a hole current in the donor. We expect
the recombination rate to depend on the product of electron densities at x = 0− and
the holes at x = 0+, namely, (n|x=0−)(p|x=0+) (or alternatively (n|x=0+)(p|x=0−)).
A general expression could be derived, but because of the conditions in (2.11) the
electron densities at x = 0− are directly proportional to those at x = 0+ and similarly
for holes. This allows us a certain freedom in choosing the form of the interface
recombination rate in terms of the charge densities on either side of the interface.
Since we expect that the most important role is played by majority carriers (electrons
in the acceptor and holes in donor) we express the recombination flux in terms of
those densities only. Hence we take

[Fn]x=0 = −Rb (n|x=0− , p|x=0+) ,(2.12)

[Fp]x=0 = −Rb (n|x=0− , p|x=0+) .(2.13)

2.3. Existence of an equilibrium state and boundary conditions. Before
considering what are sensible boundary conditions we consider the existence of an
equilibrium state of (2.1)–(2.7). An equilibrium state is a steady state where both the
electron and hole fluxes are simultaneously zero, that is, Fequil

n ≡ 0 and Fequil
p ≡ 0.

Therefore from (2.4)–(2.5) with (2.11) it follows that n and p take the form

n = A exp

(
− 1

kT
ψn(x)

)
, p = B exp

(
1

kT
ψp(x)

)

for some constants A and B. We note that this solution has a special property
which we find by multiplying the equilibrium concentrations to give (noting that the
potential terms cancel)

np = AB exp

(
− 1

kT
(µn(x)− µp(x))

)
.(2.14)



ASYMPTOTICS FOR BILAYER ORGANIC DIODES 1799

The right-hand side of (2.14) only depends on material properties, so we introduce
the notation

np = N2
D exp

(
− 1

kT
(µn(x)− µp(x))

)
,(2.15)

where we write AB = N2
D, and this relates to the density of states in the material.

The equilibrium condition in the dark occurs when no applied potential is present.
Since different metals are typically used to contact the electron and donor materials,
the potential difference across the device consists of both the applied potential V
and a built-in potential Vbi which results from the difference of work functions of the
two metallic contacts. (If the same metal is used for both contacts, then Vbi = 0.)
At equilibrium, when by definition V = 0, the boundary conditions for the (total)
potential is φ|x=−L = Vbi/2 and φ|x=M = −Vbi/2; then

n = A exp

(
− 1

kT

(
µn− − q

Vbi

2

))∣∣∣∣
x=−L

,

p = B exp

(
1

kT

(
µp− − q

Vbi

2

))∣∣∣∣
x=−L

,

n = A exp

(
− 1

kT

(
µn+ + q

Vbi

2

))∣∣∣∣
x=M

,

p = B exp

(
1

kT

(
µp+ + q

Vbi

2

))∣∣∣∣
x=M

.

(2.16)

These equations show the role of the built-in voltage: it allows large concentrations
of electrons (or holes) at the contacts. The diffusion arising from these large charge
densities must be balanced by a drift term; therefore a built-in voltage allows an
equilibrium state to exist with nonzero electric field.

The recombination and thermal generation rate. The need for an equilibrium
also partly determines the functional form that the recombination at the interface
must take. Since both electron and hole fluxes must be zero at equilibrium, the net
recombination and thermal generation rate Rb must also be zero in this case. It is
natural to therefore write Rb as a product with

Rb= K(n|x=0− , p|x=0+)

(
(n|x=0−)(p|x=0+)−N2

D exp

(
−µn− − µp+

kT

))
(2.17)

and K(n, p) > 0. Here the rate can be seen as composed of two parts: the bimolecu-
lar recombination of electrons and holes (proportional to n|x=0−p|x=0+) and a ther-
mal generation proportional to the intrinsic charge density (−N2

D exp(−µn−−µp+

kT )).
Henceforth, for brevity, we refer to the net recombination and thermal generation rate
as the recombination rate. Since other properties also depend on the difference of elec-
tron affinity in the acceptor and the ionization potential in the donor, we define this
quantity as the pseudo band gap Eg = µn− −µp+. Notice that this is not a band gap
in the conventional sense: usually a band gap is a property of a single material such
as the difference between the electron affinity and the ionization potential, whereas in
this case the pseudo band gap relates to the pair of materials. However, because it de-
fines the temperature dependence of the thermal generation of charges, it plays a very
similar role to the band gap in a traditional semiconductor. Writing the recombina-
tion at the interface in the form of (2.17) allows us considerable freedom in the choice
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of the function K. It could be a constant, giving us direct recombination, or it could
be proportional to the inverse of the charge densities, giving a Shockley–Read–Hall
(SRH) recombination. It could also depend on the electric field or on temperature.
SRH is appropriate for recombination via a single trap, but for an organic device it
may be more appropriate to modify this to account for a distribution of traps (see,
for example, [13]). Henceforth we assume SRH recombination by writing

Rb = K0

(
(n|x=0−)(p|x=0+)−N2

D exp(−Eg/(kT ))

1 + u1n|x=0− + u2p|x=0+

)
,(2.18)

where K0, u1, and u2 are appropriately chosen constants. This can be interpreted as
recombination controlled by a single intermediate state at the interface. If different
forms of the recombination were used, the form of some of the parameters in the
asymptotic analysis which follows would change, but this would not change the general
thrust of the model.

Boundary conditions. At the boundaries it is typically assumed that there are
many surface states so that local equilibrium is always retained. This is obviously com-
patible with the need to have an equilibrium solution (2.16). The resulting boundary
conditions at the contacts with the electrodes are

np|x=−L = N2
D exp

(
− 1

kT
(µn− − µp−)

)
,(2.19)

np|x=M = N2
D exp

(
− 1

kT
(µn+ − µp+)

)
.(2.20)

The final boundary conditions come from imposing the potential at the contacts,
the electron concentration on x = −L, and ensuring that the conditions (2.16) are
satisfied; they take the form

n = ñ− exp

(
− Eg

2kT
+

qVbi

2kT

)
and φ =

V + Vbi

2
on x = −L,

p =
N2

D

ñ−
exp

(
− Eg

2kT
+

qVbi

2kT

)
and φ = −V + Vbi

2
on x = M.

(2.21)

The condition on p is equivalent to the assumption of Ohmic contacts (namely, that
the Fermi level in the semiconductor is assumed equal to the work function of the
metal) resulting in an electron and hole density which is independent of the applied
potential. Without loss of generality the boundary conditions on the potential have
been chosen to be antisymmetric in order to simplify later calculations.

2.4. Nondimensionalization. In order to analyze the problem we introduce
dimensionless variables, indicated by the superscript ∗. This allows us to consider
physically relevant ranges for the resulting dimensional parameters. For most of the
variables the scalings are straightforward. We take

x = Lx∗, t =
L2

D̄
t∗, n = Π0n∗, p = Π0p∗,

ψp =
µp− + µp+

2
+ kTψ∗

p, φ =
kT

q
φ∗, ε = ε̄ε∗,

ψn =
µn− + µn+

2
+ kTψ∗

n, Fn =
D̄Π0

L
F∗

n, Fp =
D̄Π0

L
F∗

p , J =
D̄Π0q

L
J∗,

(2.22)
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where the constant ε̄ is a typical permittivity and D̄ is a typical diffusivity, and we
choose the typical electron-hole concentration, Π0, to be given by

Π0 = ND exp

(
− Eg

2kT

)
,

which has a role similar to the intrinsic carrier concentration used in inorganic semi-
conductor theory.

On substituting the above into (2.1)–(2.7) and (2.18)–(2.21) we obtain the fol-
lowing dimensionless equations:

∂n∗

∂t∗
+
∂F∗

n

∂x∗ = 0,(2.23)

∂p∗

∂t∗
+
∂F∗

p

∂x∗ = 0,(2.24)

∂

∂x∗

(
ε∗
∂φ∗

∂x∗

)
=

1

λ2
(n∗ − p∗),(2.25)

F∗
n = −κn exp

(
ν

∣∣∣∣
∂φ∗

∂x∗

∣∣∣∣
1/2

)(
∂n∗

∂x∗ − n∗ ∂φ
∗

∂x∗

)
,(2.26)

F∗
p = −κp exp

(
ν

∣∣∣∣
∂φ∗

∂x∗

∣∣∣∣
1/2

)(
∂p∗

∂x∗ + p∗
∂φ∗
∂x∗

)
(2.27)

with the jump conditions on the interface

[φ∗]x∗=0 = 0,

[
ε∗
∂φ∗

∂x∗

]

x∗=0

= 0, [logn∗]x∗=0 = −Hn, [log p∗]x∗=0 = Hp,

(2.28)

[F∗
n]x∗=0 = [F∗

p ]x∗=0 = −2δ

(
n∗|x∗=0−p

∗|x∗=0+ − 1

λ2θ + Un∗|x=0− + (1− U)p∗|x=0+

)
,

(2.29)

and the boundary conditions

n∗|x∗=−1 = Ñ− exp

(
Φbi

2

)
,

p∗|x∗=−1 =
1

Ñ−
exp

(
−Φbi

2
−Hp

)
, φ∗|x∗=−1 =

Φ+ Φbi

2
,

p∗|x∗=m =
1

Ñ−
exp

(
Φbi

2

)
,

n∗|x∗=m = Ñ− exp

(
−Φbi

2
−Hn

)
, φ∗|x∗=m = −Φ+ Φbi

2
.

(2.30)

The total current density is

J∗ = F∗
p − F∗

n,(2.31)

and the dimensionless energies of the LUMO and HOMO are

ψ∗
n = −Hn

2
− φ∗

ψ∗
p = −Hp

2
− φ∗





in x < 0 and

ψ∗
n =

Hn

2
− φ∗

ψ∗
p =

Hp

2
− φ∗





in x > 0.(2.32)
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The dimensionless parameters in the problem are defined by

(2.33)

κn =
Dn0

D̄
, θ =

1

λ2ND(u1 + u2)
exp

(
−Eg

2kT

)
, λ =

1

L

(
ε̄kT

q2Π0

)1/2

,

κp =
Dp0

D̄
, Ñ− =

ñ−

ND
, Φ =

q

kT
V,

ν = γ

(
kT

qL

)1/2

, U =
u1

u1 + u2
, δ =

LK0

2D̄(u1 + u2)
,

m =
M

L
, Hn =

µn+ − µn−

kT
, Hp =

µp+ − µp−

kT
,

Φbi =
q

kT
Vbi.

We use existing physical data to consider the size of the various parameters. A
typical electron-hole concentration is, according to [1], Π0 = O(1022)m−3, device
width is about L = O(10−7)m, and the permittivity ε̄ is similar to the permittivity
of free space ε0 = 8.85 × 10−12A sV−1m−1. Buxton and Clarke [3] take γ = 5 ×
10−4m1/2V−1/2. The charge on an electron is q = 1.6× 10−19C. Using these numbers
we estimate the parameters in the model as

λ ≈ O(1), γ ≈ O(1), Hn ! 50, Hp ! 50(2.34)

and will therefore exploit the largeness of Hn and Hp in our analysis. Other param-
eters in the problem are less well documented, and part of the motivation for the
analysis done here is to identify how the general behavior depends on these values.
For most parameters we shall assume that they do not take extreme values, however,
we find that the dependency of the voltage on the current is critically altered by the
value of δ (the ratio of the recombination rate to the diffusion rate). Unless δ is very
small the voltage-current characteristic does not have the behavior observed in real
devices (e.g., [19]). We therefore make the assumption that δ is very small in our
analysis and indeed we find that the size of δ is crucial in determining the electrical
behavior of the device.

Note that from here on we drop the superscript ∗ notation from the dimensionless
variables.

2.5. Simplifications: Large jumps in electron affinity, no Poole–Frenkel
behavior, and an antisymmetric device. Using materials that are strong electron
donors and electron acceptors (i.e., Hn ' 1 and Hp ' 1) means that the concen-
tration of holes in the acceptor material and of electrons in the donor material are
extremely small. In a silicon device these minority carriers are responsible for carry-
ing much of the current, whereas in an organic device their role is insignificant. This
is because it is possible for the majority carriers in the donor (holes) to recombine
with the majority carriers in the acceptor (electrons) at the interface between the two
organic semiconductors. This corresponds to the major simplification that the elec-
tron concentration in the donor material and the hole concentration in the acceptor
material of an organic diode are both zero,

p ≡ 0 in x < 0 and n ≡ 0 in x > 0,

which is justified by the extremely small sizes of exp(−Hp) and exp(−Hn). We also
make three other simplifications: that the Poole–Frenkel behavior is insignificant;
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that the device is at steady state; and that the device is perfectly antisymmetric,
corresponding to

ν = 0, ε− = ε+, κp = κn, Ñ− = 1, m = 1,(2.35)

and by suitable choice of ε̄ and D̄ that specifically

ε− = ε+ = 1, κp = κn = 1.(2.36)

By assuming that the device is antisymmetric we can deduce that n(−x) = p(x)
(for 0 < x < 1) and that the electric potential distribution is antisymmetric φ(−x) =
−φ(x). These simplifications allow a straightforward analysis of the problem, avoiding
much of the algebraic complexity, and reveal the general structure of the solution for
practical applications. In particular, the neglect of the Poole–Frenkel effect simplifies
the analysis without making major qualitative changes to the device behavior. We
discuss its inclusion in the conclusions.

After making these simplifications and considering only half the antisymmetric
device, the model takes the form

∂p

∂x
+ p

∂φ

∂x
= −J

∂2φ

∂x2
= − p

λ2





in 0 < x < 1,(2.37)

J = −2δ(p2|x=0 − 1)

(λ2θ + p|x=0)
,(2.38)

p|x=1 = exp

(
Φbi

2

)
, φ|x=1 = −Φ+ Φbi

2
, φ|x=0 = 0.(2.39)

3. Asymptotic solution of simplified model. We now attempt to find ap-
proximate solutions to the simplified model. In doing this we shall exploit the fact
that δ is an extremely small number in practical devices. We justify this assumption
by noting that in efficient devices the current varies by many orders of magnitude as
the potential across the device is varied from hard reverse bias to hard forward bias.
(In, for example, the devices fabricated by Potscavage, Yoo, and Kippelen [19] there
is a variation in the magnitude of the current by a factor of about 106 from hard
reverse bias to hard forward bias.) As we shall demonstrate it is possible to achieve
such large variations in the current only if recombination at the interface between
the two semiconductors is very difficult (i.e., δ ( 1). If the recombination is easy
the device acts predominantly as an Ohmic resitor. All other parameters are taken
to be order one except for the voltage Φ and the current J which we vary in order
to find the relationship between Φ and J . In fact we will need to consider different
regimes based on the sizes of these two parameters, relative to δ. We remark that
the dimensionless built-in potential Φbi = qVbi/(kT ) is typically large in practice but
that in comparison to log(1/δ) we still expect it to be small. Furthermore, we assert
that under these circumstances investigating the distinguished limit Φbi = O(1) still
yields valid results.

We start by defining the new quantities

Na =
1

λ2
, Ĵ =

J

2λ2
(3.1)
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and substituting for p (in terms of φ) in (2.37)–(2.39); this enables us to rewrite these
equations in the form

∂3φ

∂x3
+
∂φ

∂x

∂2φ

∂x2
= 2Ĵ in 0 < x < 1,(3.2)

φ = 0 and Ĵ = −δ φ
2
xx −N2

a

θ − φxx
on x = 0,(3.3)

φ = −Φ+ Φbi

2
and

∂2φ

∂x2
= − exp

(
Φbi

2

)
Na on x = 1.(3.4)

We now proceed to solve this ODE problem in the limits of small and large
currents to obtain the relevant current-voltage characteristics.

3.1. Small current limit. When the current is small, the system lies close
to the equilibrium solution in which drift and diffusion components of the current
density are large compared to the total current density and are almost in balance.
Physically this is a regime in which the current in the bulk of the semiconductors is
small and is determined by the rate of recombination at the interface. Formally we
investigate the distinguished asymptotic limit Ĵ = O(δ) and Φ+Φbi = O(1) but note
that the approximate solution we derive is asymptotically valid provided Ĵ ( 1; this
is equivalent to requiring −Φ ( log(1/δ). Hence we look for an asymptotic solution
to (3.2)–(3.4) of the form

φ = φ0 + δφ1 + · · · , Ĵ = δĴ1 + · · · .

Substituting this ansatz into (3.2)–(3.4) yields the following problem at leading order:

∂3φ0
∂x3

+
∂φ0
∂x

∂2φ0
∂x2

= 0 in x > 0,(3.5)

φ0 = 0 and Ĵ1 = −φ0
2
xx −N2

a

θ − φ0xx
on x = 0,(3.6)

φ0 = −Φ+ Φbi

2
and

∂2φ0
∂x2

= −Na exp

(
Φbi

2

)
on x = 1.(3.7)

Integrating (3.5) once and applying the boundary conditions (3.7) gives the relation

∂2φ0
∂x2

= −Na exp

(
−Φ

2

)
exp(−φ0).(3.8)

This is all we need in order to derive the current-voltage curve since it allows us to
evaluate φ0,xx|x=0 using the fact that φ0|x=0 = 0 and hence to find Ĵ1 from (3.6b).
This yields

Ĵ1 =
2N2

a sinh(Φ/2)

Na + θ exp(Φ/2)
.(3.9)

Thus this part of the current-voltage curve is given, on substituting for Ĵ and Na

from (3.1), by

J ∼ 4δ
sinh(Φ/2)

1 + λ2θ exp(Φ/2)
.(3.10)
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The solution for φ0. Solving for φ0 from (3.8), together with the boundary con-
ditions (3.6a) and (3.7a), yields a solution that takes either the form

φ0 = −2 log

(
sinh(p)

sinh(p±Ax))

)
, where A and p satisfy(3.11)

sinh2 p

sinh2(p±A)
= exp

(
Φ+ Φbi

2

)
and

2A2

sinh2(p±A)
= Na exp

(
Φbi

2

)
,

(3.12)

or the form

φ0 = −2 log

(
sin q

sin(q ±Bx)

)
, where B and q satisfy(3.13)

sin2 q

sin2(q ± B)
= exp

(
Φ+ Φbi

2

)
and

2B2

sin2(q ±B)
= Na exp

(
Φbi

2

)
.(3.14)

Thus if Na exp(
Φbi
2 ) < 2, the appropriate form of the solution is (3.11)–(3.12), while

if Na exp(
Φbi
2 ) > 2, the appropriate form of the solution is (3.13)–(3.14).

Reverse bias. In hard reverse bias when the applied voltage is much greater than
Φbi (3.10) reduces to

Ĵ1 ∼ N2
a

θ
as Φ→ ∞.(3.15)

This corresponds to the reverse saturation current in a traditional Shottky diode. It is
also possible to look at the potential distribution in these conditions. This is done by
solving (3.12) and approximating the hyperbolic arc cosecant function by a logarithm.
The potential can then be written as

φ0 ∼ −Φ
2
x.(3.16)

A physical picture is easy to glean: in reverse bias some charges are generated ther-
mally at the interface and are being removed by a constant electric field. Since in
our model the thermally generated current is voltage independent, the reverse cur-
rent saturates. Figure 3.1(II) shows this approximate solution and the corresponding
numerical solution for the dimensionless energy levels of the LUMO and HOMO (ψn

and ψp, respectively) as defined in (2.32).
Forward bias. In forward bias, the potential is large and negative, and in this

case (3.10) can be approximated by an exponential:

Ĵ1 ∼ −Na exp

(
−Φ

2

)
as Φ→ −∞.(3.17)

This situation is very similar to the standard solution to the Shockley equation where
the forward bias current is written as J ∝ exp(−Φ/n), where n is the so-called
ideality factor. The ideality factor we obtain here is therefore equal to 2. This is
because in the limit of large charge density and in an antisymmetric configuration,
the SRH recombination term varies as the charge density. Since the charge density
at the interface is proportional to exp(Φ/2), the ideality factor is 2. If we had used
bare recombination, where the recombination flux is proportional to charge density
squared, we would have obtained an ideality factor of 1.
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Fig. 3.1. Diagrams showing the dimensionless energies of the LUMO, ψn, in x < 0 and the
HOMO, ψp, in x > 0. Both diagrams assume a pseudo band gap Eg of 40 (1 eV) and Φbi = 12 with
λ = 1. However, in (I) Φ = −22 corresponding to a device in forward bias, while in (II) Φ = 38
corresponding to a device in reverse bias. Shown are solutions calculated directly from the numerical
solution to (3.12) (dotted lines) and ones derived from the approximate solutions (3.19), in forward
bias, and (3.16), in reverse bias (solid lines).

By assuming that both −Φ ' 1 it is again possible to obtain approximate ex-
pressions for the potential distribution both in an exponentially narrow layer in the
immediate vicinity of the junction (i.e., for x = O(exp(−|Φ|/4))) and away from it
(i.e., for x = O(1)).2 Rather than write both these expressions we write a uniformly
valid asymptotic expression for the potential throughout 0 ≤ x ≤ 1,

φ0 ∼ −2 log

(
πξ2e−|Φ|/4

sin
(
π
(
x+ ξ2e−|Φ|/4

))
)
,(3.18)

where ξ2 =

√
2

Na
and ξ2 ( 1.

This form of the solution is appropriate for studying both the potential distribu-
tion at equilibrium and in forward bias. An example showing the dimensionless en-
ergy levels of LUMO and HOMO in forward bias (calculated from (3.19) and (2.32))
is shown in Figure 3.1(I). Here, as the bias is increased, the levels bend further and
further at the interface, increasing the charge density. The increase in charge density
drives a greater current through the device. At forward bias electrons are injected in
the donor, holes are injected in the acceptor, and they annihilate at the interface.

3.1.1. The large current large potential asymptotics −Ĵ = O(log(1/δ)),
−Φ = O(log(1/δ)). As the voltage becomes larger in magnitude (in forward bias),
the charge density at the interface increases exponentially as does the current. This
increase in current can only continue in quasi-static equilibrium so long as the increase
in drift current toward the interface can be matched by a similar increase in diffusion

2The asymptotic expansion remains valid provided |δĴ1| " 1, which is equivalent to the condition
|Φ| " 2 log(Na/δ).
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away from the interface. Such a diffusion relies on draining the bulk of the semicon-
ductor away from the interface of charges, and this cannot be sustained indefinitely.
For sufficiently large voltage the current is controlled by the transport in the bulk of
the device.

Here we write Ĵ = log(1/δ)Ĵ∗, where Ĵ∗ < 0 and −Ĵ∗ = O(1). In terms of this
new variable the steady state equations are

∂3φ

∂x3
+
∂φ

∂x

∂2φ

∂x2
= −2|Ĵ∗| log

(
1

δ

)
in x > 0,(3.19)

φ = 0 and |Ĵ∗| =
δ

log(1/δ)

φ2xx −N2
a

θ − φxx
on x = 0,(3.20)

φ = −Φ+ Φbi

2
and

∂2φ

∂x2
= −Na exp (Φbi/2) on x = 1.(3.21)

In order to study this problem we need to investigate the boundary layer about x = 0
whose width is found by balancing the right-hand side of (3.20b) with the modulus
of the current density |Ĵ∗|.

Inner region (II). The role of this boundary layer region is to match the charge
density to the recombination condition. This is a region in which a quasi equilibrium
holds with a high concentration of charge and is reminiscent of an inversion layer.
Immediately adjacent to the semiconductor interface on x = 0 we introduce the scaled
variable η which is related to x via

x =
δ1/2

(log(1/δ))1/2
η.

In terms of this new variable the equations and boundary conditions (3.19)–(3.20)
become

∂3φ

∂η3
+
∂φ

∂η

∂2φ

∂η2
= O

(
δ3/2 log

(
1

δ

)−1/2
)

in η > 0,(3.22)

φ = 0 and |Ĵ∗| = −
φ2ηη − δ2(log(1/δ))−2N2

a

φηη − δ(log(1/δ))−1θ
on η = 0.(3.23)

Expanding φ as

φ(II) = φ(II)2 + · · ·
and substituting into (3.22)–(3.23) yields the leading order problem

∂3φ(II)2

∂η3
+
∂φ(II)2

∂η

∂2φ(II)2

∂η2
= 0,

φ(II)2 = 0 and
∂2φ(II)2

∂η2
= −|Ĵ∗| on η = 0

with solution

φ(II)2 = 2 log



1 +

∣∣∣∣∣
Ĵ∗
2

∣∣∣∣∣

1/2

η



 .(3.24)

We now require matching this to an outer region on the O(1) lengthscale. However, in
order to do this, we need to introduce an intermediate inner region and match across
this region from the inner to the outer. In this intermediate inner region (as in the
inner region) a quasi equilibrium exists.
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Intermediate inner region (I). Here we rescale about the interface on x = 0 by
introducing the new variable ξ, defined by

x =
ξ

log(1/δ)
,

(
ξ = δ1/2(log (1/δ))1/2η

)

in terms of which (3.19) can be rewritten as

∂3φ

∂ξ3
+
∂φ

∂ξ

∂2φ

∂ξ2
= − 2|Ĵ∗|

log
(
1
δ

)2 .

Matching to the leading order solution in the inner region we see that the expansion
for φ proceeds, in powers of δ, as follows:

φ(I) = log

(
1

δ

)
− log

(
log

(
1

δ

))
+ φ(I)2 + · · · .(3.25)

Proceeding to O(1) in the expansion of (3.25) gives the following equation for

φ(I)2 :

∂3φ(I)2

∂ξ3
+
∂2φ(I)2

∂ξ2
∂φ(I)2

∂ξ
= 0

with solution

φ(I)2 = C + 2 log (sinh (Mξ)) ,

where the constants C and M are determined by the matching conditions. Matching
to the leading order inner solution implies

φ(I)2 ∼ 2 log




∣∣∣∣∣
Ĵ∗
2

∣∣∣∣∣

1/2

ξ



 as ξ → 0

and thus implies that

φ(I)2 = log

∣∣∣∣∣
Ĵ∗
2

∣∣∣∣∣− 2 logM + 2 log (sinh (Mξ)) ,(3.26)

where the remaining constant M is determined by matching to the outer region.
The outer region (o). Finally we get to the outer region in which we solve (3.19)

with boundary condition (3.21) (where x = O(1)). This is the region where drift
dominates: the semiconductor has a uniform charge density and a constant electric
field dictated by the current. By matching to the solution in the intermediate inner
region it becomes apparent that the asymptotic expansion of the solution in the outer
region takes the form

φ(o) = log

(
1

δ

)
φ(o)0 + log

(
log

(
1

δ

))
φ(o)1 + φ(o)2 + · · · ,

Φ+ Φbi = log

(
1

δ

)
Ξ0 + log

(
log

(
1

δ

))
Ξ1 + Ξ2 + · · · .
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Substituting into (3.19) leads to the leading order equation φ(o)0 xx = 0 with solution

φ(o)0 = Ax+B,

where A and B are constants. Proceeding to O(log (1/δ)) in (3.19) and (3.21b) gives

φ(o)2 xx = −2|Ĵ∗|
A

and φ(o)2 xx|x=1 = −Na exp (Φbi/2)

from which we conclude that A = 2|Ĵ∗|/(Na exp (Φbi/2)) so that

φ(o)0 =
2|Ĵ∗|

Na exp (Φbi/2)
x+B.(3.27)

Proceeding to O(log(1/δ) log(log(1/δ))) and to O(log(log(1/δ))) leads to the result
that

φ(o)1 = K, Ξ1 = −2K,(3.28)

where K is a constant.
Matching and the large current current-voltage curve. Matching between the so-

lution in the intermediate region, (3.25), and the solution in the outer region, (3.27)–
(3.28), at the two lowest orders asserts that B = 1 and K = −1. Hence, the two
leading order terms in the outer region are uniquely determined as

φ(o)0 =
2|Ĵ∗|

Na exp (Φbi/2)
x+ 1, φ(o)1 = −1.(3.29)

Applying the boundary condition (3.21a) to this solution allows us to determine the
two leading terms in the potential drop across the cell as

Ξ0 = − 4|Ĵ∗|
Na exp (Φbi/2)

− 2 and Ξ1 = 2.(3.30)

Thus this part of the current-voltage curve is given, on substituting for Ĵ and Na

from (3.1), by

J ∼ 1

2

(
(Φ+ Φbi) + 2 log(1/δ)− 2 log

(
log

(
1

δ

)))
exp (Φbi/2) .(3.31)

Notably J varies linearly with Φ, the result of Ohmic dissipation in the semiconductor
bulk, which becomes significant for sufficiently large forwarded biased currents.

Matching the intermediate inner to the outer to find M . As ξ → ∞ the solution

(3.26) for φ(I)2 (the second order intermediate inner) has the far field behavior

φ(I)2 ∼ 2Mξ as ξ → ∞.

This term matches onto x-dependence of the leading order outer solution as x → 0.
Looking at (3.29) we can thus identify

M =
|Ĵ∗|

Na exp (Φbi/2)

so that φ(I)2 is uniquely determined as

φ(I)2 = log

∣∣∣∣∣
Ĵ∗
2

∣∣∣∣∣− 2 log

(
|Ĵ∗|

Na exp (Φbi/2)

)
+ 2 log

(
sinh

(
|Ĵ∗|

Na exp (Φbi/2)
ξ

))
.



1810 RICHARDSON, PLEASE, FOSTER, AND KIRKPATRICK

3.1.2. The intermediate current asymptotics: Ĵ < 0 with Ĵ = O(1),
Φ +Φ bi = −2 log(1/δ) + O(1). In order to complete the asymptotic description
of the current-voltage curve we consider the intermediate current asymptotics. Es-
sentially this is the regime in which the potential is too small for drift to deplete the
charges in the bulk of the semiconductor, yet too large for quasi-static equilibrium to
dominate the current-voltage characteristics. Here it is possible to find analytic so-
lutions to differential equations for the drift diffusion process, but the transcendental
equations that result from fitting this analytic solution to the boundary data have no
explicit analytic solution.

Outer solution (o). Here we look for an asymptotic solution to (3.2) and (3.4) of
the form

φ(o) = log

(
1

δ

)
φ(o)0 + φ(o)1 + · · · ,

Φ+ Φbi = log

(
1

δ

)
Ξ0 + Ξ1 + · · · .

To leading order we find

φ(o)0 = constant = −Ξ0

2
,(3.32)

while at the next order we retrieve the following problem for φ(i)1 :

∂3φ(o)1

∂x3
+
∂φ(o)1

∂x

∂2φ(o)1

∂x2
= −2|Ĵ |,

∂2φ(o)1

∂x2

∣∣∣∣∣
x=1

= −Na exp

(
Φbi

2

)
, φ(o)1 |x=1 = −Ξ1

2
.

(3.33)

In order to couple this solution to the boundary conditions on x = 0 we need to
introduce an inner region.

Inner region (i). The inner variable ν is defined by

x = δ1/2ν

such that (3.2)–(3.3) now read

∂3φ

∂ν3
+
∂φ

∂ν

∂2φ

∂ν2
= −2δ3/2|Ĵ | in x > 0,(3.34)

φ = 0 and |Ĵ | = φ2νν − δ2N2
a

φνν − δθ on ν = 0.(3.35)

We expand φ in the inner as follows:

φ(i) = φ(i)1 + · · · .

At leading order φ(i)1 satisfies the problem

∂3φ(i)1

∂ν3
+
∂φ(i)1

∂ν

∂2φ(i)1

∂ν2
= 0, |Ĵ | = − ∂2φ(i)1

∂ν2

∣∣∣∣∣
ν=0

, φ(i)1 |ν=0 = 0,

with solution

φ(i)1 = 2 log



1 +

∣∣∣∣∣
Ĵ

2

∣∣∣∣∣

1/2

ν



 .(3.36)
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Matching. Taking the large ν limit in (3.36) gives

φ(i)1 ∼ 2 log ν + log

∣∣∣∣∣
Ĵ

2

∣∣∣∣∣+O

(
1

ν

)
.

Writing this in terms of the outer variable ν = x/δ1/2 gives

φ(i)1 ∼ log

(
1

δ

)
+ 2 logx+ log

∣∣∣∣∣
Ĵ

2

∣∣∣∣∣+O
(
δ1/2

)
.(3.37)

Matching to the outer problem at leading order gives

φ(o)0 = 1, Ξ0 = −2.(3.38)

At next order the matching condition (3.37) provides conditions that close (3.33), the

outer problem for φ(o)1

φ(o)1 ∼ 2 logx+ log

∣∣∣∣∣
Ĵ

2

∣∣∣∣∣ as x → 0.

The full outer problem. This is found by combining the above matching condition
with (3.33),

∂3φ(o)1

∂x3
+
∂φ(o)1

∂x

∂2φ(o)1

∂x2
= −2|Ĵ |,(3.39)

∂2φ(o)1

∂x2

∣∣∣∣∣
x=1

= −Na exp

(
Φbi

2

)
,(3.40)

φ(o)1 ∼ 2 log x+ log

∣∣∣∣∣
Ĵ

2

∣∣∣∣∣ as x → 0(3.41)

with the correction to the potential being given by the solution to this problem via
(3.33c). The exact solution to (3.39), which was independently derived in [2], is

φ(o)1 = 2 log
∣∣∣βAi(|Ĵ |1/3(x1 − x)) + γBi(|Ĵ |1/3(x1 − x))

∣∣∣ ,

where x1, β, and γ are arbitrary constants and Ai(·) and Bi(·) are Airy functions
of the first and second kinds, respectively. Requiring that the solution satisfies the
matching condition (3.41) determines γ and β so that the solution can be written in
the form

φ(o)1 = log

∣∣∣∣∣
Ĵ

2

∣∣∣∣∣

+ 2 log

∣∣∣∣∣∣
Bi(|Ĵ |1/3x1)Ai(|Ĵ |1/3(x1 − x))−Ai(|Ĵ |1/3x1)Bi(|Ĵ |1/3(x1 − x))

|Ĵ |1/3
(
Ai(|Ĵ |1/3x1)Bi

′(|Ĵ |1/3x1)− Bi(|Ĵ |1/3x1)Ai
′(|Ĵ |1/3x1)

)

∣∣∣∣∣∣
.

Ai′(·) and Bi′(·) are the derivatives of the Airy functions of the first and second kinds,
respectively. The final condition (3.40) leads to a rather complicated transcendental
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Fig. 3.2. Typical current-voltage curves derived from the low-current asymptotics (3.10)—
shown by dashed curve—from the intermediate asymptotics (3.42)—shown by a solid curve—and
from the high-current asymptotics (3.31)—shown by a dot-dashed curve. Here Φbi = 4, δ = e−8,
λ = 1, and θ = 0.4. The left panel shows the low-, intermediate-, and high-current current-voltage
curves. The right panel shows only the low-current approximation.

equation which can be solved to find the final parameter x1. The correction to the
potential is given by (3.33c) so that in this case

Ξ1 = −2 log

∣∣∣∣∣
Ĵ

2

∣∣∣∣∣

−4 log

∣∣∣∣∣∣
Bi(|Ĵ |1/3x1)Ai(|Ĵ |1/3(x1 − 1))−Ai(|Ĵ |1/3x1)Bi(|Ĵ |1/3(x1 − 1))

|Ĵ |1/3
(
Ai(|Ĵ |1/3x1)Bi

′(|Ĵ |1/3x1)− Bi(|Ĵ |1/3x1)Ai
′(|Ĵ |1/3x1)

)

∣∣∣∣∣∣

and the intermediate current-voltage curve is given by

Φ+ Φbi = −2 log

∣∣∣∣∣
Ĵ

2δ

∣∣∣∣∣

−4 log

∣∣∣∣∣∣
Bi(|Ĵ |1/3x1)Ai(|Ĵ |1/3(x1 − 1))−Ai(|Ĵ |1/3x1)Bi(|Ĵ |1/3(x1 − 1))

|Ĵ |1/3
(
Ai(|Ĵ |1/3x1)Bi

′(|Ĵ |1/3x1)− Bi(|Ĵ |1/3x1)Ai
′(|Ĵ |1/3x1)

)

∣∣∣∣∣∣
,(3.42)

where Ĵ = −J/(2λ2).

3.1.3. The current-voltage curves for small, intermediate, and large J.
In (3.10), (3.31), and (3.42) we have derived asymptotic expressions for the current-
voltage curve in the limits of small, large, and intermediate currents, respectively. An
example of the results obtained using these expressions is plotted in Figure 3.2 for
Φbi = 4, δ = e−8, λ = 1, and θ = 0.4 (where the dashed lines represent the results of
the small J asymptotics, the dot-dashed line that of the large J asymptotics, and the
solid line that of the intermediate asymptotics). As alluded to previously the small
current asymptotics indicates that the current saturates in hard reverse bias with
J ∼ 2δ/(λ2θ) as Φ→ +∞ (see Figure 3.2, right) and that it grows exponentially with
−Φ in hard forward bias with J ∼ −2δ exp(−Φ/2) as Φ→ +∞ (again see Figure 3.2,
right). However, for significantly large negative potentials (when Φ + Φbi becomes
comparable with −2 log(1/δ)) the exponential growth ceases and is replaced by linear
growth of the form J ∼ 1

2 ((Φ + Φbi) + 2 log(1/δ)) exp (Φbi/2) for potentials Φ + Φbi

significantly less than −2 log(1/δ). This linear growth is shown by the dot-dashed line
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in Figure 3.2, left. Notably there is a mismatch between the asymptotic expressions
for the current-voltage curve in the vicinity of Φ+Φbi = −2 log(1/δ) which is explained
by the intermediate current asymptotics (solid line).

4. Inclusion of a photo-generated current. Light absorbed in organic pho-
tovoltaic diodes produces excitons (strongly bound excited electron-hole pairs) that
diffuse through the acceptor and the donor until they either recombine, releasing their
energy as heat, or meet the acceptor-donor interface, where they can separate (typ-
ically in a multistage process whose details do not concern us here) into a hole in
the donor and an electron in the acceptor. We can model this process by including a
source term for electrons and holes on the organic-organic interface at x = 0 replacing
the dimensionless equation (2.13) by

[Fn]x=0 = [Fp]x=0 =
Jphot
q

−Rb (n|x=0− , p|x=0+) ,

where Jphot is a positive variable representing the contribution to the electric current
density from the dissociation of bound excitons at the interface. On nondimensional-
izing (as in section 2.4 with Jphot scaling like the current density J ), approximating
the electron and hole densities in the donor and acceptor, respectively, by zero (as in
section 2.5), and assuming that the diode is antisymmetric (as in section 2.5) leads
to a modification to the dimensionless-antisymmetric model (2.37)–(2.39) in which
(2.38) is replaced by

J − Jphot = −2δ(p2|x=0 − 1)

(λ2θ + p|x=0)
.(4.1)

Provided 0 < Jphot ( 1 and −Φ ( log(1/δ) the small current asymptotics as ex-
pounded in section 3.1 are appropriate. In this regime the leading order solution
for the potential is independent of the current density and the leading order current
density is derived directly from the solution for the leading order potential. In the
modified current equation J − Jphot plays the role of the current density in (2.38).
It follows that the leading order current density derived from (4.1) is exactly that
derived in section 3.1 with the addition of Jphot so that (3.10) is modified to

J ∼ Jphot + 4δ
sinh(Φ/2)

1 + λ2θ exp(Φ/2)
.(4.2)

5. Comparison to experimental data. As summarized in section 3.1.3, the
asymptotic model yields the form of the current at low and high voltages as expressed
in (3.10) and (3.31). When a conventional equivalent circuit model is used to model
the device, the diode and series resistance behaviors of a cell are characterized by
parameters with no physical interpretation. Conversely our model allows us to relate
both of these behvaiors to a single set of physical parameters. The novel element
to this work therefore is that it relates series resistance and the dark current J0 to
the same set of parameters. Physically this is because we find that at high voltages
current is limited by the resistance of each layer, whereas at low voltages it is limited
by the recombination fluxes.

As an example we consider the dark current of a pentacene fullerene bilayer
which was recently discussed by Credgington et al. in [4]. Our focus here is not to
investigate the physical origin of the recombination current but rather to show how
both high and low voltage parts of the J-V curve are related. In order to compare
our idealized device to real data, it is necessary to account for two effects: shunt
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resistance and series resistance. Comparing experimental data to our model, it is
evident that real devices have a much smaller resistance at zero bias than is predicted
by our idealized bilayer. In keeping with the literature [4] this behavior is attributed
to pinholes which act as short circuits between the two contacts. This can be modeled
by adding a constant linear shunt resistance in parallel to our idealized, pinhole-free
one-dimensional device. Furthermore, it is important to remove the load resistance
from the experimental data before extracting the model parameters. For example,
Credgington et al. used a resistor with resistance Rload = 60 Ω to measure the current
across the devices. Therefore we removed this contribution to the series resistance
by transforming the measured experimental voltage Vexp into the real bias across the
device as V = Vexp − J(Vexp) RloadA, where A is the area of the device.

In order to fit real data it is helpful to convert (3.10) and (3.31) into the conven-
tional notation used in equivalent circuit models. At low bias, including the shunt
resistance Rshunt, the dimensional model takes the form

Jsmall(V ) =
V

RshuntA
+ J0

(
exp

(
V q

2kT

)
− 1

)
.(5.1)

Similarly, at high bias, the dimensional form of the equations becomes

Jlarge(V ) =
(V − V0)

ARseries
.(5.2)

The parameters of these equivalent circuit models can be related to the parameters
of our model as follows:

J0 = 2JDδ,(5.3)

V0 = Φbi +
2kT

q
log

(
1

δ

)
,(5.4)

A Rseries =
2 kT

JDq
exp

(
−qΦbi

2kT

)
=

2 kT

q JDδ
exp

(
−qV0

2kT

)
,(5.5)

where we have introduced the notation JD = q D̄Π0
L for the diffusion current den-

sity used to nondimensionalize currents. Note that (5.4) and (5.5) only allow us to
determine the combination JDδ, whereas (5.5) does not allow us to find either Φbi

or δ independently. The main observation we make is that JDδ can therefore be
determined experimentally in two independent ways: either by measuring J0 or by
measuring Rseries and V0.

Fitting the data using these two methods gives values of JDδ = 7.2× 10−3 Am−2

and JDδ = 2.8×10−3 Am−2 using the low and high bias formulae, respectively. These
parameters were obtained by applying a least squares fit to (5.1) and (5.2) using data
only at extreme ends of the voltage range. Figure 5.1 shows a good fit for such models
and lists the values found. Taking values for the electron diffusivity in fullerene of
6.3×10−9m2s−1 and assuming an intrinsic carrier density Π0 of 2.5×1025m−3 [15], we
find that δ = O(5 × 10−9), which justifies our asymptotic treatment of the problem.
Of course, the value of JDδ could be obtained using more sophisticated techniques, for
example, by numerically simulating the entire J-V curve. However, our main result is
that the two values found are very similar and hence that extremes of the curve can
be fitted consistently with a single model. In addition, we note that we developed the
model for a highly simiplified case, assuming the device to be symmetric and using
SRH recombination via a single trap level (so that the ideality factor is necessarily
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Fig. 5.1. Experimental (line) and modeled (symbols) dark current characteristic for a fullerene-
pentacene bilayer device. The data shows the logarithm of the current density. The experimental
curves were fitted using (5.1) and (5.2) with parameters Rshunt = 153kΩ, J0 = 1.43 10−6Acm−2,
V0 = 0.506 V , Rseries = 160Ω. The device parameters were Rload = 60Ω, A = 0.045cm2, and
finally kT

q = 25mV .

2). These simplifications could be removed, the analysis repeated, and more accurate
physical parameters determined. However, it is important to note that an excellent
fit has been obtained without such complications, indicating that the essence of the
physical process has been captured in the model.

6. Discussion and conclusions. The asymptotic analysis presented in this pa-
per is successful in predicting analytic relationships for the current-voltage curve of a
flat organic semiconducting diode. The curve has three distinct parts: the low-current
part is characteristic of a conventional diode showing current saturation in reverse bias
and exponential behavior in forward bias; the high-current part is dominated by the
Ohmic resistance of the bulk, usually interpreted as a series resistance; and there is a
subtle intermediate-current behavior that covers a relatively small range of potentials
and currents and which smoothly connects the other two parts. The current-voltage
curve displays the same features as the phenomenological Shockley equivalent circuit
model with small shunt resistance (see, for example, [19]). That is, in reverse bias, it
saturates to a constant current, in forward bias it displays exponential behavior, and
for very large forward bias the behavior is linear. As shown in [19] such models can be
very successfully fitted to experimental data. For the simple model presented here the
ideality factor is always 2. This is a consequence of the recombination law assumed at
the interface, which is in our case proportional to charge density. Recombination laws
with a different dependence on charge density could be exploited to model different
ideality factors.

The diode can act as a photovoltaic device when exposed to radiation of the right
wavelengths. This leads to the generation of excitons states (strongly bound electron-
hole pairs) which, if they reach the acceptor-donor interface before recombining, can
separate into an electron in the acceptor and a hole in the donor and drive an electric
current. Typically organic photovoltaics operate in the low-current limit, in which
the device lies close to its equilibrium. In this limit the additional photo-generated
current Jg has the effect of shifting the current-voltage curve (as plotted in the right
panel of Figure 3.2) up the J-axis by an amount Jphot.
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The analysis presented has assumed that the Poole–Frenkel effect is negligible.
Notably this effect does not change the small current behavior since the system is in
quasi equilibrium away from the interface. The Poole–Frenkel term does, however,
change the position of the intermediate region of the current-voltage curve and in
particular delays the transition to the high-current (and intermediate) limits since it
enhances diffusion at high electric fields, thus keeping the system near quasi equilib-
rium for longer. In the high-current limit the nonlinear resistance encapsulated in
the Poole–Frenkel effect leads to a nonlinear current-voltage curve that in the limit
of large (negative) applied voltage Φ has asymptotic behavior that depends upon the
Poole–Frenkel parameter ν through

log(−J) ∼ ν
(
−Φ+ Φbi

2

)1/2

+
Φbi

2
.

In fact our analysis points to the interesting observation that it may be possible to use
the series resistance part of the current-voltage curve to better understand transport
in the bulk of the semiconductors.

The analysis performed here forms the basis of an understanding of the behavior
of organic photovoltaic devices. The effects of illumination of the photovoltaic device
have been considered where the photovoltaic generation is relatively small and could
be treated more generally together with a description of the behavior of the generation
and transport of excitons, as well as their dissociation, into electrons and holes at the
interface. In practice the interface between the donor and acceptor in a photovoltaic
device is rarely planar and is typically manufactured with a highly convoluted struc-
ture in order to maximize the chance of excitons diffusing there. For such devices
we believe that an approach based on homogenizing the drift diffusion equations in
acceptor and donor over the scale of the microstructure may be more appropriate.
Extending the analysis to account for these and other phenomena remains an open
question.
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