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Abstract

Since joint source-channel decoding is capable of exploiting the residual redundancy in the encoded source

signals for improving the attainable error resilience, it has attracted substantial attention. Motivated by the principle

of exploiting the source redundancy at the receiver, in thistreatise we study the application of iterative Error

Concealment (EC) for low-complexity uplink video communications, where the video signal is modelled by a first-

order Markov process. Firstly, we derive reduced-complexity formulas for the first-order Markov modelling aided

source decoding. Then we propose a bit-based iterative EC algorithm, where a horizontal and a vertical source

decoder are employed for exchanging their information using the iterative decoding philosophy. This scheme may

be combined with low-complexity video codecs, provided that they retain some of the redundancy residing in

the video signals and are capable of estimating the softbit information representing each bit of the video pixels.

As application examples, we test our proposed two-dimensional iterative EC in both Wyner-Ziv video coded and

uncompressed video transmission scenarios. Finally, we benchmark the attainable system performance against the

existing first-order Markov process based softbit source decoding scheme, where the softbit decoding is performed
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by a one-dimensional Markov model aided decoder, as well as by the existing pixel-domain Wyner-Ziv video

scheme. Our simulation results show thatEb/N0 improvements in excess of 6 dB are attainable by the proposed

technique in uncompressed video home-networking applications. Furthermore, up to 21.5% bitrate reduction is

achieved by employing our proposed iterative error concealment technique in a Wyner-Ziv video coding scheme.

I. INTRODUCTION

Shannon’s separation theorem [1] states that reliable transmission can be accomplished by separate

source coding using lossless entropy codes and channel coding under the idealized assumption of Gaussian

channels and potentially infinite encoding/decoding delayand complexity. However, a finite-delay, finite-

complexity source encoder fails to remove all the redundancy residing in the source signals, such as audio

and video. Hence, joint source-channel coding (JSCC) [2] was proposed for additionally exploiting the

source statistics for the sake of improved error concealment. Furthermore, Görtz [3], [4] proposed the

iterative source and channel decoding (ISCD) philosophy, which performed turbo-like iterative decoding

by exchanging extrinsic information between the source encoder and decoder. Softbit source decoding

(SBSD) [5] was proposed for error concealment of speech signals by Fingscheidt and Vary using softbit

information, where the correction of adjacent speech source samples were modeled by a first-order Markov

process. Afterwards, Adrat and Vary [6], [7] developed SBSDfor iterative source-channel decoding using

both forward- and backward-oriented calculations.

Similar to speech, joint source channel decoding of image and video signals also attracted substantial

attention. For example, Kliewer, Görtz and Mertins [8], [9]proposed an ISCD scheme for images modelled

by a Markov Random Field (MRF) by exploiting that any pixel can exchange extrinsic information

with its eight neighbors for exploiting the residual spatial correlations residing in the encoded image.

In [10], Kliewer proposed a novel symbol-based soft-inputa-posteriori probability (APP) decoder for

packetized variable length coded (VLC) [11] source signalstransmitted over wireless channels, where the

Markov-modelled residual redundancy generated after source encoding was exploited for achieving an

improved error protection. In the context of distributed source coding, the authors of [12] proposed an

error-resilient JSCC scheme using a Slepian-Wolf (SW) codec, which exploited the knowledge of both
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the channel statistics and the correlation between specificvideo frames and their reference frames. In

[13], an H.264 [14] video telephone scheme was proposed using ISCD. Firstly, the H.264 bitstream was

segmented into the partitions A, B and C [14]. Then the three partitions were encoded by variable code-rate

short block codes (SBC), which artificially imposed redundancy on the H.264-encoded bitstreams. This

artificial redundancy was then exploited by the softbit source decoder, which performs iterative decoding

by exchanging extrinsic information with the channel decoder. In [15], a double low-density parity-check

(LDPC) code was proposed for joint source and channel coding, where two concatenated LDPC codes

were employed as the source LDPC and channel LDPC, respectively. At the receiver, the source LDPC

and channel LDPC performed joint decoding by exchanging extrinsic information.

On the other hand, as a post-enhancement technique conceived for standard video compression schemes,

error concealment (EC) methods [16], [17] have also attracted substantial attention for the sake of

delivering flawless video over error-prone networks, whilst using diverse video codecs, such as MPEG-

1/2/4, H.263, H.264/AVC [18]. The family of EC schemes may becategorized into spatial-domain (SD)

algorithms, temporal-domain (TD) algorithms and hybrid algorithms that exploited both SD and TD

information [19]. The SD algorithms conceal the errors using the information within the same frame. As

a design-alternative, Chenet al. [20] proposed to embed the motion vectors (MV) of a macroblock (MB)

into other MBs within the same frame. When a MB is lost at the receiver, its MVs embedded into other

MBs will be retrieved for EC. In contrast to SD, the TD EC schemes exploit the inter-frame correlation for

EC. The authors of [21] proposed the so-called adaptive error concealment order determination (AECOD)

method for TD EC, which adaptively determined the processing order of MBs in a contiguous error-infested

region by analyzing the external boundary patterns of the MBs in its neighborhood. For concealing the

loss of an entire frame, in hierarchical B-frame based scalable video coding, in [22] the MVs of the

lost frame were derived directly from the correctly received previous and, future, video pictures. The

hybrid EC schemes jointly exploit the information gleaned from both the successive and the current

frame. In [23], the authors utilized both SD interpolation and TD prediction for mitigating the effects of

corruption. The conventional EC methods typically concealthe effects of corrupted blocks by exploiting
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the knowledge of surrounding blocks, but they tend to precipitate errors, when the corrupted blocks

belong to a larger contiguous region. A novel two-stage EC scheme was proposed in [24], where first, a

novel spatio-temporal boundary matching algorithm was employed for reconstructing the lost MVs. As

the second stage, instead of directly copying the referenceMB to represent the recovered pixel values, a

partial differential equation (PDE) based algorithm was invoked for smoothing the reconstructed pixels.

The authors of [25] proposed to restore lost blocks from boththe SD and TD surrounding information

using a Gaussian mixture based model, which was obtained offline. However, a common feature of these

methods is that they tend to operate in a post-decoding mode of video compression schemes, hence they

cannot be readily invoked in uncompressed or low-compression, low-complexity video scenarios for the

sake of further quality improvements.

The traditional video coding methods such as MPEG and the ITU-T H.26x codecs impose a high encoder

complexity by the discrete cosine transform (DCT) transform, motion compensation, etc which may

become excessive in video sensor networks, mobile camera phones and wireless personal area networks

(WPAN) [26], for example. Hence in this treatise, we focus our attention on low-complexity, Wyner-Ziv

video coding [27] and uncompressed WPAN video scenarios [26].

SupposeX and Y are two independently and identically distributed (i.i.d.) binary sequences, which

may be generated either at the same or different locations. The Slepian-Wolf (SW) Theorem [28] states

that it is possible to compressX andY independently using two separate encoders and then to jointly

decode them at the receiver, using a rate similar to that as thoughX andY were encoded jointly, i.e.

as a single sequence, just like in traditional video coding schemes, such as the ITU-T H.26x codecs.

Hence the SW philosophy may be viewed as the complement of using a high-complexity encoder and

a low-complexity decoder. Since it replies on either uncompressed or on simple independent encoding

combined with joint decoding. Hence our method is eminentlysuitable for the mobile-station (MS) to

base-station (BS) uplink (UL). By contrast, the high-complexity H.264-style encoders combined with low-

complexity decoding and more suitable for the BS-to-HS downlink (DL), since the BS can afford a higher

complexity than the MS. This philosophy was also exploited in the LTE wireless system, where the BS
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can afford a higher complexity. To elaborate a little further, we may minimize(RX + RY ) to H (X, Y )

by jointly decodingX and Y at the receiver, whereRX and RY are the minimum rates required for

transmitting the sourceX andY separately, whileH (X, Y ) is the joint entropy ofX andY . Wyner and

Ziv (WZ) [29] further extended this theory to lossy coding scenarios. Motivated by the emerging source

encoding requirements of low-complexity video sensor networks, Wyner-Ziv video coding, also known

as distributed video coding (DVC), has attracted substantial attention in recent years, as documented both

by Girod and his team [27], as well as by Puriet al. [30]. In [31], an efficient channel-quality-aware

source-coding algorithm was proposed by Sehgalet al., which combined predictive encoding and the

Wyner-Ziv paradigm. Wyner-Ziv coding may be deemed to be a robust video transmission technique

conceived for error-infested channels. A small amount of additional side-information, termed as coset

information is transmitted for the sake of correcting the “errors” within specific video frames, referred

to as “peg frames” [31]. Brites and Pereira [32] proposed a more realistic WZ video coding approach,

which performs online estimation of the channel-induced noise (CN) model parameters at the decoder.

The method of Brites and Pereira [32] is applicable to both pixel-domain and to transform-domain WZ

video codecs. For pixel-domain WZ (PDWZ) video coding, three levels of granularity were proposed,

namely frame-, block- and pixel-level granularity. For transform-domain WZ (TDWZ) video coding, DCT-

band and DCT-coefficient level granularity was proposed. A context-adaptive Markov random field aided

reconstruction algorithm was proposed by Zhanget al. [33], which exploits the spatio-temporal correlation

by modelling the WZ frames. The Slepian-Wolf and Wyner-Ziv theorems state that the sequencesX and

Y must be jointly decoded in order to approach the theoreticalbound of the joint source entropyH (X, Y ).

Hence it is possible to apply iterative decoding principlesfor further exploiting both the intra-frame and

inter-frame source correlation at the receiver.

The emerging 60 GHz wireless personal area networks (WPAN) within the IEEE 802.15.3c standard

family [34], [35] is designed for short-range (<10 m) transmission of very-high-speed (>2 Gb/s) multimedia

data to computer terminals and consumer appliances centered around an individual person’s workspace,

such as in residential rooms, offices, etc. The WirelessHD specification [36], [37], as another WPAN stan-
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dard, increases the maximum data rate to 28 Gb/s, which supports the transmission of either compressed

or uncompressed digital high definition (HD) multimedia signals. On the other hand, the transmission of

compressed rather than uncompressed video may impose problems in wireless multimedia applications.

Firstly, the processing time generates an intrinsic latency, which may violate the delay endget of delay-

sensitive applications, such as interactive gaming. Secondly, some video quality degradation is inevitable

and remains unrecoverable at the receiver. Thirdly, compressed video streaming is limited to devices, where

identical compression techniques must be employed. A transcodec converting between compressed video

formats is required, when a device has to relay the received video stream to another device employing a

different compression technique. This may increase both the cost and complexity, hence the transmission

of uncompressed video was investigated in [26], [38].

A common feature in low-complexity video coding scenarios,such as distributed video coding for

example, is that a high amount of redundancy is present in thetransmitted video stream, which manifests

itself in terms of a high adjacent-pixel correlation and should be exploited at the receiver for concealing

the pixel errors in the reconstructed video. Motivated by the congenial principle of iterative JSCC, we

design a EC technique, where the video-domain redundancy isexploited for iteratively concealing the

errors in the softbit video signals. Against this background, our novel contributions are:

1. We conceive a two-dimensional iterative EC technique, which exchanges extrinsic information

between the rows and columns of a video frame. Since the technique is based on the philosophy of

the iterative decoding principle, it may also be used for iterative joint source-channel decoding.

2. A substantial benefit of our technique is that it may be combined with low-complexity video codecs,

where typicallythere is source residual redundancy residing in the video signals. A further prerequisite

for the scheme’s operation is that the corresponding video decoder is capable of estimating the softbit

information of each bit representing the video pixels.

3. We apply our proposed technique both in a Wyner-Ziv video coding system and in an uncompressed

video transmission scenario for, improving the reconstructed video quality.

4. Finally, we reduce the complexity of the one-dimensionaldecoding algorithms derived by Vary and
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his team [6], [7] by designing a novel trellis representation of the Markov process and by deriving its

decoding rules.

This rest of this paper is organized as follows. In Section II, we introduce the general architecture of the

EC model, which uses the proposed Iterative Horizontal-Vertical Scanline Model (IHVSM) decoder. In

Section III, we present the technique of decoding the first-order Markov process as well as the associated

iterative decoding principle, which will be employed in theIHVSM decoder introduced in Section II. Then

our EC model will be utilized and simulated in two representative video transmission scenarios using low-

complexity video transceivers in Section IV. Specifically,the system architecture and the performance

of the proposed IHVSM decoder applied in both a pixel-domainWyner-Ziv coding scheme and in an

uncompressed video application will be detailed in SectionIV-A and IV-B, respectively. Finally, our

conclusions are offered in Section V.

II. I TERATIVE ERROR CONCEALMENT MODEL

A one-dimensional iterative system model has been proposedand analyzed by Vary and his team [4]–[7]

in the context of audio signals. Since their model was designed for one-dimensional signals, it cannot

directly exploit the two-dimensional (2D) correlation of practical video signals. In this section, we will

detail the iterative EC model conceived for 2D frames video,for the intuitive characterization of our EC

model. In this section, we initially focus our attention on the receiver side. The details of applying the

2D iterative EC technique in two specific video transmissionscenarios will then be illustrated in Section

IV. Let us commence by stipulating the following assumptions:

• xi: the m-bit pattern of pixel scanned from the original video pixelsat time instanti, which is

expressed as{xi(0), · · · , xi(m− 1)} = xi

(

m−1
0

)

;

• m: the number of bits in eachm-bit patternxi of pixels;

• Xm = {0, 1, · · · , 2m − 1}: the set of all possible values in anm-bit patternxi;

• xt
0 = x0, · · · , xt: the bit patterns of the1st frame of the original video consisting of(t + 1) m-bit

patterns during the time interval spanning from0 to t;

• yt0 = y0, · · · , yt: potentially error-infested bit pattern of the1st frame;
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Fig. 1. Iterative error concealment architecture using IHVSM, whereR represents reordering of the video pixels.

The model of 2D iterative EC is displayed in Fig. 1, which onlyaccepts the soft bit input and generates

the corresponding hard-decision-based pixel as output. Wewill discuss the details of 2D iterative EC

techniques below.

A. Softbit1 Input

Let us now focus our attention on the1st original video frame carrying(t + 1) consecutive and

hence correlated bit patterns, eg.x0, · · · , xt. Due to the channel-impairments, the receiver can only

reconstruct the error-infested version ofx0, · · · , xt. Again, the 2D iterative EC shown in Fig. 1 only

accepts softbit information as its input. Then, the receiver has to estimate the softbit information of

each bit representing the original pixels2 x0, · · · , xt, namelyy0, · · · , yt, which carry the error-infested bit

sequencey0
(

m−1
0

)

, · · · , yt
(

m−1
0

)

. The softbit information represented by the log-likelihood ratios (LLR)

may be readily derived from the softbit patternsy0, · · · , yt, yielding L [yi (k) |xi (k)] in Fig. 1, which

indicates the receiver’s confidence in the originalm-bit pixel xi (k).

B. Error Concealment

Given the softbit LLR inputL [yi (k) |xi (k)] of Fig. 1, our 2D iterative EC may be invoked for mitigating

the effects of channel-errors on the error-infestedm-bit sequence of(t + 1) pixelsy0
(

m−1
0

)

, · · · , yt
(

m−1
0

)

.

Two stages are involved in the EC process, namely the Iterative Horizontal-Vertical Scanline Model

(IHVSM) based decoding and the related pixel estimation, asseen in Fig. 1.

1Softbit source decoding was proposed in [5]. Instead of expressing a bit as 0 or 1, a softbit represents one bit of information using a

floating-point number, indicating our confidence in that bit.
2The ability to estimate the soft value of a bit constitutes anessential condition of applying our EC model.
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1) IHVSM based decoding:At the first stage, two similar source decoders are employed,namely the

Horizontal Scanline Model Decoder (HSMD) operating in the horizontal direction and the Vertical Scanline

Model Decoder (VSMD) proceeding in the vertical direction.Let us now assume that we receiveH

horizontal scanlines andV vertical scanlines at the receiver. Then the IHVSM decodingmay be performed

based on the(H × V )-pixel block, which is represented by the(H · V )-m-softbit patternsyi. Here we

consider the HSMD as an example for highlighting the decoding process. Them-softbit-based pixel value

yi is used for generating the systematic LLR informationL [yi (k) |xi (k)], which is then input to the HSMD

without the assistance of any channel decoding. However, our technique may be conceived with arbitrary

channel codecs. The HSMD also exploits thea-priori LLR information Lh [xi (k)] generated from the

extrinsic informationLv
e [xi (k)]

3 provided by the vertical decoder. The horizontal decoder independently

performs source-modelling aided soft decoding of each of the H horizontal scanlines. Hence, following

horizontal decoding, the extrinsic LLR informationLh
e [xi (k)] may be generated for allH scanlines. Then

the relevant(H × V )-line extrinsic information block will be appropriately reordered in the blockR−1

of Fig. 1 for generating thea-priori informationLv [xi (k)] for the vertical decoder.

For further illustration of the IHVSM decoding process, consider the example of the horizontal and

vertical scanlines displayed in Fig. 2, where the pixels connected by the solid/dashed arrows belong

to a horizontal/vertical Markov process. Specifically, the5 pixels of the first row in Fig. 2 are mod-

elled by a 5-pixel Markov processh1. Let us assume that the 5 pixel values available at the receiver

may be expressed asy1,1, · · · , y1,5 of Fig. 2, each of which consists ofm soft values indicating the

decoder’s confidence in each of them systematic bits4. The correspondinga-priori LLR information

Lh
[

x1,1

(

m−1
0

)]

, · · · , Lh
[

x1,5

(

m−1
0

)]

for the 5 pixels is provided by the VSMD decoder. The(5 × m)

soft values representing the 5 pixels can exchange extrinsic information with each other, when the HSMD

decoder is processing scanlineh1. Similarly, the pixel confidences of all 5 horizontal scanlines may be

3The first-order Markov process aided decoding algorithm will be detailed in Section III, along with the associated iterative decoding

principle.
4Them soft values may be acquired in different ways in different applications. In the application of DVC, them soft values of the pixels

in the WZ frames are estimated from the key frames, which are intra-coded and transmitted to the receiver [27].
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Fig. 2. The structure of horizontal scanlines and vertical scanlines and their corresponding Markov processes.yi,j represents the received

pixel at the position(i, j) in the MB, which corresponds to the error-infested version of original pixel xi,j .

improved by performing HSMD onh1, · · · , h5, respectively. Note that the pixels only shared their informa-

tion within the horizontal scanlines in the HSMD process. After HSMD decoding, the extrinsic information

provided by the(5×5) pixels, namely the(5×5×m) soft values ofLh
e

[

x1,1

(

m−1
0

)]

, · · · , Lh
e

[

x5,5

(

m−1
0

)]

are generated. Then, these(5×5×m) extrinsic information values will be reordered into vertical scanlines

by the blockR−1 of Fig. 1, which will be utilized asa-priori information by the VSMD decoder. Then

the VSMD decoder will decode the vertical Markov processv1 based on the systematic information

y1,1, · · · , y5,1, whilst also exploiting thea-priori LLR information Lv
[

x1,1

(

m−1
0

)]

, · · · , Lv
[

x5,1

(

m−1
0

)]

reordered byR−1. Similar to the HSMD, the VSMD will improve the decoder’s confidence related to the

pixels by exchanging extrinsic information in the verticaldirection. After VSMD processing of the vertical

scanlinesv1, · · · , v5, respectively, a full iteration of the IHVSM scheme is completed and the HSMD will

exploit the extrinsic information fed back by the VSMD decoder in order to start the next iteration. This

iterative process will terminate after the affordable number of iterations. Observe that any two pixels of

a MB are related to each other according to our Markov model and can exchange information with each

other with the aid of the IHVSM decoder. Moreover, the IHVSM decoder performs decoding on a block

by block basis, as defined in the system.

2) Pixel Estimation:Following the IHVSM decoding process, the relevanta-posteriori information is

generated at the parameter estimation stage by summing the systematic LLR informationL [yi (k) |xi (k)],

the a-priori LLR information Lv [xi (k)] and the extrinsic LLR informationLh
e [xi (k)], where thea-

posteriori information L [xi|y
t
0] may be exploited either by the minimum mean square error (MMSE)

decoder or the maximum aposteriori probability (MAP) decoder for estimating them-bit patternxi and

ultimately to output the estimated original pixelx̂i [5], which may be formulated as
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• MAP estimator

x̂i = argmax
∀xi∈Xm

p(xi|y
t
0); (1)

• MMSE estimator

x̂i =
∑

xi∈Xm

xi · p(xi|y
t
0). (2)

Both the MMSE estimator of Eq. (2) and the MAP estimator of Eq.(1) may be deemed to be symbol-based

estimators, since they are based on thea-posterioriprobability p(xi|y
t
0) of them-bit patternxi, which is

conditioned on the received frame of bit patternsyt0. However, since the specific bitsxi(0), · · · , xi(m−1)

of the pixels are independent of each other, if the bit-baseda-posterioriprobabilityp [xi(k)|y
t
0] is provided

by the iterative decoding process, the symbol-baseda-posteriori probability p(xi|y
t
0) in Eq. (1) and Eq.

(2) may be derived from the bit-based information as their product:

p(xi|y
t
0) =

m−1
∏

k=0

p
[

xi(k)|y
t
0

]

. (3)

Furthermore, the symbol-based MMSE estimation rule may also be derived from the bit-based probability

p [xi(k)|y
t
0] as follows

x̂i =
∑

xi∈Xm

xi · p
(

xi|y
t
0

)

=
∑

xi∈Xm

xi ·

m−1
∏

k=0

p
[

xi(k)|y
t
0

]

=
m−1
∑

k=0

2k · p
[

xi(k) = 1|yt0
]

∑

xi∈Xm

xi(k)=1

m−1
∏

l=0
l 6=k

p
[

xi(l)|y
t
0

]

.

It may be readily shown that
∑

xi∈Xm

xi(k)=1

m−1
∏

l=0
l 6=k

p [xi(l)|y
t
0] = 1, hence the symbol-based MMSE estimatorx̂i can

be derived from the bit-based probabilities as

x̂i =

m−1
∑

k=0

2k · p
[

xi(k) = 1|yt0
]

. (4)

Finally, the hard pixel̂xi of Fig. 1 may be returned as the final estimate of the original pixel xi.

III. M ARKOV MODELLED SOFTBIT SOURCE DECODING WITH REDUCED COMPLEXITY

In this section, we focus our attention on the decoding of thefirst-order Markov process as well as

on its iterative decoding principle. The employment of first-order Markov modelling aided softbit source
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L
[

xi (k) |y
t
0

]

= log

∑

xi∈Xm

xi(k)=0

βi (xi) · γi (xi) ·
∑

xi−1∈Xm

p (xi|xi−1) · αi−1 (xi−1)

∑

xi∈Xm

xi(k)=1

βi (xi) · γi (xi) ·
∑

xi−1∈Xm

p (xi|xi−1) · αi−1 (xi−1)
(5)

decoding (FOMM-SBSD) was discussed in [5]–[7]. Thea-posteriori log-likelihood ratio of bit xi(k)

conditioned onyt0 was derived in [6], [7], which may be expressed as in Eq. (5), where the components

γ, α and β are defined by Adrat and Vary in [7]. In this section, firstly wepropose our novel trellis

representation of the first-order Markov source-process inSection III-A. We will then detail the decoding

rules of our trellis in Section III-B, which is a reduced complexity version of the technique proposed by

Vary’s team [7]. Finally, we will present our extrinsic information formula invoked for iterative decoding

in Section III-C, while the computational complexity imposed is analyzed in Section III-D.

A. Trellis Representation of First-Order Markov Chain

0

1

xi−2 xi−1 xi+1xi xi+2

p(xi|xi−1) p(xi+1|xi)p(xi−1|xi−2) p(xi+2|xi+1)

2m-1

αi(xi) χi(xi) βi(xi)

Fig. 3. Trellis of first-order Markov process for BCJR decoding, wherep (xi+1|xi) is the Markov transition probability.

The traditional trellis representation is detailed in [39]. In contrast to the traditional one, the trellis of

the first-order Markov process is shown in Fig. 3, where them-bit patternxi represents the trellis state

at time instanti and the probability of transition from statexi to statexi+1 is represented byp (xi+1|xi),

which is the state transition of the related Markov process.For them-bit patternxi, there are2m possible

states.

B. BCJR Decoding of First-Order Markov Chain

The existinga-posterioriprobability generation rule conceived for first-order Markov modeled SBSD is

shown in Eq. (5). However, we will demonstrate that the complexity imposed may be reduced by invoking

our novel trellis introduced in Section III-A. Let us initially follow the procedure of the classic BCJR
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[40] based determination rule of themaximum a-posteriori probability.At the receiver, thea-posteriori

probability of them-bit patternxi, xi ∈ Xm conditioned on the specific received frame ofm-bit patterns

y0, . . . , yt may be expressed as

p
(

xi|y
t
0

)

=
p (xi ∧ yt0)

p (yt0)
, (6)

where the joint probabilityp (xi ∧ yt0) of them-bit patternxi and of the received frameyt0 may be further

formulated as

p
(

xi ∧ yt0
)

= βi (xi) · χi (xi) · αi (xi) . (7)

In Eq. (7), the componentsα, β, χ are defined as follows

αi (xi) = p
(

yi−1
0 ∧ xi

)

βi (xi) = p
(

yti+1|xi

)

χi (xi) = p (yi|xi) .

(8)

In Eq. (8), the symbol-based channel informationχi (xi) = p (yi|xi) may be calculated from the bit-based

channel information as

χi (xi) = Cχi
· exp

m−1
∑

k=0

xi(k)

2
· L [yi(k)|xi(k)], (9)

whereCχi
is the normalization factor, which solely depends onyi. Furthermore, similar to the forward

recursion calculation in BCJR, the componentαi (xi) in Eq. (8) may be formulated as

αi (xi) =
∑

xi−1∈Xm

χi−1 (xi−1) · p (xi|xi−1) · αi−1 (xi−1) .

Similarly, the backward recursion calculation of the componentβi (xi) in Eq. (8) is given by:

βi (xi) =
∑

xi+1∈Xm

βi+1 (xi+1) · χi+1 (xi+1) · p (xi+1|xi).

The determination of the bit-baseda-posteriori LLR from the symbol-baseda-posteriori probability

p (xi|y
t
0) was presented in [7]. Similarly, the bit-baseda-posterioriLLR L [xi (k) |y

t
0] may be formulated

as

L
[

xi (k) |y
t
0

]

= ln

∑

xi(k)=0
xi∈Xm

βi (xi) · χi (xi) · αi (xi)

∑

xi(k)=1
xi∈Xm

βi (xi) · χi (xi) · αi (xi)
. (10)
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We have now derived the final rule of determining the bit-based a-posteriori probability LLR, which

is represented in Eq. (10). In contrast to the existing determination rule formulated in Eq. (5), the inner

summation
∑

p (xi|xi−1) · αi−1 (xi−1) is avoided in Eq. (10), which reduces the computational complexity.

Furthermore, the Jacobian logarithm [39] may be readily applied for deriving the log-domain represen-

tation of our algorithm.

C. Extrinsic Information Exchange for Iterative Decoding

A limitation of the formulas provided in Section III-B is that they cannot be directly used for iterative

decoding, since they cannot exploit thea-priori LLR informationL [xi(k)], which was generated from the

extrinsic information gleaned from the other decoder involved in the turbo-like iterative decoding process

[41]. The rules of iterative source and channel decoding were derived by Vary and his team in [6], [7]. To

make use of thea-priori LLR informationL [xi(k)], the combined bit-based log-likelihood information5

may be utilized as [7]

γi (xi) = exp

m−1
∑

k=0

x̄i(k)

2
· {L [xi(k)] + L [yi(k)|xi(k)]} , (11)

where the symbol-basedm-bit informationγ is the combination of the bit-based log-likelihooda-priori

informationL [xi(k)] and of the channel informationL [yi(k)|xi(k)]. We note in this context thatγ of Eq.

(11) contains more valuable information than the channel informationχ. By replacingχ with γ in Eq.

(11) we have the following formula:

L
[

xi (k) |y
t
0

]

= ln

∑

xi∈Xm

xi(k)=0

βi (xi) · γi (xi) · αi (xi)

∑

xi∈Xm
xi(k)=1

βi (xi) · γi (xi) · αi (xi)
. (12)

Moreover the symbol-baseda-posterioriprobability of the first and lastm-bit patterns may be expressed

as follows

p
(

x0 ∧ yt0
)

= β0 (x0) · γ0 (x0) · p (x0)

p
(

xt ∧ yt0
)

= γt (xt) · αt (xt) .

(13)

5Similar to Eq. (9), a constant normalization factor is neglected since it will be canceled during the calculation.
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L
[

xi (k) |y
t
0

]

= L [xi(k)] + L [yi(k)|xi(k)] + ln

∑

xi∈Xm

xi(k)=0

βi (xi) · γ
[ext]
i [xi(k)] · αi (xi)

∑

xi∈Xm

xi(k)=1

βi (xi) · γ
[ext]
i [xi(k)] · αi (xi)

= L [xi(k)] + L [yi(k)|xi(k)] + L

(14)

Similar to the BCJR decoding technique of classic turbo codes [39], the bit-baseda-posteriori LLR

L [xi (k) |y
t
0] may be split into three components, namely thea-priori informationL [xi(k)], the channel

informationL [yi(k)|xi(k)] and the extrinsic informationLe [xi(k)]. Specifically, the bit-baseda-posteriori

informationL [xi (k) |y
t
0] may be formulated as in Eq. (14), where the extrinsic information component

γ
[ext]
i [xi(k)] may be expressed as

γ
[ext]
i [xi(k)] = exp

m−1
∑

l=0,l 6=k

x̄i(l)
2

· {L [xi(l)] + L [yi(l)|xi(l)]} .

D. Complexity Analysis

The complexity of the first-order Markov process based decoder can be attributed to the calculation

of γi (xi), αi (xi), βi (xi) andL [xi (k) |y
t
0]. For the existing Markov process based decoding technique of

Eq. (5) [7], the computational costs are on the order ofO (2m · t ·m), O (22m · t) andO (22m · t) for γ,

α andβ, respectively. Furthermore, in Eq. (5), the inner summation
∑

p (xi|xi−1) · αi−1 (xi−1) imposes

O (22m · t) operations. Hence, the calculation ofL [xi (k) |y
t
0] has a complexity ofO (22m · t+ 2m · t ·m).

Therefore the complexity of the existing Markov process based decoding algorithm is on the order of

O (3 · 22m · t+ 2 · 2m · t ·m). Similarly, our proposed BCJR decoder of the first-order Markov process

has a complexity ofO (2 · 22m · t+ 2 · 2m · t ·m). Generally speaking, the proposed decoding technique

achieves a 33% computational complexity reduction.

Note that the decoding complexity of the first-order Markov process increases exponentially with the

number of bits per symbolm. Hence, a quantizer may be employed for striking a tradeoff between the

complexity imposed and the attainable performance.

IV. PERFORMANCE ANALYSIS
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Again, low-complexity video transceivers exhibit a high amount of residual redundancy in the video

signals received at the receiver. In this section, we will consider two representative video transmission

scenarios, namely a Wyner-Ziv video coding [27] and an uncompressed video transmission scenario. In

both of the scenarios, we will firstly present the system configuration, including the system parameters

and the key techniques employed.

Note that the peak to-signal-noise ratio (PSNR) metric is employed for quantifying the reconstructed

video quality in this section. To avoid having infinite PSNR values when a video is perfectly reconstructed,

we artificially set the total averaged mean squared error (MSE) value between the reconstructed and the

original frame to a minimum value of 1. This is justified, since the same technique is employed in the

H.264 reference software JM. Hence the maximum unimpaired video PSNR that may be obtained at the

receiver is about 48.1 dB.

A. IHVSM aided Wyner-Ziv Video Coding

In the Wyner-Ziv video coding schemes of Girodet al. [27], as well as of Brites and Pereira [32], the

side information (SI) of the WZ frame is estimated from the so-called key frames, which are intra-coded

by standard codecs, such as H.264 for example. Furthermore,a part of the parity bits of WZ frames is

transmitted to the receiver upon request for the sake of assisting the receiver to recover the WZ frames.

However, the pixel-correlation within WZ frames is not exploited. In this section, we will combine our

EC scheme with the the turbo-coding aided WZ codec [32], in order to iteratively conceal the softbit

errors returned by the turbo decoder, thereby implicitly reducing the requested bitrate.

Encoder
Turbo

H.264/AVC

Intra-Decod.

H.264/AVC

Intra-Cod.

Request
VSMD

Turbo
Decoder

frames
WZ

frames
Key

SI
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key frames
Decoded

Decoded
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Fig. 4. System architecture of our proposed IHVSM-PDWZ system, which is based on the PDWZ system proposed in [32].
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1) System Configuration:Generally, two types of techniques exist in the literature for encoding the

WZ frames, namely pixel-domain WZ (PDWZ) [27], [32] and transform-domain WZ (TDWZ) [32] video

coding. The PDWZ codec imposes a lower complexity on the encoder than the TDWZ scheme, hence -

as expected - it exhibits a worse rate-distortion (RD) performance. In this section, we apply the proposed

IHVSM algorithm in the context of a PDWZ scheme for improvingthe attainable RD performance. The

Wyner-Ziv coding scheme advocated in [32], [42] is based on the structure proposed in [43], [44], with

a number of further refinements proposed. We opted for the PDWZ system of [32] as our benchmarker,

while some further details are illustrated in [42]. Note that the proposed IHVSM may also be employed in

other WZ video coding schemes provided that the video decoders at the receiver are capable of estimating

the softbit information of the video pixels.

Let us now proceed by detailing the turbo-coded (IHVSM-Turbo) PDWZ system of Fig. 4. At the

transmitter, the key frameu is intra-coded by the H.264/AVC video codec, whilst the WZ framev is

uniformly quantized for generating the 2D signalq. Then the bit-patternq is encoded by the classic turbo

codec [41], where only the parity bitsqp will be buffered and transmitted to the receiver. At the receiver,

the key frame is reconstructed using the H.264/AVC intra-decoder. The decoded key framêu will then

be utilized by the frame estimator6 of Fig. 4 for estimating the side information (SI) frameṽ. Then, our

IHVSM-Turbo decoder of Fig. 4 will perform three-stage iterative decoding [45] using the estimated SI

frame ṽ and the received parity bitsqp. For the IHVSM-Turbo scheme, the SI frameṽ may be used as the

systematic information of the corresponding WZ framev, which will be exploited by all the three decoding

components, namely the HSMD, the turbo codec, and the VSMD ofFig. 4. For the HSMD and the VSMD

components, the technique introduced in Section III-C is utilized for iterative decoding. Furthermore, the

HSMD and the turbo codec constitute the inner decoding component, while the VSMD is the outer one.

Similarly to most proposals found in the literature [27], [32], the “request-and-decode”7process of [27] is

repeated, until an acceptable probability of symbol error is reached. Finally, the quantized WZ frame is

6More details of the frame estimation process can be found in [32]. Here we focus on our proposed IHVSM-Turbo scheme.
7When failing in decoding a WZ frame, the receiver sends a request to the transmitter, which will transmit additional parity bits to the

receiver. Then the receiver re-decodes the WZ frame upon theaccumulated parity bits.
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Hall Foreman Coastguard

Representation YUV 4:2:0 YUV 4:2:0 YUV 4:2:0

Format QCIF QCIF QCIF

Bits Per Pixel 8 8 8

FPS 15 30 15

GOP 2 2 2

Number of Frames 165 300 150

Channel Perfect Perfect Perfect

TABLE I

TABLE OF PARAMETERS EMPLOYED FOR THE VIDEO SEQUENCES.

recovered aŝq, which will be utilized together with the estimated SI frameṽ for reconstructing the WZ

frame v̂.

In the following, we benchmark the proposed IHVSM-PDWZ scheme’s performance against that of

the PDWZ system of Brites and Pereira [32], where the traditional turbo codec was employed. Moreover,

the corresponding results recorded for the conventional intra-frame and inter-frame video coding scheme

employing the H.263 and H.264 codecs are also provided as baseline benchmarker curves in Section

IV-A.2. The RD performance of the well-known transform-domain DISCOVER [46] codec will also be

included for visualizing the gap between the pixel domain WZand transform domain WZ. Three sequences

are tested, namely the Hall monitor, the Foreman and the Coastguard sequences, whose parameters

are shown in Table I. In all the experiments, the group of picture (GOP) parameter was set to 2; the

bitrate/PSNR of both the WZ and the key frames was also taken into account. The RD results recorded

for both the PDWZ and IHVSM-PDWZ schemes in Fig. 4 were parameterized by the number of WZ

coded bitplanes, which was set tom =1, 2, 3 or 4 most significant bit (MSB) planes, as usual in the pixel-

domain WZ video coding literature. This was arranged by invoking the uniform quantizer shown in Fig.

4. In [42], each bitplane of the MSB planes was transmitted separately and each bitplane was then refined

based on the previously decoded bitplanes [47]. However, inour system, all bitplanes of the MSB planes

were transmitted together, which allowed us to reduce the number of “request-and-decode” processes

defined in [27]. The remaining parameters of our system were identical to those in [32], [42]. Note that
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Fig. 5. Rate-distortion performance comparison of the IHVSM-PDWZ codec and the benchmarkers, H.263 Intra, H.264/AVC Intra,

H.264/AVC NoMotion, PDWZ [32] and DISCOVER [46]. Hall sequence, Foreman sequence and Coastguard sequence.

for the IHVSM-PDWZ schemes, the size of the Markov Model’s State Transition Table (MMSTT) was of

(2m × 2m) elements. Specifically, for the Hall sequence associated with m = 4, the size of the MMSTT

side information was(16× 16) floating-point values for 165 QCIF frames8.

2) Numerical Results:The simulation results recorded for the three sequences aredisplayed in Fig.

5. Observe from Fig. 5 that for the Hall sequence the IHVSM-PDWZ using a single iteration reduces

the bitrate by 3%, 5.9%, 10.7% and 13% in comparison to the PDWZ scheme form = 1, · · · , 4 MSB

8In our simulations, the transmitter scans all adjacent pixel pairs and records their difference, which may be modelled by a Laplacian

distribution. The required MMSTT is then generated at the receiver using the received Laplace parameters. Furthermore, since the key frames

are available at the decoder, an alternative technique is toestimate the MMSTT from the adjacent key frames.
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Fig. 6. Transmission of uncompressed video through wireless channel.

planes, respectively. WhenI = 4 iterations were employed by the IHVSM-PDWZ, the bitrate reduction

was increased to 8.5%, 10.5%, 13.8% and 15.8% form = 1, · · · , 4 MSB planes, respectively. This is

due to the fact that our IHVSM scheme is capable of estimatingand correcting the extrinsic information

gleaned from the turbo codec during each iteration. Similarly, observe from Fig. 5 that for the Foreman

sequence the IHVSM-PDWZ usingI = 4 iterations reduces the bitrate by 0%, 10.5%, 18.4%, 21.5% for

m = 1, · · · , 4 MSB planes, respectively. For the Coastguard sequence, theIHVSM-PDWZ usingI = 4

iterations reduced the bitrate by 1.1%, 9.6%, 16.8%, 20.4% for m = 1, · · · , 4 MSB planes, respectively.

For all the test sequences, the bitrate reduction increasedwith the number of MSB planes. The reason for

this is that the receiver is more unlikely to be able to estimate the SI of WZ frame accurately from the

received key frames, while our IHVSM scheme is capable of effectively concealing the errors in the turbo

decoding process. As suggested by the simulation results, the IHVSM-PDWZ is unable to substantially

reduce the bitrate by increasing the number of iterations. However, the IHVSM-PDWZ fails to match the

performance of the transform-domain DISCOVER codec.

B. Uncompressed Video Transmission

In this section uncompressed video will be transmitted though a Rayleigh channel. The demodulator

estimates the softbit information at the receiver, therebymeeting the essential prerequisite we

emphasized in Section II for the application of our EC technique. Hence our EC model will be

employed for concealing the error effects imposed on the video frames.

1) System Configuration:In this section, we consider the scenario of uncompressed video transmission,

which may be employed for home networking [26]. The system’sarchitecture is displayed in Fig. 6. At
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Akiyo Coastguard Football

Representation YUV 4:2:0 YUV 4:2:0 YUV 4:2:0

Format QCIF QCIF QCIF

Bits Per Pixel 8 8 8

FPS 15 15 15

Number of Frames 30 30 30

Bitrate 524 kbps 1924 kbps 3168 kbps

“Natural” Code Rate 1/8.7 1/2.37 1/1.44

Channel Unc-Ray Unc-Ray Unc-Ray

Modulation BPSK BPSK BPSK

TABLE II

TABLE OF PARAMETERS EMPLOYED FOR THE VIDEO SEQUENCES. Unc-Ray STANDS FORUNCORRELATEDRAYLEIGH .

time instanti, the transmitter has to convey a video pixelxi, which is mapped to them-bit pattern

xi

(

m−1
0

)

. This pixel-to-bit mapper may include a quantization function [18]. We treat(t+1) consecutive

and hence correlatedm-bit patterns eg.x0, · · · , xt as a frame. Let us consider the first 2D video frame for

example, which will be interleaved by a bit-based interleaver of length(t + 1) ·m. Then the signals are

transmitted to the receiver through a Rayleigh channel without channel coding using BPSK modulation.

At the receiver, the demodulator will generate the softbit information of the video pixels, which will

be input to our proposed EC model, namely to theIHVSM and pixel estimationblocks of Fig. 6. The

reconstructed hard-decision-based pixelx̂i can then be acquired after the pixel estimation stage of Fig.

6. Note that for the sake of low-complexity, the system does not employ any channel encoder. However,

a channel encoder may be invoked for error protection, whilethe corresponding iterative decoding may

then be performed by a three-stage decoder [45].

We compare the performance of our scheme recorded for the video sequences Akiyo, Coastguard

and Football against that of the existing system model. Video sequences stored in(176× 144)-pixel

quarter common intermediate format (QCIF) and 4:2:0 YUV representation are employed. Moreover, the

horizontal and vertical decoders perform iterative decoding based on(8 × 8)-pixel blocks. Each QCIF

luminance frame is divided into(22× 18) blocks and each QCIF chroma frame is divided into(11× 9)
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blocks. Note that for simplicity, the uncompressed video bits are transmitted through an uncorrelated

non-dispersive Rayleigh channel using BPSK modulation. These parameters are summarized in Table II.

The MMSTT of the first-order Markov model was derived from theoriginal video pixels, which may be

utilized by the horizontal and vertical source decoders as side-information for improving the achievable

error resilience. We mainly rely on two types of curves for characterizing the video quality, namely the

peak signal-to-noise ratio (PSNR) versus the channel SNR per bit, namelyEb/N0 curves and the bit error

ratio (BER) versusEb/N0 curves.

Shannon’s channel capacity theorem [1] was proposed for thetransmission of i.i.d source. Hence, to be

in line with the channel capacity theory, we have to considerthe true entropy of the video sequence, when

calculating the energy efficiency per bit. More explicitly,any redundancy inherent in the encoded sequence

has to be taken into account by shifting the BER vsEb/N0 curves to the right, regardless, whether the

redundancy is natural source redundancy or whether it was artificially imposed by channel coding. In our

case, substantial redundancy resides in the video source signal, since here we do not employ any video

encoder. Hence the true amount of non-redundant information transmitted to the receiver is given by the

entropy of the video sequence. Assuming that the total uncompressed size of a video file isSr bits and

the entropy of this video source file isSe, we might interpret the raw video file as being “naturally”

losslessly encoded fromSe i.i.d bits, to generateSr bits where the code rate isr = Se/Sr. According to

Shannon’s source coding theorem [1], the entropy of the video source file represents the lowest achievable

rate at which the source may be losslessly represented. Hence in our simulations theEb/N0 (dB) value is

calculated asEb/N0 = 10 log10
EbSr

N0Se
. However, no widely recognized technique exists for quantifying the

entropy of a realistic video source. As a practical solution, we opted for using the near-lossless coding

mode of the H.264 codec [14], [18] to encode the source video for the sake of approximating its entropy.

The “natural” code rates of the Akiyo, Coastguard and Football sequences used in our simulations are

listed in Table II. Quantitatively, we found that the “natural” code rates of the three sequences were

1/8.7, 1/2.37 and 1/1.44 for the scenario considered, which corresponds to the maximum achievable

compression ratios of 8.7, 2.37 and 1.44, respectively. Thecorresponding bitrates and PSNR values are
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Fig. 7. BER vsEb/N0 comparison of MAP- and MMSE-based pixel estimation for a Rayleigh channel. Akiyo sequence.
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also shown in Table II, where the PSNR values correspond to the maximum quality of the error-freely

source decoded video at the receiver.

MAP-HD MMSE-HD FOMM-SBSD IHVSM

Dimension 1 1 1 2

MIN Bits to Decode 1 8 64 4096

Side information None None 1×MMSTT 1×MMSTT

TABLE III

COMPARISON OFIHVSM AND THE BENCHMARKERS: MAP-HD [5], MMSE-HD [5] AND FOMM-SBSD [7].

We will benchmark the performance of our system against three schemes, namely against that of the

MAP-based and MMSE-based hard decoding schemes (MAP-HD/MMSE-HD), where no softbit source

decoding is employed, as well as against the FOMM-SBSD scheme, where no IHVSM decoding is

employed. In the latter case only one of the two decoders is activated. A brief comparison of the four

schemes is shown in Table III.
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2) Numerical Results:Firstly, the BER versusEb/N0 performance comparison of the MAP based and

MMSE based pixel estimation using the Akiyo sequence is presented in Fig. 7, while the corresponding

Y-PSNR versusEb/N0 results are presented in Fig. 8. As suggested by both the BER and Y-PSNR

figures, the IHVSM-MAP decoder substantially outperforms both the FOMM-SBSD-MAP and the MAP-

HD. Specifically, at BER of(3× 10−2) the IHVSM-MAP outperforms the FOMM-SBSD-MAP by about

0.65 dB, while the MAP-HD is outperformed by about 6.3 dB. Similarly, at a Y-PSNR of 37.5 dB

the IHVSM-MAP outperforms the FOMM-SBSD-MAP by about 2.5 dB. Moreover, the IHVSM-MMSE

decoder significantly outperforms both the FOMM-SBSD-MMSEand the MMSE-HD. Specifically, at a

BER of 10−2 the IHVSM-MMSE outperforms the FOMM-SBSD-MMSE by about 2.5dB. Similarly, at

a Y-PSNR of 40 dB the IHVSM-MMSE outperforms the FOMM-SBSD-MMSE by about 2 dB in terms

of theEb/N0 required.

Observe from Fig. 7 and Fig. 8 that we can achieve a BER of3 × 10−3 at Eb/N0 of 11.9 dB and

15.6 dB for the MAP-aided and MMSE-based IHSVM, respectively. In contrast to this, we can achieve

a Y-PSNR of 40 dB at anEb/N0 of 18.1 dB and 17.4 dB for the MAP-aided and MMSE-based IHSVM,

respectively. We may conclude that the MAP estimator is capable of achieving a lower BER, while the

MMSE estimator may achieve an increased PSNR. Hence, to achieve an increased PSNR, the MMSE

based pixel estimation should be employed.

To provide further insights, we present simulation resultsfor two high-dynamic video sequences in

Fig. 9, namely for the Coastguard and Football sequences. Again, the MMSE based estimator is capable

of achieving a higher PSNR than the MAP based estimator. We only present the Y-PSNR versusEb/N0

curves in Fig. 9 using the MMSE based estimator. As suggestedby Fig. 9, the IHVSM-MMSE substantially

outperforms both the FOMM-SBSD-MMSE and the MMSE-HD. Specifically, at a Y-PSNR of 40 dB the

IHVSM-MAP outperforms the FOMM-SBSD-MAP by about 6 dB and 3.5 dB for the Coastguard and

Football sequences, respectively. However, for the IHVSM scheme, the Y-PSNR decreases upon increasing

the number of iterations at lowEb/N0 values. This is due to the fact that the first-order Markov process

is unable to perfectly match the statistics of the real video, since the pixel values change dramatically
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Fig. 9. Y-PSNR vsEb/N0 for a Rayleigh channel when the MMSE is employed for pixel estimation. Coastguard and Football sequences.

at the scene borders in real video scenes. The visual comparison of the decoded frames for the Akiyo,

Coastguard and Football sequences are shown in Fig. 10.

Fig. 10. Comparison of the first frames recorded atEb/N0 of 9.4 dB, 3.7 dB and 1.6 dB for the Akiyo, Coastguard and Football sequences,

decoded by MMSE-HD, FOMM-SBSD and IHVSM. MMSE-based pixel estimation is employed.

V. CONCLUSIONS

In this paper, we proposed a symbol-based model of iterativesource decoding for video receiver

enhancements, which may be combined with channel decoding.Furthermore, a reduced-complexity first-

order Markov model based source decoder was derived. Iterative decoding was performed by exchanging

extrinsic information between two source decoders, namelythe HSMD and the VSMD. Our simulation
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results showed that the proposed system model substantially improves the achievable error resilience and

may facilitate a transmit power reduction in excess of 6 dB inuncompressed video coding. Furthermore,

by incorporating the IHVSM scheme into WZ video coding, we were able to reduce the bitrate by up to

21.5% compared to the PDWZ benchmarker system.

Our future work will focus on iterative decoding exchangingextrinsic information between the source

decoder and channel decoder.
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