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EFFECT OF INCREASING SEA WATER TEMPERATURE ON THE GROWTH AND TOXIN 

PRODUCTION OF THREE HARMFUL BENTHIC DINOFLAGELLATES ISOLATED FROM 

THE FLEET LAGOON, DORSET, UK. 
 

By Aldo Aquino-Cruz 
  

Coastal marine waters are experiencing significant environmental changes (e.g. increasing water 

temperature) that are influencing the dynamics and increased occurrence of harmful microalgal blooms (HABs) 

worldwide. Harmful blooms from benthic microalgae (e.g. dinoflagellates) are annually reported in some UK 

waters but little research has been conducted to date regarding the impact of a global warming scenario on their 

abundance and toxin production Therefore, this study aimed to investigate the effect of increasing water 

temperature on the growth and toxin production of three toxigenic/benthic dinoflagellates isolated from the 

Fleet Lagoon, Dorset, UK. 

 

The harmful/epibenthic dinoflagellates Amphidinium carterae, Prorocentrum lima, and Coolia 

monotis were isolated from the Fleet Lagoon and grown in clonal batch non axenic monocultures between 5 

and 30 °C using Guillard’s F/2 medium. Cultures were maintained at irradiances between 35 and 65 µmol m
-2 

s
-

1
 and under a 12h L:12h D photoperiod. A single strain was used of each microalgal species and samples for 

cell abundance, photosynthetic efficiency (Fv/Fm), inorganic nutrient concentration (nitrate,   NO3+NO2 and 

phosphate, PO4), chlorophyll a and toxin measurements were collected every few days over periods of up to 80 

days.  Toxins were detected and measured by LC-MS/MS from P. lima samples while copepod and brine 

shrimp bioassays and haemolytic assays were used to estimate the potential toxicity of A. carterae and C. 

monotis. 
 

 A. carterae cell growth rate produced a strong linear relationship (r
2
= 0.97, p= 0.001) with 

temperature, with higher growth rates (µ=0.14-0.55 d
-1

) at increasing growth temperatures ranging between 5 

and 25 °C. Photosynthetic efficiency (Fv/Fm values) increased with temperature from 5 to 25 °C but showed a 

strong decrease at 30 °C. A. carterae growth produced higher NO3+NO2 and PO4 consumption at increasing 

temperatures resulting in PO4 limitation at temperatures between 15-25°C. Toxin assays confirmed that A. 

carterae produced hemolysins causing deleterious effects on red blood cells and mortality in harpacticoid 

copepods. 
 

P. lima cell growth rate was linearly related (r
2
= 0.97, p= <0.001) to temperature between 5 °C (µ= 

0.05 d
-1

) and 15 °C (µ= 0.17 d
-1

) with similar growth rates at 15 and 25 °C. Maximum Fv/Fm values increased 

at higher temperatures, but there was a lack of coincidence between the highest Fv/Fm value (at 20 °C) and 

highest growth rate. NO3+NO2 and PO4 uptake ratios showed that P. lima cells removed nutrients more 

efficiently at increasing temperatures, causing PO4 limitation at 20-30 °C. NO3+NO2 and PO4 uptake in 

cultures, particularly PO4 depletion during the stationary growth phase, was linked with higher concentrations 

of the toxins okadaic acid (OA) and dinophysistoxin1 (DTX1). Furthermore, toxin production was influenced 

by increasing growth temperatures, Total OA varied between 2.0-10.99 pg cell
-1 

while Total DTX1 ranged 

between 0.82-5.96 pg cell
-1

 in P. lima cells, with OA/DTX1 ratios between 1.7 and 2.9. P. lima was highly 

toxic to Artemia salina with toxins causing a rapid rate of mortality (< 24h). 
 

C. monotis cells growth rates also increased linearly (µ = 0.003 to 0.24 d
-1

; r
2
= 0.69, p= <0.001) with 

increasing growth temperatures between 5 and 20 °C. The highest Fv/Fm value was determined in C. monotis 

cells at 15 °C and higher or lower temperatures caused a reduction of Fv/Fm values. NO3+NO2 and PO4 were 

substantially removed from culture flasks at increasing temperatures between 10 and  25 °C and PO4  limitation 

occurred at these temperatures towards the end of the stationary growth phase. Haemolytic compounds were 

detected in C. monotis cells and bioassays confirmed a toxic effect of cell extracts on red blood cells. 
 

This study provides evidence that the toxigenic dinoflagellates A. carterae, C. monotis, and P. lima 

can tolerate and grow at a range of temperatures suggesting that  increasing  sea water temperatures will have a 

positive effect on the growth of these toxigenic/epibenthic dinoflagellates, particularly under NO3+NO2 and 

PO4 replete conditions. Theses toxic dinoflagellates can therefore be considered a threat to the Fleet Lagoon 

which will become a particular problem as water temperatures increase. 
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Thesis structure 

 

CHAPTER 1 Provides a general review of toxigenic benthic dinoflagellates causative of 

harmful algae blooms (HABs) in coastal areas. The influence of environmental 

conditions, particularly the increase of sea water temperature, on the growth and 

toxin production of dinoflagellates is discussed in this chapter. 

 

CHAPTER 2 Describes the methods and analysis carried out during this research to 

investigate the effect of temperature on the growth and toxin production of three 

toxic benthic dinoflagellates isolated from the Fleet Lagoon, UK. 

 

CHAPTER 3 Describes the effect of increasing sea water temperature (5-30° C) on the 

growth of the toxic benthic dinoflagellate Amphidinium carterae and includes 

evidence of the effect of biotoxins from A. carterae using bioassays. 

 

CHAPTER 4 Describes the effect of increasing growth temperatures (5-30° C) on the 

growth and toxin production of Prorocentrum lima. The effect of nutrient 

conditions on the physiological response of toxin production by P. lima cells 

grown in culture is described and discussed.   

 

CHAPTER 5 Describes the influence of increasing temperature (5-30° C) on the growth 

of Coolia monotis. The detection of toxins from C. monotis cells is described and 

discussed based on bioassays. 

 

CHAPTER 6 Summarizes the main finding from the investigation of the strains A. 

carterae, P. lima, and C. monotis. The increase of temperature on these 

microalgae is analyzed and the potential effect of climate change (warming) on 

toxigenic benthic dinoflagellates is discussed.  
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CHAPTER 1 

1.1 Introduction 

1.1.1 Harmful algae 

The term “algal bloom” refers to one of the most common biological 

phenomenon caused by photosynthetic microorganisms in aquatic environments. 

Phytoplanktonic organisms, such as dinoflagellates, have caused microalgae blooms in 

diverse aquatic ecosystems and records can be certainly dated throughout several eras of 

the Earth’s history (Hallegraeff, 2010). Algae blooms are characterized as dynamic 

episodes where unicellular algae produce very high cell concentrations influenced by 

environmental conditions. Whereas some algae blooms are known to produce 

substantial benefits for ecosystem functioning, others cause detrimental effects. A 

number of phytoplanktonic species are able to produce harm in situ and affect higher 

trophic levels. These microorganisms are known as harmful algae (HA) and at high 

densities HA produce a phenomenon known as harmful algae blooms (HABs). 

HA can be divided in two categories according to the causative organism. These 

are high-biomass producers and toxin producers (van den Bergh et al., 2002, Bravo et 

al., 2001). High-biomass producers are species characterized by high production of 

organic matter which decompose in situ and, as a consequence, cause a substantial 

oxygen removal from the water column (hypoxia) with serious repercussions on biota. 

Toxin producers synthetise diverse secondary metabolites (biotoxins) that may ascend 

and bioaccumulate at different trophic levels in the environment causing diverse cellular 

malfunction in biota (Bravo et al., 2001). 

The existence of algae blooms may generate water discoloration (yellowish, 

reddish, brownish) as high cell concentrations produce high accumulation of 

photosynthetic pigments suspended in the water column. Some phytoplanktonic 

organisms produce only small amounts of pigments per cell naturally, and therefore 

they do not cause water discoloration despite substantial concentration of cells in the 

environment. Taylor et al. (2008) has suggested that only half of all living dinoflagellate 

species are photosynthetic.  Furthermore, not all microalgae produce a substantial 

biomass in the environment under optimum bloom conditions, for instance, 

dinoflagellate species from the genera Alexandrium and Dinophysis are considered low 

biomass harmful algae (GEOHAB, 2001). 
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Many HABs species are distributed globally because they possess specialized 

mechanisms that have enabled them to adapt and survive diverse environmental 

conditions around the world. The biodiversity of HA comprises several phytoplankton 

groups of which the most important taxa, due to the number of deleterious species, are 

dinoflagellates, diatoms, and cyanobacteria (Moore et al., 2008). Around 200 

phytoplankton species have been considered as HA, of which 80 are associated with 

toxin producing microalgae (Hallegraeff, 2003). 

In recent decades, a number of studies on HABs have comprehensibly 

demonstrated that this phenomenon is experiencing a global increase in aquatic 

ecosystems in terms of occurrence, intensity, and distribution (Peperzak, 2003, Moore et 

al., 2008, Hallegraeff, 2010, Bravo et al., 2001). In addition, there has been an 

increasing number of studies on harmful algae worldwide and it is argued that this has 

caused an impact on an increasing number of reports regarding HABs. Since HABs 

have produced numerous repercussions in the environment, from massive mortality of 

filter-feeding organisms (mussels, oysters, cockles, and crustaceans) to death of 

vertebrates (fish, marine mammals and humans), a global concern is shared between the 

scientific community regarding factors that can intensify the occurrence of algal 

blooms. Climate change (Hallegraeff, 2010), the increase of CO2 (Cheung et al., 2011), 

warmer sea water temperatures (Moore et al., 2008, Laabir et al., 2011, Lassen et al., 

2010), eutrophication of waters (Glibert et al., 2010), and biogeographical changes of 

HA to new regions (Pearson and Dawson, 2003, Edwards et al., 2006, Taylor et al., 

2008) have been suggested and are expected to intensify future impacts of HA 

worldwide. 

Some epibenthic dinoflagellates have been shown to be responsible for HABs in 

the environment and in the last few decades these microalgae have received increased 

attention as many species from different genera (e.g. Amphidinium, Coolia, Ostreopsis, 

Prorocentrum) are known to produce potent biotoxins (see Table 1.1). Although a 

number of toxin-producing dinoflagellates have been characterized to date, the dynamic 

and ecophysiological response is poorly comprehended for many aquatic habitats of 

epibenthic dinoflagellates. In addition, many chemical compounds (biotoxins) and the 

mechanisms whereby benthic HA synthetise toxins are still unknown, not to mention 

the lack of analytical methods to accurately quantify and analyse routinely 

environmental fluctuations of biotoxins. 
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Table 1.0 Toxigenic benthic dinoflagellates, natural biotoxins, and syndromes associated due to 

ingestion of contaminated seafood.  

Benthic dinoflagellate 

specie 
Main toxin 

Syndromes 

associated 

Organisms 

containing 

toxins 

Reference 

Amphidinium carterae, A. 

klebsii 

Amphidinols (A-T), 

amphidinim A, haemolytic 

and antifungal compounds 

Unknown 

(possibly 

ciguatera fish 

poisoning) 

ND Daranas et al. 2001 

Coolia monotis Cooliatoxins (Yessotoxins) 

Diarrhetic 

shellfish 

poisoning 

Mussels, 

cockles, 

gastropods 

Holmes et al. 1995 

Gambierdiscus toxicus 

Lipid soluble compounds 

(ciguatoxins, CTX) and 

water soluble toxins 

(maitotoxins, gambierol, 

gambieric acids), 

antifungal agents  

Ciguatera fish 

poisoning 

Fish, snails, 

shrimps, crabs 

Dickey and Plakas 

2010 

Ostreopsis lenticularis, 

O. mascarenensis 

Palytoxins (PTX),  
Ciguatera fish 

poisoning 

Finfish, 

crustacean  

Ramos and 

Vasconcelos 2010 

O. ovata 
Palytoxins (PTX), 

ovatoxin-a (Ostreocin) 

ciguatera fish 

poisoning 

Fish and 

crustacean 

Granéli and Flynn 

2006 

O. siamensis Palytoxin (PTX) 
Ciguatera fish 

poisoning 

Fish and 

crustacean 
Usami et al. 1995 

Prorocentrum arenarium, 

P. belizeanum, P. 

cassubicum, P. concavum, 

P. faustidae, P. 

hoffmannianum, P. levis, P. 

maculosum, P. mexicanum 

Okadaic acid (OA), 

dinophysistoxins (DTX), 

haemolytic and allelopathic 

compounds 

Diarrhetic 

shellfish 

poisoning 

Mussels, 

scallops, 

clams, 

gastropods 

Maso and Garcés 

2006 

Prorocentrum micans, 

P.minimum, P. obtusidens, 

P. redfeldii, P. dentatum 

High biomass producer 

(non-toxic) 
- 

Mussels, 

gastropods 

Gotsis-Skretas and 

Friligos 1990, 2005; 

Nikolaidis et al. 

2006; Ignatiades and 

Gotsis-Skretas 2010 

1.1.2 Harmful epibenthic dinoflagellates 

Numerous ecological studies on benthic dinoflagellates have found that a 

number of harmful dinoflagellate species share the same habitat. Okolodkov et al. 

(2007), Pistocchi et al. (2010), and Richlen and Lobel (2011) have suggested that the 

benthic harmful genera Amphidinium, Coolia, Gambierdiscus, Prorocentrum, 
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Ostreopsis constitute natural assemblages in coastal areas. In fact, it is understood that 

two toxic dinoflagellate blooms can co-exist in the environment when suitable 

conditions prevail (Nakajima et al 1981). Some studies have shown that a number of 

benthic dinoflagellates are particularly confined to tropical waters (Taylor et al., 2008). 

This may suggest that temperature is importantly associated with the growth of several 

epibenthic HA. Rhodes and Thomas (1996) found that the benthic dinoflagellate Coolia 

monotis reached its optimum growth at 25 °C (subtropical temperature) rather than at 20 

°C (temperate temperature), while Armi et al. (2010) observed a bloom of C. monotis 

(5×10
5
 cell L

-1
) in the environment at 22 °C. Granéli et al. (2011) determined that the 

epibenthic dinoflagellate Ostreopsis ovata showed the highest growth when cultured 

between 26-30 °C (tropical temperatures), but cell toxicity was highest in a range of 20-

22 °C. Shears and Ross (2009) have indicated that blooms of Ostreopsis siamensis are 

an increasingly common phenomenon in temperate regions during the warmest summer 

months. Similarly, Okolodkov et al. (2007) found that the assemblage of Amphidinium 

cf. carterae, Prorocentrum lima, C. monotis, and Ostreopsis heptagona reached their 

highest abundance in the Veracruz reef zone at temperatures between 28.5 and 32 °C. 

Although a number of benthic dinoflagellates are generally confined to tropical waters, 

recent reports have suggested that some benthic HA (ciguatera producers) are increasing 

their biogeographical distribution to temperate waters where some have caused 

deleterious consequences (Luckas et al., 2005, Aligizaki and Nikolaidis, 2006). 

 

1.1.3 Temperature and algae growth 

In photosynthetic organisms, temperature is a key factor regulating biological 

reactions, e.g. photosynthesis and respiration. Water temperature is considered one of 

the most important environmental parameters that determine seasonal trends and 

densities of microalgae communities (Edwards et al. 2006; Raven and Geider 1988). 

For example, the germination process and cell survival of the noxious raphidophyte 

Heterosigma akashiwo is strongly affected by water temperature (Shikata et al., 2007). 

Similarly, specific growth rate and maximum cell concentration in the harmful algae 

Alexandrium catenella are predominantly influenced by temperature (Laabir et al. 

2011). Algal responses to temperature are biogeographically linked to environmental 

regimes (van den Bergh et al 2002), but both temperature and physiological responses 

might not be linear during microalgal growth (Sterner and Grover, 1998).  
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Specific growth rates of microalgae and many other biological processes (e.g. 

respiration) are commonly assumed to increase exponentially with temperature (Duarte, 

1990, Montagnes et al., 2003). However, Montagnes et al. (2003) argued that 

microalgae growth rate is the sum of a combination of processes which might not yield 

an exponential growth response in many cases. These authors found that a number of 

autotrophic (flagellates, dinoflagellates, and diatoms) and heterotrophic organisms 

(ciliates) increased their specific growth rates linearly rather than exponentially with 

increasing temperatures, within a defined temperature range (excluding thermal 

extremes).  Q10 (the rate of increase of a biological reaction for every 10 °C rise in 

temperature) has been used for some processes relevant to the growth of microalgae 

(e.g. photochemistry, catalyzed and uncatalysed chemical reactions, membrane 

permeation, photosynthesis, enzyme activity, thylakoid reactions) at increasing 

temperatures (Raven and Geider, 1988). Nevertheless, Montagnes et al. (2003) 

suggested that Q10 may be inappropriate applied to growth rates of autotrophic 

organisms that follow a linear growth response with temperature. These authors 

proposed that growth data should be adequately analyzed to decide whether 

(exponential growth data) or not (linear growth data) Q10 can be a suitable descriptor of 

the effect of temperature on the algae growth. 

Algae have developed a temperature adaptation in the environment as a result of 

evolutionary processes over history (Hanelt et al 2003). Due to temperature acclimation 

over short term periods, algae are able to optimize photosynthesis in environments with 

temperature fluctuations. Raven & Geider (1988) pointed out that adaptation to high 

temperatures for growth involves changes in the degree of thylakoid membrane kinetics 

and quantity of enzymes and the ratio of light-harvesting pigments, whereas adaptation 

to low temperatures involves less-saturated fatty acids in the thylakoid membrane. Algal 

acclimation is an advantage for algae to increase growth rates under suboptimal 

conditions (Geider et al 1998). For instance, when nutrient uptake by phytoplankton 

becomes strongly limiting at warmer temperatures (Sterner and Grover  1998), some 

studies have postulated that the increased activity of the enzyme RUBISCO might be a 

strategy that enables different algae to increase growth rates under suboptimal 

conditions (Geider et al.  1998). 

Algal growth and nutrient uptake by microalgae are generally temperature 

dependant. Sterner and Grover (1998) determined that nutrient uptake by phytoplankton 
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became strongly and consistently limiting at higher temperatures. Some studies have 

postulated that the increase of RUBISCO might be a strategy that enables different 

algae to offset the decrease of enzyme activity or protein loss as a result of heat 

denaturation or cold temperatures (Devos et al 1998). Photosynthesis becomes highly 

dependent on temperature when light saturation is included producing a photosynthetic 

rate limitation as a result of carbon fixation rates (Schofield et al., 1998).  

Although algal growth might respond as a function of temperature, there are 

many uncertainties as to how HABs can be triggered by increasing temperatures in 

coastal areas. Reports on mechanisms of toxin production have provided evidence that 

elevated temperatures (30-31 °C) were able to increase the cellular toxicity of some 

strains of the dinoflagellate Ostreopsis lenticularis due to the metabolism of bacterial 

symbionts (Asthon et al 2003). It has been suggested that as a result of global warming 

the growth rate of harmful algae might increase (Vale et al., 2009) particularly in 

eutrophic coastal areas (Honjo, 1993). However, high temperature is also known to 

produce algal stress and is considered a damaging factor of the photosynthetic 

performance despite phytoplanktonic strategies for optimizing photosynthesis. 

 

1.1.4 Global warming and ocean acidification 

Environmental perturbations, such as climate change (increasing sea water 

temperatures), eutrophication, enhanced vertical stratification, stimulation of 

photosynthesis by elevated dissolution of CO2 in water, changes of phytoplanktonic 

community composition, hydrologic changes, and increased frequencies of atmospheric 

events to name a few, are expected to influence directly the occurrence, intensity and 

distribution of HABs worldwide (Peperzak, 2003, Moore et al., 2008, Hallegraeff, 2010, 

Lassen et al., 2010, Paerl and Paul, 2011). With the advent of new technologies to 

monitor the distribution patterns of HABs, for instance the continuous plankton recorder 

or satellites from the space, the dynamics of HABs species over time in coastal 

environments has been observed to be changing in recent decades (Edwards et al., 2006, 

Bravo et al., 2001), particularly in UK waters (Bresnan et al., 2011). Shears and Ross 

(2009) found evidence that the genus Ostreopsis will increase the number of deleterious 

blooms as warming of surface water and water stratification increase in intensity. 

Similar predictions were suggested by Peperzak (2003) based on a model to predict 

increasing sea water temperature on the growth of HABs. He determined that four 
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noxious dinoflagellates (Prorocentrum micans, P. minimum, Fibrocapsa japonica and 

Chattonella antiqua) are more likely to increase rather than decrease their occurrence 

and threat in the environment due to climate change.  

There is some evidence that the rise in seawater temperature (Beardall and 

Stojkovic, 2006) has affected the distribution and growth rate of HA (Yamaguchi et al., 

2010, Paerl and Paul, 2011), as in the case of the potent toxin-producing Ostreopsis 

ovata (Graneli et al., 2011), Gambierdiscus toxicus, and some species of Prorocentrum 

(Aligizaki et al., 2009, Graneli et al., 2011) . In addition, reports on mechanisms of 

toxin production have provided evidence that elevated temperatures were able to 

increase the cellular toxicity of some strains of the dinoflagellate Ostreopsis lenticularis 

(Asthon et al 2003), O. ovata (Graneli et al., 2011, Pistocchi et al., 2010). Furthermore, 

it has been suggested that as a result of global warming the growth rate of harmful algae 

might increase (Vale et al., 2009), particularly in eutrophic coastal areas (Honjo, 1993; 

Peperzak, 2003; Vale et al., 2009). Therefore, shallow coastal areas are predictably 

vulnerable targets to primarily experience future effects of climate change (Hallegraeff, 

2010). 

Since the atmospheric greenhouse gas carbon dioxide (CO2) is increasing 

globally (Beardall and Stojkovic 2006) and HABs can intensify their occurrence as the 

availability of CO2 increases in the water (Moore et al., 2008, Hallegraeff, 2010, Low-

Decarie et al., 2011), an increase of HA biomass is expected to occur in many coastal 

areas with negative consequences in the environment (Paerl and Paul, 2011, Hallegraeff, 

2010). For example, Fu et al. (2010) found that at high pCO2 the cellular toxicity and 

growth rate of the harmful dinoflagellate Karlodinium veneficum increased 

substantially, particularly in phosphate limited cultures. Beardall and Stojkovic (2006) 

suggested that elevated CO2 concentration in the environment will also bring substantial 

chemical changes in the composition of the sea water that have been far ignored for 

HABs outbreaks. Besides, elemental and biochemical changes in microalgae 

composition will be experienced as some components of global environment change 

(Gienapp et al., 2008). Nevertheless, Moore et al. (2008) has emphasized the lack of 

comprehensive knowledge and rigorous statistical analyses to confirm linkages between 

climate and HABs, due to the paucity of long term plankton records and the difficulty to 

extrapolate information worldwide (Dale et al. 2006). Therefore, although increasing 

levels of CO2, temperature, and nutrient load in aquatic ecosystems will have potential 
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consequences in the dynamics of HA (Bravo et al., 2001, Lassen et al., 2010, Paerl and 

Paul, 2011), ecological implications and predictions of the impact of global climate 

change and ocean acidification on marine HABs are not straightforward (van den Bergh 

et al., 2002, Moore et al., 2008, Shi et al., 2009, Glibert et al., 2010, Hallegraeff, 2010). 

Due to the complexity of natural systems, Edwards et al. (2006), Balch and Fabry 

(2008), Moore et al (2008), and Low-Décarie et al. (2011) suggested that future 

research efforts should address a new type of combined oceanographic strategy whereby 

very long time spans and extensive geographic scales are considered. 

 

1.1.5 Marine toxins and syndromes produces by HABs 

Hallegraeff (2003) suggested that about 80 HA are widely recognized as toxin-

producing organisms of which marine dinoflagellates are the most important group 

responsible for human poisonings (Kellmann et al., 2010). These toxic syndromes 

include diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), 

neurotoxin shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish 

poisoning (CFP), and azaspiracid poisoning (AZP). Toxins are chemically diverse and 

include macrolides, cyclic polyethers, spirolides, and purine alkaloids (Plumley, 1997, 

Kellmann et al., 2010). A review of the chemical structures of HA biotoxins can be 

found in Daranas et al. (2001b) and Blanco et al. (2005). On the other hand, although a 

considerable progress has been achieved to understand HAB-toxins, many important 

unknowns remain (Plumley, 1997). 

DSP and CFP toxins are generally produced by benthic dinoflagellates (Daranas 

et al., 2001b, Camacho et al., 2007, Dickey and Plakas, 2010) associated with the 

genera Amphidinium, Coolia, Prorocentrum, Gambierdiscus, and Ostreopsis 

(Hallegraeff, 2003). The main DSP toxins are okadaic acid (OA), dinophysistoxins 

(DTXs), yessotoxins (YTXs) and pectenotoxins (PTXs), while CFP (Ciguatera Fish 

Poisoning) consist of ciguatoxins (CTXs), maitotoxins (MTXs), palytoxin, and 

gambierol (Daranas et al., 2001b, Camacho et al., 2007). The genus Prorocentrum, 

considered globally distributed in temperate and tropical waters, is possibly best known 

for the production of OA and DTX. OA and DTXs are lipophilic compounds highly 

soluble in organic solvents and are known powerful inhibitors of protein phosphatases-1 

and 2A (Mountfort et al., 2001) and potent tumour promoters (Blanco et al., 2005). 

Ciguatoxins and gambierol, considered some of the most potent neurotoxins, are 
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ascribed to epibenthic HA Gambierdiscus toxicus which affects more than 50,000 

people annually around the world. 

  In some HA such as the genera Amphidinium and Coolia, antifungal and 

haemolytic compounds have been determined (Nayak et al., 1997, Echigoya et al., 

2005, Meng et al., 2010). Mandal et al. (2011) suggested that extracellular polymeric 

substances produced by Amphidinium carterae might play an important role in the 

formation of HABs and they may possess allelopathic implication in the environment. A 

vast review of bioactive macrolides (amphidinolides) as to structures, biosynthesis, and 

bioactivity from the noxious genus Amphidinium is found in Kobayashi and Tsuda 

(2004). 

Although the epibenthic dinoflagellate Coolia monotis is considered a ciguatera-

producer (Richlen and Lobel, 2011) and some isolates cultured produce toxicity 

(Fernandez et al., 1996, Bravo et al., 2001, Ignatiades and Gotsis-Skretas, 2010), a 

number of studies agreed that a better understanding of toxins and synthesis of 

secondary metabolites from C. monotis is required to comprehend why some strains of 

this species are not toxic and what mechanism of toxicity are involved in the 

environment (Armi et al., 2010, Laza-Martinez et al., 2011). 

 

1.1.6 Mechanisms of toxicity 

Algal toxins have been regarded as a natural defense whereby algae trigger a 

biological mechanism that promotes the production of compounds which counteract 

repercussions caused in a given algal population, for example, as a result of grazing or 

autotrophic competition (Van den Bergh et al., 2002). The mechanisms underlying 

activation or toxin production, however, remain obscure (Plumley, 1997; Edvardsen and 

Imai 2006). In fact, there are still many uncertainties why some dinoflagellate species 

(Lakeman et al., 2009) can produce toxins in some areas whereas in others they cannot 

(Granéli and Flynn, 2006, Masó and Garcés, 2006). One example is toxin profile of the 

dinoflagellate Gambierdiscus toxicus, a ciguatoxin-producer, that have shown 

significant variation worldwide and genetic studies on speciation (Taylor et al., 2008) 

have suggested that it is not a cosmopolitan algae, but rather a multiple cryptic species 

(Dickey and Plakas, 2010). Differences in toxin profiles have also been reported for 

populations of the epibenthic dinoflagellate Prorocentrum lima (Morton and Tindall, 

1995).  
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Nutrient stress (Vanucci et al., 2010, Varkitzi et al., 2010), temperature 

(Guerrini et al., 2007), allelopathic effects (Granéli and Hansen, 2006), bacteria 

(Tosteson et al., 1989, Kopp et al., 1997, Ashton et al., 2003), grazing (Turner, 2006), 

high pH in the water, and environmental stress are acknowledged as promoting factors 

responsible for the increase of toxin production in a number of toxic dinoflagellates 

(Granéli and Flynn, 2006). However, since toxin production varies so greatly amongst 

strains and little is known of their metabolic pathways, a number of difficulties have 

been encountered to understand comprehensibly the mechanisms of toxin production of 

HABs. 

In terms of toxic benthic dinoflagellates, a range of ecological studies on 

nutrient depletion emphasize that Prorocentrum lima significantly increase its toxicity 

under N-limitation or P-limitation (McLachlan et al., 1994, Vanucci et al., 2010, 

Varkitzi et al., 2010). However, Morton and Tindall (1995), Bravo et al. (2001) and 

Nascimento et al. (2005) found that toxin production and the toxin profile of P. lima 

varied depending on the isolate. In addition, Windust et al. (1996) and Sugg (1999) 

determined that P. lima cells inhibited the growth of a number of microalgae 

(allelopathic effect), whereas Nakajima et al. (1981) showed that extracts from P. lima, 

Amphidinium carterae and Coolia monotis caused haemolysis in blood cells of mice.  

 Some groups of bacteria (Proteobacteria) have been reported on the 

phycosphere of the toxin-producing P. lima, but these bacterial symbionts have not been 

found to be associated with toxin production of P. lima (Lafay et al., 1995). However, 

the growth and toxicity of the benthic dinoflagellates Ostreopsis lenticularis and 

Gambierdiscus toxicus was higher when associated bacterial flora was present in 

cultures (Sakami et al., 1999), although bacteria grown in pure cultures were not toxic 

(Tosteson et al., 1989, Ashton et al., 2003, Perez-Guzman et al., 2008). Nonetheless, 

Mayali and Doucette (2002), Jeong et al. (2003), and Hare et al. (2005) found that 

bacteria in the natural environment play a role in controlling the growth and abundance 

of HA. 

 Toxin production and temperature are still poorly comprehended for many 

HABs and there are gaps in knowledge of the biological implications of increasing sea 

water temperature on marine HABs. Based on laboratory experiments, however, some 

findings have confirmed that elevated temperatures (˃28 °C) will not only influence the 

algal growth (Armi et al., 2010, Laabir et al., 2011), but also the synthesis of biotoxins, 



  Chapter 1- Introduction   

11 

 

as found for the benthic HA O. lenticularis (Ashton et al., 2003). This assumption, 

however, did not correspond with Granéli et al. (2011) who reported a decrease of cell 

toxicity in O. ovata cells as both growth temperature (26-30 °C) and algal growth 

increased. On the other hand, at low temperature (6 °C) light intensity was suggested to 

be a determinant for toxin production (okadaic acid and dinophysistoxin) in cultures of 

the HA Dinophysis acuminata (Tong et al., 2011). 
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1.2 Thesis aim and objectives 

HABs worldwide are envisaged to increase as water warming intensifies in 

many ecosystems due to climate change. Increasing water temperatures can provide a 

stimulatory-effect on phytoplankton communities, but also these organisms can 

experience significant changes in biochemical composition, biogeographical 

distribution, in algal physiology at intracellular level, and in populations as temperature 

increases. Predicting the impact of climate change on HABs in the environment is 

difficult and many uncertainties still persist to predict the influence of climate change 

(warming) on HABs. Thus, this thesis aims at extending the knowledge of the effect of 

increasing water temperatures on the growth and toxin production of the 

toxic/epibenthic dinoflagellates Amphidinium carterae, Coolia monotis, and 

Prorocentrum lima isolated from the Fleet Lagoon, Dorset. In particular, this thesis 

provides knowledge of the autoecology of the above-mentioned dinoflagellates grown 

in monocultures (non-axenic) under a range of temperatures. 

 

The specific objectives of this investigation were: 

 To determine the growth rate and physiological state of harmful epibenthic 

microalgal isolates (Amphidinium carterae, Coolia monotis, and Prorocentrum 

lima) grown in monocultures in nutrient replete medium at growth temperatures 

between 5 and 30 °C.   

 To determine the influence of growth temperature on the potential biosynthesis 

of secondary metabolites (toxins) during the cell growth of the dinoflagellate 

strains in incubators maintained at temperatures between 5 and 30 °C. 

 To determine whether nutrient depletion is concomitantly associated with toxin 

production during the cell growth of epibenthic algae cultures grown at 

temperatures between 5 and 30 °C.  

 To estimate the potential toxicity effect of algal compounds on eukaryotic 

organisms using bioassays. 
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CHAPTER 2 

2.1 Material and methods 

2.1.1 Collection of biological material  

Toxic dinoflagellates cells were collected during 2007 and 2008 from brackish 

waters of The Fleet Lagoon, Dorset, UK, localised between 50° 36’ 40’’N latitude and 

02° 31’ 10’’W longitude (Figure 2.1). The stations Chickerell Point, Moonfleet, and 

Langton Herring, comprising the middle section along the Fleet Lagoon (Figure 2.1), 

were selected to collect native macroalgae (Chaetomorpha linum, Ulva lactuca) and 

seagrass (Ruppia maritima, Zostera noltii, Z. marina) with associated epibenthic 

microflora. The epibenthic toxic dinoflagellate Prorocentrum lima was present in the 

Fleet and isolated in December 2007 while both Amphidinium carterae and Coolia 

monotis were both encountered and isolated from the Fleet in May 2008. Table 2.1 

shows environmental conditions (temperature, salinity, dissolved oxygen, pH, and 

chlorophyll a) determined in the water using a YSI multiprobe during the cell collection 

of dinoflagellates in the Fleet. Macroflora and associated microalgae were collected 

manually from subtidal waters (depth <1 m) at all stations using waders.  

 

 

 

Figure 2.1 Map of the Fleet Lagoon, Dorset, United Kingdom. Sampling stations in the 

Fleet are enumerated and Chicherell Point (3), Moonfleet (4), and Langton Herring (5) 

were selected to isolate epibenthic toxigenic dinoflagellates in 2007 and 2008. 
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Table 2.1 Sampling stations, dates and environmental conditions recorded in the Fleet Lagoon 

during the collection of toxic dinoflagellates between 2007-2008. Dinoflagellate cultures were grown 

using natural filtered seawater (0.2 µm) from the environment collected between 2007 and 2009. 

Station Date Year 
Water temp.  

(° C) 
Salinity 

Depth 

(m) 
pH 

Chlor. a 

(µg L-1) 
O2 

Chickerell 

Point 
December 13th 2007 5.05 27.4 ˂ 1 7.5 3.2 93.0 

Moonfleet December 13th 2007 4.64 22.4 ˂ 1 7.7 3.3 94.4 

Langton 

Herring 
December 13th 2007 4.49 20.6 ˂ 1 7.6 3.2 98.2 

Moonfleet June 27th 2008 19.6 29.4 ˂ 1 8.9 0.1 139 

Langton 

Herring 
June 27th 2008 18.6 26.8 ˂ 1 9.3 7.7 122 

Chickerell 

Point 
May 15th 2008 17.7 32.9 ˂ 1 8.7 1.4 140.3 

Moonfleet May 15th 2008 19.5 31.7 ˂ 1 8.9 1.6 172.6 

Langton 

Herring 
May 15th 2008 19.9 30.5 ˂ 1 9.0 1.5 175 

Moonfleet August 4th 2009 18.1 32.0 ˂ 1 8.3 304.7 - 

Langton 

Herring 
August 4th 2009 18.2 31.3 ˂ 1 8.6 484.6 - 

Ferry 

Bridge 
January 19th 2009 6.98 33.9 ˂ 1 10.1 - 93.6 

 

In the sampling stations, macroalgae was gently collected by hand and placed 

into plastic bags underwater preventing the entrance of suspended material from the 

sediment. Algae specimens were collected close to the water’s edge at depths between 

0.2-0.6 m. At these depths, algae were sampled randomly from 2-3 different sections at 

each sampling station. Sampling bags contained 1-3 species of the macroalgae 

mentioned above. Seawater (1-1.5L) from the collection site was added to the bags to 

maintain the biological material. Bags were kept fresh and transferred in the dark inside 

a cool box prior to microscopy analysis.  Plankton net samples (64 μm mesh size) were 

collected in the Fleet to identify potential toxic dinoflagellates suspended in low 

numbers in the water column. Trawls were done in the surface of the water column and 

all planktonic material concentrated was transferred to ~200 ml white plastic bottles. 

After collection, sampled material was transported in a cool box to the laboratory within 

3-4 hours. Biological material was maintained in the dark in a cold room at 5° C for up 

to 3 days. Surface seawater from the Fleet Lagoon collected between 2007 and 2009 
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(Table 2.1) was used to carry out all growth experiments in vitro. Seawater was 

particularly collected from Langton Herring in 5 and 10 L plastic carboys and it was 

stored in a dark cool room (5 °C) before the initiation of the growth experiments. 

2.1.2 Isolation of toxic epibenthic dinoflagellates 

Macroalgae maintained in plastic bags where gently shaken for 30 seconds with 

water from the Fleet in order to detach epiphytic/benthic dinoflagellates. Large particles 

were left to settle inside the bags for less than 1 minute before an aliquot of 50ml of 

water was transferred into a beaker. A volume of ~0.5ml was pipetted in triplicate from 

the beaker to examine and determine the presence of dinoflagellates under a light 

microscope (Nikon Eclipse E200). Single cells of benthic dinoflagellates were then 

transferred through several drops of filtered sea water (0.2µm) on a microscope slide to 

eliminate debris and other autotrophs. Single cells were transferred into a 96-well plate 

(Termo Scientific Nunc) with F/2 media by micropipetting. Monocultures started from 

isolated single cells of dinoflagellates maintained in wells and regular checks of the 

plates were carried out to verify dinoflagellate growth or the appearance of 

contaminating organisms. Plates were kept at a growth temperature of ~25 °C and a 

photoperiod of 12L:12D, with irradiance of 35-70 µmol m
-2

 s
-1

. Irradiance was 

measured in the incubator with a Li-Cor irradiance metre although in dense cultures 

irradiance will have been considerably reduced. Cultures that reached a high density of 

cells in the wells were later transferred into 250 ml conical flasks with F/2 media. All 

algal monocultures were non-axenic.  

Illuminated (cool white lamps) temperature controlled incubation cabinets 

(Mercia Scientific, Figure 2.2) were used to maintaine all cultures in this study. 

Incubators were set up to maintain a constant temperature with a thermal variation <1 

°C and 12h:12h light/dark photoperiod. Temperature variation in the incubators was 

monitored using a glass thermometer (Fisherbrand) with a temperature range between -

10 and 110 °C. On-Off programmed timer control for white light lamps (20 watts) was 

assembled in the incubators. A. carterae and C. monotis cells maintained at 20 °C were 

grown in a LMS Ltd Cooled incubator (model 400W) programmed with a photoperiod 

of 12L:12D, with culture flasks placed within an irradiance of 35-70 µmol m
-2

 s
-1

.  
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Figure 2.2 Cultures of benthic dinoflagellates maintained 
in incubators (Mercia Scientific) using white light 
illumination at constant growth temperatures (5-30° C). 
Cells were grown in incubators in non-aeraeted and static 
medium culture conditions as shown in the image. 

2.1.3 Microalgae growth experiments from 5 to 30° C 

The HAB species Amphidinium carterae, Coolia monotis, and Prorocentrum 

lima were successfully isolated and grown in monocultures in the laboratory under a 

regime of growth temperatures (5 to 30 °C) as mentioned below. The harmful 

epibenthic microalgae A. carterae and P. lima were identified by microscopy 

observations following the morphological descriptions of harmful dinoflagellates in 

Taylor et al. (2003), while C. monotis was determined according to the description of 

Faust (1992). 

2.1.3.1 Prorocentrum lima 

Despite the isolation and growth of different strains of P. lima from the Fleet, all 

growth experiments were carried out using the same strain to minimize the possibility of 

ambiguous physiological responses between different P. lima strains as has been 

reported in some studies (Calbet et al., 2011). P. lima was grown at growth 

temperatures of 5, 10, 15, 20, 25 and 30 °C (± 1 °C). 1 L polycarbonate flasks (Corning) 

were used for the growth of P. lima cultures to minimize adhesion of P. lima cells to the 

wall of culture vessel. All P. lima cultures were capped with sterile polypropylene lids 

and maintained in non-aerated conditions, except when cultures were sampled under 

sterile conditions in a laminar flow fume hood. Algal culture media were based on 

autoclaved seawater from the Fleet enriched with Guillard (F/2) marine media (Sigma 

G0154). Guillards (F/2) marine water enrichment solution is composed of major 

nutrients (basal NO3+NO2 882 µmol L
-1

; PO4 36.2µmol L
-1

), trace metals and vitamins 

for the growth of eutrophic algae. The F/2 media was prepared by adding 20 ml of the 
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Guillards solution per 1 L of autoclaved seawater maintained at room temperature. 

Initial nutrient concentrations of NO3+NO2 and PO4 in P. lima cultures are shown in 

Table 2.2.  

Between two and three replicate cultures were maintained at each growth 

temperature. Cultures were grown at different times of the year as shown in Table 2.2. 

In the P. lima cultures maintained for ~80 days at 5-15 °C, the final volume of culture 

media after sampling remained between 0.2-0.3 L in the flasks, while P. lima cultures 

incubated at 20-30 °C maintained a final volume higher than 0.5 L at the end of the 

growth experiments. 

2.1.3.2 Amphidinium carterae and Coolia monotis 

As in P. lima cultures, single strains of A. carterae and C. monotis were used 

throughout the growth experiments at temperatures of 5, 10, 15, 20, 25 and 30 °C (± 1 

°C). A. carterae and C. monotis experiments were conducted in 1 L borosilicate (Duran) 

glass bottles and maintained horizontally during culture incubation. Between two and 

three technical replicates were maintained at each growth temperature and cultures were 

incubated under non-aerated condition. Dates of culture experiments and initial nutrient 

concentrations (NO3+NO2 and PO4) for C. monotis and A. carterae cells are given in 

Tables 2.3 and 2.4. After samples were taken from the flasks throughout the growth 

experiments in the C. monotis and A. carterae cultures, the final volume of culture 

media remaining was higher than 0.5 L. 

2.1.4 Samples for cell enumeration  

Phytoplankton samples for cell enumeration were collected from each 1 L 

culture flask (2-3 replicates) between 10:00 and 16:00 h. Replicate cultures were 

transferred from the incubator to a sterile laminar flow fume hood for less than 1 hour 

while samples were taken; then cultures were returned to the incubator. Microalgae 

cultures were always manipulated under sterile conditions provided by a sterile hood 

and the flame from a Bunsen burner. Due to the nature of some benthic dinoflagellates 

being able to form clumps in culture or their exudates aggregate a number of cells in a 

given volume, samples from culture flasks were taken at fixed time intervals (every 2-5 

days) considering the cell growth stages of the species, e.g. lag, exponential and 

stationary phase. 
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Table 2.2 Growth temperatures, initial nutrient concentration (dissolved inorganic nitrogen, NO3+NO2, and 

phosphate, PO4), and period of growth for the toxic strain of P. lima isolated from the Fleet Lagoon, UK. 

Period 

Growth 

temperature       (° 

C) 

Length of 

experiment 

Initial NO3+NO2  

(µmol L-1) 

Initial PO4     (µmol 

L-1) 

21 Feb 2009- 

13 May 2009 
5 80 days 1000 

 

36 

21 Feb 2009- 

13 May 2009 
10 80 days 1000 36 

21 Feb 2009- 

13 May 2009 
15 80 days 1000 36 

1 Feb 2010- 

18 Mar 2010 
20 45 days 928.3 32.7 

1 Feb 2010- 

18 Mar 2010 
25 45 days 928.3 32.7 

29 Oct 2010- 

12 Dic 2010 
30 45 days 978.48 34.4 

 

Table 2.3 Growth temperatures, initial nutrient concentration, and period of growth for the benthic dinoflagellate 

Coolia monotis isolated from the Fleet Lagoon, UK. 

Period 
Growth 

temperature (° C) 

Length of 

experiment 

Initial NO3+NO2    

(µmol L-1) 

Initial PO4     (µmol 

L-1) 

4 Oct 2010- 

22 Nov 2010 
5 49 days NA NA 

19 Jan 2011- 

5 Mar 2011 
10 47 days 869.4 29.1 

1 Feb 2010- 

13 May 2010 
15 32 days 928.3 32.7 

1 Feb 2010- 

13 Mar 2010 
20 32 days 928.3 32.7 

1 Feb 2010- 

13 Mar 2010 
25 32 days 928.3 32.7 

24 Nov 2009- 

14 Dic 2009 
30 20 days 978.4 34.4 

 

 Table 2.4 Growth temperatures, initial nutrient concentration, and period of growth for the benthic dinoflagellate 

Amphidinium carterae isolated from the Fleet Lagoon, UK. 

Period 
Growth  

temperature (° C) 

Length of  

experiment 

Initial NO3+NO2   

   (µmol L-1) 

Initial PO4      

(µmol L-1) 

4 Oct 2010- 

22 Nov 2010 
5 49 days 980.5 37.8 

19 Jan 2011- 

5 Mar 2011 
10 45 days 980.5 37.8 

1 Feb 2010- 

13 May 2010 
15 40 days 980.5 37.8 

1 Feb 2010- 

13 Mar 2010 
20 40 days 850.9 29.2 

1 Feb 2010- 

13 Mar 2010 
25 40 days 850.9 29.2 

28 Oct 2009- 

19 Nov 2009 
30 22 days 869.1 29.9 
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2.1.4.1 Prorocentrum lima 

Cell collection from P. lima cultures was carried out every 5 days for all growth 

temperatures as P. lima usually exhibits low growth rates. 1L polycarbonate flasks 

(Corning) were gently rotated by hand for less than 30 seconds to homogenize the 

distribution of cells in the media. P. lima tends to form clumps of cells that stick to the 

wall and bottom of flasks leading to an uneven distribution of cells in the media. A 10 

ml sterile pipette connected to a syringe was introduced in the culture whereby a volume 

of media was taken into the pipette and then flushed out over clumps attached to the 

polycarbonate flask to disaggregate cells. This technique was considered more efficient 

and less violent for cellular homogenization than a strong agitation of the flask whereby 

cells can be damaged. After cell homogenization, 10 ml of culture media was removed 

with a pipette and added to a glass tube containing 0.4 ml of glutaraldehyde (1% final 

concentration). After fixation for over 1 h, samples were shaken for some seconds and 

little evidence of clump formations was noted. Samples were stored at room 

temperature and analyzed within 2 weeks of collection.  

2.1.4.2 Amphidinium carterae and Coolia monotis 

A. carterae and C. monotis did not form clumps in culture. Therefore, a gentle 

rotation for less than 30 seconds was enough to produce a homogeneous cellular 

suspension in the culture media. An aliquot of 10ml of sample was measured with a 

measuring cylinder and transferred to a glass tube where glutaraldehyde (1% final 

concentration) was added to preserve the cells. Cells were enumerated as describe 

below by a Coulter Counter within three weeks of sampling. 

2.1.5 Quantification of the cell abundance 

Cell counts from each culture (2-3 replicate flasks) were performed in triplicate 

using a Coulter Counter Multisizer III. Culture samples were diluted (1/10) with 3% 

NaCl in 25 ml plastic cuvettes and 1 ml from each sample was injected and analyzed 

three times (total volume: 3 ml per flask) using the Coulter Counter with a 70 µm 

aperture tube. The number of particles suspended in each diluted sample (3 

measurements) was enumerated and the average recorded using the Multisizer 32 

software. Cell counts derived from the Coulter Counter were compared with cell counts 

from microscopy (Figure 2.3). Coulter and microscope quantifications showed a high 

correlation (˃95%) for all strains. Average cell counts were plotted for all species to 

illustrate changes of algal growth. The growth rate of the microalgal population was 
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computed from the slope of a linear plot of Ln-transformed cell counts over the 

exponential growth phase. 

2.1.6 Q10 (temperature-growth rate) 

The factor by which the rate of a metabolic process increases for every 10-

degree rise in temperature is called the Q10 relationship.  Q10 was calculated based on 

the growth rates estimated between 5 and 30 °C to determine the effect of temperature 

dependency on the growth rates. 
 

  Q10= (µ2/ µ1)
10/(T2-T1)                                       

eq. 1 
 

Where µ1 and µ2 show the algal growth rate at temperature 1 (T1) and 2 (T2) 

respectively (T2˃T1). If the growth rate doubles, Q10 is ~2 (Raven and Geider, 1988). 

2.1.7 Photosynthetic efficiency (Fv/Fm) 

The photosynthetic efficiency (Fv/Fm) of algal cells can provide a measure of 

the physiological state of phytoplankton cells particularly when under nutrient stress 

(Moore et al., 2006). In this study measurements of quantum yield of photosynthesis 

(Fv/Fm) were carried out with a Fast Repetition Rate Fluorometer (FRRF, Chelsea II) 

enabled for a saturation of PSII of 100 flashlets  1.1 µs at 1.1 µs intervals. Values of 

Fv/Fm were acquired on a computer attached to the FRRF based on the following 

equations: 

                                                                                 

    ⁄  
(     )

  
                                                                

Where Fv is the variable chlorophyll-a fluorescence; Fo and Fm are the 

minimum and maximal in vivo chlorophyll-a fluorescence yield (relative) in a dark-

adapted state respectively. 10ml of culture media was placed in the dark for at least 25 

min to relax the reaction centres of photosystem II before a number of blue light flashes 

at 440nm permitted the determination of Fo and Fm using a 4.5ml quartz cuvette. 

Fv/Fm was measured in the cells using 5 ml of culture media collected from 

each technical replicate (2-3 flasks). In this volume, six single FRRF measurements 

were performed per replicate and Fv/Fm values were averaged using the FRRF software 

FastInP (Chelsea Technologies Group Ltd). Fv/Fm values in replicate cultures were 

plotted at each growth temperature. In addition, average Fv/Fm data at each growth 

temperature were computed and plotted based on the number of replicates per growth 
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temperature. Fv/Fm in the cells was analysed during the lag, exponential and stationary 

growth phases based on samples taken for cell counts. In general, Fv/Fm was analysed 

every 2-4 days for A. carterae; every 4 days for C. monotis; every 5 days for P. lima. A 

blank prepared with 5 ml of culture media filtered through 0.2µm pore size (Whatman) 

did not show a significant influence on the Fv/Fm correction values at all growth stages. 
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Figure 2.3 Comparison of two methods of cell quantification (Coulter Counter and 

microscopy) for A. carterae (A-B), P. lima (C-D), and C. monotis (E-F) samples (left plots). 

Relationships determined between Coulter Coulter and microscopy counts for the benthic 

dinoflagellates mentioned above (right plots). 
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2.1.8 Chlorophyll a measurements 

Chlorophyll a concentration was measured in cultures on the same days that 

samples were collected for cell counts. This pigment was extracted from dinoflagellate 

cells overnight following a passive extraction method (MacIntyre and Cullen 2005). 

From a well-mixed culture, a volume of 10ml of culture media was gently filtered 

through a GF/F filter (25mm diameter) using a syringe attached to a filter holder.  

Filters were then folded in half and stored in plastic bags at -20° C prior to analysis. 

Filters were removed from the freezer and placed in a plastic centrifuge tube with 6 ml 

of 90% acetone. Plastic tubes were mixed with a vortex for 10 seconds followed by 

chlorophyll a extraction at 4° C in the dark. The acetone extracts were poured into a 

borosilicate glass cuvette and placed into a 10AU Turner fluorometer. The system was 

equipped with a blue mercury vapour lamp and an excitation (436nm) and emission 

(680nm) filters according to the Welschmeyer method (Welschmeyer 1994). Pheophytin 

correction was not applied to the chlorophyll a measurements. Chlorophyll a 

concentration was calculated using the following equation: 

 

Chlorophyll a concentration (µg ml
-1

)= C × (
 

 
)=                                                      eq. 4 

 

Where C= concentration of chlorophyll a measured by the fluorometer. 

 v= volume (6 ml) of acetone extract used for pigment extraction. 

 V= volume of culture media filtered (10 ml). 

 

Chlorophyll a cell
-1

 was calculated by dividing the concentration of chlorophyll a ml
-1

 

by the cellular density ml
-1

. 

2.1.9 Nutrient analysis (NO3+NO2 and PO4) 

NO3+NO2 (dissolved inorganic nitrogen as the sum of nitrate+nitrite) and PO4 

(phosphate) were measured every 4-6 days in both A. carterae and C. monotis cultures; 

and every 5-10 days in P. lima cultures considering sampling dates as for cell counts. 

Plastic bottles (vol. 50-70 ml) were used to store nutrient samples. Before sampling, 

bottles were maintained in acid bath (HCL 10%) for 24 h to remove organic matter. 

Bottles were then rinsed with tap water and maintained for 24 h in distilled water before 

bottles were dried at room temperature in a fume hood. Nutrient samples (NO3+NO2 

and PO4) were collected from culture flasks by filtering 30 ml of media through GF/F 
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filters (Whatman). Water sampling was carried out under a sterile hood and samples 

were frozen and maintained at -20 °C prior to analysis.  

 Samples were defrosted at room temperature and diluted 1/100 using a solution 

of NaCl+MilliQ water (40%). NO3+NO2 and PO4 were determined in filtered water 

samples with a QuAAtro segmented flow autoanalyser and standard colorimetric 

techniques described by Grasshoff (1976) and Kirkwood (1996). Each sample was 

analysed in duplicate and average values were considered for each sampling point in 

replicate cultures. The detection limit of NO3+NO2 and PO4 was 0.03 µmol L
-1 

and 0.01 

µmol L
-1

 respectively. Nutrient analysis was carried out by Mark Stinchcombe at the 

National Oceanography Centre Southampton. 

2.1.10 Toxin analysis of P. lima cells 

The epibenthic dinoflagellate P. lima is a common microalgae and produces 

marine lipophilic toxins including okadaic acid (OA) and dinophysistoxins (DTXs).  

These natural products can be responsible for the syndrome known as diarrhetic 

shellfish poisoning (DSP) following the consumption of OA/DTX contaminated edible 

shellfish. Lipophilic marine toxins from toxic dinoflagellates are classified in four main 

groups namely, 1) OA and its analogues dinophysistoxin1 (DTX1) and 

dinophysistoxin2 (DTX2), 2) pectenotoxins (PTXs), 3) yessotoxins (YTXs), and 4) 

azaspiracids (AZAs).  Between 2008 and 2009, extracts of P. lima were analysed for 

OA and DTX1 by liquid chromatography coupled to tandem mass spectrometric 

detection (LC-MS/MS).  The instrument was operated in negative ion mode with 

electrospray ionisation.  It has been reported that a particular strain of Coolia monotis 

produces a natural product similar in chemical structure to YTX (Holmes et al. 1995), 

but LC-MS/MS analyses of C. monotis samples obtained from the Fleet Lagoon, Dorset, 

UK did not indicate the presence of these compounds.  Unfortunately and due to the 

unavailability of the LC-MS/MS instrumentation at the time of the research, chemical 

analyses of extracts from Amphidinium carterae were not performed.  Therefore, of the 

benthic dinoflagellates isolated from the Fleet Lagoon, only toxins from P. lima cells 

could be identified and quantified by LC-MS/MS. This study, however, opted for an 

alternative method of toxin detection in C. monotis and A. carterae cells by detecting 

haemolitic activity of chicken red blood cells and feeding assays where the mortality of 

crustacean due to toxin ingestion from dinoflagellate cells was analysed (see method 

below).   
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From the extracts of the P. lima cells, OA and DTX1 were measured as Free OA 

and DTX1 (known as parent toxins) and Total OA and DTX1.  Free OA or Free DTX1 

represents the native lipophilic toxin synthesized and concentrated in P. lima cells. Total 

OA and Total DTX1 constitute a spectrum of lipophilic toxins which includes the native 

OA or DTX1 toxins together with a range of OA or DTX1 esterified derivatives 

associated with the native lipophilic toxin OA or DTX1. Table 2.5 lists a number of OA 

and DTX1 derivatives that potentially contributed with the toxic burden due to OA and 

DTX1 in P. lima cells.  

 

2.1.11 Sampling of P. lima cells 

 P. lima cell samples for toxin analysis were collected every five days from 

culture flasks under a sterile hood to minimize contamination. P. lima cells in culture 

flasks were gently suspended in the media by rotation of the culture flask or, at high cell 

abundance, a volume of culture media (<3 mL) was flushed out over the cells attached 

to the walls. Media was collected from the culture with a 10 ml pipette attached to a 

mechanical piston pipette. This technique proved to be less violent than a strong 

agitation of the flask to suspend cells in the media, which otherwise would have caused 

damage to cells. Once cells were suspended in the water, 30 ml of culture media was 

measured using a measuring cylinder and this volume was gently filtered through GF/F 

(25 mm diameter) filters using a 50 ml syringe attached to a plastic filter holder. Filters 

were removed from the holders, folded and placed into 2 ml vials.   

 

Esterified derivatives of OA and DTX1 toxins in P. lima cells are known to modify their 

chemical structure and nature in a matter of minutes unless enzymatic conversion is 

stopped (Bravo et al. 2001). To inhibit enzymatic conversion of OA and DTX1 esters, 

vials containing the filters with cells were placed in boiling water for 5 min. Samples 

were then kept at 4°C for <50 min before they were transferred and stored at -20° C 

prior to toxin extraction and analysis. 
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Table 2.5 Selected ion monitoring (SIM) and multiple reactions monitoring (MRM) LC-

MS/MS negative ion mode analysis of OA and DTX1 and their ester derivatives in P. lima 

extracts.    

Compound EMW [M-H]
-
 

[M-

H]
2-

 

[M-

3H]
3-

 

OA and DTX2, OA and/or DTX2 diol ester, DTX4 and 

sulphated and carboxylic esters  

    

OA and/or DTX2 (SIM) 804.5 803.4   

1) OA-D8 (OA diol ester) 928.6 927.5 463.5 308.5 

2) OA-D7a & b (OA diol ester) 914.6 913.5 456.3 303.8 

3) OA-D9a & b [OA diol ester (unconjugated) 942.5 941.5 470.3 313.2 

OA Methyl ester 818.5 817.2 408.3 271.8 

OA Ethyl ester 832.5 831.5 414.3 276.5 

Norokadanone 757.5 754.5 377.8 251.5 

DTX4 (as OA) 1472.6 1471.6 735.3 489.9 

DTX4 + SO3 (as OA) 1552.5  775.3 516.5 

DTX4 + SO3 + O (as OA) 1568.7  783.3 521.9 

DTX4 + SO3 + 2O (as OA) 1586.1  791.3 527.7 

DTX4 + SO3 + CH2 + 2O (as OA) 1598.6  798.3 531.9 

DTX4 + O (as OA) 1488.6 

 

 743.3 495.2 

DTX4 + 2O (as OA) 1504.5  751.3 500.5 

DTX4 + CH2 (as OA) 1486.6  742.3 494.5 

DTX4 + CH2 + 2O (as OA) 1518.6  758.3 505.2 

-7-deoxy-OA (minor metabolite of P. lima) 788.5 787.3˃239.2   

DTX1, DTX1 diol ester, DTX4 & sulphated 

&carboxylic esters 

    

DTX1 (SIM) 818.5 817.4   

1) DTX1-D7 (DTX1 diol ester) 928.6 927.5 463.5 308.5 

2) DTX1-D8 (DTX1 diol ester) 942.6 941.5 470.3 313.2 

3) DTX1-D9 (DTX1 diol ester) 956.6 955.5 477.3 317.9 

DTX4 (as DTX1) 1486.6 1485.6 742.3 494.5 

DTX4 + SO3 (as DTX1) 1565.5  782.3 520.8 

DTX4 + SO3 + O (as DTX1) 1582.7  790.4 526.6 

DTX4 + SO3 +2O (as DTX1) 1600.1  799.1 532.4 

DTX4 + SO3 + CH2 + 2O (as DTX1) 1612.6  805.3 536.5 

DTX4 + O (as DTX1) 1502.6  750.3 499.9 

DTX4 + 20 (as DTX1) 1518.5  758.3 505.2 

DTX4 + CH2 (as DTX1) 1500.6 

 

 749.3 499.2 

DTX4 + CH2 +2O (as DTX1) 1532.6  765.3 509.9 

OA AND/OR DTX2 (MRM) 803.4˃113.0 & 803.4˃255.3 [cone=75 

CE=61] 

DTX1 (MRM) 817.4˃113.0 & 817.4˃255.3 [cone=75 

CE=61] 

DTX5a (C65 H99 N O27 S2 Na3 1392.6 1391.6 695.3 463.2 

DTX5b (C66 H101 N O27 S2 Na3) 1406.6 1405.6 702.3 467.9 

DTX5c (C68 H103 N O 27 S2 Na2) 1475.9 1474.9 737.0 491.0 

DTX6 912.5 911.5 455.3 303.2 

EMW = estimated molecular weight 
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2.1.12 Preparation of P. lima extracts for toxin analysis 

Samples were removed from the -20 °C freezer and left to thaw for at least 5 

min. Filters were placed in a clean glass Petri dish and cut into small strips with a 

methanol cleaned scalpel. Strips were carefully taken with forceps into a 15 ml plastic 

tube containing 3 ml of methanol/water (90:10 v:v). Samples were homogenized in the 

solvent using a vortex mixer for 2 min. With a clean Pasteur pipette, the supernatant 

was transferred into a 3 ml syringe and filtered through 0.2 µm pore size filters (25 mm 

Whatman) to eliminate particulate matter before LC-MS/MS analyses. 1.5 ml of sample 

extract was used to determine total potential toxicity (i.e., Total OA and Total DTX1), 

whereas the remaining 1.5 ml was used to measure the Free OA and Free DTX1 (parent 

toxins). Samples for total and free toxin determination were reduced to 500 µL and 200 

µL respectively using a Turbo-Vap evaporator and oxygen-free nitrogen gas. To 

determine total OA and DTX1 concentrations, extracts were hydrolysed to transform 

esterified OA and DTX1 compounds to OA and DTX1 parent analytes (OA and DTX1). 

The 500 µL extract was placed into a 2 ml glass vial and then 63 µl of 2.5 M NaOH 

were added. The vial was capped and vortexed for 5 s. The bottle was then maintained 

at 76 °C for 40 min in a heater block. Samples were allowed to cool (5 min) and then 63 

µl of 2.5 M HCL was added. Samples were then stored at -20 °C before analysis by LC-

MS/MS. After hydrolysis, samples were injected on to the LC-MS/MS to determine 

Total OA and DTX1.  Free OA and DTX1 concentrations were determined by LC-

MS/MS analysis of the unhydrolysed (200 µL) extract. 

2.1.13 Determination of toxins in P. lima by LC-MS/MS 

Analyte separation from unhydrolysed and (alkaline) hydrolysed methanolic 

extracts was undertaken using an Agilent 1100 LC (Agilent Technologies UK Ltd., 

United Kingdom), and an XBridge C18 reversed-phase analytical column (150 x 2.0 mm; 

3.5 µm; Waters Ltd., Herts., United Kingdom; held at 35 °C) with a guard column and 

applying LC gradient modified after Gerssen et al. (2007).  The following gradient was 

used: T0 min 75% A; T1 min 75% A; T11.4 min 0% A; T16.7 min 0% A; T17 min 75% A; T22.5 min 

75% A.  Mobile phase A consisted of 100% deionised water + 2 mM ammonium 

hydrogencarbonate (pH 11), whereas mobile phase B was 90% acetonitrile:10% 

deionised water + 2 mM ammonium hydrogencarbonate (pH 11).  The flow rate was 0.3 

mL/min.  The LC was coupled to a Quattro Micro triple quadruple mass spectrometer 

(MS/MS; Waters Ltd., UK) and operated in negative ion mode and using electrospray 
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ionisation.  Respectively, capillary and cone voltages were 60 kV and 77 V, and source 

and desolvation temperatures were 500 and 120 °C.  Multiple reaction monitoring 

(MRM) was applied to acquire MS/MS data for the toxins. For OA and DTX1 

respectively, the [M-H]
-
 pseudo molecular (precursor) ions were m/z 803.4 and 817.4.  

Two transition (fragment) ions were acquired for both toxins; these were the same for 

OA and DTX1 and included >113.1 and >255.3.  The chromatographic retention times 

of OA and DTX1 were 7.9 and 9.0 min, respectively. 

Where OA and DTX1 were identified by the presence of the two transition ions 

per analyte, concentrations were determined externally using five points, linear 

calibration plots of OA and DTX1 obtained from certified reference materials (Marine 

Biosciences, National Research Council Canada, Nova Scotia, Canada).  Calibration 

solutions were prepared in 100% methanol (Rathburns Chemicals Ltd., Scotland) and 5 

µL of both calibration solutions and P. lima extracts were injected on to the LC column.  

Quantitation involved the deployment of the 803.4>113.1and 817.4>113.1 transition 

ions, and concentrations were determined on a pg/cell basis. 

OA and DTX1 (total and free) in P. lima cells were plotted in relation to the cell 

growth of P. lima (i.e. lag, exponential, and stationary growth phases). Maximum OA 

and DTX1 in P. lima cells was plotted vs growth temperatures to determine the effect of 

increasing sea water temperature on toxin production in P. lima cells.  Esterified forms 

of OA and DTX1 were considered within the total burden of OA and DTX1, but their 

molecular structure or identity was not established. 

2.1.14 pCO2 measurements 

pCO2 in the culture bottles was calculated from pHNBS and temperature 

measurements using a Mettler Delta 350 pH meter connected to an ATC (automatic 

temperature compensation) sensor probe reading to 0.001 pH units. To calculate pCO2, 

alkalinity was assumed to remain constant throughout the growth experiments. The 

instrument and probe were calibrated with fresh NBS buffers (Sigma Aldrich) at 4.0, 

7.0, and 10.0 prior to pH measurements. 8ml of culture media (sample) was removed 

from the cultures and immediately placed in a beaker where the pH and temperature was 

measured. Samples were acidified with HCl (0.001 M) until the pH reached a value 

between 3.5 and 4. pH and temperature and volume of HCl added during acidification 

were recorded. Data were put in an Excel spreadsheet and pCO2 calculations were 

carried out following an algorithm developed by Crawford and Harrison (1997). 



  Chapter 2 – Materials and methods   

 28   

2.1.15 Brine shrimp bioassays 

 Nauplii of the brine shrimp Artemia salina were used in feeding assays to 

determine active toxic compounds produced by P. lima and C. monotis. P lima has been 

shown to be extremely toxic to A. salina in other studies. Artemia assays were 

performed following the recommendation of Mayer et al. (1982). Briefly, nauplii were 

hatched after 48-72 hours from brine shrimp eggs maintained in a 7 L aquarium with 

filtered seawater (0.2 µm, salinity 32) at ~28 °C. A. salina eggs were obtained 

commercially from Tropi-Quaria, UK. A. salina eggs were maintained in aerated 

seawater and illuminated with incandescent light (40 watts) during the cultivation of A. 

salina. After hatching, nauplii were left to grow for 2-3 days in the aquarium before 

they were exposed to the harmful microalgae P. lima and C. monotis. Nauplii were fed 

on a mixture of microalgae (diatoms, chlorophyta and cyanobacteria). Hatched nauplii 

were separated from the aquarium using a net, rinsed in filtered seawater (0.2µm), and 

starved in 0.5 L of seawater (0.2µm) for 24 h. Nauplii were placed individually in 

culture wells  (3×4 wells). 3.5 ml of algal culture was used per well and triplicates were 

performed for each microalgal concentration tested. P. lima replicates used 200 and 500 

cell ml
-1

 while 2.5 and 2.8×10
3
 cell ml

-1
 were applied in C. monotis replicates. Controls 

were inoculated with non-toxic microalgae (diatoms, chlorophyta, cyanobacteria) and 

triplicates were performed in all assays. The percentage of mortality was recorded every 

24 h under a stereoscopic microscope. Nauplii in a necrotic state or with a poor lack of 

movement were considered as dead bodies. Additionally, ingestion of P. lima and C. 

monotis cells was confirmed in dead nauplii by epifluorescence microscopy. Since A. 

salina ingested a high number of both P. lima and C. monotis cells and the effect of 

toxic compounds on the performance of A. salina was the main purpose of the assays, 

the total number of cells remaining in the wells was not quantified at the end of the 

feeding assays.  

2.1.16 Copepod bioassays for determination of algal toxicity 

As toxins were not determined in A. carterae and C. monotis cells through LC-

MS/MS analyses, copepod bioassays were applied as an alternative method to 

investigate potential algal toxicity. Feeding experiments were carried out where the 

harpacticoid copepod Tigriopus californicus was fed on A. carterae and C. monotis 

cells for 8-12 days. Copepod mortality was recorded and related to A. carterae and C. 

monotis at different cell concentrations. 
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T. californicus (obtained from Reefphyto Ltd, Bristol, UK) was cultured in a 10 

L flask with filtered (0.22 µm) seawater (salinity 28-31) at room temperature for a 

period of 3-4 weeks.  Copepods were supplied a mixture of green and brown microalgae 

(copepod feed provided by Reefphyto Ltd, Bristol) for growth. Copepods were isolated 

by filtering a volume of copepod culture through a 100 µm mesh and then rinsing with 

distilled water for ~30 seconds to remove debris or food material attached to copepods. 

There was no evidence that copepods were damaged or affected during or after rinsing. 

Copepods were placed in filtered seawater (0.2 µm) before being picked by a broad 

plastic tip attached to a 1000 µl pipette. Feeding experiments used mainly adult female 

copepods as they were larger and easily ingest more microalgae. 

 Copepods were left in filtered seawater to starve for 3-5 days before the toxic 

dinoflagellates A. carterae or C. monotis were introduced. Cells of A. carterae and C. 

monotis in exponential growth were used at different concentrations to assess the 

potential toxicity of the benthic dinoflagellates. Well plates (8 × 12 wells) were used 

with 1 copepod added per well (1.5 ml) under a range of algae concentrations. Six 

replicates were assessed at each cell concentration (treatment). Controls were carried 

out using 6 replicates where starved copepods were fed a non-toxic microalgae mixture 

(diatoms, chlorophyta, and cyanobacteria) for the term of the feeding experiment. The 

plate lid was sealed with parafilm tape to reduce evaporation. Bioassays were 

maintained in the dark at room temperature and lasted 8-12 days. Copepods can remain 

motionless for several minutes on the bottom of a plate and determining the mortality of 

organisms by eye can be uncertain, therefore a dissection needle was submerged gently 

in the wells by hand to verify both the activity and/or mortality of the copepod. 

2.1.17  Haemolytic bioassays  

The molecular structure of many haemolytic compounds produced by harmful 

microalgae is still unknown. The true detection and quantification of such substances is 

dependent on bioassays that provide sensitive information on, for example, haemolytic 

impairment (Eschbach et al 2001). In this study the lytic response of Chicken Red 

Blood Cells (RBCs) was assessed when different concentrations of algal extracts were 

inoculated with RBCs. The method applied in this study was similar the used by 

Eschbach et al (2001) and Neely and Campbell (2006), although these authors 

determined the haemolytic response on Fish RBCs rather than Chicken RBCs. 
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2.1.17.1 Preparation of algal extracts 

Cells of Amphidinium carterae and Coolia monotis were collected during the 

exponential growth phase to prepare algal extracts. 10ml of algal culture was 

centrifuged at 4° C (10 min at 3500 rpm) in 15ml plastic tube and a cell pellet was 

formed. Culture media was decanted from the tube and then assay buffer (150 nM 

NaCL, 3.2 mM KCL, 1.25 mM MgSO4, 3.75 mM CaCl2, and 12.2 mM TRIS base; pH 

adjusted to 7.4 with HCL) was added to yield between 10
5
- 10

6
 cells. The cell 

suspension was sonicated for 2 min in buffer using a pulse sonicator with a 70% duty 

cycle. Algal extracts were maintained in ice during and after sonication. 

2.1.17.2 Erythrocyte lysis assay 

Chicken Red Blood Cells (Seralab, UK) were preserved in 10% Alsevers 

solution and used in bioassays within 2 weeks after delivery. 250µl of RBC were 

inoculated in 50 ml of assay buffer which yielded ~2.5 × 10
6 

cells ml
-1

. RBCs were 

centrifuged (10 min at 3500 rpm at 4° C) and re-suspended two times in assay buffer 

(50ml) to remove the anticoagulant prior to bioassays. From this suspension 5ml was 

used separately to prepare positive and negative controls. Positive controls were 

prepared by sonication (2min in a 70% duty cycle) to produce 100% lysis whereas 

erythrocytes in assay buffer alone were considered negative controls. RBC bioassays 

were carried out in triplicate in 15ml centrifuge tubes with a final volume of 5 ml. Both 

RBCs and the algal extract were titrated to produce different concentrations of the 

potential haemolytic compounds. Following algal-extract inoculation, erythrocytes were 

incubated in the dark at 20° C and after 18 h they were removed and centrifuged at 4° C 

for 10min (3000 rpm). 3ml were taken from the tube and placed into a cuvette for 

absorption measurements by spectrophotometry at 415nm. Photometric scans of 

Chicken RBCs (100% lysed cells, Figure 2.4 (A) between 350 and 600nm indicated that 

the peak of maximum absorption was attained at 415nm. 

2.1.17.3 Reference curve of erythrocyte lysis induced by saponin 

Saponin (Sigma-Aldrich 84510) was used in this study as a chemically defined 

haemolytic agent (Eschbach et al 2001). The haemolytic activity of algal compounds 

produced by A. carterae and C. monotis was determined based on a reference curve of 

RBCs lysis induced at different concentrations of saponin. Saponin concentrations 

ranged from 1 to 50µg ml
-1

 and complete lysis (100%) of Chicken RBCs was 

determined at 6µg ml
-1 

as shown in Figure 2.4 (B). 
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2.1.18 Scanning Electron Microscopy (SEM) 

Cells were collected from dinoflagellate monocultures at an early stage of the stationary 

phase. Cell pellets were made using the following aliquots from cultures: 50 ml of A. 

carterae (10
5
 cells ml

-1
), 100 ml of P. lima (10

4 
cells ml

-1
), and 100 ml of C. monotis 

(10
4 

cells ml
-1

). Cells were concentrated by centrifugation for 15 min at 950 rpm. 

Supernatant (culture medium) was removed and cell pellets were fixed in 1.5 ml of 0.1 

M PIPES buffer (pH 7.2) combined with glutaraldehyde (3%) and formaldehyde (4%). 

Cells were maintained at 4 °C during fixation. Fixed cells were transferred to silicate 

coated cover slips by pipetting. Cells were left to settle on the bottom of cover slips for 

20 min. Cover slips were then rinsed two times in 0.1 M PIPES buffer. Biological 

samples were dehydrated in series of ethanol concentrations (30, 50, 70, 95, and100%) 

for 10 min. Samples were freeze/dried in a critical point dryer, mounted on stubs, and 

taken to a sputter coater for 10-15 min before SEM observations were carried out using 

a FEI Quanta 2000 SEM. Microscopy work was carried out at the Biomedical 

Imagining Unit at the University of Southampton. 
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Figure 2.4 (A) Photometric scan of lysed Red Blood Cells suspended in assay buffer; 

(B) Lysis (%) of erythrocyte suspension at different concentrations of saponin. Lysis 

values show the average of three measurements (± SE). 
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 CHAPTER 3 

3.1  Introduction 

3.1.1 The epibenthic dinoflagellate Amphidinium carterae 

A. carterae is known to produce yellow-brown water discolorations when high 

cell concentrations of this organism are present in the environment. Baig et al. (2006), 

for example, reported high concentrations of A. carterae (1.2×10
4
 cells ml

-1
) in the 

northern Arabian Sea during the spring season comprising as much as 85% of the total 

phytoplankton. In the Veracruz reef zone, Gulf of Mexico, A. carterae has been 

observed to dominate the phytoplankton community in assemblages with the potent 

toxigenic dinoflagellates Prorocentrum lima, Coolia monotis, and Ostreopsis heptagona 

(Okolodkov et al., 2007). Quantitative data obtained by Okolodkov et al. (2007) 

reported A. carterae to be present in the Veracruz reef zone for most of the year (May-

December), with highest abundance (4.11 ×10
4
 cells g

-1
 wet weight) between May and 

June in close association with seagrass, mainly Thalassia testudinum. 

 

Amphidinium carterae has been reported to produce harmful effects and to date 

several haemolytic and antifungal compounds have been identified from algal extracts 

of this organism (Kobayashi and Tsuda 2004; Echigoya et al., 2005; Ignatiades and 

Gotsis-Skretas, 2010; Meng et al., 2010). A. carterae can produce secondary 

metabolites known as amphidinols (Kobayashi and Tsuda, 2004, de Vicente et al., 

2006) which are a diverse group of biosynthetic compounds classified as poliketides 

(Chang, 2006). Poliketides encompass a very diverse family of natural products 

produced by bacteria, algae, plants and animals. They are biosynthesized by successive 

condensations of carboxylic acid extender units to a growing acyl chain as occurs in 

fatty acid biosynthesis (Kellmann et al., 2010). Polyketides from dinoflagellates, 

however, are still poorly understood (Chang, 2006; Kellmann et al., 2010). 

 

Chang (2006) reported that 25 dinoflagellates are able to produce amphidinols 

and syndromes such as CFP (ciguatera fish poisoning), DSP (diarrhetic shellfish 

poisoning), and NSP (neurotoxic shellfish poisoning) are associated with poliketides. 

To date amphidinol-3 is considered the most active secondary metabolite produced by 

Amphidinium carterae and it exhibits a potent haemolytic activity against human 
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erythrocytes and antifungal activity against Aspergillus niger (de Vicente et al., 2006). 

Moreover, Kubota et al. (2005) isolated a polyhydroxyl linear carbon-chain metabolite 

from a culture of Amphidinium sp., called luteophanol D, which demonstrated 

antibacterial activity against Micrococcus luteus (33 µg ml
-1

). Amongst amphidinols, 

amphidinol H and N have exhibited remarkable cytotoxicity against human tumour lines 

and these compounds are expected to have the potential for new anticancer drugs 

(Kobayashi and Tsuda, 2004). Table 3.1 describes the cytotoxic activity of several 

amphidinols isolated from Amphidinium strains from which Kobayashi and Tsuda 

(2004) detected high cytotoxicity of some amphidinols (1, 3, 7, 8, 13) as little amounts 

of these compounds produced remarkable effects on human cells.  

 

Table 3.1 Cytotoxic activity of amphidinols reported by Kobayashi and Tsuda (2004) from 7 

Amphidinium sp strains. (a) 50% inhibition concentration, (b) murine lymphoma L1210 cells, 

(c) human epidermoid carcinoma KB cells. 

Amphidinolides 

Cytotoxicity 

(IC50,
a
 µg ml

-1
) Amphidinolides 

Cytotoxicity 

(IC50, µg ml
-1

) 

L1210
b
 KB

c
 L1210

b
 KB

c
 

1 2.0 5.7 14 1.7 3.6 

2 0.00014 0.0042 15 1.6 5.8 

3 0.0058 0.0046 16 6.4 ˃10 

4 0.019 0.08 17 1.4 0.67 

5 2.0 10 18 4.0 6.5 

6 1.5 3.2 19 18 ˃20 

7 0.0054 0.0059 20 12 ˃20 

8 0.00048 0.00052 21 3.2 7 

9 2.7 3.9 22 3.9 ˃10 

10 1.65 2.9 23 0.6 7.5 

11 0.092 0.1 24 0.8 8.0 

12 1.1 0.44 35 3.6 3.0 

13 0.00005 0.00006    

 

Echigoya et al. (2005) suggested that the terminal hydrophilic segment in the 

chemical structure of amphidinols appears to play an important role in the biological 

activity of these compounds. However, as seen in other toxigenic dinoflagellates, 
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amphidinol production may differ from strain to strain (Jeong et al., 2003; Echigoya et 

al., 2005; Meng et al., 2010). 

 

Jeong et al. (2003) determined that the minimum lethal dose of A. carterae to 

mice was a crude whole-cell extract obtained from 1.3×10
8
 cells (1.3×10

7 
ng C), whilst 

Baig et al. (2006) reported low mortalities in mice at doses of 7.2 ×10
4
 (13% of 

mortality) and 2.5×10
5
 cells ml

-1 
(16% of mortality), respectively. Furthermore, both 

Jeong et al. (2003) and Baig et al. (2006) found no evidence that A. carterae was 

noxious to the crustacean and predator Artemia salina when fed on A. carterae. 

Contrasting findings were previously reported by Ismael et al. (1999) as toxicological 

tests showed that A. carterae, during exponential growth, proved to be extremely toxic 

when grazed by the brine shrimp A. salina. 

 

The growth rate of Amphidinium carterae (µmax= 2.7 d
-1

) was suggested by 

Furnas (1990) to be one of the fastest amongst many benthic and planktonic 

dinoflagellates. Morton et al. (1992)  analyzed the effect of temperature on the growth 

of Amphidinium klebsii and showed that growth rates increased linearly between 16 and 

28 °C, with a Q10 around 2 (Montagnes et al., 2003). Optimum growth of A. carterae 

has been suggested to be a function of light intensity, temperature (Morton et al., 1992) 

and nutrients, while growth rate increases with increasing nitrate and phosphate 

concentrations (Ismael et al. 1999).  

 

Lee et al. (2003) has suggested that A. carterae is able to outcompete other 

autotrophic microalgae as it has the ability to store nitrate and phosphate for several 

generations. In addition, A. carterae has a remarkable tolerance to temperature when 

grown in an artificial medium (ASP7) between 20 and 33 °C, where the maximum 

growth rate recorded was 1.0 day
-1

 between 28-33 °C (Lee et al., 2003) and 2.7 day
-1

 at 

25 °C (Furnas, 1990) in GPM medium (Ismael et al., 1999). 
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3.1.2 Taxonomical description 

Amphidinium carterae is a small unarmoured dinoflagellate that inhabits marine 

and brackish waters and is commonly found in temperate and tropical areas. This 

unicellular photosynthetic organism varies from 11-17 µm in length and width of 9-13 

µm (Murray and Patterson, 2002). Cells are oval and dorsoventrally compressed, with 

or without ridges or ribs on the body (Figure 3.1). This species is characterized by a 

finger-like epicone in ventral view, notably deviated towards the left (Figure 3.1). A. 

carterae has an epicone forming a V-shape in ventral view where a girdle is encircled 

(Steidinger and Tangen, 1996). The epicone shape and size is generally considered a 

morphological character that unites the Amphidinium sensu stricto species (Janson and 

Hayes, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

(A) 

(B) (C) 

Figure 3.1 Cells of the benthic dinoflagellate Amphidinium carterae Hulburt isolated from 

the Fleet Lagoon. (A) Photo of live cells of A. carterae taken under a light microscope (40x). 

White area in cells shows the nucleus; (B) ventral view of A. carterae, denoting the 

distinctive epicone, under scanning electron microscopy (SEM); and (C) dorsal view of a cell 

of A. carterae by SEM. 
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3.2 Results 

3.2.1 Cell growth and Fv/Fm in A. carterae cultures 

The benthic phototrophic microalgae Amphidinium carterae was successfully 

isolated from water samples collected from the Fleet Lagoon in 2008 and clonal cultures 

were established in Guillards F/2 medium.  Experimental cultures were incubated at a 

range of growth temperatures (5 to 30 °C) and samples collected at regular intervals for 

determination of cell counts, photosynthetic efficiency (Fv/Fm), chlorophyll a, and 

nutrient  (nitrate+nitrite and phosphate) concentration. Figure 3.2 shows changes in cell 

density and Fv/Fm fluctuations in replicate cultures of A. carterae. Cultures maintained 

at 5, 10, and 30 °C had an initial cell concentration between 2.5 and 3.8 × 10
3
 cells ml

-1
, 

whereas the initial cell density in cultures from 15 to 25 °C ranged from 4.4 to 6.2 × 10
3
 

cells ml
-1

. 

The period of the lag phase in A. carterae cultures was influenced by 

temperature and lasted ca. 18 days at 5 °C, 9 days at 10 °C, and < 2 days in cultures 

maintained between 15 and 30 °C (Figure 3.2). Fv/Fm decreased during the lag phase 

when A. carterae cells were grown between 5 and 25 °C (Figure 3.2). The largest 

change from 0.30 (day 1) to 0.16 (day 5) occurred at both 5 and 10 °C. In some replicate 

cultures maintained between 15 and 25 °C, A. carterae cells displayed a minor decrease 

in Fv/Fm between day 1 and day 2, from 0.33 to 0.30 respectively, immediately before 

initiation of the exponential growth phase. 

Table 3.2 lists the growth kinetics of the A. carterae strain in terms of the length 

of exponential growth (days), changes in cell density, and growth rates encountered in 

each replicate culture grown at temperatures from 5 to 30 °C. The interval considered as 

exponential growth showed consistency in terms of the growth period (in days) for the 

growth temperatures in the range of 10 to 25 °C, with only growth differences amongst 

replicates of 1 or 2 days at these temperatures (Table 3.2). In this study the longest 

exponential growth period was found at 30 °C and lasted 9 days.  

Growth temperature affected cell increase and, as a result, growth rates as shown 

in Table 3.2. Growth rates proved to be very similar amongst replicate cultures 

maintained at each of the growth temperatures, except for one replicate at 15 °C which 

had a growth rate similar to the values calculated at 20 °C (Table 3.2). Moreover, 
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similarity was found in terms of the fluctuation pattern of cell density and Fv/Fm 

amongst replicate cultures maintained at the same growth temperatures. 

During exponential growth, cell increase was always accompanied by an 

increase in Fv/Fm. On commencement of stationary phase, Fv/Fm gradually decreased, 

with the strongest reduction of Fv/Fm determined at 30 °C (Figure 3.2). 

Considering the increase of sea water temperature on the growth of A. carterae, 

this study determined that the rise of 5 °C in A. carterae cultures caused an increase in 

the growth rate of up to 0.1 day
-1

 when growth temperature changed from 5 to 25 °C 

(Table 3.2). 

 

Table 3.2 Growth kinetics of Amphidinium carterae during the exponential 

growth in cultures maintained at growth temperatures from 5 to 30 °C. 

Temperature (°C) 
Time of exp. 

growth (days) 

Exp. change in 

cell density 

(× 10
4
cells ml

-1
) 

Growth rate 

(µ, d
-1

) 

5 
5 1.31-2.77 0.13 

4 1.41-2.51 0.15 

10 
6 1.93-13.26 0.29 

7 1.43-12.13 0.28 

15 

6 0.68-7.82 0.40 

6 0.78-7.72 0.37 

6 0.61-4.66 0.35 

20 

6 0.49-7.32 0.47 

6 0.56-7.01 0.42 

7 0.49-8.01 0.40 

25 

6 0.57-15.17 0.55 

5 0.47-7.67 0.56 

5 0.62-8.20 0.55 

30 
9 0.25-6.94 0.57 

9 0.33-8.06 0.53 
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Figure 3.2 Changes in cell abundance and photosynthetic efficiency (Fv/Fm) during the growth of Amphidinium carterae in cultures maintained in F/2 media 

at temperatures between 5 and 30 °C. Two replicates are shown individually for the growth temperatures 5, 10, and 30 °C and 3 replicates are displayed from 

15 to 25 °C. 
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Figure 3.3 illustrates both the average cell growth rates and Fv/Fm variation 

from replicate cultures of A. carterae maintained at growth temperatures from 5 to 30 

°C. Overall, the exponential growth in A. carterae cultures was shorter than the 

stationary phase and the death phase was hardly detected. From 10 to 30 °C, maximum 

cell abundance remained in the same order of magnitude (10
5 

cells ml
-1

) throughout the 

stationary phase, while cells grown at the lowest growth temperature (5 °C) reached 

maxima cell concentrations in the order of 10
4
 cells ml

-1
 on day 23 during the stationary 

phase (Figure 3.3). 

Cell growth rate was notably reduced when A. carterae was grown at the lowest 

growth temperature (5 °C). However, only at this temperature A. carterae continued to 

divide up to the end of the experiment on day 29. This can be observed in Figure 3.3 

where A. carterae demonstrated a very slow growth between day 20 and day 29. 

As growth temperature increased from 5 to 30 °C, the slope of the exponential 

phase tended to increase and shortly after the end of the exponential growth, cell density 

remained with no major changes throughout the stationary phase, particularly at 

temperatures between 10 and 25 °C (Figure 3.3).The Q10 values, based on the average 

growth rates of A. carterae between 5 and 30 °C, were 2.6 (5-15 °C), 1.5 (10-20 °C), 

1.5 (15-25 °C), and 1.3 (20-30 °C). 

Changes in chlorophyll a concentration were measured in A. carterae cultures 

grown between 15 and 30 °C (Figure 3.4). Maxima concentrations in the batch cultures 

were produced at 20 °C ranging from 470 to 517 µg ml
-1

, followed by concentrations 

determined at 25 °C (463-484 µg L
-1

), at 15 °C (397.8-428 µg L
-1

), and at 30 °C (386-

416 µg L
-1

) all of which were associated with the stationary phase (Figure 3.4). 

Replicate cultures showed similar concentrations of chlorophyll a, although in some 

samples low concentrations were found between some peaks of chlorophyll a during the 

stationary phase (Figure 3.4). Figure 3.5 (top row) shows the average concentration of 

chlorophyll a in the replicate cultures. 

When A. carterae was grown at 30 °C, the maximum of chlorophyll a (401 µg 

ml
-1

) occurred immediately after the exponential growth and then slightly decreased 

(Figure 3.4 and 3.5). This reduction of chlorophyll a at 30 °C was determined, however, 

based on few measurements of the pigment during the stationary phase. A. carterae 

chlorophyll a content per cell increased during the exponential growth phase between 
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15 and 25 °C (Figure 3.5). However, decreasing concentrations of this pigment were 

found in cells throughout the experimental growth in samples collected at 30 °C, even 

though an extended exponential growth period was determined at this growth 

temperature.  

Chlorophyll a in cells maintained from 15 to 25 °C presented an intracellular 

increase, with maxima concentration from 3.3 to 4.1 pg chlor a cell
-1

, towards the end of 

the stationary phase (Figure 3.5). This intracellular increase of chlorophyll a was in 

disagreement with the pattern of Fv/Fm observed during the stationary phase, as Fv/Fm 

decreased when chlorophyll a per cell increased. 
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Figure 3.4 Increase of chlorophyll a (µg ml
-1

) during the cellular growth of Amphidinium carterae in replicate cultures maintained 

at growth temperatures from 15 to 30 °C. 3 replicate cultures are shown from 15 to 25 °C and 2 replicates are shown at 30 °C. 
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Figure 3.5 Top row shows the average of the increase of chlorophyll a (µg L
-1

) produced during cell growth (blue dots) of Amphidinium carterae 

cultures maintained between 15 and 30 °C. Bottom row shows changes of chlorophyll a content  (picograms cell
-1

) in A. carterae cells from 

replicates cultures maintained from 15 to 30 °C. Bars show ± 1 standard difference (30 °C) and standard deviation (15-25 °C) between replicate 

cultures. 
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The effect of the increase of sea water temperature, from 5 to 30 °C, on the growth rate 

and maximum Fv/Fm reached in A. carterae cultures is compared in Figure 3.6 (A). 

This figure clearly shows the extent of the increasing growth rate when A. carterae was 

cultured under nutrient replete conditions (F/2 media) with a 12h light:12h dark 

photoperiod at an irradiance between 35-65 µmoles m
-2 

s
-1

. Growth rate and Fv/Fm both 

increased notably as a result of the rise of growth temperature from 5 to 25 °C, although 

at temperatures higher than 25 °C Fv/Fm decreased while cell growth remained constant 

(Figure 3.6). The growth rates of A. carterae increased linearly (n= 13, r
2
= 0.96) from 5 

to 25 °C with increasing sea water temperature as shown in Figure 3.6 (B). 
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A. carterae cultures grown between 5 and 25 °C. 
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3.2.2 NO3+NO2 and PO4 uptake 

 

 Samples for NO3+NO2 and PO4 measurements were collected every 4-5 days 

from A. carterae cultures and initial concentration were as follows: 980.5 µmol L
-1

 of 

NO3+NO2 and 37.8 µmol L
-1

 of PO4 (at 5-10 °C); 850.9 µmol L
-1

 of NO3+NO2 and 29.9 

µmol L
-1

 of PO4 (at 15-25 °C); and 955.3 µmol L
-1

 of NO3+NO2 and 29.4 µmol L
-1

 of 

PO4 (at 30 °C).  Figure 3.7 shows changes in both NO3+NO2 and PO4 in replicate 

cultures of A. carterae maintained between 5 and 30 °C. Increasing NO3+NO2 and PO4 

uptake was observed in replete cultures as A. carterae was exposed to elevated 

temperatures (5-30 °C).  

 Since the growth of A. carterae was drastically reduced at 5 °C, verified as the 

reduction in cellular division plus low values of Fv/Fm, low removal rates of NO3+NO2 

and PO4 from the media was detected throughout the algal culture, with no evidence of 

neither NO3+NO2 or PO4 limitation at this temperature (Figure 3.7). In comparison, 

cells cultured between 10 and 30 °C showed a substantial removal of NO3+NO2 and 

PO4 from the media (Figure 3.7). Nitrate was non limiting and did not decrease below 

500 µmol L
-1

 in any of the cultures. However, PO4 concentration particularly decreased 

rapidly in cultures maintained between 15 and 25 °C and it became depleted during the 

stationary phase.  

 Maxima cell growth rates at 25 °C coincided with the earliest PO4 depletion (on 

day 11 at 25 °C) in A. carterae cultures. Even though cells grown between 25 and 30 °C 

shared similar growth rates (µ= 0.5 d
-1

), PO4 depletion was not detected at 30 °C 

(Figure 3.7).  

 Figure 3.8 illustrates average plots of cell growth, NO3+NO2 and PO4 changes 

based on the data from replicate measurements in cultures grown between 5 and 30 °C. 

Cells cultured between 10 and 30 °C presented lower NO3+NO2/PO4 ratios in 

comparison to the Redfield ratio, whereas NO3+NO2/PO4 ratios determined at 5 °C were 

more in agreement with the Redfield ratio (Table 3.3). During the period of maximum 

nutrient uptake, NO3+NO2 was linearly related to PO4 uptake at 5, 10, 20, and 30 °C 

(r
2
= >0.9, Figure 3.9). The lowest r

2
= 0.55 however was from cultures maintained at 25 

°C, where both the earliest PO4 depletion (25 °C) and major NO3+NO2 variability (day 

11) occurred (Figure 3.8 and 3.9). 
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Table 3.3 Average NO3+NO2/PO4 uptake ratios 

determined over the exponential growth in A. carterae 

replicate cultures grown from 5 to 30 °C. 

Growth  

Temperature (°C) 

NO3+NO2/PO4  

ratios 

5 16.9  (±2.33)+ 

10 10.0  (±0.70)+ 

15 8.2  (±0.35)* 

20 7.0  (±0.78)* 

25 4.3  (±3.09)* 

30 9.7  (±1.48)+ 

+ =standard difference 

* =standard deviation 
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-1

) and PO4 (µmol L
-1

) uptake during the cellular growth of 

Amphidinium carterae in cultures maintained in F/2 media from 5 to 30 °C. 2 replicates are shown individually for the growth temperatures 5, 10, and 30 °C 

and 3 replicates are displayed from 15-25 °C. 

 

C
e
ll

u
la

r 
d

e
n

s
it

y
 

(c
e
ll

s
 m

l-
1

)

103

104

105

Days

0 5 10 15 20 25 30

C
e
ll

u
la

r 
d

e
n

s
it

y
 

(c
e
ll

s
 m

l-
1

)

103

104

105

Days

0 5 10 15 20 25 30

Days

0 5 10 15 20 25 30

C
e
ll
u

la
r 

d
e
n

s
it

y
 

(c
e
ll
s

 m
l-

1
)

103

104

105

Days

0 5 10 15 20 25 30

N
O

3
+

N
O

2
 (

µ
m

o
l 
L

-1
)

500

600

700

800

900

1000

P
O

4
(µ

m
o

l 
L

-1
)

0

10

20

30

40

N
O

3
+

N
O

2
 (

µ
m

o
l 
L

-1
)

500

600

700

800

900

1000

P
O

4
(µ

m
o

l 
L

-1
)

0

10

20

30

40

Days

0 5 10 15 20 25 30

N
O

3
+

N
O

2
 (

µ
m

o
l 

L
-1

)

500

600

700

800

900

1000

P
O

4
(µ

m
o

l 
L

-1
)

0

10

20

30

40

Days

0 5 10 15 20 25 30



  Chapter 3 – Temperature and growth of A. carterae   

 

 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

C
e

ll
u

la
r 

d
e

n
s

it
y
 

(c
e

ll
s

 m
l-1

)

103

104

105

N
O

3
+

N
O

2
 (

µ
m

o
l 
L

-1
)

500

600

700

800

900

1000

P
O

4
 (

µ
m

o
l 
L

-1
)

0

10

20

30

40

C
e

ll
u

la
r 

d
e

n
s

it
y
 

(c
e

ll
s

 m
l-1

)

103

104

105

N
O

3
+

N
O

2
 (

µ
m

o
l 
L

-1
)

500

600

700

800

900

1000

P
O

4
 (

µ
m

o
l 
L

-1
)

0

10

20

30

40

Days

0 5 10 15 20 25 30

C
e

ll
u

la
r 

d
e

n
s

it
y
 

(c
e

ll
s

 m
l-1

)

103

104

105

N
O

3
+

N
O

2
 (

µ
m

o
l 
L

-1
)

500

600

700

800

900

1000

DIN (µmol L
-1

)

P
O

4
 (

µ
m

o
l 
L

-1
)

0

10

20

30

40

PO4 (µmol L
-1

)

Days

0 5 10 15 20 25 30

Cellular density (cells ml
-1

)

D
IN

 (
µ

m
o

l 
L

-1
)

500

600

700

800

900

1000

NO3+NO2 (µmol L
-1

)

P
O

4
 (

µ
m

o
l 
L

-1
)

0

10

20

30

40

PO4 (µmol L
-1

)

Days

0 5 10 15 20 25 30

C
e
ll
u

la
r 

d
e
n

s
it

y
 

(c
e
ll
s
 m

l-1
)

103

104

105

Cellular density (cells ml
-1

)

Figure 3.8 Cell abundance and nutrient (NO3+NO2 and PO4) changes in A. 

carterae cultures maintained between 5 and 30 °C. Each plot shows the 

average of 2-3 replicates per growth temperature. Bars shows ±1standard 

difference (5, 10, 30 °C) and standard deviation (15-25 °C).. 
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growth of A. carterae at temperatures between 5 and 30 °C. Combined data 
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NO3+NO2 and PO4 relationship by linear regression. 
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3.2.3 Potential toxicity of A. carterae  

 

Feeding assays using harpacticoid copepods and the haemolytic activity of 

chicken red blood cells were used in this study to investigate the potential toxicity of A. 

carterae. In the first bioassay, harpacticoid copepods (Trigriopus californicus) were fed 

on A. carterae cells for 9-12 days and copepod mortality at different cell concentrations 

is shown in Figure 3.10. In the second bioassay, extracts of A. carterae cells were 

inoculated at different concentrations to chicken red blood cells and the haemolytic 

effect after 18 h was determined by spectrometry (Figure 3.12). Harpacticoid copepods 

(Trigriopus californicus) were able to ingest A. carterae cells after being starved for 2-4 

days. The mortality of harpacticoid copepods fed on different concentrations of A. 

carterae is shown in Figure 3.10. Three grazing assays were conducted and A. carterae 

concentrations range from 0.56×10
3 

to 2.82×10
4 

cells ml
-1 

in assay 1; 24.5×10
2 

to 

122.5×10
3 

cells ml
-1 

in assay 2; and 2.2-111×10
3 

cells ml
-1

 in assay 3. Six replicates 

were used at each cell concentration (treatments) and each replicate consisted of 1 

harpacticoid copepod per well plus a given number of A. carterae cells (Figure 3.10). 

Control replicates (6) were inoculated with a mixture or non-toxic microalgae 

(chlorophytes, cyanophytes and diatoms) and mortality at the end of all experiment 

never surpassed 40% (Figure 3.10).  

Chlorophyll a fluorescence from copepod guts confirmed that copepods ingested 

A. carterae cells, but copepod samples analyzed under fluorescent light (440nm) did not 

show evidence of whole cells in copepod guts. Despite a range of cell densities of A. 

carterae applied during the bioassays, maximum mortality of copepods was not 

necessarily associated with the highest cell density in any of the 3 feeding experiments. 

Copepod mortality differed between assays. In assay 1 (CB1), overall, copepod 

mortality fluctuated from 50-100% between day 7 and day 9 amongst cell treatments. In 

assay 2 (CB2), however, mortality increased towards less concentrated replicates where 

83-100% of copepods died between day 4 and day 5, while at the two highest cell 

concentrations copepod mortality remained between 50 and 83%. Copepod mortality in 

assay 3 (CB3) reached 50% of dead copepods between day 6 and day 8 with the highest 

mortality (83%) on day 10 at the second highest cell concentration.  
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Figure 3.10 Mortality of harpacticoid copepods fed on Amphidinium carterae cells at 

different concentrations. Bioassays CB1, CB2, and CB3 and controls (copepods fed on 

non-toxic algae). T1-T6 represents different concentrations (treatments) of A. carterae 

cells inoculated. Six replicates (with 1 copepod well
-1

) were tested for each treatment 

and data were standardized to percentage of mortality. 
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A. carterae cells were used to determine haemolytic effects on chicken red blood 

cells and the haemolytic activity at different cell concentrations is demonstrated in 

Figure 3.12. The method applied to chicken erythrocytes was calibrated using a known 

haemolytic compound (Saponin) and the calibration curve obtained by 

spectrophotometric analysis is presented in Figure 3.11. The spectrophotometric method 

of analysis showed a significant linear slope between absorbance and saponin 

concentration between 3 and 6 µg ml
-1

 (r
2
= 0.93). Figure 3.11 (A) shows the increase of 

haemolytic activity as increasing concentration of the standard (Saponin) was added to 

the erythrocyte suspension, while Figure 3.11 (B) shows a standardized curve of the 

optical density recorded in Figure 3.11 (A). Algal extracts made with cellular 

concentrations higher than 0.5 × 10
6 

cells ml
-1

 showed ˃95% erythrocyte cellular lysis 

after an 18 h incubation period (Figure 3.12 B), whereas 42% cellular lysis was 

produced by algal extracts made with 0.25 × 10
6 

cells ml
-1

. These high cell 

concentrations used in the extracts, however, were never observed in A. carterae 

cultures when grown in F/2 at any of the temperatures used during the growth 

experiments.  
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Figure 3.11 Calibration curve for haemolytic assay using Chicken Red Blood Cells. (A) Optical density 

of lysed erythrocytes quantified at 415nm using different concentrations of the haemolytic compound 

saponin. (B) Haemolytic activity standardized to percentage of cell lysis at different concentrations of 

saponin. (C) Lineal regression based on the haemolytic activity of saponin on Chicken Red Blood Cells. 
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Figure 3.12 Haemolytic activity of Chicken Red Blood Cells produced at different cell 

concentrations of Amphidinium carterae. (A) Optical density of lysed erythrocytes in 

relation to cell concentration (haemolytic compounds) of A. carterae. (B) standardized 

haemolytic activity (%) of lysed erythrocytes. (C) Comparison of negative and positive 

control (100% lysis) used to estimate haemolytic activity from A. carterae. Bars shows 

standard deviation. 
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3.3 Discussion 

 

3.3.1 Effect of temperature on growth rates and Fv/Fm 

 

Amphidiniuim carterae was successfully isolated from the Fleet Lagoon and 

grown in monocultures (non-axenic) at a range of temperature from 5 to 25 °C. Growth 

rates increased with temperature in a linear relationship as has been shown in other 

studies (Raven and Geider, 1988, Sterner and Grover, 1998, Morton et al., 1992). Table 

3.4 shows culture conditions reported in the literature where isolates of A. carterae have 

been grown in cultures and maxima growth rates reported (˃0.5-1 d
-1

) have been found 

in F/2 medium. In this study, although growth rates (~0.55 d
-1

) did not show substantial 

differences between 25 and 30 °C, the former was assumed the optimal growth 

temperature for A. carterae as little variability was encountered in growth rates between 

replicates. 

Morton et al. (1992)) showed that a temperature increase above 27 °C produced 

decreasing growth rates (˂0.45 d
-1

) in A. carterae. However, results from the cultures 

showed that A. carterae maintained growth rates of ~0.55 d
-1

 between 25 and 30 °C. 

These results agree  with other reports (Ismael et al., 1999, Morton et al., 1992) that  A. 

carterae has an optimum growth at warm sea water conditions (˃ 25 °C), although 

Gerath and Chisholm (1989) determined that A. carterae exhibited  a growth rate of 1  

d
-1

 when grown at 20 °C with irradiances of 150-260 µmol m
-2

 s
-1

 in F/2 medium. In 

contrast to Gerath and Chisholm (1989), lower growth rates (0.40-0.47 d
-1

) were  

detected at 20 °C in this and other studies using F/2 medium (Strom and Morello 1998), 

suggesting that not only temperature, but also light and nutrients influence the optimal 

growth of A. carterae. 

Other species of the genus Amphidinium have demonstrated high tolerance to 

temperature, for example, Morton et al.  (1992) found increasing growth rates of A. 

klebsii at temperatures between 19 and 28 °C, whereas Ismael et al. (1999) showed that 

A. carterae grew satisfactorily at a range of temperatures between 20 and 30 °C.  

Results from the present study showed that A. carterae can tolerate a wide range of 

temperature and proved that the isolate A. carterae can grow at lower temperatures (e.g. 

5 °C) than those reported in the literature. 
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Table 3.4 Growth conditions applied during the growth of different strains of A. carterae. 

Species 
Growth rate   

(µ d
-1

) 

Temperature 

(°C) 
Light Salinity 

Max. cell 

density        

(cells ml
-1

) 

Culture 

medium 

Location of 

isolation 
Reference 

Amphidinium 

carterae 
nd 25 

56-112        

µmol m
-2

 s
-1

 
nd 1.9×10

5
 

SW plus 

Provasoli’s ES 

supplement 

Okinawa, Japan 
Nakajima et al., 

1981 

A. carterae 0.39-0.44 15 
70 

µmol m
-2

 s
-1

 
30 nd F/10 

Tjøme, outer 

Oslofjord 

Sakshaug et al., 

1983 

A. carterae 
(27h generation 

time) 
21 

10-70           

µmol m
-2

 s
-1

 
nd nd F/2 nd 

Olson and 

Chisholm 1986 

A. carterae 1 20 
150-260               

µmol m
-2

 s
-1

 
nd 2×10

5
 F/2 nd 

Gerath and 

Chisholm 1989 

Amphidinium 

klebsii 
0.45 27 

207              
µmol m-2 s-1           

(10% sunlight) 
33 nd K 

Knight Key, 

Florida 

Morton et al., 

1992 

A. carterae nd nd 
28               

µmol m
-2

 s
-1

 
nd 5.17×10

5
 

Erdschreiber’s 

soil extract 

Mangalore, 

India 

Nayak et al., 

1997 

A. carterae 0.47 nd nd 30 nd F/2 nd 
Strom and 

Morello 1998 

A. carterae 2.7 25 
41-48           

µmol m
-2

 s
-1

 
nd nd GPM (2.5X) 

Alexandria, 

Egypt 

Ismael et al., 

1999 

A. carterae 0.5 20 
100                

µmol m
-2

 s
-1

 
nd nd F/2 nd 

Jeong et al., 

2003 

Amphidinium 

sp. 
1 13.6-32.9 

100               

µmol m
-2

 s
-1

 
38 5×10

5
 ASP 7 nd Lee et al., 2003 

A. carterae 0.4 16 
200             

µmol m
-2

 s
-1

 
nd 4-5 ×10

5
 

L1 with boric 

acid, TRIS 

buffer, and 

Na2CO3 

CCAP, UK 
Franklin and 

Berges 2004 

A. carterae 0.13-0.55 5-30 
35-70               

µmol m
-2

 s
-1

 
28-33 1.5 ×10

5
 F/2 

Fleet Lagoon, 

UK 
This study 
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The isolate of A. carterae showed a strong linear relationship with temperature when 

grown between 5 and 25 °C (0.1 d
-1

 increase every 5 °C), suggesting important 

biological implications regarding the prediction of the growth response of A. carterae in 

aquatic ecosystems. Montagnes et al. (2003) has shown that several epibenthic 

dinoflagellates including Amphidinium klebsii exhibited a linear growth response to 

temperature. 

This study supports Geider et al.(1998) and Ismael et al. (1999) in that the 

division rate was a function of temperature, but additionally they emphasized a growth 

dependence in combination with light intensity and increasing concentrations of nitrate 

and phosphate. Light deprivation (˂3 days) has been shown to inactivate PSII and 

produce a chlorotic state (loss of autofluorescence) in A. carterae cells (Franklin and 

Berges, 2004). Using continuous light (150 µmol m
-2

 s
-1

) and a 10h light:14h dark 

photoperiod with irradiance of 260 µmol m
-2

 s
-1

, Gerath and Chisholm (1989) reported 

that A. carterae had a growth rate of 1 d
-1 

under both illumination regimes. Here a 12h 

light:12h dark photoperiod with irradiances of  35-70 µmol m
-2

 s
-1 

was used and 

maximal growth rates reached 0.57 d
-1

. This suggests, therefore, that light substantially 

influences the optimum growth rate of A. carterae and it is thought that the isolate used 

from the Fleet Lagoon might reach higher growth rates at irradiances higher than those 

used in this study (35-70 µmol m
-2

 s
-1

).  Although a combination of temperature, 

nutrients, light, and salinity are required for the optimal growth of A. carterae, Lakeman 

et al.(2009) has suggested that laboratory strains only represent a single trajectory to 

understand the ecophysiology of a species and phytoplankton strains should not be 

considered snapshots of natural algal populations in the environment. Therefore, this 

study recognizes the importance of aiming future studies at determining the influence of 

environmental conditions on the growth of natural population of A. carterae in the Fleet 

Lagoon and other shallow marine ecosystems. 

Although temperature below 25 °C produced lower growth rates in this study 

(Geider et al., 1998), there was no evidence of impairment in the growth of A. carterae 

at the lowest temperature (5 °C) as cell yield and Fv/Fm increased gradually from the 

onset of exponential growth to the end of the growth experiment (about 1 month later). 

This suggested that the A. carterae strain isolated from the Fleet Lagoon could survive 

and grow at temperatures below 5 °C. Therefore, as long as nutrients are available and 

light is not a limiting growth condition, A. carterae can grow over a wide range of 
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temperatures (from 5 to 30 °C). It is worth mentioning that maxima growth rates at 25 

and 30 °C were similar despite the differences of Fv/Fm values recorded in A. carterae 

cells at these temperatures. At 30 °C a strong reduction in Fv/Fm occurred before the 

commencement of the stationary phase, while at temperatures ˂ 25 °C, Fv/Fm showed a 

slow decrease throughout the stationary phase. Since the photosynthetic process is 

highly thermosensitive (Morgan-Kiss et al., 2006), this study confirms that elevated 

temperatures (>30 °C) produce substantial deficiencies in the photosynthetic apparatus 

of the A. carterae isolate from the Fleet Lagoon. It is thought moreover that the 

adaptation period of A. carterae (< 2 days) in the incubator at 30 °C was not satisfactory 

and, therefore, a rapid decrease of Fv/Fm was triggered in the stationary phase despite 

the temporary and rapid cellular growth of A. carterae at elevated temperatures. 

Therefore, this study suggests that A. carterae might reach high growth rates in the Fleet 

Lagoon if the time and environmental conditions permit the development of biological 

adaptations in A. carterae for growth at elevated temperatures. 

Cyst formation is known to occur as a result of stressful growth conditions in the 

life cycle of some dinoflagellates (Jensen and Moestrup 1997) and it is linked to a 

sexual stage where two gametes fuse to form a temporary cyst (Laabir et al., 2011). 

Temporary cysts of A. carterae were not found in this study either at low/high 

temperatures or under nutrient depletion (PO4 only). However, Barlow and Triemer 

(1988) found encysted cells of Amphidinium klebsii linked to unfavourable growth 

conditions in a salt water marsh. Thus, it is believed that the growth of the isolated A. 

carterae was particularly linked to an asexual cycle and the lack of gametes in cultures 

restrained the organism to produce resting forms.  

Photosynthetic efficiency (Fv/Fm) is widely used for the assessment of the 

physiological state of phytoplankton (Parkhill et al., 2001, Suggett et al., 2009). 

Franklin and Berges (2004) reported that A. carterae showed optimal growth rate 

(µ=0.4 d
-1

)
 
with Fv/Fm ranging between 0.5 and 0.6 in cultures maintained at 16 °C 

under 200 µmol m
-2

 s
-1 

and 18h L:6h D photocycle. However, in the current study 

higher growth rates were measured despite lower values of Fv/Fm at 20 and 25 °C 

(optimum growth temperature), with lower irradiances. Gerath and Chisholm (1989) 

determined conclusively that A. carterae increased its photosynthetic efficiency, 

chlorophyll a content, and cell volume in response to the light period at increasing 

irradiance (150-800 µmol m
-2

 s
-1

), while the opposite occurred during the dark period. 



  Chapter 3 – Temperature and growth of A. carterae    

58 

 

Although they found the same growth rates under different illumination periods 

(constant light and 10h L:14h D photoperiod), they could not explain what 

physiological changes allowed A. carterae to reach identical growth rates under 

different light conditions. Since temperature is known to affect photosynthesis and 

nitrogen assimilation (Geider et al., 1998), Gerath and Chisholm (1989) emphasized the 

importance of conducting further analysis to comprehend and interpret the physiological 

response of A. carterae under different light regimes and nutrient conditions.  

In this study, A. carterae was characterized by increasing Fv/Fm values with a 

slight decrease of cell size (data not included) during exponential growth as reported by 

Ismael et al (1999). As expected, this occurred under favorable growth conditions which 

Gerath and Chisholm (1989) pointed out as an enhancement of Fv/Fm while cell 

division increased. Maximal Fv/Fm values were linked to the termination of the 

exponential growth period at all growth temperatures, thus the drop of Fv/Fm was 

indicative of limiting growth conditons (PO4 limitation, and possibly a CO2+PO4 

colimitation) regardless of the temperature (Suggett et al., 2009). However, Suggett et 

al. (2009) has suggested that phytoplankton are able to acclimate over long periods to 

nutrient limitation, so they might overcome photosynthetic growth deficiencies under 

limiting nutrients. 

In tropical waters of the Veracruz reef zone in Mexico, A. carterae has been 

shown to be present throughout the year at temperatures ranging from 24-32 °C and the 

highest abundance (41,172 cells g
-1 

substrate wet weight) appeared
 
associated with the 

peak of water temperature (32 °C) during spring. Although maximum cell yield is 

strongly influenced by water temperature (e.g. between 25 and 30 °C), Lee et al. (2003) 

reported that sustained temperatures above 34 °C resulted in death (lysed cells) of A. 

carterae. On the other hand, A. carterae has been negatively correlated with water 

motion in Johnston Atoll (Pacific Ocean) producing low abundances in lagoon and 

channel habitats (Richlen and Lobel 2011). 

 

3.3.2 Nutrient consumption and growth temperature 

 

Temperature has a significant influence on nutrient uptake (Geider et al., 1998, 

Sterner and Grover, 1998, Berges et al., 2002) in phytoplankton cells. A. carterae 

increased NO3+NO2 (dissolved inorganic nitrogen) and PO4 (phosphate) uptake as cells 
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experienced increasing growth temperatures ranging from 5 to 25 °C. Although average 

growth rates at both 25 and 30 °C proved to be similar (0.5 d
-1

), NO3+NO2 and PO4 

uptake rates differed at these growth temperatures, with highest uptake rates at 25 °C 

(optimal growth temperature). Initial cell density at 25 °C (2 times higher than at 30 °C) 

may possibly explain why at this temperature a higher nutrient uptake occurred in 

comparison to the highest growth temperature (30 °C). 

 Several reports have shown that A. carterae is a microalgae well-adapted to 

eutrophic conditions where cell production can change abruptly (up to 10
5
 cell ml

-1
) in a 

short period (˂12 days) during exponential growth (Ismael et al., 1999, Lee et al., 2003, 

Franklin and Berges, 2004). In this study A. carterae showed a rapid cell growth when 

grown in F/2 medium (NO3+NO2: 882 µmol L
-1

 and PO4: 36 µmol L
-1

) and exponential 

growth phase lasted up to 9 days. Initial NO3+NO2/PO4 ratio (24-27) in culture medium 

(enriched seawater based on F/2 medium) was higher than that of the Redfield ratio and 

estimations of NO3+NO2 and PO4 uptake always showed significantly higher removal 

of PO4 than NO3+NO2. During the growth of A. carterae in F/2 medium, NO3+NO2 

concentrations never decreased below 500 µmol L
-1

 whereas high PO4 uptake rates 

occurred at temperatures ˃ 10 °C, with PO4 depletion recorded at 15-25 °C. 

NO3+NO2/PO4 ratios confirmed that A. carterae cells produced higher removal of PO4 

over NO3+NO2 during exponential growth. Likewise, Li et al. (2009) reported 

dinoflagellate blooms with high NO3+NO2:PO4 ratios in the East China Sea and 

indicated that the bloom progression caused the development of phosphate limitation, 

although high NO3+NO2 concentrations remained in the water column. In this study, 

evidently NO3+NO2 uptake increased at increasing growth temperatures, but the F/2 

media had surplus NO3+NO2 that may be excessive to determine the effect of limiting 

nitrogen conditions on the algal growth of benthic dinoflagellates. In fact, NO3+NO2 

uptake continued in the cultures even during the stationary phase at all growth 

temperatures. 

High phosphate uptake by A. carterae and A. klebsii was found to be linked to 

the light period rather than the dark period by Deane and Obrien (1981). Although 

phosphate concentration was not measured at cellular level, results from this study 

agrees with Powell et al. (2009) in that temperature facilitated the accumulation of PO4 

in A. carterae cells. On the other hand, whereas A. carterae increased PO4 uptake and 

produced PO4 depletion in cultures maintained from 15 to 25 °C, PO4 measurement 
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from cultures at 30 °C did not indicate depletion despite high growth rates. Since 

NO3+NO2 and PO4 did show evidence of being limiting nutrients at 30 °C, presumably 

the availability of inorganic carbon (Ci) or a lack of adaptation of A. carterae at high 

temperatures might have restricted the growth of A. carterae (Spijkerman, 2010). 

Q10 assumes that biological reactions (such as growth rates) respond to 

temperature based on a range of optimal growth temperatures (Raven and Geider, 

1988). Theoretically, under optimal conditions Q10 ranges in phytoplankton from 1.8-2.4 

considering a 10 °C increase, although  some studies assume maximum values up to 3 

(Montagnes et al., 2003). This study found maximum Q10 values of 2.6 when A. 

carterae grew from 5 to 15 °C whereas lower values (~1.5) were found at higher 

temperatures, where maxima growth rates were determined. Based on this value, one 

might expect that A. carterae reduced its growth rate at temperatures higher than 15 °C, 

however, this did not occur. Montagnes et al (2003) has explained that the use of Q10 -

might be inappropriate particularly when algal growth responses are linear. To elude 

incorrect interpretations of the effect of temperature on the growth of benthic 

dinoflagellates, this study considers that Q10 is not an accurate predictor of temperature-

growth responses for phytoplankton. 

  

3.3.3 Toxicity of A. carterae 

A. carterae has been recognized as a toxin-producing microalgae in several 

studies (Mandal et al., 2011, Kobayashi and Tsuda, 2004, Ismael et al., 1999, Ignatiades 

and Gotsis-Skretas, 2010) and the structure of about 20 potential toxins 

(amphidinolides) linked to the genus Amphidinium are described by Daranas et al. 

(2001a) and Kobayashi and Tsuda (2004). Due to a lack of an optimized method to 

determine Amphidinium toxins by LC/MS-MS being available, secondary metabolites 

synthesized by the isolate A. carterae could not be quantitatively measured. However, 

bioassays using harpacticoid copepods and chicken red blood cells demonstrated that A. 

carterae produced mortality and haemolysis, respectively, and this suggested a potential 

toxicity of the strain.  

Copepods fed on A. carterae showed some mortality but results did not produce 

a clear relationship between mortality and cell concentration. Likewise, Baig et al. 

(2006) using wild (2.5×10
2

, 10
3
, 10

5
 cells ml

-1
) and cultured (7.2×10

2
, 10

3
, 10

4
 cells ml

-1
) 

A. carterae cells failed to demonstrated a significant mortality effect on the brine shrimp 
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A. salina in feeding experiments. However, a number of studies have shown the 

opposite. For example, Ismael et al. (1999) has shown that A. carterae produced toxins 

that killed the brine shrimp Artemia salina after A. carterae cells collected from 

exponential growth period were ingested by this crustacean, although these authors 

commented that the senescence period produced loss of toxicity in A. carterae cells. 

Rhodes et al. (2010) determined a potent toxicity from A. carterae which at high doses 

killed mice within minutes, but they did not provide evidence of the chemical 

compound involved in the mortality. Likewise, Nakajima (1981) demonstrated that A. 

carterae caused ichthyotoxicity with concentrations of 100 ppm. In this study, A. 

carterae cells were sampled towards the end of the exponential phase and possibly this 

may have influenced the production of chemical compounds from A. carterae, 

particularly in feeding experiments with copepods.  

Increases in cell concentration of A. carterae did not provide evidence of 

increasing copepod mortality rates. Crustacean exhibited different mortality rates 

between experiments even when exposed to fairly similar cell concentration. Although 

copepods were starved for 3-5 days, 100% of copepod mortality did not occur 

immediately after copepods were exposed to A. carterae. Feeding experiments 

determined that 100% of mortality occurred from day 4-6 in assays lasting less than 10 

days. However, in the third bioassay 100% of copepod mortality was not detected 

despite using the second greatest cell concentration (111×10
3
 cells ml

-1
) during all 

copepod experiments. Considering that controls recorded the lowest mortality, this 

study provided evidence that the isolate A. carterae used in the feeding experiment 

might have produced potential toxins causing copepod mortality. 

It is known that copepods possess highly sensitive and specific chemoreceptive 

and selective abilities that influence their grazing behavior (Teegarden and Cembella, 

1996) while some might exhibit a substantial tolerance to ingestion of toxic algae (Senft 

et al., 2011).  Although chlorophyll a fluorescence from copepod guts confirmed 

ingestion of A. carterae cells, it is possible that copepods might have ingested a low 

number of A. carterae cells or they tolerated the potential toxins produced by A. 

carterae.  

Haemolytic assays were conclusive in that A. carterae  did produce hemolysins 

as reported by Nakajima et al. (1981) and Echigoya et al. (2005), however it is 
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important to mention that cell concentrations that produced >50% of lysed cells are 

rarely detected in the environment. 
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3.4 Conclusions 

 

Increasing growth temperatures caused a proportional increase in the growth 

rates of the epibenthic dinoflagellate Amphidinium carterae. The effect of temperature 

on growth rates showed a strong linear relationship when growth temperature increased 

from 5-25 °C. In addition, this study showed that A. carterae reached optimum growth 

rates at elevated temperatures (25-30 °C). These results are in agreement with 

predictions where possibly the effect of climate change will increase the growth of 

HABs as determined in this study for the harmful algae A. carterae. 

This study has shown that A. carterae is a fast growing dinoflagellate at a wide 

range of temperatures, when exposed to high nutrient concentrations (F/2 medium) and 

optimum irradiances. Therefore, results from this study suggest that A. carterae could 

produce a HAB in a wide range of environmental conditions encountered in many 

coastal ecosystems, most likely in eutrophic waters. 

Due to the effect of increasing growth temperatures,  high removal of nutrients 

caused increasing cell concentrations of A. carterae in cultures. NO3+NO2/PO4 uptake 

ratio demonstrated that A. carterae showed a high removal and preference of PO4 over 

NO3+NO2 for growth. Despite PO4 became a limiting growth factor, A. carterae 

continued to take up NO3+NO2 throughout the stationary phase of growth. 

A. carterae cell growth did not appear to produce NO3+NO2 limitation in culture 

media despite both higher nutrient uptake (NO3+NO2 and PO4) and higher cell 

concentrations at increasing growth temperatures (>10 °C). Since there was a lack of 

coincidence between the initiation of the stationary phase and PO4 limitation (possibly 

ascribed to the frequency of sampling), this study estimates that the availability of 

inorganic carbon (CO2) influenced in first case nutrient stress in A. carterae cells 

followed by PO4 limitation.  

A. carterae cells applied in bioassays caused mortality in harpacticoid copepods 

and haemolysis in chicken red blood cells. There was, however, little evidence that the 

concentration of A. carterae was proportional to mortality rates in harpacticoid 

copepods. However, this study confirmed that A. carterae produced hemolysins causing 

a haemolytic effect dependent on cell abundance of A. carterae.  
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CHAPTER 4 

 

4.1 Introduction 

4.1.1 The epibenthic dinoflagellate Prorocentrum lima 

The epibenthic dinoflagellate Prorocenturm lima is widely recognized as a 

toxin-producing microalgae and is commonly encountered in the euphotic zone of 

tropical and temperate coastal waters associated with seaweeds and sediments (Maranda 

et al., 1999, Foden et al., 2005, Maranda et al., 2007b, Faust et al., 2008, Rhodes et al., 

2010). Furthermore, P. lima can be encountered in digestive glands of filtering 

organisms such as mussels (Lawrence et al., 2000, Levasseur et al., 2003), oysters, and 

clams (Vale and de Sampayo, 2002, Naves et al., 2006). This microalga develops 

resting forms (cysts) that settle in marine sediments where they excyst as a result of 

suitable growth conditions that permit the growth of P. lima cells in the environment. P. 

lima has been reported to reach high cell abundance and become a dominant species 

amongst other benthic dinoflagellates (Marasigan et al., 2001). 

 

Numerous studies have demonstrated that benthic microalgae communities, 

under certain conditions, can increase the primary productivity of aquatic systems 

(Nadaoka et al., 2008) with benefits for higher trophic levels. P. lima has caused 

noxious effects (e.g. intoxication, mortality) in coastal regions worldwide due to the 

accumulation of cellular biotoxins in many different organisms (FAO 2004, Hallegraeff, 

2006 ).  

 

Amongst toxigenic dinoflagellates from the marine environment, P. lima is a 

contributor to the human illnesses related to the syndrome ciguatera fish poisoning 

(CFP) (FAO 2004). The CFP name was formerly introduced to describe an intoxication 

caused by the ingestion of coral reef fish that accumulated ciguatoxins from toxic 

microalgae. A diverse range of phycotoxins are also known to directly interact and 

bioaccumulate in the environment in a number of shellfish organisms (Katırcıoğlu et al 

2004). Toxicity in molluscs depends on both the concentration of the different toxins 

accumulated in soft tissues and the potency of the toxins (Fernández et al. 2003). 
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Phycotoxins are natural products that vary in nature in terms of chemical structure and 

sometimes they are ascribed to various human syndromes after toxin ingestion.  

 

DSP-toxins are produced by some species from the genera Prorocentrum and 

Dinophysis (Windust et al., 1996, Suzuki et al., 2004). In the last few decades, diverse 

studies have provided evidence that the toxin-producing P. lima is able to synthesize 

various DSP-toxins under diverse environmental conditions (Bravo et al., 2001, 

Nascimento et al., 2005, Pistocchi et al., 2010, Varkitzi et al., 2010). Bravo et al. (2001) 

demonstrated significant variability in nineteen P. lima strains in terms of both toxin 

production and toxin profiles. Likewise, Morton and Tindall (1995) compared 

seventeen P. lima strains isolated from Heron Island, New Zealand, and found high 

variability in toxin content (okadaic acid and methyl-okadaic acid) between strains.  

 

DSP-toxins are divided into 4 main categories, namely okadaic acid (OA) and 

dinophysistoxins (DTX1, DTX2), yessotoxin (YTX), pectenotoxins (PTX), and 

azaspiracids (AZAs), toxin groups in which there are a number of derivatives although 

DTX-toxins are known to derive from OA (Quilliam 2003). The most common toxins 

reported from P. lima cells are OA and DTX toxins (Bravo et al., 2001). The molecular 

structure of DSP toxins has been revised by Blanco et al. (2005) and Quilliam (2003). 

OA and DTX are potent phosphatase inhibitors that can alter a diverse range of cellular 

processes in eukaryotic cells. For example OA and DTX can interfere with 

serine/threonine protein phosphatases (Windust et al., 1996, Mountfort et al., 2001) 

which are regulatory enzymes affecting growth and replication of vertebrate cells (Sugg 

and VanDolah, 1999). OA and DTX toxins are known to cause diarrhoea in humans and 

the triggering mechanisms include: 1) hyperphosphorylation of proteins that control 

sodium secretion by intestinal cells, or 2) increased phosphorylation of cytoskeletal or 

junctional moieties that regulate solute permeability, resulting in passive loss of fluids 

(FAO 2004). P. lima toxins (OA and DTX) have also demonstrated allelopathic 

(Granéli and Hansen, 2006) and tumor promoting activity (Suganuma et al., 1992, 

Fujiki and Suganuma, 1999). 

 

Several methods have been developed to determine DSP-toxins from biological 

samples. The advent of LC-MS/MS has permitted accurate determination and 
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quantification of several molecules related to P. lima toxins (Vale et al., 2009). Some P. 

lima toxins can undergo enzymatic conversion in nature (Vale and de Sampayo, 2002), 

therefore a procedure is applied to restrict chemical changes in toxins. Fernández et al. 

(2003) commented that many toxins undergo transformation in organism in which they 

accumulate due to varying conditions of pH and redox potential. More recently methods 

have been introduced to hydrolyse toxins that experience chemical conversion 

(Mountfort et al., 2001, Vale et al., 2009). 

 

Climate change effects on the marine environment are predicted to cause 

increases in sea water temperature. This has prompted the hypothesis that some benthic 

dinoflagellates such as the genera Prorocentrum will increase their growth rates and 

possibly become more toxic (Vale et al., 2009). However, Richlen and Lobel (2011) 

suggested that the influence of environmental parameters on population dynamics is not 

well comprehended for many toxigenic benthic dinoflagellates (e.g. Gambierdiscus, 

Prorocentrum, Coolia). Recent reports have suggested that harmful blooms are 

increasing worldwide (Hallegraeff, 2006) and also suggested that the occurrence of 

deleterious episodes from benthic toxic microalgae (Prorocentrum and Ostreopsis) has 

increased compared to planktonic species (Aligizaki and Nikolaidis, 2006). As for the 

effect of temperature on phytoplankton dynamics, Aligizaki et al. (2009) investigated 

the distribution of Prorocentrum species in the North Aegean waters and found several 

new species from a tropical and subtropical origin suggesting that the biogeographical 

distribution of some dinoflagellates is expanding, particularly towards northern regions 

(Aligizaki et al., 2009). 

 

Both toxic and non-toxic dinoflagellates are known to share the same niche in 

the marine environment. In coastal areas around the world, Prorocentrum lima have 

been found in assemblages with other harmful benthic microalgae (Okolodkov et al., 

2007, Aligizaki et al., 2009, Rhodes et al., 2010, Richlen and Lobel, 2011). Aligizaki et 

al. (2009) reported 5 epiphytic Prorocentrum species (P. borbonicum, P. emarginatum, 

P. levis, P. lima, and P. rhathymum) co-inhabitants of coastal Greek waters; and 

Ignatiades and Gotsis-Skretas (2010) found 16 harmful microalgae associated with the 

occurrence of harmful blooms in Greek waters, of which P. borbonicum, P. levis, P. 

lima, and P. rhathynamum are toxin-producing species while P. arcuatum, P. obtusidens, 
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P. redfeldii, P. micans, P. minimum, P. dentatum, and P. emarginatum are high biomass 

producers. Rhodes et al. (2010) isolated the toxigenic Gambierdiscus australes, Coolia 

monotis, Amphidinium carterae, P. lima, P. cf. maculosum, and some Ostreopsis 

species from calcareous seaweed in the Cook Islands, Australia; Laza-Martinez et al. 

(2011) isolated 16 strains of the genera Coolia (C. monotis, C. canariensis, and C. 

malayensis) , Ostreopsis, and Prorocentrum (P. rhathymum, P. mexicanum, P. 

emarginatum, P. fukuyoi, and P. lima) from the south-eastern Bay of Biscay. This is 

particularly relevant given that during HAB outbreaks several harmful algae can 

contribute to the toxin burden with severe consequences in the environment.  

 

4.1.2 Taxonomical description of P. lima (Ehrenberg, 1860) Stein, 1878 

Prorocentrum lima is a thecate oblong to ovate cell, composed of two smooth 

valves attached to each other, with the broadest part situated at the middle of the 

posterior end and then narrowing gradually towards the anterior end (Laza-Martinez et 

al., 2011). Figure 4.1 shows light microscopy and SEM microphotographs of cultured 

cells of the P. lima strain isolated from the Fleet Lagoon. In lateral view, cells are 

lenticulate to ellipsoidal (Taylor et al. 2003), and compressed (Nagahama et al., 2011). 

Each valve possesses from 90 to 100 round to oblong pores and, in the cell periphery, 

marginal pores are typically all around the cell (Nagahama et al., 2011).  P. lima valves 

vary in length from 35 to 57 µm and width from 21 to 46 µm, with a length/width ratio 

between 1.03-2.05 (Nagahama et al., 2011). Under light microscopy, a round and large 

pyrenoid can be seen in the middle of the body, and numerous chloroplasts are also 

present and vary from cell to cell (Figure 4.1, Aligizaki et al., 2009). 

 P. lima resembles to some Prorocentrum species (P. marinum Dodge & Bibby; 

1973; P.hoffmannianum Faust, 1990; P. foraminosum Faust, 1993b) and its 

identification can be complicated (Faust, 1991) when light microscopy is used. Based 

on the world register of marine species (WORMS database, 2012), the benthic 

dinoflagellate P. marinum (Dodge and Bibby, 1973) is recognized as a synonym of P. 

lima. However, while the scientific name of P. lima has been accepted (WORMS 

database) and its morphological characterization has been explain in detail in different 

studies (Taylor et al. 2003; Aligizaki et al. 2009), P. marinum has not been confirmed 

as a species within the genus Prorocentrum (WORMS database, 2012). P. foraminosum 

is incorrectly identified as P. lima but the former can be distinguished from P. lima by 
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its oblong to oval cell shape, larger cell size (46-66 µm long and 31-42 µm wide), and 

different sized flagella and auxiliary pores (Faust 1993). In addition, unlike P. lima, P. 

foraminosum has not been recognized as a toxin-producing species.  In terms of 

distribution and habitat, P. marinum, P.hoffmannianum, and P. foraminosum are mainly 

encountered in tropical coastal areas and cells are commonly associated with floating 

detritus, while P. lima cells can be widely found in diverse benthic habitats (e.g. 

sediments, macroalgae) from tropical to temperate coastal regions (Marine Species 

Identification of Harmful Marine Dinoflagellates, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) (B) 

(D) (C) 

Figure 4.1 Vegetative cells of Prorocentrum lima (yellow-brown) from a strain 

isolated from the Fleet Lagoon, Dorset. (A-B) Live cells (yellow-brown) and empty 

valves (clear theca) of P. lima viewed under light microscopy. Black arrows indicate 

the large pyrenoid while red arrows point to the nucleus. (C-D) Microphotographs of P. 

lima cell taken by SEM (scanning electron microscopy), with distinctive pore 

arrangement on theca. White row indicates the V-shape anterior indentation (C). 
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4.2 Results 

 

4.2.1 Temperature and cell growth of Prorocentrum lima 

The toxigenic dinoflagellate Prorocentrum lima, isolated from shallow waters 

from the Fleet Lagoon, Dorset, was cultured in vitro in F/2 media and changes in cell 

abundance, growth rate (µ, day
-1

), photosynthetic efficiency (Fv/Fm), chlorophyll a, 

nutrient uptake (both dissolved inorganic nitrogen (NO3+NO2) and phosphate (PO4), 

and toxin production (both okadaic acid, OA, and dinophysistoxin1, DTX1) were 

monitored at growth temperatures between 5 and 30 °C. Additionally, changes in pCO2 

were inferred from P. lima cultures incubated at 15 and 20 °C. Finally, bioassays were 

used to estimate both the effect of grazing on toxin production and the potency of P. 

lima toxins towards brine shrimp (Artemia salina) and harpacticoid copepods 

(Tigriopus californicus). 

P. lima was successfully grown in the laboratory at a range of growth 

temperatures using clonal cultures with F/2 media where a single P. lima strain was 

used for all growth experiments. Cultures were grown at different times of the year (see 

methods chapter). Growth experiments were initiated in 1 L glass flasks with the 

following cell densities: 0.8-1.4×10
2
 cells ml

-1 
(cultured in 2 replicate cultures both kept 

independently at 5, 10, and 15 °C), 5.8-9.3×10
2
 cells ml

-1
 (incubated in 2 replicates both 

kept independently at 20 and 25 °C), and finally ~2.2 ×10
2
 cells ml

-1 
(grown in 2 

replicates at 30 °C). 

Temperature produced a regulatory effect on the growth rates and growth phases 

in P. lima cultures. Figure 4.2 shows the increase of cells and changes of Fv/Fm in P. 

lima cultures grown at temperatures between 5 and 30 °C. The growth of P. lima was 

substantially reduced at 5 °C, however P. lima cells exhibited an increasing cell 

abundance when cultured from 10 to 30 °C (Figure 4.2). P. lima cultures incubated 

between 5 and 15 °C had a lag phase which shortened as growth temperature increased. 

Consequently, the longest lag phase occurred at 5 °C (lasting between 35-40 days), 

followed by 10 °C (~25 days) and then 15 °C (~15days, Figure 4.2). Cells grown in 

cultures at temperatures higher than 20 °C did not exhibit a detectable lag phase given 

the sampling interval in this study (Figure 4.2). 
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Fv/Fm was notably affected at 5 °C as at this temperature P. lima showed the 

lowest values of Fv/Fm in comparison to higher growth temperatures (Figure 4.2). 

However, some increase in values of Fv/Fm were determined at 5 °C as soon as the 

exponential phase commenced, while at higher temperatures (10-30 °C) Fv/Fm 

increased constantly until the end of the exponential phase (Figure 4.2). The positive 

response of Fv/Fm during the exponential growth was notably in accordance with the 

increase in cell density at all growth temperatures. However, a substantial decrease of 

Fv/Fm occurred as soon as the exponential cell growth finished which, as a result, 

delimited both the termination and beginning of the exponential and stationary phase, 

respectively (Figure 4.2). Table 4.1 lists the growth kinetics of the P. lima strain 

including the exponential growth period (in days), changes in cell density, and growth 

rates determined in replicate cultures maintained at temperatures between 5 and 30 °C. 
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Figure 4.2 Changes in cellular density and photosynthetic efficiency (Fv/Fm) during the cellular growth of Prorocentrum lima in cultures 

maintained in F/2 media from 5 to 30 °C. 2 replicates are shown individually for the growth temperatures 5-15 and 30 °C while 3 replicates are 

displayed at 20 and 25 °C. 
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Table 4.1 Growth kinetics of Prorocentrum lima during exponential growth in 

cultures maintained at growth temperatures between 5 and 30 °C. 

Temperature 

(°C) 

Time of exp. 

growth (days) 

Exp. change in 

cell density 

(× 10
2 
cells ml

-1
) 

Growth rate 

(µ, d
-1

) 

5 
25 0.14-0.58 0.06 

25 0.16-0.47 0.04 

10 
20 0.69-88.3 0.12 

20 0.66-87.4 0.13 

15 
15 0.34-52.1 0.18 

15 0.40-49.7 0.17 

20 

15 0.91-67.6 0.13 

15 0.58-43.6 0.14 

15 0.68-52.2 0.14 

25 

15 0.73-84.3 0.18 

15 0.76-82.4 0.17 

15 0.71-66.4 0.17 

30 
15 0.22-15.4 0.15 

15 0.20-14.6 0.12 

 

 

Although cell production differed over the exponential phase in cultures 

maintained between 15 and 30 °C, similar periods of exponential growth (~15 days) in 

P. lima cultures were found at growth temperatures between 15-30 °C (Table 4.1). The 

effect of temperature on cell production suggested increasing growth rates from 5 to 15 

°C (Table 4.1). Measured growth rates at both 15 and 25 °C were similar (average 

µ=0.17 d
-1

), but the growth rate determined at 20 °C proved to be unexpectedly lower 

(average µ=0.13 d
-1

) in comparison to the rates cited previously (Table 4.1). P. lima 

showed both decreasing growth rates and an earlier drop of Fv/Fm at the highest growth 

temperature (30 °C, Figure 4.2-4.3). 
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At the end of the stationary phase, maxima cell abundance averaged in growth 

cultures differed by an order of magnitude as follows: 5×10
2
 cells ml

-1 
(at 5 °C), ~10

4
 

cells ml
-1 

(at 10-25 °C), and ~4×10
3
 cells ml

-1 
(at 25 °C, Figure 4.3). Figure 4.3 presents 

a summary of average growth and Fv/Fm for each growth temperature after averaging 

data shown in replicate cultures from Figure 4.2. Figure 4.4 compares both cell growth 
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Figure 4.3 Changes in average cell density and fluctuation of Fv/Fm in P. lima 

cultures maintained in F/2 media at growth temperatures between 5 and 30 °C. Bars 

shows ±1 standard difference (at 5, 10, 15, and 30 °C) and standard deviation (at 20 

and 25 °C). 

10 °C 5 °C 

15 °C 20 °C 

25 °C 30 °C 



  Chapter 4 – Temperature and growth of P. lima    

 

74 

 

rates (µ) and maximum values of Fv/Fm against temperature to illustrate the effect of 

rising sea water temperature on these parameters during the growth of P. lima cells. 

Growth rates of P. lima and temperature showed a significant linear relationship (r
2
= 

0.97) between 5 and 15 °C (Figure 4.4). The highest Q10 value was 4.3 (5-15 °C) 

followed by1.2 (10-20 °C) and 1.0 (15-25 °C and 20-30 °C). Maximum values of 

Fv/Fm increased in cultures incubated from 5 to 20 °C, then slightly decreased at 25 °C 

with a further substantial decrease in maxima Fv/Fm at 30 °C (Figure 4.4). Although 

both growth and maximum values of Fv/Fm increased with temperature, a lack of 

coincidence occurred between both the highest growth rate (at15°C) and highest Fv/Fm 

(at 20 °C, Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Error bars shows ±1 standard difference (at 5, 10, 15, and 30 °C) and standard  

Chlorophyll a concentration in cultures of P. lima increased during the 

exponential growth phase (Figure 4.5). The increase in growth temperature from 5 to 20 

°C, caused both the increase and maximum production of chlorophyll a as follows:  1.2 

µg L
-1

 (±0.24, at 5 °C), 112.7 µg L
-1

 (±3.25 at 10 °C), 123.8 µg L
-1

 (±5.94 at 15 °C), 

332.7 µg L
-1

 (±19.6 at 20 °C). However, at higher temperatures (>20 °C) maxima 

chlorophyll a concentration were reduced, i.e. 288.6µg L
-1

 (±14.6) at 25 °C and 182 µg 

L
-1

 (±82.0) at 30 °C (Figure 4.5). 

Chlorophyll a per cell showed some fluctuation in P. lima cultures (Figure 4.6) 

with values generally between 20 and 40 pg cell
-1 

but showing no obvious pattern with 

growth temperature. 

Figure 4.4 (A) Average cell growth rates and maximum photosynthetic efficiency (Fv/Fm) 

determined in P. lima cultures incubated at growth temperatures between 5 and 30 °C. (B) 

Linear relationship between temperature and cell growth rate between 5 and 15 °C.  
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Figure 4.5 Changes in chlorophyll a concentration (µg L
-1

) during the cellular growth of Prorocentrum lima in replicate cultures maintained at growth 

temperatures between 5 and 30 °C. 2 replicate cultures are shown at 5, 10, 15, and 30 °C while 3 replicates are shown at 20 and 25 °C. 
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Figure 4.6 Average cell increase and chlorophyll a concentration per cell in P. lima 

cultures maintained between 5 and 30 °C. Chlorophyll content per cell was determined 

based on cell numbers and fluorometric measurements of chlorophyll a. Error bars 

shows ±1 standard difference (at 5, 10, 15, and 30 °C) and standard deviation (at 20 

and 25 °C). 
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4.2.2 NO3+NO2 and PO4 uptake 

 

Figure 4.7 shows changes in NO3+NO2 and PO4 consumption in P. lima cultures 

grown in incubators at growth temperatures ranging between 5 and 30 °C. Cell growth 

experiments were carried out with an initial concentration of 1000 µmol L
-1

 NO3+NO2
 

and 40 µmol L
-1 

PO4
 
in cultures maintained at 5, 10, and 15 °C, while the initial 

NO3+NO2 (928 to 978 µmol L
-1

) and PO4 (32.7 to 34.4) were slightly lower for cultures 

grown between 20 and 30 °C.  

In accordance with cell growth, NO3+NO2 and PO4 uptake by P. lima cells was 

slow during the lag phase (seen at temperatures below 15 °C), but maximum changes of 

both nutrients occurred throughout the exponential growth phase regardless of the 

growth temperature (Figure 4.7). P. lima cultures incubated at 5 °C showed minimal 

removal of nutrients with a maximum uptake of 56 to 63 µmol L
-1 

NO3+NO2 and 4 to 9 

µmol L
-1 

PO4 after 80 days of incubation. Conversely, the highest uptake of PO4 

occurred in replicate cultures maintained at 25 °C, where P. lima growth caused PO4 

depletion after 15 days of incubation (stationary phase) and the lowest NO3+NO2 

concentration recorded in the media was between 632 and 695 µmol L
-1

 towards the end 

of the stationary phase (day 40). 

NO3+NO2 concentration was not depleted below about 600 µmol L
-1

 (Figure 

4.7) whereas PO4 depletion occurred at 20 °C with PO4 undetectable in the cultures after 

day 25, in the stationary phase. There was no evidence of PO4 depletion at 30 °C with 

little PO4 uptake from day 20 onwards (stationary phase). Likewise, cultures grown at 

10 and 15 °C reduced PO4 concentration only to 9-10 µmol L
-1

 following exponential 

cell growth. Therefore, P. lima growth did not cause PO4 depletion other than at 20 and 

25 °C and NO3+NO2 concentration in the culture media was never reduced below 600 

µmol L
-1 

at any of the growth temperatures. 

Data of cell density, NO3+NO2, and PO4 concentration changes were averaged 

and data presented in Figure 4.8. A comparison of changes in NO3+NO2 with changes 

in PO4  (Figure 4.9) during the growth of P. lima showed linear relationships (r
2
= >0.78, 

Figure 4.8). NO3+NO2/PO4 uptake ratios were lower than the Redfield ratio by almost 

two-fold except for a higher NO3+NO2/PO4 ratio found at 5 °C (Table 4.2). 
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Table 4.2 Average NO3+NO2/PO4 uptake ratios 

determined over the exponential growth phase in P. lima 

replicate cultures grown from 5 to 30 °C. 

Growth  

Temperature (°C) 

NO3+NO2/PO4  

ratios 

5 20  (±2.82)+ 

10 6.3  (±1.27)+ 

15 8.5  (±1.83)+ 

20 7.1  (±0.65)* 

25 5.5  (±0.35)* 

30 9.1  (±3.67)+ 

+ =standard difference 

* =standard deviation 
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Figure 4.7 Changes in NO3+NO2 and PO4 in cultures of Prorocentrum lima grown in F/2 media at growth temperatures between 5 and 30 °C. 2 replicate 

cultures were maintained at 5, 10, 15 and 30 °C while 3 replicate cultures were incubated at 20 and 25 °C. 
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Figure 4.8 Changes in NO3+NO2 and PO4 concentration during the growth of 

Prorocentrum lima in cultures incubated between 5 and 30 °C. Error bars shows ±1 

standard difference (at 5, 10, 15, and 30 °C) and standard deviation (at 20 and 25 °C). 
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4.2.3 DSP-toxin analysis by LC-MS/MS 

 

LC-MS/MS analyses of cell extracts confirmed that the dinoflagellate 

Prorocentrum lima, isolated from the Fleet Lagoon, synthesized the biotoxins okadaic 

acid (OA) and dinophysistoxin1 (DTX1) in cultures maintained at growth temperatures 

between 5 and 30 °C. Regardless of the growth temperature, P. lima analyses confirmed 

an intracellular toxin-content (OA and DTX1) in all samples collected at all growth 

stages. Esterified compounds of OA were detected in higher amounts while only small 

amounts of esterified DTX1 compounds were detected in P. lima cells. Esterified 

compounds of both OA and DTX1 were not chemically characterized by LC-MS/MS, 

but quantities measured were considered within the total toxin burden of Total OA or 

Total DTX1. OA and DTX1 concentrations were generally low during the lag growth, 

but cellular synthesis of both compounds increased during the stationary phase (Figure 

4.10 and 4.11). Toxin concentration in P. lima cells is reported in this study as Free OA, 

Total OA, Free DTX1, and Total DTX1, although OA and DTX1 will be also used in 

general terms.  

Toxins released from P. lima cells and, therefore, dissolved in the culture media, 

either from P. lima exudates or cell disintegration, were not analyzed in this study. Free 

OA and Free DTX1 represent specific quantifications of OA and DTX1 (parent toxins) 

based on its molecular structure. Total toxicity (Total OA or Total DTX1), however, 

includes the parent toxin (OA or DTX1) plus esterified compounds metabolized or 

chemically transformed in P. lima cells.  

Figure 4.10 and 4.11 illustrates changes in OA and DTX1 (total and free) 

concentrations in relation to P. lima growth in replicate cultures of F/2 media at growth 

temperatures between 5 and 30 °C. P. lima showed increasing concentrations of both 

OA and DTX1 (total and free) over the growth temperature range from 5 to 15 °C 

(Figure 4.10-4.11; Table 4.3-4.4), with fairly similar maximum concentrations (OA and 

DTX) between 10 and 15 °C (Figure 4.12). As expected, total OA reached higher 

concentrations than free OA regardless of the growth temperature (Figure 4.10; Table 

4.3-4.4). However, total DTX1 presented almost similar concentrations to free DTX1, 

apart from cultures grown at 10 and 15 °C (Figure 4.11; Table 4.3-4.4). 

Table 4.3 and 4.4 present OA/DTX1 ratios and ranges of OA and DTX1 

measured in P. lima cells. Cellular concentration of Total OA was higher than total 
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DTX1 concentrations in P. lima cells regardless of the growth temperature (Table 4.3). 

Therefore, total OA was more concentrated in P. lima cells than total DTX1 (see ranges 

and ratios in Table 4.3). However, free OA and free DTX1 did not differ substantially in 

P. lima cells when compared at a single growth temperature (Table 4.4). For this reason, 

free OA and DTX1 ratios were around 1 (Table 4.4). 

P. lima cultures incubated in the range of 20-30 °C showed a decline in the 

cellular concentration of both OA and DTX1 (total and free) in contrast to the 

concentrations observed in incubations at 10 or 15 °C. Little difference was determined 

in P. lima cells in terms of OA and DTX (total and free) at 20 and 25 °C, although a 

considerable increase of both OA and DTX1 was later observed at 30 °C, but with 

lower concentrations than those determined at 10 and 15 °C. Maxima concentration of 

OA and DTX (total and free) are contrasted in Figure 4.12 where notably the highest 

cellular concentration of OA and DTX (total and free) was found at 10 and 15 °C. 

Average plots of toxin data during the cell growth of P. lima are shown in Figure 4.13 

(OA) and Figure 4.14 (DTX1). 
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Figure 4.10 Increase of total and free OA (okadaic acid) during the cellular growth of Prorocentrum lima in cultures maintained in F/2 media at growth 

temperatures between 5 and 30 °C. 2 replicates are shown individually for the growth temperatures 5, 10, 15, and 30 °C, while 3 replicates are shown at 20 

and 25 °C. 
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Figure 4.11 Increase of total and free DTX1 (dinophysistoxin1) during the cellular growth of Prorocentrum lima in cultures maintained in F/2 media at 

growth temperatures between 5 and 30 °C. 2 replicates are shown individually for the growth temperatures 5, 10, 15, and 30 °C, while 3 replicates are 

shown at 20-25 °C. 
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Table 4.3 Range of Total OA (okadaic acid) and Total DTX1 (dinophysistoxin1) determined by 

LC-MS/MS from P. lima cells grown at growth temperatures between 5 and 30 °C. Ranges 

consider toxin concentrations found during the lag, exponential and stationary growth phases. 

Mean of Total OA and DTX1 was based on ranges of these toxins found in replicate cultures. 

Ranges for Total OA/DTX1 ratios are also shown at each growth temperature. 

 

 

Table 4.4 Range of Free OA (okadaic acid) and Free DTX1 (dinophysistoxin1) determined by 

LC-MS/MS from P. lima cells grown at growth temperatures between 5 and 30 °C. Ranges are 

shown considering toxin concentrations during the lag, exponential and stationary growth 

phases. Mean of Free OA and Free DTX1 was based on ranges of these toxins found in replicate 

cultures. Ranges for Free OA/DTX1 ratios are also shown at each growth temperature. 

 

 

 

Temperature      

(° C) 

Total OA                                              

(pg cell
-1

) 

Total DTX-1                                    

(pg cell
-1

) 

Ratio 

OA/DTX-1 

 range mean (SE) range mean(SE) range 

5 2.05-4.52 3.67 (0.31) 0.82-1.99 1.6 (0.14) 1.7-2.8 

10 3.77-10.99 6.9 (1.0) 2.07-5.96 3.6 (0.50) 1.8-2.1 

15 2.78-10.69 7.21 (1.15) 1.43-5.32 3.58 (0.58) 1.7-2.5 

20 2.62-7.5 4.44 (0.45) 0.97-3.16 1.78 (0.21) 2.2-2.9 

25 2.68-6.71 4.3 (0.38) 0.95-2.66 1.67 (0.17) 2.2-2.9 

30 2.2-10.54 2.9 (0.35) 0.84-3.31 2.38 (0.26) 2.6 -3.4 

Temperature      

(° C) 

Free OA                                              

(pg cell
-1

) 

Free DTX-1                                    

(pg cell
-1

) 

Ratio 

OA/DTX-1 

 range mean (SE) range mean(SE) range 

5 0.99-1.78 1.56 (0.09) 0.94-2.60 1.63 (0.18) 0.8-1.5 

10 1.51-5.12 3.38 (0.46) 1.31-5.61 3.36 (0.52) 0.9-1.2 

15 1.41-6.04 3.99 (0.64) 1.18-4.92 3.33 (0.57) 1.0-1.3 

20 1.30-2.20 1.83 (0.10) 0.97-2.97 1.77 (0.22) 0.7-1.4 

25 1.16-3.11 1.83 (0.18) 0.82-2.60 1.67 (0.19) 0.6-1.5 

30 0.98-4.09 2.89 (0.35) 0.88-3.58 2.40 (0.27) 1.0-1.4 
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Figure 4.14 Average total and free DTX1 (dinophysistoxin1) during the cell growth 

of P. lima in cultures maintained in F/2 media at grown temperatures between 5 and 

30 °C. Error bars shows ±1 standard difference (at 5, 10, 15, and 30 °C) and 

standard deviation (at 20 and 25 °C).. 
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4.2.4 pCO2 in P. lima cultures  

Changes in the pH of P. lima cultures grown at 15 and 20 °C was determined 

and pCO2 derived using the equations of Crawford and Harrison (1997). Figure 4.15 

illustrates pH, pCO2 and chlorophyll a fluctuations during the cell growth of P. lima at 

15 and 20 °C. Initial cell concentrations were in the order of 10
3 

cell ml
-1

 at both 15 and 

20 °C. NO3+NO2, PO4, and DSP-toxins were not analyzed in this experiment. A 

concurrent increase of cell density and pH values occurred over the exponential growth 

in cultures at both 15 and 20 °C (Figure 4.15). The highest pH values were recorded at 

20 °C and ranged between 9.3 (6.67×10
3
 cells ml

-1
) to 9.5 (8.2×10

3
 cells ml

-1
). 

Additionally, the highest cell abundance was detected at 20 °C with 1.08×10
4
 cells to 

1.09×10
4
 cells ml

-1
 over the stationary phase. pH declined sharply over the stationary 

phase at 20 °C (lowest pH 7.4 on day 40) while P. lima cells showed a small increase of 

cell density (Figure 4.15). Maxima pH values occurred at the end of the exponential 

growth phase. Cultures at 15 °C showed maxima pH values from 8.8 (6.95×10
3
 cells  

ml
-1

) to 9.5 (6.02×10
3
 cells ml

-1
) on day 20 and day 30, respectively. Cultures at 15 °C 

reached maxima cell numbers between 8.8 ×10
3
 cells ml

-1 
and 9.4×10

3
 cells ml

-1 
at the 

termination of the experiment. Minimal pH value recorded at 15 °C was 8.4 on day 40 

(Figure 4.15).  

Initial pCO2 values (on day 5) were 41-81 ppmv in replicate cultures maintained 

at 15 °C while 30-31 ppmv were recorded in replicates kept at 20 °C (Figure 4.15). 

pCO2 decreased rapidly during the exponential growth phase which caused pCO2 

depletion before the stationary phase at both 15 and 20 °C. Despite pCO2 depletion (day 

20), P. lima cells increased in number during the stationary phase. Chlorophyll a 

increased and maxima concentration (day 25) reached 405-438 µg L
-1 

at 15 and 431-458 

µg L
-1 

at 20 °C during the stationary phase (Figure 4.15). Growth rates at 15 °C (0.11-

0.12 d
-1

) were slightly lower than at 20 °C (0.13 d
-1

). 
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2 replicates (each column one replicate) were carried out at both 15 and 20 °C. 

15 °C 15 °C 20 °C 20 °C 



  Chapter 4 – Temperature and growth of P. lima    

 

92 

 

4.2.5 Grazing and toxin production  

A number of harpacticoid copepods (Tigriopus californicus) were inoculated in 

enriched  P. lima cultures (F/2 media) in order to determine whether or not grazing may 

accelerate cellular synthesis of OA (okadaic acid) and DTX1 (dinophysistoxin1) in P. 

lima cells under nutrient replete conditions. Copepods consumed and digested P. lima 

cells in cultures maintained for 33 days under a 12h:12h light/dark photoperiod at 15 

°C. DSP-toxin analyses were carried out for 10 days only in order for P. lima growth to 

restrain the effect of major nutrient deficiencies on toxic production. P. lima was able to 

sustain cell grow despite being grazed by copepods throughout the 33-day experiment 

(Figure 4.16). P. lima cells incubated without grazers (control) showed a higher net 

growth rate (µ= 0.15) than cells incubated with copepods (µ= 0.12 (2 replicates), Figure 

4.16). 

P. lima cultures were all initiated with almost the same initial cellular density of 

603 cell ml
-1 

(± 54 cells ml
-1

 SD). Grazing produced a notable decrease of cells and 

chlorophyll a in treated cultures (replicates) between day 10 and day 33 (Figure 4.16). 

Cell density and DSP-toxins (OA and DTX1) showed a concomitant increase from day 

0 to day 10, but toxin production (OA and DTX1) did not differ substantially between 

cultures with or without grazers (Table 4.5-4.6). Table 4.5 and 4.6 presents ranges of 

OA and DTX1 detected in P. lima cultures with or without added harpacticoid 

copepods. Despite the similarity in toxin content between cultures with and without 

grazers, the control culture (no grazers) produced cells with a slightly higher 

concentration of OA and DTX1, as shown in Table 4.5. OA was predominantly 

synthetized over DTX1 in P. lima cells with maximum difference of 4.5 times in the 

control culture. 

Table 4.5 Range of total okadaic acid (OA) and total dinophysistoxin1 (DTX1) 

synthetized in P. lima cultures with (replicate culture 1 and 2) and without 

copepods (control). 

 
Total OA Total DTX1 

Ratio total 

OA/DTX1 

Control 1.10-3.0 0.30-0.67 3.6-4.5 

Replicate 1 1.07-2.0 0.40-0.61 2.7-3.3 

Replicate 2 1.43-1.79 0.38-0.74 2.4-3.8 
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 Table 4.6 Range of free okadaic acid (OA) and free dinophysistoxin1 (DTX1) 

synthetized in P. lima cultures maintained with (replicate culture 1 and 2) and 

without copepods (control). 

 
Free OA Free DTX1 

Ratio free 

OA/DTX1 

Control 0.17-0.49 0.15-0.45 1.1 

Replicate 1 0.23-0.38 0.21-0.28 1.1-1.4 

Replicate 2 0.30-0.30 0.19-0.36 1.0-1.6 
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Figure 4.16 Changes in cell abundance of Prorocentrum lima and toxic production of okadaic 

acid (OA) and dinophysistoxin1 (DTX1) concentration in cultures subjected to grazing by 

harpacticoid copepods. Control plots (P. lima without grazers) show cellular growth and toxin 

synthesis by P.lima. Replicate 1 and 2 (P. lima cultures inoculated with grazers) show P. lima 

growth and toxin synthesis under the effect of copepod grazing. 



  Chapter 4 – Temperature and growth of P. lima    

 

94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.6 Bioassays 

 

Brine shrimp nauplii (Artemia salina) and harpacticoid copepods (Tigriopus 

californicus) were used in toxicity assays where both crustaceans were fed on 

exponentially growing P. lima cells isolated from cultures incubated at 5, 15 and 30 °C. 

Figure 4.18 shows ingested P. lima cells by both brine shrimp and copepods after 

grazing on P. lima. Artemia bioassays were conducted using between 200 and 500 P. 

lima cells ml
-1

. Artemia nauplii showed high sensitivity to P. lima and died in less than 

12 h (overnight) following ingestion of cells regardless of the growth temperature. 

Copepods however exhibited high survival rates when fed on P. lima. Figure 4.19 

illustrates cell density changes and mortality rates in bioassays using copepods fed on P. 

lima. The highest mortality occurred unexpectedly in copepods treated with the lowest 

cell density (0.50×10
2
 cells ml

-1
) while at high density of P. lima cells ( 2.64×10

3
 cells 

ml
-1

) copepods showed the lowest mortality (Figure 4.19). 
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Figure 4.17 Effect of grazers (harpacticoid copepods) on the growth of P. lima incubated 

at 15 °C. (A) Cell growth and (B) chlorophyll a increase in P. lima cultures without 

grazers (control) and with grazers (replicate 1 and 2). 
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Figure 4.18 Harpacticoid copepods (A-D) and brine shrimp (G-H) viewed 

under light (D and G) and fluorescence microscopy (A-C, F, H) after 

ingesting P. lima cells. (A) Starved copepod maintained in filtered seawater 

(0.22µm) for 3-4 days. Faecal copepod pellets under light (E) and fluorescent 

microscopy (F). 



  Chapter 4 – Temperature and growth of P. lima    

 

96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Days

0 2 4 6 8 10

P
e

rc
e
n

ta
g

e
 o

f 
c

o
p

e
p

o
d

 
m

o
rt

a
li
ty

 (
%

)

0

20

40

60

80

100

Days

0 2 4 6 8 10

Control (non-toxic algae)

2.64 x 10
3

 cells ml
-1 

(T1)

1.32 x 10
3

 cells ml
-1 

(T2)

6.60 x 10
2

 cells ml
-1 

(T3)

2.60 x 10
2

 cells ml
-1 

(T4)

1.30 x 10
2

 cells ml
-1 

(T5)

0.50 x 10
2

 cells ml
-1 

(T6)

(A) (B) 

Figure 4.19 Mortality of harpacticoid copepods fed on different concentrations of P.  

lima cells during a 8-days experiment. (A) Mortality numbers are deemed a 6 copepod 

basis per treatment (T1-T6); (B) shows control where copepods (6 organisms) were fed 

on non-toxic algae. 
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4.3 Discussion 

 

4.3.1 Effect of temperature on growth rates and Fv/Fm  

Prorocentrum lima is a toxigenic microalgae with a history of causing 

deleterious effects in aquatic ecosystems documented from tropical to temperate marine 

waters (FAO 2004). The Fleet Lagoon, Dorset, UK, is a shallow coastal ecosystem 

where the noxious P. lima is present throughout the year and has been responsible for 

serious shellfish contamination (Nascimento 2003). In this study, Prorocentrum lima 

was isolated from the Fleet Lagoon and grown in monocultures (non-axenic) between 5 

and 30 °C to determine the implication of increasing sea water temperature on the 

growth and toxin production of the isolate. Although predictions of the impact of 

climate change on HABs are not straight forward (Hallegraeff, 2010), a number of 

studies have concluded that substantial changes in the environment (e.g. warming) may 

result in an increase rather than decrease of the occurrence and impact of HABs 

worldwide (Peperzak, 2003, Bravo et al., 2001, Hallegraeff, 2010). 

In comparison to other benthic dinoflagellates, P. lima is considered a slow 

growing dinoflagellate (Varkitzi et al., 2010), with maximum specific growth rates 

generally below 0.35 d
-1

 (see Table 4.7), although a few studies have reported higher 

growth rates of up to 0.5 d
-1

 (Tomas and Baden 1993). Table 4.7 compares culture 

conditions and growth rates for different isolates of P. lima reported in the literature. 

Both temperature and nutrient concentrations fundamentally influence the optimal 

growth of P. lima (McLachlan et al., 1994, Vanucci et al., 2010, Varkitzi et al., 2010), 

and both have been implicated in the production and increase of biotoxins, particularly 

okadaic acid (OA) and dinophysistoxin1 (DTX1) in P. lima cells (Nascimento et al., 

2005, Vanucci et al., 2010, Varkitzi et al., 2010). 
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Table 4.7 Growth rates and culture conditions where P. lima strains from different regions have been grown under controlled conditions. 

Species 
Growth rate 

(d
-1

) 

Temperature 

(°C) 

Culture 

medium 

Light intensity 

(photoperiod light: 

dark) 

Salinity 
Maximum cell 

density (cell ml
-1

) 

Location of 

isolation 
Reference 

P. lima 0.11-0.22 20 
F/2 different 

N:P ratios 
35 µmol m-2 s-1 (16h:8h) nd 104-2×104 

Ria de Vigo, 

Spain 

Varkitzi et al. 

2010 

P. lima 0.22-0.23 20 F/2 medium 90 µmol m-2 s-1 (16h:8h) 25 3.31×104-7.04×104 
Adriatic Sea, 

Goro, Italy 

Vanussi et al. 

2010 

P. lima 0.49 19 F/2 medium 40 µmol m-2 s-1 (14h:10h) 35 nd 
Lisbon Bay, 

Portugal 
Vale et al. 2009 

P. lima 0.11 17 L-2 medium 90 µmol m-2 s-1 (16h:8h) nd 3.05×104-4.83×104 
Fleet Lagoon, 

Dorset, UK 

Nascimento et al. 

2005 

P. lima 0.11 22 ES-Si medium 
4×20Watts fluorescent lamps 

(12h:12h) 
nd nd 

Baja California 

Sur, Mexico 

Heredia-Tapia et 

al. 2002 

P. lima 0.06 19 K medium 60-70 µmol m-2 s-1 (14h:10h) 
Natural 

Seawater 
1.5×104 

Ria de Vigo, 

Spain 

Bravo et al. 

(2001) 

P. lima 0.08 19 K medium 60-70 µmol m-2 s-1 (14h:10h) 
Natural 

Seawater 
7.0×103 

Ria de 

Pontevedra, 

Spain 

Bravo et al. 

(2001) 

P. lima 0.13 19 K medium 60-70 µmol m-2 s-1 (14h:10h) 
Natural 

Seawater 
1.5×104 

Cíes Lagoon, 

Spain 

Bravo et al. 

(2001) 

P. lima 0.14 19 K medium 60-70 µmol m-2 s-1 (14h:10h) 
Natural 

Seawater 
1.5×104 

Ria de 

Pontevedra, 

Spain 

Bravo et al. 

(2001) 

P. lima 0.1-0.15 18 L-1 medium 90 µmol m-2 s-1 (14h:10h) 32 nd 
Nova Scotia, 

Canada 
Pan et al. 1999 

P. lima ˃0.20 15-25 T1 medium 170 µmol m-2 s-1 (14h:10h) nd nd Sanriku, Japan Koike et al. 1998 

P. lima 0.20-0.35 28 K medium 30-50 µmol m-2 s-1 (16h:8h) nd nd 
Heron Island, 

Australia 

Morton and 

Tindall, 1995 

P. lima 0.5 26 
Modified K 

medium 
150 µmol m-2 s-1 (16h:8h) nd 1.34×105 Florida, US 

Tomas and 

Baden, 1993 

P. lima 0.06-0.3 23-31 K medium 92 µmol m-2 s-1 (14h:10h) 36 nd 
Knight Key, 

Florida 

Morton et al. 

1992 

P. lima 0.05-0.18 5-30 F/2 30-70 µmol m-2 s-1 (12h:12h) 28-31 0.6-88.3×102 
Fleet Lagoon, 

Dorset, UK 
This study 
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Results from the current study show that P. lima can tolerate a wide range of 

temperatures (5-30 °C) when grown in nutrient rich F/2 medium. Growth rates reported 

in this study (0.05-0.18 d
-1

) fit within the values (0.01-0.49 d
-1

) documented in the 

literature using F/2 medium (Vale et al., 2009, Vanucci et al., 2010, Varkitzi et al., 

2010). Although F/2 medium is particularly designed for the growth of coastal marine 

algae, a number of studies have used K medium (designed for growing more 

oligotrophic marine phytoplankters, with 3-fold lower PO4 concentration than F/2 

medium) and found P. lima growth rates within the same range reported as for F/2 

medium (see Table 4.7).   

Although increasing growth rates of P. lima can be explained as a function of 

temperature from 0.05 d
-1 

(at 5 °C) to ~0.17 d
-1

 ( at 25 °C), an unexpected growth 

decrease occurred in replicate cultures maintained at 20 °C (0.14 d
-1

). This unexpected 

decrease could be explained as the interaction of both physical (light, cell densities) and 

physiological changes in P. lima cultures at this temperature and physiological changes 

in phytoplankton strains have been reported for short-term experiments (Lakeman et al., 

2009). In this study, a single clonal strain of P. lima was used in all growth experiments. 

However, P. lima experiments (cultures) had to be carried out at different times of the 

year, with a maximum of three incubation temperatures possible at one time which have 

led to small changes in light and nutrient concentrations. Therefore, it is considered that 

slight physical and physiological changes in clonal cultures could have impacted on 

growth variation in the short-term experiments, particularly at 20 °C.  

Algal growth rates are well known to be temperature dependant (Raven and 

Geider, 1988, Montagnes et al., 2003). In this study, a strong linear relationship (r
2
= 

0.97) existed between temperature and cell growth in P. lima cultures maintained from 

5 to 15 °C. Morton et al. (1992) reported a significant linear relationship between 

growth of P. lima and temperature from 23-27 °C with the latter being the optimum 

growth temperature, whereas several other studies have found the optimal growth rate 

of P. lima to be at ~20 °C  (Morton and Tindall, 1995, Vanucci et al., 2010,). In the 

environment, maximum cell concentrations of P. lima have been reported at 

temperatures above 25 °C (Okolodkov et al., 2007). A comparison of the range of 

growth rates at different temperatures between this study and Morton et al. (1992) is 
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provided in Figure 4.20. In this study, the highest growth rates were fairly similar at 

both 15 and 25 °C (0.17-0.18 d
-1

), however this study failed to show a linear 

relationship from 5-25 °C, on one hand due to the decline of growth rate at 20 °C. Since 

cell yield and maximum Fv/Fm values were higher at 25 °C compared to 15 °C, results 

from this study suggests that the optimum growth temperature of P. lima might be 

associated with higher (25 °C) rather than lower temperatures (15 °C). This implies, 

consequently, that increasing cell abundances of P. lima in the environment is strongly 

regulated seasonally. 

Results from this study agreed with McLachlan et al. (1994) in that P. lima is 

able to survive and produce toxins at 5 °C, although they suggested that P. lima can do 

the same at sub-zero water temperatures, with a potential decrease in DSP-toxins when 

cells experience low temperatures for long periods. This adaptation to low temperature 

could also imply a biological strategy of P. lima to expand its distribution in a number 

of marine habitats and, additionally, in combination with the potential increase of sea 

water temperature (climate change), it is thought that the biogeographical distribution of 

P. lima can be expanded to new marine habitats, as has been suggested for other 

toxigenic Prorocentrum species (Edwards et al., 2006), such as P. borbonicum and P. 

levis (Aligizaki et al., 2009). 
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Figure 4.20 Comparison of growth rates determined over a range of 

growth temperatures by Morton et al. (1992) and this study. 
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Few studies from the literature have provided evidence of extreme suboptimal 

growth temperatures of P. lima under experimental conditions. Therefore, there might 

still be a lack of evidence to ascertain how P. lima populations may respond to a rise of 

sea water temperature in the environment (Moore et al., 2008). As for this work, high 

temperatures (~25 °C) can benefit the growth of P. lima, but temperatures above 30 °C 

caused a rapid decrease of Fv/Fm and, therefore, cell yield. Morton et al. (1992) found 

similar results in terms of the immediate decrease of growth rate at temperatures higher 

than 30 °C. Conversely, Okolodkov et al. (2007) determined high abundance of P. lima  

(29,756 cell g
-1 

of substrate wet weight) in the environment at high temperatures (30-31 

°C). Consequently, more studies are required to understand the physiological 

functioning of P. lima at high temperature (Moore et al., 2008) as different clones can 

cause conflicting results (Lakeman et al., 2009). For example, Morton and Tindall 

(1992) reported an isolate from the north of Heron Island Australia with µ= 0.35 d
-1

 

whilst an isolate from the same area, but from the south, reached a maximum of  0.20   

d
-1 

using the same growth conditions. 

Many benthic dinoflagellates are known to secrete mucilaginous material which 

allows them to attach to different substrates. The growth habit of P. lima, with high 

mucilaginous production and cell clumping (Foden et al., 2005) in experimental assays, 

has caused major problems in cell quantification as homogeneous samples are difficult 

to obtain (McLachlan et al., 1994). In addition, cell clumping might lead to considerable 

variation between replicates (McLachlan et al., 1994). In this study, cell clumping was 

overcome by careful flushing the culture media from which P. lima cells were sampled 

and in general little variability was encountered between replicates. Clumps of cells, 

however, have been speculated to experience different physical-chemical conditions that 

those outside of clumps (McLachlan et al., 1994). 

In photosynthetic organisms, photosynthetic efficiency (Fv/Fm) provides a rapid 

assessment of the functionality of the photosynthetic apparatus (i.e. the efficiency by 

which absorbed light is utilized by photosynthesis); whereby physiological deficiencies 

in phytoplankton (such as nutrient limitation) can be determined (Suggett et al., 2009, 

Schofield et al., 1998). In this study, P. lima cells presented three distinctive Fv/Fm 

patterns during cultivation: 1) low and constant values of Fv/Fm associated with the lag 

phase at low temperatures, particularly at 5 °C (physiological adaptation), 2) increasing 
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Fv/Fm values throughout exponential growth (with maximum values toward the end of 

the exponential phase), and 3) much reduced Fv/Fm values linked to both the stationary 

phase (PO4 limitation) and temperature increase. P. lima cultures grown at a single 

growth temperature (15 °C) at different times, produced significant differences in terms 

of maximum Fv/Fm. The first batch culture had a specific growth rate of 0.18 d
-1

, with 

average maximum Fv/Fm values of 0.37, whereas the second culture reached 0.12 d
-1

, 

with average maximum Fv/Fm values of 0.43. Surprisingly, this shows that low Fv/Fm 

values were associated with a higher growth rate and vice versa. This disparity may 

have been caused by using two different incubators where possibly the range of 

irradiance affected the cultures differently producing notable differences in both Fv/Fm 

and growth rates. Cell shading during algal growth has been linked to changes of 

Fv/Fm, but unfortunately this effect was not determined. Irradiances used in this study 

should not have caused damage to the photosynthetic apparatus of P. lima. In other 

studies P. lima has been grown at high irradiance (e.g. 170 µmol m
-2

 s
-1

) (Koike et al . 

1998) with growth rates comparable to those obtained using relatively lower 

irradiances, between 30- 70 µmol m
-2 

s
-1 

(Morton et al., 1992, Vale et al., 2009). 

Consequently, P. lima not only tolerates a wide range of growth temperatures (5-30 °C), 

but also this microalgae can survive under a wide range of light conditions (30-170 

µmol m
-2

 s
-1

). Results from this study agree with Varkitzi et al. (2010) in that 

irradiances of ~35 µmol m
-2

 s
-1

 were used to emulate light conditions from a benthic 

environment. In addition, it is worth mentioning that the photoperiod (12h Light: 12h 

Dark) used in this study produced growth rates comparable to those with longer 

photoperiods (16h Light: 8h Dark) as in the study by Varkitzi et al. (2010) 

 

4.3.2 Nutrient uptake and toxin production  

 

Okadaic acid (OA) and dinophysistoxin1 (DTX1) are lipophilic compounds 

classified as DSP toxins (FAO 2004). These toxins are particularly produced by a 

number of microalgae species belonging to the genera Dinophysis and Prorocentrum 

(Lee et al., 1989). OA and DTX1 are a threat to marine biota particularly when high cell 

concentrations of some Prorocentrum species are present in the environment. Human 

consumption of contaminated marine organisms containing high concentration of DSP 

toxins may provoke serious health consequences (see chapter 1). In terms of cell 
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concentration of toxic algae in the environment, UK and EU regulations have set a 

threshold limit for monitoring shellfish biotoxins of 100 cell L
-1 

of Dinophysis and 100 

cell L
-1 

of
 
Prorocentrum. 

OA and DTX1 are parent toxins widely recognized as the main DSP toxins 

synthesized in all P. lima strains worldwide (Lee et al., 1989). In this study, OA and 

DTX1 concentrations (picograms cell
-1

) determined in P. lima cells corresponded with 

previous reports of isolates from the Fleet Lagoon (Foden et al., 2005, Nascimento et 

al., 2005). However, high interspecies variation in DSP toxins has been reported 

amongst P. lima strains worldwide (Morton and Tindall, 1995, Bravo et al., 2001). 

Table 4.8 shows DSP toxin concentrations determined in different P. lima isolates based 

on published data. It is worth mentioning that Table 4.8 only includes DSP toxins 

reported as picograms cell
-1 

as this enabled data comparison between different toxin 

profiles. However, several reports have documented the toxic burden of DSP toxins in 

shellfish and on macrophytes using P. lima cells g
-1 

dry weight of epibiont (Lawrence et 

al., 2000, Levasseur et al., 2003, Maranda et al., 2007a). 
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Table 4.8 Ranges of DSP toxins (okadaic acid and dinophysistoxin1) encountered in P. lima strains from different locations. 

Species 
Okadaic acid (OA) Dinophysistoxin1 (DTX1) 

Other DSP-toxins Method of analysis Location of isolation Reference 
Total Free Total  Free 

P. lima 
80-108 pg 

cell-1 

8.4-11 pg 

cell-1 
nd nd nd LC-MS 

Rangaunu Harbour, New 

Zealand 

MacKenzie et al. 

2011 

P. lima 
11.27 pg 

cell-1 
nd nd nd nd HPLC-FD Ria de Vigo, Spain 

Varkitzi et al. 

2010 

P. lima 
6.69-15.80 

pg cell-1 
nd 

0.12-0.39 pg 

cell-1 
nd nd LC-MS/MS Adriatic Sea, Goro, Italy 

Vanussi et al. 

2010 

P. lima 
8.8-41 pg 

cell-1 

0.7-2.6 pg 

cell-1 

2.5-12 pg cell-

1 

0.2-1.1 pg 

cell-1 

OA-D6, OA-D8, OA-D9, 

DTX1-D8, DTX1-D9 
LC-MS/MS Lisbon Bay, Portugal Vale et al. 2009 

P. lima 
0.4-17.1 pg 

cell-1 
nd 

0.4-11.3 pg 

cell-1 
nd 

Diol esters derivatives of OA 

& DTX4 
LC-MS Fleet Lagoon, Dorset, UK 

Nascimento et al. 

2005 

P. lima 
0.1-1.8 pg 

cell-1 
nd 

0.2-6.3 pg 

cell-1 
nd nd LC-MS Fleet Lagoon, Dorset, UK Foden et al. 2005 

P. lima nd nd nd nd 19.0 pg cell-1 OA+DTX1 Mouse bioassay Baja California Sur, Mexico 
Heredia-Tapia et 

al. 2002 

P. lima 
0.19-12.87 

pg cell-1 
nd 

0-12.45 pg 

cell-1 
nd 0-1.14 DTX2 HPLC-FD 

Galician coast, North West of 

Spain 

Bravo et al. 

(2001) 

P. lima 
0.37-6.6 

fmol cell-1 
nd 

0.04-2.6 fmol 

cell-1 
nd 

0.02-1.5 fmol cell-1 OA C8-

diol-ester (OA-D8) and 1.8-

7.8 fmol cell-1 

dinophysistoxin4 (DTX4) 

LC-MS & HPLC with 

LC-UV 
Nova Scotia, Canada Pan et al. 1999 

P, lima 
0.3-1.3 pg 

cell-1 
nd nd nd nd HPLC-FD Sanriku, Japan Koike et al. 1998 

P. lima 
2.33-7.06 pg 

cell-1 
nd 

4.47-12.47 pg 

cell-1 
nd 

6.8-19.15 pg cell-1  

OA+DTX1 
HPLC Virgin Islands, US 

Morton and 

Tindall 1995 

P. lima 
1.31-5.88 pg 

cell-1 
nd 4-12 pg cell-1 nd nd HPLC-FD Heron Island, Australia 

Morton and 

Tindall, 1995 

P. lima nd nd nd nd 

3-24 pg cell-1 OA+DTX1; 140 

ng ml-1 OA+DTX1 

(cell+medium) 

HPLC-FD Mahone Bay, Nova Scotia 
McLachlan et al. 

1994 

P. lima 
5.0-26 pg 

cell-1 
nd 

6.0-14.3 

pg cell-1 
nd nd HLPC-FD 

Vigo, Spain and Okinawa, 

Japan 
Lee et al. 1989 

P. lima 
2.05-10.99 

pg cell-1 

0.98-6.04 pg 

cell-1 

0.82-5.32 pg 

cell-1 

0.82-5.61 pg 

cell-1 
nd LC-MS/MS Fleet Lagoon, Dorset, UK This study 
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During the cell growth of P. lima, several studies have demonstrated that cells 

can accumulate a remarkable intracellular concentration of OA and DTX during nutrient 

limitation (nutrient stress) (McLachlan et al., 1994, Bravo et al., 2001, Vanucci et al., 

2010, Varkitzi et al., 2010). Several studies have reported that the highest toxin 

production (OA and DTX1) in P. lima cells is consistently linked to the stationary 

growth phase (McLachlan et al., 1994, Vanucci et al., 2010, Varkitzi et al., 2010). This 

was similarly shown in this current study at all growth temperatures (5-30 °C), however 

at temperatures lower than 15 °C there was little evidence that NO3+NO2 and PO4 

removal had caused the initiation of the stationary phase (nutrient stress). Since neither 

NO3+NO2 nor PO4 showed evidence of significant depletion at temperatures below 15 

°C, it is suggested that a lack of dissolved inorganic carbon (CO2) could have been 

involved in the initiation of the stationary phase and, therefore, possibly increasing 

concentrations of OA and DTX1. pCO2 measurements however were not carried out in 

cultures where samples for toxin analyses were collected. Furthermore, there is a lack of 

knowledge of how CO2 limitation affects the toxin production in P. lima.   

To provide evidence of CO2-limitation in P. lima cultures and the potential 

relationship with toxin increase, a pCO2 method (Morton and Tindall, 1995) was applied 

in cultures maintained at  15 and 20 °C to infer CO2 removal by P. lima cells. This 

study determined that the increase of pH was inversely proportional to CO2 decrease 

and on day 20 CO2 became a limiting growth factor for P. lima at both 15 and 20 °C. 

When comparing the beginning of CO2 depletion (CO2 experiments) with the beginning 

of the stationary phase at 15 (day 40) and 20 °C (day 25) from growth experiments, 

unfortunately there is a mismatch at 15 °C between CO2 limitation (day 20) and the 

initiation of the stationary phase (~45); thus this study was unable to relate carbon 

limitation (C stress) to toxin production using an independent experiment despite the 

fact cultures were initiated with similar culture conditions. However, the increase of pH 

in P. lima cultures was importantly linked to the rapid decrease of CO2 influenced by 

the growth temperature as found in other studies (Vardi et al., 1999). Contrastingly, Fu 

et al. (2010) determined that increasing concentrations of CO2 (230-745 ppm, pH 8.37-

7.94 respectively) caused a substantial intracellular increase of toxicity (karlotoxins) in 

the harmful algae Karlodinium veneficum, suggesting ecological implications with 

regard to ocean acidification. 



  Chapter 4 – Temperature and growth of P. lima    

 

106 

 

P. lima cultures grown in F/2 medium have shown contrasting results in terms of 

nutrient uptake (NO3+NO2 and PO4) among strains, possibly due to the combined 

influence of initial cell concentrations and light conditions in the cultures. For example, 

in this study NO3+NO2 concentration in cultures incubated at all growth temperatures 

(5-30 °C) was never depleted below about 500 µmol L
-1 

at the end of the exponential 

phase, whereas PO4 depletion occurred particularly at 25 °C (day 15) and then at 20 °C 

(day 25). Nascimento et al. (2005) reported that a P. lima strain isolated from the Fleet 

Lagoon caused both NO3+NO2 and PO4 depletion (day 25) when grown in F/2 at 17 °C 

with irradiance of 90 µmol m
-2

 s
-1

. In other studies, Varkitzi et al. (2010) reported that 

P. lima cells cultured in F/2 medium at 20 °C showed no evidence of nutrient limitation 

although a considerable decrease of NO3+NO2 (53.4 µmol L
-1

) and PO4 (˂0.2 µmol L
-1

) 

concentrations occurred towards the end of the cultivation. Likewise, Vanussi et al. 

(2010) reported high concentrations of NO3+NO2 (341 µmol L
-1

) and low concentration 

of PO4 (0.22 µmol L
-1

) in senescent P. lima cultures incubated in F/2 at 20 °C and 

irradiance of 90 µmol m
-2

 s
-1

. Although it is clear from above that different P. lima 

strains reduced nutrient concentrations in differing proportions, OA concentrations 

between this study and the aforementioned authors did not differed significantly (see 

table 2), with OA concentrations (0.4-17.1 pg cell
-1

)
 within the range reported by 

Nascimento et al. (2005). However, recently MacKenzie et al. (2011) has reported 

significantly higher OA concentrations (80-108 pg cell
-1

) than those within the range 

reported by Nascimento et al. (2005). 

Results from this study did not show an increase of OA and DTX1 in P. lima 

cells with an increase in growth temperature (between 5 and 30 °C). In general, higher 

OA and DTX1 concentrations were determined in cultures at temperatures lower than 

15 °C than those maintained from 20-30 °C. Total OA was generally higher than free 

OA (parent toxin) meaning that some OA toxins (derivatives) were importantly 

accumulated in cells in an esterified form. However, total DTX1 did not differ 

substantially from free DTX1 (parent toxin) suggesting that little amounts of esterified 

DTX1 was presented in P. lima cells. Total OA/DTX1 ratios were slightly higher than 

free OA/DTX1 as a result of the presence of esterified forms. Total OA/DTX ratios 

(1.7-3.4) reported in this study coincided well with ratios documented previously for 

isolates from the Fleet Lagoon (OA/DTX1= 0.14-3.20) (Nascimento et al. 2005). 
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However, other studies have reported OA/DTX1 ratios from 3-10 (McLachlan et al. 

1994); 3.2-3.5 (Vale et al. 2009); 40.7-57.5 (Vanucci et al. 2010). These ratios evidently 

indicate that the biotoxin OA contributes substantially to the total toxin burden of P. 

lima cells. 

In this study, total OA concentration at 10, 15 and 30 °C was high and did not 

differ substantially among these temperatures. By contrast, free okadaic acid (parent 

toxin) was the only toxin with a proportional increase in relation to temperature, but 

only from 5-15 °C and 20-30 °C. In addition, the highest total and free DTX1 

concentration were found at 10 and 15 °C with reduced concentrations at 5 °C and at 

temperatures higher than 15 °C. It is not clear why P. lima reached high OA and DTX1 

concentrations at growth temperatures of 10 and 15 °C where there was no apparent 

nutrient limitation (NO3+NO2 and PO4). Also, the highest concentrations of OA and 

DTX1 were not associated with the cultures showing PO4 limitation at 25 °C or 20 °C. It 

is possible therefore that some other factors (e.g. salinity of seawater, irradiance, 

nutrients) might have influenced physiological changes in P. lima over time and 

between growth experiments. The gap between growth experiments (months of 

difference) possibly affected the physiology of the strain,  but also, the sampling 

technique and analytical methods could have influenced the result of intracellular toxin 

content. 

P. lima is not only known to accumulate intracellular toxins, but it has also been 

found to release considerable amounts of toxins to the water. For example, Vale et al. 

(2009) reported a toxin content in cell free media from 3.2-33 ng ml
-1 

of OA and 0.6-8.3 

ng ml
-1 

of DTX1, whereas Nascimento et al. (2005) found a maximum of 59.5 ng OA 

ml
-1

 and 94.6 ng DTX1 ml
-1 

in culture medium. In this study, toxins in the medium were 

not measured but it is estimated that quantities of OA and DTX1 could have been 

released from P. lima cells during sampling (cell detachment and cell homogenization 

in medium). In addition, P. lima cell sampling on GF/F filters by filtration is thought to 

have produced enough pressure on cells to release intracellular toxins to the medium. It 

is possible, therefore, that total toxin burden from P. lima cells may have been 

underestimated. 
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4.3.3 Bioassays 

Results from this study clearly demonstrated that P. lima was highly toxic to the 

brine shrimp Artemia salina. During feeding experiments, there was no evidence that P. 

lima avoided the ingestion of P. lima cells as high number of cells were visualized in 

Artemia guts by epifluorescence microscopy (~50 cells). This study recorded 100% of 

mortality of the brine shrimp in less than 12 h at P. lima cell concentrations between 

200-500 cell ml
-1

, however, Ajuzie (2007) determined that lower concentrations, 

between 20 and 120 cell ml
-1

, caused between 98-100% of mortality in A. salina in 24 

hr. Although P. lima and Artemia salina do not occur together in nature, this study 

provides evidence that P. lima can deter grazers. 

 

There is evidence that copepods can tolerate the ingestion of algal biotoxins 

(Colin and Dam, 2004, Senft et al., 2011) and in some cases can promote toxin 

production in some dinoflagellates (Selander et al., 2006). In this study, the effect of 

grazing on the toxin production of P. lima was evaluated under nutrient replete 

conditions, but results did not indicate that grazing promoted an increase of toxin 

production in P. lima cells. Since toxin-induction experiments lasted 10 days, it may 

well be that this time was not long enough to affect the cellular production of toxins.  
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4.4 Conclusions 

 

In the last decade, a vast number of studies have confirmed that increasing sea 

water temperatures (climate change) will influence positively rather than negatively the 

occurrence and distribution of many HAB species worldwide. In this study, not only the 

growth but also the toxicity of Prorocentrum lima increased at increasing growth 

temperatures (5-15 °C). However, the effect of temperature on growth rates and toxin 

production did not show a strong relationship across the complete range of growth 

temperatures used (5-30 °C) in this study. The highest temperature response on growth 

and toxin production occurred as temperature increased from 5 to 15 °C.  

Although P. lima removed nutrients (NO3+NO2 and PO4) more efficiently as 

temperature increased and should have produced higher growth rates at elevated 

temperatures, some difficulties were encountered in identifying the optimum growth 

temperature of P. lima. At growth temperatures of 15 and 25 °C similar growth rates 

were determined. In addition, high toxin concentrations were expected to be recorded in 

cultures showing nutrient stress (PO4) associated with the stationary growth phase, 

however the highest OA and DTX1 concentrations were determined in cultures (10 & 

15 °C) where NO3+NO2 and PO4 remained replete. Therefore, the availability of 

inorganic carbon (CO2 limitation) was suggested as a potential factor that might have 

limited the growth of P. lima when grown in F/2 medium. Although there was evidence 

that PO4 was associated with the initiation of the stationary phase, further studies are 

indeed required to determine the influence of inorganic carbon (CO2 limitation) on the 

growth and toxic production of P. lima, particularly in nutrient rich media such as F/2. 

The lack of agreement between nutrient removal and growth rates/toxin 

production was believed to be derived from physiological changes experienced by P. 

lima during both culture maintenance and the gap between growth experiments under 

controlled conditions. Although some high temperatures did not coincide with high 

toxin production, ranges encountered in this study were in accordance with ranges 

reported in some previous studies. 

 Despite the high nutrient concentrations used in P. lima cultures, this benthic 

dinoflagellate demonstrated a slow growth rate at all temperatures. Since P. lima 

tolerated a wide range of conditions (low-high temperatures and high-low nutrient 
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concentrations), with variations in the intracellular toxin content, aquatic systems such 

as the Fleet Lagoon remain under permanent threat particularly when the dynamic of 

this microalgae could trigger a major toxic outbreak.  

 Bioassays demonstrated that P. lima toxins were fatal to the brine shrimp 

Artemia salina within a few of hours. On the other hand, there was no indication that P. 

lima increased its cellular toxin production due to grazing from harpacticoid copepods. 
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 CHAPTER 5 

 

5.1 Introduction 

 

5.1.1 The epibenthic dinoflagellate Coolia monotis 

 

Coolia monotis is an epibenthic and sand-dwelling dinoflagellate commonly 

encountered in tropical and temperate marine waters. Holmes et al. (2001), Rhodes and 

Thomas (1996), Rhodes et al. (2000), Hallegraeff (2003), Taylor (2003), and Liang  et 

al. (2008) have reported that C. monotis is a toxin-producing dinoflagellate, related to 

ciguatera fish poisoning (CFP), which synthesizes secondary metabolites that 

correspond to the mono-sulphated form of yessotoxin (Bravo et al., 2001, Ignatiades 

and Gotsis-Skretas, 2010). Yessotoxins (YTX) are lipophilic compounds belonging to 

DSP (diarrhetic shellfish poisoning) toxins, although given that yessotoxins differ in 

chemical structure and toxicological properties, Daranas et al. (2001) and Ogino (1997) 

have suggested that YTX toxins should be reclassified. Although C. monotis has been 

linked with the mortality of juvenile fish in the environment (Armi et al., 2010), 

different reports have demonstrated that some strains of C. monotis may not be toxic 

(Rhodes et al., 2000, Penna et al., 2005). On the other hand, several reports have 

concluded that C. monotis is usually encountered in assemblages with other toxigenic 

epibenthic dinoflagellates such as Ostreopsis cf siamensis, Prorocentrum lima (Pin et 

al., 2001, Aligizaki and Nikolaidis, 2006, Laza-Martinez et al., 2011), and Amphidinium 

carterae (Faust et al., 1996, Okolodkov et al., 2007, Rhodes et al., 2010).  

 Although C. monotis has been regarded as a harmful microalgae, information on 

blooms in the environment of this species is scarce and not well understood. In the 

Veracruz reef zone of Mexico, C. monotis was found throughout the year, with highest 

abundance (3.0×10
3 

cells g
-1

 substrate’s seagrass Thalassia testudinium wet weight) in 

July (Okolodkov et al., 2007), while Armi et al. (2010) reported a bloom of C. monotis 

in the North Lake of Tunis (Mediterranean waters) with cell concentrations of up to 

5×10
5 

cells L
-1

, where C. monotis contributed 49% of the total phytoplankton 

community between May-July. Furthermore, in the water column of the North Aegean 

Sea (Mediterranean waters of Greece), C. monotis has been found with 0.5×10
3 

cells L
-1
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in August, but maximum concentration (1.6×10
3 

cells g
-1

 fresh weight of macrophyte) 

occurred predominantly on macrophytes during winter (Aligizaki and Nikolaidis, 2006). 

Elsewhere, in the south-eastern of the Cantabrian Sea (Bay of Biscay) characterized by 

warm sea temperatures (10-25° C) than the rest of the Atlantic coast of Spain, Laza-

Martinez et al. (2011) found that C. monotis is widely distributed along the coast, but 

maximum concentrations never exceeded 100 cells L
-1

. 

C. monotis has been found to tolerate a wide range of temperatures in the 

environment (Aligizaki et al., 2009), including high temperatures and salinities (Rhodes 

et al., 2000). For instance, Okolodkov et al. (2007) recorded high abundance of C. 

monotis at 28 °C and salinity of 29 in the coral reef of Veracruz, Mexico, whereas Armi 

et al. (2010) recorded a bloom of C. monotis during spring and summer at temperatures 

higher than 22 °C and salinities over 38.6 in Tunisian waters. Likewise, Rhodes and 

Thomas (1996) confirmed that C. monotis grew preferentially at 25 °C (subtropical 

waters) rather than at 20 °C (temperate), with salinities >28, but later Rhodes et al. 

(2000) observed that Coolia grew optimally at 30 °C.  

In cultures, C. monotis reached abundances of 0.36-3.3×10
3 

cells ml
-1 

when 

grown in ES media at 25 °C (Nakajima et al., 1981), whereas a maximum of 2.5×10
3 

cells ml
-1 

was encountered in Erdschreiber’s media at 23 °C and salinity of 36 after 15 

days of growth (Faust, 1992), with a maximum growth rate (µ) of 0.3 d
-1

 (Rhodes et al., 

2000). Rhodes et al. (2000) noted that C. monotis was unable to grow at 35 °C. 

Large intraspecific genetic variability and minimal morphological differentiation 

(similar phenotypes) amongst C. monotis isolates were reported by Dolapsakis et al. 

(2006). By characterising nuclear-encoded partial LSU rDNA and internal transcribed 

spacer (ITS) regions of several Coolia strains, it has been concluded that morphological 

features of Coolia species could be misleading when the identification of the species is 

a concern (Leaw et al., 2010). For example, a strain from New Zealand, considered as 

C. monotis (Fernandez et al., 1996), has been suggested to be C. malayensis (Leaw et 

al., 2010). In addition, phylogenetic analysis carried out by Leaw et al. (2010) 

suggested that the putative C. monotis from Belize and Indonesia may correspond to a 

novel taxon, which highlights the large intraspecific variability of the genus Coolia. 

This high genetic variability of Coolia strains was observed by Penna et al. (2005), who 

suggested that Mediterranean strains are differed from those encountered in Asia and 

Florida.  
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Benthic dinoflagellates have been suggested to be rich in toxins (Nakajima et 

al., 1981). Nakajima et al. (1981) and Rhodes et al. (2000) determined the activity of 

Coolia toxins by bioassays whereby organic compounds extracted from a number of 

Coolia cells caused an haemolytic effect on mouse blood cells and mortality of Artemia. 

The first toxin identified from C. monotis was cooliatoxin (suggested to be a mono-

sulphated analogue of yessotoxin) which Holmes et al. (2001) referred to as a potent 

cardiac stimulant causing death in mice. On the other hand, Rhodes et al. (2000) 

showed that the strain C. monotis from New Zealand did not produce cooliatoxin, but 

they identified two unknown analogues of a polyether compound. Moreover, Liang et 

al.  (2008) determined a secondary metabolite (toxin) produced by Coolia, namely 

cooliatin, considered an unprecedented dioxocyclononane obtained from the chloroform 

extract from C. monotis cells and its chemical structure was identified by spectroscopic 

methods. 

Richlen and Lobel (2011) suggested that population dynamics and the influence 

of environmental parameters on the benthic habitat of ciguatera-producing organisms 

are not well characterized. In UK waters, there are still many uncertainties regarding 

environmental factors that might trigger the proliferation of blooms of C. monotis. In 

addition, there is a poor understanding to date of chemical compounds synthesized by 

Coolia isolates worldwide. Therefore, Ignatiades and Gotsis-Sketas (2010) has proposed 

that C. monotis remains a potentially toxic microalgae despite the lack of evidence of 

toxic blooms in the environment and any notable incident of toxicity to marine 

organisms. Since C. monotis is able to grow optimally at high temperature (>25 °C), 

there is a concern that climate change may increase the distribution and occurrence of 

the harmful algae. 

5.1.2 Taxonomical description  

 

Coolia monotis is a round cell in apical (Figure 5.1B-C) and antapical view 

(Figure 5.1A). In ventral view, the anterior-posterior axis is oblique and compressed 

(Aligizaki and Nikolaidis, 2006), where both the sulcus and cingulum are excavated 

(Figure 5.1B-C). C. monotis possesses an equatorial and narrow cingulum where a 

number of pores are lined around the cingulum (Vale et al., 2009). The epitheca is 

oblong and bigger than the hypotheca (Aligizaki and Nikolaidis, 2006). Cells are 

composed by an arrangement of unequal thecal plates with sparsely thecal pores on the 
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surface (Aligizaki and Nikolaidis, 2006). The sulcus of C. monotis is indented, narrow, 

and with left and right sulcal lists in ventral view (Laza-Martinez et al., 2011). Faust 

(2009) found that the vegetative cells of C. monotis varied from 25 to 45µm in diameter 

and 30 to 50µm in length. Cells exhibit a nucleus situated dorsoventrally in the 

hypotheca (Vale et al., 2009). Cells cultured in F/2 (this study) reproduced by cellular 

division whereby daughter cells might be smaller in size during the exponential growth 

phase. 
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Figure 5.1 SEM (A-D) and LM (E-F) microphotographs of the isolate Coolia 

monotis grown in cultures with F/2 media. Antiapical view of a single cell of C. 

monotis (A). Apical view of C. monotis cells (B-D). C. monotis cell viewed under 

LM showing a deep cingulum (E). Cells viewed under LM (F). 
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5.2 Results 

 

Clonal cultures of the epibenthic dinoflagellate Coolia monotis were maintained at 

growth temperatures between 5 and 30 °C where the growth rate (µ), photosynthetic 

efficiency (Fv/Fm), nutrient uptake (NO3+NO2 and PO4,), and chlorophyll a content 

were measured. Additionally, the toxicity of the microalgae C. monotis was investigated 

in bioassays using the brine shrimp Artemia salina, harpacticoid copepods Tigriopus 

californicus, and chicken red blood cells. 

 

5.2.1 Temperature and cell growth in C. monotis cultures 

 

The initial cell concentration in replicate cultures was as follow: 0.79×10
3 

to 

1.15×10
3
 at 5 °C; 0.94×10

3 
to 1.13×10

3 
at 10°C; 0.06×10

3 
to 0.16×10

3 
at 15 °C; 

0.13×10
3 

to 0.22×10
3 

at 20 °C; 0.15×10
3 

to 0.19×10
3 

at 25 °C; 0.24×10
3 

to 0.28×10
3 

at 

30 °C. C. monotis was successfully grown in F/2 media where both maximum growth 

rates and cell production in cultures were influenced by growth temperature (5 to 30 

°C). Figure 5.2 shows the increase of cell density and fluctuations of Fv/Fm during the 

cellular growth of C. monotis in replicate cultures maintained under a range of growth 

temperatures (5 to 30 °C). Cells inoculated in cultures at temperatures higher than 10 °C 

commenced exponential growth after day 3 while cells incubated at 5 °C grew 

exponentially only two weeks after being inoculated in the media.  

 

Table 5.1 includes both the period (in days) and change of cell density (cells   

ml
-1

) during the exponential growth experienced by cells of C. monotis in cultures 

incubated between 5 and 30 °C. Additionally, Table 5.1 compares the growth rates 

determined between replicate cultures and growth temperatures. As similar growth rates 

were determined between 15 and 25 °C (Table 5.1), it was decided to grow three 

additional cultures at 20 °C to ensure that the maximum growth rate determined at this 

temperature was consistent with values found in the first growth experiment. However, 

growth rates determined additionally at 20 °C were almost 2-fold higher in comparison 

to rates found in the first growth experiment (Table 5.1), despite similar exponential 

growth period in both experiments. Apart from measuring cell density in the additional 
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cultures incubated at 20 °C, no other parameter was monitored in these cultures (plots 

not shown). 

 

The majority of cultures exhibited an exponential growth phase that lasted 

between 10 and 16 days, except for one case at 30 °C which showed the shortest 

exponential growth (6 days, Table 5.1 and Figure 5.2). The growth of C. monotis was 

notably impaired at 5 and 30 °C since cell increase did not produce a substantial cellular 

change, in fact the initial cell density inoculated at both 5 and 30 °C hardly doubled by 

the end of the growth period. In addition, cells grown at the lowest (5 °C) growth 

temperature were characterized by a decreasing of Fv/Fm throughout the growth of C. 

monotis, and by a rapid decrease of Fv/Fm noted at 30 °C (Figure 5.2).  

 

Table 5.1 Growth kinetics of Coolia monotis during the cell growth in F/2 media 

cultures maintained at growth temperatures between 5 and 30 C. 

Temperature 

(°C) 

Time of exp. 

growth (days) 

Exp. change in 

cell density 

(×10
3
 cells ml

-1
) 

Growth rate 

(µ, d
-1

) 

5 

11 0.66-0.73 0.01 

11 0.69-1.28 0.06 

14 0.76-1.14 0.03 

10 

12 2.43-4.80 0.06 

12 2.30-5.06 0.06 

12 2.05-5.24 0.07 

15 

16 0.31-2.54 0.13 

16 0.43-3.60 0.14 

12 0.32-3.14 0.17 

20 

12 (13) 0.30-2.11 (0.13-9.24) 0.15 (0.32) 

12 (13) 0.28-2.20 (0.13-9.10) 0.15 (0.32) 

12 (13) 0.27-2.44 (0.13-10.0) 0.15 (0.32) 

25 

16 0.38-4.58 0.15 

16 0.47-5.53 0.15 

16 0.35-4.46 0.15 

30 
10 0.28-0.82 0.04 

6 0.28-0.63 0.06 

 

Coolia cells showed increasing values of Fv/Fm throughout the exponential growth 

phase at temperatures from 10 to 25 °C, with Fv/Fm peaking towards the end of the 
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exponential phase. Then, the higher the culture temperature (10 to 30 °C), the faster 

Fv/Fm dropped particularly during the stationary phase (Figure 5.2). 

 

Cell growth and Fv/Fm data from replicate cultures shown in Figure 5.2 were averaged 

and Figure 5.3 shows averaged data of both parameters. Error bars of cell growth and 

Fv/Fm shown in Figure 5.3 suggested that cell growth and Fv/Fm followed a similar 

trend in replicate cultures. It is worth to noting that at growth temperatures between 10 

and 25 °C, C. monotis maintained an exponential growth for up to 3 weeks and Fv/Fm 

paralleled the increase of exponentially growing cells in general. 

 

Average cell abundance in the stationary phase showed the same order of magnitude at 

5 °C (0.95×10
3
 ±140 cells ml

-1
) and 30 °C (0.64×10

3
 ±51 cells ml

-1
), while an increased 

abundance was determined for cells at 10 °C (4.71×10
3
 ±435 cells ml

-1
), 15 °C 

(5.01×10
3
 ±403 cells ml

-1
), 20 °C (5.40×10

3
 ±434 cells ml

-1
), and 25 °C (5.05×10

3
 ±200 

cells ml
-1

) during the same growth phase. 

 

Figure 5.4 (A) compares averaged growth rates and maximum Fv/Fm values where the 

rise of sea water temperature (ranging from 5-20 °C) produced an increase of the 

growth rate and Fv/Fm values. The increase of growth rates from 5 to 20 °C was tested 

for linearity using growth data from replicate cultures, but the r
2 

(0.69 p=<0.001) did not 

suggest a strong relationship between growth rate and temperature (Figure 5.4 B). 

Maximum Fv/Fm in C. monotis cells was at 15 °C with decreasing values gradually at 

higher or lower temperatures, although data at 30 °C suggested a drastic impairment of 

Fv/Fm in C. monotis cells.  

 

As cell numbers increased in cultures of C. monotis, chlorophyll a production showed 

increasing concentrations with maximum values attained at an early point of the 

stationary phase, regardless of the growth temperature (Figure 5.5). Moreover, growth 

temperature influenced maximum chlorophyll a production in culture flasks and 

concentrations ranged from 30-35 µg L
-1

 at 5 °C; 133-145.8 µg L
-1

 at 10 °C; 108-153 

µg L
-1

 at 15 °C; 120-183 µg L
-1

 at 20 °C (the highest chlorophyll a concentration 

produced by C. monotis), 130-145.8 µg L
-1

 at 25 °C, and 57.7-58.3 µg L
-1

 at 30 °C 

(Figure 5.5-5.6). 
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C. monotis produced variations of chlorophyll a cellular content (pg cell
-1

) (Figure 5.7) 

with, in general, chlorophyll a content decreasing towards the stationary phase, except 

for cells maintained at 30 C in which chlorophyll a per cell particularly increased, with 

maximum concentration of up to 102 pg cell
-1 

(Figure 5.7).  
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Figure 5.2 Cell growth and changes of photosynthetic efficiency (Fv/Fm) in replicate cultures of Coolia monotis maintained in F/2 media at growth 

temperatures between 5 and 30 °C. 3 replicate cultures are showed for the growth temperatures 5-25 °C and 2 replicates are shown at 30 °C. 
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Figure 5.3 Average cell density and Fv/Fm during the cell growth of Coolia monotis 

grown in F/2 media maintained at growth temperatures between 5 and 30 °C. Bars 

show ± standard deviation (5-25 °C) and standard difference (30 °C). 
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Figure 5.5 Increase of chlorophyll a (µg L
-1

) during the cellular growth of Coolia monotis in replicate cultures maintained at growth temperatures 

between 5 and 30 °C. 3 replicate cultures are shown from 5-25 °C while 2 replicates are shown at 30 °C. 
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Figure 5.6 Average chlorophyll a (µg L
-1

) during the cell growth of C. 

monotis in cultures incubated at growth temperatures between 5 and 30 °C. 

Bars show ± standard deviation (5-25 °C) and standard difference (30 °C). 
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Figure 5.7 Average chlorophyll a per cell (pg cell
-1

) during growth of C. monotis 

in cultures incubated at growth temperatures between 5 and 30 °C. Bars show ± 

standard deviation (5-25 °C) and standard difference (30 °C). 



  Chapter 5 – Temperature and growth of C. monotis    

 

126 

 

5.2.2 NO3+NO2 and PO4 uptake  

 

Figure 5.8 shows changes in nitrate+nitrite (NO3+NO2) and phosphate (PO4) 

concentration during the growth of C. monotis cells in cultures incubated at 10-30 °C. 

NO3+NO2 and PO4 analysis from cultures maintained at 5 °C showed high variability 

and unfortunately proved to be unreliable; therefore, these data have been omitted. Cell 

increase and growth temperature were notably associated with the decline of both 

NO3+NO2 and PO4 in the media, particularly during exponential growth where 

NO3+NO2 and PO4 content rapidly decreased (Figure 5.8).  Coolia cells cultured at 10 

°C were initiated in media containing 869.4 µmol NO3+NO2 L
-1

 and 29.1 µmol PO4 L
-1

, 

whereas cells cultured from 15-30 °C initially contained higher concentration of 

NO3+NO2 (928.3-978.4 µmol L
-1

) and PO4 (32.7-34.4 µmol L
-1

). During growth 

experiments C. monotis, cells were never limited by NO3+NO2 concentration in the 

media which never decreased below 500 µmol L
-1

 in any of the growth experiments. 

Conversely, PO4 was rapidly utilized and reached low concentration in the media as 

growth conditions for C. monotis experienced an increase of temperature from 10 to 25 

°C. Thus, cultures at 20 and 25 °C were characterized by highest rates of PO4 removal 

(Figure 5.8). 

After exponential growth at 10 °C, PO4 removal was considerably reduced and fairly 

constant concentrations remained throughout the stationary phase (approximately 5 

µmol L
-1

), while NO3+NO2 at this temperature showed unexpectedly increasing 

concentrations towards the initiation of the stationary phase. Although there was no 

indication of PO4 depletion in C. monotis cultures, low PO4 concentrations remained in 

cell cultures maintained at 15 °C (1.2-1.4 µmol L
-1

), 20  °C (0.36-1.1 µmol L
-1

), and 25 

°C (1.0 µmol L
-1

) in association with the stationary phase (Figure 5.8). NO3+NO2 and 

PO4 data recorded from replicate cultures were averaged at each temperature and mean 

values of NO3+NO2 and PO4 were consistent with the general pattern observed for most 

replicates, although some measurements suggested notable variability between 

replicates (Figure 5.9). 

NO3+NO2 and PO4 concentration showed a linear decrease in replicate cultures 

maintained at 30 °C, but as the growth experiment was short (<20 days) in comparison 

to cultures at lower temperatures, NO3+NO2 (>930 µmol L
-1

) and PO4 (>26.8 µmol L
-1

) 

remained at high concentrations in the cultures at the end of the incubation period (2 
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weeks later, Figure 5.8-5.9). Figure 5.10 shows NO3+NO2 versus PO4 concentrations 

changing in the media from the exponential growth phase. NO3+NO2/PO4 ratio varied 

from 5.3 to 10.3 with lower values at higher temperatures, but all showed ratios less 

than Redfield ratio of 16:1 (Table 5.2) 

 

Table 5.2 NO3+NO2/PO4 ratios determined during the 

exponential growth of Coolia monotis in cultures 

maintained at growth temperatures between 10 and 30 

°C. 

Growth  

Temperature (°C) 

NO3+NO2/PO4  

ratios 

10 10.3  (±3.86)* 

15 9.1  (±0.95)* 

20 7.0  (±0.21)* 

25 5.3  (±0.24)* 

30 5.4  (±0.02)+ 

* =standard deviation 

+ =standard difference 
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Figure 5.9 Average NO3+NO2 and PO4 uptake during the cell growth of Coolia 

monotis grown in cultures between 10 and 30 °C. Nutrient data at 5 °C proved to 
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5.2.3 Potential toxicity of Coolia monotis 

The potential toxicity of the epibenthic C. monotis strain was analysed using 

bioassays where juvenile nauplii of the brine shrimp Artemia salina and adults of 

harpacticoid copepod Tigriopus californicus were fed C. monotis cells. A. salina and T. 

californicus were able to digested C. monotis cells during the bioassays carried out in 
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Figure 5.10 NO3+NO2/PO4 relationships during the exponential growth of Coolia 

monotis in cultures grown at a range of growth temperatures from 10 to 30 °C. 
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represent one replicate flask (3 replicates from 5-25 °C; 2 replicate flasks at 30 °C). 
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the dark (Figure 5.11). A. salina was fed in triplicate with an initial concentration of 

2.5×10
3 

and 2.8×10
3
 C. monotis cells ml

-1
. Control tests were conducted in triplicate 

where A. salina individuals were fed on a mixture of non-toxic algae (particularly 

chlorophytes, cyanophytes and diatoms).  

A. salina ingested a high number of C. monotis cells in the first few hours of the 

experiments (Figure 5.11), but towards the end of day 1, brine shrimps were generally 

weak and inactive or slowly moving on the bottom of the wells. A. salina assays 

inoculated with 2.8×10
3
 C. monotis cells ml

-1 
showed more than 95% mortality on day 

2, whereas 100% mortality was encountered on day 3 at concentrations of 2.5 ×10
3 

C. 

monotis cells ml
-1

. Controls did not show mortality within the period of the 

experimental assays (˂4 days). The number of cells ingested by A. salina and cells 

remaining in the wells with media were not determined at the end of the experiments. 

Figure 5.12 shows mortality of harpacticoid copepods when fed on different 

concentrations of C. monotis. Three experiments were carried out using different cell 

concentrations ranging from 0.10-5.60×10
3 

cells C. monotis ml
-1 

(Figure 5.12). Six 

harpacticoid copepods were used at each cell concentration (treatment) and data was 

standardized to percentage of mortality. 100% mortality (6 copepods dead) was found 

between day 5 and day 9 when harpacticoid copepods experienced cellular 

concentrations higher than 1.37×10
3
 cells C. monotis ml

-1
. Copepods showed high 

mortality rates (˃50%) at all cell concentrations from day 10 onwards, except when 

copepods were fed with 0.11×10
3
 cells C. monotis ml

-1 
(Figure 5.12E). Maximum 

mortality encountered in control tests never surpassed 40%. 

Potential toxins from C. monotis (yessotoxins) were analysed by LC-MS/MS, 

but unfortunately analysis did not provide evidence of known chemical compounds 

associated with yessotoxins. In addition, the LC-MS/MS method to determine potential 

toxins from C. monotis was not optimized for the whole range of toxins known from C. 

monotis.  

 

 



  Chapter 5 – Temperature and growth of C. monotis 

 

132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) (B) 

(C) 

Figure 5.11 Ingestion of C. monotis cells by the brine shrimp Artemia salina. (A) 

Digestive tract of A. salina showing chlorophyll a fluorescence from C. monotis cells 

after ingestion (large red dots). (B) A. salina ingesting C. monotis cells (red dots) and 

small microalgae (small dots). (C) C. monotis cells ingested by A. salina during the 

bioassays. 
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Figure 5.12 Mortality of harpacticoid copepods fed on Coolia monotis cells at different 

concentrations. T1-T6 represents different treatments where a number of C. monotis cells 

were inoculated. Six replicates (1 copepod well
-1

) were tested for each treatment and data 

were standardized to percentage of mortality. 
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5.2.4 Haemolytic compounds from C. monotis 

 

Erythrocyte Lysis Assay (ELA) was conducted to determine haemolytic 

compounds synthetized by the dinoflagellate C. monotis. Chicken red blood cells 

incubated with algal extracts from C. monotis proved that the epibenthic dinoflagellate 

synthetized haemolytic compounds (Figure 5.14). Algal extracts were prepared from C. 

monotis cells ranged in total from 0.30-30.0×10
3
 cells ml

-1
. ELA was tested using 

saponin, considered a widely known haemolytic compound, and the calibration curve is 

shown in Figure 5.13. Algal extracts with cell concentrations ˃4.0×10
3 

cells ml
-1

 

produced 50% of haemolysis in chicken erythrocytes (Figure 5.14). The highest cell 

concentration of C. monotis cells (30.0×10
3
 cells ml

-1
) used in the extracts produced a 

maximum of 77% of lysis in chicken erythrocytes (Figure 5.14). 
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Figure 5.13 Calibration curve to test the ELA method analysed by spectrometry. (A) 

Lysis of erythrocytes (y-axis) produced at different concentrations of saponin (x-axis) 

determined by absorbance of haemoglobin released in the assay. (B) Standardized lysis 

of erythrocytes to percentage. (C) Significance of the calibration curve of ELA. 
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Figure 5.14 Lysis of chicken red blood cells incubated with algal extracts prepared from 

different concentrations of C. monotis. (A) Absorbance determined by lysis of erythrocytes 

after 18h of incubation with algal extracts (±SD). (B) Percentage of lysis produced by C. 

monotis cells. (C) Difference in absorbance between lysed (sonicated cells) and non-lysed 

cells (negative control) during the ELA experiment. 
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5.3 Discussion 

 

5.3.1 Effect of temperature on growth rates and Fv/Fm  

Monocultures (non-axenic) of the epibenthic dinoflagellate C. monotis were 

grown in F/2 medium at incubation temperatures between 5 and 30 °C, with the main 

aim of determining the effect of growth temperature on growth rates, photosynthetic 

efficiency, nutrient uptake (dissolved inorganic nitrogen and phosphate), and toxin 

production of this microalgae. C. monotis is considered a toxigenic dinoflagellate and is 

widely distributed in tropical and temperate waters sharing the same habitat with other 

toxin-producing microalgae (Aligizaki and Nikolaidis, 2006, Okolodkov et al., 2007, 

Rhodes et al., 2010). Although there is evidence that C. monotis can produce noxious 

effects in the environment (Nakajima et al., 1981, Rhodes and Thomas, 1997, Rhodes et 

al., 2000, Armi et al., 2010) other studies have questioned whether C. monotis is a toxin 

producing species (Penna et al., 2005, Laza-Martinez et al., 2011). Additionally, little is 

known of the effects of environmental conditions on the growth and noxious toxin 

production of this epibenthic dinoflagellate (Armi et al., 2010, Hallegraeff, 2010).  

Few studies have investigated the effect of temperature, salinity, and light intensity on 

the growth of C. monotis (Morton et al. 1992). Algal blooms are stimulated by a 

complex interaction of environmental factors (Armi et al., 2010) of which temperature 

is widely considered a determining factor in growth kinetics, physiological reactions, 

and population dynamics of phytoplanktonic organisms (Goldman and Carpenter, 1974, 

Raven and Geider, 1988, Laabir et al., 2011). Table 5.3 compares previous reports 

where C. monotis growth rates have been determined in relation to a range of growth 

conditions. In the current study the optimal growth temperature of C. monotis (0.32 d
-1

) 

was determined at 20 °C in F/2 medium with irradiances from 35-70 µmol m
-2

 s
-1

, 

however Morton et al (1992) reported µ= 0.30 d
-1

 (highest growth rate) for C. monotis 

grown at 29 °C, with a light intensity of 243 µmol m
-2

 s
-1

; Rhodes et al. (2000) recorded 

µ= 0.30 d
-1

 at 25 °C.  
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Table 5.3 Growth rates of C. monotis determined under different experimental conditions. 

Species 
Growth rate  

(µ d
-1

) 

Temperature 

(°C) 
Light Salinity 

Max. cell 

density        

(cells ml
-1

) 

Culture 

medium 

Location of 

isolation 
Reference 

Coolia 

monotis 
0.15 33 

243               

µmol m
-2

 s
-1

 
33 nd 

K medium 

(omitting Tris, 

copper and 

silica) 

nd 
Morton et al. 

1992 

C. monotis 0.20 31 
243               

µmol m
-2

 s
-1

 
33 nd K medium nd 

Morton et al. 

1992 

C. monotis 0.30 29 
243               

µmol m
-2

 s
-1

 
33 nd K medium nd 

Morton et al. 

1992 

C. monotis 0.14 27 
243               

µmol m
-2

 s
-1

 
33 nd K medium nd 

Morton et al. 

1992 

C. monotis 0.10 25 
243               

µmol m
-2

 s
-1

 
33 nd K medium nd 

Morton et al. 

1992 

C. monotis 0.08 23 
243               

µmol m
-2

 s
-1

 
33 nd K medium nd 

Morton et al. 

1992 

C. monotis 0.3 25 
100             

µmol m
-2

 s
-1

 
35 nd GP medium 

Northland, 

New Zeland 

Rhodes et al. 

2000 

C. monotis 

(10 days 

doubling 

time) 

15 
100             

µmol m
-2

 s
-1

 
27 nd GP medium 

Northland, 

New Zeland 

Rhodes  et al. 

2000 

C. monotis 

(3-4 days 

doubling 

time) 

23 
30-90             

µmol m
-2

 s
-1

 
36 2.5×10

-3
 

Erdschreiber’s 

medium 

Twin Cays, 

Belize 
Faust 1992 

C. monotis 0.01-0.32 5-30 
35-70               

µmol m
-2

 s
-1

 
28-33 10.0 ×10

-3
 F/2 

Fleet Lagoon, 

UK 
This study 



  Chapter 5 – Temperature and growth of C. monotis   

138 

 

C. monotis is apparently well adapted to environmental conditions since it has 

been reported throughout the year in warm (Rhodes et al., 2000, Okolodkov et al., 

2007) and temperate waters (Aligizaki and Nikolaidis, 2006, Rhodes et al., 2000). In 

this study, C. monotis grew well across a wide range of temperatures and it is thought 

that the strain used in this study can survive even a higher range of suboptimal 

temperatures (˂5 and ˃30 °C). Some members of the epibenthic taxocoenosis have been 

suggested to survive sub-zero temperatures, e.g. Prorocentrum lima (McLachlan et al., 

1994). Hence, it is believed that C. monotis may occur in the Fleet Lagoon and other 

aquatic environments at temperatures below 5 °C. Although most HABs do not occur at 

low temperatures, the result of biological adaptations at low temperatures might suggest 

substantial biological implications on the geographical distribution of HA in different 

ecosystems. This study supports that C. monotis may tolerate elevated temperatures 

(˃30 °C) as this species has been found in experiments with µ= 0.15 d
-1 

at 33 °C 

(Morton et al., 1992). Despite the fact that C. monotis tolerates a wide range of 

temperatures, e.g. 5-33 °C, Rhodes et al. (2000) documented that a number of isolates 

of C. monotis died when cultured at temperatures higher than 35 °C. 

In the marine environment, C. monotis has been reported to occur at high 

abundances associated with a range of high temperatures (29.7-32 °C) recorded in the 

water column (Armi et al., 2010, Okolodkov et al., 2007). Likewise, high temperatures 

(26-30 °C) have stimulated the growth of the potent toxigenic/epibenthic dinoflagellate 

Ostreopsis ovata, although the highest cellular toxicities were determined at low 

temperatures, between 20 and 22 °C (Graneli et al., 2011). A temperature change of 2 

°C  caused an early initiation of blooms of C. monotis in Tunisian waters, but also a 

drop of 2 °C in the water column has been ascribed to a delay of one week as to the 

initiation of the bloom (Armi et al., 2010). This highlights the importance of 

temperature, in addition to other parameters (irradiance, nutrients, water motion), on the 

proliferation of C. monotis in the environment. 

Benthic dinoflagellates have been documented with high abundances in shallow 

areas. Richlen and Lobel (2011) demonstrated that habitat, depth, and water motion 

were significantly associated with both dinoflagellate abundance and community 

composition of epibenthic species. Since the Fleet Lagoon is a shallow aquatic 

ecosystem, with protected and calm sites where a number of potentially toxigenic 

dinoflagellates exist (Amphidinium carterae, C. monotis, and Prorocentrum lima), 
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future changes in water temperature, e.g. from climate change, may benefit rather than 

reduce the growth rates of toxigenic dinoflagellates. 

During the growth experiments with C. monotis, Fv/Fm was diagnostic of the 

effect of both nutrient stress and temperature on cell growth (Parkhill et al., 2001). Low 

(5 °C) and high (30 °C) suboptimal temperatures caused substantial decreases of Fv/Fm 

associated with reduced increase in abundance in late exponential phase. Maximum 

Fv/Fm at 5 and 30 °C were the lowest values recorded at all growth temperatures 

despite nutrients being replete. This impairment was likely caused by a lack of 

acclimation of C. monotis to these suboptimal temperatures as cells inoculated at the 

initiation of the growth experiments had been maintained at temperatures between 20 

and 25 °C. Hallegraeff (2010) has stressed the importance of algal acclimation, whereby 

algae are grown for several generations at a given temperature, before isolates are 

exposed to experimental growth conditions. In addition, rapid evolutionary changes are 

known to occur when isolates are exposed to short-term experiments (Morgan-Kiss et 

al., 2006, Lakeman et al., 2009). Therefore, since C. monotis exhibited a low cell 

growth rate at 30 °C with reduced Fv/Fm values, it is possible that this species grows 

less efficiently at temperatures >30 °C. Rapid decreases of Fv/Fm, in addition, have 

been suggested as an inability to adjust quickly and maximize Fv/Fm while avoiding 

damaging effects of photochemical apparatus involved in regulatory processes 

(Morgan-Kiss et al., 2006). Therefore, more evidence is required to determine the 

acclimation spectrum of C. monotis to high temperatures, with emphasis on species that 

might respond to the increase of sea water temperatures. 

 

5.3.2 Nutrient consumption and growth temperature 

The macronutrients nitrate and phosphate are important for dinoflagellate 

growth and the development of algal blooms (Gallardo-Rodríguez et al., 2009). 

Nitrogen assimilation, for example, is essential for chlorophyll a synthesis (Geider et 

al., 1998) while phosphate is required to maintain the production of amino acid and 

protein molecules in phytoplankton (Flynn et al., 2010). However, although increasing 

concentration of NO3+NO2 and PO4 usually enhance the growth of dinoflagellates, 

inhibitory effects on growth rates of HA have occurred at high nutrient concentrations 

(Gallardo Rodríguez et al., 2009). In this study, C. monotis was grown in F/2 media, 

containing high nitrogen (NO3+NO2) and phosphate (PO4) concentrations, with high 
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demand of NO3+NO2 and PO4 as growth rate increased at increasing growth 

temperatures (Sterner and Grover, 1998). Since increasing temperatures (5-25° C) and 

high concentration of NO3+NO2 and PO4 (F/2 medium) enhanced the growth of C. 

monotis, this study supports Armi et al. (2010) in that eutrophic waters and elevated 

temperatures produce suitable conditions for the optimum growth of C. monotis in the 

environment. 

High cell abundances have been reported in dinoflagellate cultures maintained in 

F/2 medium in which the N/P ratio is 24 (Guerrini et al., 2007). In this study, high 

nutrient uptake rate (NO3+NO2 and PO4) in C. monotis cultures occurred as temperature 

increased from 15 to 25° C. Although NO3+NO2 showed decreasing concentrations as 

cell abundance increased, NO3+NO2 was not a limiting macronutrient in the growth of 

C. monotis at any of the growth temperatures as its concentration did not decrease 

below 500 µmol L
-1

. Surplus NO3+NO2 in the growth of other harmful microalgae 

(Protoceratium reticulatum) cultured in F/2 medium has been reported before (Gallardo 

Rodríguez et al., 2009). In addition, a 10-fold decrease in NO3+NO2 concentration, 

considering a basal F/2 medium, inhibited the growth by 56% of the toxic dinoflagellate 

Protoceratium reticulatum (Guerrini et al., 2007).  

The NO3+NO2/PO4 uptake ratios encountered in this study were below the 

Redfield ratio and suggested an imbalance of NO3+NO2 and PO4 uptake. High PO4 

uptake compared to NO3+NO2 was recorded at all temperatures despite the lack of 

depletion of these nutrients in C. monotis cultures.  

PO4 and CO2 limitation in algal cultures are known to lower Fv/Fm and growth 

rates (Spijkerman, 2010). Despite the high PO4 uptake rates it was not completely 

depleted from C. monotis cultures, but rather low concentrations (0.36-1.4µmol L
-1

) 

were determined throughout the stationary phase at temperatures from 15-25 °C.  

Regardless of the lowest (5° C) and maximum (30° C) growth temperatures, Fv/Fm 

decreased before PO4 reached low concentration, suggesting that low PO4 concentration 

may induce growth limitation of C. monotis, additionally possible low-CO2 conditions 

might have diminished the growth of C. monotis. Spijkerman (2010) has suggested that 

a colimitation of PO4 and CO2 occurred and limited the growth in non-aerated 

microalgae (Chlamydomonas acidophila). Since gas exchange (CO2) in C. monotis 

cultures was limited and PO4 reached low levels during the algal cultivation, it is 
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possible that CO2 was low enough to restrain the growth of C. monotis before PO4 

depletion occurred. Furthermore, although Fv/Fm can indicate nutrient limitation, 

unfortunately this parameter is not nutrient specific (Kromkamp and Peene, 1999), 

hence biological interpretations of Fv/Fm must be made cautiously when dealing with 

unstable algal growth conditions.  

  In general, the highest rate of PO4 uptake occurred at 25 °C (final concentration 

of 1-1.3 µmol L
-1

, on Day 29). However, maximum growth rates were measured at 20 

°C. In addition, the highest Fv/Fm values (0.48-0.49) determined at 15 °C were 

expected to be linked to the maximum growth rates (both in relation to the optimal 

growth temperature) but the latter was found at 20 °C, with average µ= 0.23 d
-1

. 

However, Kromkamp and Peene (1999) have suggested that C-fixation rates and PSII 

electron transport rates are not a linear function at high irradiance, thus it is not possible 

to estimate primary production from variable fluorescence measurements. This might 

explain why maxima Fv/Fm values did not fit with maxima growth rates, however it is 

worth mentioning that difference in Fv/Fm values in relation to the optimum growth  

temperature (20 °C) were negligible, with a range from 0.48 at 15 °C to 0.49 at 20 °C. 

On the other hand, average growth rates of C. monotis did not show significant 

differences in the first cultures maintained between 15-25 °C (average µ=0.15 d
-1

, see 

table of growth kinetics), despite the fact that temperature influenced nutrient uptake 

and maxima Fv/Fm. Considering cell abundance was enhanced at high growth 

temperatures, possibly a shading effect occurred more quickly at elevated temperatures 

decreasing Fv/Fm values in cells. Kolber and Falkowski (1992) have shown that Fv/Fm 

is affected by environmental factors such as light and nutrient availability. As for 

benthic dinoflagellates, the effect of light on Fv/Fm and nutrient uptake rates is 

unexplored and more studies are required to determine the interaction of environmental 

parameters on the dynamics of benthic microalgae communities. For example, solar UV 

radiation greatly affects phosphate uptake and little understanding exists as to UV 

impact on benthic ecosystem communities (Aubriot et al., 2004).  
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5.3.3 Toxicity of C. monotis 

 

A number of studies have demonstrated that C. monotis is a toxin-producing 

microalgae (Nakajima et al., 1981, Holmes et al., 1995, Rhodes and Thomas, 1997, 

Sugg and VanDolah, 1999). Holmes et al. (1995) characterized the first toxin  of C. 

monotis, named cooliatoxin  (a mono-sulphated polyether toxin), purified from cultures 

of a strain isolated from Australia. However, some studies have documented that not all 

strains are toxic (Penna et al., 2005, Laza-Martinez et al., 2011). Although C. monotis is 

considered as a ciguatera producer, difficulties have been encountered to identify and 

characterize the structure of compounds produced by this harmful algae (Daranas et al., 

2001b). As a result, a bioassays have been used to determine quantitative data of 

potential toxins produce by some microalgae (Sugg and VanDolah, 1999). 

In this study, feeding experiments (using the brine shrimp Artemia salina and 

harpacticoid copepod Tigriopus californicus) and an erythrocyte lysis assay (ELA) 

indicated that the C. monotis isolate is a toxin-producing microalgae. Toxicity assays 

carried out by Rhodes and Thomas (1997) demonstrated that C. monotis caused 

morbidity (62%) and mortality (16%) in A. salina after 8-12 h. This study encountered 

95% of morbidity after 24 h and 100% of mortality after 48 h at concentrations higher 

than 2.8×10
3 

cell ml
-1

, whereas at lower cell concentrations (2.5×10
3 

cell ml
-1

) C. 

monotis produced 100% mortality on day 3. C. monotis was shown to be ingested by A. 

salina as microphotographs showed high concentration of algae cells in A. salina guts. 

Rhodes et al. (2000) utilized a supernatant (3.3 litres) from a C. monotis culture with 

2.1×10
7 

cell ml
-1

 and determined rapid and high mortality of mice (˂ 4 min) after 

injecting 100µl of the algal extract intraperitoneally.   

 

Copepods have previously been fed on toxic dinoflagellates and results showed 

lower somatic growth, size at maturity, egg production, reproduction, and survival 

(Ianora et al., 1999, Colin and Dam, 2004, Kozlowsky-Suzuki et al., 2009). Although 

this study determined mortality of copepods when fed on C. monotis cells, results were 

inconclusive in that cell concentrations did not show a relationship with mortality rates. 

Previous reports have shown that copepods did not experience incapacitation or adverse 

effects from ingested toxins of most HA (Teegarden and Cembella, 1996, Senft et al., 

2011). In addition, it is been suggested that some toxins can undergo metabolic 
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transformation in the guts of grazers whereby toxins become less harmful after ingestion 

(Teegarden and Cembella, 1996). As for this study, it is argued that discrepancies found 

in mortality rates may well be related to the combination of the toxin burden ingested 

and potential toxin resistance of harpacticoid copepods. However, since LC/MS-MS 

analyses did not detect any toxin synthetized by the isolate C. monotis, this study is 

somewhat limited to confirm that C. monotis was toxic to harpacticoid copepods. 

 

Haemolytic activity measurements have been widely applied using HA to detect 

and quantify the potency of ichthyotoxins from microalgae (Eschbach et al., 2001). In 

this study, haemolytic assays determined that C. monotis extracts produced ˃50% of 

erythrocyte lysis when using cell concentrations higher than 4.0×10
3 

cells ml
-1

. This 

result agrees with Nakajima et al. (1981) in terms of detection of haemolytic 

compounds from C. monotis cells, although these authors applied higher cell 

concentrations (10
8 

cells ml
-1

). Although there is evidence that C. monotis is a 

potentially toxin-producing microalgae, there are still uncertainties to determine to what 

extent C. monotis biotoxins can affect the environment. Furthermore, a better 

understanding of the mechanisms of toxin production is required as well as the 

applicability of experimental results to aquatic ecosystem. 
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5.4 Conclusions 

 

In this study the effect of increasing sea water temperature resulted in increasing 

growth rates of the isolated Coolia monotis cells. Maximum influence of temperature on 

the growth was determined from 5 to 20 °C. However, this study did not encounter a 

strong linear relationship between temperature and growth rates. The isolate C. monotis 

from the Fleet Lagoon was characterized by low growth rates and the optimum growth 

temperature was determined to be 20 °C, although several reports have shown that C. 

monotis reached high growth rates at temperatures ˃25 °C. Unlike other reports, in this 

study C. monotis showed low growth rates at elevated temperatures (25-30 °C) with  

decreasing values of Fv/Fm in comparison to values at lower temperatures (25-30 °C). 

Despite the slow growth rate of C. monotis and the lack of a linearity 

relationship between temperature and growth rate, C. monotis was shown to tolerate a 

wide range of growth temperatures and potentially this strain might increase its growth 

rate under elevated temperatures.  

C. monotis demonstrated a high NO3+NO2 and PO4 uptake at increasing growth 

temperatures. Despite its low growth rates, C. monotis was characterized by long 

exponential growth periods (up to 3 weeks), with a rapid removal of PO4 over 

NO3+NO2 when cultures were grown in F/2 medium. NO3+NO2 remained at high 

concentrations throughout the stationary phase at all growth temperatures, meaning 

surplus of nitrogen content in F/2 media for the growth of benthic dinoflagellates such 

as C. monotis. In addition, cell growth did not produce PO4 limitation and there was 

little evidence that PO4 had caused the initiation of the stationary phase. Therefore, this 

study estimates that C. monotis cells were deprived from a source of inorganic carbon 

(CO2 limitation). Otherwise, this study suggests that C. monotis did not tolerate pH 

changes experience during the cell growth of this species under controlled conditions. 

Since C. monotis showed a broad tolerance to a range of temperatures and 

nutrient conditions, it is thought that this harmful algae will more likely produce high 

cell concentrations in coastal waters circumscribed to eutrophic conditions. 

 Unfortunately this investigation was not able to analyze potential toxins of C. 

monotis by LC-MS/MS. Despite some C.monotis strains have been recognized as non-

toxic, this study found that C. monotis caused mortality of harpacticoid copepods and 

the brine shrimp Artemia salina. However, this study was limited in relating copepod 
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mortality with cell concentration. The potential toxicity of C. monotis was confirmed, 

however, based on the effect of the haemolytic activity that C. monotis cells produced 

on chicken red blood cells. 
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 CHAPTER 6 

 

6.1 Review of benthic dinoflagellate strains (temperature-growth) 

 This aim of this study was to determine the effect of increasing growth 

temperature on the growth and toxin production of the epibenthic toxigenic 

dinoflagellates A. carterae, C. monotis, and P. lima isolated from the Fleet Lagoon.  

Increasing growth temperatures between 5 and 30 °C were used in cultures of A. 

carterae, C. monotis, and P. lima to estimate the likelihood of higher microalgal growth 

rates due to warmer seawater temperatures in the Fleet Lagoon. Seawater warming is 

considered a major factor that may lead to the increase of future outbreaks of HABs 

worldwide (Peperzak, 2003, Hallegraeff, 2010). In addition, some studies have reported 

that seawater warming can stimulate an increase in toxin production of benthic 

microalgae (Graneli et al., 2011, Ashton et al., 2003). Table 6.1 compares the effect of 

increasing growth temperature on the specific growth rate of the three benthic 

dinoflagellates isolated from the Fleet Lagoon. The range of temperature produced 

differences in the growth rates of the isolated A. carterae, C. monotis, and P. lima. A. 

carterae exhibited rapid growth rates at elevated temperatures and this species was 

considered a fast growing dinoflagellate in comparison to the rates encountered for C. 

monotis and P. lima (Table 6.1). Growth rates determined in this investigation 

corresponded with previous reports (see Tables 3.4; 4.7; 5.3 in chapters 3-5) and this 

study highlights the adaptability of the benthic dinoflagellates for growth at a wide 

range of temperatures. Therefore, A. carterae, C. monotis, and P. lima possess a 

remarkable plasticity that has enabled a wide distribution of these organisms (Gienapp 

et al. 2008) in diverse ecosystems from tropical to temperate waters. This could be 

considered indicative of the high genetic diversity that assemblages of epibenthic 

dinoflagellates exhibit in the environment (Lakeman et al. 2009).  

 

Figure 6.1 depicts the influence of increasing growth temperature on the growth 

of A. carterae, C. monotis, and P. lima in non-aerated cultures at growth temperatures 

between 5 and 30 °C. Montagnes et al. (2003) determined that many planktonic and 

benthic microalgae show linear growth rates at increasing growth temperatures. Results 

from this study have shown that A. carterae, C. monotis, and P. lima exhibited linear 
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growth rates in a range of temperatures. Table 6.2 presents the temperature range of 

linear growth of the benthic dinoflagellate cultures in relation to temperature by the 

coefficient of determination (r
2
). A. carterae was the only dinoflagellate that showed the 

highest growth rates at the highest growth temperatures (25 and 30 °C), while 

temperatures higher than 25 °C produced decreasing growth rates in both C. monotis 

and P. lima. The latter exhibited the highest growth rates with almost similar values at 

15 and 25 °C, while 20 °C was recorded as the optimum growth temperature of C. 

monotis. The notable difference of growth rate between A. carterae and both C. monotis 

and P. lima is in agreement with the assumption that small cell sized dinoflagellates 

exhibit higher growth rates than large cells. Cell yield in cultures proved that A. 

carterae reached higher cell abundance than C. monotis and P. lima when grown in 

nutrient replete conditions between 5 and 30 °C and maximum cell numbers are shown 

in Table 6.2. 

 

Table 6.1 Average growth rates (µ, div
-1

) determined in culture flasks of A. 
carterae, C. monotis, and P. lima maintained at growth temperatures 
between 5 and 30 °C. Standard deviation in replicate cultures is shown in 
brackets. 

Growth 

temperature 

(°C) 

 A. carterae 

µ= d
-1 

(SD) 

C. monotis       

µ= d
-1 

(SD) 

P. lima            

µ= d
-1 

(SD) 

5 0.14 (0.01) 0.03 (0.03) 0.05 (0.01) 

10 0.29 (0.01) 0.06 (0.01) 0.13 (0.01) 

15 0.37 (0.03) 0.15 (0.02) 0.18 (0.01) 

20 0.43 (0.04) 0.24 (0.09) 0.14 (0.01) 

25 0.55 (0.01) 0.15 (0.00) 0.17 (0.01) 

30 0.55 (0.03) 0.05 (0.01) 0.14 (0.02) 

 

 

  As the microalgae cultures were grown at different times of the year, it is 

possible the cells exhibited some different physiological adaptations. In addition, some 

initial conditions in the cultures (e.g. initial cell abundance, NO3+NO2, PO4 

concentrations) were not always the same; therefore, it is thought that the growth 

response of the strains might have varied and hence physiological responses of the cells 

may have produced variation in the maximum growth rates. This occurred in the 
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measured growth rates of P. lima at 20 °C in comparison to those found at 15 and 25 

°C. Lakeman et al. (2009) argued that culture conditions select strains in differ ways 

and genotypes isolated from the environment will exhibit different physiological 

responses (growth) in comparison to natural populations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2 Temperature range of linear growth determined in A. carterae, C. monotis, and P. lima 
cultures and maximum cell abundance measured in culture flasks. 

Species 

Temperature range 

of linear growth 

(°C) 

Coefficient of 

determination (r
2
); 

p <0.001 

Maximum cell 

abundance in 

culture 

A. carterae 5-25 0.97 1.62×10
5
 

P. lima 5-15 0.97 1.25×10
4
 

C. monotis 5-20 0.69 8.2×10
3
 

 

 

6.2 Q10 (temperature effects on growth) 

 Berges et al. (2002) suggested that Q10 implies that biological processes (e.g 

growth rate) follow an Arrhenius-type relationship (this is a linearity of a log reaction in 

relation to an absolute temperature). Classical temperature models suggest that growth 

responds to temperature with a Q10 approximately 2 if a biological reaction doubles 

(Raven and Geider, 1988). However, Montagnes et al. (2003) has shown that the use of 
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Figure 6.1 Comparison of growth rates determimed in 
the isolates A. carterae, C. monotis, and P. lima grown in 
cultures at growth temperatures between 5 and 30 °C. 



  Chapter 6 - Benthic dinoflagellates from the Fleet Lagoon   

149 

 

Q10 to model microalgae growth rate (e.g. benthic dinoflagellates) is inappropriate given 

that many microalgae exhibit linear growth rates. Some microalgae studies have shown 

that Q10 can be much higher than 2 when the growth temperature was raised ~10 °C 

(Berges et al., 2002, Montagnes et al., 2003), which suggested a limitation of the 

concept Q10. Berges et al. (2002) and Montagnes et al. (2003) concluded that Q10 values 

will be around 10 depending on the temperature range applied. Figure 6.2 shows Q10 

values determined for A. carterae, C. monotis, and P. lima cultures grown at 

temperature between 5-30 °C. In agreement with Berges et al. (2002) and Montagnes et 

al. (2003), this study found that Q10 values were higher than 2 in A. carterae (Q10=2.6) 

and P. lima (Q10=3.5) cultures in the range 5-15 °C; C. monotis cultures grown in a 

range of 5-15 °C (Q10=4.4) and 10-20 °C (Q10=3.7). Temperature ranges above 10 °C 

produced Q10 values lower than 2 in cultures except for Q10 values of C. monotis in a 

range of 10-20 °C (Figure 6.2). Therefore, this study also indicates that the use of Q10 

should be carefully considered particularly when microalgae exhibit linear growth rates 

vs temperature. Despite the limitation of Q10, Berges et al. (2002) suggested that rather 

than abandoning the use of Q10 as a means to describe and predict temperature effects 

on metabolic rates, Q10 could be used in a more fundamental way to provide information 

about the temperatures to which organisms are adapted. 
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Figure 6.2 Values of Q10) determined between water temperature and cell growth rate when 
temperature is raised 10 °C in A. carterae, P. lima, and C. monotis cultures. Q10 is equal to 2 if the 
growth rate doubles (Raven & Geider, 1988). 
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6.3 Prediction of benthic dinoflagellate growth in the Fleet Lagoon 

Nascimento (2003) surveyed the temperature of the Fleet Lagoon during 2 years 

(May 2000 to October 2000 and April 2001 to November 2001) at several positions 

along the length of  Fleet Lagoon  (data presented in Figure 6.3). Although the growth 

rate of natural population of dinoflagellates is subjected to complex environmental 

conditions, results from this study estimates that water temperature and nutrient 

concentration (NO3+NO2, PO4) can be used as suitable predictors of the potential 

increase of both growth rate and abundance of benthic dinoflagellates in the Fleet 

Lagoon. Based on the study of Nascimento (2003), the Fleet reached temperatures 

higher than 15 °C between May and the end of August (Figure 6.3). This study found 

that temperatures >15 °C can produce increasing growth rates of A. carterae, C. 

monotis, and P. lima. Therefore, high abundance of these dinoflagellates might be 

expected in the Fleet between May and August, particularly if nutrients (NO3+NO2, 

PO4) are in replete concentrations for the growth of these toxic microalgae. Nascimento 

(2003) reported that in the middle of July 2000 and 2001 the Fleet reached its highest 

seawater temperature ranging from 20 to ~25 °C. According to this author, there was no 

evidence that the seawater in the Fleet Lagoon surpassed temperatures above 25 °C. 

Since A. carterae showed its highest growth rates at 25 and 30 °C in this study, it can be 

speculated that this species might exhibit its highest growth rate in the Fleet in 

association with warm water condition during July. In addition, this could possibly be 

the time when C. monotis and P. lima reach their optimum growth and produce their 

highest growth rates in the Fleet. However, due to the structure and abundance of the 

community of benthic dinoflagellates in the Fleet has not been monitored enough in the 

last decades (Steve Morris, personal communication,), it is thought that this study is 

somehow limited to establish the influence of increasing seawater temperature in the 

Fleet and the occurrence of potential blooms of toxic epibenthic dinoflagellates. C. 

monotis and P. lima decreased their growth rates at elevated temperatures (>25 °C), but 

this study cannot discard that environmental conditions could induce adaptations that 

may enable both C. monotis and P. lima to future selection pressures due to climate 

change.  

Nascimento (2003) reported warmer seawater temperatures in the Fleet associated 

with shallow areas in the mid Fleet (e.g. Langton Herring, Moonfleet, Figure 6.3) than 

areas close to mouth of the estuary (southeast). As these shallow areas receive higher 
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inputs of nutrients (run-off from agricultural activities, Langston et al. 2003; 

Nascimento 2003) and receive reduced mixing, it is possible that this region in the Fleet 

possesses suitable conditions for the development of HABs of benthic dinoflagellates, 

particularly during summer months. In shallow waters of the Fleet (e.g. Abbotsbury 

which is a Swannery area) influenced by water discharges nearby (Cowards Lake, Mill 

Stream-Abber Barn, Mill Stream-Horsepool), blooms of cryptophytes and 

Prorocentrum micans have been reported in September and mid June, respectively 

(Nascimento 2003). 

Langston et al. (2003) documented that high concentration of nitrate (0.08-0.35 

mg L
-1

) in shallow regions of the Fleet (Abbotsbury, Langton Herring, Clouds Hill) 

coincided with the occurrence of dinoflagellate blooms of Glenodinium foliaceum and 

Oxyrrhis sp. in August, 1995; and P. micans in Chickerell and Moonfleet stations in 

November, 2000. Algal monitoring at Ferrybridge (the mouth) conducted by CEFAS 

between 1996 and 2000 reported that P. lima concentrations were below 100 cell L
-1

 

during this time. Over the years, the occurrence of harmful blooms in the Fleet has also 

been associated with Alexandrium tamarense (PSP producer) during 1996, 1999, and 

2000; Pseudo-nitzchia sp. (ASP) in 1996; an unidentified DSP-producer in 

contaminated mussels in 2000 (Langston et al. 2003). 

Langston et al. (2003) reported that NO3+NO2/PO4 ratios in the Fleet (14.6 in 

Abbotsbury Swannery and 10.3 at the estuary mouth) are greater than 10 suggesting that 

PO4 may theoretically limit algal growth. The Fleet is considered a system subjected to 

eutrophication and agricultural activities can contribute importantly with a maximum of 

80% of nitrogen and between 56-69% of phosphate of the nutrient load (Langston et al. 

2003). In contrast to NO3+NO2 reported by Langston et al. (2003), Nascimento (2003) 

determined a gradient of PO4 and NO3+NO2 along the Fleet with lower concentrations 

of these nutrients: average PO4 4.2 µM (in 2000) and 6.2 µM (in 2001) in Abbotsbury 

(shallow waters, station 1) and 0.4 µM (in 2000) and 0.5 µM (in 2001) at the narrows 

(station 6); average NO3+NO2 13.7 µM (in 2000) and 47.5 µM (in 2001) at Abbotsbury. 

In this study, there was evidence that A. carterae, C. monotis and P. lima cultures could 

become PO4 limited. Based on the PO4 concentrations reported in the Fleet by 

Nascimento (2003), it is possible that the growth of the benthic dinoflagellates reported 

in this study may be limited by PO4 availability, particularly as macroalgae and 

planktonic phytoplankton will also compete for this nutrient. Therefore, this might 
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explain why the occurrence of A. carterae, C. monotis and P. lima in the Fleet has not 

reached high cell concentrations as found for other bloom-forming dinoflagellates, such 

as P. micans and A. tamarense. In addition, it should be considered that benthic 

dinoflagellates usually exhibit lower growth rates compared to planktonic species.  
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A) 
C) 

B) 

Figure 6.3 Varibility of seawater temperature determined by Nascimento (2003) along the Fleet Lagoon from May to October 2000 (A) 
and April to November 2001 (B). C) shows the map of sampling stations where Nascimento (2003) recorded the seawater temperature. 



  Chapter 6 - Benthic dinoflagellates from the Fleet Lagoon   

154 

 

 This study found that the effect of increasing temperature produced higher 

nutrient (NO3+NO2, PO4) uptake in the three benthic dinoflagellate cultured between 5 

and 30 °C. Figure 6.4 shows NO3+NO2/PO4 uptake ratios versus growth temperature in 

relation to the exponential cell growth of A. carterae, C. monotis, and P. lima. 

Dinoflagellate cells exposed to increasing temperatures (>15 °C) reduced rapidly PO4 

concentration in the culture media and it became a limiting growth factor for A. 

carterae, C. monotis, and P. lima cells towards the stationary phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 In this study, NO3+NO2 concentration in F/2 media for the growth of benthic 

dinoflagellates (see Table 2.2-2.4 in methods section) was considered to be too high as 

NO3+NO2 was never reduced below 500 µmols L
-1

 in any of the dinoflagellate cultures. 

However, Nascimento et al. (2005) reported that P. lima cells grown at 17 °C produced 

nutrient depletion in L2 media with basal concentrations of NO3+NO2 and PO4 similar 

to those in F/2 media.  

Despite the high PO4 uptake during exponential growth and very low PO4 

concentrations associated with the stationary growth phase in A. carterae, C. monotis, 

and P. lima cultures, it is possible that the availability of dissolved CO2 in the media 

might have influenced the growth of the benthic dinoflagellates. Since non-aerated 

cultures were used in the growth of A. carterae, C. monotis, and P. lima cells, it is 

possible that CO2 limitation occurred in cultures before NO3+NO2 and PO4 were 

considered a limiting growth factor for the cells. However, further studies are needed to 
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Figure 6.4 Changes of NO3+NO2/PO4 uptake ratios in A. carterae, 
C. monotis, and P. lima cells during the exponential growth at 
increasing growth temperatures between 5 and 30 °C. 
Horizontal line indicates the Redfield ratio. 
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determine the CO2/PO4 uptake ratios in benthic dinoflagellates and its potential co-

limitation in dinoflagellate cells. 

 

6.4 Toxicity determined in benthic dinoflagellates 

 

Table 6.3 summarizes assays for toxin detection and lipophilic toxins confirmed 

and measured by LC-MS/MS from A. carterae, C. monotis and P. lima cells. This study 

confirmed that P. lima is a toxigenic epibenthic dinoflagellate and produced the 

lipophilic intracellular toxins okadaic acid (OA) and dinophysistoxin1 (DTX1). 

Furthermore, A. carterae and C. monotis are deemed as potentially toxic epibenthic 

dinoflagellates as these microalgae caused haemolytic activity in chicken red blood cells 

and mortality in both harpacticoid copepods and nauplii of Artemia salina after 

dinoflagellate cell ingestion.  

 

Table 6.3 Summary of assays and toxins detected that confirmed the presence and 

production of secondary metabolites in A. carterae, C. monotis, and P. lima cells. 

A. carterae C. monotis P. lima 

Haemolytic activity Haemolytic activity 
Okadaic acid and 

dinophysistoxin1 

Mortality of copepods Mortality of copepods Esters of OA and DTX1 

 Mortality of A. salina 
Mortality of A. salina 

Mortality of copepods 

 

This study presented independent measurements of OA and DTX1 quantified by 

LC-MS/MS as Free OA and Free DTX1 (parent toxins) from P. lima cells. 

Additionally, LC-MS/MS analyses determined the total burden of lipophilic toxins (as 

the sum of either OA or DTX1 (parent toxins) plus its OA or DTX1 esters) quantified as 

Total OA and Total DTX1 produced by P. lima cells. Increasing growth temperatures 

were generally associated with higher toxin production in P. lima cells, but this study 

found that the toxin increase at increasing growth temperatures varied in relation to the 

time the P. lima batch cultures were performed in the laboratory between 2009 and 

2010 (see Table 2.1 in method section). Therefore, this study found that P. lima 

produced increasing concentrations of the parent toxin OA when cells were firstly 

cultured from 5 to 15 °C (2009). Lipophilic analyses of Free DTX1 and Total DTX1 
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showed little differences in P. lima cells at each growth temperature across the range 5 

to 30 °C and the highest intracellular DTX1 production was linked to 10 and 15 °C. 

Batch cultures of P. lima cells grown between 20 and 30 °C (2010 P. lima culture 

batch) produced lower concentrations of the parent toxins than cells grown between 10 

and 15 °C (2009 culture batch). However, increasing growth temperatures in P. lima 

cells between 20 and 30 °C (2010 culture batch) were also associated with higher 

intracellular synthesis of the Free OA, but this did not occur in Free DTX1, Total OA, 

Total DTX1 in P. lima cultures grown over this temperature range (20-30 °C). 

Total OA measurements were, as expected, higher than the concentration of the 

Free OA meaning the presence of ester compounds of OA and DTX1 in P. lima cells. 

Results of Total DTX1 suggested that DTX1 esters were generally produced in little 

amounts in P. lima cells in comparison to the production of OA esters. Therefore, the 

main toxic burden in P. lima cells was related to the parent toxins (OA and DTX1) and 

OA esters. Esters of OA and DTX1 however were not chemically identified and 

characterized by LC-MS/MS in this study.  Unlike the relationship of higher Free OA 

production at increasing growth temperatures (5-15 °C), Total OA and Total DTX1 

were not generally associated with increasing growth temperatures across the range of 

growth temperatures. In fact, Total OA showed similar concentration in P. lima cells at 

10, 15 and 30 °C, while Total DTX1 reached similar concentrations at 10 and 15 °C 

(see Figure 4.12 in Chapter 4).  
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To visualize and compared the sum of toxin production across the range of 

growth temperature, Figure 6.5 presents the cumulative toxicity of parent toxins reached 

in P. lima cells and the maximum total burden of toxicity of lipophilic toxins in P. lima 

cells grown between 5 and 30 °C. The cumulative toxins (parent OA+DTX1 and total 

lipophilic toxins) in Figure 6.5 followed a similar pattern of toxin increase at increasing 

temperatures as those determined independently for Free OA and Total OA shown in 

Chapter 4 (Figure 4.12). 

The potential toxicity of A. carterae and C. monotis was confirmed in 

haemolytic assays using chicken red blood cells and Figure 6.6 contrasts the activity of 

potential heamolytic compounds of A. carterae versus C. monotis at different cell 

concentrations. High cell concentrations of A. carterae and C. monotis were needed in 

the assays to produce more than 50% of haemolytic activity on chicken erythrocytes 

(Figure 6.6) and those cell numbers were not quantified in the dinoflagellate culture 

flasks despite cells being at high NO3+NO2 and PO4 concentrations plus a wide range of 

growth temperatures. Also, no records have been reported to date from the Fleet Lagoon 

where A. carterae or C. monotis had caused noxious effects in the environment due to 

high cell abundance of these microalgae. A. carterae and C. monotis however proved to 

be harmful when ingested by harpacticoid copepods, but increasing concentrations of 

these benthic microalgae did not prove to be associated with higher mortality of 

copepods. In addition, feeding assays evidenced that C. monotis was toxic to A. salina 

and results showed a faster mortality of the brine shrimp in the assays than those 

performed with harpacticoid copepods. Therefore, this study concludes that the effect of 

increasing seawater temperature can increase the growth of A. carterae and C. monotis 

but their toxins and toxin effects in the environment need to be further investigated. 

Many biotoxins from dinoflagellates have been characterized and quantified in 

the last few decades, however, a number of secondary metabolites still remain unknown 

in terms of the chemical structure, synthesis and biological interaction in marine trophic 

food webs. LC-MS/MS is the optimal analytical instrument to determine a range of 

DSP-toxins, however, DSP analyses by LC-MS/MS are still expensive and alternative 

methods to quantify biotoxins in a cost-effective manner are required. In addition, 

determining the dynamic (biological synthesis, transference, accumulation through the 

trophic web, and degradation) of DSP toxins in the environment demands a substantial 
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human effort that must be considered in order to comprehend how natural populations 

will perform under various changing environmental scenarios.  
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Figure 6.6 Comparison of haemolytic activity (percentage of lysis) 

produced by A. carterae and C. monotis cells at different cell 

concentrations in assays using Chicken Red Blood Cells. 



  References   

159 

 

References 

AJUZIE, C. C. 2007. Palatability and fatality of the dinoflagellate Prorocentrum lima to 

Artemia salina. Journal of Applied Phycology, 19, 513-519. 

ALIGIZAKI, K. & NIKOLAIDIS, G. 2006. The presence of the potentially toxic genera 

Ostreopsis and Coolia (Dinophyceae) in the north Aegean sea, Greece. Harmful 

Algae, 5, 717-730. 

ALIGIZAKI, K., NIKOLAIDIS, G., KATIKOU, P., BAXEVANIS, A. D. & 

ABATZOPOULOS, T. J. 2009. Potentially toxic epiphytic Prorocentrum 

(Dinophyceae) species in Greek coastal waters. Harmful Algae, 8, 299-311. 

ARMI, Z., TURKI, S., TRABELSI, E. & BEN MAIZ, N. 2010. First recorded 

proliferation of Coolia monotis (Meunier, 1919) in the North Lake of Tunis 

(Tunisia) correlation with environmental factors. Environmental Monitoring and 

Assessment, 164, 423-433. 

ASHTON, M., ROSADO, W., GOVIND, N. S. & TOSTESON, T. R. 2003. Culturable 

and nonculturable bacterial symbionts in the toxic benthic dinoflagellate 

Ostreopsis lenticularis. Toxicon, 42, 419-424. 

AUBRIOT, L., CONDE, D., BONILLA, S. & SOMMARUGA, R. 2004. Phosphate 

uptake behavior of natural phytoplankton during exposure to solar ultraviolet 

radiation in a shallow coastal lagoon. Marine Biology, 144, 623-631. 

BAIG, H. S., SAIFULLAH, S. M. & DAR, A. 2006. Occurrence and toxicity of 

Amphidinium carterae Hulburt in the North Arabian Sea. Harmful Algae, 5, 

133-140. 

BALCH, W. M. & FABRY, V. J. 2008. Ocean acidification: documenting its impact on 

calcifying phytoplankton at basin scales. Marine Ecology-Progress Series, 373, 

239-247. 

BARLOW, S. B. & TRIEMER, R. E. 1988. Alternate Life-History Stages in 

Amphidinium klebsii (Dinophyceae, Pyrrophyta). Phycologia, 27, 413-420. 

BEARDALL, J., STOJKOVIC, S. 2006. Microalgae under global environmental 

change: implications for growth and productivity populations and trophic flow. 

ScienceAsia, 32, 1-10. 

BERGES, J. A., VARELA, D. E. & HARRISON, P. J. 2002. Effects of temperature on 

growth rate, cell composition and nitrogen metabolism in the marine diatom 

Thalassiosira pseudonana (Bacillariophyceae). Marine Ecology Progress 

Series, 225, 139-146. 

BLANCO, J., MOROÑO, A., FERNÁNDEZ, M.L. (2005) Toxic episodes in shellfish, 

produced by lipophilic phycotoxins: An overview. Revista Galega de Recursos 

Mariños (Monog.):1, 1-70 pp. 

BRAVO, I., FERNANDEZ, M. L., RAMILO, I. & MARTINEZ, A. 2001. Toxin 

composition of the toxic dinoflagellate Prorocentrum lima isolated from 

different locations along the Galician coast (NW Spain). Toxicon, 39, 1537-

1545. 

 BRESNAN, E., L. FERNAND, K. DAVIDSON, M. EDWARDS, S MILLIGAN, R 

GOWAN, J SILKE, S KROGER & R RAINE (2010) Climate Change impacts 

on Harmful Algal Blooms (HABs) in MCCIP Annual Report Card 2010-11, 

MCCIP Science Review, 10pp. www.mccip.org.uk/arc 
CALBET, A., BERTOS, M., FUENTES-GRÜNEWALD, C., ALACID, E., 

FIGUEROA, R., RENOM, B. & GARCÉS, E. 2011. Intraspecific variability in 



  References   

160 

 

Karlodinium veneficum: Growth rates, mixotrophy, and lipid composition. 

Harmful Algae, 10, 654-667. 

CAMACHO, F. G., RODRIGUEZ, J. G., MIRON, A. S., GARCIA, M. C. C., 

BELARBI, E. H., CHISTI, Y. & GRIMA, E. M. 2007. Biotechnological 

significance of toxic marine dinoflagellates. Biotechnology Advances, 25, 176-

194. 

CHANG, S.-K. 2006. Studies toward the total synthesis of amphidinol 3. PhD thesis. 

The Ohio State University, USA. 

CHEUNG, W. W. L., DUNNE, J., SARMIENTO, J. L. & PAULY, D. 2011. Integrating 

ecophysiology and plankton dynamics into projected maximum fisheries catch 

potential under climate change in the Northeast Atlantic. Ices Journal of Marine 

Science, 68, 1008-1018. 

COLIN, S. P. & DAM, H. G. 2004. Testing for resistance of pelagic marine copepods to 

a toxic dinoflagellate. Evolutionary Ecology, 18, 355-377. 

CRAWFORD, D. W. & HARRISON, P. J. 1997. Direct measurement of pCO2 in 

cultures of marine phytoplankton: how good is the estimate from pHNBS and 

single point titration of alkalinity? Marine Ecology Progress Series, 158, 61-74. 

DALE, B., EDWARDS, M., & REID, P. C. 2006. Climate Change and Harmful Algal 

Blooms. In: GRANELI, E. & TURNER, J. (Eds). Ecology of Harmful Algae. 

Germany, Springer, pp. 367-378. 

DARANAS, A. H., NORTE, M. & FERNANDEZ, J. J. 2001. Toxic marine microalgae. 

Toxicon, 39, 1101-1132. 

DEANE, E. M. & OBRIEN, R. W. 1981. Uptake of Phosphate by Symbiotic and Free-

Living Dinoflagellates. Archives of Microbiology, 128, 307-310. 

de VICENTE, J., HUCKINS, J. R., & RYCHNOVSKY, S. D. 2006.  Angewandte 

chemie. 118, 7416–7420 

DICKEY, R. W. & PLAKAS, S. M. 2010. Ciguatera: a public health perspective. 

Toxicon, 56, 123-36. 

DOLAPSAKIS, N. P., KILPATRICK, M. W., ECONOMOU-AMILLI, A. & TAFAS, 

T. 2006. Morphology and rDNA phylogeny of a Mediterranean Coolia monotis 

(Dinophyceae) strain from Greece. Scientia Marina, 70, 67-76. 

DUARTE, C. M. 1990. Time lags in algal growth - generality, causes and 

consequences. Journal of Plankton Research, 12, 873-883. 

ECHIGOYA, R., RHODES, L., OSHIMA, Y. & SATAKE, M. 2005. The structures of 

five new antifungal and hemolytic amphidinol analogs from Amphidinium 

carterae collected in New Zealand. Harmful Algae, 4, 383-389. 

EDVARDSEN, B., & IMAI, I. 2006 The ecology of harmful flagellates within 

prymnesiophyceae and raphidophyceae. In: GRANELI, E. & TURNER, J. 

(Eds). Ecology of Harmful Algae. Germany, Springer, pp. 67-79. 

EDWARDS, M., JOHNS, D. G., LETERME, S. C., SVENDSEN, E. & 

RICHARDSON, A. J. 2006. Regional climate change and harmful algal blooms 

in the northeast Atlantic. Limnology and Oceanography, 51, 820-829. 

ESCHBACH, E., SCHARSACK, J. P., JOHN, U. & MEDLIN, L. K. 2001. Improved 

erythrocyte lysis assay in microtitre plates for sensitive detection and efficient 

measurement of haemolytic compounds from ichthyotoxic alga. Journal of 

Applied Toxicology, 21, 513-519. 

FAO (Food and Agriculture Organization of the United Nations), 2004. Marine 

biotoxins. FAO Food and Nutrition Paper 80. Food and Agriculture 

Organization, Rome, Italy.  



  References   

161 

 

FAUST, M. A. 1991. Morphology of ciguatera-causing Prorocentrum lima 

(Pyrrophyta) from widely differing sites. Journal of Phycology. 27: 642-648. 

FAUST, M. A. 1992. Observations on the Morphology and Sexual Reproduction of 

Coolia monotis (Dinophyceae). Journal of Phycology, 28, 94-104. 

FAUST, M. A. 1993. Three new benthic species of Prorocentrum (Dinophyceae) from 

Twin Cays, Belize: P. maculosum sp. nov., P. foraminosum sp. nov. and P. 

formosum sp. nov. Phycologia 32: 410-418. 

FAUST, M. A., MORTON, S. L. & QUOD, J. P. 1996. Further SEM study of marine 

dinoflagellates: The genus Ostreopsis (Dinophyceae). Journal of Phycology, 32, 

1053-1065. 

FAUST, M. A., VANDERSEA, M. W., KIBLER, S. R., TESTER, P. A. & LITAKER, 

R. W. 2008. Prorocentrum levis, a new benthic species (dinophyceae) from a 

mangrove island, twin cays, belize. Journal of Phycology, 44, 232-240. 

FERNÁNDEZ, M. L., SHUMWAY, S., & BLANCO, J. 2003. Management of shellfish 

resources. In G. M. Hallegraeff, D. M. Anderson, and A. D. Cembella (Eds), 

Manual on harmful marine microalgae. UNESCO. France, pp. 657-692 

FLYNN, K. J., RAVEN, J. A., REES, T. A. V., FINKEL, Z., QUIGG, A. & 

BEARDALL, J. 2010. Is the Growth Rate Hypothesis Applicable to 

Microalgae? Journal of Phycology, 46, 1-12. 

FODEN, J., PURDIE, D. A., MORRIS, S. & NASCIMENTO, S. 2005. Epiphytic 

abundance and toxicity of Prorocentrum lima populations in the Fleet Lagoon, 

UK. Harmful Algae, 4, 1063-1074. 

FRANKLIN, D. J. & BERGES, J. A. 2004. Mortality in cultures of the dinoflagellate 

Amphidinium carterae during culture senescence and darkness. Proc Biol Sci, 

271, 2099-107. 

FU, F. X., PLACE, A. R., GARCIA, N. S. & HUTCHINS, D. A. 2010. CO(2) and 

phosphate availability control the toxicity of the harmful bloom dinoflagellate 

Karlodinium veneficum. Aquatic Microbial Ecology, 59, 55-65. 

FUJIKI, H. & SUGANUMA, M. 1999. Unique features of the okadaic acid activity 

class of tumor promoters. Journal of Cancer Research and Clinical Oncology, 

125, 150-155. 

FURNAS, M. J. 1990. In situ growth rates of marine phytoplankton: approaches to 

measurements, community and species growth rates. Journal of Plankton 

Research. 12, 1117-1151  

GALLARDO-RODRÍGUEZ, J. J., SÁNCHEZ MIRÓN, A., CERÓN GARCÍA, M. D. 

C., BELARBI, E. H., GARCÍA CAMACHO, F., CHISTI, Y. & MOLINA 

GRIMA, E. 2009. Macronutrients requirements of the dinoflagellate 

Protoceratium reticulatum. Harmful Algae, 8, 239-246. 

GEIDER, R. J., MACINTYRE, H. L. & KANA, T. M. 1998. A dynamic regulatory 

model of phytoplanktonic acclimation to light, nutrients, and temperature. 

Limnology and Oceanography, 43, 679-694. 

GERATH, M. W. & CHISHOLM, S. W. 1989. Change in photosynthetic capacity over 

the cell cycle in light dark synchronized amphidinium carteri is due solely to the 

photocycle. Plant Physiol, 91, 999-1005. 

GERSEEN, A., MULDER, P. & DE BOER, J. 2007.  A novel LC method for the 

separation of marine lipophiliC biotoxins. Third International Symposium on 

Recent Advances in Food Analysis.  7 to 9 November 2007, Prague, Czech 

Republic. 249 pp. 

GEOHAB, 2001. Global Ecology and Oceanography of Harmful Algal Blooms, 



  References   

162 

 

Science Plan. P. Glibert and G. Pitcher (eds). SCOR and IOC, Baltimore and 

Paris. 87 pp. 
GIENAPP, P., TEPLITSKY, C., ALHO, J. S., MILLS, J. A. & MERILA, J. 2008. 

Climate change and evolution: disentangling environmental and genetic 

responses. Molecular Ecology, 17, 167-178. 

GLIBERT, P. M., ALLEN, J. I., BOUWMAN, A. F., BROWN, C. W., FLYNN, K. J., 

LEWITUS, A. J. & MADDEN, C. J. 2010. Modeling of HABs and 

eutrophication Status, advances, challenges. Journal of Marine Systems, 83, 262-

275. 

GOLDMAN, J. C. & CARPENTER, E. J. 1974. A kinetic approach to the effect of 

temperature on algal growth. Limnology and Oceanography, 19, 756-766. 

GRANELI, E., VIDYARATHNA, N. K., FUNARI, E., CUMARANATUNGA, P. R. T. 

& SCENATI, R. 2011. Can increases in temperature stimulate blooms of the 

toxic benthic dinoflagellate Ostreopsis ovata? Harmful Algae, 10, 165-172. 

GRANELI, E. & FLYNN, K. 2006. Chemical and physical influencing toxin content. 

In: GRANELI, E. & TURNER, J. (Eds). Ecology of Harmful Algae. Germany, 

Springer, pp. 229-241.  

GRANELI, E. & HANSEN, P. J. 2006. Allelopathy in harmful algae: a mechanism to 

compete for resources. In: GRANELI, E. & TURNER, J. (Eds). Ecology of 

Harmful Algae. Germany, Springer, pp. 189-201.  

GRASSHOFF, K. 1976. Methods of seawater analysis. Verlag Chemie, NewYork, 317 

p. 

GUERRINI, F., CIMINIELLO, P., DELL'AVERSANO, C., TARTAGLIONE, L., 

FATTORUSSO, E., BONI, L. & PISTOCCHI, R. 2007. Influence of 

temperature, salinity and nutrient limitation on yessotoxin production and 

release by the dinoflagellate Protoceratium reticulatum in batch-cultures. 

Harmful Algae, 6, 707-717. 

HALLEGRAEFF, G. M. 2003. Harmful algal blooms: a global overview. In G. M. 

Hallegraeff, D. M. Anderson, and A. D. Cembella (Eds), Manual on harmful 

marine microalgae. UNESCO. France, pp. 25-49 

HALLEGRAEFF, G. M. 2010. Ocean climate change, phytoplankton community 

responses, and harmful algal blooms: A formidable predictive challenge. 

Journal of Phycology, 46, 220-235. 

HANELT D., WIENCKE, C., BISCHOF, K. 2003 Photosynthesis in marine 

macroalgae. In: Larkum  AW, Douglas SE, Raven JA (eds) Photosynthesis in 

algae. Kluwer Academic Publishers, Amsterdam, p 413–435. 

HARE, C. E., DEMIR, E., COYNE, K. J., CARY, S. C., KIRCHMAN, D. L. & 

HUTCHINS, D. A. 2005. A bacterium that inhibits the growth of Pfiesteria 

piscicida and other dinoflagellates. Harmful Algae, 4, 221-234. 

HEREDIA-TAPIA, A., ARREDONDO-VEGA, B. O., NUÑES-VÁZQUEZ, E. J., 

YASUMOTO, T., YASUDA, M. & OCHOA, J. L. 2002. Isolation of 

Prorocentrum lima (Syn. Exuviaella lima) and diarrhetic shellfish poisoning 

(DSP) risk assessment in the Gulf of California, Mexico. Toxicon, 40, 1121–7. 

HISCOCK, M. R., LANCE, V. P., APPRILL, A., BIDIGARE, R .R., JOHNSON, Z. I., 

MITCHELL, B. G., SMITH, W. O., and BARBER, R. T. 2008. Photosynthetic 

maximum quantum yield increases are an essential componentof the Southern 

Ocean phytoplankton response to iron, Proc. Natl. Acad. Sci., 105, 4775–4780. 

HOLMES, M. J., LEWIS, R. J., JONES, A. & HOY, A. W. 1995. Cooliatoxin, the first 

toxin from Coolia monotis (Dinophyceae). Nat Toxins, 3, 355-62. 



  References   

163 

 

HONJO, T. 1993. Overview on bloom dynamics and physiological ecology of 

Heterosigma akashiwo. Toxic Phytoplankton Blooms in the Sea, 3, 33-41. 

IANORA, A., MIRALTO, A. & POULET, S. A. 1999. Are diatoms good or toxic for 

copepods? Reply to comment by Jonasdottir et al. Marine Ecology-Progress 

Series, 177, 305-308. 

IGNATIADES, L. & GOTSIS-SKRETAS, O. Year. A review on toxic and harmful 

algae in greek coastal waters (E. Mediterranean Sea). In:  Toxins, 2010. 1019-

1037. 

ISMAEL, A. A. H., HALIM, Y. & KHALIL, A. G. 1999. Optimum growth conditions 

for Amphidinium carterae Hulburt from eutrophic waters in Alexandria (Egypt) 

and its toxicity to the brine shrimp Artemia salina. Grana, 38, 179-185. 

JANSON, S. & HAYES, P. K. 2006 Molecular taxonomy of harmful algae. In: 

GRANELI, E. & TURNER, J. (Eds). Ecology of Harmful Algae. Germany, 

Springer, pp. 9-21. 

JENSEN, M. O. & MOESTRUP, O. (1997) Autecology of the toxic dinoflagellate 

Alexandrium ostenfeldii: Life history and growth at different temperatures and 

salinities. Eur. J. Phycol., 32, 9–18. 

JEONG, S. Y., ISHIDA, K., ITO, Y., OKADA, S. & MURAKAMI, M. 2003. 

Bacillamide, a novel algicide from the marine bacterium, Bacillus sp SY-1, 

against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron 

Letters, 44, 8005-8007. 

Katırcıoğlu, H., Akın, B., & Atıcı, T., 2004. Microalgal toxin(s): characteristics and 

importance. African J. Biotechnol. 3, 667–674. 

KELLMANN, R., STUKEN, A., ORR, R. J. S., SVENDSEN, H. M. & JAKOBSEN, K. 

S. 2010. Biosynthesis and molecular genetics of polyketides in marine 

dinoflagellates. Marine Drugs, 8, 1011-1048. 

KIRKWOOD, D. 1996. Nutrients: practical notes on their determination in sea water. 

25 pp 

KOBAYASHI, J. & TSUDA, M. 2004. Amphidinolides, bioactive macrolides from 

symbiotic marine dinoflagellates. Natural Product Reports, 21, 77-93. 

KOLBER, Z. S. & FALKOWSKI, P. G. 1992. Fast repetition rate (FRR) fluorometer 

for making in situ measurements of primary productivity. Oceans 92: 

Proceedings, Vol 1 and 2, 637-641. 

KOIKE, K., SATO, S., YAMAJI, M., NAGAHAMA, Y., KOTAKI, Y., OGATA, T. & 

KODAMA, M. 1998. Occurrence of okadaic acid-producing Prorocentrum lima 

on the Sanriku Coast, Northern Japan. Toxicon, 36, 2039–42. 

KOPP, M., DOUCETTE, G. J., KODAMA, M., GERDTS, G., SCHUTT, C. & 

MEDLIN, L. K. 1997. Phylogenetic analysis of selected toxic and non-toxic 

bacterial strains isolated from the toxic dinoflagellate Alexandrium tamarense. 

Fems Microbiology Ecology, 24, 251-257. 

KOZLOWSKY-SUZUKI, B., KOSKI, M., HALLBERG, E., WALLEN, R. & 

CARLSSON, P. 2009. Glutathione transferase activity and oocyte development 

in copepods exposed to toxic phytoplankton. Harmful Algae, 8, 395-406. 

KROMKAMP, J. & PEENE, J. 1999. Estimation of phytoplankton photosynthesis and 

nutrient limitation in the Eastern Scheldt estuary using variable fluorescence. 

Aquatic Ecology, 33, 101-104. 

KUBOTA, T., Takahashi, A., Tsuda, M., & Kobayashi, J. 2005. Luteophanol D, New 

Polyhydroxyl Metabolite from MarineDinoflagellate Amphidinium sp. Mar. 

Drugs, 3, 113-118. 



  References   

164 

 

LAABIR, M., JAUZEIN, C., GENOVESI, B., MASSERET, E., GRZEBYK, D., 

CECCHI, P., VAQUER, A., PERRIN, Y. & COLLOS, Y. 2011. Influence of 

temperature, salinity and irradiance on the growth and cell yield of the harmful 

red tide dinoflagellate Alexandrium catenella colonizing Mediterranean waters. 

Journal of Plankton Research, 33, 1550-1563. 

LAFAY, B., RUIMY, R., DETRAUBENBERG, C. R., BREITTMAYER, V., 

GAUTHIER, M. J. & CHRISTEN, R. 1995. Roseobacter algicola sp nov, a 

New Marine Bacterium Isolated from the phycosphere of the toxin-producing 

dinoflagellate Prorocentrum lima. International Journal of Systematic 

Bacteriology, 45, 290-296. 

LAKEMAN, M. B., VON DASSOW, P. & CATTOLICO, R. A. 2009. The strain 

concept in phytoplankton ecology. Harmful Algae, 8, 746-758. 

LASSEN, M. K., NIELSEN, K. D., RICHARDSON, K., GARDE, K. & SCHLUTER, 

L. 2010. The effects of temperature increases on a temperate phytoplankton 

community - A mesocosm climate change scenario. Journal of Experimental 

Marine Biology and Ecology, 383, 79-88. 

LAWRENCE, J. E., GRANT, J., QUILLIAM, M. A., BAUDER, A. G. & CEMBELLA, 

A. D. 2000. Colonization and growth of the toxic dinoflagellate Prorocentrum 

lima and associated fouling macroalgae on mussels in suspended culture. Marine 

Ecology-Progress Series, 201, 147-154. 

LAZA-MARTINEZ, A., ORIVE, E. & MIGUEL, I. 2011. Morphological and genetic 

characterization of benthic dinoflagellates of the genera Coolia, Ostreopsis and 

Prorocentrum from the south-eastern Bay of Biscay. European Journal of 

Phycology, 46, 45-65. 

LEAW, C. P., LIM, P. T., CHENG, K. W., NG, B. K. & USUP, G. 2010. Morphology 

and molecular characterization of a new species of thecate benthic 

dinoflagellate, Coolia malayensis sp nov (Dinophyceae). Journal of Phycology, 

46, 162-171. 

LEE, J.-S., IGARASHI, T., FRAGA, S., DAHL, E., HOVGAARD, P. & YASUMOTO, 

T. 1989. Determination of diarrhetic shellfish toxins in various dinoflagellate 

species. Journal of Applied Phycology, 1, 147-152. 

LEE, J. J., SHPIGEL, M., FREEMAN, S., ZMORA, O., MCLEOD, S., BOWEN, S., 

PEARSON, M. & SZOSTEK, A. 2003. Physiological ecology and possible 

control strategy of a toxic marine dinoflagellate, Amphidinium sp., from the 

benthos of a mariculture pond. Aquaculture, 217, 351-371. 

LEVASSEUR, M., COUTURE, J. Y., WEISE, A. M., MICHAUD, S., ELBRACHTER, 

M., SAUVE, G. & BONNEAU, E. 2003. Pelagic and epiphytic summer 

distributions of Prorocentrum lima and P. mexicanum at two mussel farms in the 

Gulf of St. Lawrence, Canada. Aquatic Microbial Ecology, 30, 283-293. 

LI, J., GLIBERT, P. M., ZHOU, M. J., LU, S. H. & LU, D. D. 2009. Relationships 

between nitrogen and phosphorus forms and ratios and the development of 

dinoflagellate blooms in the East China Sea. Marine Ecology-Progress Series, 

383, 11-26. 

LIANG, J. L., LONG, L. J., ZHANG, S. & WU, J. 2009. Cooliatin, an unprecedented 

natural dioxocyclononane from dinoflagellate Coolia monotis from South China 

Sea. Chemical & Pharmaceutical Bulletin, 57, 888-889. 

LOW-DECARIE, E., FUSSMANN, G. F. & BELL, G. 2011. The effect of elevated 

CO2 on growth and competition in experimental phytoplankton communities. 

Global Change Biology, 17, 2525-2535. 



  References   

165 

 

LUCKAS, B., DAHLMANN, J., ERLER, K., GERDTS, G., WASMUND, N., 

HUMMERT, C. & HANSEN, P. D. 2005. Overview of key phytoplankton 

toxins and their recent occurrence in the North and Baltic seas. Environmental 

Toxicology, 20, 1-17. 

MACINTYRE, H.L. & CULLEN, J. J. 2005 Using cultures to investigate the 

physiological ecology of microalgae. In: ANDERSON, R. A. (ed.) Algal 

Culturing Techniques, Academic Press, pp 287-326. 

MACKENZIE, L. A., SELWOOD, A. I., MCNABB, P., & RHODES, L. 2011. Benthic 

dinoflagellate toxins in two warm-temperate estuaries: Rangaunu and 

Parengarenga Harbours, Northland, New Zealand. Harmful Algae, 6 , 559-566. 

MANDAL, S. K., SINGH, R. P. & PATEL, V. 2011. Isolation and characterization of 

exopolysaccharide secreted by a toxic dinoflagellate Amphidinium carterae 

Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microbial 

Ecology, 62, 518-527. 

MARINE SPECIES IDENTIFICATION PORTAL OF HARMFUL MARINE 

DINOFLAGELLATES. 2012. http://species-identification.org/index.php 

MARANDA, L., CHAN, C. & MARTIN, C. 1999. Prorocentrum lima (Dinophyceae) 

in waters of the Great South Channel near Georges Bank. Journal of Phycology, 

35, 1158-1161. 

MARANDA, L., CORWIN, S., DOVER, S. & MORTON, S. L. 2007a. Prorocentrum 

lima (Dinophyceae) in northeastern USA coastal waters - II: Toxin load in the 

epibiota and in shellfish. Harmful Algae, 6, 632-641. 

MARANDA, L., CORWIN, S. & HARGRAVES, P. E. 2007b. Prorocentrum lima 

(Dinophyceae) in northeastern USA coastal waters - I. Abundance and 

distribution. Harmful Algae, 6, 623-631. 

MARASIGAN, A. N., TAMSE, A. F., & FUKUYO Y. 2001. Prorocentrum 

(Prorocentrales: Dinophyceae) populationson seagrass-blade surface in Taklong 

Island, Guimaras Province, Philippines. Plankton Biol. Ecol, 48, 79–84. 

MASO, M. & GARCES, E. 2006. Harmful microalgae blooms (HAB); problematic and 

conditions that induce them. Marine Pollution Bulletin, 53, 620-630. 

MAYALI , X. & DOUCETTE, G. J. 2002. Microbial community interactions and 

population dynamics of an algicidal bacterium active against Karenia brevis 

(Dinophyceae). Harmful Algae 1: 277-293. 

MCLACHLAN, J. L., MARR, J. C., CONLON-KELLY, A. & ADAMSON, A. 1994. 

Effects of nitrogen concentration and cold temperature on DSP-toxin 

concentrations in the dinoflagellate Prorocentrum lima (Prorocentrales, 

Dinophyceae). Nat Toxins, 2, 263-70. 

MENG, Y. H., VAN WAGONER, R. M., MISNER, I., TOMAS, C. & WRIGHT, J. L. 

C. 2010. Structure and Biosynthesis of Amphidinol 17, a Hemolytic Compound 

from Amphidinium carterae. Journal of Natural Products, 73, 409-415. 

MONTAGNES, D. J. S., KIMMANCE, S. A. & ATKINSON, D. 2003. Using Q10: Can 

growth rates increase linearly with temperature? Aquatic Microbial Ecology, 32, 

307-313. 

MOORE, S. K., TRAINER, V. L., MANTUA, N. J., PARKER, M. S., LAWS, E. A., 

BACKER, L. C. & FLEMING, L. E. 2008. Impacts of climate variability and 

future climate change on harmful algal blooms and human health. 

Environmental Health, 7. 

MORGAN-KISS, R. M., PRISCU, J. C., POCOCK, T., GUDYNAITE-SAVITCH, L. & 

HUNER, N. P. A. 2006. Adaptation and acclimation of photosynthetic 



  References   

166 

 

microorganisms to permanently cold environments. Microbiology and 

Molecular Biology Reviews, 70, 222. 

MORTON, S. L., NORRIS, D. R. & BOMBER, J. W. 1992. Effect of temperature, 

salinity and light intensity on the growth and seasonality of toxic dinoflagellates 

associated with ciguatera. Journal of Experimental Marine Biology and Ecology, 

157, 79-90. 

MORTON, S. L. & TINDALL, D. R. 1995. Morphological and biochemical variability 

of the toxic dinoflagellate Prorocentrum lima isolated from three locations at 

Heron Island, Australia. Journal of Phycology, 31, 914-921. 

MOUNTFORT, D. O., SUZUKI, T. & TRUMAN, P. 2001. Protein phosphatase 

inhibition assay adapted for determination of total DSP in contaminated mussels. 

Toxicon, 39, 383-390. 

MURRAY, S. & PATTERSON, D.J. 2002. The benthic dinoflagellate genus 

Amphidinium in south-eastern Australian waters, including three new species. 

British Phycological Journal 37: 279-298. 

NADAOKA, K., BLANCO, A. C. & YAMAMOTO, T. 2008. Planktonic and benthic 

microalgal community composition as indicators of terrestrial influence on a 

fringing reef in Ishigaki Island, Southwest Japan. Marine Environmental 

Research, 66, 520-535. 

NEELY, T.  & CAMPBELL, L. 2006. A modified assay to determine hemolytictoxin 

variability among Karenia clones isolated from the Gulf of Mexico. Harmful 

Algae, 5, 592–598. 

NAGAHAMA, Y., MURRAY, S., TOMARU, A. & FUKUYO, Y. 2011. Species 

boundaries in the toxic dinoflagellate Prorocentrum lima (Dinophyceae, 

Prorocentrales), based on morphological and phylogenetic characters. Journal of 

Phycology, 47, 178-189. 

NAKAJIMA, I., OSHIMA, Y. & YASUMOTO, T. 1981. Toxicity of benthic 

dinoflagellates in okinawa. Bulletin of the Japanese Society of Scientific 

Fisheries, 47, 1029-1033. 

NASCIMENTO, S. M. 2003. Phytoplankton blooms and water quality of the Fleet 

Lagoon, Dorset, UK, including studies of isolated toxic strains of Alexandrium 

minutum and Prorocentrum lima. PhD thesis. University of Southampton, 

United Kingdom. 

NASCIMENTO, S. M., PURDIE, D. A. & MORRIS, S. 2005. Morphology, toxin 

composition and pigment content of Prorocentrum lima strains isolated from a 

coastal lagoon in southern UK. Toxicon, 45, 633-49. 

NAVES, J. L., PRADO, M. P., RANGEL, M., DE SANCTIS, B., MACHADO-

SANTELLI, G. & FREITAS, J. C. 2006. Cytotoxicity in the marine 

dinoflagellate Prorocentrum mexicanum from Brazil. Comparative Biochemistry 

and Physiology C-Toxicology & Pharmacology, 143, 73-77. 

NAYAK, B. B., KARUNASAGAR, I. & KARUNASAGAR, I. 1997. Influence of 

bacteria on growth and hemolysin production by the marine dinoflagellate 

Amphidinium carterae. Marine Biology, 130, 35-39. 

OGINO, H., KUMAGAI, M. & YASUMOTO, T. 1997. Toxicologic evaluation of 

yessotoxin. Nat Toxins, 5, 255-9. 

OKOLODKOV, Y. B., CAMPOS-BAUTISTA, G., GARATE-LIZARRAGA, I., 

GONZALEZ-GONZALEZ, J. A. G., HOPPENRATH, M. & ARENAS, V. 

2007. Seasonal changes of benthic and epiphytic dinoflagellates in the Veracruz 

reef zone, Gulf of Mexico. Aquatic Microbial Ecology, 47, 223-237. 



  References   

167 

 

OLSON, R. J. & CHISHOLM, S. W. 1986. Effects of light and nitrogen limitation on 

the cell cycle of the dinoflagellate Amphidinium carteri. Journal of Plankton 

Research 8(4):785-793. 

PAN, Y., CEMBELLA, A. D., & QUILLIAM, M. A. 1999. Cell cycle and toxin 

production in the benthic dinoflagellate Prorocentrum lima. Marine Biology. 

134:541–549. 

PAERL, H. W. & PAUL, V. J. 2011. Climate change: Links to global expansion of 

harmful cyanobacteria. Water Research. In press 

PARKHILL, J. P., MAILLET, G. & CULLEN, J. J. 2001. Fluorescence-based maximal 

quantum yield for PSII as a diagnostic of nutrient stress. Journal of Phycology, 

37, 517-529. 

PEARSON, R. G. & DAWSON, T. P. 2003. Predicting the impacts of climate change 

on the distribution of species: are bioclimate envelope models useful? Global 

Ecology and Biogeography, 12, 361-371. 

PENNA, A., VILA, M., FRAGA, S., GIACOBBE, M. G., ANDREONI, F., RIOBO, P. 

& VERNESI, C. 2005. Characterization of Ostreopsis and Coolia 

(Dinophyceae) isolates in the western Mediterranean Sea based on morphology, 

toxicity and internal transcribed spacer 5.8s rDNA sequences. Journal of 

Phycology, 41, 212-225. 

PEPERZAK, L. 2003. Climate change and harmful algal blooms in the North Sea. Acta 

Oecologica-International Journal of Ecology, 24, S139-S144. 

PEREZ-GUZMAN, L., PEREZ-MATOS, A. E., ROSADO, W., TOSTESON, T. R. & 

GOVIND, N. S. 2008. Bacteria associated with toxic clonal cultures of the 

dinoflagellate Ostreopsis lenticularis. Marine Biotechnology, 10, 492-496. 

PIN, L. C., TEEN, L. P., AHMAD, A. & USUP, G. 2001. Genetic diversity of 

Ostreopsis ovata (Dinophyceae) from Malaysia. Marine Biotechnology, 3, 246-

255. 

PISTOCCHI, R., VANUCCI, S., GUERRINI, F. & MILANDRI, A. 2010. Effects of 

different levels of N- and P-deficiency on cell yield, okadaic acid, DTX-1, 

protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum 

lima. Harmful Algae, 9, 590-599. 

PLUMLEY, F. G. 1997. Marine algal toxins: biochemistry, genetics, and molecular 

biology. Limnology and Oceanography, 42, 1252-1264. 

POWELL, N., SHILTON, A., CHISTI, Y. & PRATT, S. 2009. Towards a luxury 

uptake process via microalgae  defining the polyphosphate dynamics. Water 

Research, 43, 4207-4213. 

QUILLIAM, M. A. 2003.Chemical methods for lipophilic shellfish. In G. M. 

Hallegraeff, D. M. Anderson, and A. D. Cembella (Eds), Manual on harmful 

marine microalgae. UNESCO. France, pp. 211-245. 

RAATEOJA, M. P. 2004. Fast repetition rate fluorometry (FRRF) measuring 

phytoplankton productivity: A case study at the entrance to the Gulf of Finland, 

Baltic Sea. Boreal Environ. Res. 2004;9:263-276. 

RAVEN, J. A. & GEIDER, R. J. 1988. Temperature and Algal Growth. New 

Phytologist, 110, 441-461. 

RHODES, L., ADAMSON, J., SUZUKI, T., BRIGGS, L. & GARTHWAITE, I. 2000. 

Toxic marine epiphytic dinoflagellates, Ostreopsis siamensis and Coolia 

monotis (Dinophyceae), in New Zealand. New Zealand Journal of Marine and 

Freshwater Research, 34, 371-383. 



  References   

168 

 

RHODES, L. L., SMITH, K. F., MUNDAY, R., SELWOOD, A. I., MCNABB, P. S., 

HOLLAND, P. T. & BOTTEIN, M. Y. 2010. Toxic dinoflagellates 

(Dinophyceae) from Rarotonga, Cook Islands. Toxicon, 56, 751-758. 

RHODES, L. L. & THOMAS, A. E. 1997. Coolia monotis (Dinophyceae): A toxic 

epiphytic microalgal species in New Zealand (vol 31, pg 139, 1997). New 

Zealand Journal of Marine and Freshwater Research, 31, 286-286. 

RICHLEN, M. L. & LOBEL, P. S. 2011. Effects of depth, habitat, and water motion on 

the abundance and distribution of ciguatera dinoflagellates at Johnston Atoll, 

Pacific Ocean. Marine Ecology-Progress Series, 421, 51-66. 

SAKAMI, T., NAKAHARA, H., CHINAIN, M. & ISHIDA, Y. 1999. Effects of 

epiphytic bacteria on the growth of the toxic dinoflagellate Gambierdiscus 

toxicus (Dinophyceae). Journal of Experimental Marine Biology and Ecology, 

233, 231-246. 

SAKSHAUG, E., ANDRESEN, K., MYKLESTAD, S., & OLSEN, Y. 1983. Nutrient 

status of phytoplankton communities in Norwegian waters (marine, brackish and 

fresh) as revealed by their chemical composition. Plankton Research, 5, 175-

196. 

SCHOFIELD, O., GRZYMSKI, J., MOLINE, M. M. A. & JOVINE, R. V. M. 1998. 

Impact of temperature acclimation on photosynthesis in the toxic red-tide 

dinoflagellate Alexandrium fundyense (Ca28). Journal of Plankton Research, 20, 

1241-1258. 

SELANDER, E., THOR, P., TOTH, G. & PAVIA, H. 2006. Copepods induce paralytic 

shellfish toxin production in marine dinoflagellates. Proceedings of the Royal 

Society B-Biological Sciences, 273, 1673-1680. 

SENFT, C., AVERY, D. E. & DAM, H. G. 2011. A novel approach to identifying PST 

tolerant copepods: An individual ingestion assay. Harmful Algae, 10, 804-810. 

SHEARS, N. T. & ROSS, P. M. 2009. Blooms of benthic dinoflagellates of the genus 

Ostreopsis; an increasing and ecologically important phenomenon on temperate 

reefs in New Zealand and worldwide. Harmful Algae, 8, 916-925. 

SHI, D., XU, Y. & MOREL, F. M. M. 2009. Effects of the pH/pCO2 control method on 

medium chemistry and phytoplankton growth. Biogeosciences, 6, 1199-1207. 

SHIKATA, T., NAGASOE, S., MATSUBARA, T., YAMASAKI, Y., SHIMASAKI, 

Y., OSHIMA, Y. & HONJO, T. 2007. Effects of temperature and light on cyst 

germination and germinated cell survival of the noxious raphidophyte 

Heterosigma akashiwo. Harmful Algae, 6, 700-706. 

SPIJKERMAN, E. 2010. High photosynthetic rates under a colimitation for inorganic 

phosphorus and carbon dioxide. Journal of Phycology, 46, 658-664. 

STEINDINGER, K.A., & TANGEN, K. 1996. Dinoflagellates. In Tomas, C. (Ed.). 

Identifying marine diatoms and dinoflagellates. Academic Press, San Diego, pp. 

387-584.  

STERNER, R. W. & GROVER, J. P. 1998. Algal growth in warm temperate reservoirs: 

Kinetic examination of nitrogen, temperature, light, and other nutrients. Water 

Research, 32, 3539-3548. 

STROM, S. L. & MORELLO, T. A. 1998. Comparative growth rates and yields of 

ciliates and heterotrophic dinoflagellates. Plankton Res., 20, 571-584. 

SUGANUMA, M., TATEMATSU, M., YATSUNAMI, J., YOSHIZAWA, S., OKABE, 

S., UEMURA, D. & FUJIKI, H. 1992. An alternative theory of tissue-specificity 

by tumor promotion of okadaic acid in glandular stomach of rats. 

Carcinogenesis, 13, 1841-1845. 



  References   

169 

 

SUGG, L. M. & VANDOLAH, F. M. 1999. No evidence for an allelopathic role of 

okadaic acid among ciguatera-associated dinoflagellates. Journal of Phycology, 

35, 93-103. 

SUGGETT, D. J., MOORE, C. M., HICKMAN, A. E. & GEIDER, R. J. 2009. 

Interpretation of fast repetition rate (FRR) fluorescence: signatures of 

phytoplankton community structure versus physiological state. Marine Ecology-

Progress Series, 376, 1-19. 

SUZUKI, T., QUILLIAM, M. A., BEUZENBERG, V. & MACKENZIE, L. 2004. 

Discovery of okadaic acid esters in the toxic dinoflagellate Dinophysis acuta 

from New Zealand using liquid chromatography tandem mass spectrometry. 

Rapid Communications in Mass Spectrometry, 18, 1131-1138. 

TAYLOR, F. J. R, FUKUYO, Y., LARSEN, J. & HALLEGRAEFF, G. M. 2003. 

Taxonomy of harmful dinoflagellates. In: Hallegraeff, GM, Anderson, DM & 

AC Cembella (Eds.). Manual on Harmful Marine Microalgae. UNESCO, Paris. 

TAYLOR, F. J. R., HOPPENRATH, M. & SALDARRIAGA, J. F. 2008. Dinoflagellate 

diversity and distribution. Biodiversity and Conservation, 17, 407-418. 

TEEGARDEN, G. J. & CEMBELLA, A. D. 1996. Grazing of toxic dinoflagellates, 

Alexandrium spp, by adult copepods of coastal Maine: Implications for the fate 

of paralytic shellfish toxins in marine food webs. Journal of Experimental 

Marine Biology and Ecology, 196, 145-176. 

TOMAS, C. R. & BADEN, D. G. 1993. The influence of phosphorus on the growth and 

cellular toxin content of the benthic dinoflagellate Prorocentrum lima. In 

Smayda, T. J. & Shimizu, Y. (Eds.) Toxic Phytoplankton Blooms in the Sea. 

Elsevier Scientific, New York, pp. 565–70. 

TONG, M. M., KULIS, D. M., FUX, E., SMITH, J. L., HESS, P., ZHOU, Q. X. & 

ANDERSON, D. M. 2011. The effects of growth phase and light intensity on 

toxin production by Dinophysis acuminata from the northeastern United States. 

Harmful Algae, 10, 254-264. 

TOSTESON, T. R., BALLANTINE, D. L., TOSTESON, C. G., HENSLEY, V. & 

BARDALES, A. T. 1989. Associated bacterial flora, growth, and toxicity of 

cultured benthic dinoflagellates Ostreopsis leticularis and Gambierdiscus 

toxicus. Applied and Environmental Microbiology, 55, 137-141. 

TURNER, J. T. 2006. Harmful algae interactions with marine planktonic grazers. In: 

GRANELI, E. & TURNER, J. (Eds). Ecology of Harmful Algae. Germany, 

Springer, pp. 259-270.  

VALE, P., VELOSO, V. & AMORIM, A. 2009. Toxin composition of a Prorocentrum 

lima strain isolated from the Portuguese coast. Toxicon, 54, 145-152. 

VALE, P., & SAMPAYO, M.A.M. 2002. Esterification of DSP toxins by Portuguese 

bivalves from the Northwest coast determined by LC-MS ⎯ a widespread 

phenomenon. Toxicon, 40 (1), 33-42. 

VAN DEN BERGH, J. C. J. M., NUNES, P. A. L. D., DOTINGA, H. M., KOOISTRA, 

W. H. C. F., VRIELING, E. G. & PEPERZAK, L. 2002. Exotic harmful algae in 

marine ecosystems: an integrated biological-economic-legal analysis of impacts 

and policies. Marine Policy, 26, 59-74. 

VANUCCI, S., GUERRINI, F., MILANDRI, A. & PISTOCCHI, R. 2010. Effects of 

different levels of N- and P-deficiency on cell yield, okadaic acid, DTX-1, 

protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum 

lima. Harmful Algae, 9, 590-599. 



  References   

170 

 

VARDI, A., BERMAN-FRANK, I., ROZENBERG, T., HADAS, O., KAPLAN, A. & 

LEVINE, A. 1999. Programmed cell death of the dinoflagellate Peridinium 

gatunense is mediated by CO2 limitation and oxidative stress. Current Biology, 

9, 1061-1064. 

VARKITZI, I., PAGOU, K., GRANELI, E., HATZIANESTIS, I., PYRGAKI, C., 

PAVLIDOU, A., MONTESANTO, B. & ECONOMOU-AMILLI, A. 2010. 

Unbalanced N:P ratios and nutrient stress controlling growth and toxin 

production of the harmful dinoflagellate Prorocentrum lima (Ehrenberg) Dodge. 

Harmful Algae, 9, 304-311. 

WELSCHMEYER, N. A. 1994. Fluorometric analysis of chlorophyll a in the presence 

of chlorophyll b and pheopigments. Limnology and Oceanography, 39, 1985-

1992.  

WINDUST, A. J., WRIGHT, J. L. C. & MCLACHLAN, J. L. 1996. The effects of the 

diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin1, on the 

growth of microalgae. Marine Biology, 126, 19-25. 

WORLD REGISTER OF MARINE SPECIES. 2012. 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=110301  
YAMAGUCHI, H., MIZUSHIMA, K., SAKAMOTO, S. & YAMAGUCHI, M. 2010. 

Effects of temperature, salinity and irradiance on growth of the novel red tide 

flagellate Chattonella ovata (Raphidophyceae). Harmful Algae, 9, 398-401. 

 

 


