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Abstract

The nonlinear robust stability theory of Georgiou and Smith (IEEE Trans. Auto. Con-
trol, 42(9):1200–1229, 1997) is generalized to the case of notions of stability with bias terms.
An example from adaptive control illustrates non trivial robust stability certificates for sys-
tems which the previous unbiased theory could not establish a non-zero robust stability
margin. This treatment also shows that the BIBO robust stability results for adaptive con-
trollers in French (IEEE Trans. Auto. Control, 53(2):461–478, 2008) can be refined to
show preservation of biased forms of stability under gap perturbations. In the nonlinear
setting, it also is shown that, in contrast to LTI systems, the problem of optimizing nominal
performance is not equivalent to maximizing the robust stability margin.

1 Introduction

The fundamental nonlinear robust stability framework developed by Georgiou and Smith [9]
considers the classical closed loop system:

[P,C] : y1 = Pu1, u2 = Cy2, u0 = u1 + u2, y0 = y1 + y2, (1.1)

as depicted in Figure 1, and develops a generalisation of the linear gap metric and associated
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Figure 1: The closed-loop [P,C].

robust stability results on the basis of a robust stability margin, bP,C , which is taken to be the
inverse of the induced norm of the closed loop operator ΠP//C :

ΠP//C :

(
u0
y0

)
7→
(

u1
y1

)
. (1.2)

Under appropriate well posedness assumptions, the main robust stability theorem states that if
[P,C] is gain stable (that is ∥ΠP//C∥ < ∞), and if

δ(P, P1) < bP,C := ∥ΠP//C∥−1 (1.3)
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then [P1, C] is gain stable ( ∥ΠP1//C∥ < ∞). Here δ is denotes the nonlinear gap metric, as
described later in Section 3, and is a notion of distance between plants which renders typical
unmodelled dynamics small: e.g. for linear plants, small multiplicative, inverse multiplicative,
and co-prime factor perturbations are small in this sense, as are small time delays to proper
continuous time plants (here we think of P as the model, and P1 as the ‘real’ system).

To account for nonlinear gains, a regional version and a gain function version of the robust
stability theorem were also given. All versions of the robust stability theorem assume that the
plant and the controller map zero inputs to zero outputs (P (0) = 0, C(0) = 0) and that the
closed loop operator ΠP//C has an induced norm or a gain function.

However, there are important instances in which these sufficient conditions for robust stability
generically fail; and yet for which robustness results should apply and for which, to date, either
relatively ad-hoc methods have been utilized to establish robust stability, or no such such robust
stability certificates have been established. Many such systems can be handled by developing
a robust stability theory based on an underlying notion of stability which includes bias terms;
for such notions of stability see [3, 15]. The first important class of examples are systems whose
response depends on a non-zero initial condition, and which do not start at an equilibrium,
see [8] for an alternative biased approach to such examples. The second class of systems are
those for which P (0) = 0, C(0) = 0 but whose closed loop operator ΠP,C is discontinuous at 0,
thus precluding the existence of a (local) finite gain. Most adaptive controllers fall within this
category [4]. A third class of examples includes systems which include inherent offsets, arising
e.g. from quantization errors, sensors biases etc. Another such class of feedback systems include
nonlinear high gain controller designs which attenuate the effects of unknown nonlinearities by
high gain feedback, and which do not cancel the effect of the nonlinearities.

In this paper, we take an important class of examples from adaptive control to motivate the
approach. In this setting, the need for a bias does not arise from an offset from a single specified
trajectory, so the approach of [8] is not applicable. For this class of adaptive controllers we
interpret the known BIBO robust stability results of [5] to provide an interpretation based
on biased stability. This approach provides a more satisfactory robustness theory than the
relatively ad-hoc techniques developed in [5], and shows the stronger result that stability with
bias is preserved under sufficiently small gap perturbations.

The results are cast in a framework which seeks to make minimal restrictive assumptions on
the system class, and minimizes the conditions to be verified in applications. For example, the
standard setting of extended spaces is widened to a wider space, termed the ambient space,
which permits the systematic consideration of systems with the potential for finite escape times.
Further the typical assumption of global well posedness of the perturbed system is reduced
to a uniqueness and causality requirement only. This substantially eases the application of
the robustness result, since typically it is far easier to ensure uniqueness of solutions than to
guarantee their existence a-priori, and causality of solutions usually is physically apparent.

The remainder of the paper is structured as follows. In Section 2 we introduce the system
theoretic setting and notation. In Section 3 we introduce the gap metric and the notions of the
robust stability margin and nominal and robust performance. Section 4 considers the motivating
example from adaptive control whereby it is shown that biases are present. Section 5 establishes
the main regional robust stability result. In Section 6 we consider the result specialised to the
case of linear plants, before revisiting the adaptive control theory in Section 7. In Section 8 we
consider the special case of global robust stability and the implications of the robust stability
result for the formulation of appropriate optimization problems in nonlinear control design. We
draw conclusions in Section 10.
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2 Systems

Let T denote either the discrete half-axis time set Z+ or the continuous time counterpart, R+.
In both cases T ∪ {∞} is totally ordered in the natural manner. For ω ∈ T ∪ {∞}, let Sω

denote the set of all measurable maps (in the discrete case, simply maps) [0, ω) → X where X
is a normed vector space, for example for finite dimensional systems it would be X = Rn and
for distributed parameter systems it would be a function space, for example L2[0, 1]. For ease
of notation define S := S∞. For τ ∈ T , ω ∈ T ∪ {∞}, 0 < τ < ω define a truncation operator
Tτ and a restriction operator Rτ as follows:

Tτ : Sτ → S , v 7→ Tτv :=

(
t 7→

{
v(t), t ∈ [0, τ)
0, otherwise

)
,

Rτ : Sω → Sτ , v 7→ Rτv := (t 7→ v(t), t ∈ [0, τ)) .

We define V ⊂ S to be a signal space if, and only if, it is a vector space. Suppose additionally
that V is a normed vector space and that the norm on V, ∥ · ∥ = ∥ · ∥V is (also) defined for
signals of the form Tτv, v ∈ Vτ , τ > 0. We can define a norm ∥ · ∥τ on Sτ by ∥v∥τ = ∥Tτv∥,
for v ∈ Sτ . For notational simplicity, we utilize the same notation to define a functional on
S, namely ∥v∥τ = ∥Rτv∥τ , for v ∈ S. The systems given in this paper have the potential for
finite escape times, thus requiring the consideration of signals which are only defined on finite
intervals. Within the classical approach to input-output analysis, all signals are considered to lie
within extended spaces (Ve below). This forces signals to be globally defined and hence precludes
finite escape times. We overcome this deficiency by defining a larger space, the ambient space
(Va below), which contains signals which are defined on finite as well as infinite intervals.

We associate spaces as follows:

• V[0, τ) = {v ∈ Sτ | v = Rτw, w ∈ V , ∥v∥τ < ∞}, the interval space;

• Ve = {v ∈ S | ∀ τ > 0 : Rτv ∈ V[0, τ)}, the extended space;

• Vω = {v ∈ Sω | ∀ τ ∈ (0, ω) : Rτv ∈ V[0, τ)}, for 0 < ω ≤ ∞; and

• Va =
∪

ω∈(0,∞] Vω, the ambient space.

It is important to note that in general V[0, τ) ̸= Vτ , since in contrast to V[0, τ), elements of Vτ

may be unbounded on the whole interval [0, τ) – this is the feature that allows consideration of
finite escape times. For example, if V = L∞(R+,R), then the function tan: [0, π/2) → R has
the property that tan ̸∈ L∞([0, π/2),R) = V[0, π/2), but tan ∈ L∞([0, τ),R) = V[0, τ) for all
τ < π/2, hence tan ∈ Vπ/2. Hence the ambient space consists of signals defined on intervals of
both finite length (as Vτ ⊂ Va) and infinite length (as V∞ ⊂ Va), and thus for example Va is an
appropriate space to capture the behaviour of e.g. solutions to differential equations where the
presence of finite escape times may lead to solutions which are only defined on finite intervals.

A signal space V is said to be truncation complete if V [0, τ) is complete for all 0 < τ < ∞.

The notion of a closed loop solution is formally defined as follows. Given signal spaces U and
Y, a mapping Q : Ua → Ya is said to be causal if

∀ u, v ∈ Ua ∀ τ ∈ dom(u) ∩ dom(v) : [Rτu = Rτv ⇒ Rτ (Qu) = Rτ (Qv)] .

We remark that causality is often defined by the property that TτQTτ = TτQ. However this
equality is only defined if Ua is closed under the operation of truncation (for example not if
U = C(R+,R)).
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Given signal spaces U and Y, let P : Ua → Ya and C : Ya → Ua be causal mappings representing
the plant and the controller, respectively and consider the system of equations (1.1) correspond-
ing to Figure 1. Given external signals (or disturbances) w0 = (u0, y0)

T ∈ W := U × Y then a
pair of internal signals (w1, w2) = ((u1, y1)

T , (u2, y2)
T ) ∈ Wa×Wa, Wa := Ua×Ya, is a solution

if, and only if, (1.1) holds on dom(w1, w2) := dom(w1) ∩ dom(w2).

The twin properties of existence of solutions and uniqueness of closed loop solutions coupled
with a notion of causality (introduced below) define the notion of well posedness. It is of critical
importance when dealing with systems with the potential for finite escape times to distinguish
between the local and the global version of these properties, and a particular contribution of this
formalism is to provide results that allow the guarantee of existence of bounded global solutions
of a perturbed system from the minimal assumptions of bounded global solutions of the nominal
system together with a uniqueness and causality assumption on the perturbed system. This is
considerably more applicable than the typical assumption in the input-output literature whereby
global well posedness is assumed a-priori for the perturbed system, since a common feature of
nonlinear analysis is the relative ease in which uniqueness of solutions of differential equations
can be guaranteed vs. the difficulty of establishing existence of solutions. Indeed a typical
result establishing the existence of solutions of differential equations operates by establishing
boundedness and existence simultaneously, hence here we are providing the setting so that our
robust stability theorems can be established on the same basis, thus greatly increasing their
formal applicability.

Let Xw0 := {(w1, w2) ∈ Wa ×Wa | (w1, w2) solves (1.1)} be the set of all solutions, which may
be empty. The closed loop system [P,C] is said to have the existence property, if Xw0 ̸= ∅ for
all w0 ∈ W, and the uniqueness property, if

∀ w0 ∈ W : (ŵ1, ŵ2), (w̃1, w̃2) ∈ Xw0

=⇒ (ŵ1, ŵ2) = (w̃1, w̃2) on dom(ŵ1, ŵ2) ∩ dom(w̃1, w̃2) .

As discussed above, throughout the paper we will require that all closed loop systems under
consideration satisfy the uniqueness property (but not necessarily the existence property).

For each w0 ∈ W, let ωw0 ∈ T ∪ {∞} define the maximal interval of existence [0, ωw0) for the
closed loop system, i.e. [0, ωw0) :=

∪
(ŵ1,ŵ2)∈Xw0

dom(ŵ1, ŵ2) and define (w1, w2) ∈ Wa × Wa,

with dom(w1, w2) = [0, ωw0), by the property Rt(w1, w2) ∈ Xw0 for all t ∈ [0, ωw0). This induces
the operator

HP,C : W → Wa ×Wa, w0 7→ (w1, w2) .

Thus HP,C is the map from the external disturbances w0 to the internal signals (w1, w2) defined
on their maximal interval of existence.

For Ω ⊂ W the closed loop system [P,C] given by (1.1), is said to be:

• locally well posed on Ω if, and only if, it has the existence and uniqueness properties and
the operator HP,C

∣∣
Ω
: Ω → Wa ×Wa, w0 7→ (w1, w2), is causal;

• globally well posed on Ω if, and only if, it is locally well posed on Ω andHP,C(Ω) ⊂ We×We;

Note that the local/global adjective are descriptions with respect to time. A locally well posed
system is therefore one for which in w0 ∈ Ω then the internal signals (w1, w2) are defined on
some (potentially finite) time interval [0, ωw0), in contrast to globally well posed systems which
have internal signals (w1, w2) defined on the time interval [0,∞).

We next define both regional and global notions of stability both with and without biases. For
normed signal spaces X , V and Ω ⊂ X define the following:
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(i) A causal operator Q : X → Va is called gain stable on Ω if, and only if, Q(Ω) ⊂ V, Q(0) = 0
and ∥∥Q∣∣

Ω

∥∥
X ,V := sup

{
∥RτQx∥τ
∥Rτx∥τ

∣∣∣ x ∈ Ω , τ > 0 , Rτx ̸= 0

}
< ∞ .

(ii) A causal operator Q : X → Va is called (γ, β) gain stable with bias on Ω if, and only if,
Q(Ω) ⊂ V and

∥RτQx∥τ ≤ γ∥Rτx∥τ + β, ∀x ∈ Ω , τ > 0.

(iii) A causal operator Q : X → Va is called regionally gain stable with uniform bias on Ω if,
and only if, Q(Ω) ⊂ V and there exists β ≥ 0 such that for all R > 0 there exists γ(R) > 0
such that:

∥RτQx∥τ ≤ γ(R)∥Rτx∥τ + β, ∀x ∈ Ω ∩ B(R) , τ > 0.

Hereafter, B(R) denotes the closed ball centred at the origin with radius R.

(iv) A causal operator Q : X → Va is called gain-function stable on Ω (or gf-stable on Ω) if,
and only if, Q(Ω) ⊂ V and the nonlinear gain-function

g
[
Q
∣∣
Ω

]
: (r0,∞) → [0,∞) ,

r 7→ g
[
Q
∣∣
Ω

]
(r) := sup

{
∥RτQx∥τ

∣∣ x ∈ Ω , ∥Rτx∥τ ∈ (r0, r] , τ > 0
}
,

is defined, where r0 := inf
x∈Ω

∥x∥X < ∞.

It is important to observe that in contrast to some treatments of gain functions, we do not
require g[Q](0) = 0 (if r0 = 0).

The above notions of stability will be applied to the following operators:

ΠP//C : W → Wa, w0 7→ w1, and ΠC//P : W → Wa, w0 7→ w2

in order to define the appropriate notions of stability of the closed loop system (note that
HP,C =

(
ΠP//C ,ΠC//P

)
and ΠP//C+ΠC//P = I). For normed signal spaces U , Y andW = U×Y

and the causal operator P : Ua → Ya and C : Ya → Ua define the following:

(i) The closed-loop system [P,C] given by (1.1) with the associated operator ΠP//C : W → Wa

is said to be BIBOW-stable if, and only if, it is globally well posed andHP,C(W) ⊂ W×W.

(ii) Let Ω ⊂ W. The closed-loop system [P,C] given by (1.1) with the associated operator
ΠP//C : W → Wa is said to be regionally gain stable (with (uniform) bias) on Ω if, and
only if, it is globally well posed on Ω and ΠP//C is gain stable (with (uniform) bias) on Ω.

(iii) Let Ω ⊂ W. The closed-loop system [P,C] given by (1.1) with the associated operator
ΠP//C : W → Wa is said to be gain-function stable on Ω if, and only if, it is globally well
posed on Ω and ΠP//C is gain-function stable on Ω.

For all the above stability definitions, if an object is (gain) stable (with bias) on Ω = W, then
it is said to be globally (gain) stable (with bias).

The notion of gain function stability and regional gain stability with uniform bias are closely
related as the following lemma shows:

Lemma 2.1 The following statements are equivalent:
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1. [P,C] is gain function stable on W.

2. [P,C] is regionally gain stable with uniform bias on W.

Proof. If [P,C] is (γ(·), β) regionally gain stable with uniform bias, then [P,C] is gain function
stable with gain function g(r) = γ(r)r+β. Conversely suppose [P,C] is gain function stable with
gain function g[ΠP//C ]. Let r0 > 0 and let g(r) = g[ΠP//C ](r0) for r ≤ r0 and g(r) = g[ΠP//C ](r)
for r > r0. Then, for any R > 0, τ > 0 and any w with ∥Rτw∥ ≤ R, since g[ΠP//C ] is increasing,
we have

∥RτΠP//Cw∥ ≤ g[ΠP//C ](∥Rτw∥) ≤ g(r0) = g(0) if ∥Rτw∥ ≤ r0

and

∥RτΠP//Cw∥ =
∥RτΠP//CRτw∥
∥Rτw∥ − g(0)

∥Rτw∥+ g(0)

≤ g(R)− g(0)

r0
∥Rτw∥+ g(0) if ∥Rτw∥ > r0.

Hence [P,C] is (γ(·), g(0)) regionally gain stable with uniform bias where γ(R) = g(R)−g(0)
r0

. 2

Finally

For the plant operator P and the controller operator C and signal spaces U , Y, we define the
graph GP of the plant and the graph GC of the controller, respectively, as follows:

GP :=

{(
u
Pu

) ∣∣∣∣ u ∈ U , Pu ∈ Y
}

⊂ W , GC :=

{(
Cy
y

) ∣∣∣∣ Cy ∈ U , y ∈ Y
}

⊂ W .

The graph of a system operator is the set of all bounded input/output pairs and plays a key
role in the definition of the nonlinear gap, see below.

3 Gap distances and robust performance functions

Throughout this paper, our principal measure of worst case nominal performance of a closed
loop system [P,C] is given by:

AP,C(r) := sup
∥w0∥≤r

∥ΠP//Cw0∥, (3.1)

that is, AP,C(r) is the maximum size of the internal signal w1 = ΠP//Cw0, given external signals
w0 of size less than or equal to r.

Let Γ denote a set of causal operators Ua → Ya corresponding to the admissible plants. Given
P, P1 ∈ Γ and a distance measure δ⃗ : Γ × Γ → [0,∞], the robust stability margin is defined as
follows:

BP,C(r) := sup

{
ε ≥ 0

∣∣∣ δ⃗(P, P1) < ε and [P1, C] is causal
and has the uniqueness property

=⇒ AP1,C(r) < ∞
}
, (3.2)

i.e. BP,C(r) is the size of the largest worst case plant perturbation (as measured by δ⃗) which
maintains bounded performance for disturbances of size less than or equal to r. The robust
performance function is defined to be:

ABP,C(r, η) := sup
{
AP1,C(r) | P1 ∈ Γ, δ⃗(P, P1) < ηBP,C(r)

}
, η ∈ [0, 1). (3.3)
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The robust performance function therefore quantifies the worst case performance as the permis-
sible plant perturbations are varied from their maximum size (η = 1) to the nominal case of no
perturbation (η = 0), again at disturbance level r.

Throughout this paper, the distance measure δ⃗ is taken to be the gap metric, or one of its varia-
tions/generalisations which we next define, and relate to our definitions of nominal performance,
robust stability margin and robust performance.

3.1 The Linear Gap

We let R(U ,Y) denote the set of linear operators P : Ue → Ye specified by rational transfer
functions. H∞ denotes the Banach space of complex valued functions that are analytic and
bounded on the open half plane C+ with norm: ∥f∥H∞ = ess supω∈Rn |f(jω)|. RH∞ is the
subset of H∞ consisting of rational functions. The pair N,D ∈ RH∞ are said to be normalized
right co-prime factors over RH∞ of a transfer function P , if P = ND−1 and N∗N +D∗D = I.1

The set of all such (N,D) is denoted by NRCF(P ).

For the case of Γ = R(L2(R+), L
2(R+)), C ∈ R(L2(R+), L

2(R+)) and we let δ⃗0 denote the
directed H2 gap metric:

δ⃗0(P1, P2) = inf

{∥∥∥∥( ∆N

∆D

)∥∥∥∥
H∞

∣∣∣ ( ∆N

∆D

)
∈ RH∞,

P2 = (N1 +∆N )(D1 +∆D)
−1

(N1, D1) ∈ NRCF(P1)

}
.

(3.4)
It is well known that AP,C(r) = b−1

P,Cr, BP,C(r) = bP,C , where bP,C = ∥ΠP//C∥−1. For any

η ∈ [0, 1), we see ηbP,C < BP,C . Suppose, as in (3.3) that δ⃗(P, P1) < ηbP,C . Then by Theorem
1 of [9], we have

∥ΠP1//C∥ ≤
1 + ηbP,C

1− ηbP,C∥ΠP//C∥
∥ΠP//C∥ ≤

1 + ηbP,C
1− η

∥ΠP//C∥.

This shows AP1,C(r) ≤
1+ηbP,C

1−η AP,C(r). Hence

ABP,C(r, η) ≤
1 + ηbP,C
1− η

AP,C(r) for all η, r ≥ 0. (3.5)

3.2 The Un-Biased Regional Nonlinear Gap

The nonlinear gap metric was introduced in [9], and is defined as follows. Let Γ denote the set
of all causal operators Ua → Ya. Given P1, P2 ∈ Γ and a subset Ω ⊂ W, define the (possibly
empty) set

OΩ
P1,P2

:=

{
Φ: GP1 ∩ Ω → GP2

∣∣∣ Φ is causal, and
Rτ (Φ− I) is compact for all τ > 0

}
, (3.6)

and the nonlinear directed gap [9]:

δ⃗Ω(P1, P2) =

 infΦ∈OΩ
P1,P2

supx∈GP1
∩Ω, τ>0

Rτ x̸=0

∥Rτ (Φ−I)|GP1
x∥τ

∥Rτx∥τ if OΩ
P1,P2

̸= ∅ ,

∞ if OΩ
P1,P2

= ∅.
(3.7)

Various equivalent expressions for the (global) nonlinear gap can be found in [1, 9, 12], including
formulae based on nonlinear coprime factorisations closely related in form to (3.4). The L2(R+)

1Here N∗ denotes the conjugate transpose of N .
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nonlinear gap is a generalisation of the standard definition of the H2 gap δ⃗0(·, ·) [9, 16], in the
sense that if P1, P2 ∈ R(L2(R+), L

2(R+)), and either δ⃗0(P1, P2) < 1 or δ⃗0(P2, P1) < 1, then it
has been shown in [9, Proposition 5] that if Ω := {w ∈ L2(R+) | ∥w∥L2(R+) ≤ R}, R > 0, then

δ⃗0(P1, P2) = δ⃗Ω(P1, P2).

For nonlinear systems, we have AP,C(r) ≤ ∥ΠP//C |B(r)∥r. However, in contrast to the linear
setting, the robust stability margin is also in general dependent on the disturbance level r > 0,
and the parallel projection gain only provides a lower bound:

BP,C(r) ≥

(
sup

0<∥(u0,y0)∥≤R

∥ΠP//C(u0, y0)∥
∥(u0, y0)∥

)−1

=: ∥ΠP//C |B(R)∥−1, (3.8)

for some appropriate choice of R > r, see [9].

It follows that the minimization of the gain of ΠP//C remains, as in the LTI case, a sensible
design objective, since a small gain ensures both a good robust stability margin and good
nominal performance. However, as we will see in Section 4, it is not always possible to achieve
∥ΠP//C |B(R)∥ < ∞, even when a sensible robust stability margin should exist.

Note that the reverse inequality to inequality (3.8) does not necessarily hold. So the robust
performance function ABP,C(r, η) for nonlinear systems cannot in general be estimated as simply
as in the linear case. However, if AP,C(r) satisfies certain growth assumptions, then we are still
able to estimate ABP,C(r, η) as shown in the following lemma.

Lemma 3.1 Let Ω ⊂ W and ∥ΠP//C |Ω∥ < ∞. Suppose that for r > 0, η ∈ [0, 1) with
ηBP,C(r) < ∥ΠP//C |Ω∥−1, there exists R ≥ r such that

B(R) ⊂ Ω and ∥ΠP//C |B(R)∥ ≤ R− r

ηBP,C(r)R
.

Then

ABP,C(r, η) ≤ (1 + ηBP,C(r))AP,C

(
r

1− ηBP,C(r)∥ΠP//C |Ω∥

)
. (3.9)

Proof. Let P1 ∈ Γ, and suppose δ⃗Ω(P, P1) < ηBP,C(r). By assumption, there exists R > r
such that

r ≤ (1− ηBP,C(r)∥ΠP//C |B(R)∥)R.

For any τ > 0 and w ∈ W with ∥w∥τ ≤ r, by the proof of Theorem 4 in [9], there exists x ∈ B(R)
such that

∥ΠP1//Cw∥τ ≤ (1 + ηBP,C(r))∥ΠP//Cx∥τ ,

and

∥x∥τ ≤ ∥w∥τ
1− ηBP,C(r)∥ΠP//C |B(R)∥

≤ r

1− ηBP,C(r)∥ΠP//C |Ω∥
.

This shows

AP1,C(r) ≤ (1 + ηBP,C(r))AP,C

(
r

1− ηBP,C(r)∥ΠP//C |Ω∥

)
.

2

Note also that for linear systems, inequality (3.9) reduces to inequality (3.5), since we can take
Ω = W and since BP,C(r)∥ΠP//C |Ω∥.

8



4 A motivating example

The potential lack of tightness of the lower bound (3.8) is not pathological [4, 5]; many adaptive
controllers have the property:

AP,C(r) < ∞; BP,C(r) > 0 for all r ≥ 0 (4.1)

whilst

sup
∥u0,y0∥≤r

(∥ΠP//C(u0, y0)∥
∥(u0, y0)∥

)
= ∞ for all r > 0. (4.2)

This arises due to a problem with small signal behaviour, where whilst ΠP//C(0) = 0, the
operator ΠP//C is not continuous at 0 – which precludes the existence of a ‘local finite gain’.

An explicit example of this (in an L2 setting) is given by the plant

P (θ)(u1) = y1 where ẏ1 = θy1 + u1 y1(0) = 0, (4.3)

with θ > 0 and the controller:

C(y2)(t) = u2(t)

u2(t) = −ky2(t)

k̇(t) = αy22, k(0) = 0, (4.4)

It has been shown that this closed loop is BIBO stable in an L2(R+) setting, see [5, 7], indeed
AP,C(r) < ∞ for all r ≥ 0. Clearly, for any disturbance (arbitrarily small) which moves y1 ̸= 0
there are trajectories which grow without bound unless there exists a time at which k(t) ≥ θ,

ie. ∥y2∥L2[0,t] ≥
√
θ

α . Hence for all ε > 0, ∃u0, y0, ∥(u0, y0)∥ ≤ ε such that:

∥ΠC//P ∥ ≥
∥ΠC//P (u0, y0)

T ∥
∥(u0, y0)T ∥

=
∥(u2, y2)T ∥
∥(u0, y0)T ∥

≥
√
θ

αε
→ ∞ as ε → 0. (4.5)

Hence ∥ΠP//C∥ = ∞, and this is caused by a lack of continuity at 0.

However, let us first note that this discontinuity is addressed in [5, 7] by appending θ onto the
input space, for then an inequality of the form:

∥(u1, y1, θ)∥U×Y×R ≤ g(∥(u0, y0)∥U×Y , |θ|), (4.6)

was constructed, and from this it was shown in [5, 7] that BP (θ),C(r) > 0, ie. we have a non
zero but disturbance dependent robustness margin. Hence both (4.1) and (4.2) hold. This
paper will give a clearer analysis of this robustness, showing that this system is stable under the
appropriate notion of stability (stability with bias) and this form of stability is robust to gap
perturbations.

5 Regional robust stability

In the context of a notion of stability with bias, it is natural to adopt this notion of stability to
assess the ‘gap’ between the graphs of P and P1. Hence for Ω ⊂ W define the set:

∆⃗(P1, P2; Ω) =
{
(δ⃗, σ⃗) ∈ R+ × R+ | ∃ Φ ∈ OΩ

P1,P2
∥Rτ (I − Φ)x∥ ≤ δ⃗∥x∥τ + σ⃗, ∀x ∈ GP1 ∩ Ω

}
.
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where OΩ
P1,P2

is given by (3.6). Thus the set ∆⃗(P1, P2; Ω) consists of all possible gains and
biases which describe the deviation from the identity of maps Φ between the graphs of P and
P1 when restricted to the domain Ω. In contrast to the nonlinear gap (3.7), there are now two
parameters δ⃗, σ⃗ describing this ‘gap’, and there is no single natural way to reduce this to a
scalar distance measure. Since there are different ways of defining a scalar distance measure
from these two parameters, see Section 6 below, we elect to present the main regional robust
stability result without making such choices, i.e. the description of the ‘gap’ between P1 and P2

remains described by the two dimensional set ∆⃗(P1, P2; Ω) of all possible gains and biases.

In the rest of this paper, unless specified otherwise, we always let U , Y be truncation complete
normed signal spaces, let W = U × Y, and suppose that for all τ > 0, there exists a continuous
mapping Eτ : W[0, τ ] → W such that

Rτx = Rτ (Eτx), for all x ∈ W[0, τ).

An operator Q : W → W is said to be relatively continuous if for all τ > 0 and for all operators
Ψ : W → W with RτΨ compact, the operator RτΨQ : W → W[0, τ) is continuous.

Theorem 5.1 Consider P : Ua → Ya, P1 : Ua → Ya and C : Ya → Ua. Let R > 0, 0 < ε < 1.
Suppose (δ⃗, σ⃗), (γ, β) ∈ R2

+ are such that:

(δ⃗, σ⃗) ∈ ∆(P, P1; Ω)

where Ω = B
(
γ ρ(εR)

ε + β
)

⊂ W, ρ(R) = R + σ⃗ + δ⃗β, [P,C] is (γ, β) gain stable with bias

on B
(
ρ(εR)

ε

)
⊂ W and ΠP,C is relatively continuous. If [P1, C] is causal, has the uniqueness

property and
δ⃗γ < 1− ε (5.1)

then the closed-loop system [P1, C] is (γ1, β1) gain stable with bias on B(εR) and

γ1 = γ
1 + δ⃗

ε
, (5.2)

β1 = β +
(
σ⃗ + δ⃗β

)(
1 + γ

1 + δ⃗

ε

)
. (5.3)

Proof. Let w ∈ W, ∥w∥ ≤ εR and suppose 0 < τ < ∞. Since (δ⃗, σ⃗) ∈ ∆(P, P1; Ω) it follows
that there exists a causal mapping Φ: GP ∩Ω → GP1 such that Rτ (Φ− I) is compact and for all

x ∈ W , ∥x∥ ≤ ρ(εR)
ε :

∥Rτ (Φ− I)ΠP//C |B( ρ(εR)
ε

)
x∥ ≤ δ⃗ · (γ∥x∥+ β) + σ⃗

≤ (1− ε)∥x∥+ σ⃗ + δ⃗β

= ρ ((1− ε)∥x∥) .

Consider the equation

Rτw = Rτ (I + (Φ− I)ΠP//C)x = Rτ (ΠC//P +ΦΠP//C)x. (5.4)

Let

V =

{
x ∈ W[0, τ)

∣∣∣∥x∥τ ≤ ρ(∥w∥)
ε

}
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and consider the operator

Qw : V → W[0, τ) : x 7→ Rτw +Rτ (I − Φ)ΠP//CEτx.

By definition of W[0, τ) and our assumptions, the operator is well defined and continuous in

W[0, τ). Let x ∈ V and x̄ = Eτx. Then ∥x̄∥τ ≤ ρ(∥w∥)
ε ≤ ρ(εR)

ε , and ∥Rτ (I − Φ)ΠP//C x̄∥τ ≤
ρ ((1− ε)∥x̄∥τ ), so:

∥Qwx∥τ ≤ ∥Rτw∥τ + ∥Rτ (I − Φ)ΠP//C x̄∥τ
≤ ∥w∥+ ρ ((1− ε)∥x̄∥τ )

≤ ∥w∥+ (1− ε)
ρ(∥w∥)

ε
+ σ⃗ + δ⃗β,

≤ ρ(∥w∥) + (1− ε)
ρ(∥w∥)

ε
,

=
ρ(∥w∥)

ε
. (5.5)

Therefore Qw(V ) ⊂ V . Since Rτ (I −Φ) is compact and ΠP//C is bounded, it follows that Qw is
compact. Since W is truncation complete, W[0, τ) is a Banach space, it follows by Schauder’s
fixed point theorem that Qw has a fixed point in V . Hence equation (5.4) has a solution
x ∈ V ⊂ W[0, τ) as claimed.

By the uniqueness property for [P1, C], ΠP1//C : W → Wa is defined. Since w1 = ΦΠP//C x̄ ∈ GP1 ,
w2 = ΠC//P x̄ ∈ GC and Φ, ΠP1//C , ΠP//C , ΠC//P are causal, it follows from equation (5.4) that
(w,Rτw1, Rτw2) = (w,RτΦΠP//C x̄, RτΠC//P x̄) is a solution for [P1, C]. Since this holds for all
τ > 0, it follows that ωw = ∞ for [P1, C]. Consequently dom(ΠP1//C) = [0,∞) and thus [P1, C]
is globally well posed. Since x ∈ V and RτΠP1//Cw = RτΦΠP//C x̄,

∥ΠP1//Cw∥τ = ∥ΦΠP//C x̄∥τ
≤ ∥ΠP//C x̄∥τ + ∥(Φ− I)ΠP//C x̄∥τ
≤ (1 + δ⃗)

∥∥ΠP//C x̄∥τ + σ⃗

≤ (1 + δ⃗) (γ∥x∥τ + β) + σ⃗

≤ (1 + δ⃗)

(
γ
ρ(∥w∥τ )

ε
+ β

)
+ σ⃗

≤ (1 + δ⃗)

(
γ
∥w∥τ + σ⃗ + δ⃗β

ε
+ β

)
+ σ⃗

(5.6)

hence ΠP1//C satisfies
∥ΠP1//Cx∥τ ≤ γ1∥x∥τ + β1. (5.7)

where γ1 and β1 are given by (5.2), (5.3).

As we have shown [P1, C] is globally well posed, inequality (5.7) holds for all τ > 0, and the
proof is complete. 2

We remark that if the operator RτΦ used to define Qw is locally incrementally stable, i.e.

sup
Rτw1 ̸=Rτw2

∥Rτw1∥,∥Rτw2∥≤r

∥RτΦw1 −RτΦw2∥τ
∥Rτw1 −Rτw2∥τ

< ∞,
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then the relative continuity requirement for ΠP,C can be replaced by the weaker requirement
that RτΠP,C is continuous.

We also remark that in contrast to the approach to derive the (unbiased) global results in [9],
here we impose a compactness requirement in the definition of OW

P1,P2
. In turn this stronger

requirement on the maps Φ results in substantially weaker assumptions on [P1, C]. In [9] it
was required that [P1, C] was globally well posed, and e.g. in [6] the alternative requirement
of regularly well posed was used. Here, the requirement is that [P1, C] satisfies uniqueness and
causality properties only. This is weaker than either the assumption of global or regular well
posedness, and is often straightforward to verify (in contrast to the existence property of well
posedness assumptions which is often hard to verify a-priori).

6 Robust stability and performance

We have already observed that in Theorem 5.1 the set ∆⃗(P, P1; Ω) ⊂ R2
+ plays the role of the

gap distance in the unbiased robust stability theorem, and that as a 2-dimensional description
of the ‘gap’ between P and P1, it does not define a distance between the two plants. Some
possible scalar measures are:

1. Gap defined with respect to the smallest gain:

δ⃗R(P1, P2) = inf
{
δ⃗ ≥ 0 | ∃β⃗ s.t. (δ⃗, β⃗) ∈ ∆⃗(P1, P2;B(R))

}
.

Correspondingly we define the bias:

β⃗R(P1, P2) = inf
{
β⃗ ≥ 0 | ∃β⃗ s.t. (δ⃗R(P1, P2), β⃗) ∈ ∆⃗(P1, P2;B(R))

}
.

Note that in general (δ⃗R(P1, P2), β⃗R(P1, P2)) ̸∈ ∆⃗(P1, P2;B(R)), however, (δ⃗, β⃗) ∈ ∆⃗(P1, P2;B(R))
for all δ⃗ > δ⃗R(P1, P2), β⃗ > β⃗R(P1, P2)).

2. Gap defined with respect to the smallest bias:

δ⃗R(P1, P2) = inf
{
δ⃗ ≥ 0 | (δ⃗, β⃗R) ∈ ∆⃗(P1, P2;B(R))

}
,

where
β⃗R(P1, P2) = inf

{
β⃗ ≥ 0 | ∃δ⃗ s.t. (δ⃗, β⃗) ∈ ∆⃗(P1, P2;B(R))

}
.

Note that, similarly to 1. above, in general (δ⃗R(P1, P2), β⃗R(P1, P2)) ̸∈ ∆⃗(P1, P2;B(R)),
however, (δ⃗, β⃗) ∈ ∆⃗(P1, P2;B(R)) for all δ⃗ > δ⃗R(P1, P2), β⃗ > β⃗R(P1, P2)).

3. Gap defined at a given bias level β⃗ > 0:

δ⃗R(P1, P2) = inf
{
δ⃗ ≥ 0 | (δ⃗, β⃗) ∈ ∆⃗(P1, P2;B(R))

}
.

Note that δ⃗R(P1, P2) at bias level β = 0 recovers the nonlinear gap (3.7).

Note that it is straightforward to restate Theorem 5.1 using any of the distance measures 1,2,3
above.

To illustrate this we now specialize to the case where the gap between the plant can be described
without biases as in (3.7), which incorporates the case of linear plants in R(L2(R+), L

2(R+)).
That is, in the following, δ⃗ is given by (3.7) with Ω = W. This is a special case of both 2. and
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3. above. This special case is important for the adaptive control setting considered in sections 4
and 7, where the plant is linear, hence the gap can be measured by δ⃗0, and the bias arises from
the nonlinear controller. As the P and P1 do have a finite nonlinear gap then this coincides with
the distance measure in 2. above, whilst in relation to case 3. we are just considering the gap
at bias level 0.

Corollary 6.1 Let U , Y be truncation complete normed signal spaces, and let W = U × Y.
Consider P : Ua → Ya, P1 : Ua → Ya and C : Ya → Ua. Suppose [P,C] is (γ(·), β) regionally
gain stable with uniform bias on W, where γ is continuous and ΠP,C is relatively continuous.

Let R > 0, 0 < ε < 1 and let δ⃗(P, P1) = δ⃗W(P, P1) be as given in (3.7). If [P1, C] is causal, has
the uniqueness property and

δ⃗(P, P1)γ

(
R+ δ⃗(P, P1)β

ε

)
< 1− ε, (6.1)

then the closed-loop system [P1, C] is (γ1(R), β1) gain stable with bias on B(R) where:

γ1(R) = γ

(
R+ δ⃗(P, P1)β

ε

)(
1 + δ⃗(P, P1)

ε

)
, (6.2)

β1 = β + δ⃗(P, P1)β

(
1 + γ

(
R+ δ⃗(P, P1)β

ε

)
1 + δ⃗(P, P1)

ε

)
. (6.3)

Proof. By assumption (6.1), for sufficiently small b > 0 we have

(
δ⃗(P, P1) + b

)
γ

(
R+ (δ⃗(P, P1) + b)β

ε

)
< 1− ε. (6.4)

By the definition of δ⃗(P, P1), there exists Φ ∈ OW
P,P1

such that ∥Rτ (I−Φ)x∥ ≤ (δ⃗(P, P1)+b)∥x∥τ
for all x ∈ GP , from which it follows that (δ⃗, σ⃗) := (δ⃗(P, P1)+b, 0) ∈ ∆(P, P1; Ω) for any Ω ⊂ W.
We let

γb = γ

(
R+ δ⃗(P, P1)β + bβ

ε

)

and let Ω = B
(
γb

ρ(R)
ε + β

)
⊂ W, ρ(R) = R+ σ⃗ + δ⃗β + bβ. Then inequality (6.1) implies (5.1)

and [P,C] is (γb, β) gain stable with bias on B
(
ρ(R)
ε

)
. Hence, the result follows Theorem 5.1 as

b is arbitrarily small and γ is continuous. 2

Expressed in terms of the robust stability margin and the robust performance function, we have:

Corollary 6.2 Let U , Y be truncation complete normed signal spaces, and let W = U × Y.
Consider P : Ua → Ya and C : Ya → Ua. Suppose [P,C] is (γ(·), β) regionally gain stable with
uniform bias on W, where γ is continuous and ΠP,C is relatively continuous. Let δ⃗(P, P1) =

δ⃗W(P, P1) be as given in (3.7). Then for any R > 0, we have:

BP,C(R) ≥ sup

{
r > 0

∣∣∣ rγ (R+ rβ

ε

)
< 1− ε for some ε ∈ (0, 1)

}
, (6.5)
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ABP,C(R, η) ≤ inf

{
γη,ε(R)R+ βη,ε

∣∣∣ ηBP,C(R)γ
(
R+ηBP,C(R)β

ε

)
< 1− ε

for some ε ∈ (0, 1)

}
, (6.6)

where in (6.6)

γη,ε(R) = γ

(
R+ ηBP,C(R)β

ε

)(
1 + ηBP,C(R)

ε

)
,

βη,ε = β + ηBP,C(R)β

(
1 + γ

(
R+ ηBP,C(R)β

ε

)
1 + ηBP,C(R)

ε

)
.

Proof. Inequality (6.5) follows directly from Corollary 6.1. To show inequality (6.6), we
suppose P1 ∈ Γ, δ⃗(P, P1) ≤ ηBP,C(R) and

ηBP,C(R)γ

(
R+ ηBP,C(R)β

ε

)
< 1− ε for some ε ∈ (0, 1).

Then, by the monotonicity of γ(·), we see δ⃗(P, P1)γ
(
R+δ⃗(P,P1)β

ε

)
< 1−ε, therefore by Corollary

6.1, AP1,C(R) ≤ γ1(R)R+β1. Again by the monotonicity of γ(·), γ1 ≤ γη,ε and β1 ≤ βη,ε. Hence
AP1,C(R) ≤ γη,ε(R)R+ βη,ε and ABP,C(R, η) ≤ γη,ε(R)R+ βη,ε, which proves the claim. 2

Alternatively, the robust performance function can be expressed as a function of BP,C and AP,C

in the spirit of inequality (3.5):

Corollary 6.3 Let U , Y be truncation complete normed signal spaces, and let W = U × Y.
Consider P : Ua → Ya and C : Ya → Ua. Suppose [P,C] is (γ(·), β) regionally gain stable with
uniform bias on W and ΠP//C is relatively continuous. Let δ⃗(P, P1) = δ⃗W(P, P1) be as given in
(3.7). Suppose that for r > 0 and η ∈ [0, 1), there exists R := R(r) such that

r + ηBP,C(r)(γ(R)R+ β) ≤ R. (6.7)

Then

ABP,C(r, η) ≤ (1 + ηBP,C(r))AP,C

(
r + ηBP,C(r)β

1− ηBP,C(r)γ(R)

)
. (6.8)

Proof. Let r, τ > 0, η ∈ [0, 1) and let P1 ∈ Γ with δ⃗W(P, P1) < ηBP,C(r). Denote by ε =
ηBP,C(r). Then there exists Φ ∈ OW

P,P1
such that

∥Rτ (Φ− I)x∥τ ≤ ε∥Rτx∥τ for all x ∈ GP .

Let R be the number given by our assumption satisfying (6.7). Let

V = {x ∈ W [0, τ) | ∥x∥τ ≤ R} .

For any x ∈ V , let x̄ = Eτ x̄. Then for any w ∈ B(r), by inequality (6.7), we have

∥Rτ

(
w − (Φ− I)ΠP//C x̄

)
∥τ ≤ r + ε(γ(R)∥Rτ x̄∥+ β) ≤ r + ε(γ(R)R+ β) ≤ R

for all x ∈ V . Using the same argument as in Theorem 5.1 we can see that [P1, C] is globally
well-posed and there exists x ∈ V such that

x = Rτw −Rτ (Φ− I)ΠP//C x̄, (6.9)

RτΠP1//Cw = RτΦΠP//C x̄, (6.10)
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By (6.9) and our assumptions,

∥x∥τ ≤ ∥w∥τ + ε(γ(∥x∥τ )∥Rτ x̄∥τ + β) ≤ r + εγ(R)∥x∥τ + εβ.

By inequality (6.7), εγ(R) ≤ (R− r − εβ)/R < 1. So

∥x∥τ ≤ r + εβ

1− εγ(R)
.

So it follows from (6.10) that

∥ΠP1//Cw∥τ ≤ (1 + ε)∥ΠP//C x̄∥τ ≤ (1 + ε)AP,C(∥Rτ x̄∥τ ) ≤ (1 + ε)AP,C

(
r + εβ

1− εγ(R)

)
.

The claim (6.8) follows. 2

Note that in (6.8), the parameter R is dependent on r. In the case when [P,C] is globally gain
stable, then γ(R) = γ, we may let R = (r + ηBP,C(r)β)/(1− ηBP,C(r)γ).

7 Robust stability for adaptive control

Further to the adaptive controller (4.4) from Section 4, let us consider the controller:

C(y2)(t) = u2(t)

u2(t) = −ky2(t) (7.1)

k̇(t) = α
1

(n+ 1)kn
y22, k(0) = 0,

where α > 0 is the adaptive gain and n ≥ 0 is an integer. Note that this adaptive update can
be alternatively expressed in the form

u2(t) = −κ
1

n+1 y2(t), κ̇(t) = αy22, κ(0) = 0

by the substitution κ = kn+1. In an L2 setting, robust stability of this controller when applied
to certain class of linear plants was established in [5] for the case of n = 3 and in [7] for the case
of n = 0.

We now show that, in L2 setting, and for all integer n ≥ 0, the closed loop is regionally gain
stable with uniform bias and this stability is preserved for sufficiently small gap perturbations
of P (θ), where for concreteness we take P (θ) to be the linear plant given by (4.3). A scalar
plant is chosen as an example purely for simplicity, we note that analogous explicit results with
similar trade-offs can be obtained for general linear plants which are minimum phase, relative
degree 1 and have positive high frequency gain, see [5, 7] for related results.

Proposition 7.1 Let the plant P (θ) be given by (4.3) and controller C be given by (7.1). Then
[P (θ), C] is globally well posed, gain stable with uniform bias on W = L2(R+)× L2(R+), and

AP (θ),C(r) ≤ β + γ(r) for r ≥ 0,

where, for n = 0,

β =
(4θ + 4)√

2α
+

2(4θ + 4)3√
α

,

γ(r) = (2θ + 2)
1
2 + 1 + (4θ + 6)

1
2 + (6α)

1
2 r + 27α

1
2 (θ + 1)

3
2 r2

+ 4α
(
1 + (4θ + 6)

1
2 + (6α)

1
2 r
)3

r2,
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and for n ≥ 1,

β =

(
(4θ + 4)n+2

4α

) 1
2

+ 2
2

n+1

(4θ + 4)
(n+2)(n+3)

n+1

4α

 1
2

,

γ(r) = 2
n+1
2 (θ + 1)

1
2 + 1 + (4θ + 6)

1
2

+ 3
1
2α

1
2(n+1) r

1
n+1 + 2

n2+4n+12
2(n+1) α

1
2(n+1) (θ + 1)

n+3
2(n+1) r

2
n+1

+ 2
2

n+1α
1

n+1

(
1 + (4θ + 6)

1
2 + 3

1
2α

1
2(n+1) r

1
n+1

)n+3
n+1

r
2

n+1 .

Proof. We first show well posedness. As in [5], we need to show that for any u0, y0 ∈ L2(R+),
the solution y1 of the closed loop has finite norm over its domain.

Let ui, yi(i = 1, 2) be the solution of the closed loop for given u0, y0 on the time interval (0, ω)
with ω ∈ (0,∞]. Then for all 0 ≤ s ≤ ω, we have

y1(s)ẏ1(s) = θy21(s) + u1(s)y1(s) = θy21(s) + [u0(s) + k(s)y0(s)]y1(s)− k(s)y21(s)

≤ θy21(s) +
1

2
u20(s) +

1

2
k(s)y20(s) +

1

2
y21(s) +

1

2
k(s)y21(t)− k(s)y21(s)

=
1

2

(
2θ + 1− k(s)

)
y21(s) +

1

2

(
u20(s) + k(s)y20(s)

)
. (7.2)

We claim that

∥y1∥2L2(0,ω) ≤
4(θ + 1)

α
cn+1 + 2∥u0∥2L2(R+) + 2c∥y0∥2L2(R+) + jnα

1
n+1 ∥y0∥

2+ 2
n+1

L2(R+)
(7.3)

with

c = 2θ + 2 + jnα
1

n+1 ∥y0∥
2

n+1

L2(R+)
and jn =

{
2 if n = 0
1 if n ≥ 1.

(7.4)

In fact, if k(t) ≤ c for all t ∈ [0, ω), then

∥y1∥2L2(0,t) = ∥y0 − y2∥2L2(0,t) ≤ 2max
{
∥y0∥2L2(0,t), ∥y2∥

2
L2(0,t)

}
= 2max

{
∥y0∥2L2(0,t),

1

α
kn+1(t)

}
≤ 2max

{
∥y0∥2L2(R+),

1

α
cn+1

}
=

2

α
cn+1, (7.5)

for all t ∈ [0, ω), which shows ∥y1∥2L2(0,ω) ≤ 2cn+1/α and proves the claim. So we may suppose

k(t) � c for all t ∈ [0, ω). Then, by the monotonicity and continuity of k, there exists t∗ ≥ 0
such that k(t∗) = c and k(t∗) ≤ k(s) ≤ k(t) for all t ≥ s ≥ t∗. Similar to (7.5), we have

∥y1∥2L2(0,t∗) = ∥y0 − y2∥2L2(0,t∗) ≤
2

α
cn+1. (7.6)

By the controller law

kn+1(t) = α

∫ t∗

0
y22(τ)dτ + α

∫ t

t∗
y22(τ)dτ = kn+1(t∗) + α∥y0 − y1∥2L2(t∗,t),

which implies (twice using the formula (a+ b)2/(n+1) ≤ a2/(n+1) + b2/(n+1) for n ≥ 1):

k(t) ≤ k(t∗) + α
1

n+1 ∥y0 − y1∥
2

n+1

L2(t∗,t)
≤ c+ jnα

1
n+1
(
∥y0∥

2
n+1

L2(R+)
+ ∥y1∥

2
n+1

L2(t∗,t)

)
. (7.7)
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For s ∈ [t∗, t), from (7.2), it follows

y1(s)ẏ1(s) ≤
1

2

(
2θ + 1− k(t∗)

)
y21(s) +

1

2
u20(s) +

1

2
k(t)y20(s)

≤ 1

2

(
2θ + 1− c

)
y21(s) +

1

2
u20(s) +

1

2
cy20(s)

+
1

2
jnα

1
n+1

(
∥y1∥

2
n+1

L2(t∗,t)
y20(s) + ∥y0∥

2
n+1

L2(R+)

)
y20(s).

Integrating on both sides over [t∗, t] with respect to s, we have

0 ≤ y21(t) ≤ y21(t
∗)− ∥y1∥2L2(t∗,t) + ∥u0∥2L2(R+) + c∥y0∥2L2(R+) + jnα

1
n+1 ∥y0∥

2+ 2
n+1

L2(R+)
+ b(t)

where

b(t) = α
1

n+1 ∥y1∥
2

n+1

L2(t∗,t)
∥y0∥2L2(R+) − α

1
n+1 ∥y1∥2L2(t∗,t)∥y0∥

2
n+1

L2(R+)
.

In the case when b(t) ≤ 0 we will have

∥y1∥2L2(t∗,t) ≤ y21(t
∗) + ∥u0∥2L2(R+) + c∥y0∥2L2(R+) + jnα

1
n+1 ∥y0∥

2+ 2
n+1

L2(R+)
,

otherwise, ∥y1∥L2(t∗,t) ≤ ∥y0∥L2(R+). Therefore (note c > 1)

∥y1∥2L2(t∗,ω) = lim
t→ω

∥y1∥2L2(t∗,t) ≤ y21(t
∗) + ∥u0∥2L2(R+) + c∥y0∥2L2(R+) + jnα

1
n+1 ∥y0∥

2+ 2
n+1

L2(R+)
. (7.8)

Considering (7.2) over [0, t∗] to obtain

y1(s)ẏ1(s) ≤
1

2

(
2θ + 1− k(0)

)
y21(s) +

1

2

(
u20(s) + k(t∗)y20(s)

)
≤ 1

2

(
2θ + 1

)
y21(s) +

1

2

(
u20(s) + cy20(s)

)
for s ∈ [0, t∗]

and therefore by (7.6)

y21(t
∗) ≤ (2θ + 1)∥y1∥2L2(0,t∗) + ∥u0∥2L2(R+) + c∥y0∥2L2(R+)

≤ 2(2θ + 1)cn+1

α
+ ∥u0∥2L2(R+) + c∥y0∥2L2(R+). (7.9)

From (7.4), (7.6), (7.8), (7.9) and the fact ∥y1∥2L2(0,ω) = ∥y1∥2L2(0,t∗) + ∥y1∥2L2(t∗,ω), our claim

(7.3) follows. This shows that [P (θ), C] is globally well-posed and ω = ∞.

We now show gain stability.

Let ∥(u0, y0)⊤∥L2(R2
+) ≤ r. Then ∥u0∥L2(R+) ≤ r, ∥y0∥L2(R+) ≤ r (the norm in product space is

taken the Euclidian norm). By (7.3)

∥y1∥2L2(R+) ≤
4(θ + 1)

α

(
2θ + 2 + jnα

1
n+1 r

2
n+1

)n+1
+ 3jnα

1
n+1 r2+

2
n+1 + (4θ + 6)r2 =: d(r),

therefore

∥y2∥L2(R+) = ∥y0 − y1∥L2(R+) ≤ ∥y0∥L2(R+) + ∥y1∥L2(R+) ≤ r + [d(r)]
1
2 .
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Since kn+1(t) = α∥y2∥2L2(0,t) ≤ α∥y2∥2L2(R+) for all t, we have

∥u2∥L2(R+) = ∥ky2∥L2(R+) = sup
t≥0

k(t)∥y2∥L2(R+) = α
1

n+1 ∥y2∥
1+ 2

n+1

L2(R+)

≤α
1

n+1

(
r + [d(r)]

1
2

)n+3
n+1

,

∥u1∥L2(R+) = ∥u0 − u2∥L2(R+) ≤ ∥u0∥L2(R+) + ∥u2∥L2(R+)

≤ r + α
1

n+1

(
r + [d(r)]

1
2

)n+3
n+1

.

From these estimates, it follows

AP (θ),C(r) ≤

√
d(r) +

(
r + α

1
n+1

(
r + [d(r)]

1
2

)n+3
n+1

)2

≤ [d(r)]
1
2 + r + α

1
n+1

(
r + [d(r)]

1
2

)n+3
n+1

. (7.10)

For simple calculation, we denote by

b1 = (2θ + 2 + jnα
1

n+1 r
2

n+1 )n+1, b2 = 3jnα
1

n+1 r
2

n+1 + (4θ + 6).

Write i0 = 1 and in = 2 for n ≥ 1. Then, by the inequalities
√
a+ b ≤

√
a+

√
b and (a+ b)p ≤

2p−1(ap + bp) for a, b ≥ 0, p ≥ 1,

[d(r)]
1
2 =

(
4(θ + 1)

α
b1 + b2r

2

) 1
2

≤
(
4(θ + 1)

α

) 1
2

b
1
2
1 + b

1
2
2 r, (7.11)

(
r + [d(r)]

1
2

)n+3
n+1

=

((
4(θ + 1)

α

) 1
2

b
1
2
1 + b

1
2
2 r + r

)1+ 2
n+1

≤ 2
2

n+1

(
4(θ + 1)

α

) n+3
2(n+1)

b
n+3

2(n+1)

1 + 2
2

n+1

(
b
1
2
2 + 1

)n+3
n+1

r
n+3
n+1 , (7.12)

b
1
2
1 =

(
2θ + 2 + jnα

1
n+1 r

2
n+1

)n+1
2 ≤ i

n−1
2

n (2θ + 2)
n+1
2 + i

n−1
2

n

(
jnα

1
n+1 r

2
n+1

)n+1
2

, (7.13)

b
n+3

2(n+1)

1 =
(
2θ + 2 + jnα

1
n+1 r

2
n+1

)n+3
2 ≤ 2

n+1
2

(
(2θ + 2)

n+3
2 +

(
jnα

1
n+1 r

2
n+1

)n+3
2

)
(7.14)

b
1
2
2 ≤ (3jn)

1
2α

1
2(n+1) r

1
n+1 + (4θ + 6)

1
2 . (7.15)

Substituting (7.11)-(7.15) into (7.10) and re-arranging terms, we obtain

AP (θ),C(r) ≤ β + γ(r)r.

This completes the proof. 2

Under the mild assumptions that [P1, C] is causal and has the uniqueness property (for example
if P1 is linear then this follows as the right hand side of the differential equations governing
[P1, C] are locally Lipschitz), it now follows from Corollary 6.1 that gain stability with uniform
bias is preserved for sufficiently small gap perturbations of P (θ) given by inequality (6.1).

There is an interesting trade-off concerning the adaptive gain parameter α > 0. Namely, it can
be seen from the explicit construction of β and γ in Proposition 7.1 that increasing α reduces
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the bias term β (but a non-zero bias is necessary, see Section 4), but increases the gain term γ.
This is because the need for the bias term is due to the transient that occurs in the period of
time which is required to drive the value of k to a stabilizing value. A large adaptive gain causes
k to rapidly reach this stabilizing value, hence reducing the required size of the bias. On the
other hand, a large adaptive gain will cause the value of k to ‘overshoot’ its required asymptotic
value, resulting in an overly high gain control, and consequently a large gain γ(r), r > 0.

Suppose θ ∈ [0, θmax]. If we let the adaptive gain α be such that α = 1
4α

∗(4θmax + 4)
(n+2)(n+3)

n+1

with α∗ > 0 a constant, then,

β ≤ 1
√
α∗(4θmax + 4)

2(n+2)
n+1

+
2

2
n+1

√
α∗

≤ 1√
α∗

(
1

(4θmax + 4)2
+ 2

2
n+1

)
,

which can be made arbitrary small by suitably choosing α∗. Then γ(r) is a function of θ of
approximately order θ3/2. Furthermore, the gain γ depends on a fractional exponent of r, the

term with largest power is r
n+3

(n+1)2 r
2

n+1 = r
3n+5

(n+1)2 whose power goes to 1 as n → ∞, i.e., γ(r)r
approach linear growth as n increases. Hence in the case of θ ≈ θmax and r large, this is the
scaling of α, n, which produces good performance. On the other hand, if θ ≈ 0, this produces an
overly high gain controller with relatively poor performance and robustness characteristics. This
highlights that scaling learning rates can lead to conservative designs in the sense of [5], but that
the tuning parameters, α, n, give significant and useful control over the system performance in
various uncertainty ranges.

We now consider the robust performance function ABP (θ),C(r, η). Note, due to the integral,
ΠP (θ)//C is relative continuous. So, for any R > 0 satisfying r + ηBP (θ),C(r)(γ(R)R + β) ≤ R,
by Corollary 6.3:

ABP (θ),C(r, η) ≤ (1 + ηBP (θ),C(r))

(
β + γ

(
r + ηBP (θ),C(r)β

1− ηBP (θ),C(r)γ(R)

)
r + ηBP (θ),C(r)β

1− ηBP (θ),C(r)γ(R)

)
.

8 Global robust stability

By applying Theorem 5.1 in a global setting we obtain the following global result:

Theorem 8.1 Let U , Y be truncation complete normed signal spaces, and let W = U × Y.
Consider P : Ua → Ya, P1 : Ua → Ya and C : Ya → Ua. Suppose (δ⃗, σ⃗) ∈ ∆(P, P1;W) and [P,C]
is (γ, β) gain stable with bias on W. If [P1, C] is causal, has the uniqueness property and

δ⃗γ < 1− ε for some ε ∈ (0, 1), (8.1)

then the closed-loop system [P1, C] is (γ1, β) gain stable with bias on W and

γ1 = γ
1 + δ⃗

ε
, (8.2)

β1 = β +
(
σ⃗ + δ⃗β

)(
1 + γ

1 + δ⃗

ε

)
. (8.3)

Proof. Let w ∈ W and suppose 0 < τ < ∞. Then there exists R > 0 such that ∥w∥ ≤ εR,
(δ⃗, σ⃗) ∈ ∆(P, P1; Ω) with

Ω = B

(
γ
ρ(εR)

ε
+ β

)
, ρ(R) = R+ σ⃗ + δ⃗β
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and [P,C] is (γ, β) gain stable with bias on B
(
ρ(εR)

ε

)
. Following the same procedure as in

Theorem 5.1, we see that
∥ΠP1//Cw∥τ ≤ γ1∥w∥τ + β1.

This completes the proof.

2

As a corollary we specialize, as before, to the case where the gap between the plants, δ⃗, is given
by (3.7).

Corollary 8.2 Let U , Y be truncation complete normed signal spaces, and let W = U × Y.
Consider P : Ua → Ya, P1 : Ua → Ya and C : Ya → Ua. Suppose [P,C] is globally (γ, β) gain
stable with bias and δ⃗(P, P1) = δ⃗W(P, P1) is given by (3.7). If δ⃗(P, P1)γ < 1, then for all r ≥ 0:

AP1,C(r) ≤ γ1r + β1,

BP,C(r) ≥ γ−1,

where:

γ1 ≤ γ

(
1 + δ⃗(P, P1)

1− δ⃗(P, P1)γ

)
,

β1 ≤ β + δ⃗(P, P1)β

(
1 + γ

(
1 + δ⃗(P, P1)

1− δ⃗(P, P1)γ

))
.

Furthermore, for η ∈ [0, (BP,C(r)γ)
−1),

ABP,C(r, η) ≤ γ
1 + ηBP,C(r)

1− ηBP,C(r)γ
r + β + ηBP,C(r)β

(
1 + γ

1 + ηBP,C(r)

1− ηBP,C(r)γ

)
.

Proof. Let a > 0 be small enough such that (δ⃗(P, P1) + a)γ < 1. Let ε < 1− (δ⃗(P, P1) + a)γ.
Then (δ⃗(P, P1) + a, 0) ∈ ∆(P, P1;W) and (δ⃗(P, P1) + a)γ < 1 − ε. By Theorem 8.1, [P1, C] is
globally well posed and

∥ΠP1//Cw∥τ ≤ γ
1 + δ⃗(P, P1) + a

ε
∥w∥τ + β + (δ⃗(P, P1) + a)β

(
1 + γ

1 + δ⃗(P, P1) + a

ε

)

for all w ∈ W, τ > 0. Let ε → 1− (δ⃗(P, P1)+ a)γ and a → 0, we see ∥ΠP1//Cw∥τ ≤ γ1∥w∥τ +β1
for all w ∈ W, τ > 0. This proves AP1,C(r) ≤ γ1r + β1. Consequently, BP,C(r) ≥ γ−1.

If η ∈ [0, (BP,C(r)γ)
−1 with r ≥ 0, then ηBP,C(r)γ < 1. Let w ∈ W, ∥w∥τ ≤ r. Repeating the

above proof with δ⃗(P, P1) replaced by ηBP,C(r), we have

∥ΠP1//Cw∥τ ≤ γ
1 + ηBP,C(r)

1− ηBP,C(r)γ
r + β + ηBP,C(r)β

(
1 + γ

1 + ηBP,C(r)

1− ηBP,C(r)γ

)
.

So, the estimate for ABP,C(r, η) follows. 2

We now draw attention to a significant difference between the nonlinear biased setting and
the linear unbiased case. An important feature of the standard robust stability theory for LTI
systems is that the problem of maximizing the robust stability margin BP,C(r) is equivalent
to minimizing the nominal performance AP,C(r), since BP,C(r) = ∥ΠP//C∥−1 = rA−1

P,C(r). Not
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only is this optimization tractable (in the L2 setting minimizing ∥ΠP//C∥ forms the standard
H∞ problem), but it shows that optimizing for nominal performance and robust stability is
equivalent.

This equivalence breaks down in the nonlinear biased setting, as one can see that given a biased
gain bound,

∥ΠP//Cw0∥ ≤ γ[ΠP//C ]∥w0∥+ β[ΠP//C ] for all w0 ∈ W ,

then the robust stability margin BP,C(r) is maximised by minimising the nominal closed loop
gain γ[ΠP//C ], whereas the nominal performance, AP,C(r), is a function of both the gain γ[ΠP//C ]
and the bias β[ΠP//C ]. Thus optimizing the robust stability margin, i.e. by minimizing the
gain term, will produce sub-optimal nominal performance. We can therefore conclude that
robust stability and (nominal) performance constraints must both be specified in any sensible
optimization.

Similar reasoning does not directly apply in the regional setting, since the situation is more
complex: the bias determines the region over which the gain in computed, and hence the bias
does affect the robust stability margin. However it is clear that the resulting optimizations
are different, and hence the conclusion that nominal performance and robust stability margin
optimization differ still holds. Thus any sensible formulation of an optimal robust design in
this setting must independently specify requirements for both nominal performance and robust
stability margins.

As an example with global gain stability with bias, we consider the following projection controller
CProj for the plant P (θ) given in Section 4:

CProj(y2)(t) = u2(t)

u2(t) = −ky2(t)− y2(t) (8.4)

and

k̇(t) =

{ α
(n+1)kn y

2
2, k(0) = 0, if k(t) ≤ θmax,

0, if k(t) > θmax

where θmax is an upper bound of the uncertainty θ.

Proposition 8.3 Let the plant P (θ) be given by (4.3) and controller CProj be given by (8.4).
Then [P (θ), CProj] is globally well posed, gain stable with bias on W = L2(R+)× L2(R+), and

AP (θ),CProj
(r) ≤ 2(2 + θmax)

(
θn+2

α

) 1
2

+
(
2 + θmax +

(
12 + 4θ + 2θ2 + 2θ2max

) 1
2

)
r.

Proof. Let ui, yi(i = 1, 2) be the solution of the closed loop [P (θ), CProj] for given u0, y0 on
the maximal time interval [0, ω) with ω ∈ (0,∞]. Let

t∗ = sup{t ∈ [0, ω) : k(t) ≤ θ}.

Then by the monotonicity of k, we see k(t) ≤ θ ≤ θmax on [0, t∗], from which it follows k̇(t) =
α

(n+1)kn y
2
2(t) for t ≤ t∗. Therefore

∥y2∥2L2(0,t∗) =
kn+1(t∗)

α
≤ θn+1

α
,

and

∥y1∥2L2(0,t∗) = ∥y0 − y1∥2L2(0,t∗) ≤ 2∥y0∥2L2(R+) + 2
θn+1

α
.
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Since

y1(s)ẏ1(s) = θy21(s) + u1(s)y1(s)

= (θ − 1− k(s))y21(s) + [u0(s) + y0(s) + k(s)y0(s)]y1(s) for all s ∈ [0, ω), (8.5)

using the inequalities ab ≤ a2 + b2/4 and ab ≤ (a2 + b2)/2 and the monotonicity of k, we have

y1(s)ẏ1(s) ≤ (θ − 1− k(s))y21(s) + u20(s) +
1

2
y21(s) + y20 +

1

4
y21(s) + k2(s)y20(s) +

1

4
y21(s)

≤ θy21(s) + u20(s) + y20 + θ2y20(s) for all s ∈ [0, t∗],

from which we obtain

y21(t
∗) ≤ 2θ∥y1∥2L2(0,t∗) + 2∥u0∥2L2(R+) + 2(1 + θ2)∥y0∥2L2(R+).

Over the interval [t∗, ω), k(s) ≥ θ and k(s) ≤ θmax, by (8.5), we have

y1(s)ẏ1(s) ≤ (θ − 1− k(s))y21(s) + (u0(s) + y0(s))
2 + k2(s)y20(s) +

1

4
y21(s) +

1

4
y21(t)

≤ − 1

2
y21(s) + 2u20(s) + (2 + θ2max)y

2
0(s).

integrating over [t∗, ω), we have

∥y1∥2L2(t∗,ω) ≤ y21(t
∗) + 4∥u0∥2L2(R+) + 2(2 + θ2max)∥y0∥2L2(R+).

Hence

∥y1∥2L2(0,ω) = ∥y1∥2L2(0,t∗) + ∥y1∥2L2(t∗,ω)

≤ 4θn+2

α
+ 6∥u0∥2L2(R+) + 2

(
3 + 2θ + θ2 + θ2max)

)
∥y0∥2L2(R+) < ∞,

∥u1∥L2(0,ω) = ∥u0 + (1 + k)y0 − (1 + k)y1∥L2(0,ω)

≤ ∥u0∥L2(R+) + (1 + θmax)(∥y1∥L2(t∗,ω) + ∥y0∥L2(R+)) < ∞.

By the standard argument on global existence of ODEs, this shows ω = ∞. Consequently, in
the case when ∥(u0, y0)⊤∥ ≤ r with r ≥ 0, we have

∥y1∥L2(R+) ≤
√

4θn+2

α
+ 2 (6 + 2θ + θ2 + θ2max) r

2 =: d1(r),

∥u1∥L2(R+) ≤ r + (1 + θmax)(d1(r) + r) =: d2(r).

Since d1(r) ≤ 2
(
θn+2

α

) 1
2
+
(
12 + 4θ + 2θ2 + 2θ2max

) 1
2 r and u0, y0 are arbitrary, we see

AP (θ),CProj
(r) ≤

√
[d1(r)]2 + [d2(r)]2 ≤ d1(r) + d2(r) = (2 + θmax)(r + d1(r)

≤ 2(2 + θmax)

(
θn+2

α

) 1
2

+
(
2 + θmax +

(
12 + 4θ + 2θ2 + 2θ2max

) 1
2

)
r,

which shows the global gain stability with bias of [P (θ), CProj]. 2
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Under the mild assumption that [P1, CProj] has the uniqueness property, for example if P1 is
linear then this follows as the right hand side of the differential equations governing [P1, CProj]
are locally Lipschitz, so by Corollary 8.2:

ABP (θ),CProj
(r, η) ≤ (1 + ηBP (θ),CProj

(r))

(
β + γ

r + ηBP (θ),CProj
(r)

1− ηBP (θ),CProj
(r)γ

)
,

where

β = 2(2 + θmax)

(
θn+2

α

) 1
2

,

γ = 2 + θmax +
(
12 + 4θ + 2θ2 + 2θ2max

) 1
2 .

9 Other applications and literature

Whilst this paper has been motivated by examples in adaptive control, in the introduction we
noted other applications where the presence of a bias is necessary. Within the current literature
we observe that in addition to applications to adaptive control [7, 5] (including λ-tracking results
[10]), there have also been applications of the results in [5] to nonlinear non-adaptive control,
namely the topic of funnel control [11]. Entirely analogously therefore, the gain bounds obtained
in [10, 11] are of the form (4.6) and can be used in conjunction with this paper to show that
notions of gain stability with bias are preserved by the funnel controller under gap perturbations.

Direct applications of robust stability for biased notions of stability have also been obtained
for L1 adaptive controllers [13, 14]. These papers also include variations on the initial robust
stability results of [2], which are developed further in this paper.

10 Concluding remarks

We have presented a generalisation to the nonlinear robust stability theory of Georgiou and
Smith [9] which allows a notion of stability with bias terms. This approach contrasts to the
alternative biased approach of [8] as it does not measure the gain w.r.t. a single offset ‘bias’
trajectory, and is applicable in situations where the need for a bias arises for other reasons, e.g.
from a lack of continuity of ΠP//C at 0 as in the adaptive control example. This extension is
significant for the provision of robust stability certificates for the many nonlinear systems for
which no induced gain exists, and yet robust stability guarantees can still be given. We have
illustrated this by an example from adaptive control where an induced gain does not exist.

A significant difference between the nonlinear biased setting and the linear unbiased case is
that the task of the optimization of nominal performance and the robust stability margin are
no longer in general equivalent. This could be seen explicitly in the adaptive control examples
considered.
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