The University of Southampton
University of Southampton Institutional Repository

Excitation of SST anomalies in the eastern equatorial Pacific by oceanic optimal perturbations

Excitation of SST anomalies in the eastern equatorial Pacific by oceanic optimal perturbations
Excitation of SST anomalies in the eastern equatorial Pacific by oceanic optimal perturbations
A generalized stability analysis is used to explore the excitation of sea-surface temperature anomalies in the eastern equatorial Pacific by optimal initial perturbations in temperature and salinity within an ocean general circulation model. We find perturbations that can efficiently modify the SST of the Nino3 region with an approximately 9-month delay. The time interval between the end of March and mid-April is particularly favorable for these perturbations to cause subsequent changes in the eastern equatorial Pacific. This sensitivity is related to two critical factors: during the boreal spring Equinox the heat content of the western equatorial Pacific reaches its seasonal maximum, whereas the zonal winds along the equator relax.

The optimal initial anomalies in temperature and salinity have a complex spatial structure extending between 20ºS and 20ºN. This large meridional extent of the anomalies allows for a strong focusing effect - signals from different locations reach the eastern equatorial Pacific simultaneously thus generating a strong transient warming in a relatively small region. Ocean adjustment to the optimal perturbations involves a basin-size Rossby wave that propagates westward and induces a large-scale anomalous eastward advection along the equator, which acts on the mean east-west temperature gradient and gradually warms SST in the east. At the same time, a continuum of Kelvin waves are being excited, which reduce the thermocline slope along the equator and deepen the thermocline in the eastern equatorial Pacific. Thus, the Rossby wave and Kelvin waves work constructively to generate the transient warming of the Nino3 SST. An idealized model with two variables is formulated to illustrate these ideas and, in particular, show the importance of zonal advection feedback for the amplitude and duration of the transient warming. Ultimately, this study highlights the importance of non-normal dynamics for generating an efficient transient growth of SST anomalies in the tropical Pacific even in the absence of coupled ocean-atmosphere interactions.
0022-2402
597-624
Sévellec, Florian
01569d6c-65b0-4270-af2a-35b0a77c9140
Fedorov, Alexey V.
c4234650-4a09-4d65-b6fc-cebd592a788f
Sévellec, Florian
01569d6c-65b0-4270-af2a-35b0a77c9140
Fedorov, Alexey V.
c4234650-4a09-4d65-b6fc-cebd592a788f

Sévellec, Florian and Fedorov, Alexey V. (2010) Excitation of SST anomalies in the eastern equatorial Pacific by oceanic optimal perturbations. Journal of Marine Research, 68 (3-4), 597-624. (doi:10.1357/002224010794657092).

Record type: Article

Abstract

A generalized stability analysis is used to explore the excitation of sea-surface temperature anomalies in the eastern equatorial Pacific by optimal initial perturbations in temperature and salinity within an ocean general circulation model. We find perturbations that can efficiently modify the SST of the Nino3 region with an approximately 9-month delay. The time interval between the end of March and mid-April is particularly favorable for these perturbations to cause subsequent changes in the eastern equatorial Pacific. This sensitivity is related to two critical factors: during the boreal spring Equinox the heat content of the western equatorial Pacific reaches its seasonal maximum, whereas the zonal winds along the equator relax.

The optimal initial anomalies in temperature and salinity have a complex spatial structure extending between 20ºS and 20ºN. This large meridional extent of the anomalies allows for a strong focusing effect - signals from different locations reach the eastern equatorial Pacific simultaneously thus generating a strong transient warming in a relatively small region. Ocean adjustment to the optimal perturbations involves a basin-size Rossby wave that propagates westward and induces a large-scale anomalous eastward advection along the equator, which acts on the mean east-west temperature gradient and gradually warms SST in the east. At the same time, a continuum of Kelvin waves are being excited, which reduce the thermocline slope along the equator and deepen the thermocline in the eastern equatorial Pacific. Thus, the Rossby wave and Kelvin waves work constructively to generate the transient warming of the Nino3 SST. An idealized model with two variables is formulated to illustrate these ideas and, in particular, show the importance of zonal advection feedback for the amplitude and duration of the transient warming. Ultimately, this study highlights the importance of non-normal dynamics for generating an efficient transient growth of SST anomalies in the tropical Pacific even in the absence of coupled ocean-atmosphere interactions.

This record has no associated files available for download.

More information

Published date: May 2010
Organisations: Physical Oceanography

Identifiers

Local EPrints ID: 339741
URI: http://eprints.soton.ac.uk/id/eprint/339741
ISSN: 0022-2402
PURE UUID: f28537bd-3ada-41fd-b0a2-f58fb3e9d534

Catalogue record

Date deposited: 30 May 2012 08:36
Last modified: 14 Mar 2024 11:14

Export record

Altmetrics

Contributors

Author: Alexey V. Fedorov

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×