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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

Imaging Through A Scanner, Darkly: Spectral Imaging for Sentinel Lymph

Node Biopsies

by Jack D. O’Sullivan

Breast cancer is the single most prevalent form of cancer in the UK today, accounting

for around 16% of all diagnoses, and around 31% of diagnoses in women. The survival

rates are good, however the prognosis is heavily dependent on the stage to which the

cancer has progressed at diagnosis. In order to help accurately determine this stage,

the sentinel lymph node of patients undergoing tumour resection surgery is removed

and examined cytologically for the presence of cancerous cells. This examination of the

lymph node is currently the rate-limiting step in the operation as a whole. There is

evidence in the literature to suggest that cancerous tissue has a measurably different

infrared spectrum from healthy tissue owing to chemical and morphological differences

in the tissue. There is further evidence to suggest that in the visible and near infrared

region, the spectra of healthy lymph node tissue is different from that of cancerous

tissue. This thesis details a project, performed in collaboration with a surgical team

at St Mary’s Hospital, Newport, Isle of Wight, to analyse spectral images taken in the

visible and near infrared, of biopsied lymph node tissue. In the course of the project,

an unsupervised classificaton technique, based on an extension to the well establised

‘spectral angle’, was developed to analyse the spectral images.

Psoriasis affects 2-3% of the UK population causing itchy and/or painful plaques on

the skin. One of the main treatments for psoriasis is UV phototherapy, exposure to

which is a risk factor for burning and the development of cancers. This thesis details

an investigation into the possibility of developing a targeted UV phototherapy system

based on spectral imaging to delineate the plaques and a proposed new UV laser for

treatment.
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Chapter 1

Introduction

1.1 Brief Project Overview & Summary of Prior Work

This project is an extension of work begun in 2005 by Dr. Paul Hoy for his own

doctoral thesis (Hoy, 2009). It began as an investigation into the possibility of

developing a low cost device for the remote detection of water. This quickly developed

into a study to assess the viability of multispectral imaging to guide brain tumour

resection surgery. On the basis of some promising early results, other biomedical

collaborations were sought, this thesis describes the work undertaken in two such

areas. Some work on spectral imaging of skin pathologies was performed, although the

work quickly fell out of the scope of the project as a whole as described in chapter 2.

The main work described in this thesis investigates the possibility of using spectral

imaging for quantitative optical biopsies, with particular focus on biopsies of the

lymph nodes of breast cancer patients.

The central hypothesis is that if different types of visually similar biological tissue can

be distinguished by their spectra, then a spectral imaging system could provide

benefits to patients and treatments centres alike that are far in excess of the cost of the

components required to build it. Further, if this system can be made to run

unsupervised, or at least supervised by a person with little training or expertise, then

the cost of operating the system can be kept very low. The purpose of this project is

thus to test the assertion that different types of tissue are indeed distinguishable by

their spectra, and that the separation of different types of tissue can be performed

with minimal user intervention or direction.

Medical applications of imaging typically fall into two categories, diagnostic and

intra-operative. X-rays, mammograms and MRI scans are examples of the former,

whereas endoscopic imaging for key-hole surgery is an example of the latter. The work

on lymph node biopsies has aspects of both diagnostic and intra-operative imaging.

1
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As the pathway for metastasis, the health of the lymphatic system is an important

prognostic indicator in cancer patients. Biopsies of axillary lymph nodes are routinely

taken during lumpectomy and mastectomy surgeries to enable the extent of the spread

of cancer to be determined; in that sense any imaging used to perform this biopsy

could be considered intra-operative. The aim of such imaging is to determine the

health of the lymph nodes, and so in that sense this imaging is akin to traditional

diagnostic imaging.

Work on this project has concentrated on the visible and near infrared (VNIR) section

of electromagnetic spectrum. This enables the use of standard digital cameras based

on silicon Charge Coupled Devices (CCDs). These have an effective spectral

responsivity in the wavelength range from about 400-1000nm (the response curve for

one of the CCDs used in this project, a Sony Ex-View model, is shown in figure 1.1).

Both the CCDs and the requisite optics (lenses, filters, beam-splitters etc.) are widely

and commercially available at relatively low cost, making this region ideal for

preliminary investigation.

The traditional “finger-print” region for biological substances is further into the

infrared (IR) spectrum (around 5-20µm) and it is anticipated that spectral imaging in

this region would be very useful for biomedical applications. Work is ongoing by Dr.

Hoy to develop a camera with sensitivity in this region as part of his brain tumour

detection work, however it has not yet been possible to take any spectral images with

this.

Figure 1.1: The spectral responsivity curve for a Sony Ex-View CCD (Sony Electron-
ics, 2003).
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1.2 Thesis Structure

The remainder of this chapter will describe some of the fundamental interactions of

light and matter that are important to biological imaging and spectroscopy. Further,

the key chromophores in the VNIR region are presented and discussed. The concept of

spectral imaging is then introduced along with a discussion of the technologies,

applications and issues involved. Chapter 2 presents the research carried out on skin

damage imaging and treatment.

Chapter 3 discusses how images are assessed in order to classify which areas are similar

to and which are different from each other. There follows a discussion of spectral

similarity metrics and in particular, the Spectral Angle, which leads into an

examination of a proposed extension to this metric that has been dubbed the Spectral

Position.

Chapter 4 presents tests of the spectral position metric on a series of artificially

generated colour and spectral images, before applying the metric to some real datasets

from various disciplines.

Chapter 5 presents the work carried out on the development of an optical sentinel

lymph node biopsy.

Finally, a discussion of the future direction of this work, as well of the conclusions

drawn from existing work is presented in chapter 6.

1.3 Photon Interactions with Biological Tissue

Light can interact with matter in a number of ways and whilst there are differences in

the details of the mechanisms, these can essentially be divided into scattering and

absorption processes. With regards to the specific case of visible and IR radiation

interacting with biological tissue, the key interactions are absorption by chromophores

in the visible region, scattering in the near IR, and molecular absorption in the mid to

far IR. This section first presents a brief overview of how these interactions are

measured and then outlines some of the key absorbing and scattering components of

tissue relevant to this project.

1.3.1 Absorption

Absorption occurs when incident radiation causes an energy level transition from some

stable or metastable low energy state, to some excited high energy state; this

transition can be a change in the energy level of electrons (more important for visible
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light) or the vibrations of a molecule (more important for infrared radiation).

Absorption causes either a decrease in the intensity of light transmitted or a complete

attenuation of transmission through the material.

In a purely absorbing material of thickness l, each layer dl will absorb the same

proportion of the incident intensity, I. This relationship is known as the

Lambert-Bouguer law and is formally expressed as:

d I

I
= µa d l, (1.1)

where µa is called the absorption coefficient. This relationship was subsequently

modified by August Beer who noted that when a compound is diluted in a

non-absorbing material, the absorption coefficient is linearly related to the

concentration (see equation 1.2 below where α is the specific absorption coefficient and

c is the concentration). The subsequent relationship is known as the Beer-Lambert law

and is important in tissue where the absorbing material is usually dissolved or

immersed in a non-absorbing material:

µa = αc. (1.2)

Where multiple absorbing materials are present in the same sample, as is the case in

biological tissue, the total absorbance is the sum of the absorbance due to each. The

absorbance is defined as the logarithm of the ratio of the incident radiation and the

transmitted/reflected (measured) radiation. According to equation 1.1, the

transmitted radiation is given by:

I = I0e
−µal, (1.3)

where I0 is the intensity of the incident radiation. This shows that the absorption

coefficient can be thought of as a probability that a photon will be absorbed in a given

length of material. Therefore the absorbance of the ith material, Ai, is given by:

Ai = ln
I0
I

= αicil, (1.4)

and thus the total absorbance is:

A =

(∑
i

αici

)
l. (1.5)
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1.3.2 Scattering

Photon scattering occurs when light incident on a material has its propagation

direction altered due to an absorption and re-emission interaction with the medium.

Specifically, scattering occurs where the medium is not composed of atoms with a high

degree of spatial order; where the material does have a high degree of order, i.e. a

crystalline structure, the light is considered as having been diffracted rather than

scattered, leading to sharp, well defined patterns of light intensity. Propagation

direction can also be altered by light passing through a material in which it has a

different speed, when this occurs the change in direction is called refraction,

accordingly the speed of light in a given material is determined by the refractive index.

Scattering can be categorised as occurring from a single scattering centre or from

multiple centres. In single scattering it is assumed that a photon interacts with only

one molecule or particle; deflection in this case is highly dependent on the size of the

particle. With a diffuse light source, for small particles, (. λ
10) the scattering is

described as Rayleigh scattering. Deflection in this case is usually random, the precise

location and orientation of the scattering centre and hence the incoming trajectory of

the light before the interaction is uncertain. Scattering from larger particles is

described as Mie Scattering. Mie theory is only analytically described for spherical and

elliptical particles and so there is less particle orientation dependence. Scattering in

Mie theory is much more intense in the same direction as the initial propagation (see

figure 1.2).

Figure 1.2: A diagram showing the relative intensities of scattered light in var-
ious directions (relative to the direction of incident light) for Rayleigh scattering,
Mie scattering and Mie scattering from large particles. (Image courtesy of http:

//hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html)

Multiple scattering can be considered as a sequence of single scattering events; the

random deflection angles of each single scattering can be considered statistically,

tending to average out to a deterministic distribution. The effect of multiple scattering

events is analogous to a diffusion of the light.

In biological tissue the large number of scattering centres (particles/molecules) and

their close proximity to each other means that all scattering should be considered as

http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html
http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html
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multiple centre scattering. A scattering coefficient can be defined in a similar manner

to the absorption coefficient described in the previous section by considering the

probability that a photon will be scattered in some given length:

I = I0e
−µsl. (1.6)

I and I0 again represent the measured and incident intensity of radiation respectively,

l is the length of material traversed and µs is the scattering coefficient (in a given

direction). Generally the scattering coefficient is angle-dependent and the total

scattered intensity is a solid angle integral over these values. This angular dependency

is particularly strong for materials with a high degree of spatial order.

By combining equation 1.3 and equation 1.6 it is possible to determine the intensity of

radiation at a given distance in a material that is both scattering and absorbing the

light present:

I = I0e
−(µa+µs)l = I0e

−µtl, (1.7)

where µt is known as the total attenuation coefficient.

It is now clear that for a photon entering an absorbing and scattering material there

are four potential outcomes:

1. the photon is scattered randomly a number of times within the material,

traversing completely through the material and emerging with a new propagation

direction;

2. the photon is scattered randomly a number of times through the material before

being absorbed;

3. the photon is scattered randomly a number of times within the material and

re-emerges with a new propagation direction;

4. the photon passes completely through the material without being absorbed or

scattered.

These outcomes are shown in figure 1.3.

In the first outcome, the light has been diffused by passing through the material; in the

second, the light has simply been absorbed by the material. Clearly, in the third case,

light re-emerging from the incident surface can be considered as reflectance of the

incident light and is indeed known as diffuse reflectance. In contrast to specular

reflectance (mirror like), the light that is diffusely reflected does not form an image of

the incident light source, but it is this light that is recorded when imaging a

non-backlit scene.
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Figure 1.3: A diagram showing photon paths through a medium that is both scat-
tering and absorbing.

There is another way to categorise scattering and that is whether it is elastic or

inelastic. Elastic scattering conserves the energy of the incident light, inelastic

scattering does not. In this case scattering is considered as an absorption/emission

event; a photon is absorbed by a molecule promoting it into an excited virtual energy

level. When the molecule relaxes back to the lower energy state a photon is emitted in

a random propagation direction. This is shown in figure 1.4. Where the excitation and

relaxation energies are the same, the emitted photon will have the same wavelength as

the incident photon and it can be considered as the same photon having undergone

elastic scattering (where the particle is small compared to the wavelength of the light,

this is Rayleigh scattering, as described above).

Figure 1.4: An energy level diagram illustrating Rayleigh, Stokes and anti-Stokes
scattering events (Hendra, 1998).
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It is possible that a molecule will be promoted to an excited state and relax into a

non-excited state of slightly different energy from its original state. The emitted

photon now has a slightly different wavelength and hence a different energy and the

light is said to have been inelastically scattered. Where the scattering is caused by

molecular vibrations the scattering is known as Raman, if it caused by an interaction

with an acoustic phonon it is known as Brillouin. The energy changes associated with

Brillouin scattering are typically very small. This discussion is concerned only with

Raman scattering. When the scattered light is of a lower energy it is said to have

undergone Stokes Raman scattering, if it has a higher energy than the incident light it

has undergone anti-Stokes Raman scattering (see figure 1.4).

Measuring the spectra of Raman scattered light from a sample can provide useful

information about the sample that is not provided by normal infrared spectroscopy as

different processes give rise to the spectra. However, Raman scattering is a weak

process, only around 0.00001% of photons (1 in 107) will produce a Raman shift.

1.3.3 Key Chromophores

This section will consider some of the key biological chromophores in the VNIR region.

Haemoglobin is an iron based chemical found in red blood cells, it binds to molecular

oxygen and is responsible for transporting oxygen throughout the body. It is referred

to as oxy-haemoglobin (HbO2) whilst bound to oxygen and deoxy-haemoglobin (Hb)

when it is free of oxygen. The absorption spectra for HbO2 and Hb from the near

ultraviolet (UV) to the near IR are shown in figure 1.5.

Figure 1.5: Absorption spectra for oxy- and deoxy-haemoglobin from the near UV to
the near IR (UCL Biomedical Optics Research Laboratory, 2006).

The absorptions are sufficiently different for the two to be distinguishable and certain

fingerprints are immediately noticeable. Both show a strong absorption peak in the

blue end of the visible spectrum (∼450nm) although the peak is shifted to the red end

for Hb compared to HbO2. HbO2 has two further absorption peaks at ∼540nm and
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∼576nm whilst Hb has a broad absorption centred at ∼554nm (Zijlstra et al., 1991).

Absorption of light from around 600-800nm is significantly lower in HbO2 than Hb,

this trend reverses above 800nm.

Water accounts for around 60% of a human’s body mass and so unsurprisingly it is an

important chromophore when considering biological tissue. The absorption of light by

water is fairly low throughout most of the VNIR region, as is intuitive from the fact

that water appears highly transparent and colourless. In fact, the absorption

coefficient for water does rise slightly from 400nm through to around 900nm, at this

point it rises sharply to a peak at 970nm before it starts to fall off again (see figure 1.6

below). This peak is the first harmonic of the symmetric molecular stretching mode

combined with the fundamental anti-symmetric stretching mode (Chung et al., 2010).

Figure 1.6: Absorption spectrum of water from 650-1000nm (Elwell and Hebden,
2008).

Most of the water content in the human body is not pure water but water that has

hydrogen-bonded to other biomolecules (particularly proteins). The existence of these

hydrogen bonds can lead to the exhibition of new peaks and the altering of existing

peaks in the spectra of corporeal water compared to pure water. Whilst this is an

important consideration in the mid and far infrared it has little effect in the VNIR

region.

Lipids are fatty compounds found in biological tissue, in the human body they are most

commonly found as triglycerides (fats), cholesterol and phospholipids (a constituent of

all cell membranes). Figure 1.7 below shows the absorption spectrum of pure pork fat

from 800nm to 1080nm. This fat is composed mainly of lipids and will be very similar

to a spectrum taken of lipids from the human body. The spectrum is similar to that of

water in the same region, however the peak is centred rather lower at around 930nm.

Melanin is the substance responsible for the colouration of human skin. It is a pigment

produced in the epidermal (top-most) layer of the skin. It has an absorption peak in

the near UV (∼330nm) which serves to protect the skin from photodamage. The
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Figure 1.7: Absorption spectrum for pure pork fat, the vertical axis is a relative
measure of absorption coefficient (image modified to remove unnecessary information

from the original) (Conway et al., 1984).

absorption gradually decreases across the visible range, as can be seen in figure 1.8

below. This gradual decrease continues beyond the visible and into the near IR (Matas

et al., 2002).

Figure 1.8: Absorption spectrum of melanin from 300nm to ∼700nm (Clinuvel Phar-
maceuticals, 2009).
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1.4 Spectral Imaging

The word ‘image’ has many definitions, and even within the scope of science and

technology it is not uniquely defined. It is important then to set out how it is

understood within the context of this work. An image is a spatial map where each

discrete element is associated with a vector of values, each of which is a proxy measure

for some other variable. These variables are typically all intensities of radiation,

however other metrics or derived statistics can be mapped in the same space to form

an image. This implicitly only considers “digital” images, and whilst qualitative

assessment of “analogue” images is still practised in the medical field, e.g. many

dentists still use film x-ray examinations to assess patients, to be used in the

development of quantitative techniques, images will need to be in a digital format.

The rest of this section explains spectral imaging as a specific imaging modality within

the above definition before moving on to discuss briefly the technology used to record

these images, the ways in which they are used and the problems and limitations faced

in using them.

1.4.1 What Is Spectral Imaging?

From the above definition, one of the simplest forms of image would be a black and

white, or monochrome photograph. Each picture element (pixel) has a single value

that is proportional to the total intensity of light reflected by an object onto a

photosensitive detector. To record the same object in a colour image, each pixel

requires a vector of three values.

The human eye detects light incident on the retina using two types of cells, rods and

cones. Rods detect only absolute intensity and as such convey no colour information,

they do however work in lower lighting conditions than cones. There are three types of

cone cells known as blue, green and red, each is sensitive to only a limited section of

the visible spectrum. Blue cones have a peak sensitivity around 420-440nm, green

cones peak around 530-550nm and red cones at around 560-580nm. The brain

perceives colour by comparing the response in each of these cells.

In a similar way, digital cameras that record colour images separate each pixel into

sub-pixels, these are small enough to be considered co-located. Each of these is behind

a broadband filter, designed to transmit either blue, green or red light; there are four

sub-pixels in a standard camera, two of which are behind green filters, and one each

behind a red and a blue filter in a Bayer pattern (see figure 1.9), designed to reflect the

fact that human vision has an overall peak sensitivity to yellow-green light. Each

colour can be thought of as a point in a three dimensional (3D) space, whose axes are

intensities of red, green and blue light. This is known as the RGB Colour Space,
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however, as with any space, the axes can be rotated, or indeed different axes altogether

can be defined, and various other spaces, such as the CMY (Cyan-Magenta-Yellow),

HSV (Hue, Saturation and Value) and HSL (Hue, Saturation and Lightness) are also

commonly used.

The CMY space is widely used in colour printing as it is a “subtractive” space, that is

to say that each colour is composed of combinations of cyan, magenta and yellow

pigments, each of which absorb (subtract) colour from white light (red, green and blue

respectively). This is as opposed to the RGB space, which is an “additive” space

mainly used in connection with displays; red, green and blue emitting elements are

combined (added) to create different colours. The CMY space can be described as a

rotation of the RGB space, although in practice there is no universal conversion as the

gamut of the spaces (the complete subset of colours that can be reproduced) is highly

device dependent.

The HSV and HSL are related spaces that are cylindrical polar co-ordinate models of

the RGB space. The hue is the angle around the central axis and measures the basic

“colour” (from red at 0◦ through green and blue at 120◦ and 240◦ respectively, back

through to red at 360◦). The saturation measures the distance from the central axis

and moves from grey at S=0 through to the fully saturated colours at a normalised

S=1. The lightness and value attributes both measure the distance along the central

axis, from black at L/V=0, through the shades of grey to white at L/V=1. The

difference between the two spaces is subtle and is best explained by considering the

case of S=1 for changing L/V. For both spaces all points at L/V=0 are black, as V

increases the colours move from black to fully saturated colours, as L increases they

pass through fully saturated colours at L=0.5 to white at L=1.

Figure 1.9: The Bayer pattern.
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Extending this idea, it is clear that a different number of filters with different

bandwidths could be used in place of the red, green and blue broadband filters

described, the resultant images are spectral images. The potentially high number of

dimensions of information for each pixel means that the image is often referred to as a

datacube; it is also common to see each datum in the cube referred to as a

volume-element, or voxel.

Within this definition, there are two types of spectral imaging that are generally

referred to, multispectral and hyperspectral. The distinction between multi- and

hyper- spectral images is not well defined. In general multispectral is used to refer to

images where each vector contains information from up to around 20 dimensions; these

are typically, but not necessarily, discrete, non-contiguous spectral bands, and can

cover situations where some bands are in the visible range, some in the near IR and

some further into the IR (or indeed in the UV). Hyperspectral refers to images where

each vector contains information from more than 20 bands (typically up to hundreds).

These bands are generally very narrowband and contiguous. The nature of

hyperspectral imaging makes it a good approximation to spectroscopy, and indeed it is

sometimes referred to as “imaging spectroscopy”. It is possible then to say that in a

given spectral range, like the VNIR covered by a silicon detector, a hyperspectral

image will generate a full spectrum at each pixel whereas a multispectral image will

just sample the spectrum at discrete locations. This difference is demonstrated in

figure 1.10 below.

Throughout this report, spectral imaging will be used to refer both hyperspectral and

multispectral imaging; the multi- and hyper- prefixes will be used where a technique or

technology is only applicable to one modality. Imaging spectroscopy will be used to

describe situations where point source spectroscopy is used to form an image by

scanning the point in two dimensions across the scene.

1.4.2 Technologies and Applications

Another potential way of distinguishing multi- and hyper- spectral imaging would be

to consider the acquisition of the image. In their textbook on hyperspectral image

analysis, Grahn and Geladi outline two acquisition methods for spectral imaging, “Line

Scanning” and “Focal Plane Scanning” (Grahn and Geladi, 2007). A third method,

“Point Scanning” is also mentioned, this is not considered here as it is a fully

spectroscopic method and is thus more properly imaging spectroscopy than spectral

imaging.

Focal plane scanning simply involves taking consecutive images of an object through

different filters, changing the filter after each image acquisition. In the VNIR range a

standard silicon CCD camera together with standard optics can be used. The filter
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Figure 1.10: An illustration of a multispectral and hyperspectral image of the same
scene, shown are the two datacubes and the spectral output from each method.

change is often achieved in practice by placing the filters in a wheel, or series of wheels,

and rotating each into place in turn. Alternatives such as Liquid Crystal Tunable

Filters and Acousto-Optical Tunable Filters can be used to replace the potentially

large number of filters with a single optical component (as used for example by Zuzak

et al. (2002) and Tuan (2004) respectively). A schematic of the set-up for focal planes

scanning is shown in figure 1.11.

Line scanning places the detector behind an optical set-up that spectrally disperses the

light reflected by the object. This is typically achieved using a thin slit to deliver a

single line of the object scene to a diffraction grating or prism, which disperses the

light towards the detector. The 2D image formed on the detector is then comprised of

one spatial and one spectral dimension. The object has to be scanned line by line in

order to get full spatial coverage. Again, for the VNIR range a standard silicon CCD

camera can be used for detection. A schematic of the set-up for line scanning is shown

in figure 1.12.
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Figure 1.11: A schematic of an experimental set up for Focal Plane Scanning acqui-
sition.

Both focal plane and line scanning build up the datacube plane by plane using a

number of consecutive image acquisitions, each of which is a very rapid process. In line

scanning the requirement to scan the scene line by line implies a trade-off between

overall acquisition time and spatial resolution; the spectral dimension and one spatial

dimension will be resolution limited by the optical set-up or the detector resolution,

the other spatial dimension will be limited by the scan. With focal plane scanning this

trade-off still exists, albeit in a slightly different form. Here, both spatial dimensions

are resolution limited by the optics or detector and the spectral resolution is limited by

the number and bandwidth of the filters used, or by the resolution of the tunable filter.

Just as repositioning the scanner (or the object) in between acquisitions is the overall

rate-limiting step in line scanning, changing filters, or retuning the filter, is the rate

limiting step in focal plane imaging.

Line scanning, by its very nature, captures hyperspectral data, the continuous

spectrum of light passing through the slit is dispersed onto the detector such that one

dimension of the detector measures the complete spectrum in a contiguous manner.

This process captures, in parallel, an entire spectrum for each point along the line of
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Figure 1.12: A schematic of an experimental set up for Line Scanning acquisition. In
order to acquire a full 2D scan of the scene, the scene can be moved (if it is moveable)
or alternatively the set-up within the dashed-line box on the right hand side can be

moved.

the scan, making it many times faster than imaging spectroscopy where the entire

spatial plane would be raster scanned. On the other hand, in order for focal plane

scanning to be truly hyperspectral, many filters would be needed to cover the entire

spectral range, significantly slowing down the process. A smaller number of broadband

filters could be used but this would be at the expense of spectral resolution. As such, it

is often more practical to limit focal plane scanning to the acquisition of multispectral

imaging.

Spectral imaging has traditionally been used primarily for earth remote sensing.

Spectral imagers are mounted onto aircraft or satellites and images are then used for

assessing land usage or coverage of particular species of plant. NASA have two major

remote sensing projects, Landsat and AVIRIS (Airborne Visible/Infrared Imaging

Spectrometer). Landsat is a satellite based remote sensing project with 7 satellites

providing multispectral images of the earth’s surface, whereas AVIRIS is an aircraft

mounted hyperspectral imager with a working spectral range of 400-2500nm. It is not

intended to present here a thorough review of the literature, suffice it to say that there

is a large body of work, and indeed entire research groups dedicated to remote sensing;
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a list of recent Landsat-based publications is available at

http://landsat.gsfc.nasa.gov/references/recent_pub.html.

More recently other applications of spectral imaging have emerged such as food

contamination detection (Park et al., 2007a), solar cell defect detection (Li et al.,

2010), detection of illicit substances (Ng et al., 2009), and disaster management

(Jusoff, 2010).

1.4.3 The Curse of Dimensionality

Large data volumes have long been an issue in image processing due to the

computational time required to perform calculations on large numbers of pixels. This

problem becomes increasingly acute in spectral imaging paradigms when each pixel is

represented by values in tens or hundreds of dimensions. Compensating for this

increase in complexity and computation time is the expectation that increasing the

number of spectral channels or dimensions in which data is collected will increase the

ability of a suitably trained system to discriminate between different signals. The

implicit assumption in this expectation is that each dimension added contains contrast

between different signals; often however, the additional dimensions show little

difference between signals, as such they act like noise, actually decreasing the contrast

between signals. The fact that increasing dimensionality increases the complexity of

data handling without necessarily improving discrimination is referred to as “the curse

of dimensionality”.

The matter of high dimensional space is further complicated by a number of properties

that are not intuitive from extrapolation from a three dimensional space. One of the

simplest to demonstrate mathematically is the relationship of the volume of

hyperspheres and hypercubes in multiple dimensions.

The derivation given here follows the argument presented by Landgrebe (2003). The

volume of an nD hypercube with sides of length 2r is given by the equation:

Vc(r) = (2r)n. (1.8)

The volume of the hypersphere of radius r in the same space is given by:

Vs(r) =
π

n
2

Γ
(
n
2 + 1

)rn, (1.9)

where Γ (x) is the Gamma function, given by:

Γ (x) = (x− 1)!, (1.10)

http://landsat.gsfc.nasa.gov/references/recent_pub.html
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or, for half-integral arguments:

Γ
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√
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2x
√
π, (1.11)

Setting n
2 + 1 = x+ 1

2 or x = n+1
2 in equation 1.11, the value Γ

(
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)
can be reduced

to:

Γ
(n

2
+ 1
)

=

√
π (n+ 1)!

2n+1
(
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2

)
!
. (1.12)

Equation 1.12 is required to calculate the volume where n is odd, where n is even the

volume can be calculated directly using the Gamma function in equation 1.10.

The fraction of the space of a hypercube occupied by a concentric hypersphere of the

same major dimension can be calculated as:

fo =
Vs
Vc

=
π

n
2

2nΓ
(
n
2 + 1

) . (1.13)

For even n, this reduces to:

fo =
π

n
2

2n
(
n
2

)
!
, (1.14)

and for odd n:

fo =
2π

n−1
2

(
n+1
2

)
!

(n+ 1)!
. (1.15)

The factorial in the denominator for both equations 1.14 and 1.15 is the most rapidly

increasing term for increasing n, thus the fraction of space in the hypercube that is

occupied by the hypersphere diminishes rapidly (see figure 1.13), tending to zero as

n→∞. This shows that as dimensionality increases the volume of a hypercube

concentrates into the corners.

The implication of these findings is that high-dimensional space becomes, in some

sense, increasingly empty. The space is concentrated away from the centre of the

hypercube, in the corners; similar arguments can be followed to demonstrate that the

volumes of a hypersphere and a hyperellipsoid concentrate increasingly in an outer

shell (see Chapter 5 of Landgrebe (2003)), i.e. the volume of the space is concentrated

away from the origin of the space.

From the point of view of statistics in high dimensional spaces, it can be shown that

the increase in the volume of space in a shell at a distance r for increasing n is more

rapid than the decrease of the normal probability density for the same r and n (again,

see Landgrebe (2003)). As a result, the peak of the “probability mass” moves away

from the mean of the normal distribution as n increases, which means that for
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Figure 1.13: A graph showing the ratio of the volume of an nD hypersphere of radius
r to an nD hypercube of side 2r.

normally distributed data, increasing the number of dimensions has the effect of

placing increasing amounts of data into the tails of the distribution.

These considerations of high dimensional space suggest that in most real-world

situations, high-dimsensional data, which are likely to be approximately normally

distributed, can be projected into a lower dimensional subspace without significant

detriment to the information content. There is thus a trade off in deciding how many

dimensions in which to work in order to create an efficient and effective system and the

working maxim must be data 6=information.





Chapter 2

Skin Damage Imaging and

Treatment

As the most visible and accessible organ of the human body, skin is an obvious starting

point for consideration of medical applications of spectral imaging. Discussions on the

matter with Professor Eugene Healy of the School of Medicine, University of

Southampton, and Professor Brian Diffey, Emeritus Professor of Biomedicine at

Newcastle University, revealed that one area in which dermatologists could be assisted

by spectral imaging would be in the detection of psoriasis. These discussions resulted

in the formulation of a project whose ultimate aim is the construction of an

unsupervised, or minimally supervised, phototherapy treatment system for psoriasis.

This chapter details the work done in developing this idea. It will begin by providing a

background to psoriasis to explain the need for an improved treatment system and

explaining what role a detection system would play in that. Following this is a review

of the medical literature as to the detection and monitoring of psoriatic plaques, and

the nature of the phototherapy currently on offer. A review of the viability of

producing a laser source for such phototherapy is then presented, followed by a

specification of the system requirements.

This part of the project is no longer under active development, the reasons for this,

and the conclusions of the research conducted, are presented in a discussion at the end

of this chapter.

2.1 Background

The background to this work is split into three sections, a general introduction to

psoriasis and the problems encountered by current treatment regimes, a review of the

medical literature relevant to the detection and phototherapy treatment of psoriasis,

21
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Figure 2.1: A psoriatic plaque on the skin of a psoriasis vulgaris sufferer(Kane et al.,
2002).

and finally a review of the laser science relevant to the development of a new light

source for phototherapy.

2.1.1 A Brief Introduction to Psoriasis

Psoriasis is a chronic skin condition that causes acceleration of the replacement of skin

cells. This excessive regeneration causes a build up of dead, often scaly, skin on the

surface, which is known as a psoriatic plaque (see figure 2.1). These plaques can affect

any area of the surface of the body from small, localised spots through to almost

complete body coverage; they are often itchy or painful. It is a condition that affects

an estimated 2-3% of the population of the UK. Around 80% of sufferers are affected

by common plaque psoriasis (psoriasis vulgaris), which tends to manifest around the

knees, elbows, scalp and lower back1.

Diagnosis is made following a visual examination of the affected area by a GP or

dermatologist. For mild cases, a range of treatments consisting chiefly of ointments

and lotions to be applied to the affected area can be prescribed by a GP. More severe

cases are typically referred to a specialist for further treatment options. There are a

number of medications available for treatment and management of severe cases of

psoriasis, including biologics; these are generally designed to slow down the production

of cells. Many cases (an estimated 60,000 each year in the UK (Diffey, 2008) however

are treated by UV phototherapy.

1Figures based on statistics published on The Psoriasis Association website, http://www.

psoriasis-association.org.uk/what-is.html

http://www.psoriasis-association.org.uk/what-is.html
http://www.psoriasis-association.org.uk/what-is.html


Chapter 2 Skin Damage Imaging and Treatment 23

It has long been established that sufferers of psoriasis can benefit from exposure to

sunlight and it is now known that it is the UV part of the spectrum, specifically UVB

(280-315nm), that confers benefit by triggering chemical reactions that retard the rate

of cell production. Phototherapy involves irradiating the skin with UVB light,

traditionally from a broadband source such as a mercury-xenon arc lamp. More

recently narrowband and monochromatic sources have been developed to minimise

unnecessary exposure.

UVB exposure is a known risk factor for carcinogenesis and both UVA and to a lesser

extent UVB are known to cause erythema (sunburn) after sufficient exposure; it is also

known that psoriatic plaques are more tolerant of UV radiation than normal skin.

Consequently, dosimetry is an important factor in the extent of applicability of

phototherapy; in individual sessions in order to minimise erythemal risk, and across

the treatment period, and indeed lifetime, of a patient to minimise the cancer risk. To

this end, “sun bed” style phototherapy, where the patient is placed in a light-cabinet

which exposes the whole body to UV light, is being replaced with more targeted

treatments, which are discussed in more depth in section 2.1.2 below.

At present these treatments consist of narrowband light sources that are directed to

the skin by optical fibre arrangements, targeted by hand-held probes. The treatment

sessions are thus supervised by healthcare professionals. This increases the costs of this

form of therapy as opposed to the light-cabinet form, which can be largely

unsupervised. It is anticipated that by combining the unsupervised nature of the

light-cabinet style treatment with the benefits conferred by targeted treatment, cost

savings could be made by treatment centres and time savings could be made for

patients. The development and requirements of such a system are discussed in section

2.2 below.

2.1.2 Medical Review

This section seeks to outline the current state of the art in two areas; firstly the

detection and monitoring of psoriasis, and secondly, the phototherapy treatments

available. It should be noted that it is not intended to present evidence here in support

of the use of phototherapy as a treatment as this would be beyond the scope of the

work undertaken; however, the specific use of narrowband UVB irradiation is

considered.

There is a relative paucity of research into spectroscopic methods for identifying and

demarcating psoriasis and psoriatic plaques. Clearly this is because visual

identification of such plaques is comparatively straightforward. The plaques exhibit on

the surface of the body and are typically red and/or scaly and will often be identified

by the patients themselves.
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Although a plaque itself is visually distinct from the skin surrounding it, visual

inspections are not sufficient to determine the likely direction of development of the

plaque if left untreated. This ‘advancing’ or ‘active edge’ has been studied using Laser

Doppler Flowmetry (Davison et al., 2001) and by Laser Doppler Imaging (Hull et al.,

1989; Murray et al., 2005). Hull et al. (1989) report that increased blood flow was

measured in advancing edges before immunohistological examinations could identify

any changes.

Murray et al. (2005) use illumination at two laser wavelengths (633nm and 532nm),

these penetrate to different depths in the body due to differences in the absorption

coefficients at each wavelength. The paper quotes a 20 fold increase in the absorption

coefficient of haemoglobin at 532nm compared to 633nm (Gush and King, 1991). This

makes absorption of 633nm light by blood in small capillaries, which are closer to the

surface of the skin, much less likely than light at 532nm, thus larger blood vessels,

which are deeper into the body, were more likely to be imaged by the red wavelength

and smaller vessels by the green. It was found that blood flow was increased in all

vessels within the plaque and that flow was lower in uninvolved skin away from the

plaque than skin adjacent to it. This effect was seen to be more marked for the red

wavelength and hence the larger vessels.

Bissonnette et al. (1998) report finding an auto-fluorescence peak at 635nm in psoriatic

plaques illuminated with blue (442nm) light. This is attributed to the presence of the

biological molecule protoporphyrin IX. Although this fluorescence was only detected in

45% of the plaques studied it was not found at all in clinically normal skin or diseased

skin of other dermatoses.

Delgado Gomez et al. (2007) present an imaging system designed to track changes in

psoriatic plaques across a number of weeks. This system acquires and registers digital

images of the plaques and automatically separates lesional from normal skin in the

image. Changes are detected using a number of methods, the merits of which are

compared. It is found that a principal component analysis is useful for displaying the

changes across a series of images.

The human erythema action spectrum is shown in Figure 2.2 below. The relative

effectiveness on the vertical axis is a measure of how effective energy at a given

wavelength is in causing skin to burn after some exposure period, as such it represents

a relative risk of burning due to exposure to radiation at that wavelength. In this case,

it can be seen that for wavelengths greater than 300nm the risk of burning after

exposure to radiation decreases dramatically.

A number of narrowband sources have been developed with emissions in the 305nm -

315nm range; for example Solarc Systems Inc.2 manufacture systems with lamps

2http://www.solarcsystems.com/us_selection_guide.html

http://www.solarcsystems.com/us_selection_guide.html
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Figure 2.2: The human erythemal action spectrum for UV light (Wong and Parisi,
1999) (image modified to remove unnecessary information from the original).

emitting at 311nm and PhotoMedex3 manufacture the VTRAC Excimer Lamp which

emits at 308nm. The choice to operate at these wavelengths is informed by a

ubiquitous reference to Parrish and Jaenicke (1981).

This study presents an action spectrum for phototherapy of psoriasis based on

measurements of the effectiveness of radiation doses at discrete wavelengths between

254 and 313nm. It concludes that radiation at 254, 280 and 290nm is erythemagenic

without being therapeutic. The action spectrum generated shows a maximum at

300nm with a sharp drop off either side of this maximum. The paper makes note of

the rapid decline in therapeutic effectiveness below around 290nm, similar levels of

effectiveness are visually observable above 310nm although these are not specifically

mentioned by the paper.

Many studies exist to demonstrate the efficacy of treatments in the 305-315nm regime,

for example Köllner et al. (2005) and Asawanonda et al. (2000).

2.1.3 UV Laser Generation

An effective targeted treatment will require a suitable light source. The combination of

the erythemal and phototherapy action spectrum discussed in section 2.1.2 above

restrict the light source to a narrow spectral range of around 300nm to 310nm

(hereafter referred to as the therapeutic window). Below this the risk of erythema

becomes significant and above this the therapeutic effectiveness decreases sharply. In

this section the availability of lasers for the UV regime shall be discussed. This narrow

therapeutic window means that a monochromatic light source would be more

3http://www.photomedex.com/vtrac/specifications.htm

http://www.photomedex.com/vtrac/specifications.htm
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appropriate than a broadband source. A laser source would minimise the time required

to deliver a therapeutic dose and thus would be the ideal monochromatic source for

this application. This has the further benefit that laser beams can generally be

restricted to small spot sizes, thus delivering very concentrated and localised doses of

radiation, and minimising the risk of delivering a harmful dose to the healthy tissue

surrounding the lesion.

As mentioned in section 2.1.2 above, PhotoMedex manufacture a treatment system

based on an excimer lamp, which is a monochromatic light source at 308nm. Lasers are

available commercially at this wavelength based on a xenon chloride (XeCl) excimer.

Excimers (a contraction of excited dimers) are short lifetime molecules formed when

one monomer is in an excited electronic state. Their short lifetime is due to the fact

that when the monomer relaxes back to the ground state the chemical bond is

unsustainable and the molecule breaks apart. In the case of XeCl the xenon atom is

promoted into an excited energy state leaving it with a free outer-shell electron. This

configuration enables it to form a bond with a chlorine atom, which has one incomplete

outer-shell orbital. At relaxation the excimer dissociates very rapidly. The atomic

separation of the monomers will be in a local energy minimum whilst they are bound,

as the excited monomer relaxes this same separation will be at a lower energy level on

a repulsive curve, the difference between these energy levels is emitted as a photon.

Other wavelengths are achievable using this same principle by changing the inert gas

or the halogen used. These lasers are typically also UV, for example krypton fluoride

(KrF) excimers will lase at 248nm and xenon fluoride (XeF) at 351nm. XeCl is the

only excimer laser in the therapeutic window.

Although commercially available and in use for laser-eye surgery, excimer lasers are not

without their drawbacks. The combination of high voltage and corrosive gases in the

lasing medium and resonator means that early generation cavities had very short

lifetimes. Extensive engineering has mitigated the potential for this combination to

damage the laser however regular servicing is still required to keep the laser operable.

A further drawback is the gas lifetime, this is of the order of 107 pulses (for XeCl),

however operating at near kilohertz repetition rates as anticipated (see section 2.2.2

below) this gives only a few hours operation between gas refills.

There are no other standard commercial lasers in the therapeutic window and as such

an alternative to excimer lasers would need to be designed specifically for this

application.

A common way to achieve new laser wavelengths with existing gain media is to use a

non-linear combination technique called sum-frequency generation (SFG). Two

photons incident on a non-linear crystal (with frequencies f1 and f2) emerge as a single

photon (with frequency f3). By energy conservation we see that:
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hf3 = hf1 + hf2, (2.1)

where h is Planck’s constant, or, since wavelength is inversely proportional to

frequency:

λ3 =
λ1λ2
λ1 + λ2

. (2.2)

If the two incident photons have the same frequency, the frequency of the resulting

photon will be twice that of the incident photons, this process is known specifically as

second harmonic generation (SHG) or frequency doubling. Green lasers at 532nm are a

common example of this, the laser light is the frequency doubled 1064nm line of an

Nd:YAG (neodymium-doped yttrium aluminium garnet) laser. Strictly speaking this

radiation is caused by non-linear processes and not stimulated emission so it is

technically incorrect to term such sources lasers; however this is the prevailing

nomenclature in the field as the two types of radiation share many characteristics such

as coherence and monochromaticity, as such the term laser will be used in this report

for such a source.

Generation of UV lasers by SFG is long established, Blit et al. (1978) report a tunable

continuous wave (CW) UV laser as early as 1978. This system uses a krypton laser

and an argon pumped dye laser; it was tunable from 285nm-400nm with a peak power

output of 750µW at 313nm. In order to achieve this power output the krypton laser

was running at 5W and the argon laser was pumping the dye laser at 5W. The output

from the dye laser was 1.2W. Such systems are typically very large and require water

cooling.

Efficiency of conversion is a major factor in the use of SFG, in order to obtain efficient

output care must be taken to phase-match the input photons by an appropriate choice

of non-linear crystal and crystal orientation. Further, if input lasers are pulsed rather

than CW, then care must be taken to match pulse lengths and/or timings as SFG will

only occur for the overlapping parts of each pulse.

Some of the other practical issues associated with efficient SFG are described by

Mimoun et al. (2008) in their paper demonstrating efficient generation of a 589nm

laser using intra-cavity SHG. The discussion in this paper is focussed on the

reflectivities of the cavity mirrors that will minimise power loss in the cavity.

Even with SFG, commercially exploitable lasers to achieve a wavelength in the

therapeutic window are rare, however employing this in combination with a technique

called Stimulated Raman Scattering (SRS) could potentially allow the development of

a suitable laser.
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SRS is a process based on the Raman scattering discussed in section 2.1 above. Laser

radiation is passed through a material, most commonly a gas cell containing hydrogen

(H2), deuterium (D2), methane (CH4), or some combination of these, where it is

absorbed and stimulated into being emitted in a process analogous to lasing. The

emerging radiation is Raman shifted by a frequency characteristic of the material.

Again, if the shift is due to a loss of energy the resulting frequency is referred to as a

Stokes line, if due to a gain it is an anti-Stokes line. Typically the strongest line is the

first Stokes line as emission at higher Stokes lines requires an interaction of this line

with the scattering medium.

The characteristic wavenumber shift (kS) of the first Stokes line is measured in

wavenumbers, for H2 it is 4155cm−1, for D2 it is 2987cm−1 and for CH4 it is 2916cm−1.

The resulting wavelength, λo, is thus related to the original, λi by the equation:

λo =
λi

1− λikS
. (2.3)

The energy “lost” for a Stokes shift is actually absorbed by the shift medium, and is

proportional to kS , causing heating of the medium. For an anti-Stokes shift, the energy

“gained” is drawn from the the shift medium, causing a cooling.

As with SFG, SRS is a long established process in the UV. Loree et al. (1979)

demonstrated the generation of new UV lines by broadband non-resonant scattering of

various excimer lasers in various media (including the aforementioned gases and liquid

nitrogen). Using KrF (at 248nm) scattering in H2 they demonstrate the generation of

a line at 276nm with a power of around 25% of that of the pump, demonstrating that

high efficiency is possible for SRS.

More recently, Stoffels et al. (1997) demonstrate the generation of 224nm radiation

from an ArF laser (193nm) by performing SRS in a H2/D2 mixture. Here the 224nm

radiation is generated due to the shifting of the first H2 Stokes line (at 210nm) in the

D2 combined with the shifting of the first D2 Stokes line (at 205nm) in the H2. The

result of both multiple shifts is a total shift to 224nm hence the efficiency of the

generation of this line is much higher than would normally be expected for a second

order shift.

SRS pumped by solid state lasers has also been demonstrated. Uesugi et al. (2000)

demonstrate SRS pumped by the second harmonic of a tunable Ti:sapphire laser

(spectral range 375-425nm, up to 200µJ at 1kHz repetition rate), producing an output

range of 421-657nm using the first and second Stokes lines. Conversion efficiencies of

> 10% for H2 and > 20% for CH4 are reported for a high pressure (up to 60atm) gas

cell.



Chapter 2 Skin Damage Imaging and Treatment 29

Xu et al. (2003) used a third harmonic Nd:YAG (355nm) to pump a gas cell filled with

D2 and mixtures of D2 with Ar and He. This was performed at low repetition rate

(10Hz) at 85mJ. Again good conversion efficiencies are found as pressure increases, up

to around 25% for the first Stokes line in pure D2 at ∼2600kPa (∼25atm). The report

notes that efficiency can be increased to around 33% in the D2/Ar mix however this

occurs at the expense of the stability of the resulting pulses (as measured by the

energy drift of the resulting radiation).

Ermolenkov et al. (2005) use a combination of frequency doubling followed by SRS

followed by a further frequency doubling to produce a UV laser at 281nm from the

1064nm Nd:YAG line (1064nm −→ 532nm −→ 563nm −→ 281nm). Again, this was

performed at a low rep rate (10Hz) with the output UV wavelength having a pulse

energy of 4.2mJ. A beam divergence of 1.3mrad was measured for this UV radiation.

This laser was developed for diagnosing tropospheric ozone by differential absorption

lidar (DIAL). This area of research has provided several other SRS UV laser systems

as measurements need to be made in the Hartley window, 280-300nm. Haner and

McDermid (1990) discuss Raman shifting of a fourth harmonic Nd:YAG laser (266nm)

in H2, resulting in a laser wavelength of 299nm. Again a 10Hz pulsed laser is used with

a pulse energy of around 100mJ. The conversion efficiency is studied as a function of

pump energy at 400lbf/in2 (27atm). Experiments in D2 determined that conversion

efficiency increased with gas pressure up to 27atm but no significant change was seen

as the gas pressure increased from there to around 50atm. Efficiency was found to

decrease with increasing pump energy from around 70% at 10mJ to around 40% at

70mJ. Above 20mJ the total of the residual pump plus first Stokes radiation began to

decrease as energy was lost to higher order processes.

Raman shifting of a 266nm laser is also investigated by de Schoulepnikoff et al. (1997).

Again a 10Hz laser is used and single gas scattering in H2, D2 and CH4 are tested

along with various mixtures of these. In H2 conversion efficiency for the first Stokes

line is found to maximise at low gas pressure (>50% at ∼2atm), decreasing to around

15% at 30atm. The effect of adding buffer gases (Ar, He and Ne) was studied and a

conversion efficiency of 61% was measured in H2 at a partial pressure of 10atm and Ar

at a partial pressure of 33atm.

In investigating other gas combinations, it was found that a mixture of H2, D2 and Ar

could produce close to 50% conversion efficiency to 299nm radiation at an Ar pressure

of 16atm, a H2 pressure of 7atm and a D2 pressure of 19atm. The beam quality was

also measured for these partial active gas pressures and an Ar pressure of 33atm and a

full angle divergence of 0.42±0.02mrad was found for the 299nm line.

Further studies by Simeonov et al. (1998) and Milton et al. (1998) also demonstrate

similar conversion efficiencies in H2 to generate 299nm light. The details of these

studies differ slightly but broadly they add little new fundamental insight.
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2.2 System Requirements

The ultimate aim of this project is, as stated above, the development of an

unsupervised, or minimally supervised, treatment system that is able to detect

psoriatic plaques and safely guide UV treatment. As envisaged, this system would

consist of two components, an imaging system and a treatment beam. The initial

technical requirements of each of these components can be derived from what is

already known about human skin in general, and psoriasis in particular. This section

addresses the key specifications of each component in turn.

2.2.1 Imaging System

An imaging system that merely demarcates a plaque on a static image, whilst an

important first step, will ultimately be of limited use to this project and has been

demonstrated elsewhere (Delgado Gomez et al., 2007).

To be of value to an integrated treatment system the imaging system will need to be

capable of real-time or near real-time tracking of any movement of a plaque. Real-time

video is typically thought of as a frame rate of 20-30 frames per second (fps);

standard-definition television broadcast and cinema have frame rates of 24/25 fps

(depending on the precise format), a typical digital camera will record video at around

30fps, and high-definition television broadcast is around 50-60fps (again, precise format

dependent). For this system, the minimum acceptable frame rate will ultimately be

determined by the specification of the laser system. Movements that place uninvolved

skin in the path of the treating radiation will need to be measurable in sufficient time

for the laser to be redirected or shut off before it poses an erythemal risk.

Further, any imaging system will need to be able to provide information on plaques

that follow the natural contours of the body. It is entirely conceivable for example that

a single plaque could extend around a large proportion of the circumference of a limb

and could not be presented in its entirety to a single imaging plane.

The first issue is largely a software problem. Raw imaging systems exist that enable

real time image capture, indeed the Prosilica camera used in this project and detailed

in section 5.2.1 below, is capable of video capture at 20fps and a high speed

counterpart is available with 30fps at full resolution. This camera connects to a

computer using gigabit ethernet, which allows data transfer at 109 bits per second or

∼120 megabytes (MB) per second. Each frame is around 5MB, which is compressible

to around 2.65MB by the removal of zero-padding. Clearly then, neither the CCD nor

the data connection will limit the ability to image in real time.

The rate limiting step would then seem to be processing the image to determine the

border of the plaque. It is anticipated however that the image processing used to
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demarcate the plaque will be performed along similar lines to the processing discussed

in section 2.3 above. A process diagram is shown in Figure 2.3. Clearly in order for

this to work the plaque would need to be imaged at two (or possibly more)

wavelengths, each frame displayed (or used to instruct the laser) then becomes at least

two exposures and the rate at which filters can be changed becomes a further

constraint to the maximum frame rate. It is likely that this change of filter can be

achieved at a sufficient rate for it not to be limiting, which again leaves the image

processing as the determining factor.

Developing an automatic processing code and optimising this will thus need to be the

focus of work in the initial development. The choice of filters in this case can be

informed with some confidence from the literature. This would suggest that focussing

on changes in blood content should be sufficient to distinguish plaque tissue from

surrounding healthy tissue. Although any choice would need to be experimentally

verified, a filter around 540nm or 580nm (resonant with the HbO2 absorption peak)

and one in the infrared at around 800-900nm (off-resonant) would seem a sensible

starting point.

Mapping plaques that do not present in their entirety to a single image plane presents

an interesting choice of approaches that will need to be considered early in the design

stage of an integrated treatment system.

The obvious approach would be to mount the laser and the imager co-linearly and

constrain the movement of the treatment beam to within the image boundaries (see

Figure 2.4a). The imager and beam could then rotate around the body on a rail until

full coverage has been achieved. This approach is implicit in Figure 2.3. An alternative

approach would be to have two cameras mounted at some angle to each other in order

to form stereo images to create a 3D image; the treatment beam would then be able to

move between the cameras whilst still being able to see the region of interest (see

Figure 2.4b). In this situation the whole set-up would still need to rotate around the

object, although the approach could be extended to a number of cameras placed all

around the object.

The first approach (single imager) has the advantage of being easier to implement.

Implementing a two imager approach will require an additional image processing step

to create and interpret the 3D image. Since processing as the rate limiting step has

been discussed, it may well be that this extra burden will make the whole process too

slow to be of use.

If the second approach could be made to proceed at sufficient speed to make it useful it

has the advantage of being able to “see” where the body is curving away from the

image plane. Looking back at Figure 2.4a, it is clear that not only is the distance of

the object from the image plane greater at the edges than in the centre, but the angle

of incidence of the treatment beam is also different. Such a difference will affect the
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Figure 2.3: Process flow diagram showing simplified anticipated imaging sequence.
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Figure 2.4: Alternative approaches for the layout of the imaging/treatment system.

received dose of radiation for different areas of the object. Although this illustration is

likely to prove an exaggeration of most real situations in terms of the curvature, it is

important to keep these issues in mind from an early stage so as to avoid designing in

an inherent flaw.

A compromise solution may be to use a single imager and restrict the beam movement

to a central region of the image where the object can be regarded as being flat and

parallel to the image plane. Doing this would combine the ease of implementation with

the advantage of consistent dosimetry to all points. This approach could also bring an

extra benefit of reducing the effective size of the image that requires processing,

allowing the speed of this step to be increased.

2.2.2 Laser System

These specifications for a laser system to provide a treatment beam have been drafted

according to current treatment regimes.

As discussed in section 2.1.3 above, to provide a safe and effective treatment the laser

should have a wavelength in the therapeutic window (∼300-310nm), also discussed is

the lack of availability of off-the-shelf solutions in this area. It was proposed that a
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bespoke laser could be developed by taking the fourth harmonic of the 1064nm

Nd:YAG laser line (which is a common laser) and subjecting this to SRS in H2. By

equation 2.3, the resulting radiation would be at a wavelength of 299nm, which whilst

just outside the window should be usable (Diffey, 2008).

From discussions with Profs. Healy and Diffey, an initial radiation dose of 80mJ/cm2

at 299nm has been proposed as broadly representative of existing treatments. It has

further been suggested that a treatment time in the region of 20 minutes for a patient

with approximately 35% body coverage would provide a suitable target.

The body surface area of a typical adult4 is usually given as around 1.7m2, thus 35%

coverage equates to ∼0.6m2. For a radiation dose of 80mJ/cm2 in 20 minutes, the

patient would need to be exposed to 480J in 1200s, this gives an average power rating

for the treatment beam of 400mW. 266nm lasers are available that are consistent with

the conversion efficiencies achievable in SRS, for example, the AVIA 266-35, which has

a power output of 3W at a 30kHz rep. rate. For this particular laser a conversion

efficiency of around 13% would be required.

The power absorbed by the gas cell in generating a 400mW, 299nm beam from a

266nm beam can be estimated to first order by considering the wavenumber of the

output beam (ko = 33438.98cm−1) compared to the wavenumber of the shift

(kS = 4155cm−1). Since energy, E ∝ k, the absorbed power, Pa can be calculated from

the output power, Po using the equation:

Pa =
PokS
ko

, (2.4)

using Po = 400mW, Pa is found to be ∼ 50mW. The precise absorbed power will be

exacerbated by any higher order Stokes shifts, and mitigated by any anti-Stokes shifts.

This will cause a localised heating of the H2 gas, which could in turn create

shock-waves through the entire medium due to the pressure fluctuations resulting from

the heat. This is similar to the problems faced by a gas based laser system, and can be

controlled by having a steady flow of gas through the cell rather than a static volume.

Such a flow, or such fluctuations caused by heating will affect the beam quality, but as

will be shown below, the beam quality is not likely to be critical in this system.

A resolution of the order of a millimetre is expected to be sufficient, implying that a

beam size of 1mm at an anticipated source-target separation of 1m will be required.

This implies a beam divergence of around 1mrad. To compare this to the diffraction

limited spot size in this case an aperture of 1cm is assumed, both for mathematical

convenience, and as this would allow for low cost and lightweight optics. At a focal

4http://www.emedicinehealth.com/script/main/art.asp?articlekey=39851
5http://www.coherent.com/downloads/AVIA 266-3 DS final.pdf
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length of 1m, this implies an F -number of 100. The diffraction limited spot size, d, is

given by:

d = 1.22λF, (2.5)

which, for λ = 299nm, gives d ≈ 36µm. This system would thus only need to work at

∼ 30× the diffraction limit.

The minimum erythemal dose (MED) is taken to be 27mJ/cm2 (Giacomoni, 2007) at

300nm (0.27mJ/mm2). For a pulsed laser at 400mW, this means that a rep. rate of at

least 400mW/0.27mJ=1.48kHz will be needed to keep the pulse energy below the

MED. The higher the rep. rate the safer the system will be, ideally a CW laser would

be used. The thermal relaxation time for skin is around 1ms (Bernhardt, 1998), which,

with a rep. rate > 1.5kHz, means that the pulse length of the laser would always be

lower than the relaxation time, thus the entire energy of the pulse should be considered

to be deposited simultaneously. Although each pulse is delivering less than the MED,

the effect of multiple pulses being incident on the same area of tissue would need to be

considered to ensure that no thermal damage is done.

The specification is summarised Table 2.1.

Property Value

Wavelength 300-310nm ideal, 299nm acceptable

Power 400mW

Rep. Rate CW Ideal, >1.5kHz minimum

Beam divergence ∼1mrad

Table 2.1: Initial specification for UV laser

2.3 Discussion

The aim of this project was to consider the potential application of spectral imaging to

dermatology. From the initial discussions with Prof. Healy, it is clear that there is

interest in the technology. The specific application of the treatment of psoriasis was

identified as an area in which spectral imaging could be put to use, and a well defined

problem was formulated. Could a spectral imager form the basis of a detection,

monitoring and targeting component of an unsupervised, or minimally supervised

treatment system?

A review of the literature indicated that the basic principle of detecting and

demarcating psoriatic plaques on an image had been established Delgado Gomez et al.

(2007), which is an encouraging start. In order to detect plaques in-situ, it was realised
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that there were two realistic options for the set-up of the imaging system (as shown in

figure 2.4). The first of these, co-locating the laser to a single CCD, was considered to

be the most feasible. In the time since then however, some moves towards low cost,

real-time 3D imaging have been made using the Microsoft Kinect system as a base

(Kreylos, 2010). This work would seem to be somewhat premature for this project,

coming as it did before the release on an official Software Development Kit for

non-commercial users.

Concurrent with this research, work was undertaken to establish the viability of the

second component of the system, that of an effective, targeted treatment beam.

Research on phototherapy established that a laser with well defined properties was

required to achieve this. There seems to be no indication in the literature that the

particular combination of requirements has been demonstrated in a laser before.

Various steps required had been demonstrated on their own; for example the Raman

shifting of a 266nm laser to produce a 299nm source, the requisite conversion efficiency,

and beam divergence have all been achieved. However, these have always been in low

rep. rate lasers (10Hz), and for beam powers much lower than would be needed here.

Further, there does not seem to be any investigation as to the effect of rep. rate on

conversion efficiencies or beam quality. This provides a good starting point for further

research on the development of such a laser.

It was decided that further research on this treatment system was actually out of the

scope of the research upon which this thesis is based. The imaging system described by

Delgado Gomez et al. (2007) is not based on spectral imaging but rather on standard

RGB imaging; further, as the principle has been demonstrated, the imaging component

is more properly the subject of development than research. There is scope for spectral

imaging research into the advancing edge of psoriatic plaques, and if it could

demonstrated it would make for a useful add-on to the treatment system, however, this

research was deemed to be outside of the scope of the project.

By contrast, the laser system would indeed be the subject of research rather than

development, however, it is more properly within the remit of a UV laser group.
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Pixel Classification

From a scientific viewpoint, an image is only as useful as the information that can be

gleaned from it. With that in mind, this chapter discusses what kind of information

can be extracted from a spectral image; some basic concepts with roots in more

conventional image processing are discussed before moving on to methods that are

more spectral in nature. A novel extension to one of these methods, the Spectral Angle

Map (SAM), is also discussed in this chapter.

For conventional imaging, the aim is often to identify an object (or subject) to compare

to some target or to track across a time series of images. The ultimate aim for most

spectral imaging is to classify pixels according to the material they represent and this is

certainly true for the biomedical applications which are the subject of this thesis. The

overlap of function here, i.e. matching a candidate pixel, or region to a known target, is

diminished by the fact that for conventional imaging this matching is normally a

spatial matching, whereas for spectral imaging the spatial configuration of pixels is less

important, and the matching is spectral-based. This distinction makes it unsurprising

to find that the techniques used in spectral imaging are quite specific to this particular

modality. The first section of this chapter however discusses how spectral images can

be analysed using techniques that would not be uncommon in conventional imaging.

3.1 Image Processing Concepts

3.1.1 Difference Mapping

Difference mapping is a conceptually simple method of comparing the content of two

images. A composite image is created by subtracting the value of a pixel in one image

from the value of the corresponding pixel in the second image, and assigning that

difference to the corresponding pixel in the composite.

37
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The obvious use of such a method is to look for changes in images of the same scene

taken at different times, in a spectral imaging system however it can be used to

compare the same scene at different wavelengths. As described thus far, this method is

highly prone to the spectral characteristics of both the illumination system and the

image capture system. The graph shown in figure 1.1 demonstrates that a typical

silicon CCD is around twice as sensitive to light at 500nm than it is to light at 750nm.

For a scene illuminated by spectrally uniform illumination, captured at the same

exposure length in all bands, we would therefore still expect to see a noticeable

difference in the composite. A similar argument can be made in the case that the

illumination of the scene is not constant across all wavelengths.

Shadows within an image, even when they appear at the same locations on both

images, will also cause a problem. In areas of shadow the absolute pixel intensity

values are much lower than in those areas in bright illumination, as such small absolute

changes in pixel intensity represent much larger relative changes in areas of shadow.

By extension, the signal to noise ratio (SNR) will be lower in these areas than in

brighter areas.

Taking into consideration these effects, when deployed in practice, the calculated

difference is usually normalised in some way, often by the average intensity of the pixel

in the two images. If a pixel at position (x, y) in image 1 is denoted as I1(x, y), and the

corresponding pixel in image 2 is I2(x, y), then the pixel in the composite image is

given by:

C (x, y) = 2G
I1 (x, y)− I2 (x, y)

I1 (x, y) + I2 (x, y)
, (3.1)

where G is a gain factor used to stretch the contrast.

For display purposes, the matrix of composite pixel values is converted to a suitable

format by scaling all values to integers with a suitable bit depth, and shifting the zero

level to half the maximum possible value, this ensures that all pixels in the composite

image have non-negative values. It is also useful to map this composite into a colour

space, where the hue represents the magnitude of the difference, as human vision is

better at distinguishing colours than it is at distinguishing grey-levels.

3.1.2 Ratio Mapping

Ratio mapping is a method very much related to difference mapping as described

above. The pixel values for the composite image in this case are calculated by dividing

the value of the pixel in one image with the the value of the corresponding pixel in the

second image. Using the nomenclature established in the previous section:

C (x, y) =
I1 (x, y)

I2 (x, y)
. (3.2)
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Unlike the difference map, this method is inherently robust to local illumination

changes, provided that they are consistent between images. The problem of having

negative values in the composite is also avoided, in areas where I1 (x, y) < I2 (x, y), the

composite value will be in the range [0,1) and I1 (x, y) > I2 (x, y), the composite will

be in the range (1, maxvalue]. The disadvantage of this is apparent, the composite

output is very non-linear, and the composite values will need to processed so that the

ranges [0,1) and (1, maxvalue] both inhabit the same size integral space. This extra

processing step means that in practice this method is very similar to a difference map

as normalised in equation 3.1.

Both of these methods are most useful when there is a particular spectral feature in a

single waveband that discriminates between a target and the background. From figure

1.6, it is clear that the presence of water is a particularly useful feature for this

method. Having a strong absorption peak at 970nm means that selecting the image at

this on-resonance wavelength for one of the images, and an image at an off-resonance

wavelength (say 900nm) as the second, will show any areas with water present as highly

contrasting with the background. A two-band spectral image would be very quick to

capture and process in this way and would be ideal in a finished spectral imaging

system (such systems are in use in the food sorting industry, known as “bi-chromatic

cameras”). However, in early stage research, having such a clear cut spectral feature to

use as a discriminant is rare, and this has been the case in this project.

The next section describes some analysis methods that use the full spectral range of an

image, and which do not require a-priori knowledge of discriminant spectral features.

3.2 Measuring Spectral Similarity

One of the key challenges in spectral imaging is presenting a large volume of data in a

meaningful and comprehensible way. This can be achieved by reducing the dataset to a

smaller, representative subset, or by calculating a metric or statistic from the data.

This is typically calculated at the level of individual pixels, rather than from the entire

dataset, and for presentation, these metrics are often mapped to a false colour image.

Whereas the methods outlined in section 3.1 are based on the premise of comparing

entire image planes, or on a pixel-scale, comparing different dimensions of the same

pixel, the methods outlined in this section consider the entire pixel at once, comparing

it to other pixels or known reference pixels.

Five measures are briefly introduced before a brief comparison is made on some simple

example data.

At this point it is useful to distinguish between a measure and a metric; the former is a

generic term for anything that can be measured whereas the latter has a precise
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mathematical definition. A metric is a function, d, that defines the distance between

two elements, x, y ∈ S, where S is a set, according to the following axioms, ∀x, y, z ∈ S:

1. d (x, y) ≥ 0, with d = 0 iff x = y, i.e. distance must be non-negative and only

coincident elements have a zero distance;

2. d (x, y) = d (y, x), i.e. the distance must be the same when measured in either

direction;

3. d (x, z) ≤ d (x, y) + d (y, z), this is the triangle inequality, the distance between

two points must not be greater than the sum of the distances from each point to

an intermediate point.

3.2.1 Distance Measures

The Pearson Correlation Co-Efficient (PCC) or the Product Moment Correlation

Co-efficient (PMCC) is used in statistics to measure the linear dependence of two

variables. It is defined as the covariance of the two variables divided by the product of

their standard deviations (see equation 3.3). It varies in value from -1 for two variables

that negatively linearly correlated, to +1 for positive linear correlation (as such it

violates the first metric axiom above). A value of zero means that there is no linear

correlation, the variables may still be correlated in some other way.

r =
Cov (x, y)

σxσy
=

∑
i

(xi − x̄) (yi − ȳ)√∑
i

(xi − x̄)2
∑
i

(yi − ȳ)2
. (3.3)

In a spectral imaging paradigm, the variables x and y are vectors of data assigned to a

pixel. For two similar spectra, one would expect the values in each dimension to be

similar and thus the two spectra will be strongly linearly correlated. A negative

correlation is less straightforward in this application, the implication is that as values

in x increase, the equivalent values in y are decreasing and vice-versa. This would be

the case where a peak in x corresponds to a trough in y, but to be true across the

entire spectral range it would imply that one of the vectors represented an absorption

spectrum and the other a transmission spectrum.

The Bhattacharyya Measure (Bhattacharyya, 1943) is used chiefly in statistics to

measure the similarity of two probability distributions. For two probability

distributions a and b the measure, or Bhattacharyya Coefficient (BCE) is calculated as:

ρ (a, b) =
∑
i

√
a (i) b (i). (3.4)
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As a and b are probability densities, we know that
∑
i

a (i) = 1 and
∑
i

b (i) = 1, we

can also see that if a and b are identical then:

ρ (a, b) =
∑
i

√
a (i) b (i) =

∑
i

√
a (i) a (i) =

∑
i

a (i) = 1. (3.5)

The BCE thus cannot be termed a metric. It can be used to define the Bhattacharyya

Distance:

DB = − ln ρ. (3.6)

The distance defined by equation 3.6 does not obey the triangle inequality axiom, and

as such is also not technically a distance metric, however it does provide a measure

ranging from 0→∞. A true distance metric can be defined from the co-efficient

however:

d =
√

1− ρ. (3.7)

Spectral Information Divergence (SID) is a measure derived from information theory

(Chang, 1999). It relies on the definition of self-information, which is the information

associated with observing a particular outcome of a random variable. This information

should increase as the outcome becomes increasingly unlikely, and the information

gained from observing a number of independent events should be cumulative. Further,

no information is gained from observing an outcome that is certain (i.e. has a

probability of 1). From these considerations, the self-information for a random event

with probability p is:

I (p) = − logb p. (3.8)

In principle, b can be any base, however as information theory is linked to

computation, using b = 2 is common, and the information is thus measured in bits.

From this definition, Kullback and Leibler (1951) introduced a “directed divergence”

measure, known as the Kullback-Liebler (KL) Distance or Relative Entropy, to

calculate the difference between two probability distributions, x and y:

D (x||y) =
∑
i

x (i) log

(
x (i)

y (i)

)
. (3.9)

This is a non-symmetrical measure, and as such does not represent a true metric as it

violates axiom 2 above. Chang (1999) defines the SID as a symmetric divergence

measure based on the KL Distance:

SID (x, y) = D (x||y) +D (y||x) . (3.10)
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In contrast to the statistical approaches discussed thus far, the Euclidean distance

requires a geometric interpretation of the spectral image pixel. Each dimension of the

spectral image can be considered as a dimension of a high-dimensional space, each

pixel is then a vector from the origin to a point in that space.

In two or three dimensions, it is intuitive that the straight line distance between two

points measures the difference between them, and this holds as the dimensionality of

the space increases. For two vectors, x and y in an nD space, the distance, d, is defined

as:

d =

√√√√ n∑
i=1

(xi − yi)2. (3.11)

This is a very straightforward metric, easily understood and inexpensive to calculate.

However, it is of very limited use. One major problem is that it is heavily scale

dependent. This is easiest to understand in two dimensions. If x = (1, 1), y = (2, 1)

and z = (4, 2), then the distance dxy will be 1 unit and the distance dxz will be
√

10

units. In both imaging and spectroscopic interpretations y and z are both

representative of the same measurement, the scale factor being explicable by a local

change in intensity of illumination, or a local change in the amount of absorbing,

emitting or fluorescing material. If what is being in assessed is not concentrations of

material or illumination conditions, but simply whether two areas of the image are

intrinsically similar, the Euclidean distance can be very misleading. This can be

countered by normalising each vector and working with the unit vectors.

Like the Euclidean distance, the spectral angle is obvious measure when considering a

spectrum as a high-dimensional vector (first introduced as a spectral imaging concept

by Kruse et al. (1993)). Any two vectors from a coincident origin are co-planar,

forming two sides of a triangle. There is thus an angle between the two vectors, which

can be calculated from the scalar product. So for two vectors x and y, the spectral

angle, θ, between them is given by:

θ = arccos


∑
i

xiyi√∑
i

x2i

√∑
i

y2i

. (3.12)

Again, much like the Euclidean distance this is a metric that is easily understood and

easy to calculate, however, unlike the Euclidean distance it is also inherently scale

independent. A scalar multiple on either x or y, or indeed both, would be carried

through in both the numerator and the denominator of the arccos term in equation

3.12, cancelling and thus leaving the same angle. This property makes the the spectral

angle robust to changes in illumination across an image. It should further be noted
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that the spectral angle is calculated using the arccos function, thus, whilst in principle

negative angles could be measured, in practice the domain of arccos, [−1, 1], limits the

calculated value to the range [0, π]. Further, in spectral imaging the values that are

being considered are typically all positive (CCDs record positive values), this

restriction further limits the range of spectral angles to [0, π2 ].

3.2.2 Comparing Spectral Similarity Measures

In this section, some relationships between the measures introduced in section 3.2.1 are

considered and their performance on some simple, illustrative data is explored.

For two unit vectors separated by an angle θ, the length of the arc that is swept

between them is also given by θ, for small angles this arc length closely approximates

the Euclidean distance between the vectors, and thus for small angles the Euclidean

distance and the spectral angle are equivalent measures. This intuitive result can be

shown mathematically by considering the geometry in figure 3.1.

Figure 3.1: The geometry of an arc and the Euclidean distance between unit vectors.

Clearly:

d

2
= r sin

(
θ

2

)
. (3.13)

Since r = 1,

d = 2 sin

(
θ

2

)
, (3.14)
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and since, for small angles, sinα ≈ α,

d ≈ 2

(
θ

2

)
≈ θ. (3.15)

This explicit correlation suggests only one of these metrics need be considered any

further.

Perhaps more surprising than the relationship between two explicitly spatial

measurements, is the connection of the spectral angle to the BCE. As a and b from

equation 3.4 are probability distributions, we can also consider them to be the unit

vectors α =
(√
a1, ...,

√
ai
)

and β =
(√
b1, ...,

√
bi
)
, the spectral angle between these

two vectors is then:

θ = arccos


∑
i

√
ai
√
bi√∑

i

√
ai

2

√∑
i

√
bi

2

 = arccos

(∑
i

√
aibi

)
= arccos (ρ (a, b)). (3.16)

Thus, the BCE is actually the cosine of the spectral angle between the the unit vectors

α and β.

The PMCC is also related to the spectral angle, comparing equations 3.3 and 3.12, it is

clear that the PMCC is the cosine of the spectral angle of the vectors xi − x̄ and

yi − ȳ. In probability distribution terms, this would be shifting the distribution to

centre it about zero.

To illustrate the different behaviour of these measures in different conditions their

performance on some simple data is considered, the first two datasets are taken from a

paper by De Carvalho and Meneses (2000), which itself was comparing the

performance of the PMCC to the spectral angle.

Spectrum Spectral Angle PMCC BCE SID

Reference
[0.7, 0.6, 0.5, 0.6, 0.7] - - - -
A
[0.5, 0.6, 0.7, 0.6, 0.5] 0.2484 -1 0.9922 0.0629
B
[1, 1.2, 1.4, 1.2, 1] 0.2484 -1 0.9922 0.0629
C
[0.005, 0.006, 0.007, 0.006, 0.005] 0.2484 -1 0.9922 0.0629

Table 3.1: A table of vectors and measures compared to a reference

In the examples in table 3.1, it is clear that none of the measures finds a difference

between the test vectors, this is both encouraging and unsurprising as the vectors A, B
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Figure 3.2: A graphic representation of the vectors used in table 3.1.

and C are clearly all scalar multiples of the same vector, in spectral imaging terms

these are all pixels of the same material subjected to different levels of shading or

illumination. The PMCC value of -1 confirms that the reference is negatively

correlated to the test vectors. From the graphic in figure 3.2 it is clear that this

confirms that a negative correlation occurs when a peak in one spectra is compared to

a trough in another.

The low values for spectral angle and SID, and the value close to 1 for BCE all suggest

that the test vectors are similar to the reference vector. The implication here is that

all three are measuring a similarity of shape and say nothing about the direction or

sense of the vector.

Spectrum Spectral Angle PMCC BCE SID

Reference
[15, 10, 5, 10, 15] - - - -
A
[15, 12, 9, 12, 15] 0.1515 1 0.9958 0.0337
B
[15, 13, 11, 13, 15] 0.2166 1 0.9920 0.0642
C
[15, 14, 13, 14, 15] 0.2752 1 0.9878 0.0984

Table 3.2: A table of vectors and their measures compared to a reference
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Figure 3.3: A graphic representation of the vectors used in table 3.2.

The examples in table 3.2 show that once again the PMCC finds no difference between

the test vectors, or between the test vectors and the reference. However, each of the

other measures shows the vectors A-C becoming increasingly different from the

reference. De Carvalho and Meneses (2000) cite this as a limitation of the spectral

angle, attributing the difference between vectors A, B and C as being due to a shading

effect, to which the PMCC is “indifferent”. Careful consideration demonstrates

however that this is a misinterpretation of the data.

The difference between the vectors should not be regarded as a shading effect, this

effect was illustrated in the comparison in table 3.1. The values in the highest and

lowest dimension are constant across the four vectors, this suggests that any shading is

occurring preferentially in the three central dimensions. This behaviour is what would

be expected in the presence of a material which absorbs in these dimensions, or in the

central dimension, and which is present in differing volumes or densities in the

measurements of each vector. The difference should thus be regarded an absorption

trough, which is getting shallower in each subsequent spectrum. The change in the

values of the spectral angle, BCE and SID therefore show that each is potentially

sensitive to the amount of absorbing/reflecting/radiating material present in the

spectral image.

Having established that the spectral angle, BCE and SID are changing in the above

example, the natural question to ask is do they all change in the same way and at the

same rate. This is not a question that is clearly answered by the above example and so
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in the following example the test vector is systematically altered, and the effect of this

change on the various measures is studied.

Spectrum

Reference [20, 20, 20, 20, 20]
Test(i) [20, 20 + 2i, 20, 20− i, 20]

Table 3.3: A table of vectors

The first thing to note from this set of reference and test vectors is that the PMCC is

undefined for all test vectors here; since all values in the reference vector are equal, the

denominator in equation 3.3 will be zero. Graphs plotting the spectral angle, BC and

SID against changing i are shown in figure 3.4.

Figure 3.4: A graph showing the change in spectral angle, SID and BC with increasing
i creating test vectors from table 3.3 that are increasingly different from the reference.

From this figure it is clear that the three measures change in very different ways as the

test vector is systematically distorted. It is also apparent that the SID is not shown for

i = 20; the fourth dimension at i = 20 has a value of zero, this causes a problem as the

SID explicitly requires the logarithm of the data in each dimension and the logarithm

of zero is undefined. This demonstrates a minor weakness of the SID, that any zero

values in the spectral image will cause an undefined SID at that pixel.

There is a similar, but less pronounced problem with the spectral angle and BC

whereby vectors whose values are all zero will cause an undefined spectral angle. This

is again explicit in the calculation of the spectral angle as there will be a zero in the
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denominator of equation 3.12. The problem is more subtle in the BC, which would

appear to just generate a value of zero for a zero vector, however it must be

remembered that as the BC is technically defined for probability densities, the vectors

used must have been normalised to sum to 1 before being used in equation 3.4, such

normalisation not being possible for a zero vector. This highlights a general problem

with such “hidden” normalisations whereby errors can be introduced which are hard to

trace.

Figure 3.5 shows the first derivative of each plot from figure 3.4. Considering these two

sets of plots in tandem, several conclusions can be drawn. The BC and SID both

behave in an exponential type manner over this range, as evidenced by the similarity

of the shapes of the original plots and their derivatives. These measures both change

slowly at lower deformations and much faster at higher deformations. The spectral

angle behaves the opposite way, the changes here being more marked at lower

deformations and gradually tapering off at higher deformations. This demonstrates an

increased sensitivity to change at lower deformations in the spectral angle than in

either of the other measures.

The derivative of the spectral angle in this case appears to be linear, careful analysis

shows this not to be true. The derivative actually follows a backwards, stretched ‘S’

shape, however in this particular case a linear decrease is a very good approximation.

Figure 3.5: A graph showing the derivatives of the plots in figure 3.4, the spectral
angle and SID are plotted on the same vertical axis (left), the BC is plotted against

the right hand vertical axis.
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Within the context of spectral imaging it is more common to be working in a regime

where the requirement is to detect small changes between spectra that are both similar

to a reference than it is to be detecting the same changes in spectra that are very

different from a reference. Further, within the context of this project, this is the case.

Therefore, whilst there are situations where the SID or the BC would be entirely

appropriate measures, the rest of this thesis shall be concerned with the spectral angle.

This has two further advantages, firstly, that the spectral angle requires no hidden

normalisations, and secondly, this geometric interpretation of spectra leads naturally to

an extension of the spectral angle, which will be further discussed in the next section.

3.3 Extending the Spectral Angle

The spectral angle is widely used in spectral image analysis, this is largely due to

reasons mentioned in section 3.2.1, it is a straightforward concept to comprehend, it is

simple and computationally inexpensive to calculate and it is inherently scale

invariant. The spectral angle can be used to compare a pixel of unknown spectral type

to various known target spectra in order to classify it; alternatively, several unknown

pixels can be compared to a standard target, thus giving a relative measure of how

similar each is to the others. In either modality, it is common to create a spatial map

of how this metric varies across the image plane, the resultant image is known as the

Spectral Angle Map (SAM).

The benefits offered by the spectral angle are further demonstrated by Sohn et al.

(1999), who use spectral imaging to map deforestation in North-Central Yucatan. This

paper tests the performance of the spectral angle against the Euclidean distance and a

transformed Euclidean distance called the Mahalanobis distance, in terms of separating

sagebrush spectra from soil. The spectral angle is shown to provide consistently

smaller intra-class values and consistently larger inter-class values than either distance

measure, thus making it a good candidate for a classification metric.

The same author further explores the suitability of the spectral angle as a classification

metric in a follow up paper (Sohn and Rebello, 2002). This confirms the robustness of

the spectral angle as a classifier and further expands on its particular suitability as

being a measure of the spectral shape rather than a statistical distribution pattern. In

that sense, the spectral angle is very much a direct measure and one that is entirely

appropriate to spectral imaging. This gives it a further advantage over most of the

measures considered in the previous section, which rely on approximating the spectral

response as a probabilistic distribution.

As a single number being used to represent a vector of data that was originally

perhaps tens or even hundreds of dimensions, the spectral angle is necessarily a lossy
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data reduction and suffers from a number of inherent limits. It is these limits, and the

attempt to mitigate them, which form the basis of the rest of this section.

3.3.1 Limitation of the Spectral Angle

The most fundamental limit of the spectral angle, is that for a given reference vector,

it does not specify a unique test vector.

Considering the 2D case for example, relative to the reference vector (1, 1), both

vectors (
√

3, 1) and (1,
√

3) subtend an angle of 15◦ and appear identical to a spectral

angle metric. This is a point noted by De Carvalho and Meneses (2000), and it is in

answer to this that they introduce the idea of using the PMCC as a spectral similarity

measure, as discussed in section 3.2 above.

In two dimensions, it is clear that an angle θ subtended from a reference can describe

any length multiple of one of two possible vectors. In three dimensions this is extended

to a cone of vectors centred on the reference, which is, in principle, an infinite number

of vectors. Taking a resolution limit into account it is clear that degeneracy is still a

problem, and that indeed the problem gets worse as the number of dimensions

increases (discussed in section 3.3.2 below), although beyond three dimensions it

becomes difficult to picture what is happening.

With the exception of the above mentioned De Carvalho paper, this degeneracy is a

point that seems to have been neglected in the literature; however, evidence does exist

to suggest that the spectral angle has practical limitations. In a study investigating

aerial mapping of previously unmined regions that compared the utility of the SAM

and another spectral analysis algorithm known as Tricorder, Crósta et al. (1998) note

the SAM misclassifying some areas of interest.

3.3.2 Numerical Degeneracy - The Other Curse of Dimensionality

In two and three dimensions, the issue of which spectra subtend the same angle from a

reference is easily pictured. In higher dimensions this is much more troublesome.

Extrapolating and remembering the relationship between the spectral angle and the

Euclidean distance, it may be imagined that the points of the vectors subtending the

same angle from a reference in four dimensions form a sphere around the reference

point. Extrapolating further, it can be imagined that these vectors form hyperspheres

around the reference in even higher dimensions. In this scenario, it seems that as the

number of dimensions increases so does the number of degenerate vectors at any

spectral angle. The situation seems particularly bleak when it is remembered that even

in three dimensions, the number of degenerate vectors is, in principle, infinite.
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The infinity of degenerate vectors is a result of considering the geometric space in

which the calculation takes place to be continuous. In any practical situation, this is

not the case. The space is actually discrete, each dimension measures values only as

integers, from zero to an upper limit determined by the precision of the image. A

standard RGB bitmap image is described as being 24 bit colour (or 16 million colours),

it provides a 3D space in which each dimension takes a 8 bit integer, i.e. only values

between 0 and 255. The space therefore consists of 16,777,216 unique points, and the

number of vectors that can subtend any given spectral angle is therefore bounded.

Clearly, improving the precision of the image will increase the size of the space, for

example, the Sony Ex-View camera whose spectral response is shown in figure 1.1

captures 12bit images. An RGB image generated from this camera will form a 3D

space in which each dimension takes only values between 0 and 4095, generating over

68 billion unique points.

There are thus two factors determining the size of the discrete space, the number of

dimensions and the precision of the image. Increasing either will increase the number

of degenerate vectors for a given spectral angle. Adding more dimensions, irrespective

of whether they provide extra discriminatory information, will increase the number of

points in the space at a given spectral angle from a reference. This necessitates a

decrease in the confidence that two vectors measured to be at the same spectral angle

from the reference can be considered as being the same; this decreasing confidence

from increasing the number of dimensions can be considered a second “curse of

dimensionality”.

3.3.3 Azimuthal Angles in Three Dimensions

As mentioned in section 3.3.1, in a 3D space, the set of vectors, T , at an angle θ from

some reference vector, R, form a cone around it (see figure 3.6).

By rotating the co-ordinate frame such that the reference vector is used as an ordinate

axis, i.e. R= Rz’ , and looking down this axis, the situation is as pictured in figure 3.7.

From figure 3.7, it is clear that projecting each member of T onto the x′y′ plane will

form a circle centred on z′. Each vector can now be uniquely identified by specifying

the angle, ϕ, between this projection and the x′ axis, i.e. by taking the spectral angle

of this projection with the axis. The choice of axis in this case is entirely arbitrary as

there is a constant relationship between the angle from x′ and the angle from y′.

Thus by considering this pair, (θ, ϕ), one can uniquely distinguish between distinct

spectra, even where they are at coincident spectral angles from a reference.
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Figure 3.6: A vector R in three dimensions with a cone of vectors T subtending an
angle θ around it.

3.3.4 The Spectral Position Map in Many Dimensions

In N + 1 dimensions, the set of vectors T is described mathematically as:

T i =
N+1∑
j=1

Tijxj . (3.17)

For convenience, the co-ordinate space is rotated such that R= Rx’1. The projection

considered is that of T onto the ND subspace orthogonal to x′1. This leaves the set of

vectors τ :

τ i =
N+1∑
j=2

T ′ijx
′
j . (3.18)
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Figure 3.7: The scene from figure 3.6 after the co-ordinate space has been rotated
such that the vector R is now coincident with the ordinate axis out of the plane of the
paper. Each member of the set of vectors T now subtends a unique angle ϕ from x′.

A set of N angles, ϕk, can now be calculated for each τ i, describing the angle between

the vector and the relevant axis x′k:

ϕik = arccos


T ′ik√√√√N+1∑
j=2

T ′2ij

. (3.19)

It should be noted that this applies for an N > 1; in the special case of N = 1, it is

sufficient simply to consider the projection of T ′2. N = 2 is also a special case in that

there is a constant and well defined relationship between ϕ2 and ϕ3, making the two

metrics degenerate.

Each set of ϕ calculated is referred to from this point as a spectral position vector

(SPV). Much like the spectral angle can be spatially mapped to form an SAM, the

SPVs can be mapped spatially to form a Spectral Position Map (SPM).

For an (N + 1)D image, the full SPV has N dimensions, if the spectral angle is

included then the full spectral position map has the same dimensionality as the
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original image. This means that the combination of SAM and SPM represent an

intensity normalised re-encoding of the data.

3.4 Established Alternatives - K-Means Classifiers and

Principal Components Analysis

The problem of unsupervised classification is not unique to this project, and as such

other approaches have been studied. Further, strategies for dealing with the challenges

of working with high dimensional data have also been studied. In this section, one such

classifier, or more properly one family of classifiers, is described alongside a method for

managing high dimensional data.

3.4.1 The K-Means Classifier

The K-Means classifier is an algorithm which seeks to sort a set of data into subsets, or

classes, such that variations within a class are minimised and variations between

classes are maximised.

The algorithm is seeded with a number of classes, k, into which to sort the data and

the first step is to randomly assign each data point to one of the classes. The

remainder of the algorithm is an iterative resorting following the steps outlined below.

1. For each class, calculate the average value, x̄, of the n data points xi, in the

class, where, x̄ =

n∑
i=1

xi

n , these are the “class centres”;

2. for each data point, calculate a distance from it to each of the class centres,

dij (xi, x̄j);

3. reassign the data point to the class to whose centre it is closest;

4. calculate the new set of class centres;

5. repeat steps 2-4 until some condition, ε, is satisfied.

There are two parts of this algorithm that can be modified, thus creating a family of

classifiers; the first is the condition ε, which is often along the lines of “the sum of the

distances of each data point from its class centre is less than a given value”, but can be

as simple as a maximum number of times to iterate over. The second is the distance

measure, dij used, which can in principle be any function of the two points, but is most

commonly a distance measure like those outlined in section 3.2.1.



Chapter 3 Pixel Classification 55

3.4.2 Principal Components Analysis

Principal Components Analysis (PCA) is a common data tansformation and reduction

method that seeks to rewrite data in terms of uncorrelated variables. It can be thought

of as a rotation of the axes in multidimensional space such that the new (orthogonal)

axes represent the directions of greatest variance in the original data. These new axes

are the principal components (PCs). Once this rotation has been achieved, data

reduction can be performed by projecting the data into a lower dimensional space

defined by the higher order PCs. As these PCs have been calculated to maximise the

amount of variance retained, the information loss from this reduction is minimal.

PCA is calculated on zero-centred data, so the first step in calculating the PCs is to

calculate the mean data value in each dimension and subtract this from each datum.

x′i,k = xi,k − x̄k (3.20)

Having done this, the co-variance matrix Ckl is calculated where:

Ckl =

N∑
i=1

x′i,kx
′
i,l

N − 1
(3.21)

This generates an n× n diagonal matrix measuring the co-variance of each dimension

with every other dimension. The eigenvectors of this matrix form the PCs, the first PC

being the eigenvector with the greatest corresponding eigenvalue.

The eigenvalues are proportional to the variance of the data accounted for by each

eigenvector (and hence the total variance of the data is proportional to the sum of the

eigenvalues). It is worth noting that eigenvectors are not unique solutions to the

matrix equation Mx = λx, in that if a is a solution then κa is also solution (where κ is

some constant). This implies that eigenvectors at least provide unique directions since

scaling a vector does not change the direction in which it points; however since κ could

be negative, this direction is not unique since the opposite direction is an equally valid

solution.

Having calculated the PCs it is possible to perform a data reduction by rotating the

data into PC-space. This is a vector operation where both the data and the PCs can

be treated as vectors in n dimensions. The component of each data point in each PC is

then simply the projection of the original data vector onto the PC vector (i.e. the dot

product of the two vectors).
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yi,q =

n∑
k=1

x′i,kpq,k (3.22)

where pq is the vector corresponding to the qth PC.

As the eigenvalues are proportional to the variance they capture, it is possible to

reduce the dimensionality to the first n eigenvectors, retaining a known proportion of

the variance, and typically a high proportion of the variance is captured in a small

number of PCs.

Rotating all data into a PC space where all PCs are retained represents a re-encoding

of the data, not dissimilar to that provided by using the SAM and SPM. However,

PCA does not normalise the data with respect to intensity, unlike the SAM and as

such is a reversible (lossless) re-encoding. The axes of the new PC space are labelled in

such a way as to consider them to be weighted, the first PC and hence the first axis, is

known to account for the largest proportion of the variation in the data and so on

down the list. This follows from PCA being a statistical consideration of the data. In

contrast, with the SAM and SPM rotation, which is based on the geometry of the data

in the high dimensional space, this weighting is not apparent, and it cannot be

declared without further measurement, which of the axes in the newly rotated SPM

space might contain the greatest variance.

3.5 Conclusions

In this chapter a number of metrics of spectral similarity have been discussed and

compared and it was concluded that for this project the spectral angle is a sensible

metric to use for analysis of spectral images.

The original motive for introducing a spectral similarity metric was to represent high

volumes of data in a meaningful way. Reducing a vector of N + 1 dimensions to a

single meaningful value is by necessity a many to one reduction and degeneracy will be

introduced into the system. There is no requirement however for a meaningful

representation to be limited to a single dimensional measure; for example, as has been

intimated throughout this report, a colour image is a meaningful representation of

information in three dimensions. In this chapter the possibility of a multidimensional

representation of spectral information has been explored, and a measure called the

Spectral Position Vector (SPV) was introduced.

The motivation for the SPV was to find a measure that would complement the spectral

angle in an attempt to reduce the inherent degeneracy. The full SPV achieves a

complete elimination of this degeneracy, but only at the cost of not actually reducing

the data. As a compromise it is envisioned that the spectral angle along with a small
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number of the SPV dimensions will ultimately be used to generate a meaningful

representation of the data, this is discussed further in chapter 4.





Chapter 4

Testing and Validating the

Spectral Position Map

If an image is only as useful as the information that can be gleaned from it, then the

same must be true of a similarity measure. It is, after all, through these measures that

the information is obtained. Having been introduced in chapter 3, the SPV will, in this

chapter, be tested on a range of images to verify that it does actually provide

additional information to the spectral angle, and that that information is actually

useful.

4.1 A Demonstration Using Specially Generated Images

The test spectral images in this section were generated using code kindly written by

Dr. Paul Hoy. The analysis was performed by both Dr. Hoy and the author.

Each “test” image in this section was generated in the same manner. A uniform grey

reference spectrum, i.e. a spectrum in which the intensity in each dimension is the

same, is assumed. The pixels are set such that all pixels in the same column are at the

same spectral angle from this reference; the angle increases from zero at the left hand

side of the image, to a value that varies with the number of dimensions on the right

hand side. In each column, each successive row is the result of the vector in the top

row being incrementally rotated around the reference vector, from zero to 2π radians.

The 3D case, i.e. a test image with three planes, is the obvious starting point for

verifying that the spectral position behaves as would be expected; the properties of

this case are straightforward both to comprehend and to calculate. Figure 4.1 shows

the same view of the 3D co-ordinate space as figure 3.7 from the previous chapter, and

shows how points in the space relate to pixels in the test image. Clearly, all points

lying on the same circle subtend the same spectral angle from the reference, and thus

59
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lie in the same column. Points on the same radial lines are at the same spectral

position and thus lie in the same row.

Figure 4.1: An image1showing the 3D co-ordinate space in the same configuration as
in figure 3.7, and how the points in the space correspond to the spatial pixels of the
test images generated. Points on the same radial line lie on the same row of the test

image, points on the same concentric circle lie on the same column.

There is the further benefit from working in three dimensions, i.e. that the test image

can be thought of, and displayed, as an RGB image. Figure 4.2 shows the RGB display

of the 3D test image.

It is clear from figure 4.2 that the colours in the image change both horizontally and

vertically. On the extreme left, there is a band which appears to be all grey, this

should not be surprising as the reference vector was defined to be grey and pixels at

the left hand side have a small spectral angle from the reference. It is also clear that

this area should vary only slightly through the vertical, as for smaller spectral angles,

the circle defined by a rotation of spectral position is much smaller than for larger

angles (see figure 4.1 to verify this), and thus the colour values will be little changed.

On the right hand side of the image however, the spectral angle is much larger and

changes in spectral position cause much more rapid changes in colour. A full rotation

about the reference vector rotates the test vector through 360◦ of hue, which can be

1Image modified from an original at http://en.wikipedia.org/wiki/File:Polar_graph_paper.svg
under a GNU Creative Commons License by kind permission of Mets501

http://en.wikipedia.org/wiki/File:Polar_graph_paper.svg
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Figure 4.2: The RGB view of the 3D test image.

seen as the colour moving from a greenish blue at the top through a complete

spectrum of colours to the same greenish blue at the bottom.

Figure 4.3 shows each pixel from the test image as a point in a 3D space, the RGB

colour space. This suggests that only a small portion of the available colour space is

being represented, however it should be remembered that the intensity independence of

the spectral angle means that each point is in fact representative of the entire straight

line, from the origin to the edge of the space, on which it lies. The “satellite-dish” like

shape is formed by the points because the the image is generated such that each pixel

is of a similar intensity, and hence the points are all at a similar distance from the

origin. Figure 4.4 shows the same space rotated such that the reference vector is

pointing out of the plane of the page, the points lie on concentric circles, and along

radial lines, further confirming the image from figure 4.1.

The SAM of this image was calculated, yielding the expected result as shown in figure

4.5. In this image the spectral angle is mapped to an intensity in grey-scale, an angle

of zero corresponds to a completely black pixel (zero intensity) and the maximum

angle present (in this case ∼ π
5 ) corresponds to a completely white pixel (100%

intensity), with all intervening values scaling linearly. The resulting image is thus a

horizontal graduation from black on the left to white on the right, constant through

the vertical dimension.
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Figure 4.3: An image showing the pixels of the test images generated as points in a
3D space, with axes rotated to demonstrate the shape of the distribution of the points.
The points form a “satellite-dish” shape centred on the line R=G=B, with a circular
distribution. At the bottom the projection of the distribution onto the BG, BR and

RG planes are shown.

The combination of figures 4.2 and 4.5 demonstrate that the spectral angle alone is

unable to discriminate between very different spectra.

The SPM was then calculated for the image. The SPV in this case is a 2D vector at

each pixel, and thus there are two image planes in the SPM; these are both shown in

figure 4.6. Again, angles of zero map to black pixels, with increasing angles linearly

mapping to increasingly light grey values, white pixels correspond to an angle of π

radians. The scale bar for all of the SPMs in this thesis is shown in figure 4.7.
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Figure 4.4: An image showing the spatial pixels in the test image as points in a 3D
space with axes rotated such that the reference vector is orthogonal to the plane of the

page, the general shape here confirms figure 4.1.

Moving vertically down the ϕ1 image (left hand side of figure 4.6), the angle increases

from zero at the top through π radians in the middle and back to zero again at the

bottom. The ϕ2 image on the right hand side can be seen as a vertical translation of

the ϕ1 image by one quarter of the image height (with the bottom rows looping back

up to the top). This is intuitive since in three dimensions, the axes of the orthogonal

plane in which these angles are calculated translate to each other by a rotation of π
2

radians (a quarter of the full rotation). The decision as to which axis to label as the ϕ1

axis is entirely arbitrary, and hence the angles should actually be degenerate.

The fact that the ϕ1 image moves from black at the top, through white in the middle

and back to black at the bottom, or alternatively, that π radians rather than 2π

radians maps to white, can be explained by noting that whilst the image is generated

by rotating the test vector by 2π radians, when the SPV is calculated, the angles are

determined using the arccosine function; this function has a principal domain of 0 to π

radians. The cosine function is symmetrical about π, i.e. cos (π + α) = cos (π − α), so

for angles greater than π, as the angle increases the arccosine decreases. In order to

determine whether the angle is π + α or π − α from a given cosine value, the value of

the pixel in the ϕ2 plane must also be known.
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Figure 4.5: The SAM of the 3D test image.

Figure 4.6: The SPM of the 3D test image, the first plane is shown on the left hand
side and the second plane on the right hand side.

This indicates that whilst in principle the dimensions of the SPV are degenerate, in

practice the limited principal domain of the arccosine function means that both

dimensions are actually required to uniquely specify a vector.

In any more than 3 dimensions, there is no useful or insightful visualisation of the test
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Figure 4.7: The scale bar for all SPM images used in this thesis.

image, however, there continues to be interesting information in the SPMs. In general,

for a spectral image each plane represents a specific wavelength or waveband and hence

mapping a selection of these to RGB channels can produce a colour or pseudo-colour

image that reveals something about the underlying scene, however for these test

images each plane is merely a dimension in an abstract space. Another standard

visualisation is to approximate the total intensity at each pixel by summing or

averaging the values in each plane, again this is not relevant for the test images since,

as mentioned above, they are generated in such a way that the total intensity of each

pixel is constant (or approximately constant) across the entire image plane. An

intensity visualisation would thus be a uniform (or near-uniform) grey square, which

reveals nothing of interest.

The SAM for all higher dimensional test images is the same as that shown in figure 4.5;

the maximum angle present actually decreases as the number of dimensions increases,

however the SAMs are generated such that the maximum angle present always maps to

a white pixel, this is done to maximise the contrast in each image. Further, the first

dimension of the SPV is also the same for all test images (ϕ1 image from figure 4.6);

this merely confirms that the images were generated by the method described above.

The full set of SPV planes for the 5D and 6D cases are shown in figures 4.8 and 4.9

below. These results are typical for test images where the number of dimensions are

odd and even respectively.

Figures 4.10 and 4.11 below show the intensity profile through a column of each plane

of the SPV in the 5D and 6D cases respectively. The images for planes 2 and 3 in

figures 4.8 and 4.9 appear to be the same, this is confirmed by comparing their profiles

in figures 4.10 and 4.11.
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Figure 4.8: The SPM for the the 5D test image, the plane number is indicated in the
bottom right hand corner of each plane.

The profiles of the last plane for each share similarities in their shape, although for the

5D case it is an odd function about pixel 256, whereas for the 6D case it is even about

pixel 256. This is a pattern followed as the dimensionality increases, the last plane has

a maximum and a minimum for odd numbers of dimensions and two minima for even

numbers. As dimensionality increases the peaks become sharper and increasing

numbers of pixels are at 50% intensity.

This is part of a wider trend in which the profile for each plane has a symmetry about

pixel 256 that is odd for odd numbered planes and even for even numbered planes. For

an ND case, the (N − 2)th plane introduces a new profile, which appears in the same

plane all subsequent cases > N .

The purpose of the set of test images presented here was to demonstrate that the SPV
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Figure 4.9: The SPM for the the 6D test image, the plane number is indicated in the
bottom right hand corner of each plane.

Figure 4.10: The intensity profiles for a vertical line through each of the planes of
the SPM for the 5D test image.
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Figure 4.11: The intensity profiles for a vertical line through each of the planes of
the SPM for the 6D test image.

contained useful information that was independent from, and in some way

complementary to, the spectral angle. The discussion above, whilst not an exhaustive

interrogation of the possible set of images, demonstrates that this is the case, and

further that there is information in each plane of the spectral position, none of which is

dependent on the spectral angle.

4.2 A Demonstration in Three Dimensions - RGB Images

Having established that it is possible to extract information independent from the

spectral angle, the SPM will now be applied to a number of RGB images to

demonstrate how this information can be used. This will start with an image that is a

staple target in image processing, known simply as “Lena” or “Lenna”.2

Figure 4.12 shows the original image. This is dominated by a small number of tones

and colours; much of the image is a soft skin tone, the colours of Lena’s skin being

barely distinguishable from most of the background. Her hair colour is very similar to

the frame of the mirror visible in the image, and there is a yellow reflection in the

mirror which also provides some contrast. The most striking contrast however is

clearly the blue feather in the hat.

2The story of this image can be found at http://www.lenna.org

http://www.lenna.org
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Figure 4.12: Lena - A staple image processing target.

The SAM for this image, again computed against a grey reference, is shown in figure

4.13 below.

Figure 4.13: The SAM for the Lena image.

It is noticeable that the darker areas on the SAM include the top right hand side of the

hat, the brim of the hat, the right hand edge of the shoulder and the feather on the

hat. If this was the only information we might conclude that these areas looked the
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same, or similar on the original image; this is somewhat true of the hat and shoulder

areas, the feather however, is markedly different. The hair and mirror frame do have

similar spectral angles, as one would expect, but these are far from unique in the map.

For example, from right to left across the hat the spectral angle increases, passing

through a value where it has the same spectral angle as the hair. The yellow reflection

in the mirror is clearly visible in the SAM, although this is largely because the borders

are lighter than the internal area, which is of a similar spectral angle to the rest of the

mirror face area.

The previous paragraph provides only a vague and qualitative analysis of the SAM. A

more quantitative analysis can be performed by examining the distribution of image

pixels in the metric space, i.e. by plotting a histogram of the spectral angle. The

histogram for the Lena image is shown below in figure 4.14.

Figure 4.14: The histogram of spectral angles present in the SAM of the Lena image.

A number of peaks can be seen within the histogram, which is what would be

expected. In an ideal case, each material in the image scene would produce a unique

spectral response, or in this case, colour, which would stand at a unique spectral angle;

the idealised histogram would then be a series of lines. In reality, the signals received

at each pixel are rarely pure, stochastic noise from the detection process,

non-uniformities in the materials themselves and the effect of “mixed” pixels, i.e.

where more than one material is present in a single pixel area, all contribute to slight

variations of spectral angle. According to the central limits theorem, these would be
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expected to broaden the lines into Gaussian curves. Such Gaussian curves can be fitted

to the histogram as shown below in figure 4.15.

Figure 4.15: Gaussian peaks that have been automatically fitted to the histogram
from figure 4.14.

These curves can be used to define classes for an unsupervised classification; the peak

of each curve can be considered to be the centre of a class, each pixel can then be

assigned to a class based on its proximity, in metric space, to the class centres.

Performing this with the Lena image gives the classifications shown in figure 4.16

below. The classes are coloured in order of spectral angle, from lowest to highest,

according to the scale in figure 4.17. This scale was selected to ensure contrast between

adjacent groups.

From figure 4.16, it can be seen that the qualitative observations made above have been

largely confirmed in this quantitative approach. The soft skin tones are represented by

the consecutive classes 6, 7, 8 and 9. One feature that is shown up is the contrast

between the reflection from the mirror and the rest of the scene, this was not so marked

in figure 4.13. The darker areas of the image are represented by the consecutive classes

3, 4 and 5. This confirms that the mirror frame and the hair are indeed very similar,

however as discussed above, the feather is indistinguishable from the front of the hat.

In three dimensions, it is straightforward to examine both planes of the SPM, and

these are shown in figure 4.18 below. It can be seen from this figure that both planes

provide good contrast between the feather and the rest of the image. It is clear then

that using the SPM in conjunction with the SAM allows the separation of areas of the

image that appear the same to the SAM alone.

Figure 4.19 shows a scene of some snooker balls on a snooker table. The same analysis

is performed for this image, and the classified scene is shown in figure 4.20.
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Figure 4.16: Lena image with pixels classified by spectral angle, using the Gaussian
peaks from figure 4.15 as class centres.

Figure 4.17: Scale bar showing class numbers with the colours assigned to them.

It is clear from this image that the white, black, blue, brown and pink balls are

entirely indistinguishable by spectral angle alone, all being classified into class 2. The

baize of the table consists of three consecutive classes, 3, 4, and 5. These classes also

make up the majority of the pixels of the green and yellow balls, which all but

disappear from the image; they remain distinguishable only because of the specular

reflections of the light source and the shading around the edges of the balls which

renders their shapes recognisable, statistically they are indistinct from the background.

The fact that there are four classes making up the red balls (6, 7, 8 and 9) would
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Figure 4.18: The planes of the SPM of the Lena image, plane 1 on the right hand
side and plane 2 on the left hand side.

Figure 4.19: An RGB image of some snooker balls on a table.

suggest that more peaks have been fitted than may actually have been present,

however, as the distribution on each ball is similar, it might also suggest that this is a

function of the lighting. The SAM is, as explained above, intensity independent,

however it is possible that the colour response of the camera is not. It is possible, and

indeed figure 4.20 suggests that it is even likely, that the vectors recorded by the

camera do not scale linearly with changing light intensity.

Again, the SPM was calculated for this image and is shown in figure 4.21 below.
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Figure 4.20: Snooker ball image with pixels classified by spectral angle, using the
Gaussian peaks fitted to the histogram of spectral angles.

Figure 4.21: The planes of the SPM of the snooker balls image, plane 1 on the right
hand side and plane 2 on the left hand side.

It is immediately obvious from the SPM that the yellow ball can be clearly

distinguished from the baize and the green balls; the green ball is still similar in

appearance to the baize, which is not unexpected given the two share a similar colour,

however it is significantly lighter than the baize in the ϕ1 (left) image and significantly

darker in the ϕ2 (right) image. In order to assess how well the SPM separates out the

classes assigned by the spectral angle, the average intensity values of each component

of the image are presented in table 4.1 below. Each component is represented by a
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5× 5 pixel area, representative of the area as a whole.

Region SAM Class ϕ1 Intensity ϕ2 Intensity

Background/Baize 3,4,5 56% 93%
Red Balls 6,7,8,9 35% 14%
Blue Ball 2 80% 70%
Green Ball 3,4,5 68% 81%
White Ball 2 50% 0%
Black Ball 2 57% 91%
Pink Ball 2 58% 7%
Yellow Ball 3,4,5 5% 43%
Brown Ball 2 32% 17%

Table 4.1: A table showing the class and values of spectral position for various areas
on figure 4.19

The combination of the spectral angle and ϕ1 metric separates all but the black and

pink balls, which are similar in both maps; the introduction of the ϕ2 map removes

this last remaining inseparability. However, using the spectral angle and the ϕ2 map

separates all areas without the need for the third metric at all.

The analysis of both of these images demonstrates that in seeking to represent the

multidimensional data by a single metric, important discriminatory information is lost.

The SPV provides an additional source of information that, whilst in some way related

to the spectral angle, is independent from it. By its use, some of the lost information

can be regained, allowing improved discrimination whilst still using only a subset of

the original data.

Whilst they are illuminating and easily understood, RGB images are not typical of

spectral images as a whole. They are easily visualised and can be processed without

recourse to metrics like the spectral angle. Further, the SPV associated with them is a

2D object and so it is feasible to examine the entire SPM for a given image; as the

number of dimensions increases, the assumption that the entire SPM can be visually

studied becomes increasingly invalid. The next section will introduce new ways of

using the SPV data to perform a similar enhancement of discriminatory power for real

spectral images.

4.3 A Demonstration with Spectral Images

The images in this section are real spectral images made publicly available through

The University of Eastern Finland (University of Joensuu Color Group, 2006), they

have varying numbers of dimensions and have been collected with various filter

settings. The colour image representations have been generated by simply selecting a

single plane to represent each of the red (nearest filter to ∼ 650nm), green (∼ 510nm)
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and blue (∼ 425nm) planes of an RGB image, as such they are better described as

pseudo-colour images, but give a sense of the visual scene being imaged.

The first image is a landscape scene of a tree in the foreground with fields and bushes

making up the background. It is comprised of 7 spectral dimensions; these correspond

to wide-band filters (full width at half maximum (FWHM) of around 40nm) evenly

spaced between 400nm and 700nm (approximately centred at 400nm, 455nm, 505nm,

555nm, 605nm, 655nm and 700nm). The pseudo-colour image is shown in figure 4.22.

Figure 4.22: Pseudo-colour image of a countryside landscape spectral image.

Performing the same unsupervised classification on this image as described in section

4.2 above results in the image shown in figure 4.23. From this it can be seen that the

track in lower part of the image is assigned to the consecutive classes 1, 2 and 3; these

classes also pick out the top left corner of the image, which appears to be distant

bushes in the pseudo-colour image. The bushes in the middle distance are largely

classified to class 4 although there is some crossover into class 5, which largely covers

the field in the middle of the image. Both the tree and the short grass in the

foreground of the image are put into the same class. The major misclassification in

this example would appear to be that the tree and the short grass were not separated.
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Figure 4.23: Landscape image with pixels classified by spectral angle, using the
Gaussian peaks fitted to the histogram of spectral angles.

With this small number of dimensions it is still possible to look at all of the SPM

planes in order to assess where useful extra information can be obtained, however even

at 7 planes, this approach is reaching its limits of feasibility. An alternative approach

is to consider a 2D histogram of spectral angle against each of the SPM planes in turn.

The plots for this example are shown below in figure 4.24 below. In each plot, the

spectral angle runs across the horizontal and the spectral position runs along the

vertical. Each pixel is shaded according to how many image pixels have the

combination of spectral angle and spectral position values represented at that point,

the more image pixels, the darker the histogram pixel.

Instead of looking for contrast across the image plane, it is possible to look briefly at

each histogram to decide where the interesting information might be. Identifying the

spectral angle range in which misclassification is occurring, it is straightforward to

assess which plane shows the greatest variance in spectral position or the greatest

number of separate peaks for this range. Having established which plot to use, specific

“structures” on the plot can be isolated and the pixels contributing to them on the

spatial image can be identified. In this example, the first spectral dimension is selected

and two regions of interest identified. Figure 4.25 below shows the two regions of
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Figure 4.24: 2D histograms of spectral angle (horizontal axis) against planes of spec-
tral position (vertical) for the landscape image. The plane of the SPM used in each
plot is marked in the bottom corner of the plot. The darker pixels on the plot represent

more counts in the histogram.
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interest selected, the areas within the red and green boxes. The boxes cover the same

spectral angle range, covered by group 6 from figure 4.23.

Figure 4.25: 2D histogram of spectral angle against the first plane of the SPM for
the landscape image. Two regions of interest have been enclosed in a red and a green

rectangle.

The pixels in the spatial image that contribute to these boxes are highlighted on the

spatial image itself in figure 4.26. Those in the red box are coloured red, those from

the green box are coloured green, and those in neither are shown in grey-scale.

It can be seen from figure 4.26, that using information from the first SPM plane, the

tree and the short grass can be successfully separated.

The second image is a standard colour wheel target; this image has 16 spectral

dimensions representing broad-band filters (FWHM of ∼ 25nm), evenly spaced

(∼ 20nm apart) between 400nm and 700nm. The pseudo-colour image is shown in

figure 4.27.

Again, classification was performed as described above using only the spectral angle

information; the resulting image is shown in figure 4.28. In a number of ways this

classification performs as would be expected; the background is a single class and is

matched by the white/grey areas in the centre of the two colour wheels. In the large

wheel, there is reasonably good separation of areas of different colour; however, there

are also some unexpected class shapes, in particular, group 8 representing the yellow

area of the original image extends beyond the yellow and through areas that are
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Figure 4.26: The landscape image with those pixels from the red and green boxes
from figure 4.25 shown in red and green respectively.

orange and pink. There is a further area of this class at the top left of the wheel, in the

green coloured area.

With 15 SPM planes here to choose from, visual assessments are starting to be

impractical. One way of selecting a plane in which to look for extra information is to

take a quantifiable measure of the contrast existing in a given plane. In this context,

contrast is a measure of the size of the spread of values present, and so measuring the

variance or standard deviations of the values of the SPM in each plane is a sensible

starting point. However, these are absolute measures of spread, and so should be

normalised against a representative measure of magnitude, for example, the mean

value in each plane. This way, the plane showing the most significant spread of values

can be calculated. The contrast metric thus used is defined for each plane as:

C =

√√√√∑
i

(xi − x)2

N

x
, (4.1)
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Figure 4.27: Pseudo-colour image of a colour wheel target spectral image.

Figure 4.28: Colour wheel target image with pixels classified by spectral angle, using
the Gaussian peaks fitted to the histogram of spectral angles.



82 Chapter 4 Testing and Validating the Spectral Position Map

where N is the number of spatial pixels in the image, xi is value of the SPM plane at

pixel i, and

x =

∑
i

xi

N
. (4.2)

Calculating C for each plane of the SPM in this example reveals that the 10th plane

has the most contrast, and so this is used for the 2D histogram in figure 4.29.

Figure 4.29: 2D histogram of spectral angle against the first plane of the SPM for
the colour wheel. A region of interest has been enclosed in a red rectangle.

The red box in figure 4.29 highlights a single peak lying in the spectral angle region

coinciding with class 11 in figure 4.28. It is clear that this represents just a subset of

the pixels in this spectral angle range, but also that it is the most significant structure

entirely in this range. Mapping this region back into the spatial domain gives the

image shown in figure 4.30. From this it can clearly be seen that the peak represents

the yellow area from the original image, separating it entirely from the rest of class 11.

These two spectral images have demonstrated that classification information that is

demonstrably present in the original images and subsequently lost with the reduction

to spectral angles, can be recovered by use of additional information provided by the

SPM. The spectral position is a natural extension to the spectral angle and one which

provides extra, useful information, thus helping to improve unsupervised classification.
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Figure 4.30: The colour wheel image with those pixels from the red box from figure
4.29 shown in red.

4.4 A Comparison to Established Alternatives

In this section the spectral image from figure 4.22 is examined with a standard

unsupervised classification using the commerically available ENVI software3, one of the

most common tools in use for spectral image analysis.

ENVI’s k-means classifier was set up to classify data into six classes (to match the

number found in figure 4.23), the result of which is shown in figure 4.31.

From this it is immediately apparent that a number of differences are exhibited in the

classes found in figure 4.23 and those in figure 4.31. The path that was so apparent in

figure 4.23 is completely indistinguishable in the k-means image, and whilst the tree

trunk and the left hand side of the tree foliage are separated from the middle-ground

field and the foreground, they are not separated from the shrubs either in the lower left

hand side of the image, or along the top of the image. Further, under the k-means

classifier, the field in the middle of the image appears to transition, from being

dominated by magenta pixels towards the top to more green, yellow and blue pixels

towards the bottom.

3http://www.exelisvis.com/language/en-us/productsservices/envi.aspx

http://www.exelisvis.com/language/en-us/productsservices/envi.aspx
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Figure 4.31: Landscape image with pixels classified using ENVI’s k-means classifier.

Clearly, although they use the same basic premise of measuring distances in a metric

space, the two classifications produce different results. It is difficult to definitively say

that one performs inherently better than the other as the tree trunk is very much

clearer in the k-means, the path is much better defined in the image in figure 4.23.

Both methods also fail to separate areas of the image which would be expected to be

different, although the details of how they do this differ.

The image was also analysed using PCA. The image in figure 4.32 shows a gray scale

image where the value of each pixel is the value in the first principal component. This

would suggest that the first principal component is very related to the total intensity

of illumination. Since this is not very interesting information, and as the spectral angle

is not affected by total intensity, this first principal component is disregarded for the

rest of this discussion.

The image in figure 4.33 shows the second, third and fourth principal components

mapped into the red, green and blue channels of a bitmap respectively.

In figure 4.33 the path very distinguishable, much like in figure 4.23, and, as in figure

4.31, the tree trunk is distinguishable from the areas around it, yet appears very

similar to bushes on the lower and upper left areas of the image.
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Figure 4.32: The first principal component of the landscape image mapped spatially.

As PCA can be thought of as a re-encoding of the data, k-means classification can be

performed on the resulting dataset. This was performed (again, not including the first

PC) and the result is shown in figure 4.34.

Again, the path here is clearly visible, however much like the image in figure 4.23, the

tree is not very clearly distinguished, particularly from the grassy areas in the

foregound and to the front of the middle-ground.

4.5 Conclusions

The analysis of the test images in this chapter has confirmed that in a situation where

the properties of the spectral position vector can be predicted, it does indeed behave as

expected. Further, this has suggested that there are some systematic properties of the

spectral position that are not yet fully explained and may provide interesting future

research.

The analysis of the spectral images has demonstrated that classification information

that is demonstrably present in the original images and subsequently lost with the
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Figure 4.33: The second, third and fourth principal component of the landscape
image mapped spatially.

reduction to spectral angles, can be recovered by use of additional information

provided by the SPM. Further, it is clear from the analysis using standard alternative

classification techniques, that the spectral position provides extra, useful information

that can help with unsupervised classification.
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Figure 4.34: Landscape image with pixels rotated to principal component space before
being classified using ENVI’s k-means classifier.





Chapter 5

Towards an Optical Sentinel

Lymph Node Biopsy

The spectral imaging techniques described in previous sections are generic techniques

that are applicable to any form of spectral imaging in any discipline. However, their

development has arisen from the study of the potential application of spectral imaging

to medical applications; specifically, to the use of spectral imaging as an optical

technique to perform tissue biopsies. The idea of using spectral imaging for this

purpose arose from discussions with Mr. Richard Sainsbury, a consultant oncologist at

the University of Southampton. Mr. Sainsbury and his surgical team at St Mary’s

Hospital, Newport, Isle of Wight, have kindly collaborated in this work since those

initial discussions. This work was performed under local ethics clearance from St

Mary’s Hospital, which was kindly organised by Mr. Sainsbury.

This chapter describes the work undertaken in this regard; section 5.1 explains the

clinical setting and provides a review of the literature which motivates the work,

section 5.2 describes the work performed in setting up the imaging system and the

data processing suite necessary for this work, and section 5.3 presents and discusses

some preliminary results obtained.

At this stage, it should be noted that non-melanoma skin cancers are conventionally

omitted from the quoted cancer statistics; this is due to uncertainties and

inconsistencies in their registration, and because they are, on the whole, highly

treatable and even curable. The statistics quoted in 5.1.1, unless otherwise referenced,

are obtained from Cancer Research UK (2011) and all follow this convention.

89
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5.1 Background

5.1.1 Breast Cancer and the Sentinel Lymph Node Biopsy

Breast cancer is an extremely prevalent form of cancer worldwide, and is the oldest

recorded cancer. It was first described in the Edwin Smith Papyrus, part of an

Egyptian textbook on surgery dating to around 3000BC, it was noted that there was

no treatment and cauterisation was recommended as a palliative care.

Today, for women in the UK, the lifetime risk of developing breast cancer is estimated

to be 1 in 8. Despite its very low incidence in men, breast cancer is the single most

common form of cancer in the UK, accounting for around 16% of all cancers. This

figure is around 31% of cancers in women, nearly three times higher than the second

leading form (lung cancer, accounting for around 11%). Less than 1% of all breast

cancer patients are men. In real terms, there were 45,822 new cases of breast cancer in

the UK in 2006, of which 45,508 were in women. Breast cancer occurs at a rate of 75.6

cases per 100,000 people (147.3 cases per 100,000 women) per year.

Whilst accounting for some 16% of cases, breast cancer only accounts for around 8% of

all cancer deaths in the UK. Indeed, the mortality rate (deaths per 100,000 people in a

year) has been in slow decline since around 1990, even as incidence has been

increasing. The decrease in mortality rates can be attributed to improved treatment

and earlier diagnoses.

Survival rates are measured as a percentage of those diagnosed who are still alive at

yearly intervals after initial diagnosis. These have been increasing in the UK since 1971

but are still very heavily linked to how early the cancer is diagnosed. The overall five

year survival rate for cases diagnosed between 2001 and 2003 is 80%, for those

diagnosed between 1971 and 1975 this rate was just 52%. It is predicted that the 20

year survival rate for the 2001-2003 cases will be over 60%, which is a clear indication

of the improvement in survivability.

The development of cancer is split into four clinical stages, details for which are given

in table 5.1. This table pre-empts a discussion on lymph nodes and the lymphatic

system, which is presented later on in this section, however it is necessary to introduce

these stages here.

A study of breast cancer cases diagnosed in the West Midlands between 1990 and 1994

showed that for patients diagnosed with stage I cancers the five-year survival rate was

92%; this dropped to 73% for stage II cancers, 50% for stage III and just 13% for stage

IV. Ten year survival rates were 87% for stage I, 63% for stage II, 40% for stage III

and 8% for stage IV. Early detection is therefore vital to effective treatment, and being

able to accurately assess the stage of the cancer is important to being able to plan a

treatment regime and to provide a reliable prognosis for the patient.
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Stage Clinical Description

I
Tumour size < 2cm
No lymph nodes affected
No evidence of spread beyond the breast

II
Tumour size 2-5cm
Axillary lymph nodes affected
No evidence of spread beyond axilla

III
Tumour size > 5cm
Axillary lymph nodes affected
No evidence of spread beyond axilla

IV
Tumour of any size
Non-axillary lymph nodes affected
Cancer has metastasised to another part of body

Table 5.1: Clinical descriptions of the stages of breast cancer at diagnosis

Diagnosis of breast cancer is typically made by way of x-ray mammography; the size

and location of the tumour can be determined from this mammogram. In many cases,

a patient will have discovered a palpable lump, however routine screening programmes

have been implemented to improve detection rates and these also aid in early

detection. Treatment is typically a surgical resection of the tumour, for particularly

large tumours a complete mastectomy may be required. Sometimes adjuvant

treatments such as radiotherapy and chemotherapy may be performed to reduce the

risk of recurrence, or where micro-metastasis is suspected.

The lymphatic system is a circulatory system that is responsible for draining

interstitial fluid from tissues and returning it to the bloodstream. It consists of a

network of small capillary-like vessels called “initial lymphatics”, filter-like structures

called “lymph nodes”, and larger lymph vessels; the fluid transported is referred to

simply as lymph. Fluid filters into the initial lymphatic through a series of valve-like

structures on the vessel walls before being “pumped” by muscular contractions of the

vessel walls into the larger lymph vessels. At various points in the system there are

clusters of lymph nodes; these nodes produce and process white blood cells, which play

a key role in the immune system by destroying harmful foreign particles. The nodes

thus filter the lymph and also release these white blood cells for eventual deposition

into the blood stream. The lymphatic vessels return lymph to the main circulatory

system near its entrance to the heart at the right atrium.

As a consequence of being the system by which excess interstitial fluids are transported

around the body, the lymphatic system is also a significant pathway for metastasis of

cancer. Cancerous cells from the primary tumour site are transported in the lymph

and can accumulate in a secondary tumour site in another organ. The first indication

that this may have started to happen will be an accumulation of cancerous cells in the

lymph nodes nearest to the primary tumour site. As the process progresses, other node
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clusters may become involved before a secondary tumour forms. In this way, the extent

of involvement of the lymph nodes is an indicator of the stage of the cancer. Assessing

this involvement is therefore a key task to reliably determine the stage of the cancer.

The first cluster of nodes that fluids from the breast area will encounter are located in

the axilla (armpit), and within this cluster, there is single node that is the first to

which fluids drain, this is the “Sentinel Lymph Node” (SLN).

The historical approach to assessing the lymphatic involvement was to completely

remove the axillary cluster of nodes during the course of tumour resection surgery and

perform histological examination of the whole cluster; this procedure is referred to as

an Axillary Lymph Node Dissection (ALND). Due to their role in the immune system,

such a removal of nodes poses a long term health risk. Further, it can lead to blockages

in the lymph vessels that stop fluid from being effectively removed from tissue; this can

lead to severe swelling due to a build up of excess fluid, particularly common in the

limbs, known as edema or oedema.

More recently, the technique at the heart of this thesis, the Sentinel Lymph Node

Biopsy (SLNB), has become increasingly standard as a way to preserve healthy lymph

nodes whilst assessing lymphatic involvement. The patient is injected with a tracer, or

combination of tracers, at the tumour site before surgery. The common tracers are a

colloidal solution of a radioactive material, metastable technetium 99 (99mTc), and a

blue food dye called Patent Blue V (E131). These tracers will drain rapidly to the

sentinel node, which can then be identified during surgery by its blue colour and/or its

high radioactivity. This sentinel node is then resected and examined for the presence of

cancerous cells.

The node is sliced open through a longitudinal axis and opened or “butterflied”. A

visual examination of the cut surface is sufficient only in the most clear cut cases when

the cancer has spread completely through the node. Figures 5.1 and 5.2 show the cut

surfaces of two lymph nodes that have been resected, demonstrating that colour

images are also not reliable, even as indicators of the extent of the node compared to

the surrounding tissue. The cut surface is pressed against a microscope slide, which is

then examined cytologically, a technique known as TP Cytology (standing for either

Touch Print or Touch Prep.). The node itself is then fixed in formalin for subsequent

slicing, staining and histological examination. The TP cytology is a rapid process

(compared to traditional histology, which has a long preparation time), and an

indication of whether cancerous cells are present or not can be obtained in around an

hour. Evidence suggests that if the sentinel node is unaffected by cancerous cells, then

the probability that other nodes are involved is very low (Howard et al., 1998); the rest

of the node cluster can thus be left intact. If cancerous cells are detected then a full

dissection will still be required to assess the extent of the spread.
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Figure 5.1: The cut surface of a butterflied lymph node, set in some fatty tissue. The
approximate extent of the node tissue is marked in black, and although the central part
is distinguishable by a bluish appearance, the exact border is not clear from this image.

Figure 5.2: The cut surface of a butterflied lymph node, set in some fatty tissue.
The approximate extent of the node tissue is marked in white, and as with the above
example, some of this is distinguishable from subtle changes in the colour, but the

border is not at all clear.

Although a comparatively rapid process, the TP Cytology is still often the longest part

of the surgery. The time taken for a result to come through is time that the patient is

anaesthetised and “open” in the operating theatre, and often time in which nothing
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else is happening, the tumour having already been resected. This is a cost not only to

the patient in terms of increased risk of infection or complications from anaesthetic, but

also to the treatment centre in terms of the turnaround time of the operation; reducing

this waiting time would allow more surgeries to be performed in the same period.

The situation is actually potentially worse, if the facilities for performing the TP

Cytology do not exist on-site at the treatment centre, then a SLNB can only be

performed if the node is sent to external laboratories for assessment. In the case that

cancerous cells are detected, the patient will require further surgery to perform the

ALND, potentially at a delay of several weeks. Again, this presents a cost to the

patient, not only in terms of the risks that are inherent with any surgery, but also the

anxiety caused by the lack of certainty over the need for further surgery; again, there is

also a cost to the treatment centre in terms of reducing the throughput of patients.

As a result of these considerations, the SLNB has been identified as an area that would

greatly benefit from a technique that will reduce the time taken to produce a result. In

order to increase the utility of such a technique, it will also have to be low cost and

ideally automated, or at least a technique that requires no specialised operators. These

two factors would allow it to be readily available at all treatment centres.

Following discussions with Mr. Sainsbury, and on the basis of a review of existing

spectroscopic work on lymph nodes detailed in section 5.1.2, spectral imaging in the

VNIR region has been identified as potential technology for performing such a biopsy;

the technologies involved are readily commercially available at low cost, and current

image processing work suggests that the processing could be automated and rapid.

5.1.2 Medical Review

Whilst the SLNB has been presented here as a routine procedure, like much in the field

of medicine, it continues to be an active field of research. Whilst a full discussion of

the medical literature would be beyond the scope of this report, it is illuminating to

know in broad terms how the procedure is being studied by experts in the field, not

least to ensure that this project is starting on a firm clinical footing. Some background

on the medical literature surrounding the SLNB is thus provided in section 5.1.2.1

before sections 5.1.2.2 and 5.1.2.3 present a review of the literature in relation to

spectroscopic studies of cancer and lymph nodes.

5.1.2.1 The Efficacy of the SLNB

This section provides a brief a overview of the ongoing research as to how surgical

intervention can be best applied in cancer patients. As with any new surgical
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procedure, two main concerns from the outset have been whether the technique is safe,

and whether it provides demonstrable benefit.

A 2004 study by Veronesi et al. (2003) compared two groups of patients, one group

who had SLNBs followed by a full ALND (the ALND group), and a second who had

SLNBs followed by ALND only if the sentinel node showed metastases (the SLNB

group). This study followed up with the patients for 46 months post-surgery and found

no significant difference in the outcomes between the two groups. Further, it was found

that the proportion of those in the ALND group who had metastatic axillary lymph

nodes was almost the same as the proportion of those in the SLNB group whose

SLNBs showed metastases. In the ALND group the SLNB had a false negative rate of

around 8.8%. The SLNB group reported fewer post-surgical problems with pain, arm

mobility, parasthesia and swelling.

A more recent review of the safety of avoiding an ALND on the basis of SLNB results

has been conducted by Pepels et al. (2011). This review includes the above mentioned

Veronesi study as well as a later follow up from the same group. Studies from the

pre-SLNB era show that where patients did not have ALNDs, 12-18% of patients

developed an axillary recurrence of cancer in 5-10 years and there was a 5% decrease in

the overall survival rate. In studies where patients had negative SLNBs and no ALND,

the recurrence rate was 0.6%. In studies such as the Veronesi study, where two groups

existed, the reccurence rate for those with negative SLNBs was 0.3% at 47 months for

those who had ALND and 0.4% at 31 months for those who did not. In studies where

patients had a positive SLNB but no ALND the recurrence rate was 1.7% at 30

months. The review concludes that it is safe to avoid an ALND following a negative

SLNB.

Another recent review and meta-analysis of existing reports covering has been

published by van der Ploeg et al. (2008). This review covered nearly 15,000 patients

with negative sentinel node biopsies who were followed up for a median of 34 months

post surgery. The review reports a tumour recurrence rate of just 0.3% and a

sensitivity of the biopsy as high as 100%. It is conceded that this sensitivity may be

skewed by the study selection process, those papers that included the information

required to contribute to the sensitivity happened to report few if any recurrences. It

would seem highly improbable that the process is as foolproof in reality as this

reported figure would indicate.

A further point of interest to note from this review is that of the 48 studies included

only one is reported as not using a radioactive tracer, whereas six studies report not

using blue-dye tracers (this detail is omitted from a further four studies). This

suggests that the method of detecting the sentinel node is not universally agreed.

Indeed, even the precise radiopharmaceutical employed varies between treatment

centres (mainly between 99mTc nanocolloid and 99mTc-sulphur colloid). Whilst this
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does lead to a significant difference in recurrence rates (0.14% for sulphur colloids,

0.53% for nanocolloids, P<0.01) it is far from clear whether this is due to the tracer

itself or the fact that a number of specialist centres use the sulphur colloid.

Goyal and Mansel (2008) have also recently published a review of the advances in

sentinel node biopsy for breast cancer. This review touches on the choice of tracer used

and concludes that a combination technique of both blue dye and radiopharmaceutical

optimises the detection of the sentinel node. They further note that that data from the

Memorial Sloan-Kettering Cancer Center (a leading specialist centre) suggests that

blue dye provides only a marginal benefit in detection with increasing surgical

experience. This review also refers to the typical sizes of metastases detectable in

lymph nodes, noting that an in-vitro analysis test called the GeneSearch BLN Assay

(produced by Veridex) can detect metastases as small as 200µm with a turn-around

time of around 30 minutes. This size of metastasis is considered by the US Food and

Drug Administration (FDA) as clinically relevant and actionable (US Food and Drug

Administration, 2006), however this same document accepts that there is a lack of

evidence that metastases smaller than 2mm have a significant impact on long term

prognosis.

A further review by Cheng et al. (2011) discusses some of the remaining controversies

over the SLNB. These are technical and procedural debates rather than a fundamental

assessment of safety and effectiveness, which now appear to be well studied and widely

accepted. A further discussion of the choice of tracers and how best to detect these

tracers is presented alongside questions such as whether more than just the sentinel

node should be tested; these issues are tangential to this report however, and so a more

full discussion is not rehearsed here.

5.1.2.2 Spectroscopy and Cancer

There are many studies in the literature into the feasibility of distinguishing abnormal

from normal tissue by optical means. These studies cover a range of different cancers

and even incorporate benign as well as malignant tumours. Some relevant and

representative publications are discussed here.

Many of these studies are performed in the IR rather than the visible or the VNIR.

Spectroscopy in the IR is dominated by molecular absorptions and vibrations, thus

providing often very detailed information about the specific molecules, and sometimes

the specific configurations of molecules, present in a substance; for this reason it is

considered the fingerprint region for biological tissue. The units of spectroscopy are

wavenumbers, measured in cm−1 (wavelengths per cm), rather than wavelengths and

the typical IR region is between 500 and 4000cm−1, or 2.5 to 20µm. The units quoted

in this review will be cm−1 for the IR region and nm for the VNIR.
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A group at the Robert Koch Institute in Berlin investigated using IR

microspectroscopy to examine breast tissue. Initially, the focus was on benign tumour

sections Fabian et al. (2003); a spectral image was formed using a 64×64 detector

array at an approximate spatial resolution of 4µm. A comparison of this image with

standard stained tissue examination was made, which showed that similar tissue

structures were visible with both methods. A follow up study (Fabian et al., 2006)

presented a comparison of benign and malignant tissue. This work showed that

differences between benign and malignant tissue in the regions of the spectrum

associated with lipid (2800-3000cm−1) and collagen (1000-1450cm−1) content.

A study by Rehman et al. (2007) presents Raman spectroscopic differences between

normal tissue and tissue from two types of breast cancer, invasive ductal carcinomas

(IDC) and ductal carcinomas in situ (DCIS). The study used archived tissue samples,

which had previously been fixed in formalin and embedded in paraffin wax. The

samples were de-waxed and cleaned in alcohol before examination. Differences were

found between the three groups of tissues that were again associated with lipid and

protein/collagen content.

In addition to finding differences between the types of tissue, this study also found

differences between grades of tumour for both IDC and DCIS. These were in the same

spectral regions as above and again indicate that concentrations of lipids and proteins

change as tissue progresses from healthy to cancerous and then on to increasing

malignancy.

Two notable studies of breast cancer in the VNIR range provide evidence of spectral

differences, or optical properties that can be measured spectrally. Both are based on

diffuse reflectance spectroscopy, with Grosenick et al. (2005) using a distributed time

of flight (DTOF) measure to infer optical properties and Tromberg et al. (2005) taking

direct spectral response measurements. Grosenick et al. (2005) conclude that total

haemoglobin concentrations were higher in tumourous tissue than normal but blood

oxygen saturation was not significantly different. Scatter power (the dependence of the

reduced scattering co-efficient on wavelength) was also found to be higher in

tumourous tissue, however only marginally and the 95% confidence intervals of normal

and tumourous tissue overlapped.

Tromberg et al. (2005) calculated oxy- and deoxy-haemoglobin concentrations, lipid

and water contents, tissue haemoglobin concentration, tissue oxygen saturation, scatter

power, and tissue optical indices for normal and malignant tissue. With the exception

of scatter power and oxygen saturation, these were measured to be significantly

different in malignant tissue compared to normal. This study also found that tissue

optical index (defined in the paper to be a parameter derived from haemoglobin, water

and lipid concentrations) was much higher in cancerous tissue; for patients undergoing
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adjuvant treatment such as chemotherapy, the optical index for the tumour decreased

over the timespan of the treatment.

A group led by Christoph Krafft in Dresden has used IR spectroscopic imaging to

study malignant gliomas (brain tumours). In one study on a single patient (Krafft

et al., 2007), images were obtained using a spectroscope with a 64× 64 detector array

at a spatial resolutions of around 63µm. Tissue from inside the tumour, at the tumour

margins and outside the tumour were identified based on a supervised linear

discriminant analysis (LDA) classifier. The spectral features used to train the classifier

correspond to lipid, haemoglobin and protein contents. In a separate study using LDA

(Krafft et al., 2006), images were generated by raster-scanning a microscope coupled to

a spectroscope across the tissue with a spatial resolution of 180µm. Again good

separation between normal and malignant, and between grades of malignancy was

achieved using a classifier trained with spectral features corresponding to protein to

lipid ratios, and further features to represent haemorrhage.

Fujioka et al. (2004) performed Fourier Transform IR Spectroscopy (FTIR) on samples

of tumours resected from gastric cancer patients. Differences between normal and

cancerous tissue spectra were determined and then used to train an LDA classifier,

which was used to discriminate between 23 cancerous and 12 normal samples. All but

one of the cancerous samples and 9 of the 12 normal samples were correctly classified.

The 10 spectral features that were used to train the classifier correspond to absorption

bands in protein, collagen, phosphates, and some amino and nucleic acids.

Gastric cancers were also the focus of an IR spectroscopy study by Park et al. (2007b).

Spectra from samples of cancerous, normal and adenoma (a benign tumour) tissues

were compared using Principal Components Analysis (PCA). Score plots of the first

and second principal components were generated and whilst these showed fairly good

discrimination between cancerous and normal, there was significant overlap between

both adenoma and normal, and adenoma and cancer tissues. This study presented a

“whole spectrum” approach, i.e. the sources of the differences were not identified, only

their existence.

FTIR was used by Andrus and Strickland (1998) in their study of non-Hodgkin’s

Lymphomas. It was found that the ratio of the shoulders of the nucleic acid peak

(1084cm−1) at 1121cm−1 and 1020cm−1 was higher in cancerous tissue than in normal

tissue and that it increased with increasing clinical grade. The 1121cm−1 shoulder is

characteristic of absorption by RNA whereas the 1020cm−1 is characteristic of DNA.

This suggests that the ratio of RNA to DNA increases with increasing lymphoma

grade.

A second ratio, between the peaks at 1240cm−1 and 1084cm−1 is also observed to

increase with increasing grade; this is a measure of the ratio of collagen to nucleic acid.
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It is noted that this trend is opposite of what is seen in a number of other cancers,

although it is the same as has been observed in breast cancer by Jackson et al. (1997).

There are many similar studies for skin cancer, as would be expected for a common

cancer on such an accessible organ, some of which are summarised in table 5.2 below.
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Reference Tumour/Lesion Type Method Molecules Attributed

Wong et al. (1993)
BCC IR Spectroscopy Phosphates (1190-1270cm−1)

C-O (1140-1185cm−1)
C-H (2800-3050cm−1)

McIntosh et al. (1999)
BCC, SCC, Melanocytic lesions IR Spectroscopy Lipids (2780-3020cm−1)

Collagen (900-1500cm−1)

McIntosh et al. (2001)
Various lesions VNIR Spectroscopy Haemoglobin (618-698nm)

Water (918-998nm)

Gniadecka et al. (2004)
BCC Raman Spectroscopy Amides (1500-1800cm−1, 1270cm−1)

Proteins (940cm−1)
Lipids (1450cm−1)

Garcia-Uribe et al. (2004) Various lesions SOIR Haemoglobin

Table 5.2: Key: BCC - Basal Cell Carcinoma, SCC - Squamous Cell Carcinoma, SOIR - Spectroscopic Oblique Incidence Reflectometry.
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A group in Michigan led by Mary-Ann Mycek is investigating the use of VNIR

spectroscopy for detection of pancreatic cancers. The methodology used is discussed by

Chandra et al. (2009), which notes that both reflectance and autofluorescence (see

section 5.1.2.3 below) spectra are measured using a fibre-optic probe assembly. One

paper from this group is of particular interest to this project, Wilson et al. (2011). This

describes the use of a Photon Tissue Interaction (PTI) model developed by the group

(developed in Wilson et al. (2009) and Wilson et al. (2010)) to fit reflectance spectra to

parameters related to tissue morphology and biochemistry. One such parameter is

referred to as the “nuclear enlargement parameter”, which relates to the nuclear size of

the cells involved. It was found that by increasing this parameter systematically, the

reflectance in the 450nm-500nm region of the spectrum also increased systematically,

specifically, a peak around 475nm starts to emerge. In their measurements, the spectra

generated with larger nuclear size corresponds well to spectra from adenocarcinoma,

whereas the small nuclear size corresponds to normal tissue. A similar difference in

this spectral region is seen between metastatic and normal lymph node tissue by Bigio

et al. (2000) (see discussion in section 5.1.2.3 below).

Water content is mentioned by Tromberg et al. (2005) and is also the likely source of

the spectral differences arising in the 918-998nm band in McIntosh et al. (2001). The

use of water as a distinguishing feature is further supported by a paper from

Gniadecka et al. (2003), although it is suggested here that the structure of the water in

carcinoma cells is the source of the difference.

Gniadecka et al. (2003) studied absorption at a band around 180cm−1 (∼ 55µm/5THz)

representing what is described as a tetrahedral arrangement of water molecules. In this

arrangement water molecules are bound to each other and not to other macro- (or

bio-) molecules. They found that photo-aged skin and malignant tumours exhibited an

increased amount of this tetrahedral water. They postulate that this could be due to

alterations in protein structure and decreased water-protein interactions.

The use of water gains further credence from studies, particularly in skin cancers, in

the terahertz (THz or T-ray) region of the electromagnetic spectrum. This region is

dominated by water absorption bands and when studying biological systems this is

likely to be the most significant factor. Teraview Ltd, a commercial operation

specialising in THz applications, together with groups at Cambridge University and

Addenbrooke Hospital, led by Woodward are the most significant contributors to this

field. They have published a number of studies (see Woodward et al. (2002),

Woodward et al. (2003) and Wallace et al. (2004)) which claim some success in using

Terahertz Pulsed Imaging (TPI) to differentiate normal tissue from diseased tissue.

This technology is now being commercially developed by Teraview.

Although the above represent a range of different cancers, it is clear that similar

diagnostic factors are present in most cases. The evidence in the literature would
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suggest that protein and lipid concentrations are significantly different in normal tissue

than they are cancerous and that haemoglobin levels are higher in cancerous tissue

than normal.

The discrepancy in haemoglobin concentration is readily explained by the standard

description of tumour growth. As the tumour starts to develop it requires the creation

of new blood vessels to keep it supplied; this process is known as angiogenesis and can

lead to hypervasculature around a tumour site. The fact that oxygen saturation does

not seem to be commensurately greater at tumour sites may be explained by parts of

the tumour becoming hypoxic. Parts of the tumour can still be inadequately supplied

with oxygen as the tumour growth outstrips the increase in blood supply.

5.1.2.3 Spectroscopy and the Lymph Node

Using spectroscopic techniques to detect cancer in lymph nodes is by its nature, a

niche subject. There are three main groups however who are working or have worked

in this area; the first is a group at l’Instituto Nazionale per la Fisica della Materia

(INFM) in Florence, the second is led by Max Diem at Northeastern University,

Boston, and the final group is jointly led by Irving Bigio at Boston University and

Stephen Bown at University College, London.

The Florentine group have two major publications in this area based on multispectral

imaging of autofluorescence in lymph nodes. Fluorescence is a phenomenon occurring

in or close to the visible spectrum that is analogous to Raman scattering as described

in section 2.1, however in the case of fluorescence the molecule is promoted to a real

rather than a virtual energy state; light at one frequency is absorbed by the molecule

and light of a different frequency is emitted. This process is often exploited in

biomedical imaging by injecting a fluorophore that is known to bind certain types of

biological molecule and then imaging the fluorescence as a proxy measure for the

biological molecule. Autofluorescence implies that no exogenous fluorophore is used

but instead that a molecule naturally present within the tissue is the cause of the

fluorescence. Again, like Raman scattering, this is a low intensity event, although

typically more intense than Raman scattering.

The first paper (Rigacci et al., 2000) presents findings of a study in which frozen

sections of lymph nodes from patients suffering from adenopathy (swelling of the

lymph nodes) were illuminated with 365nm radiation in order to excite

autofluorescence from extracellular collagen and elastin fibres. Images were taken

behind 50nm bandwidth filters at 450nm, 550nm and 658nm, and were combined into

an RGB image. Most of the autofluorescence signal was noted to occur in the 450nm

channel. Changes in the morphology were observed between hyperplastic nodes and

those with Hodgkins lymphoma. Further, autofluorescence spectra were measured
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using a spectrometer. These spectra showed that the fluorescence peak from

lymphoma tissue was shifted slightly to the red when compared with the peak from

hyperplastic tissue, from 433nm to 440nm. A difference spectrum of the two signals

showed a maximum at 408nm and a minimum at 460nm.

A follow up paper (Pantalone et al., 2007) presents a study using the same methods to

examine lymph node sections from gastric and colo-rectal cancer patients. The red

filter was 650nm for this study rather than 658nm as for the previous. Here it is found

that the autofluorescence peak from metastatic lymph nodes was shifted by more than

20nm to the red from the peak from the healthy lymph nodes (459nm from 437nm).

The metastatic peak was much broader than the normal and in some cases a shoulder

or second peak at 602nm was observed. Again, it was found that significant

morphological changes could be seen between the healthy nodes and the metastatic. It

was also noted that the metastatic multispectral images contained a greater

contribution from the red channel, which is consistent with the broadening of the peak

and potential contribution from a second peak around 600nm, that was measured. The

red-shifting of the peak is not explicitly explained in the paper, the discussion talks

more generally about the differences in the autofluorescence peaks being due to

differences in the concentrations and distributions of endogenous fluorophores between

normal and metatstatic tissue.

Diem’s group have published a number of papers on IR spectroscopy of individual

cells, and more recently have moved on to looking at infrared spectral imaging. It is

these spectral imaging papers that shall be discussed in more detail here.

In a paper by Romeo and Diem (2005), tissue sections sliced from paraffin fixed

samples were de-paraffinized and imaged by scanning a spectrometer with a 16

detector array across the tissue. The images had a spatial resolution of 25µm and a

spectral resolution of 4cm−1 in the range from 800 to 1800cm−1. All pixels in an image

were classified using an unsupervised hierarchical cluster analysis (HCA) algorithm.

The resulting images were compared to standard H&E stained slides. It was found

that restricting the spectral range to the low frequency range (below ∼ 1500cm−1)

gave better discrimination between different cell types, and the morphology observable

in the H&E stained images could be replicated in the spectral images. The restriction

of the spectral range prevented a shift in the amide band at ∼ 1650cm−1 from

dominating the classification algorithm; this shift was attributed to “reflective

components in the spectra” rather than chemical components of the cells.

A further paper by Bird et al. (2008) presents a study where IR spectra were obtained

from frozen or de-paraffinized sections of routinely excised lymph nodes. The same

spectrometer was used and again it was scanned across the tissue in order to generate

a spectral image. An additional spectral region between 2800 and 3100cm−1 was added

in order to improve classification. The images were classified using an unsupervised
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HCA algorithm and also by an advanced neural network (ANN) classifier. Again here

the HCA processed images showed information comparable to that obtained by H&E

staining; the ANN classified images, which produced just two classes, normal tissue

and cancerous, also performed well and correlated with the findings from traditional

histology.

A similar methodology is employed in a later paper(Bird et al., 2009). Here the

detector array is 8× 2 as opposed to 16× 1 from the previous papers, but again

sections of de-paraffinized lymph node tissue is scanned to produce an image. As in

the first paper, the spectral range here is from 800-1800cm−1, and again unsupervised

HCA analysis is performed. Again, good agreement was found with the histological

images, and metastatic areas of the tissue were successfully classified. The major

advance in this paper is the detection of “micrometastases”, collections of cancerous

cells measuring 100-150µm. This paper also includes some discussion on the type of

material responsible for responses in given spectral areas. The 900-1350cm−1 range

(similar to the reduced region from the first paper) is described as the “phosphate

region” and is identified as being indicative of DNA and RNA content. The

1450-1700cm−1 region is described as the “protein region” and changes here are

attributed to changes in protein composition (both quantity changes and structural

changes).

The final group to be discussed in this section is perhaps the most relevant as their

work concerns reflectance spectroscopy of axillary lymph nodes in the visible spectrum.

An early paper (Bigio et al., 2000) describes their “elastic scattering spectroscopy”

(ESS) method. A broadband light source (pulsed xenon arc lamp) is directed to the

tissue via fibre optic cable, an adjacent fibre returns the reflected signal to a

spectrometer which records a spectrum in the range 330nm-750nm.

This paper describes not only measurements taken from the resected lymph nodes, but

also from the breast tumours themselves. Much of the discussion concerns the tumour

measurements rather than the lymph nodes, however representative spectra for normal

and metastatic sentinel nodes are shown. This shows that overall the metastatic tissue

reflects more light than normal tissue below ∼520nm but less above this. The other

significant difference in the spectra is the presence of a large shoulder at ∼470nm in

the metastatic tissue that is not apparent in the normal tissue. Unsupervised HCA

and ANN analysis were performed whereby metastatic sentinel nodes were detected

with a sensitivity of 91% for HCA and 58% for ANN, and specificities of 76.5% and

93% respectively.

A follow up paper by Johnson et al. (2004) focusses on the sentinel lymph node; the

spectra in this case were reduced by PCA before being subject to an LDA classifier.

Two separate analyses were carried out, one compared only normal nodes and those

that had become completely metastatic (referred to a “per-spectrum” analysis), and
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the second added nodes which showed only partial metastasis (“per-node” analysis).

The per-spectrum analysis classified metastatic nodes with a sensitivity of 84% and a

specificity of 91%, whereas the per-node analysis figures were 75% and 89% for

sensitivity and specificity respectively.

A more recent paper describes movement towards making this an imaging system

(Keshtgar et al., 2010). The probe is scanned across the tissue at 0.5mm intervals, over

an area of 1cm2, creating a 20×20 pixel spectral image. The spectra were analysed in

the same manner as before, the images are then colour-coded using the scores from the

LDA. A single image is presented in the report, which shows an area of metastases,

however no other image of the tissue is given for comparison. Within the subset of

metastatic nodes, macrometastases (>2mm) were detected with a sensitivity of 76%

and micrometastases (0.2-2mm) with a sensitivity of 29%. There were three nodes

with submicrometastases, but none of these were detected. In the subset of nodes that

also underwent TP cytology, ESS managed a sensitivity of only 69% as compared to

88% for macrometastases; however, it detected micrometastases with a sensitivity of

40% where TP failed to detect any. Two false positives were recorded with ESS,

whereas TP recorded none.

Another paper from the same year presents more images on the basis of the work

above (Austwick et al., 2010). Here, the colour-coded spectral images are shown next

to photographic images of the tissue, allowing for some comparison. Here, the

metastases detected do appear to match up with the histology, however the metastases

are not visually obvious on the tissue and so it is still not certain that the classification

is accurate spatially.

The work reviewed in this section provides encouraging evidence that spectral

differences do exist between normal lymph node tissue and metastatic deposits. In

particular, the work from Bigio’s group suggests that even in the visible region

significant differences exist, which may be exploitable by imaging based rather than

spectroscopy based spectral imagers.

5.2 System Development

Any spectral imaging system consists of two components, which can be loosely

classified as hardware and software; the hardware component is the image capture

system, which by necessity involves some software to control image acquisition, the

software component deals with the processing of the data. Each component is detailed

in turn in this section, outlining the specifications of the hardware and the algorithms

used to derive information from the data.
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5.2.1 Image Capture Systems

Two imagers have been developed for this project. The first is a multispectral imager

working on the “Focal Plane Array” modality as discussed in section 1.4.2; the second

is a hyperspectral imager working on the “Line Scanning” modality (also discussed in

section 1.4.2).

The imaging systems discussed in this section were both initially commissioned by Dr.

Hoy for his own doctoral work, and the details of their first stage of development are

detailed in his thesis (Hoy, 2009).

The main specification requirements to which he was working can be summarised in

four points:

1. the imaging system should be non-contact so as not to disturb or damage

biological tissue;

2. the system should provide real-time imaging of the surgical field at a resolution

equal to or better than the precision of the surgeons cut (estimated to be

0.25mm by Dr. Hoy’s surgical collaborator);

3. the system should have minimal impact on the surgical environment; and

4. the system should be low cost and have low infrastructure overheads.

Of these, items 1 and 4 are very much true of imaging system for this project. As the

resected nodes are subject to full histopatholgical examination after the surgery, it is

important that any biopsy technique is non-destructive. Further, in order to realise the

aim of making this technology viably available at all treatment centres, it must be low

cost, and not have onerous requirements for the installation of specialised equipment.

With regards to item 2, Dr. Hoy’s work was aiming to provide true in-vivo

intra-operative imaging, which is why a real-time display was considered necessary. In

this project the aim is to provide a rapid biopsy; as a result, whilst it is important for

image acquisition and processing times to be minimised, it is not necessary to provide

“real-time” imaging. If the entire process could be performed within 10-15 minutes,

this would still provide a tangible benefit over traditional biopsy or spectroscopy.

Resolution for Dr. Hoy’s system was given an upper bound of the surgical precision on

the basis that the aim of the project was to provide accurate tumour demarcation for

excision. A neurosurgeon will know approximately where the tumour lies in the brain,

even if it is not visually distinct from the healthy tissue around it; it is the precise

margins that are unknown. The upper bound for this work would sensibly be set such

that the system be capable of detecting clusters of metastasis that are clinically
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relevant and on the same scale as can be detected visually by a pathologist. By

coincidence, the 0.25mm resolution Dr. Hoy was working to is also a reasonable

starting point for this work. As was demonstrated by Johnson et al. (2004), TP

cytology is capable of detecting metastases greater than 0.2mm with good reliability,

but is not reliably able to detect micrometastases. As noted above, the FDA consider

metastases of 0.2mm to be clinically relevant and actionable (US Food and Drug

Administration, 2006).

Item 3 is again a product of the intra-operative nature of the equipment being

developed. In order to be useful, the imaging system had to be in theatre with a clear

line of sight to the surgical field. This project is examining resected tissue and as such

can be located outside of the theatre.

Aside from being low cost and having minimal installation overheads, in order to make

this technology appealing, it should be capable of being operated by a non-specialist

operator. This means that the process should be as automated as possible and where

user intervention is required, it should be for routine tasks, such as “inputting” the

node.

From these considerations, a new specification requirement list can be made:

1. the imaging system should be non-contact;

2. the imaging system should have a resolution not worse than ∼ 0.25mm;

3. the imaging system should produce results within a time frame of minutes;

4. the imaging system should be operable by a minimally trained, non-specialist

operator; and

5. the imaging system should be low cost and capable of being installed in the near

vicinity of the operating theatre.

5.2.1.1 Multispectral Imager

A summary of the as-built specifications of Dr. Hoy’s mark I multispectral device is

given in table 5.3 below.

In addition to the camera, two filter wheels were placed in front of the lens. The first

contained a clear window and two linear polarising filters set orthogonally to each

other; the second contained one neutral density filter transmitting ∼1% of incident

radiation, and five 10nm bandwidth (FWHM) interference filters centred at 470nm,

580nm, 610nm, 900nm and 970nm. The transmission of the neutral density filter is

similar to the total transmission of each of the interference filters when integrated
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Camera model Apogee U260
Sensor 1 inch format Kodak KAF-0261E CCD

Resolution 512× 512 pixels (∼ 0.25MP)
Pixel size 20× 20µm

Dynamic range 16 bits (65,536 levels)
Lens Pentax TV lens, F1.4

Lens focal length 75mm
Field of view ∼ 10× 10cm

Minimum working distance ∼50cm

Table 5.3: As-built specifications of the Mark I imaging system

across the spectral range of the CCD, thus allowing a “clear” image to be exposed with

similar integration time to the filtered images.

It soon became apparent that this set-up had been optimised for the intra-operative

brain tumour project and that this was not the ideal configuration for the sentinel

node work. A particular concern was the large field of view. Lymph nodes vary greatly

in size, however it is rare to find one much bigger than 2cm (4cm total cut “diameter”

after it has been butterflied) and typically they are around 0.5-1.5cm. This means that

they have a total cut surface area in the order of 10cm2, which is just 10% of the total

field of view of the mark I imager. A second iteration was thus designed with the

priority of increasing the percentage of the total field of view that would be imaging

tissue.

The key issue in this effort to decrease the size of the field of view was the lens that

was used. In an initial experiment, a 10mm spacer was added between the lens and the

camera body. This increases the distance between the lens and the focal plane thus

decreases the minimum working distance (see equation 5.1 below, where u is the

distance from the lens to the focal plane, v is the distance from the lens to the object

plane and f is the constant focal length of the lens) and increases the magnification

(see equation 5.2 where M is the magnification); this comes at the cost of reducing the

ability of the lens to focus at long distances (specifically, it will be unable to focus to

infinity). A further problem that can be encountered when using spacers is

“vignetting”, this means that a dark ring forms around the edge of the image. This

effect initially becomes apparent at the corners of the image.

1

f
=

1

u
+

1

v
. (5.1)

|M | = u

v
. (5.2)
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In this application, the working distance was small, and so the long range focussing did

not present a problem, and with a 10mm spacing the vignetting was not occurring in

the area covered by the detector. However, whilst the field of view was improved, the

improvement was not substantial, decreasing from ∼ 10× 10cm, to ∼ 8× 8cm.

A new zoom lens from Tamron with adjustable focal length between 70mm and

300mm was thus incorporated. This was specified to have a minimum working distance

of 1.5m in normal mode and 0.95m in macro mode. The lens was used in macro mode,

and with the addition of a conversion mounting (the Alta camera accepts only c-mount

lenses, the lens was designed for mounting to Nikon cameras) effectively acting as a

spacer ring, the actual minimum working distance was in the region of 0.7m, with a

minimum field of view of ∼ 2×2cm on the Alta camera’s 10.24×10.24mm image plane.

With a 2cm spatial field and 512 pixels, the minimum theoretical resolution of the

system is around 40µm. A standard calibration is to image line pairs at increasing

spatial “densities”, and thus decreasing feature size, in order to determine the real

resolution of the camera. Doing this, line pairs at 50cm−1 were readily separable, at

higher densities they were not. This equates to a minimum visible feature size of

∼ 100µm (∼ 0.1mm). This brings the specification of the multispectral imager in line

with the requirements set out above.

Table 5.4 summarises the key specifications.

Camera model Apogee U260
Sensor 1 inch format Kodak KAF-0261E CCD

Resolution 512× 512 pixels (∼ 0.25MP)
Pixel size 20× 20µm

Dynamic range 16 bits (65,536 levels)
Lens Tamron AF70-300mm, F4-5.6, Macro

Lens focal length 70-300mm
Minimum Field of view ∼ 2× 2cm

Minimum working distance ∼690mm

Table 5.4: As-built specifications of the Mark II imaging system

A description of the full schematic set-up of this “mark II” system is given in section

5.2.1.3 below, following a discussion of the hyperspectral imaging system.

5.2.1.2 Hyperspectral Imager

As mentioned above, the hyperspectral imager was also initially purchased for Dr.

Hoy’s doctoral research project; however no work was actually undertaken with it as it

failed to perform as specified. The initial specifications are given in table 5.5 for

reference.
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Model Specim V10E Spectral Camera
Sensor CMOS

Resolution 1280× 1024 pixels (∼ 1.3MP)
Dynamic Range 12 bits (4,096 levels)

Spectral range 400-1000nm
Spectral resolution 2.8nm

Table 5.5: Initial specification of Specim hyperspectral imager

The Specim V10E is a diffraction grating based spectral imager. Light from a single

horizontal line across the image scene passes through a 30µm slit, from where the

grating disperses the light spectrally across the vertical dimension of the sensor. In this

way, each image column represents the spectrum from a single point in the spatial

scene, and each image row represents the spatial variation of reflected light at a single

wavelength. As described in section 1.4.2, this “line-scanning” technique requires the

line to be swept across the entire image scene in order to get a full spatial

measurement.

Since the light reaching the detector is spread spectrally across the entire sensor

height, the total intensity of light reaching any given pixel is low, and thus long

integration times and a low noise sensor is required to capture useful images. The

supplied CMOS proved to have too low a signal to noise ratio (SNR) to provide usable

images. A more appropriate CCD imager was thus acquired as a replacement.

The replacement imager is a Prosilica GC1380 camera, using a CCD sensor. This has a

resolution of 1360× 1024 pixels; this high vertical resolution means that the CCD is

actually over-sampling the spectral components. The performance of this camera far

exceeded that of the supplied CMOS imager and it was able to generate usable

spectral images.

With a spectral range of 600nm and a resolution of 2.8nm, the Specim produces only

∼ 200 resolvable spectral elements, thus the CCD is taking around 5 readings for each

element. The vertical dimension was binned such that each image pixel measured the

output of two consecutive sensor pixels, reducing the amount of over-sampling. It was

decided not to correct this entirely at the acquisition stage, this allowed the image to

be processed by smoothing the spectra in software without compromising spectral

resolution. This binning effectively doubles the collection area of the sensor pixel thus

reducing the exposure time required for the same overall intensity of light.

The dynamic range of this imager was expanded by taking a number of exposures and

averaging them. The signal is proportional to the number of exposures, N whereas he

random noise is proportional to
√
N . Thus N additional exposures produce a

√
N

improvement in SNR. It was decided to average 16 images, producing a 4 fold increase
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in SNR, equating to 2 bits extra dynamic range. To gain a 3rd extra bit would require

averaging 64 images, which represents a significant time penalty.

In order to allow scanning, the sample was mounted on a translatable stage. At this

point in development, the stage is manually controlled, with each rotation of the

control representing 1mm of travel. Half-rotations can be reliably controlled, giving a

spatial resolution of 0.5mm in the scan direction. The field of view in the spatial

dimension of the imager itself is around 40mm, this gives a spatial resolution of

∼ 30µm, at a working distance of 340mm.

The relevant specifications for the second iteration of this imager are set out in table

5.6 below.

Model Specim V10E Spectral Imager
Camera Model Prosilica GC1380

Sensor Sony Ex-View ICX285AL CCD
Native Resolution 1360× 1024 pixels (∼ 1.3MP)

Pixel Size 6.5× 6.5µm
Operating Resolution 1360× 512 pixels (spatial x spectral)

Native Dynamic Range 12 bits (4,096 levels)
Operating Dynamic Range 14 bits (16,384 levels)

Spectral range 400-1000nm
Spectral resolution 2.8nm
Spatial resolution 30× 500µm

Field of View ∼ 40mm (single dimension)
Working distance 340mm

Table 5.6: Final specification of Specim hyperspectral imager

5.2.1.3 System Set-Up

In order to make the system a viable prospect for Dr. Hoy’s application of imaging of

brain tissue during surgery it was necessary to make it compact and portable. For this

reason the cameras, filter wheels and control electronics were all mounted in a metal

caddy, which itself was mounted to a tripod so that it could be moved easily around

the operating theatre in order to get a clear line of sight to the surgical field. A

photograph of this is shown below in figure 5.3.

A schematic diagram detailing the layout of this is shown below in figure 5.4.

This layout was based on the original Pentax lens working distance and the

requirement to minimise the overall footprint of the device. By switching to the

Tamron lens, the requirements for the optical path lengths from the target scene to the

imagers was altered. Further, the change in the nature of the work meant that the

whole device could be made into a bench top rather than a portable application, and
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Figure 5.3: A photograph of the mark I spectral imaging system.

the overall footprint was less critical. The position of the tissue also became much

more controllable, and it was possible to incorporate into the system a fixed

translation stage upon which the tissue could be placed. The other significant change

was to replace the mirror from the mark I device with a beam-splitter. The original

mirror was heavy and was moved into place when required by a large solenoid;

replacing it with a static beam-splitter reduced the number of moving parts and

removed a high power consuming piece of electronics.

A schematic diagram showing the revised layout of the device is shown below in figure

5.5. In order to achieve the required optical path lengths whilst still keeping the overall

footprint of the device small, a mirror is used to raise the optical level to a height of

∼ 200mm; this can be seen in the photograph of the layout in figure 5.6. The sample

area was illuminated from either side with light being diffusing through spectrally

neutral diffusers.

Software was also developed (in C and C++) in order to control image acquisition and

storage. Much of the work on this was in place as a result of Dr. Hoy’s work, however

significant additions were required in order for the Prosilica camera to be controlled.

Software size is generally measured in source lines of code (SLOC), for comparison, in

C/C++ the most basic “Hello World!” program would require around 10 SLOC.



Chapter 5 Towards an Optical Sentinel Lymph Node Biopsy 113

Figure 5.4: A schematic diagram of the mark I spectral imaging system. All equip-
ment within the black outline is mounted to a metal base. The sample stage is mounted
orthogonally to the plane of the base, because the whole system is mounted on a TV
camera dolly the base can be angled down so that the sample is not vertical to the

ground.

The main control program, which is a procedural based piece of code, is around 2250

SLOC, of which around 500 were a direct contribution from the author; the remaining

code was the existing base developed by Dr. Hoy, although it was heavily edited and

re-ordered by the author. This main program also relied on a number of libraries,

including an extensive image processing library, written by Dr. Hoy (∼ 12, 000 SLOC).

A flow chart showing the main tasks of this program is shown in figure 5.7.

The Prosilica camera was controlled by use of a library building on the manufacturer

issued SDK (Software Development Kit). SDKs provide descriptors and functions for

accessing the low-level functionality of a piece of hardware, allowing developers to

create high-level abstractions and functions. The library was developed in an

object-oriented paradigm and consists of around 3500 SLOC, of which the author

directly contributed around 1000. A separate program for testing new library functions

and controlling the camera independently of the main control program was written by

the author, running to around 1100 SLOC.
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Figure 5.5: A schematic diagram of the mark II spectral imaging system. All equip-
ment within the black outline is mounted to a metal base. The sample stage is mounted
in the plane of the base and a mirror is used to raise the optical height and achieve the

required working distance.
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Figure 5.6: A photograph of the mark II spectral imaging system.
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Figure 5.7: A flow chart showing the operation of the image acquisition system.
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5.2.2 Data Processing Suite

All of the spectral images in this project were captured in single plane (monochrome)

images stored in a proprietary High Dynamic Range (HDR) image format. A large

image processing library (around 8750 SLOC) was developed by Dr. Hoy to

manipulate these images, however, the real power of spectral imaging lies in its

spectral nature. In order to more fully exploit this, processing suites that treat the

images as either true multispectral or true hyperspectral images have been developed.

There is much overlap in how these two classes of image should be treated and so the

multi- and hyper- spectral projects are both written as offshoots of a base spectral

image suite. Nearly 20,000 SLOC have been written for these suites.

In this section some of the key routines and algorithms will be discussed, separated

into “pre-processing” and “real” processing. Pre-processing is a general description to

cover how the data is taken from its native HDR format and converted into a spectral

image that is ready for analysis. Real processing is a general description of those

routines that analyse and interrogate the data to extract useful information.

5.2.2.1 Pre-Processing Routines

Having acquired a number of single plane images, the primary task is to convert them

into a single spectral image. For multispectral images the key steps are ensuring that

the images are correctly registered (i.e. that the images align and overlap properly)

and then combining them into a single image.

For hyperspectral images this step requires, first “hotspot” filtering the images

(explained below) and then combining and rearranging them such that the primary

projection of the image is spatial-spatial rather than spatial-spectral. None of the

images taken for the hyperspectral imager overlap spatially and as such registration is

not an issue.

The Prosilica camera has a number of known “hot” pixels, i.e. pixels which

consistently have high values in comparison to their neighbours. These were isolated

by taking a dark exposure and searching for pixels with a raw value greater than 410

(10% of the maximum pixel value of 4,095), creating a hotspot map. It should be noted

that only 10 such pixels were identified on the CCD, and whilst they are prominently

visible, they represent a very low error rate on the detector (approximately 1 in 106).

These pixels represent a characteristic form of noise known as “salt and pepper” noise,

described by Nixon and Aguado (2002) as “isolated black and white points. . . within an

image”. The most appropriate way to deal with such noise is to apply a median filter.

In image processing, a median filter is typically applied across an entire image. Each

pixel in turn is considered, and a list of it and its neighbouring pixels (most often the 8
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so-called “nearest neighbours”, which along with the subject pixel form a 3× 3 grid

centred on the subject pixel) is constructed and then ordered. The subject pixel value

is then replaced with the median value from the ordered list; this approach is ideal for

removing very light and very dark spots. Some care has to be taken with this filter

however as real information, in particular features smaller than the filter size (3× 3 for

the nearest neighbour case) can be filtered out.

Features at the single pixel size are not likely to be significant in this project and so

the filter can be safely used. In this application the filter is only applied to pixels at

known hotspots as salt and pepper noise has not been observed more generally.

Hotspots have not been observed on the Alta CCD. This filter is an irreversible process

and once modified the original data can not be recovered.

Once the images have been arranged into a single spectral image datacube, they are

written to a new file type. The HDR image format allows for an arbitrary number of

planes in a single image and as such is extendible to spectral imaging, however, there is

no ability within the format to increase the metadata available. Thus it is not possible

to store derived data, such as a spectral angle map, or information such as labels of

spectral channels, within the image file. A secondary, more extensible format, based on

the HDR was defined as the default storage format for spectral images. This is the

High Dimensional Image (HDI) format, which is documented in appendix C. From this

point in the processing, all actions performed during a single session of the spectral

imaging software is recorded in a log file, making it possible to trace all modifications

made to the image files.

A list of spectral channels is added to each image. For multispectral channels this is

merely a list of the central wavelengths of the various bandpass filters used, for

hyperspectral channels, this list is based on calibration against an Argon lamp. This

calibration identified 18 peaks for comparison between 695nm and 970nm. The

calibration was confirmed by comparison to halophosphate fluorescent lamps (standard

“office” strip lights) which provided 4 peaks between 450nm and 790nm. Figure 5.8

shows the output spectrum of a spectral image taken of a white target under

illumination from both the fluorescent lamps and the argon lamps.

The hyperspectral image goes through some further pre-processing at this point. The

raw spectra recorded in the hyperspectral images are observed to have a high

frequency noise component. This is partly due to the fact that the sensor is

over-sampling the signal, and partly due to the inherent electronic noise on the CCD.

By studying a dark exposure it can be determined that the average pixel value is

around 15, in an ideal detector this would obviously be zero; this CCD noise level is

still however, very low (about 0.3% of maximum signal).

This high frequency noise is dealt with by applying a low pass filter, in this case a

Gaussian filter, along the spectral dimension. The width (σ) of the Gaussian curve
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Figure 5.8: Output spectrum from a spectral image of a blank target illuminated by
fluorescent strip lights and an argon lamp. The output spectrum is the blue line, the
red lines indicate the expected peaks, the height of the red lines shows the relative sizes
that these peaks are expected to be. There is generally close agreement with all peaks,
no linear scale could be fit to ensure all the peaks aligned exactly, however with the
understanding that the imager is only specified to 3nm, and that no exact spectroscopy

was being performed, it was deemed that this calibration was adequate.

applied as a filter can be altered, as can the size of the filter (how many pixels either

side of the subject pixel are considered in the calculation). The size of the filter is

described by its ’radius’, and whilst a greater radius achieves better smoothing,

increasing the radius has two drawbacks. Firstly, for a radius of n, the first and last n

pixels cannot be properly considered by the filter, and thus 2n pixels are lost; secondly,

the Gaussian filter smooths out any features that are higher frequency than (smaller

than the size of) the filter; whilst this includes the high frequency noise it could also

include real features and the larger the filter, the more likely it is that real features will

be lost. For this application a radius of 3 was determined empirically to be a

satisfactory compromise. A sigma of 1.7 was used, based on an empirical observation

that σ ∼ 1 + (2n+1)
10 achieves appropriate attenuation of the curve at the limits of the

filter size. The resulting convolution matrix is thus [0.011, 0.135, 0.606, 1, 0.606, 0.135,

0.011]. Each pixel in turn is convolved with this matrix and the pixel value is replaced

with the result of the convolution. This filter is an irreversible process.

The CCD does not have a uniform response across the spectral region (see figure 1.1).

In addition, the illumination used in this project is from two broadband halogen

lamps, approximating black-body emitters with a peak wavelength of around 800nm;
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as such, illumination is not constant across the spectral range. The total spectral

response is dependent on the combined effect of the emitted radiation and the

detectors responsitivity.

For some analysis purposes this is not an important factor as the spectral response is

the same for each pixel and is constant across images. However, in order to interpret

each pixel as a real spectrum and not just an abstract vector, this spectral response

should be corrected for. In order to do this and in order to ensure that no systematic

effects exist across the spatial axis of the CCD, each row of the spectral image is

normalised against the spectra from a row of background pixels. In effect this

normalises the images on a pixel by pixel basis, removing any fixed pattern noise that

may be present in the CCD. The background in this project is a blank piece of white

card and so its spectrum is representative of the system’s spectral response.

The final stage of pre-processing for both sets of images is to crop the image spatially

such that the amount of background is minimised. For this, the software prompts the

user to select the extent of tissue on the image before discarding all data from outside

this region of interest. This crop is an irreversible process.

5.2.2.2 Real Processing Routines

This section details the way in which concepts such as the SAM and SPM described in

chapter 3 have been implemented for this project.

The first real processing performed on the spectral images is to calculate an SAM. The

spectral angle can be measured between any two arbitrary spectra and often a

reference spectrum of a known material is used alongside a test spectrum from an

unknown material; in this case the spectral angle becomes a measure of how well the

spectra match and often a threshold, of say 5◦, is set below which the test material is

classified as being the known material. In this project there is no library of spectra of

relevant materials and so the same reference is used for all pixels in all images.

The choice of reference is somewhat arbitrary and the software allows for a number of

options to be used. These include using a background pixel’s spectrum, the mean of all

image spectra, a spectrum composed of the median values across the image for each

channel, and a uniform “grey” spectrum, i.e. one in which the value of the spectrum is

the same in all channels. At the current stage of research, the spectral images are be

considered largely in isolation, in this situation these are all equally valid choices and

arguments could be forwarded for each. However, only the grey spectrum will provide

spectral angles that can be compared across images at a later stage and so this is the

reference used in all images.
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At each pixel in the image, the spectrum from that point is fed as an input, along with

the spectrum from the grey reference, to a function that calculates the angle between

the two vectors according to equation 3.12. At this point the result is normalised by

dividing it by π
2 , thus the returned spectral angle value is a dimensionless value

between 0 and 1. Once constructed in this manner, the SAM is then saved in the

spectral image file, and a flag denoting that it has been calculated is set.

The SPM is then calculated for each pixel. In order for the SPM to carry relevant

meaning, the same reference as was used for the SAM should be used again. The first

step in calculating the SPM is to calculate the vector of rotation angles that will rotate

the reference vector onto the primary ordinate axis. An alternative interpretation of

this step is to rotate the space so that the ordinate axis is coincident with the reference

vector (this is referred to as the reference axis); this creates a new space that will be

referred to as the reference space. For an ND reference vector, there will be N − 1

rotations, which can be calculated using a recursive algorithm, outlined below.

1. Copy reference vector to temporary array, temp[N ], and set counting

integer i = N − 2.

2. Calculate ith rotation angle, rotate[i] = arctan
(
−temp[i+1]
temp[i]

)
.

3. Set temp[i] =
√

(temp[i]2 + temp[i+ 1]2).

4. Decrement i.

5. Repeat steps 2-4 for all i down to and including i = 0.

Using this, each test vector in turn can be rotated into the reference space. In two

dimensions, a rotation through an angle α can be computed using the matrix

(
cos (α) sin (α)

− sin (α) cos (α)

)
. (5.3)

The dimensions for the test vector in the reference space can be calculated by a series

of such 2D rotations through the angles from the vector of rotations calculated above;

this is an inverse process of the algorithm detailed above.

1. Copy test vector to a temporary array, temp[N − 1], and set counting

integer i = N − 2.

2. Calculate ith and i+ 1th reference space dimensions of test

Ti = temp[i] ∗ cos (rotate[i])− temp[i+ 1] ∗ sin (rotate[i])

Ti+1 = temp[i+ 1] ∗ cos (rotate[i]) + temp[i] ∗ sin (rotate[i]).
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3. Copy Ti and Ti+1 into temp[i] and temp[i+ 1] respectively.

4. Decrement i.

5. Repeat steps 2-4 for all i down to and including i = 0.

The SPM is now the vector of angles between the projection of the test vector onto the

subspace orthogonal to the reference axis, and the axes of this subspace. These can be

calculated using the inner product. Since each axis is a vector with only one non-zero

dimension, and since the non-zero dimension can be of arbitrary size, for convenience,

each axis is represented in the inner product calculation by a unit vector. The angle,

ϕi, is thus

ϕi = arccos


temp[i]√√√√N−1∑

j=0

temp[j]2

. (5.4)

Once this has been constructed for each pixel, the entire SPM is saved in the spectral

image file and a flag denoting that it has been calculated is set. The SPM is saved in

the same data block as the SAM, thus creating an array with the same dimensionality

as the original image. Throughout the software the SAM is treated as the zeroth

dimension of the SPM.

There are a number of ways to classify datasets but the principle behind all of them is

the same; the data should be divided into subsets such that datapoints within a subset

are similar to each other and different from datapoints in other subsets. This can be

achieved by examining the position of the datapoints in some, generally abstract,

space; in this way datapoints that are close to each other form subsets with the aim

that there are large inter-subset distances. The spectral angle is a simple representation

of a datapoint and exists in a simple 1D metric space. A simple classification strategy

based on spectral angle therefore, is to assign classes based on a map of the

datatpoints in the metric space, such a map being a histogram of spectral angles.

In order to construct a histogram, it is necessary to determine how coarsely (or finely)

to bin the measurements. Using too many bins will distribute the measurements too

much, real features may be lost by spreading them too thinly; using too few bins may

also lose features by combining them into larger groups. A number of strategies have

been investigated for optimising the number of bins to use, and whilst it is beyond the

scope of this report to present a review of these, two of the simplest choices are to use

the square root of the number of datapoints (n) and Sturges’ formula (Sturges, 1926):
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No.ofBins = log2 n+ 1. (5.5)

For a typical 512× 512 image, the square root approach would advocate 512 bins,

whereas Sturges’ formula would suggest only 19 bins be used. It was determined that

Sturges’ formula was not providing sufficient detail for the histogram to be useful.

Typically only two groups were seen, a set of background pixels and a set of biological

tissue; the large numbers of datapoints in each bin also suggested that the histogram

could be binned more finely. The square root approach gave a much better spread and

further structure emerged.

Once the histogram of spectral angles has been calculated, it is written to a Comma

Separated Variable file (CSV). This spreadsheet is imported into commercial software

called PeakFit (published by Systat Software), wherein Gaussian peaks can be fitted to

the histogram. The centres and widths of each peak were exported into a text file

which could be read by the spectral imaging software.

The PeakFit software provides a graphical user interface that makes the fitting process

highly configurable. Any parameter of the fitting process can be manipulated,

although defaults are provided. Perhaps the two most important parameters for this

project are the number of peaks to fit and the width of the peaks. The key decision in

determining the peak widths to use is whether all peaks in a single fit should be the

same width, or be allowed to vary. It was decided that since all peaks are formed by

the same distortions of pure signals, and there is no reason to suspect that the noise

causing these distortions should be different at different spectral angles, all peaks in a

single fit should be same width. Having set that constraint, the actual peaks widths

used were determined entirely by the PeakFit software.

For all the work presented in this thesis, the PeakFit software was set automatically

detect the number of peaks present in a given hisogram. This decision was made on

the basis of some experimentation with changing the default number of peaks (not

documented) and a qualitative assessment of whether or not adding or subtracting

peaks improved the fit. It was determined that any benefit in fit improvement was

outweighed by the cost in time taken to manually improve on the automatic fit. As a

result, the number of peaks was only manually changed if it was evident that the

software had detected coincident peaks (as happened occasionally). With further time

for development, this parameter could be systematically altered to determine the

optimal fit, which would ultimately be measured by the r2 of the fit.

The peak centres are used to define the centres of the classes present within the image.

For each pixel in the image, the spectral angle is used to compute the probability that

the datapoint belongs to each of the given peaks. The Gaussian curve, suitably

normalised, represents a probability distribution function; so for a spectral angle of θ,
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the a priori probability that it belongs to a peak with centre (or mean) µ, and width

(standard deviation) σ is

p (θ) =
1√

2πσ2
exp
− (θ − µ)2

2σ2
. (5.6)

These probabilities can then be used to classify the pixel in one of two ways; either by

assigning it to the class centred on the peak to which it has the highest a priori

probability of being connected, or by assigning it probabilistically to one of the classes.

The second method involves summing the probabilities of the pixel belonging to each

class (this need not equal one as they are independent probabilities, and for two closely

located peaks, a pixel falling in between them could have a >50% of belonging to

both) and normalising each by this sum, giving the a posteriori probabilities of

belonging to each class (i.e. given there is a measurement at θ and given the relevant

classes, what is the probability that the measurement belongs to each class). If there is

then a 30% chance it belongs to peak A, then there is a 30% chance it will be assigned

to peak A. Both ways have been tested and both have advantages and drawbacks.

Assigning purely on the basis of which has the highest probability means that

measurements from the tails of each peak are not assigned to the correct class; it is not

possible to determine which are the misclassified points, however it is known that they

exist. The misclassifications in this case are most likely to be in favour of adjacent

groups and so the “margin” of misclassification is small. However, it is arguable that

misclassification is a binary state where a pixel is either classified correctly or

incorrectly, in which case this margin is meaningless. Assigning probabilistically means

that although each class will contain approximately the appropriate number of pixels,

there are still likely to be misclassifications; here it is not possible to identify the

misclassified points, or indeed to positively know that they even exist. Further, it is

likely that a small number of pixels will be misclassified by a large margin, as with

large numbers of pixels, events with low a posteriori probabilities are increasingly

likely to occur.

Having run classifications in both ways, it was decided to assign pixels to the peak with

which they had the highest a priori probability of being connected. It was observed

that class boundaries were more clearly defined spatially by this method and that the

classified image appeared to suffer less from what appeared visually to be statistical

noise. Further, where it could be determined that adjacent classes were actually

over-representing one type of response, these could be merged with confidence that the

misclassification rate would decrease. Both methods remain available in the software.

Having been classified, the average spectrum for each group is calculated along with

standard deviations in each spectral channel. These are output as a CSV file as a

record of the group centres and 68% confidence limits. The classification creates a map
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of group assignations, which is stored in the spectral image file and again, a flag is set

to indicate that classes have been calculated.

The SPM extends the metric space in which the datapoints can be clustered, and so in

order to start a classification using the SPM a 2D histogram is generated. The

function for creating this histogram will work with any two SPM dimensions, however

for the purposes of this project only the zeroth dimension, i.e. the SAM, is used as the

horizontal axis.

At this stage of development, the further classification is supervised in that groups are

not yet automatically mapped across the entire space. Instead, at this point the

software user is prompted to highlight features of interest on the histogram. This is

currently performed by drawing a coloured rectangle around the feature, this is a crude

method and boundaries can not be drawn tight to the feature. Once all interesting

features (as determined by the user) have been selected, each pixel is considered in

turn and if it maps into ones of the boxes in the metric space, it will displayed as the

same colour as the corresponding box. If the pixel does not map into any of the boxes

its average value across the spectral range is displayed in grey-scale. Both the

histogram with the coloured boxes, and the corresponding spatial image are saved as

separate bitmap image files (BMPs). The average spectrum for each box, and standard

deviations for each spectral channel, are calculated and output as a CSV as for the

classes above.

An alternative functionality exists whereby instead of the second dimension being a

dimension of the SPM, it measures which dimension of the SPM has the largest value

for each pixel. This “dominant plane” measure is akin to considering the direction in

the which the original test vector is pointing, or its heading. The same method of

creating a histogram and allowing the user to examine features is then used.

For this project, this is the extent of the processing. Possible extensions and

developments of these methods are discussed in chapter 6, and the source code for the

full suite of spectral image processing software, which includes functionality developed

but not discussed in this thesis, and all other software developed for this project, is

included on a CD-ROM.

5.3 Results

5.3.1 Test Hyperspectral Results

In order to test the viability of the SAM with VNIR spectral images, a dummy image

using visible spectra of healthy and metastatic sentinel nodes of breast cancer sufferers

reported by Bigio et al. (2000) was constructed.
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A hyperspectral image was created in which each pixel was either assigned the normal

spectrum or the metastatic spectrum according to a binary mask image. Further

hyperspectral images were created such that random deviations from the spectrum

were added to simulate noise in the measurements. Each spectral channel of each pixel

was adjusted by adding or subtracting a number randomly selected between zero and a

given percentage of the maximum signal value, creating systematic distortions of the

“pure” signals. This results in noise with a uniform probability distribution function.

This is not representative of noise in real-world measurements, which would have a

Gaussian probability distribution function. The purpose of this exercise was not

however to model real-world conditions, but rather to assess the performance of the

spectral imaging techniques in non-ideal conditions and to ensure their robustness.

Such uniform noise was used in this section firstly for convenience of writing the

algorithm to generate it, and secondly because it is not anticipated that the

distribution of the noise would have an impact on the resulting effects or the validity of

the conclusions drawn from these.

In this section, the term “noise level” will be used to refer to the maximum possible

perturbation generated in a give image; i.e. a “noise level” of 10% means that the

number to be added or subtracted to the original signal value varied between zero and

10% of the peak signal value. The noise level was increased from 1% to 20% in integral

increments, each with a new hyperspectral image.

For each image an SAM was then created, figure 5.9 shows the SAMs for two of these

hyperspectral images; the image on the left shows the original (all pixels are either

filled with the normal, or metastatic spectrum as reported), the image on the right

shows the hyperspectral image with the addition of a 20% noise level. It is evident

from figure 5.9 that the background (normal) pixels are significantly less well separated

from the foreground (metastatic) pixels in the noisy image than they are in the original

binary image. In particular the finer spatial details in the foreground are less well

defined.

Figures 5.10-5.12 show histograms of spectral angle from three of these images, the

original image, a 10% noise level image and a 20% noise level. On the histogram of the

original image there are just two lines at the values of the spectral angles of the normal

and metastatic spectra. As we increase the noise, these lines are spread out into peaks,

which gradually merge into each other. This is confirmation of what would be

expected to be the case. In the presence of noise on the signal, the normal pixels

exhibit a range of closely matched spectra, and the metastatic pixels also exhibit this

range. It also confirms what can be observed visually from the SAMs, that the normal

and metastatic pixels become less separable in the metric space as the noise increases.
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Figure 5.9: SAMs for dummy spectral images with noise levels of 1% (left) and 20%
(right).

Figure 5.10: Histogram of spectral angles for the original dummy image. As only two
types of pixel are present on the image, there are two lines, one at the spectral angle

of each type.

Using these Gaussian profiles, each pixel was classified as normal or metastatic using

the algorithm described in the previous section. Figure 5.13 below shows the results of

classification for a low noise level (5%) and the 20% noise level image.

The 5% noise level image shows virtually no misclassification whereas much can be

seen on the 20% noise level image; however, the foreground is still distinguishable from

the background, and the classification seems to be correct for the majority of pixels.

Using the binary mask, the number of misclassified pixels was counted and this is
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Figure 5.11: Histogram of spectral angles for the dummy image with 10% noise level.
The two lines from figure 5.10 are now two Gaussian shaped curves.

Figure 5.12: Histogram of spectral angles for the dummy image with 20% noise level.
The curves from figure 5.11 have largely merged into each other.

shown below for increasing noise levels in figure 5.14. This shows that the number of

misclassifications was steady and very low up until noise levels of around 9-10% before
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Figure 5.13: Dummy images with 5% noise level (left) and 20% noise level (right)
with pixels classified by spectral angle using Gaussian peaks fitted to the histograms of

spectral angle.

rising steadily. It is around the 9-10% level at which the peaks on the histograms begin

to merge significantly.

Figure 5.14: A graph showing the number of pixels misclassified by the spectral angle
classification as a function of the noise level of the dummy image.

The average spectra of the normal and metastatic classes were calculated and these are

shown for the 5% and 20% noise level images in figure 5.15. Although still clearly

distinguishable, the differences between the spectra begin to diminish at higher noise

levels. In particular, the peak in the metastatic spectrum at around 460nm is

significantly reduced, and in the area between that and the start of the decline at
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around 510nm the spectrum becomes much flatter. The separation between the

spectra at higher wavelengths is also markedly reduced. The normal spectrum is much

less changed than the metastatic.

Figure 5.15: Graphs showing the average spectra of the normal and metastatic classes
of the classified dummy images with 5% (right) and 20% (left) noise levels. The base

spectra used were based on pure spectra reported by Bigio et al. (2000).

There are approximately 5 normal pixels for every metastatic pixel in the original

image; it is anticipated that in a real world situation there would be less cancerous

tissue in a node than normal tissue, although it is likely that the ratio would be higher

in favour of normal pixels. This means that every misclassified pixel affects the

metastatic spectrum a lot more than the normal spectrum, so whilst the differences

between them are changing, most of this can be attributed to the metastatic spectrum

becoming more like the normal.

These average spectra represent the class centres and as they change so too do their

spectral angles. These class centres are represented on the histograms from figures

5.10-5.12 by the peak centres, and so as the spectra change, so do the positions of the

peak centres. These changes are shown by the graph in figure 5.16, where each

Gaussian curve is plotted as a point representing the centre and an error bar

representing the peak width.

Although based on dummy data, these results indicate that the differences exhibited

by the spectra of normal and metastatic sentinel lymph node tissue should suffice to

separate the tissue types in a metric space. However, as a caveat it should be noted

that this data is heavily idealised in a number of respects. Firstly, the number of

spectral types present in each image is known, indeed defined, to be two; in real images

there can be less confidence that this will be the case. Secondly, the distribution of

these spectral types is known, meaning that misclassifications can be positively

identified; in real images such misclassifications will be a fundamental limit to the

sensitivity of the system. Finally, each pixel is made up of either one spectral type or

the other; in a real image it is possible that a pixel could contain more than one type

tissue and the spectral response at that point would be a mixture of the constituent

spectra.
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Figure 5.16: A graph showing the positions of the “normal” and “metastatic” Gaus-
sian peaks as a function of noise level of the dummy image. The FWHM of each curve

is shown as an error bar.

The changing of the peak position with noise level also demonstrates that looking for a

fixed response to identify cancerous tissue is unlikely to be successful and so efforts at

this stage should focus on identifying contrast within an image.

The SPMs for these images were also calculated, and a 2D histogram showing spectral

angle against the dominant plane of the SPM was generated. The histogram for the

20% noise level image is shown in figure 5.17. It is apparent that there are two distinct

groups and these are highlighted by the red and green boxes. The groups map back

into the spatial domain as shown in figure 5.18.

When compared with figure 5.13, it is clear that whilst there are still a number of

misclassified pixels, the separation achieved using the SPM is far superior to that

achieved with SAM alone. This is confirmed by counting the number of

misclassifications in each image, the graph for this is shown in figure 5.19. By

comparison with the graph in figure 5.14, it is apparent that even at high noise levels

the total number of misclassifications is far smaller (∼ 180 c.f. ∼ 12, 000), and also that

the level of noise at which misclassifications start to occur is higher (15% c.f. 10%).
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Figure 5.17: 2D histogram of spectral angle against the dominant plane of the SPM
for the dummy image with 20% noise level. Two distinct groups are highlighted with

red and green boxes.

Figure 5.18: Dummy image with 20% noise level with those pixels in the red and
green boxes from figure 5.17 shown in red and green respectively.
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Figure 5.19: A graph showing the number of pixels misclassified by the spectral angle
and SPM classification as a function of the noise level of the dummy image.
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5.3.2 Real Hyperspectral Results

The lymph nodes in this project have been identified as the sentinel nodes of breast

cancer patients and excised during the normal course of surgery. They were imaged

after having been butterflied and pressed against a microscope slide for TP Cytology

and before being prepared for histopathology. The images are thus of the cut surfaces

and the fatty tissue surrounding them. The nodes were identified by a combination of

blue dye and radioactive tracer and show varying levels of blue staining. Identification

and labelling of the excised tissue as node or fatty tissue was initially provided by Mr.

Sainsbury or his clinical staff, and with increasing exposure to excised samples, by the

author himself. The ease with which this process of identification can be performed is

highly variable, and as a first step, an automatic detection would be a useful tool.

In order to image the nodes they were placed on a microscope slide, which was in turn

placed on the translation stage. The stage was translated in 0.5mm increments, at

each position a line across the tissue was imaged through the 30µm slit at the face of

the Specim imager. When the tissue had moved into the field of view of the Alta

camera, the multispectral image was taken, before resuming the process of scanning to

complete the hyperspectral image (see figure 5.7). The hyperspectral images thus

acquired have high spatial resolution in the horizontal direction but much more coarse

spatial resolution in the vertical direction (∼ 30× 500µm, see section 5.2.1.2 and in

particular table 5.6).

The images presented in this thesis have been stretched in the vertical direction to

make it easier to see this dimension and to make the aspect ratio a closer reflection of

the real image dimensions. This makes the images appear very quantised in the

vertical dimension. It should also be remembered that whilst these horizontal lines are

shown a continuous progression, they in fact represent discrete lines separated by

around 0.5mm.

A good example of a hyperspectral image of a sentinel lymph node is shown in figure

5.20. This is a pseudo-colour image where the red, green and blue planes of a bitmap

image are comprised of the individual image planes at approximately 650nm, 510nm

and 475nm, and as such it gives an approximation of how the tissue appears to the

human eye. The image is 725 pixels wide, 35 pixels high and comprised of 183 spectral

dimensions between 453nm and 1000nm. It should be noted that this spectral range

has been used for all hyperspectral images in this project; this is because the low

responsivity of the camera, coupled with the low output of illumination of the halogen

lights at wavelengths lower than 450nm means that the signal at these low wavelengths

is too low to provide reliable information. The approximate extent of the node itself is

outlined in black, showing two, approximately elliptical cut surfaces of the bi-valved

node.
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Figure 5.20: A pseudo-colour image generated from the hyperspectral image of a
resected SLN. The approximate extent of the node is shown by black lines, marking
the two cut surfaces of the bi-valved node, the remainder of tissue is the surrounding

fatty tissue in which the node was originally embedded.

As with the test images in the previous section, an SAM was calculated and a

histogram of the spectral angles generated. The histogram is shown in figure 5.21.

This shows a significant peak at the left hand side (lower spectral angles) and a

number of peaks on the right hand side (higher spectral angles). The peak at low

spectral angle values represents the background pixels, the background being a piece of

uniform, or near uniform, grey card, the peaks at high spectral angle values represents

the biological tissue. The rest of the analysis focusses on the biological tissue, which in

this case involves pixels with a spectral angle greater than 0.1 radians.

Peaks were automatically fitted to this section of the histogram using Peakfit. The

software provides an automatic estimate of a line of best fit through the points and an

initial fit with a number of peaks. The parameters (peak width, height and position)

are adjusted and the fit iterated until no further improvement in fit quality is achieved.

The width is kept the same for all peaks on the assumption that they are all the result

of similar perturbations. In this case the software found 9 separate peaks, as shown in

figure 5.22.

The spectral image was then classified using these peaks as class centres, resulting in

the image shown in figure 5.23.
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Figure 5.21: The histogram of spectral angles present in the hyperspectral image of
the SLN from figure 5.20.

Figure 5.22: Gaussian peaks that have been automatically fitted to the histogram
from figure 5.21.

From figure 5.23, and using the group colour key from figure 4.17, it can clearly be

seen that the biological tissue has been separated from the background. It can further

be observed that the tissue comprising the node itself (groups 3, 4 and 5) has been

separated from the fatty tissue surrounding it (groups 7, 8, 9 and 10). The ellipsoidal

shape of the node and the symmetry expected from a bi-valve cut are clearly evident.
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Figure 5.23: The hyperspectral image from figure 5.20 with pixels classified by spec-
tral angle, using the Gaussian peaks from figure 5.22 as class centres. The grey back-

ground pixels were not considered during the classification process.

As well as this general success, there is evidence of the shortcomings of this

classification, namely that group 6 seems to comprise both fatty tissue and also some

of the edge of the nodal tissue, and also that the outline of the tissue as a whole is

comprised of pixels classified to the same groups as the nodal tissue.

The SPM was then calculated and a 2D histogram of spectral angle against dominant

plane generated. Some areas of interest have been highlighted within coloured boxes.

The spatial distribution of the pixels within these areas is shown in figure 5.25.

It is evident that pixels in group 3 in the left hand side of the node in figure 5.23

correspond well to the red pixels from figure 5.25, it is also notable that the pixels in

group 3 around the edge of the tissue in figure 5.23 are not replicated in figure 5.25.

The green and blue pixels in figure 5.25 demonstrate a second area in which the

dominant plane analysis has allowed a separation of pixels that was not possible using

spectral angle alone. These areas were in groups 6 and 7 in figure 5.23, groups which

also had a significant crossover into the surrounding fatty tissue. Whilst there are still

a small number of blue and green pixels in the surrounding tissue, the predominant

concentration is very much around the edge of the nodes. Again, the symmetry shown

by these distributions confirms what would be expected from the known history of the

tissue.
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Figure 5.24: 2D histogram of spectral angle against the dominant plane of the SPM of
the hyperspectral image from figure 5.20. Some areas of interest have been highlighted

by coloured rectangles.

The cyan pixels, as can be seen from figure 5.24, cover a broadly similar range of

spectral angles to the blue pixels. They are clearly separated in the dominant plane

however, and on figure 5.25 it can be seen that they represent pixels that are clearly

part of the surrounding tissue, rather than the nodal tissue represented by the blue.

The magenta pixels also fall in the same spectral angle range and in terms of dominant

plane, fall between the cyan and blue groups. The majority of these pixels are clearly

in the surrounding tissue, however a significant number also form part of the edge of

the node, particularly on the right hand side.

Average spectra for each of the classes from figure 5.23 are shown in figure 5.26, the

colours of the lines corresponding to the colours of the classes as given by the scale bar

in figure 4.17.

The spectrum corresponding to the background is largely uniform around 8000a.u.

The dip below 650nm is most probably explained by the presence in the class of a

small number of pixels that actually correspond to tissue. A peak is clearly visible at

around 550nm and is replicated in each of the spectra, this is close to a strong mercury

peak in the spectrum of the fluorescent lights used in the hospital (546nm), and it is

possible that this peak is an artefact of this illumination. The shape of the spectra for
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Figure 5.25: The hyperspectral image from figure 5.20 with pixels inside the coloured
boxes from figure 5.24 shown in the same colours.

Figure 5.26: The average spectra of each class from the spectral angle classified image
from figure 5.23.
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the rest of the groups is typical for biological tissue, high intensity in the long

wavelength visible and NIR, owing to the lack of chromophores in this region.

The spectra from groups 3, 4 and 5 are similar in shape, as might be expected as they

all represent node tissue; there are detailed differences, in particular the spectra from

group 4 twice crosses that from group 3 (at around 630nm and again at just below

850nm). The spectra from groups 7, 8, 9 and 10, also follow similar shapes with an

apparent peak at just above 950nm. When considering that these spectra represent

fatty tissue, this “peak” is actually likely to be the rise from a trough at just below

950nm, corresponding to the absorption peak seen in pork fat and detailed in figure

1.7. In the spectrum for group 6, this apparent peak is more akin to a shoulder, this

would be explained by it being a mixture of node and fatty tissue.

The spectra from the groups show in figure 5.25 can be seen in figure 5.27, again with

the colours of the lines corresponding to the colours of the groups.

Figure 5.27: The average spectra of each of the groups of pixels shown in figure 5.25.

Here, the red spectrum clearly has significantly higher reflection up to 630nm and a

pronounced dip beyond 950nm (this dip is evident on groups 3, 4 and 5 in figure 5.26,

particular for group 4). This could be explained by a trough in the spectrum

corresponding to the water absorption peak at 970nm.

In the magenta spectrum (consisting of fatty tissue) the trough just below 950nm is

clearly recognisable as such, rather than there being at peak just above 950nm. The

cyan spectrum, which otherwise has many differences from the magenta, also shows
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strong evidence of this trough. The green and blue spectra much more closely resemble

the shape of the red spectrum in this long wavelength region, supporting the

separation of node and fatty tissue at the same spectral angle.

Average spectra from four small areas of the image were also calculated, the areas

being shown as coloured squares on figure 5.28. The spectra themselves are shown in

figure 5.29.

Figure 5.28: A pseudo-colour image of the hyperspectral image shown in figure 5.20
with four areas of interest highlighted, corresponding approximately to areas shown in

the four groups in figure 5.25.

These coloured areas correspond closely to the equivalent coloured areas from figure

5.25, with the addition of a yellow area corresponding to some node tissue.

The trough just below 950nm is again strongly evident in the magenta spectrum, but

interestingly not in the cyan spectrum. The strong dip above 950nm is again seen in

the red and blue spectra, and there is some evidence of it also in the cyan. The yellow

spectrum also shows some sign of this dip, although much less strongly than the red

and blue.

The most important thing to note from figure 5.29 is that these spectra much more

strongly resemble the results from from figure 5.27 than they do the results from figure

5.26.

The node in this analysis is known to have tested positive for the presence of cancerous

cells in cytology. Unfortunately, the preliminary nature of this study has meant that
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Figure 5.29: The average spectra of the four areas shown in figure 5.28.

once they had been imaged, the nodes were not followed with sufficient detail to allow

comparisons between the cytology images and the spectral images, this point is

discussed in more detail in chapter 6. It is known however that metastasis in the

lymph node starts around the edges of the nodes, gradually moving in towards the

centre. The blue and green groups in figure 5.25 are a tantalising hint that this may be

what has been detected in this image, however it is not possible to verify this.

A second sentinel lymph node from another patient is shown below in figure 5.30.

Again, this covers the spectral range of 450-1000nm with 183 channels and is a

pseudo-colour image created in the same way as figure 5.20. The image is cropped to

981 pixels wide and 53 pixels high. Again, the approximate extent of the node is

marked in black.

Again, a histogram was created and peaks fitted to the region representing the

biological tissue, in this case 7 peaks were fitted. The classification according to these

peaks gives the image shown in figure 5.31.

This image is harder to interpret than the previous example; in this case the node

tissue lies along a diagonal, with the cut running from upper left to lower right. With

this in mind, a symmetrical ellipsoidal shape starts to suggest itself, with group 4

being the clearest area of node, the discrimination is far from clear however. The

average spectra for these classes are shown in figure 5.32.
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Figure 5.30: A pseudo-colour image generated from the hyperspectral image of a
resected SLN. The approximate extent of the node is shown by black lines, marking
the two cut surfaces of the bi-valved node, the remainder of tissue is the surrounding

fatty tissue in which the node was originally embedded.

Figure 5.31: The hyperspectral image from figure 5.30 with pixels classified by spec-
tral angle, using the Gaussian peaks calculated from the histogram of spectral angles as
class centres. The grey background pixels were not considered during the classification

process.

It is immediately apparent that the spectra for groups 5 and 6 are almost identical,

which suggests that an extra peak has been fitted where it is not actually needed1.

This makes sense also in figure 5.31 where the pixels for these groups are not spatially

resolved from each at all. The lipid trough just below 950nm is evident to some degree

in all of the spectra suggesting that none of these groups properly resolves the node

1In iterating this case one of the peaks gradually shifted until it was very nearly coincident with
another.
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Figure 5.32: The average spectra of each class from the spectral angle classified image
from figure 5.31.

from the surrounding fat. Group 4 exhibits a significant shoulder at around 630nm

which, whilst present is much less pronounced in the other groups. This feature is not

as evident in figure 5.29 where all of the spectra rise more sharply in this region.

Again, a 2D histogram of spectral angle and dominant plane was plotted, and this is

shown in figure 5.33, with some coloured boxes drawn in to highlight certain areas of

the plot. At the right hand side of this plot, two bands appear in the dominant plane,

and as suggested by the shape of the coloured boxes, these are significant.

The spatial arrangement of these pixels is shown in figure 5.34.

From figure 5.34 it can be seen that the green pixels now cover most of the

surrounding fatty tissue, the blue pixels form an approximate boundary around the

node tissue and the red and cyan pixels come from the node tissue itself. The average

spectra for these regions are shown in figure 5.35.

In these the lipid trough just below 950nm is strongly evident in the blue and green

spectra and much less so for the red and cyan, which supports the fact that the green

pixels cover the surrounding tissue and suggests that the blue, whilst demarcating the

node, actually have significant crossover into the surrounding tissue. The red and cyan

spectra also show stronger evidence of a sharp dip towards the water trough at 970nm.

The sharp shoulder at around 630nm is very evident here in the blue, red and cyan

spectra, whilst the green peak has significantly higher intensity from around 630nm up
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Figure 5.33: 2D histogram of spectral angle against the dominant plane of the SPM of
the hyperspectral image from figure 5.30. Some areas of interest have been highlighted

by coloured rectangles.

Figure 5.34: The hyperspectral image from figure 5.30 with pixels inside the coloured
boxes from figure 5.33 shown in the same colours.

to around 800nm. From figure 5.33 it is clear that the green pixels cover the same

spectral angle range as all of the others here, thus demonstrating that major

differences in the shape of the spectra can be missed by use of the spectral angle alone.
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Figure 5.35: The average spectra of each of the groups of pixels shown in figure 5.34.

These two examples both demonstrate an enhanced capability to distinguish between

different spectra when the spectral angle is used alongside information from the SPV

compared to when it used on its own. Whilst only partial 2D classifications have been

presented here, there is evidence that this combination of measure will allow for a

complete classification that is more accurate than can be achieved when only working

with spectral angle. The fact that the groups in figures 5.25 and 5.34 are clustered in

spatially coherent groups, rather than being randomly distributed about the image,

also suggests that the extra discrimination that can be achieved with the spectral

position is real.

These two examples also demonstrate the variability between patients. When working

with these nodes, this is most obvious spatially, in the array of sizes and shapes in

which they exist. From the spectra presented above, it appears that there is spectral

variation also, and whilst some features, like the easily explained lipid and water

troughs, appear to be consistent, the as yet unexplained shoulder at 630nm appears to

be less so. It must be stressed that a sample of 2 is far too small to draw any

conclusions, but this variability is an important consideration when carrying this work

forward. Analogous images and spectra for several more nodes can be found in

appendix B.
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5.3.3 Multispectral Results

The multispectral imager described in section 5.2.1.3 above was used with narrowband

(10nm FWHM) interference filters at 470nm, 527nm, 610nm, 900nm and 970nm in

order to record 5D multispectral images of the sentinel lymph nodes. The pair of NIR

filters at 900nm and 970nm were selected for their sensitivity to the water absorption

peak, the three visible filters were chosen partly to cover the full range of the visible

spectrum and partly on the basis of the spectra reported by Bigio et al. (2000).

Figure 5.36 shows a monochrome image of the multispectral image of the same sentinel

node as shown in figure 5.20. The image was taken through a neutral density filter.

The image has been cropped from its original 512× 512 pixels to 400× 330 pixels, in

order to reduce the number of background pixels. The approximate extent of the node

is outlined in black.

Figure 5.36: A monochrome image generated from the multispectral image of a re-
sected SLN. The approximate extent of the node is shown by black lines, marking the
two cut surfaces of the bi-valved node, the remainder of tissue is the surrounding fatty

tissue in which the node was originally embedded.

The same approximate geometry of the node and the surrounding tissue can be seen in

both the hyperspectral and multispectral images; the apparent distortion in the height

can be explained by the fact that the horizontal and vertical spatial scales are the
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same in the multispectral image, whereas they differ in the hyperspectral image as a

result of the differences in spatial resolutions in the horizontal and vertical dimensions.

As with the hyperspectral images, the SAM was calculated and a histogram of spectral

angles formed. The histogram is shown in figure 5.37. There are a cluster of peaks here

at low spectral angles, representing the background pixels, with a further set of peaks

at higher spectral angles representing tissue. Again, the biological tissue starts at

around 0.1 radians.

Figure 5.37: The histogram of spectral angles present in the multispectral image of
the SLN from figure 5.36.

Focussing on the region representing tissue, 7 peaks were automatically fitted to this

histogram as shown in figure 5.38.

The spectral image was then classified using these peaks, as shown in figure 5.39.

Again, the colour scale from figure 4.17 is used.

Again, the first thing to note is that the background can be well separated from the

tissue, although there does appear to be some tissue on the lower right hand side that

is classified as background. The general shape of the nodes can be seen, primarily in

group 4 on the right hand side and groups 4 and 5 on the left hand side. The node is

well delineated from the surrounding tissue at the top, with group 6 representing the

edges of the node, and some fatty tissue, but at the bottom, although the general

shape is perceptible, the same two groups, 4 and 5, represent the node and all the

surrounding tissue. This creates the impression of horizontal banding across the

sample.
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Figure 5.38: Gaussian peaks that have been automatically fitted to the histogram
from figure 5.38.

2D histograms of the spectral angle with each of the 4 planes of the SPM are shown in

figure 5.40. The histograms with planes 1 and 2 show the greatest variability in

spectral position, and of these the histogram with plane 1 shows more areas of high

concentrations of pixels, as such this plane was selected for further analysis. The

histogram, with some boxes drawn on to highlight some key areas is shown in figure

5.41 and the spatial distribution of the pixels in each box is shown in figure 5.42.

The red box on figure 5.41 clearly covers a large range of spectral angles, but is limited

in spectral position. The green and blue boxes both cover smaller spectral angle

ranges, but both are within the range of the red box and as such would be

indistinguishable by spectral angle alone, however they both highlight peaks in the 2D

histogram. From figure 5.42, it is clear that the blue and green cover pixels from the

node tissue itself, and the red box is limited to the surrounding tissue. Clearly all three

boxes cover the range that mapped to groups 4 and 5 in figure 5.39. At higher spectral

angles, the yellow, cyan and magenta boxes all also cover the same spectral angle

range. Their distribution on figure 5.42 suggests that the yellow boxes cover more of

the fatty tissue, whereas the cyan and magenta are both on the periphery of the node

tissue. Since the yellow pixels are closer to the spectral position range of the red pixels

than the green and blue, this could suggest that the spectral position is as important,

if not more important in this case, for separating the node from the surroundings.

Figure 5.43 shows the monochrome, neutral density image of the same sentinel lymph

node as shown in figure 5.30. This image has been cropped from its original 512× 512

pixels to 436× 497 pixels. Again, the spatial distortion compared to the hyperspectral

image (in fact, the hyperspectral image is distorted rather than this multispectral
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Figure 5.39: The multispectral image from figure 5.36 with pixels classified by spectral
angle, using the Gaussian peaks from figure 5.38 as class centres. The grey background

pixels were not considered during the classification process.

image) can be seen, but again the geometry is recognisably the same. The approximate

extent of the node itself is marked in black.

Again, a histogram of spectral angles was created, and this is shown in figure 5.44.

It is apparent from figure 5.44 that there is a strong peak at low spectral angle

(centred around 0.035 radians) and this was taken to be the background, the peak fit

was thus performed on the region of the histogram greater than 0.05 radians. Seven

peaks were fitted to the histogram and the pixels were classified accordingly. The

result of the classification can be seen in figure 5.45.

It is very apparent from figure 5.45 that the background pixels in the bottom right

hand corner have been classified as biological (node) tissue (group 3). There is a

further misclassification regarding the feature at the top centre of the image, which has

been classified as groups 7 and 8, consistent with fatty tissue. It was seen in the

hyperspectral example, and indeed it can be seen from figure 5.43 that this should

actually be node tissue, along with the area to its lower left, which has been classified

as groups 5 and 6 (fatty tissue). In other respects this classification has been successful
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Figure 5.40: 2D histograms of spectral angle against each of the the planes of the
SPM for the multispectral image in figure 5.36. The plane is noted in the corner of

each image.

in that the node tissue (group 4) is well separated from the surrounding fatty tissue

(groups 6-8) in a way that is consistent with the separation seen in the hyperspectral

image example.

The 2D histograms of spectral angle against the planes of the SPM are shown in figure

5.46. From this it can bee seen that plots 1 and 2 have a high spread in the spectral

position dimension at low spectral angles, whereas plots 3 and 4 have higher spreads at

higher spectral angles. The misclassifications in this case came from two separate

areas, the background misclassification is a low spectral angle problem, and the top

central misclassification is a high spectral angle problem. It therefore would appear to

be beneficial to approach these two areas using two separate plots; plot 1 was selected

to try to resolve the background issue, and plot 4 to resolve the top central issue.

The 2D histogram of spectral angle against the first plane of spectral position is
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Figure 5.41: The 2D histogram of spectral angle against the first plane of the SPM
of the multispectral image from figure 5.36 with some regions of interest highlighted by

coloured rectangles.

shown, with some boxes highlighting key areas, in figure 5.47 and the spatial

distribution of these pixels is shown in figure 5.48.

It is clear from figure 5.48 that almost all of the background erroneously classified as

biological tissue is represented by the red pixels, with the green pixels marking the

lower right border of the tissue. There is still a small patch of misclassified background

in the lower left of the image however, demonstrating that the separation is not

perfect. The blue and cyan boxes from figure 5.47 clearly cover the spectral angle

range in which the other major misclassification occurs, at different spectral positions.

The misclassification is not able to be resolved using this plot.

Figure 5.49 shows the 2D histogram of spectral angle against the fourth plane of the

spectral position with some coloured boxes drawn in to highlight the key areas. The

spatial distributions of these pixels are shown in figure 5.50.

The red, green and blue boxes in figure 5.49 trace what appears to be a single curving

feature in the histogram, covering a large range of spectral angles but a comparatively

small range of spectral position. The cyan and magenta boxes cover some of the same
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Figure 5.42: The multispectral image from figure 5.36 with pixels inside the coloured
boxes from figure 5.41 shown in the same colours.

spectral angle range and trace what again appears to be a single feature at a different

spectral position. From figure 5.50 it is clear that the cyan and magenta pixels

correspond to the fatty tissue whereas the red, green and blue pixels correspond to the

node tissue (c.f. the red pixels from figure 5.34).

This example strongly suggests that there is relevant but different information in the

various spectral position dimensions. Again, the spectral position has been used in

conjunction with the spectral angle to increase the classification ability, and in this

example, two different spectral position dimensions have allowed two different

misclassification problems to be resolved.

5.4 Conclusions

The test results presented in this chapter again demonstrate how use of the SPM can

increase the discriminatory ability of unsupervised classification of hyperspectral

images. These data also demonstrate that this is true for the kinds of spectra typically
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Figure 5.43: A monochrome image generated from the multispectral image of a re-
sected SLN. The approximate extent of the node is shown by black lines, marking the
two cut surfaces of the bi-valved node, the remainder of tissue is the surrounding fatty

tissue in which the node was originally embedded.

exhibited by biological tissue, and more importantly, the specific types of tissue on

which the later analysis is performed.

It is further shown that the SPM introduces another strength over spectral angle

alone, namely that it appears to be more robust in the presence of noise. In real world

applications this noise could exhibit from the imaging system itself, or more

importantly, from distortions to the spectra caused by “pixel-mixing”, that is where

one pixel in the image covers more than one material type.
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Figure 5.44: The histogram of spectral angles present in the multispectral image of
the SLN from figure 5.43.

The real results presented in this chapter represent the preliminary work undertaken

on actual tissue samples and do not represent the ideal experimental setup or analysis,

points which are more fully discussed in chapter 6. They do however demonstrate that

the improvement in classification that can be achieved with the use of the SPM, seen

with so many test images, is also present for the biological tissue acquired for this

work. The SPM is clearly able to distinguish between different types of biological

tissue, and subsequent analysis of the average class spectra demonstrate that the

spectral differences being detected are real and conform to expectations of the different

materials which should be present in the different tissue types.

The SPM analysis method, although clearly in its infancy, is a promising method for

the unsupervised analysis of spectral images.
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Figure 5.45: The multispectral image from figure 5.43 with pixels classified by spec-
tral angle, using the Gaussian peaks fitted to the histogram of spectral angles as class
centres. The grey background pixels were not considered during the classification pro-

cess.
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Figure 5.46: 2D histograms of spectral angle against each of the the planes of the
SPM for the multispectral image in figure 5.43. The plane is noted in the corner of

each image.
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Figure 5.47: The 2D histogram of spectral angle against the first plane of the SPM
of the multispectral image from figure 5.43 with some regions of interest highlighted by

coloured rectangles.
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Figure 5.48: The multispectral image from figure 5.43 with pixels inside the coloured
boxes from figure 5.47 shown in the same colours.
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Figure 5.49: The 2D histogram of spectral angle against the fourth plane of the SPM
of the multispectral image from figure 5.43 with some regions of interest highlighted by

coloured rectangles.
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Figure 5.50: The multispectral image from figure 5.43 with pixels inside the coloured
boxes from figure 5.49 shown in the same colours.





Chapter 6

Discussion

As stated in chapter 1, at the core of this project has always been the hypothesis that

if different types of visually similar biological tissue can be distinguished by their

VNIR spectrum, then a spectral imaging system could provide benefits to patients and

treatments centres alike that are far in excess of the cost of the components required to

build it. The purpose of this project has thus been to test the assertion that different

types of tissue are indeed distinguishable by their VNIR spectra.

This project was not intended, nor conducted as a detailed research project into the

VNIR spectral properties of different types of biological tissue, rather it was intended

as a demonstration of principle. The key question to be addressed was not whether or

not differences in the spectra of different tissue types exist, or what the physical basis

for such differences may be, but rather whether any such differences could be detected

by a spectral imager in such a way as to allow a classification of different areas on the

image; in short, is spectral imaging a suitable candidate for development of an optical

biopsy?

This project has successfully demonstrated the separation of areas of different types of

biological tissue on both multispectral and hyperspectral images acquired in the VNIR

range. In doing so it has provided strong evidence to support the assertion that

spectral imaging can be used as the basis of an optical alternative to the traditional

biopsy. This is very much a preliminary conclusion and much work is yet to be done

even before such an optical biopsy could be taken to a clinical trial; the discussion of

the limitations of the work in this project and the future research that would need to

be conducted, is presented here in two parts, technique and application. Section 6.2,

discussing technique relates mostly to the work presented in chapters 3 and 4, section

6.3 addresses the application, namely an optical sentinel lymph node biopsy,

corresponding to the work presented in chapter 5.

With regards to the detection and treatment of skin abnormalities, it became apparent

that the main problem in this work was going to be in the treatment system rather

163
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than the detection system and so this work was brought to a close at an early stage, as

discussed in chapter 2. Given the limited nature of this work, it is not intended to

present a second discussion on it here.

6.1 A Review of Procedure

The image acquisition procedure for this project was changed very little from the

initial procedure laid out by Dr. Hoy for his own project. The focus of the author has

been primarily on the data analysis, and in consequence the data acquisition process

was somewhat overlooked. This allowed a number of areas for further development to

persist; these shall be discussed in this section.

6.1.1 Illumination Issues

6.1.1.1 Use of an AC Lamp

Illumination for all images in this project was provided by standard desk lamps

running directly from the alternating current (AC) mains power supply. AC power

supplies have current flowing in alternating directions, in the UK this occurs at a rate

of 50Hz, in consequence, the current output is a sinusoid at this frequency. The result

of this is that the power (proportional to the square of the current) supplied to the

lamps in this project varied sinusoidally at a rate of 100Hz; this correction to the

power supply is often referred to as the 100Hz ripple. This ripple means that the

energy emitted by the lamps in two equal time intervals occuring non-concurrently is

not guaranteed to be equal. Only if the time periods are a whole integer multiple of

the period of the ripple will the lamps be guaranteed to emit the same total energy.

In order to determine how much of an effect this may have had on the results

presented in this thesis, it is necessary to consider two factors, firstly the size of the

ripple compared to the total power output of the lamps, and secondly, the period over

which any two exposures may be subject to differences.

The first part was achieved by measuring the output of the lamps using a silicon based

photodiode sensitive in the visible range of the EM spectrum. The lamp and the

photodiode were DC coupled, and the equipment was arranged such that the lamp was

the only source of illumination visible to the detector and did not saturate the

detector’s response. The detector’s response is shown in figure 6.1 below. This shows

an average illumination level of 9.1V with a clear sinusiodal variation, with maxima

and minima at 9.9V and 8.3V respectively. The period of this ripple is 10ms, which is

in accordance with a frequecy of 100Hz. The ripple is thus shown to cause a variability

of up to 8.8% of the average illumination intensity.
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Figure 6.1

The second consideration, that of the period over which this ripple will have an

influence, is calculated here using representative values as the exact exposure lengths

were variable. The majority of exposures were in the range 200-300ms. Using 205ms as

a representative value will produce a conservative estimate as to the size of any effect.

This exposure length represents 20 complete periods of ripple and a 5ms period over

which the illumination can vary. Using a worst case scenario, this 5ms period would

occur entirely in the above average half of the period for one exposure and entirely in

the below average half of the period for the next.

Using figure 6.1, the curve to integrate to calculate the energy, E (in arbitrary units)

can be described as:

E = 9.1 + 0.8 sin (ωt) (6.1)

where t is the time in milliseconds and ω = 2π
10 , and 9.1 and 0.8 are the average and

peak illumination voltages.

Calculating this integral between 0ms and 5ms, and then between 5ms and 10ms gives

∼ 48msV and ∼ 43msV respectively. That is to say, that compared to the 45.5msV

average illumination, there is a 5msV (∼ 11%) variation. Of course, it must be

remembered that this is an 11% variation in a period representing ∼ 5% of the overall

exposure length. Over the two 205ms periods, the total energies are
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(20× 91) + 48 = 1868msV and (20× 91) + 43 = 1863msV, the total difference is thus

∼ 0.26% of the total energy. Again, it must be remembered that this is the worst case

scenario, for a conservative representative exposure length, and this is before

considering that for the hyperspectral imager, each exposure was the result of

co-adding 16 seperate exposures.

Given these considerations, it can be safely assumed that the 100Hz had a negligible

effect on the results presented in this thesis; nevertheless, for increased scientific rigour

in future experiments, it would be desirable to use DC powered lamps.

6.1.1.2 Fluorescent Lighting Artefacts

As mentioned in section 5.3.2, the images presented in this thesis suffer from artefacts

of the hospital’s fluorescent lighting system. Efforts were made to remove the influence

of the light source from the images by normalising them against a standard

background, however this removes only multiplicative effects. The artefacts remaining

are additive spectra resulting from a small amount of the light being specularly

reflected by the sample. This can, and in future work, should be eliminated by

constructing a dark box in which to place the sample, carefully controlling the light

that enters to illuminate the sample.

Another way to eliminate, or at least reduce such specular reflections is the use of

polarising filters. Figure 6.2 demonstrates how specular reflections can be greatly

reduced by the use of a polarising filter. Moreover, light that is specularly reflected at

a surface maintains its original linear polarisation state (Anderson, 1991), so by using

a linearly polarised illumination source, and by imaging through a polarising lens

perpendicular to that polarisation, surface reflections can be eliminated entirely (or at

least, to the effectiveness of the cross-polarising filters). This has been demonstrated

and reported by Morgan and Stockford (2003).

In this work, polarising filters were available for the multispectral imaging system and

these were used chiefly in early images where regions appeared to be saturating on the

image, or where there was suspected glisten. In these cases, differencing the images

taken through two, orthogonally polarised filters, showed up specular reflection as the

only, or principal, difference between the images. This problem appeared to have been

resolved by using more carefully diffused light to illuminate the samples, and so

unfortunately the polarised images were largely neglected thereafter. The quality of

the data available could be improved by taking all images through cross-polarisers as

described above and it is recommended that any further work implement this

improvement.
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Figure 6.2: An image of a car windscreen with and without a polarising filter. It
can clearly be seen that without a filter there is reflection of the illuminating source
(in this case, the sky in general) from the windscreen, when a filter is used the re-
flections are no longer evident and the interior of the car can be seen. Further, the
window in the background, which is approximately perpendicular to the windscreen,
behaves in the opposite manner, with reflections only visible through the polaris-
ing filter (original image available at http://www.flickr.com/photos/aidanwojtas/
2252215670/?q=polarising%20filter%20examples, images reproduced with permis-

sion of the owner through a creative commons licence).

6.1.2 Image Calibration

A further area in which the image acquisition for this project was out of step with

what would be considered as best scientific practice is the gain and offset calibration of

the acquired images. As detailed in section 5.2.2.1, all hyperspectral images were

pre-processed by removing the influence of known “hot” pixels and then further by

normalising with respect to a neutral background. The multispectral images were

registered spatially and cropped, but otherwise underwent no pre-processing.

The pre-processing would benefit from the measurement of a dark frame at the

beginning and end of each set of measurements. Theses dark frames can be compared

to assess any change in the background noise of the detector over the measurement

time. Interpolating between the two measurements, an estimate of the noise level at

the acquisition time for each exposure can then be calculated and subtracted from the

image.

The main source of error that this extra processing accounts for is changes in the

background noise of the CCD with temperature. The multispectral imaging system

used a camera with a cooled CCD, which kept the detector at a constant temperature

throughout operation, thus the absence of such dark frame measurements is unlikely to

have had a significant effect on the multispectral images. Although these dark frame

images were not taken for the hyperspectral images, some effort was made to minimise

the effect of CCD temperature in that the camera was only powered on for the

minimum period required to take a set of exposures. There will, however, inevitably

have been a benefit to measuring and accounting for this noise directly.

http://www.flickr.com/photos/aidanwojtas/2252215670/?q=polarising%20filter%20examples
http://www.flickr.com/photos/aidanwojtas/2252215670/?q=polarising%20filter%20examples
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As detailed in section 5.2.2.1, measurements were made of the readings of the pixels in

dark frames, and an average count of around 0.3% of the maximum signal value was

found to be typical. The images in this thesis were exposed so as to try to produce an

average pixel value of around 25% of the maximum signal, so that the brightest pixels

would not be saturating the detector. This means that the noise level due to the CCD

was in fact higher than the 0.3% and would typically have been more likely to have

been in the 1-1.5% range. Again, this would have been mitigated to some degree by

recording the average of a number of exposures, however, the uncertainty of exactly

what noise level may have been present is an inherent weakness in the acquisition

process that should be corrected in any further work.

The images from the multispectral imager would also have benefitted from a full frame

normalisation against a neutral background under the same illumination conditions, as

was performed for the hyperspectral images. This would remove any fixed pattern

noise from the detector and illumination. Again, this should be implemented in any

future work.

6.1.3 Appraisal of the System with the Analysis Algorithm

For best practice in the scientific method, the use of the analysis algorithm in

conjunction with the imaging system used should have appraised and characterised

with a well understood target. Unfortunately, the images to do this were not acquired

during the project and it has not been possible to acquire them in the intervening

period. However, it is not felt by the author that this represents a significant detriment

to the work presented in this thesis.

The imaging systems used for this project were themselves well understood and well

characterised. The cameras used were commercial, “off the shelf” silicon CCD sensors,

with well known and published spectral profiles. As detailed in section 5.2.2.1, any

fixed pattern noise from the Prosilica CCD was removed from the final images by a full

frame normalisation, and whilst this was not the case for the Alta CCD,

observationally this did not appear to be a problem.

The Specim hyperspectral imager was also a commercially available, standard piece of

equipment, whose spectral response was characterised by the author, as described in

section 5.2.2.1. The spectra recorded using this system were entirely in keeping with

what was being imaged, as demonstrated in figure 5.8 (the illumination from a

standard fluorescent light source and an argon lamp being well understood).

In short, the images produced for this thesis originated from sources whose

performances are well understood.



Chapter 6 Discussion 169

Chapter 4 is spent trying to understand and characterise the performance of the

analysis algorithm developed for this project. The images used in that chapter are of

well understood targets and originate from a number of different hardware and

software sources. The software developed for this project is entirely agnostic as to the

source of images, all images are merely regarded as vectors of data to be manipulated,

and there is no indication that the source of the images has any bearing on the

performance of the algorithm. Given that the algorithm and the image acquisition

systems are both well understood, whilst it would be preferable to have some separate

appraisal of the two working together, it is highly unlikely that any new or interesting

information would be presented by this.

6.2 The Extended Spectral Angle Metric and

Classification System

The separation of different tissue types was achieved by developing a classification

system based on a well established distance metric, the spectral angle. This

classification system was unsupervised to the extent no assumptions were made about

either the number of classes or the sizes of the classes (both absolute and relative).

These were blindly calculated by the software on the assumptions that different

spectra would subtend different spectral angles, and that noise in the system would

exhibit as Gaussian curves in a histogram where lines would be expected in an ideal

case. This second assumption was tested using dummy spectral images and found to

hold true (see section 5.3.1).

Spectral image processing covers a diverse range of techniques and there are a number

of ways in which to proceed. The choice of technique is largely determined by the

application and for this project some form of classification, i.e. labelling every pixel in

the image, was an obvious approach. This project was further constrained to requiring

an unsupervised approach because, unlike with some applications of spectral imaging,

a reliable library of spectra that would be anticipated to be required, does not appear

to exist in the literature. To obtain such a library would involve a project that was

very disruptive to the normal course of surgery and, as discussed below in section 6.3,

this work sought to avoid such disruption wherever possible. It is possible that a future

project could address this.

In order to perform a classification there has to be a measure that is used to compare

pixels, either to each other or to references. In basing the classification on a distance

metric, the multidimensional dataset created by the spectral imager was reduced to a

dataset in a single dimension. Such a reduction is necessarily lossy (i.e. the original

data cannot be reconstructed from the reduced data) and is a many-to-one transform,

inherently creating degeneracy in the metric space. Reducing a 183D hyperspectral
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vector to a single number represents a significant decrease in the data content and

inevitably a significant loss of information. The data reduction is easily quantified, the

SAM in this case is 0.55% of the size of the full spectral image, however it is not so

easy to quantify the information loss because the data has not simply been discarded

to create the SAM, each datum has been considered in a calculation resulting in a

single number. This loss of information presents in the system as misclassifications.

The clear simplicity of using a single metric is ultimately outweighed by the limited

performance of the classifier, as can be seen from the examples in this thesis. The

extension to the spectral angle metric proposed in this project (and referred to as the

spectral position) is the multidimensional analogue of the azimuthal angle in three

dimensions and reduces the dimensionality of the dataset by one (when considering it

separately from the spectral angle). Whilst it is simple to conceptualise and calculate,

it is much less clear exactly how it should be used, particularly in hyperspectral cases

where the dimensional reduction is much less significant than in a low dimensional

multispectral image.

The obvious extension to the classifier already developed is to extract a single measure

from the SPV as use it a complement to the spectral angle in calculating a 2D

histogram from which to discover classes. This has been done in this project in two

different ways dependent on whether the spectral image was originally multi- or hyper-.

The multispectral method is based on the examination of principal component score

plots (for an explanation of which see Grahn and Geladi (2007)) and currently requires

supervision in so far as the final histogram to be used for classification is chosen by the

user. In an attempt to remove this supervised step however, it is possible to base this

decision on an objective and quantifiable measure of overall contrast (see section 4.3).

The hyperspectral method uses the high dimensionality of the SPV itself to create this

secondary measure, which is the plane of the SPV that has the largest absolute value.

6.2.1 Future Directions

The 2D histograms created in each case appear to be informative. Structures such as

peaks and “watersheds”, as described by Grahn and Geladi in their discussion on

score-plots (Grahn and Geladi, 2007), appear in the histograms and it is clear that the

data points are not randomly scattered in the non-spectral angle dimension. Further,

these structures correspond to pixels that are spatially proximate, or from areas of

similar origin when mapped back into the original spectral image.

These 2D histograms provide enhanced separation of different areas of the spectral

image compared to the classifier based on spectral angle, significantly improving the

classifier’s performance. To date this enhanced classifier is supervised to the extent

that only areas selected by the user are mapped from the histogram to the spectral
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image, and these areas are limited to rectangles. The logical next step in the

development would be to automate this process to provide complete and unsupervised

classification. There are two ways in which to do this, which would need to be

investigated. The first would be to attempt to fit 2D Gaussian peaks to the histogram

in a straightforward extension of the current method, the second would be to attempt

to use the apparent structures as the basis for classes.

The seconnd option here would seem likely to be the most difficult, however there are

suggestions in the results presented in this thesis that it would also be the most

profitable. In figure 5.49 the groups selected trace structures in the histogram rather

than attempting to pick out neat peaks and it can be seen in figure 5.50 that similar

spectra cover a wider of spectral angles than might naively be assumed but that they

are similar in respect in spectral position.

An alternative development of this method would be to use it only where

misclassification is suspected when using spectral angle alone. In this system the

spectral angle range of the histogram that needed to be considered would be vastly

reduced and far fewer structures would need to be considered or identified. Indeed, it

is even possible that a group suspected to contain multiple types of spectra could be

classified in a similar way to the whole image, with a 1D histogram of spectral position

being generated for the small spectral angle range in question, and fitted with Gaussian

peaks as before. This would seem to be a quicker and simpler fix for misclassifications,

however if the structures in the 2D histogram are indeed discovered to be relevant and

have an underlying cause, then this method would suffer from not being capable of

using the entire structure in many cases. Further, it would introduce a supervised stage

into the classifier, running contrary to the long term aims of the project as a whole.

There is also an open question as to when images should start being considered and

treated as hyper- rather than multi- spectral. As mentioned in the opening chapter,

the distinction between the two is not precise or clear cut, however it seems clear that

in a small number of dimensions the “dominant plane” method outlined for

hyperspectral images would simply not provide the requisite range for interesting

structure to emerge. In other words, this thesis suggests that there is a real difference

between multi- and hyper- spectral images, particularly pertaining to their analysis,

that goes beyond merely nomenclature. If indeed this is the case, then it seems likely

that the spectral position would be important to understanding the difference and

maybe to providing an indication of where the difference occurs. It is apparent that

the spectral position should be examined mathematically in a way that is much more

rigorous than the time constraints of this project have so far allowed.

The further work in this section has been presented in a pragmatic order, the spectral

position appears to enhance the performance of the classifier presented in this thesis

and so developing it to provide a more automated, less subjective classification system
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appears to be a sensible course of action. However, it might be that a more thorough

understanding of it would alter the way in which it is applied and in planning any

future development of this work it would seem sensible to give this a high priority.

The unsupervised classification using the extended spectral angle measure has been

developed in response to a specific problem posed in a medical context, however it is

an entirely generic technique and may be of use to researchers in spectral imaging in

any field and in any spectral region. As such it is not important that any future

research discussed above be carried out in conjunction with or even with reference to

the specific application that will be discussed in the next section.

6.3 The Optical Sentinel Lymph Node Biopsy

The central problem posed by the SLNB is that the time taken to perform a standard

lumpectomy is determined not by the difficulty of the surgery itself, but by the

external factor of the determination of lymphatic involvement. This forms part of a

wider discussion in medicine today on the efficacy and reliability of histopathological

assessment in general. The job of the pathologist is to look for certain, well defined

characteristics of the cells on a slide that indicate their health, or otherwise; these

characteristics typically being the shape of cells, their distribution and/or level of

order, and the colour which they stain. It is acknowledged that the decisions made

about a given slide can show not only inter-observer, but also intra-observer

differences. As is often the case when human interpretation is required, two different,

equally trained and skilled observers may come to a different conclusion about the

same piece of evidence, but worse, a single observer may come to different conclusions

when viewing the same evidence at different times, depending on a range of variables

including their tiredness and the context of previously viewed cases. It is easy to

imagine that a borderline case may be seen as normal if it comes after a succession of

diseased cases, but diseased if it comes after a succession of normal cases.

It is now possible to capture microscope slides as very high resolution digital images,

known as virtual slides, which can be up to 200,000 dots per inch (for comparison an

ink-jet printer will produce prints at between 300 and 600 dots per inch). In one

exciting research project, the University of Leeds has built a 50 megapixel “powerwall”

display to allow these slides to be examined (http://www.virtualpathology.leeds.

ac.uk/research/HCI/Powerwall/virtual_reality_powerwall.php). The obvious

development, particularly given the digital nature of the slides, is to automate the

analysis so that a suitably developed computer algorithm searches for the well-defined

characteristics and makes a diagnosis by comparison against some metric. The cost in

terms of skilled operative time could be drastically reduced if such a system could be

http://www.virtualpathology.leeds.ac.uk/research/HCI/Powerwall/virtual_reality_powerwall.php
http://www.virtualpathology.leeds.ac.uk/research/HCI/Powerwall/virtual_reality_powerwall.php


Chapter 6 Discussion 173

introduced, however no such system is yet able to match the performance of a trained

pathologist. The aim and purpose of this work is substantially similar.

The results presented in this thesis represent work from the very early stages of

development of an optical biopsy and as such they are rather limited in detail. Both

the data acquisition and the analysis have been at experimental phases for this project

and it is clear now that there is a significant limitation in the conclusions that can be

drawn from the results so far.

Each lymph node examined for this project was identified only by reference to an

anonymised patient number, starting at “01” and increasing sequentially, and the date

and time at which the images were captured. This system has allowed the data to be

stored anonymously, thus protecting patient confidentiality, whilst also providing

enough information to the clinical staff at the hospital to be able to identify the

appropriate patient records. It was not felt that there was a need to maintain a strict

blindness to the actual metastatic state of the nodes in this project due to the

exploratory nature of this work, and so results from cytology are available for each

node examined, and have been throughout the project. However, this result comes in

the form of a binary indicator, the node is either regarded as having tested positive for

the presence of cancerous cells, or negative. Details such as the extent of the

metastasis or the spatial distribution throughout the node are not available.

This lack of detailed information presents a problem when assessing the performance of

the classifier developed, the “ground-truth” of the images is not sufficiently detailed to

fully appraise the classification.

At the outset of this work there was no clear roadmap as to how the images would be

analysed for the presence of cancerous cells. The work with the dummy images (see

section 5.3.1) demonstrated that in the binary case of having just two spectral types,

the differences were clear and easily identifiable. It might have been hoped that

carrying this over into the real images some clear indication of cancerous cells might

have manifested as a readily identifiable peak or structure in the 2D histograms that

only occurred in those images relating to nodes that tested positive. This appears not

to be the case and the histograms for all images look broadly similar. It is still possible

that actually some identifiable feature may still occur, it is anticipated that in any

given positive node the number of pixels covering cancerous cells would be small

compared with the size of the image and as such any feature in the histograms would

be faint and easily missed.

6.3.1 Future Directions

The next key question to be answered is can this method definitively distinguish

between normal node tissue and cancerous tissue? It is clear that in order to answer
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that, this spectral imaging process will need to be far more integrated with the current

pathological tests than it has been thus far. This means that this work will become

more disruptive to the overall current procedure in that it will require close

involvement with the pathology staff likely to require significant investments of their

time. This is something that has been avoided up until now on the basis that with

such an experimental and untested system, there should be an absolute minimum of

disruption to the normal levels of care and operations of the hospital. Further, there is

an extra burden of ethics approval for work of this nature, and the more disruptive the

process, the more difficult it becomes to gain approval. However, for any further

progress to be made with this work it is vital that the spectral images can be directly

correlated with the diagnoses made from the cytology examinations. A direct mapping

between spectral images and these examinations is the only way to established fully

labelled images to assess the classification.

Exactly how this would develop would need to discussed in more detail with the

clinical and pathology staff in order to find a system that could be easily

accommodated, however some possibilities can be outlined already.

The spectral images taken for this project are essentially the reverse of the slide

imprints as they are already assessed and so it is possible that this mapping could be

easily achieved by simply providing the images and some means of labelling them to

the pathologist along with the slide. However, human tissue is not rigid and so there

will be significant spatial deformations as it is imprinted against the slide meaning the

mapping is not exact.

It is also possible that after running an unsupervised classifier based on the spectral

angle/spectral position methods outlined in this thesis the classified images would be

examinable and interpretable by the pathologist in much the same way as the slides

are currently. This would essentially bring this project to the same point as the

University of Leeds’ virtual pathology project in that the pathologist is performing

their traditional job but on a digital format image.

It is possible that the best approach might be to not image the node directly as is done

now but to image the slide that is examined by the pathologist. Again this is very

much related to the virtual pathology project.

A final alternative is that the spectral image be taken of the tissue through the slide as

it is being imprinted. This would mean that the spectral image and the assessed slide

would have a direct and exact mapping.

Of course, it is possible that an entirely new way may present itself in the course of

discussions with clinical experts. Whatever course of action is ultimately pursued, the

key development is to know with confidence exactly where different types of tissue are

expected on the image.
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This thesis has discussed working with both multi- and hyper- spectral images and a

natural question to consider is which of these systems should be pursued further. Both

systems represent a compromise from the ideal situation; in the case of multispectral

imaging, the compromise is an increase in image acquisition speed and two-dimensional

spatial resolution, for the cost of a decrease in spectral resolution, whereas for

hyperspectral imaging the spectral resolution is attained at the cost of spatial

resolution in one dimension and acquisition time. In a production system, it is the

author’s opinion that the spatial resolution and image acquisition time offered by a

multispectral system makes this the preferred method. It is likely that continued

research using hyperspectral images will be the best way in which to determine which

spectral lines or bands should be used in a multispectral system. Indeed, if a small

enough number of spectral filters were required (this is likely to need to be four or

fewer), these could form a mask directly onto a camera face in much the same way as

filters are applied in a Bayer pattern to form colour cameras today. This would create

genuinely snap-shot spectral images.

As discussed in section 6.2 above, the techniques presented in this thesis are presented

as generic spectral imaging techniques, which begs the wider question of whether,

within a clinical/medical setting, and in the context of being able to distinguish

different types of biological tissue, this technique has wider applicability. Lymph nodes

are prognostic indicators in cancers other than breast cancers and it is likely that by

opening up collaborations with specialists in other oncological surgeries the number of

cases that could be included in future research could be greatly increased.

Beyond lymph nodes, even beyond cancer, it seems entirely plausible that there are

many areas of medicine where spectral imaging could open up new avenues of research.
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Abstract: We present an extension to the widely used spectral angle metric, calculating an azimuthal angle 
around a reference vector. We demonstrate that it provides additional information, thus improving the 
classification ability of the spectral angle. 
©2010 Optical Society of America 
OCIS codes: (280.0280) Remote Sensing and Sensors; (280.4788) Optical sensing and sensors; (110.4234) Multispectral 
and Hyperspectral Imaging 

 
1. Introduction 
 
The spectral angle[1] is a common metric in spectral imaging.  It treats spectra as vectors in a high-dimensional 
space allowing the scalar product of, and hence the angle between, a test vector and reference vector to be calculated 
(see equation 1 where the test spectrum, t, and the reference spectrum, r, are each considered as N dimensional 
vectors).  Smaller angles indicate more similar vectors.   

� � arccos� ∑ 
���
����∑ 
��
��� �∑ ���
���
�   (1) 

 This metric is simple and computationally inexpensive to calculate.  It is easily understood as an analogue of a 
generalised distance between two points, indeed for small angles it is approximately equal to the Euclidean distance 
between two points[2].  Further, it is intensity independent as all test vectors kt subtend the same angle from r; as 
such illumination changes across an image do not affect this measurement. 
 For a given reference vector however, the angle θ does not specify a unique test vector, or even a unique test 
unit-vector.  This is clear in two dimensions where there are exactly two test vectors for each θ, one between the 
reference vector and each axis.  In three dimensions the vectors lying on the surface of a cone around the reference 
vector all subtend the same angle, in principle an infinite number of vectors.  In a discrete space, as the number of 
dimensions increases, the number of degenerate test vectors also increases, although in more than three dimensions 
this is very difficult to visualise. 
 We suggest then that as well as calculating the spectral angle, a set of azimuthal angles should also be calculated 
so as to reduce this degeneracy.  In section 2 we set out the method for this and in section 3 we show how this can be 
applied to a real dataset. 
 
2. Method 
 
In a three dimensional space, we have a set of vectors T, at an angle θ from a reference vector, R, forming a cone.  
We can rotate the co-ordinate space (x,y,z) � (x’, y’, z’), such that R=Rz’, the projection of T onto the x’y’ plane is 
now a circle.  Each member of T can now be specified by considering the angles that this projection subtends from 
the x’ and y’ axes. 
 In an arbitrary N+1 dimensions, �� � ∑ ��������� ��, and if we rotate the co-ordinate space such that R=Rx’1, then 
the projection of T onto the N dimensional subspace orthogonal to R is �� � ∑ �������� ���.  For each τi, we can now 
calculate the set of angles φk between the vector and relevant axis x’k (equation 2). 

 �! � arccos� "�#$�∑ "�%$�
&�%�� �  (2) 
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3. Application and Discussion 
 
We demonstrate this technique with an example using a publicly available multispectral image from The University 
of Eastern Finland[3].  The image in question is available as “Landscape.zip”.  The image is a multispectral image 
with seven channels of data, and shows a landscape scene of a tree against a backdrop of a field. A monochrome 
version of the image is shown in figure 1. 
 

We calculated the spectral angle of each pixel in the image with respect to a 
common reference (a “grey” pixel, i.e. with the same value in each channel).  
We then calculated a histogram of the spectral angle values and and fitted 
Gaussian peaks to the histogram.  We then classified each pixel by assigning 
it to the peak to which it most strongly belonged, the result of this is shown 
in figure 2. We can see from this image that the road/track, which shows up 
most as red, blue and green in the lower portion of the image, and the longer 
grass in the central third of the image, which shows up as predominantly 
pink, are clearly distinguished.  However, this classification assigns the tree 
and the areas of shorter grass the same category (the yellow areas of the 

image).  
 

 
 We then plotted the distribution of spectral angle against the azimuthal angle φ2 (the angle from the x’2 axis), as 
shown in figure 3.  From this we can see that at any given spectral angle, there is a spread of azimuthal angles.  The 
darker areas on this plot show areas of higher pixel densities and so these are the interesting cases to examine 
further.  The red box on the image highlights one such area, the green box highlights pixels with the same spectral 
angle as those in the red box, but a different azimuthal position.  Figure 4 shows the pixels in these highlighted areas 
on the spatial image.  On this image we can clearly see the pixels in the red box (red areas of the image) correspond 
well to the areas of shorter grass, and those in the green box correspond well to the leaves of the tree.   
 
4. Conclusion 
 
We have presented an extension to the spectral angle metric in order to address the limits placed on this measure by 
the fact that a single angle does not uniquely specify a spectrum.  By applying this technique to a real multispectral 
image we have demonstrated that pixels corresponding to different materials which were inseparable by spectral 
angle alone can be separated by this azimuthal position metric.  
 
5. References 
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IMAGING SPECTROMETER DATA. Remote Sensing of Environment, 1993. 44(2-3): p. 145-163. 
[2] Chang, C.-I., An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image 

analysis. Information Theory, IEEE Transactions on, 2000. 46(5): p. 1927-1932. 
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Figure1 – Monochrome landscape image 

Figure 2 – Classification of pixels using the 
spectral angle metric 

Figure 3 – A plot showing spectral 
angle (horizontal axis) against 

azimuthal angle φ2 (vertical axis) 

Figure 4 – Spatial configuration of pixels from 
the red and green boxes shown on figure 3. 
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ABSTRACT   

Sentinel Lymph Node Biopsy (SLNB) is an increasingly standard procedure to help oncologists accurately stage cancers. 
It is performed as an alternative to full axillary lymph node dissection in breast cancer patients, reducing the risk of long-
term health problems associated with lymph node removal. Intraoperative analysis is currently performed using touch-
print cytology, which can introduce significant delay into the procedure. Spectral imaging is forming a multi-plane image 
where reflected intensities from a number of spectral bands are recorded at each pixel in the spatial plane. We investigate 
the possibility of using spectral imaging to assess sentinel lymph nodes of breast cancer patients with a view to 
eventually developing an optical technique that could significantly reduce the time required to perform this procedure. 
We investigate previously reported spectra of normal and metastatic tissue in the visible and near infrared region, using 
them as the basis of dummy spectral images. We analyse these images using the spectral angle map (SAM), a tool 
routinely used in other fields where spectral imaging is prevalent. We simulate random noise in these images in order to 
determine whether the SAM can discriminate between normal and metastatic pixels as the quality of the images 
deteriorates. We show that even in cases where noise levels are up to 20% of the maximum signal, the spectral angle 
map can distinguish healthy pixels from metastatic. We believe that this makes spectral imaging a good candidate for 
further study in the development of an optical SLNB.  

Keywords: Sentinel Lymph Node Biopsy, Multispectral Imaging, Hyperspectral Imaging, Spectral Angle Map, Optical 
Biopsy 

1. INTRODUCTION  

1.1 Sentinel lymph node biopsy procedure 

In order to effectively plan treatment and determine prognosis for cancer patients, it is important that the stage of the 
cancer is correctly assessed. Cancer spreads through the body using the lymphatic system; as such this system plays a 
crucial role in this staging process. In the case of breast cancer patients, fluids from the tumour region enter the 
lymphatic system through the axillary lymph nodes. During a standard lumpectomy, it is these nodes which must be 
assessed in order to determine the level of metastasis. 

The Sentinel Lymph Node Biopsy (SLNB) is a standard alternative to the Axillary Lymph Node Dissection (ALND) 
procedure for determining the extent of this involvement The ALND is a full removal of all lymph nodes in the axillary 
region, these are then tested for the presence of cancerous cells. The Sentinel Lymph Node (SLN) is the first node to 
which fluids from the tumour region will drain and as such is the primary gateway for metastases and the purpose of the 
SLNB is determine whether cancerous cells are present in the SLN. 

If it is determined that the SLN contains cancerous cells then a full ALND will be performed to assess the extent of 
lymphatic involvement.  If no cancer is found in the SLN then the remaining axillary lymph nodes can be left intact as 
there is low probability that metastasis has started to occur1. This reduces the risk of long term health problems 
associated with the removal of lymph nodes, such as lymphedema2. 

Currently the assessment of the SLN is performed by way of touch print or touch prep (TP) cytology 3.  This cytological 
test is presently the rate-limiting step in the tumour resection surgery. Where the facilities for performing this test are 
available onsite, the results can be obtained during the course of the surgery, although a delay of up to an hour is not 
uncommon and this is time that the patient is anaesthetised and “open” in theatre.  If no facilities are available onsite, 
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then cases where a full ALND is needed require a follow-up procedure at a delay of possibly weeks or months.  The aim 
of this research is to investigate a possible optical based alternative for the assessment of SLNs in order to reduce the 
delay currently experienced. 

1.2 Spectral imaging 

Spectral imaging is the process of forming an image by measuring the reflected intensity of light from a number of 
spectral bands at every pixel in the image plane. Two forms of spectral imaging are commonly referred to, hyperspectral 
and multispectral. The distinction between hyperspectral and multispectral imaging is not exact; as a guide multispectral 
imaging typically refers to a situation where a small number (~2-20) of discrete bands is used whereas hyperspectral 
imaging uses a large number (>20) of bands, which are typically contiguous. As such each pixel in a hyperspectral image 
consists of a full spectrum whereas multispectral pixels represent sampling of a spectrum at discrete points (see Figure 1 
below). 

 

Figure 1 - The same scene in a hyperspectral and multispectral image. The spectral information from four points is shown 
for each, clearly the hyperspectral image records a complete spectrum whereas the multispectral image records a 
discretely sampled spectrum 

Different materials have different reflection spectra and so by comparing the spectra at each pixel one can assess which 
image pixels represent similar materials; further by comparing measured spectral data to known spectra of target 
materials, one can assess the composition of the imaged material.  This principle is widely used in Earth remote sensing 
to assess land cover, for example the Jet Propulsion Laboratory’s AVIRIS project (http://aviris.jpl.nasa.gov), it has also 
been used in a number of other fields such as food contamination detection4, solar cell defect detection5, illicit substance 
detection6 and disaster management7. It can just as easily be applied to biological tissue. 

One method of analysing spectral images that is widely used in remote sensing applications, but to our knowledge has 
not yet been applied to biological studies, is spectral angle mapping8.  This reduces the data at each pixel to a single 
value that measures the difference between it and a reference. It is this technique which is the subject of the rest of this 
paper. 
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2. SPECTRAL ANGLE MAP 

The spectral angle requires a geometric interpretation of a spectrum. Each wavelength or waveband is treated as a co-
ordinate axis in a high-dimensional space; each possible spectrum thus specifies a point in this space and can be thought 
of as a high-dimensional vector.  

As is familiar for three dimensional space, any two vectors, a and b, in this space will be co-planar, and will diverge 
from each other at a fixed angle, θ, which can be calculated from the scalar product: 

 













=

ba
ba.

arccosθ . (1) 

This angle, θ, is the spectral angle between two spectra.  For exactly coincident spectra, this angle will be 0 and it will 
increase as the spectra become more dissimilar. Since all values in a spectral image are non-negative, we are only 
considering arccos in the domain [0,1], this places an upper limit on the spectral angle of π/2 radians. It is worth noting 
that all vectors ka will subtend the same angle from b. In terms of spectral imaging, this means that the spectral angle is 
illumination independent, i.e. changes in illumination across the image will not affect the results. 

This angle can be calculated for each image pixel (against a standard reference spectrum), thus creating a spectral angle 
map (SAM). 

3. APPLICATION 

We are working on spectral imaging in the visible and near infrared range (400-1000nm), and so to test the viability of 
the SAM, we have constructed a dummy image using visible spectra of healthy and metastatic sentinel nodes of breast 
cancer sufferers reported by Bigio et al9 (see Figure 2). 

 

Figure 2 - Diffuse reflectance spectra in the range ~350-750nm for normal and metastatic sentinel lymph nodes. 

We created a hyperspectral image in which each pixel was either assigned the normal spectrum or the metastatic 
spectrum according to a binary mask image.  Further hyperspectral images were created such that random deviations 
from the spectrum were added to simulate noise in the measurements. Each measurement of each pixel was randomly 
adjusted by adding or subtracting a number randomly selected between zero and a given percentage of the maximum 
signal value. This ‘noise level’ was increased from 1% to 20% in integral increments, each with a new hyperspectral 
image.   

For each image we then created an SAM by calculating the spectral angle of each pixel from a grey reference spectrum, 
i.e. a spectrum in which every value is the same. Figure 3 below shows the SAMs for two of these hyperspectral images; 
the image on the left shows the original (all pixels are either filled with the normal, or metastatic spectrum as reported), 
the image on the right shows the hyperspectral image with the addition of a 20% noise level.  
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Figure 3 - SAMs of the dummy hyperspectral images, on the left, the original, on the right the image with a 20% noise level.  
It is clear that increasing the noise level decreases the separation of the normal and metastatic pixels. 

It is evident from Figure 3 that the background (normal) pixels are significantly less well separated from the foreground 
(metastatic) pixels in the noisy image than they are in the original binary image. In particular the finer spatial details in 
the foreground are less well defined. 

Figures 4-6 show histograms of spectral angle from three of these images, the original image, a 10% noise level image 
and a 20% noise level. On the histogram of the original image we have just two lines at the values of the spectral angles 
of the normal and metastatic spectra. As we increase the noise, these lines are smeared out into peaks, which gradually 
merge into each other. This is confirmation of what we would expect to be the case. In the presence noise on the signal, 
the normal pixels exhibit a range of closely correlated spectra, and the metastatic pixels also exhibit this range. It also 
confirms what we observed visually from the SAMs, i.e. that the normal and metastatic pixels become less separable in 
the spectral angle space as the noise was increased. 

 

Figure 4 - Histogram of the spectral angles for the original (no noise) dummy hyperspectral image. 
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Figure 5 - Histogram of the spectral angles for the 10% noise level hyperspectral image. 

 

 

Figure 6 - Histogram of the spectral angles for the 20% noise level hyperspectral image. 

We fitted Gaussian peaks to each of the histograms, the values of the peaks and their widths (shown as error bars) for 
increasing noise levels, are shown in Figure 7. 
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Figure 7 - Graph showing positions and widths of the Gaussian peaks fitted to the histograms of spectral angles for all 
dummy hyperspectral images.  The width of the peak is shown as the error bar at that point. 

Using these Gaussian profiles, we classified each pixel as normal or metastatic purely on the basis of its spectral angle. 
For each pixel, we calculated the probability of it being of part of each peak, it was then randomly assigned to one of the 
peaks, based on these probabilities. For example, a pixel with a 75% probability of being a part of the normal peak would 
have a 75% chance of being assigned to the normal peak. Figure 8 below shows the results of classification for a low 
noise level (5%) and the 20% noise level image. 

 

Figure 8 - Classification of pixels as being normal (black) or metastatic (white) based on spectral angle. The left image 
shows a 5% noise level spectral angle, the right image shows a 20% noise level. 

The 5% noise level image shows virtually no misclassification whereas the 20% noise level image shows a great deal. 
The foreground is still distinguishable from the background, and the classification seems to be correct for the majority of 
pixels. We counted the number of misclassified pixels and this is shown below for increasing noise levels in Figure 9. 
This shows that the number of misclassifications was steady and very low up until noise levels of around 9-10% before 
rising steadily. It is around the 9-10% level at which the peaks on the histograms begin to merge significantly. 
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Figure 9 - A graph showing the number of misclassified pixels as a function of noise level, both for pixels that were 
misclassified as normal and those that were misclassified as metastatic. There are 199853 normal and 36768 metastatic 
pixels in the original. 

Further, we calculated the average spectra for those pixels classified as normal and those classified as metastatic for the 
5% and 20% noise level image; these are shown together in Figure 10 below. 

 

 

Figure 10 - Average spectra for pixels classified as normal and metastatic. The graph on the left shows the 5% noise level 
image, the right hand graph shows those from the 20% noise level image. 

Figure 10 shows that, although still clearly distinguishable, the differences between the spectra are beginning to diminish 
at high noise levels. In particular, the peak in the metastatic spectrum at around 460nm is significantly reduced, and in 
the area between that and the start of the decline at around 510nm the spectrum becomes much flatter. The separation 
between the peaks at higher wavelengths is also markedly reduced. It is noted that the normal spectrum is much less 
changed than the metastatic. 
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4. CONCLUSION 

The spectral angle map clearly allows us to distinguish between the normal and metastatic spectra.  Increasing the noise 
level on the image makes the distinction between normal and metastatic pixels less clear, as the histograms in figures 4-6 
demonstrate.  However, Figure 7 clearly shows that the spectral angles remain quantifiably separable, even at high noise 
levels.  

The limits on this separability have been explored somewhat further by assessing how well the pixels are classified as 
being normal or metastatic purely on the basis of their distance in metric space from the peaks of the Gaussian curves 
present on the histogram. We find that up to around 10%, the misclassification rate is very low but that it climbs steadily 
as the image gets noisier thereafter. The number of misclassifications is broadly similar for both normal and metastatic 
(the difference can be accounted for by pixels no longer being classified as either as they have spectral angles far 
removed from either peak), however this has more impact on the average calculated metastatic spectrum. 

There are approximately 5 normal pixels for every metastatic pixel in the original image; we would anticipate that in a 
real world situation there would be less cancerous tissue in a node than normal tissue. This means however, that every 
misclassified pixel affects the metastatic spectrum a lot more than the normal spectrum, so whilst the differences 
between them are changing, as demonstrated in Figure 10, most of this can be attributed to the metastatic spectrum 
becoming more like the normal. 

These results, based as they are on “dummy” data, are very preliminary, and much work remains to be done; however, 
we believe that they demonstrate that the SAM shows much potential for being the basis of a rigorous and automated 
classification system, which itself could lead to the development of an optical system for performing SLNBs. 
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Testing facilities are not available at all treatment centres; this can 

necessitate further surgery 

If on-site facilities exist, the test occurs whilst the patient is under 

anaesthetic and is often the longest part of the surgery 

An automatic optical based assessment could reduce the delay currently 

experienced 

SLNB is a routine surgical procedure to determine the extent of metastasis 

The sentinel node is the first to which fluids from the tumour site will 

drain 

During tumour resection, the node is removed and tested for cancerous 

cells by cytology [1] 

If the node is clear there is a low probability that metastasis has started to 

occur [2] 

Jack D. O’Sullivan1, Paul R. Hoy2, Harvey N. Rutt1 

1Faculty of Physical & Applied Sciences, University of Southampton, 

Southampton, SO17 1BJ, UK 
2School of Medicine, University of Southampton, Southampton, SO17 1BJ, UK 

Spectral imaging as a potential tool for 

optical sentinel node biopsies 

We investigate the potential use of spectral imaging for performing an optical Sentinel Lymph Node Biopsy 

(SLNB). Dummy images generated from previously published data are analysed using a spectral angle map. 

We conclude that there is scope for spectral imaging to form the basis of an optical biopsy technique.  

To test spectral imaging in the visible spectrum (400-700nm) we made 

dummy images using the spectra  reported by Bigio et al [3]  

Pixels were assigned either the normal or the metastatic spectrum 

according to a binary image mask 

Random deviations from the spectra (i.e. noise)  were added, with 

increasing maximum amplitudes, from 0-20% of the maximum signal  

A “Spectral Angle Map” (SAM) was then generated for each noise level, the 

spectral angle calculated with reference to a uniform “grey” spectrum 

Histograms of the spectral angle were then created for each noise level 

Gaussian peaks were fitted to each histogram and the means and peak 

widths plotted against noise level 
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Conclusion 

Increasing the noise level of the spectra decreases the separability of normal and metastatic spectra 

that exists with the SAM. However, even at a high noise level, the Gaussian peaks are still 

quantifiably distinct. This suggests that a spectral imaging system could potentially be developed 

for rapid SLNBs. Contact: jdo@orc.soton.ac.uk 

SAM (top) and histogram of spectral angles for noise levels of 5%, 10% and 20% respectively. The clear separation becomes 

increasingly blurred as noise is increased, and the peaks in the histograms move closer and begin to merge. 

A plot of the positions and widths of the peaks fitted to the histograms. The decrease in separation is apparent, as is the 

spreading of the peaks.  However the widths do not overlap even at a noise level of 20% 

The spectra in the wavelength range of visible light for normal and metastatic sentinel 

lymph nodes of breast cancer patients, as reported by Bigio et al [3] 
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Figure B.1: Pseudo-colour image of a resected SLN. Staining from the blue dye can
clearly be see at the edges of the node and in some of the surrounding tissue on the
right hand side. The approximate extent of the node is shown by white lines, marking
the two cut surfaces of the bi-valved node, the remainder of tissue is the surrounding

fatty tissue in which the node was originally embedded.
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Figure B.2: The histogram of spectral angles present in the SAM for the node in
figure B.1.

Figure B.3: Gaussian peaks automatically fitted to the histogram of spectral angles.
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Figure B.4: Spectral image classified by spectral angle. The node is clearly identified
as groups 3 and 4. The area of node on the left hand that was stained blue is classed

along with the surrounding tissue as groups 5, 6 and 7.
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Figure B.5: Average spectra of the groups in figure B.4.

Figure B.6: 2D histogram of spectral angle against dominant plane of SPM, with
some areas of interest marked in coloured rectangles.
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Figure B.7: Partially classified hyperspectral image showing the pixels inside the
coloured boxes from figure B.6. The blue, red and cyan pixels cover the same spectral
angle range but identify node tissue, stained tissue and surrounding tissue respectively.
The green pixels cover the blue stained surrounding tissue on the right hand side, and
also the stained tissue on the left hand side, suggesting this may actually not be node

as assumed.
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Figure B.8: Average spectra of the classes from figure B.7. The red and green spectra
(both representing stained tissue) show lower intensities from around 500-700nm, and
much steeper rises in the area above 650nm. This is the influence of the blue dye,
which has high absorption in the long wavelength range of the visible spectrum. All

show evidence of the lipid trough below 950nm.
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Figure B.9: Pseudo-colour image of two resected and butterflied lymph nodes. Some
blue staining is visible at the top edge of both nodes. The approximate extent of the
node is shown by black lines, marking the two cut surfaces of the bi-valved node, the
remainder of tissue is the surrounding fatty tissue in which the node was originally

embedded.
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Figure B.10: The histogram of spectral angles present in the SAM for figure B.9.

Figure B.11: Gaussian peaks automatically fitted to the histogram of spectral angles.
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Figure B.12: Spectral image classified by spectral angle. The nodes are clearly dis-
tinguished as groups 4 and 5, with group 6 seemingly forming the margins and some of

the surrounding tissue.

Figure B.13: Average spectra of the classes from figure B.12.
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Figure B.14: 2D histogram of spectral angle against dominant plane of SPM, with
some areas of interest marked in coloured rectangles.

Figure B.15: Partially classified spectral image showing the pixels from figure B.14.
The three boxes cover the same spectral angle range, roughly corresponding to group
6 from figure B.12. Here the red seems to correspond much more strongly to the
surrounding tissue, with the green forming the node margins. The blue pixels cover

some of the stained tissue.
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Figure B.16: Average spectra of the classes from figure B.15. The blue line shows
a steeper rise above 650nm consistent with the stained tissue spectra from figure B.8.
The lipid trough is much more pronounced on the red spectra here, with the water

trough being more apparent on the green and blue.
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Figure B.17: Pseudo-colour image of a resected SLN. Here the surrounding tissue
(at the bottom) is clearly heavily stained by the blue dye. The approximate extent of
the node is shown by white lines, marking the two cut surfaces of the bi-valved node,
the remainder of tissue is the surrounding fatty tissue in which the node was originally

embedded.
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Figure B.18: The histogram of spectral angles present in the SAM for the node in
figure B.17.

Figure B.19: Gaussian peaks automatically fitted to the histogram of spectral angles.
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Figure B.20: Spectral image classified by spectral angle. Here the node is clearly
marked by groups 3 and 4, and although group 5 largely covers the blue stained sur-

rounding tissue, it also covers some of the node tissue.
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Figure B.21: Average spectra of the classes from figure B.20. The spectra for groups
6 and 7 show the steep rise above 650nm that is consistent with blue staining. As might
be expected, for group 5 this rise is somewhere between that for 6 and 7 and that for

4.

Figure B.22: 2D histogram of spectral angle against dominant plane of SPM, with
some areas of interest marked in coloured rectangles.
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Figure B.23: Partially classified spectral image showing the pixels from the boxes in
figure B.22. All three groups cover the same spectral angle range, roughly corresponding
to group 5 from figure B.20. Here the red and blue largely cover the blue stained tissue
whereas the green pixels come from the unstained node and that of the surrounding

tissue which is unstained.
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Figure B.24: Average spectra of the classes from figure B.23. The steep rise above
650nm for the blue and red spectra again are consistent with the blue staining. All

three spectra show strong evidence of the lipid trough below 950nm.



Appendix B Further Hyperspectral Images 209

Figure B.25: Pseudo-colour image of a resected SLN. Here the lymph node itself is
heavily stained blue with the surrounding tissue largely unstained. The approximate
extent of the node is shown by white lines, marking the two cut surfaces of the bi-
valved node, the remainder of tissue is the surrounding fatty tissue in which the node

was originally embedded.
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Figure B.26: The histogram of spectral angles present in the SAM for the node in
figure B.25.

Figure B.27: Gaussian peaks automatically fitted to the histogram of spectral angles.
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Figure B.28: Spectral image classified by spectral angle. The node tissue here is
largely covered by groups 6, 7 and 8, although group 6 is also quite heavily present in

the surrounding tissue.

Figure B.29: Average spectra of the classes found in figure B.28. The spectra for
groups 7 and 8 again show a steep rise above 650nm consistent with blue staining.
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Figure B.30: 2D histogram of spectral angle against dominant plane of SPM, with
some areas of interest marked in coloured rectangles. The areas here cover most of the
biological tissue in rather large crude groups that are well separated in dominant plane

of SPM but not so well in spectral angle.
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Figure B.31: Partially classified spectral image showing the pixels in the boxes from
figure B.30. The red pixels here are purely drawn from the surrounding tissue and cover
areas that were classified as node in figure B.28. The blue pixels cover some of those
that were classified in group 6 from figure B.28 and whilst there are still blue pixels in

the surrounding tissue here, the crossover is reduced compared to group 6.
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Figure B.32: Average spectra of the groups shown in figure B.31. The blue and cyan
pixels clearly show the steep rise above 650nm that is consistent with blue staining.
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High Dimensional Image Formats

The High Dimensional Image (HDI) format is a generic data container for both multi-

and hyper-spectral images. There are two versions of the format, the HDI, and the

HDIx (High Dimensional Image eXtension). The HDI is a 32bit format and as such

can only deal with file sizes up to around 4GB, the HDIx is a 64bit format and for all

practical purposes has no upper size limit (the theoretical upper limit is around 20

exabytes (20x1018 bytes)). Both format consist of a header, a table of contents and a

number of blocks of data.

Where 0x prefixes a number it signifies that the number is written in hexadecimal

format. This is a convenient way to write numbers when dealing with computer

storage as one hexadecimal digit represents 4 bits, 1 byte is therefore a 2 digit

hexadecimal. A 32bit integer can thus be written as 4 two digit numbers, for example

the number 1,000,000, becomes 0x000F4240 .

The ints in these files, are stored in little-endian format, i.e. the least significant bit is

stored first. When viewing the file in hex mode, the number 1,000,000 would appear as

0x40 42 0F 00.

C.1 HDI

C.1.1 File Header

The header length is given here as a checksum value by which the reading program can

ensure that the header has been correctly written.
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Bytes Format Contents Comments

0-3 char “HDI ” ASCII characters identifying the file as HDI format
4-7 int32 0x18 Length of header in bytes
8-11 int32 Image height in pixels
12-15 int32 Image width in pixels
16-19 int32 Number of spectral channels
20-23 int32 Bit depth of the image

Table C.1: Layout of the HDI file header

C.1.2 Table of Contents

The table of contents begins at byte 24. For a valid image, at least the image data

must be stored, there are then four further possible data blocks that can be written,

one for metric information, one for classification information, one for a mask layer, and

one for a list of channels. All further values shall be given as offsets from the beginning

of the data block in which they are present, assuming a file that has been fully

populated, and lengths (in bytes). Any number which is not fixed, but instead given

here a default value is considered volatile and will be suffixed v.

Offset Length Format Contents Comments

0 4 int32 0x2Cv Table length in bytes
4 4 int32 0x01 Identifier for image data block
8 4 int32 Address of the image data block (in bytes

from the beginning of the file)
12 4 int32 0x02 Identifier for the metric data block, i.e.

SAM
16v 4 int32 Address of the metric data block (in bytes

from the beginning of the file)
20v 4 int32 0x03 Identifier for the class data block
24v 4 int32 Address of the class data block (in bytes

from the beginning of the file)
28v 4 int32 0x04 Identifier for the mask data block
32v 4 int32 Address of the mask data block (in bytes

from the beginning of the file)
36v 4 int32 0x05 Identifier for the channel data block
40v 4 int32 Address of the channel data block (in

bytes from the beginning of the file)

Table C.2: Layout of the HDI table of contents

Additional identifiers can be defined to extend the number of data blocks that the file

can store, thus making the file an extensible format.
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Offset Length Format Contents Comments

0 4 int32 0x01 Identifier for the image data
block

4 4 int32 0x0C Length of the image data
block header

8 4 int32 h× w × c× 4 Length of the image data
block

12 h× w × c× 4 Uint32 array Image data

Table C.3: Layout of the HDI image data block

Offset Length Format Contents Comments

0 4 int32 0x02 Identifier for the metric data block
4 4 int32 0x10 Length of the metric data block

header
8 4 int32 Length of the metric data block
12 4 int32 Identifier for type of metric stored
16 float array Metric data

Table C.4: Layout of the HDI metric data block

C.1.3 Image Data Block

h = image height, w = image width, c = number of channels.

Image data is written pixel wise, in rows. For an N channel image, the first N 4 byte

integers represent the values of the first pixel in each channel, the second N 4 byte

integers represent the values of the second pixel in each channel, and so on. The first w

sets of N integers are the pixels from the first row of the image, and so on.

C.1.4 Metric Data Block

There are three fundamental types of metric data arrays. The first deals is a single

plane of metric values, one per image pixel, written in rows. The second has three

planes, each of which measures a metric with respect to a different reference and the

third has c planes and stores the full SAM and SPM for each image pixel. For the

second and third type, metric data is written plane wise, in rows.

C.1.5 Class Data Block

The class number for each pixel is stored by row.
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Offset Length Format Contents Comments

0 4 int32 0x03 Identifier for the class data block
4 4 int32 0x10 Length of the class data block

header
8 4 int32 h× w × 4 Length of the class data block
12 4 int32 Identifier for the type of classifica-

tion performed
16 h× w × 4 int32 array Class data

Table C.5: Layout of the HDI class data block

Offset Length Format Contents Comments

0 4 int32 0x04 Identifier for the mask data block
4 4 int32 0x0C Length of the mask data block

header
8 4 int32 h× w × 4 Length of the mask data block
12 h× w × 4 Uint32 array Image mask data

Table C.6: Layout of the HDI image mask data block

C.1.6 Mask Data Block

A single plane, binary image mask is stored, by row.

C.1.7 Channel Data Block

Offset Length Format Contents Comments

0 4 int32 0x05 Identifier for the channel data block
4 4 int32 0x0C Length of the channel data block

header
8 4 int32 c Length of the channel data block
12 c× 4 float array Channel data

Table C.7: Layout of the HDI channel data block

A label for each channel is stored in the same order as the channels of data.

C.2 HDIx

C.2.1 File Header

The header length is given here as a checksum value by which the reading program can

ensure that the header has been correctly written.
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Bytes Format Contents Comments

0-3 char “HDI ” ASCII characters identifying the file as HDI format
4-7 Uint32 0x18 Length of header in bytes
8-11 int32 Image height in pixels
12-15 int32 Image width in pixels
16-19 int32 Number of spectral channels
20-23 int32 Bit depth of the image

Table C.8: Layout of the HDIx file header

C.2.2 Table of Contents

The table of contents begins at byte 24. For a valid image, at least the image data

must be stored, there are then four further possible data blocks that can be written,

one for metric information, one for classification information, one for a mask layer, and

one for a list of channels. All further values shall be given as offsets from the beginning

of the data block in which they are present, assuming a file that has been fully

populated, and lengths (in bytes). Any number which is not fixed, but instead given

here a default value is considered volatile and will be suffixed v.

Offset Length Format Contents Comments

0 4 int32 0x40v Table length in bytes
4 4 Uint32 0x01 Identifier for image data block
8 8 int64 Address of the image data block (in bytes

from the beginning of the file)
16 4 Uint32 0x02 Identifier for the metric data block, i.e.

SAM
20v 8 int64 Address of the metric data block (in bytes

from the beginning of the file)
28v 4 Uint32 0x03 Identifier for the class data block
32v 8 int64 Address of the class data block (in bytes

from the beginning of the file)
40v 4 Uint32 0x04 Identifier for the mask data block
44v 8 int64 Address of the mask data block (in bytes

from the beginning of the file)
52v 4 Uint32 0x05 Identifier for the channel data block
56v 8 int64 Address of the channel data block (in

bytes from the beginning of the file)

Table C.9: Layout of the HDIx table of contents

Additional identifiers can be defined to extend the number of data blocks that the file

can store, thus making the file an extensible format.
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Offset Length Format Contents Comments

0 4 Uint32 0x01 Identifier for the image data
block

4 4 Uint32 0x10 Length of the image data
block header

8 8 int64 h× w × c× 4 Length of the image data
block

16 h× w × c× 4 Uint32 array Image data

Table C.10: Layout of the HDIx image data block

Offset Length Format Contents Comments

0 4 Uint32 0x02 Identifier for the metric data block
4 4 Uint32 0x14 Length of the metric data block

header
8 8 int64 Length of the metric data block
16 4 int32 Identifier for type of metric stored
20 float array Metric data

Table C.11: Layout of the HDIx metric data block

C.2.3 Image Data Block

h = image height, w = image width, c = number of channels.

Image data is written pixel wise, in rows. For an N channel image, the first N 4 byte

integers represent the values of the first pixel in each channel, the second N 4 byte

integers represent the values of the second pixel in each channel, and so on. The first w

sets of N integers are the pixels from the first row of the image, and so on.

C.2.4 Metric Data Block

There are three fundamental types of metric data arrays. The first deals is a single

plane of metric values, one per image pixel, written in rows. The second has three

planes, each of which measures a metric with respect to a different reference and the

third has c planes and stores the full SAM and SPM for each image pixel. For the

second and third type, metric data is written plane wise, in rows.

C.2.5 Class Data Block

The class number for each pixel is stored by row.
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Offset Length Format Contents Comments

0 4 Uint32 0x03 Identifier for the class data block
4 4 Uint32 0x14 Length of the class data block

header
8 8 int64 h× w × 4 Length of the class data block
16 4 int32 Identifier for the type of classifica-

tion performed
20 h× w × 4 int32 array Class data

Table C.12: Layout of the HDIx class data block

Offset Length Format Contents Comments

0 4 Uint32 0x04 Identifier for the mask data block
4 4 Uint32 0x10 Length of the mask data block

header
8 8 int64 h× w × 4 Length of the mask data block
16 h× w × 4 Uint32 array Image mask data

Table C.13: Layout of the HDIx image mask data block

C.2.6 Mask Data Block

A single plane, binary image mask is stored, by row.

C.2.7 Channel Data Block

Offset Length Format Contents Comments

0 4 Uint32 0x05 Identifier for the channel data block
4 4 Uint32 0x10 Length of the channel data block

header
8 8 int64 c Length of the channel data block
16 c× 4 float array Channel data

Table C.14: Layout of the HDIx channel data block

A label for each channel is stored in the same order as the channels of data.
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