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ABSTRACT 
	
  

All nations with a maritime border are concerned about changes in sea level, with an 
increase in sea level leading to flooding of coastal areas, damage to property, 
salinification of fresh water aquifers and destruction of valuable agricultural land.  
Around the change of the millenium global sea level rise was estimated to be 2.7 
mm/yr, but various climate models have suggested the rate of rise will increase 
markedly necessitating governments to take action more swiftly.  This report looks 
briefly at the accuracy requirements and time series duration needed to be able to detect 
reliably a significant change in the rate of sea level rise.  One constraint on detecting an 
increased trend is the natural interannual variability of the climate system, which 
implies that a minimum duration of around 10-20 years is required in order to detect a 
trend with confidence to within 1 mm/yr.  Added to this will be the effect of efficiencies 
in the observing system.  
This is investigated through a series of simulations, mimicking the sampling of a long-
time series by altimeters with random bias and drift terms.  Whilst not directly 
addressing issues relating to the choice of orbit configuration, this preliminary work 
prototypes a methodology for assessing the design of a long-term altimetry observing 
system.  Naturally the maintenance of multiple altimeter systems plus a representative 
global network of tide gauges provides the best basis for such monitoring.  However, 
considering only a single system, one notes that the required dataset duration can be 
between 10 and 60 years depending upon the quality of the altimeter missions.  Due to 
the difficulty of tying separate missions to a common datum, a single short interruption 
to precise monitoring may add more than a decade to the time required to detect an 
increased rate of sea level rise. 
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Executive Summary 
 
Satellite-based radar altimetry has become an integral part of many aspects of 

oceanography.  Altimetric observing systems, in which I include the instrumented spacecraft, 
the orbit determination, the accurate measurement or estimation of various correction terms 
and the dedicated sites for calibration and validation of the data, produce products that are 
used both in real-time applications and in long-term climate studies.  They can provide 
contextual information for multi-disciplinary regional investigations or be applied as 
assimilation input or validation data for complex numerical models.  The key products are 
near-global coverage of sea surface height, wind speed and wave height, which can be 
incorporated in forecast models to aid tourism and ship safety, as well as to improve our 
scientific understanding of the complex dynamics of the ocean circulation. 

 
Although there are many strong drivers for the maintenance of a high-quality 

altimetric observing system (or preferably more than one in order to give a much improved 
spatial coverage and redundancy in the event of one system failing), this report focusses on 
the need to maintain at least one such system to address the issue of monitoring mean sea 
level with sufficient accuracy to be able to infer the likely trajectory of sea level rise with a 
degree of confidence.  Clearly an observing system does not, per se, give predictions 
concerning future sea level, so the issue is one of using the altimetric record to distinguish 
between the forecasts of various climate models. 

 
Consequently this report first analyses the sea surface height record from 15 coupled 

models that have been made available as part of the 5th Coupled Model Intercomparison 
Project (CMIP5) in preparation for the IPCC's 5th Assessment Report (AR5).  Four of the 
models show no appreciable change in sea level during the 21st century, and three have sea 
level to be decreasing.  In those showing a rise, the predicted sea level by the end of the 21st 
century could be between 20 and 80 cm above that at its beginning.  This does vary with the 
warming scenario considered, but inter-model differences are the dominant factor.  What is 
striking about these models is that none of them shows a pronounced change in the rate of sea 
level rise during the period, whereas many models considered during AR4 had shown some 
acceleration. 

 
To understand the challenges in determining the long-term trend in sea level this 

report makes use of a century-long reconstruction of mean sea level based on tide gauges plus 
altimetry.  Whilst the rate of sea level rise was on average 1.6 mm/yr for most of the 20th 
century, the trend that would be determined for individual decades varies between -0.4 and 
3.7 mm/yr due to various phenomena with time scales from interannual to decadal.  If this 
represented the variability in mean sea level during the altimetric era, then a period of 23 
years of perfect measurement would be required to determine the trend with confidence to 
within ±1 mm/yr.  However, if the short-term variability in an altimetrically-measured dataset 
is much less than in this reconstruction the requisite period is reduced significantly. 

 
A potentially more important aspect is how errors in the observing system will affect 

our ability to determine the long-term trend with accuracy.  Random errors within the 
altimetric observing system are inconsequential when calculating global averages; however 
biases in the measurements will persist.  Given that multiple consecutive spacecraft will be 
required, the concerns are two-fold: a calibration offset between different missions and a 
gradual drift in performance during the lifetime of any instrument.  Significant biases (of 
order 10 cm) have been noted in the calibrations of similar instruments, and drifts of several 
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mm/yr have been noted related to the degradation of the space hardware.  However, biases 
and drifts of this magnitude can be estimated through careful calibration campaigns and 
monitoring; that which is pivotal to the accurate determination of trends by the altimetric 
observing system is the uncertainty in these estimates. 

 
Based on cited values in the refereed literature, this report looks at the effect of 

random intercalibration offsets and instrument drifts on the ability to derive the trend to the 
required accuracy.  Simulations are performed assuming that all the missions will occupy the 
same orbit, allowing for accurate recovery of the bias via the tandem phase (when the new 
satellite follows its predecessor in the same orbit only a minute or so apart) thus permitting 
both to overfly dedicated validation sites without the atmospheric or oceanic conditions 
changing perceptibly.  The natural choice for this is the orbit already used for 20 years by the 
TOPEX and Jason altimeters.  Its long occupation means that the gravity anomalies associated 
with that orbit are well known, and the relevant tidal aliasing fully understood.  Although a 
switch to some other orbit has been mooted in order to increase the latitudinal coverage, the 
interruption to the time series caused by such a change would significantly affect the ability to 
look at changes in the rate of sea level rise.  The analysis in this report simulated the effect of 
a short interruption to the continuity of monitoring, which will impact the accuracy of the 
intercalibration between successive missions; however the shift of precision altimetry to a 
different orbit was not modelled because there are too many unknowns concerning the 
aliasing of tides and other geographically-correlated errors in addition to the effect of poor 
intercalibration. 

 
The report brings together the errors associated with both the observing system and 

with estimating a long-term trend in sea level with variability on scales from interannual to 
decadal.  Depending upon the assumptions made, either term may dominate.  Although the 
uncertainties of each tend to zero for long dataset durations, the period needed to achieve a 
required accuracy can be decades long, with the two effects combining non-linearly.  
Although more complicated statistical techniques could address some of the problems with 
interrupted data series, it is clear that maintaining a continuous high-precision altiimetric 
observing system would be the most reliable way to be able to derive trends in mean sea level 
and judge whether rates are accelerating.  A short interruption, such as a failure to fund Jason-
CS in time to overlap with Jason-3, could add more than a decade to the amount of time 
needed to record sea level rise reliably to within ±1 mm/yr. 

 
This work has been a first look at the problem, and developed a methodology for 

assessing the impact of various mission scenarios.  There are many demands for multiple 
simultaneous altimeter missions to aid in ocean forecasting and provide better statistics on 
mesoscale variability.  However, we should not ignore the impact of these other missions on 
the ability to produce long-term highly consistent mean sea level time series.  Although 
various errors have regional biases affecting different observing systems differently, it has 
been through the comparison with these independent datasets that many of the drift and bias 
errors in the TOPEX-Jason altimeter series have been identified and rectified. 

 
The issue of regional mean sea level does not seem as important in the 

recommendations for maintaining the continuity of high-precision altimetry observations.  
Although changes in regional waters will be of more concern to particular governments and 
aid agencies, and their changes in CMIP5 models show greater variability than for the global 
average sea level, the recovery of regional trends relative to global is not affected by the 
errors in intercalibration between different instruments. 
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1. Introduction 
 
Changes in sea level are of great concern for many nations, especially low-lying lands 

with no flood protection.  Of particular note are the Maldives, where 80% of land is within 1 
m of sea level (Environment Agency, 2012) and Bangladesh, where 6-8 million people would 
be displaced by a 1 m rise of sea level (MoEF, 2008).  Western developed nations do have 
protection in place to prevent/minimise the loss of life, famously the dykes of the Netherlands 
and the Thames Barrier in London, but there is great expense involved in maintaining and 
strengthening them.  Thus governments are keen to know the likely scenario of sea level rise, 
which motivates regional studies e.g. UKCP09 (Lowe et al., 2009). 

 
Over the last 20 years the recorded rate of sea level rise is 2.7 mm/yr (see Fig. 1) from 

a combination of altimetry, ground-truthing by tide gauges and corrections for local land 
movement (global isostatic adjustment).  There are many factors contributing to this, which 
are the subject of active research (Church et al., 2010).  A continuation of that rate will lead to 
sea level 27 cm higher in 2100 than in 2000.  However, a number of climate models have 
suggested that climate feedbacks will lead to a gradual acceleration of sea level rise, with sea 
level at the end of the century possibly being considerably higher than in 2000.  The 
predictions generated by some semi-empirical models, which relate global mean sea level to 
other model diagnostics, can be much more than a metre (e.g. Rahmstorf, 2007). 

 
Complex coupled climate models clearly give us an idea of the range of possible 

values, but to determine which pathway the climate system is actually on requires a long time 
series of accurate measurements.  The stated accuracy for the global sea level trend during the 
altimetry era is ±0.4 mm/yr (Leuliette  et al., 2004; Nicholls and Cazenave, 2010), which is 
principally due to the effects of interannual variations, the uncertainty in the drift of 
individual altimeters and the errors in establishing the offset between different altimeters.  
This report addresses the issue of analysing how different accuracy requirements for the 
whole altimetric observing system affect the international community's ability to distinguish 
between different scenarios of climate change. 

 
Section 2 of this report looks at rates of sea level rise in various state-of-the-art 

coupled models, considering both the absolute values they suggest for the current era, and 
how much they are likely to change during the 21st century.  Section 3 provides a brief reprise 
of the century-long record of mean sea level (MSL) available in a reconstruction based on tide 
gauge and altimetry data, showing how the inherent variability in the climate system 
precludes accurate detection of trends with only short extents of data.  Section 4 then 
considers the systematic errors in the altimetric measurement system, principally 
concentrating on the uncertainty in instrument drift and the challenge in accurately co-
aligning data from successive missions to help build up a long climate data record.  Section 5 
describes the simulations used to determine the accuracy of retrievals of MSL trend, given 
certain constraints on instrument performance, with overall conclusions and discussion of 
regional interest being provided in section 6. 
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Fig. 1 : Series of global mean sea level from altimeter datasets spanning the last 20 years 
(courtesy of Remko Scharroo)  No correction for Global Isostatic Adjustment (GIA) applied. 
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2. Future scenarios of sea level rise 
 
a) Introduction to CMIP5 models 

 
As part of the precursor to the 5th Assessment Report (AR5), the IPCC has instigated 

a new round of the Coupled Model Intercomparison Project (CMIP5), in which model output 
from a wide variety of models are shared throughout the international community.  These 
models were run for a large number of specified scenarios (distant past, recent historical and 
possible future conditions), with the main diagnostic fields being readily available as NetCDF 
files on a few dedicated websites.  The runs considered here have been the "historical" run, 
which covers the period 1850 to 2005 with various forcing parameters (solar flux, CO2 
concentration and aerosol content) matching closely to what is known for the period 
(including, in some cases, specific volcanic eruptions adding particulates to the stratosphere).  
However, all the atmospheric and oceanic fields are freely determined by the models, with no 
assimilation of real world observations, and thus the model output will not match individual 
El Niño events per se.  Rather it is expected that modes of variability will occur naturally 
within these coupled systems.  Here only data from 1993 onwards are considered, reflecting 
the period when regular monitoring of mean sea level was available on the "reference" track 
occupied by the TOPEX/Jason series of altimeters. 

 
The coupled models provide output corresponding to various future scenarios, two of 

which (RCP45 & RCP85) are amongst the core set of simulations intended to be performed 
by all of the models to be evaluated (Taylor et al., 2009).  Representative Concentration 
Pathways (RCPs) specify a change in net radiative forcing over the ensuing 95 years, reaching 
(for the two specified) peaks of 4.5 or 8.5 Wm-2 respectively in 2100 without ever exceeding 
those values.  RCP45 corresponds to a "moderate" amount of global warming, consistent with 
governments taking significant concerted action to reduce CO2 emissions, whilst RCP85 
indicates more likely conditions if governments fail to achieve a consensus and action is 
piecemeal and not co-ordinated. 

 
The various different models have different oceanic and atmospheric modelling 

components (with some having ice and active biological components that feedback into CO2 
absorption and albedo), and their output fields are provided on their own native grids (which 
are not always regular longitude-latitude grids). 

 
 

b) Model selection and caveats 
 
To encompass the wide range of sea level rise scenarios expected, data from fifteen 

different CMIP5 models were downloaded from the UK, US and German servers.  These 
models include HadGEM2-ES and HadGEM2-CC, but HadCM3 could not be used for this 
investigation because there is no sea surface height field for that model.  The other models 
considered came from various institutes and meteorological agencies in the US, Canada, 
Russia, Norway, France, Germany and Japan (see Table 1).  For this investigation, fields were 
downloaded at monthly resolution, although for most of the ensuing analysis the regular 
seasonal cycle is suppressed by the use of 12-month averages.  The key fields required were 
those beginning "zos_" which contained "sea surface height above geoid" and ones 
commencing "zosga_' which were "global average sea level change".  (For some models 
different fields exist showing, for example, the thermosteric contribution to sea level change; 
these by themselves were not useful without knowing the overall sea level change.)  The data 
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within the "zosga" files would be expected to correspond to an area-weighted average of that 
in the "zos" files; however for a number of models these showed different behaviour.  Given 
the lack of clarity as to what these output files actually represent, these models are treated 
with caution.  I continue here with the files starting with "zos_" as these have monthly maps 
of the sea level height (which is useful for regional comparisons, see section 6), and compute 
the global average of these fields. 

 
 

Model Organizations responsible 
CanESM2 Canadian Centre for Climate Modelling and Analysis  
IPSL-LR Institute Pierre-Simon Laplace 
IPSL-MR Institute Pierre-Simon Laplace 
HadGEM2-ES Met Office Hadley Centre 
HadGEM2-CC Met Office Hadley Centre 
CNRM-CM5 Centre National de Recherches Meteorologiques / Centre 

European de Recherche et Formation Avances en Calcul 
Scientifique (CNRM/CERFACS) 

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory 
GISS-E2-H NASA Goddard Institute for Space Studies 
GISS-E2-R NASA Goddard Institute for Space Studies 
inmcm4 Institute for Numerical Mathematics 
MIROC5 Atmosphere and Ocean Research Institute, University of 

Tokyo, National Institute for Environmental Studies & 
Japanese Agency for Marine-Earth Science and Technology 

MRI-CGCM3 Meteorological Research Institute 
NorESM1 Norwegian Climate Centre (NCC) 
MPI-ESM-LR Max Planck Institute for Meteorology 
CCSM4 NCAR Community Climate System Model CCSM version 4 

 
Table 1 : List of the 15 models analysed, giving all the research groups 
responsible for their development 

 
 
A simple consideration of the amplitude of the seasonal cycle near the end of 

historical run (Table 2) reveals 3 models to have no appreciable seasonal cycle (these are later 
shown to have no significant trend or acceleration either).  A further two models have a weak 
seasonal variation, but with peak in mean sea level (MSL) during March-April, 6 months 
different from that seen in observations and in the majority of models). 
 

In some of these climate runs, the sea level record will not include a component 
relating to melting of land ice; this may have to be explicitly determined and added later (A. 
Pardaens, pers. comm. 2012). Finally, it should be noted that all models may show a problem 
of drift.  For these future emissions scenarios, the models are supposed to be initialised from 
the end of the "historical" run, which will already have at least 155 years of spin-up.  
However if the formulation of some terms is not fully correct, the models may continue to 
lose mass, for instance.  Thus some models show an apparent lowering of sea level (see 
section 2c).  This decrease is consistent with the behaviour they had shown in the "historical" 
run; thus it may be valid to consider whether the future forcing scenarios engender any 
appreciable change in the rate of change of sea level. 
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Can-ESM2 — CNRM-CM5 1 MIROC5 2 
IPSL-LR 1 GFDL-ESM2M 1 MRI — 
IPSL-MR 1 GISS-E2-H 3* NorESM1 0.5* 
HadGEM2-ES 2 GISS-E2-R 3 MPI-ESM-LR 1 
HadGEM2-CC 2 inmcm4 — CCSM4 0.5* 

 
Table 2 : Approximate amplitude (half peak-to-peak) of seasonal cycle (mm).  
Data are from 1993-2002 (historical run) and peak is around September-
October, except for those asterisked which show a peak in March-April.  Note 3 
models have no seasonal signal. 

 
 
c) Trends and acceleration in mean sea level 

 
In subsequent analysis, I use data from the end of "historical" plus "rcp45" or "rcp85" 

to produce two time series for possible warming scenarios, covering the period of the 
potential satellite altimetry climate data record (1993 onwards).  Figure 2 shows the resultant 
time series for these two scenarios and their difference.  The complex forcing scenarios used 
for RCP45 and RCP85 do not have a simple linear ramp up of radiative forcing over the 
whole century, but a more complicated pathway, following almost the same trajectory for the 
first 40 years, with the "moderate" scenario then reaching a plateau, whilst the more extreme 
case continues to increase the radiative excess before reaching a peak near the end of the 
century.  However, at first glance, most of the models show a nearly linear rise in sea level 
over the first 100 years (Fig. 2a,b).  Three models (IPSL-LR, IPSL-MR and CNRM-CM5) 
indicate sea level to be decreasing, although this is consistent with the end of their historical 
run.  As noted before, this is likely to be due to uncorrected model drift.  For CNRM-CM5 the 
rate of decrease diminishes, but for the two IPSL models, the mean sea level drops faster as 
time progresses. 

 
Examining the difference between the two scenarios (Fig. 2c), one notes that both 

IPSL models show greater decreases in sea level for the more extreme conditions, whereas 
five of the models (HadGEM2-ES, HadGEM2-CC, CNRM-CM5, GISS-E2-R and NorESM1) 
show the greater warming scenario to have the greater acceleration in sea level as would be 
expected from basic principles.  However the difference between the two scenarios has no 
more than a 12 cm difference over the 95 years.  Four of the models show negligible 
difference between the two scenarios.  The calculated trends for the models at the start of the 
altimetry era, middle of the 21st century and at its end are given in Table 3.  The trends are 
calculated by applying a 12-month running mean (to remove the annual signal) and then 
fitting a linear function of time.  These show that the typical change in trend over 50 years is 
of order 1 mm/yr for RCP45 and roughly twice as large for RCP85.  Table 4 shows the results 
for explicitly calculating the acceleration term for the difference between RCP45 and RCP85 
over the 95 years. 

 
A very different result is obtained by Rahmstorf (2007) who develops a semi-

empirical link between mean air temperature and the rate of increase in mean sea level to infer 
that the projected temperature changes by the end of the century, according to AR4, could 
result in a raising of sea level by between 50 cm and 1.4 m.  Holgate et al. (2007) argue that 
observations from the past century do not support the assumption of a linear relationship 
between  temperature  and  rate  of  rise,  and  thus  that Rahmstorf's predictions are somewhat 
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Fig. 2 : Evolution of global mean sea level in various coupled models. a) With 
RCP45 conditions for 2006-2100, b) with RCP85 simulation, c) Difference. 
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Model 1993-2005 
(historical) 

2046-2055 
(RCP45) 

2091-2100 
(RCP45) 

2046-2055 
(RCP85) 

2091-2100 
(RCP85) 

CanESM2 0.0 0.0 0.0 0.0 0.0 
IPSL-LR -0.6 -1.1 -1.3 -1.7 -3.5 
IPSL-MR -0.5 -1.3 -1.6 -2.0 -3.2 
HadGEM2-ES 8.3 7.7 7.6 8.2 8.6 
HadGEN2-CC 1.3 1.3 1.6 2.6 2.9 
CNRM-CM5 -1.3 -0.8 -0.3 -0.3 0.7 
GFDL-ESM2M -0.6 — — — — 
GISS-E2-H 9.0 — — — — 
GISS-E2-R 1.9 2.4 2.3 3.2 4.7 
inmcm4 0.1 0.1 0.1 0.1 0.1 
MIROC5 1.3 0.8 1.1 0.7 -0.5 
MRI 0.0 0.0 0.0 0.0 0.0 
NorESM1 1.5 2.5 2.0 3.6 5.0 
MPI-ESM-LR 0.2 0.2 0.4 0.0 -0.1 
CCSM4 1.8 — — 3.0 4.3 

 
Table 3 : Rates of sea level rise (mm/yr)  for three different decades according to 
a number of readily available CMIP5 models.  Not all of the selected models had 
sea level fields available for all 3 scenarios.  [For explanation of terms 
'historical'; 'RCP45' and 'RCP85' see main text.]. 

 
 

Can-ESM2 0.0 CNRM-CM5 0.4 MIROC5 -0.4 
IPSL-LR -1.0 GFDL-ESM2M —** MRI 0.0 
IPSL-MR -0.8 GISS-E2-H —** NorESM1 1.8 
HadGEM2-ES 1.0 GISS-E2-R 1.8 MPI-ESM-LR -0.1 
HadGEM2-CC 0.8 inmcm4 0.0 CCSM4 —* 

 
Table 4 : Difference in acceleration between RCP45 and RCP85 runs (mm/yr 
per century).  A positive number indicates that sea level rises faster under 
RCP85 conditions than under RCP45. * - No data for RCP45 run   ** - No data 
for either RCP45 or RCP85. 

 
 
alarmist.  Lowe and Gregory (2010) also note that some of more extreme predictions coming 
from such statistical inferences are implausible without there being significant melt of land 
ice from Greenland and Antarctica.  However, given the rather smooth projections from 
CMIP5, with their unrealistically low temporal variability (see section 2d) it is worth noting 
that a wide range of forecasts do exist in the scientific literature. 
 
 
d) Lack of variability in models 

 
A generic problem with models is their inability to include all the scales of temporal 

variability noted in the real world, thus encouraging people to underestimate the uncertainties 
in our knowledge of the climate system (Valdes, 2011).  The majority of the models do show 
a seasonal cycle in mean sea level (Table 2), but once annual averages are considered, sea 
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level rise is almost linear, with no apparent modulation by El Niño or other short-term climate 
variations whereas the altimeter record is marked by variations on all time scales (Fig. 1).  
Gregory et al (2006) had noted this lack of variability in HadCM3 too.  With such a lack of 
interannual variation, or any perceived measurement error, it would be possible to estimate a 
very weak acceleration reliably from only a short span of data.  Instead to ascertain the 
detectability of trends with an altimetry observing system we need to consider time records 
with realistic interannual signals, and also uncertainty within the measuring system. 

 
Rather than focus on estimating an acceleration term, which may be very weak, the 

problem is re-expressed as one of determining some true long-term trend to confidently 
within 1 mm/yr.  Assuming the statistics will ultimately conform to a normal distribution, a 
95% confidence of being within 1 mm/yr translates to finding conditions (environmental and 
observing system) such that the standard deviation in the estimates of the trend is no more 
than 0.5 mm/yr. 
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3. Church and White's reconstruction of MSL 
 

There are no fully authenticated reliable measures of globally-averaged mean sea level 
spanning a century or more.  Instead I consider a reconstruction developed by John Church 
and Neil White of CSIRO, utilizing 18 years of continuous altimetry and the long tide gauge 
data records available from a number of stations.  [The longest duration tide gauge series are 
not uniformly distributed throughout the ocean; in their methodology, Church and White 
(2011) allow for their irregular distribution and spatial correlation.] 

 
 

 
 
Fig. 3 : a) Time series of global mean sea level from Church and White 
reconstruction, b) Uncertainty in estimate, c) Global MSL with trend of 1.54 
mm/yr (average over 1880-2010) removed.  For further analysis data before 
1906 are excluded, since the uncertainty is greater in the first period. 
 
Figure 3a shows the result of their reconstruction, which although seemingly close to 

linear does contain significant variability on scales from years to decades (Fig. 3c).  To assess 
the variability in this record, I consider all data from 1906 onwards, as the uncertainty in the 
reconstructed MSL (Fig. 3b) is much greater for earlier periods.  Figure 4 shows the trends 
derived treating overlapping 10-year periods separately.  The mean value (1.67 mm/yr) is 
close to that found by treating the series as a whole, but for individual decades the trend can 
vary between -0.40mm/yr and 3.29 mm/yr, with a standard deviation of 0.91 mm/yr.  
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Performing such an analysis for segment lengths varying between 5 and 30 years shows the 
uncertainty in the estimate of the trend to fall off as the data record increases (Fig. 5). 

 
 

 
Fig. 4 : Trend calculated from overlapping 10-yr segments of the Church and 
White reconstruction..  Red lines indicate mean (1.67) and +/- 1 s.d. (0.91). 

 
 

 
Fig. 5 : Standard deviation of trend derived from Church and White 
reconstruction, for different length segments. 

 
 

If we conjecture that global climate change has increased the rise of sea level by 
1 mm/yr, then a sampling period of 23 years is required to be able to detect it with a 95% 
probability (2 s.d.).  Such a conclusion assumes that the altimetry observing system has 
perfect consistency (no measurement bias between different satellite missions and no drift in 
the instruments' performance) and that the short-term variability in the mean sea level will be 
similar to that portrayed in Fig. 5.  As the analysis of Fig. 5 was based on a reconstructed 
series from a limited set of tide gauges, it will have more variability than one computed from 
the global coverage of an altimetric observing system.  However, it is also possible that 
conditions of climate change will also enhance the short-term variability in the system.  
Without a 100-year record of global MSL from altimetry and also fully credible models of 
projected MSL change under warming scenarios, it is difficult to be clear whether the 
estimate from this analysis is biased high or low.  However, it is an appropriate tool to 
investigate the effect of changes in the quality of the observing system. 
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4. Intercalibration errors within the altimetric observing system 
 
Altimetric measurements of sea level require precise knowledge of orbits, 

measurements of range and calculation of corrections. To produce a global average of mean 
sea level simply requires a weighted average of all these measurements, albeit with some 
allowance for those regions not measured (outside latitudinal range of system, affected by 
sea-ice or too near to land).  In such a calculation using millions of points, the random errors 
will average out; however biases in the system will remain.  These could be errors in the 
knowledge of microwave path lengths in the instrument, the position of its centre-of-gravity 
or errors in various corrections (wet troposphere, ionosphere or tracker bias).  Thus all 
altimeter missions require significant calibration effort to minimise uncertainty in the bias of 
the overall altimetric measurement. 

 
This discussion will concentrate principally on altimeters in the so-called "reference" 

orbit occupied by TOPEX/Poseidon, Jason-1 and Jason-2 to-date, with frequent overflights 
(every 10 days) above dedicated calibration sites and inter-mission calibration achieved by 
tandem missions with successive altimeters making the same measurements only about a 
minute apart.  These three satellites have made continuous observations for ~20 years, 
whereas the ERS-1, ERS-2 and Envisat satellites have not fully maintained observations in 
their multi-disciplinary 35-day orbit, and that time series is interrupted now following the 
recent demise of Envisat.  Combining estimates of mean sea level between the two sets of 
altimeters is difficult to achieve at the millimetric scale, because of their different sampling of 
the diurnal cycle (one set being in a sun-synchronous orbit and the other not) and also the 
large differences in their maps of sea level, which are associated with geographically-
correlated errors. 

 
During an initial 6-month calibration phase, an instrument in the reference orbit will 

pass 18 times over a dedicated reference site.  Unexplained height errors of order 10 cm are 
found between different satellites (Haines et al. 2010; Woodworth et al., 2004; Watson et al., 
2004; Bonnefond et al., 2010), with standard errors for the comparisons at reference sites of 
about 0.8 cm.  A more precise intercalibration may be obtained through using all the near-
simultaneous observations during the tandem overlap mission.  Thus without any 
intercomparison, a switch between data from different altimeters may have a change in bias of 
~10 cm; whereas if they have been compared via a long period of simultaneous 
measurements, the step in bias will be at least a factor of ten less.  However if the two 
altimeters do not overlap in time or overfly the reference sites on different days, the ability to 
determine their relative offset is worsened because of the changing oceanic and atmospheric 
conditions.  The estimate of the relative bias will be confounded by the uncertainty in the 
correction terms, which could previously have been dismissed as unchanging.  The situation 
is even more complicated if the two altimeters to be aligned are not on the same ground track, 
and thus use different ground stations to achieve their long-term calibration. 

 
Secondly the performance of the altimetric observing system may be affected by 

gradual drifts in the altimeters or in the correction terms that are to be applied.  Leuliette et al 
(2004) found a drift in Topex-A measurements of -0.37 mm/yr , and in Topex-B of 1.56 
mm/yr.  Their estimate for Jason-1, based on a short period early on in the mission was -5.7 
mm/yr, but now that a change in behaviour of one of the radiometer channels has been 
identified (Brown et al., 2004) and a correction implemented, this effect has been removed.  
Two occasions of 0.5 mm jumps in Envisat's range bias have also been identified (Leuliette 
and Miller, 2009).  The ability to elucidate these documented changes is dependent upon the 
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maintenance of an extensive set of ground observations, and greatly helped by the existence 
of totally independent altimeter systems.  One of the stated aims for the forthcoming Jason 
missions (jason-3 and Jason-CS) is that the end-to-end calibration should not have a drift of 
more than 1 mm/yr.  Leuliette and Miller (2009) found that the global trend using just the 
Jason-1 mission to have an r.m.s. error of 1.1 mm/yr, whilst that from Envisat for the same 
time was 1.5 mm/yr. 

 
To consider the feasibility of the altimetric system to detect an increase in sea level 

rise to 1 mm / yr above what had previously been expected, I simulate offsets and drifts for 
successive altimetric missions intended to construct a climate data record. 
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5. Simulation studies 
 
a) Simulation set-up 

 
The methodology is illustrated in Fig. 6.  The top panel shows a sea level rise scenario 

in grey, indicating the measurements that would be recorded by an ideal system.  The specific 
scenario has a rate of MSL rise of 1.8 mm/yr in 2014, with an acceleration of 1 mm/yr per 
century, and a seasonal cycle of amplitude 2.5 mm peaking in September-October.  However 
the specific scenario is not important, as rather than record how long is needed for an increase 
of 1 mm/yr to be reliably determined, I have restructured the question as how long a duration 
is required to be certain that the trend has been estimated to within 1 mm/yr of true.  In this 
form, the results are not dependent upon which model and which future warming scenario is 
being considered. 

 
Individual coloured segments show the possible record from a series of different 

satellite altimeters, with Jason-3 scheduled for April 2014 and Jason-CS for 2018.  For 
simplicity of the simulation, all subsequent missions are timed for launch every 4.5 years and 
to last 5.0 years in the reference orbit, allowing for a 6-month overlap with their successor.  
For this illustration the top panel shows each altimeter's height record to have a random bias 
and drift, with these numbers being drawn from normal distributions of standard deviation 
100 mm and 0.8 mm/yr respectively.  The middle panel shows the combined time series if the 
relative bias between successive altimeters is estimated via the tandem phase to within an 
r.m.s. accuracy of 4 mm.  The exception is that a greater error is assigned to the match-up 
between the fourth and fifth missions, which is what would be expected if the fourth mission 
failed to last long enough to overlap with its successor. 

 
The trend in sea level rise is then determined for various durations starting in 2014 

(Jason-3), and the error in the trend calculated by comparing to the ideal case of no 
measurement error (grey line in Fig. 6a).  Two hundred simulations were performed for each 
specification of the uncertainties in the measuring system, and thus the associated error 
determined for the recovered trend.  When this uncertainty reduced below 0.5 mm/yr, the 
record duration was deemed suitable for reliable detection of sea level rise to within 1 mm/yr. 

 
Provided there are always sufficient overlaps between succeeding altimeters the 

expected O(100 mm) difference in bias between instruments is not important; what matters is 
the accuracy of the estimate of this bias and the size of the uncertainty in drift.  To improve 
clarity of the depiction in Fig. 6b, the magnitudes of the biases and drifts are some of the 
larger ones used in the simulations performed. 
 
 
b) Simulation results 

 
Simulations were performed for a wide range of altimeter performances and 

intercalibration, with the r.m.s. uncertainty in the bias between missions varying between 0 
and 6 mm and the r.m.s. uncertainty in the drift between 0 and 1 mm / yr.  All the simulations 
were performed for a series of 5-year missions with 6-month overlaps unless stated otherwise, 
and with 200 random realizations of each set of conditions.  For each set of conditions I noted 
the minimum duration required for error in derived trend to fall below 0.5 mm / yr. 
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  0 mm / yr  0.25 mm/yr  0.5 mm / yr  0.75 mm/yr  1 mm / yr 
0 mm  10  10  10  11  22 
2 mm  10  10  10  17  27 
4 mm  15  17  22  29  41 
6 mm  42  44  49  57  66 

 
Table 5 : Duration of time series (in years) required to determine trend of MSL to 
within an uncertainty of 0.5 mm / yr, given as a function of uncertainty in offsets 
of contiguous missions and in the drifts during missions.  (10 years was the 
minimum length considered and so a value of 10 implies that that combination of 
bias and trend errors has minimal effect on the ability to recover the trend to the 
required accuracy.) 

 
 
Unsurprisingly, scenarios with little (if any) error enable the accurate determination of 

drift as early as a perfect observing system, and increases in σh (r.m.s. height bias) and σd 
(r.m.s. drift) can lead to much longer datasets being needed.  Even the scenarios with large 
intercalibration biases and/or drifts will eventually converge to the simulated trend once 
enough successive altimeters have been flown (independent realizations of individual bias and 
drift leading to the mean values tending towards zero).  When the number of missions (n) is 
large, the overall uncertainty in the derived trend, σT, will be expected to follow: 

 
σT

2  =  σd
2 / n  +  (σh / 4.5 yr)2 / (n-1) (1) 

 
A slightly nonsensical consequence of this simplistic formulation is that significantly 

better convergence to the true trend would be obtained if new high-performance well-
intercalibrated altimeters were launched every 12 months, as this would quickly reduce the 
mean bias and drift in the overall observing system, although at great cost!  The simulation 
results in Table 5 roughly match this formula, although it is more complicated when the 
period is short and the required duration does not correspond to an integral number of 
missions.  This simulation also enables us to investigate more complicated scenarios 
involving programmatic changes to the altimetric system. 

 
 
c) Interrupted and degraded monitoring systems 

 
The recent loss of Envisat before Sentinel-3 was in place, and the launch failures for 

OCO and the initial Cryosat remind us that continuity of an observing system cannot be 
assumed.  Here I assess the effect that a gap in the data series has on the ability to register that 
the trend has changed.  If the two altimeters either side of a hiatus are of similar heritage, then 
an initial error in offset of the two may be or order 100 mm (based on the experience of 
Jason-1 and Jason-2, which were similar but not identical spacecraft), with the uncertainty 
likely to be much greater for a change in hardware.  Such an erroneous offset would have a 
pronounced and noticeable effect on the quality of the time series.  However, if each altimeter 
is separately calibrated to dedicated well-monitored reference sites (such as Harvest, Senetosa 
or Bass Strait) then the error in alignment over that gap could be kept to ~6 mm.  The results 
in Table 6 show the effect of a very short gap in the mission coverage, such that there is no 
overlap between the second and third missions to enable an accurate intercalibration.   

 
 



NOC Research & Consultancy Report No. 15  19 

 
 

Fig. 6 : Schematic to illustrate simulation (note figure uses relatively large offsets 
in second panel to make methodology clear).  a) Idealised time series (in grey) 
showing gradually accelerating sea level rise, with unadjusted samples (coloured 
lines) from independent 5-yr altimetry missions (std. dev. of offset = 100 mm; std. 
dev. of instrument drift = 0.8 mm/yr).  b) Result of realigning independent 
altimetric series based on a good intercalibration during tandem missions (std. 
dev. of mismatch on alignment = 4 mm, except for match between 4th and 5th 
which has a r.m.s. of 10 mm).  c) Determined trend as a function of end of period 
(time series starts in 2014).  Blue line shows worked example; light blue lines 
show the other 199 simulations and red lines giving mean and ±2 std. dev. 
indicate the breadth of the envelope.  In this (somewhat extreme) case, the std dev 
reduces below 0.5 mm / yr after 45 years (indicated by vertical dashed black line). 
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  0 mm / yr  0.25 mm/yr  0.5 mm / yr  0.75 mm/yr  1 mm / yr 

0 mm  10  10  10  23  29 
2 mm  10  10  22  25  31 
4 mm  23  24  27  32  43 
6 mm  42  44  49  57  66 

 
Table 6 : Same as Table 5, but with second altimeter mission only lasting 4.5 
years causing a data gap and hence greater uncertainty (r.m.s. of 6 mm) for 
alignment of third mission. 

 
 

Finally, a similar exercise can be performed to show the effect if one of the altimeters 
is replaced by one with a greater drift (Table 7), possibly representing a short-term 
programmatic solution to a potential data gap.  The issue of a switch to a different orbit has 
not been addressed here.  Maps of the difference in MSL recorded simultaneously by Jason 
and Envisat show large regional biases (Ollivier et al, 2011) that are still poorly understood, 
although the relative accuracy of ephemerids predictions on different orbits plays a part.  
Determining the offset between two altimeters in different orbits is challenging and much less 
accurate than between two missions having a tandem overlap phase.  Indeed MSL from 
missions in different orbits shows marked temporal variation (Fig. 1). 

 
 

  0 mm / yr  0.25 mm/yr  0.5 mm / yr  0.75 mm/yr  1 mm / yr 
0 mm  10  10  10  11  22 
2 mm  10  10  10  21  27 
4 mm  24  25  27  31  41 
6 mm  45  47  51  58  66 

 
Table 7 : Like Table 5 but with greater drift (1mm/yr) for the third mission. 

 
 
The results presented in Tables 5-7 show the data duration required for the r.m.s. 

uncertainty in the derived trend to be no more than 0.5 mm/yr, with 10 years being the 
minimum period considered.  For altimeter mission scenarios with low uncertainty 10 years 
(corresponding to 1 year into the third mission) is sufficient.  Thus the more complicated 
scenarios involving a greater bias between 2nd and 3rd missions (Table 6) or a greater drift 
during the 3rd mission (Table 7) have little impact on the duration required.  However, this 
apparent lack of effect is thrown into great contrast when the uncertainty as a function of time 
is seen in full, rather than just noting a single threshold being crossed.  In the following 
section incorporating the errors due to the natural climate variability into the assessment 
(Fig. 7) leads to very different results for such cases. 

 
On the other hand, scenarios where the uncertainties in bias and drift are already quite 

large are only slightly affected by increasing one of the bias or drift terms.  The effect of the 
extra uncertainty is most pronounced in this analysis when the other sources of uncertainty are 
of a moderate level, leading to a required duration of 3-5 missions (i.e. 14-23 years for 
missions of length 4.5 years).  For example, the scenario with 4 mm calibration bias but no 
drift error requires 15 years (see Table 5) but if the drift for just the third mission has an 
uncertainty of 1 mm/yr, the required duration is now 24 years (Table 7). 
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d) Combining uncertainties 
 
In order to provide an estimate of the dataset duration required to detect trends reliably 

given errors in the measurement system and inherent temporal variability of the observable, 
the uncertainties due to each aspect must be combined.  As climate system and altimetric 
system are independent, it is appropriate simply to add the variances of the two separate 
terms.  This will, of course, have a highly non-linear effect on when the uncertainty falls 
below the chosen threshold of 0.5 mm/yr. 

 
 

 
 

Fig. 7 : Illustration of the uncertainty and required dataset duration for cases 
involving interannual variability in the observable plus bias and drift errors in the 
altimetric sampling.  In all three panels, case 1 corresponds to mismatch bias 
between successive missions with s.d. = 2 mm and drift uncertainty with s.d. = 0.5 
mm/yr, and case 2 is the same except with increased mismatch (s.d. = 10 mm) 
between missions 2 and 3, simulating the lack of a tandem mission for good 
intercalibration.  The full black line indicates the uncertainty in the trend due to 
inherent variability of the actual climate system, with values derived from Church 
and White reconstruction (see Fig. 4) multiplied by a) 100%, b) 75%, c) 50%. 
[Overall uncertainty simply estimated by summing variances of the two terms.] 
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Such calculations could be performed for all altimeter mission scenarios previously 
considered, plus many different spectral descriptions of the variability in the climate system.  
Figure 7 provides an illustration of the process, using 2 altimeter scenarios (continual high-
quality altimeters, and same but with an interruption between missions 2 and 3) and 3 
representations of the variability in the true signal (scaled versions of the analysis of Church 
and White's reconstruction dataset). 

 
If the natural variability in MSL is as derived as in section 3, then 23 years is required 

to determine the trend to within 0.5 mm/yr given a perfect observing system.  The uncertainty 
curve for case 1 (consistent high-quality sampling) is then far below the inherent MSL 
variability, and thus the combined curve (bold red line) crosses the 0.5 mm/yr threshold only 
a few years later (27 years total).  The uncertainty curve for case 2 (simulating a single 
interruption to the continuity of the observing system at 9 years) is above that for the true 
MSL variability, and thus the combined error for this case only crosses the threshold at 35 
years. 

 
It seems likely that the uncertainty curve derived from the Church and White 

reconstruction will be an overestimate.  Figures 7b & 7c show the effect of reducing the 
uncertainty curve for the inherent variability of the climate system by 25% and 50%.  In the 
latter case a perfect altimetric observing system would require 9 years (black curve), the 
uninterrupted high-performance one would need 17 years (red curve) and that with an 
interrupted record 31 years (dark blue curve).  In this last example, with the relatively large 
uncertainty between the second and third missions, the trend will be more precisely 
determined by discarding the first 9 years.  (Admittedly more advanced statistical techniques 
treating the two segments separately could make some use of the earlier data.)  This may 
appear extreme but does reflect the major impact of unresolved biases in the measurement 
system.  
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6. Conclusions 
 

There is great societal need to be able to determine the likely development of sea level 
rise, with model predictions spanning a wide range of scenarios.  To distinguish between 
these will require an accurate well-monitored integrated altimetric observing system.  This 
report has examined the ability of a continuation of the current high-performance altimeters, 
on a well-known orbit with overflights of reference sites, to detect whether sea level rise has 
increased by 1 mm/yr.  Secondly I show the increase in the duration of the data record 
required to make a reliable detection of such a change if the missions are generally expected 
to have a greater internal drift or greater uncertainty in the alignment of sea level records from 
successive missions.  In the final section, this report details the degradation in performance 
that is likely to occur if there is an interruption to the continuity of service or a lower-
specified mission with greater internal drift is used to reduce costs. 

 
However, to be able to put realistic bounds on the international community's ability to 

estimate the long-term rate of sea level rise, one needs to understand first how much 
uncertainty is engendered by short-term interannual variability in the observable itself.  
Simply using Church and White's (2011) reconstruction of mean sea level gives an indication 
that, if the desire is to be confidently within 1 mm/yr of the true trend, 23 years would be 
required with a perfect observing system.  Incorporating observation errors commensurate 
with a high-performance altimetric observing system only extends this duration to 27 years, 
whereas if there is an interruption in the continuity of the record, requiring more complicated 
and less accurate fixes to align the data, the needed duration will be 35 years. 

 
Church and White's MSL reconstruction is, of necessity, dependent upon a limited set 

of tide gauges with long records, and may thus have greater uncertainty than would be noted 
from a long-term near-global set of altimetry observations.  If one supposes the magnitude of 
the true MSL variability in only half of that in their dataset, the necessary data duration for a 
r.m.s. trend uncertainty of 0.5 mm/yr is 9 years for a perfect observing system, 17 for the high 
quality continuous record and 31 years if interrupted.  In this case, if the community does not 
have a high confidence in the co-alignment between the non-overlapping 2nd and 3rd 
missions, a better trend estimate is actually achieved by discarding the first 9 years of data (2 
missions).  Many of the published papers on MSL rise fail to give uncertainty estimates for 
their trends, but a value of 0.4 mm/yr is given by Leuliette et al. (2004) and Nicholls and 
Cazenave (2010) for when the dataset duration is of order 15 years.  This lies approximately 
on the thin pink curve in Fig. 9c suggesting that my simulations have in general overestimated 
the dataset duration needed.  This could be either because inherent variability in the global 
MSL is negligible  (unlikely given the short term variability shown in Fig. 1) or that the 
altimeter variability specification in case 1 is a little larger than that associated with the 
TOPEX and Jason altimeters.  However it should be remembered that even trends based 
nominally on TOPEX and Jason data have in fact benefitted from the other contemporaneous 
missions, which have helped highlight peculiarities in trends and geographically correlated 
errors that have then been addressed by many research groups. 

 
Individual governments may have a much stronger interest in the ability to detail 

changes in the regional mean sea level pertinent to their particular country.  A regional sea 
level is not just affected by the melt of land-ice (increasing the total mass of the ocean) and 
total heat content (increasing sea surface height by thermosteric effect), but also regional 
differences in sea level pressure, atmosphere-ocean heat flux and changes in the circulation 
e.g. reduction in gyral circulation.  Consequently on short time scales (<30 years) regional 
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MSL varies much more markedly than global MSL.  The illustrations for UK and North 
Atlantic waters (Fig. 8) show the regional change in the first 100 years relative to each 
model's global signal, with more short-term variability, and even less consistency than is seen 
for the global averages (Fig. 2).  Such variety in the short-term spectrum of variability is very 
much borne out by altimetric analysis (Hughes and Williams, 2010). 

 
 

 
 

Fig. 8 : Time series of regional MSL relative to the global average as portrayed 
in CMIP5 models for the historical and RCP45 runs.  a) UK waters (12˚W-3˚E, 
49˚-58˚N), b) North Atlantic (20˚-66˚N). 

 
 
However, the detectability of changes in the rate of MSL rise in a region relative to 

global average is not such a problem for altimeters.  Any long-term uncertainties in mission 
alignment or drift will not contribute to errors in the determination of relative regional MSL.  
On a regional scale, issues may arise due to problems in radiometer corrections or sea state 
(tracker) bias, which are terms whose mean varies regionally. However, the more critical 
issue is likely to be the inherent variability in the regional MSL, which will necessitate much 
longer time series to ascertain estimates of trend reliably. 
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