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UNDERSTANDING AND DEALING WITH UNIT NONRESPONSE DURING 

AND POST SURVEY DATA COLLECTION 
 

By Julia D’Arrigo 
 

Nonresponse in sample surveys is a longstanding concern among social 

researchers and survey methodologists. In addition to potential biases in point estimates, 

nonresponse can result in inflation of the variances of such estimates. This thesis 

focuses on understanding and dealing with unit nonresponse in sample surveys during 

and post data collection. In particular it looks at modelling the process leading to 

nonresponse using call record data; developing weighting adjustments for clustered 

nonresponse; and investigating variance estimation methods in the presence of 

nonresponse. During data collection, effective interviewer calling behaviours are critical 

in achieving contact and subsequent cooperation. Recent developments in the survey 

data collection process have led to the collection of so-called paradata, which greatly 

extend the basic information on interviewer calls. The first part of the thesis develops 

multilevel models based on a particular type of paradata, call record data and interviewer 

observations, to predict the likelihood of contact and cooperation conditioning on 

household and interviewer characteristics. The research is based on the UK 2001 

Census Link Study dataset. The results have implications for survey practice and, among 

others, inform the design of effective interviewer calling strategies, including responsive 

survey designs. Post-survey estimation methods to adjust and account for nonresponse, 

such as weighting methods, include inverse probability weighting and generalized raking 

estimation. The second part of the thesis investigates alternative inverse probability 

weighted estimators for clustered nonresponse through a simulation study. Results from 

an empirical application using data from the Expenditure and Food Survey 2001 are 

presented. It also discusses three forms of generalized raking estimator in the presence 

of nonresponse. Weighting methods might result in increased variability in the weights 

and thereby lower the precision of the survey estimates. This thesis explores alternative 

forms of linearization and replication variance estimators for generalized raking 

estimators under nonresponse that allow for variation in the weights. 
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Chapter 1  

Introduction 

1.1 Nonresponse in sample surveys 

Nonresponse in sample surveys is a longstanding concern among social 

researchers and survey methodologists. Nonresponse occurs when sampled members 

do not provide the requested information for one or more survey variables or are not 

contacted during the data collection process. For example, Hansen and Hurwitz (1946) 

pointed out the problem with large nonresponse rates on mail questionnaire surveys and 

proposed following-up the mail attempts by taking a subsample of nonrespondents with 

face-to-face interviews. Kish (1965) observed that differences in response rates across 

subgroups may introduce bias into survey estimates. In addition to potential biases in 

point estimates, nonresponse can result in inflation of the variances of point estimates 

due to reduced sample sizes.  

Nonresponse bias usually receives much attention in the survey literature 

(Groves, 2006; Olson, 2006) as it is the main reason that survey agencies dedicate great 

efforts to reduce and adjust for nonresponse. Nonresponse bias occurs when 

respondents differ from the nonrespondents with respect to the characteristics to be 

investigated. Nonresponse bias is an important menace to the validity of all survey 

estimates. 

In recent decades, problems caused by nonresponse have increasingly concerned 

survey practitioners as many surveys appear to show a decline in response rates. Curtin 

et al. (2005) presented falling response rates in several United States household surveys; 

de Leeuw and de Heer (2002) found that response rates have been declining over 

several years across different types of surveys in 16 developed countries; Tourangeau 

(2004) reviewed three recent developments in survey methodology within the context of 

decreasing response rates for all types of surveys: new methods of telephone sampling, 

new theories regarding causes and  consequences of nonresponse, and new modes of 

data collection. 
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In general two types of nonresponse behaviour can be distinguished: unit and 

item nonresponse. Unit nonresponse occurs when eligible sample units fail to respond 

to a survey, e.g. because of noncontact, explicit refusal to cooperate or other reasons 

such as language barrier. Item nonresponse occurs when responding units do not 

answer some of the survey questions. The focus of this thesis is on unit nonresponse 

and does not further examine the concept of item nonresponse.  

Unit nonresponse might be classified into three main components: noncontact, 

inability to respond and explicit refusal to cooperate. Noncontact includes both the 

failure of the interviewer to locate the sample unit and the failure to make contact with 

the sample unit. For example, noncontact may refer to the interviewer inability to talk to 

a responsible resident at the sampled household in a face-to-face or telephone survey. 

Those who fail to respond to a survey due to reasons such as ill health, infirmity and 

language barrier are classified as unable to respond. The last category refers to those 

who clearly refuse to participate in the survey after contact has been made. 

There are two broad areas of research on dealing with survey unit nonresponse 

which involve: (a) strategies prior and during data collection to enhance response rates, 

including response survey designs and follow-up surveys; and (b) post-survey estimation 

methods that include some sort of adjustment to compensate for nonresponse.  

Research to support (a) requires understanding nonresponse as a social 

phenomenon. This includes research looking at how nonresponse depends on individual 

and household characteristics as well as interviewer attributes. Goyder (1987), Groves 

and Couper (1998), Stoop (2005), and Durrant and Steele (2009) reviewed this vast 

literature and observed differences in response levels by characteristics such as age, 

geography and employment status of the household representative. Groves and Couper 

(1998) and Durrant and Steele (2009) also noted a quite distinct underlying nonresponse 

process for noncontact and refusal, observing that some predictors, such as 

employment status of the household representative, have opposite effects on the 

probability of noncontact and refusal.  

Some efforts to increase response rates include incentives, more call attempts 

and follow-ups. Goyder (1987) showed that incentives are likely to result in higher 

response rates, even after controlling for survey design characteristics, such as length of 

the survey, sponsor or topic. Singer et al. (1999) found that monetary incentives were 

more effective in increasing response rates than gifts. They also observed that the effect 

of incentives is inversely proportional to the response rate: the lower the response rate 
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the larger the effect of an incentive. Goyder (1994), Hopkins and Gullickson (1992) and 

Singer et al. (1999) found that the impact of incentives given at the time of the survey 

request was greater than promised incentives. On the other hand, incentives can 

potentially introduce bias in the data by getting disproportionately more units from a 

select population subgroup into the respondent group (see Singer, 2002; Singer and 

Kulka, 2002 for general reviews of incentives). 

Lynn et al. (2002) found that extended interviewer efforts, such as more call 

attempts and follow-ups, appear to reduce certain types of nonresponse biases due to 

increased contact rates. However, they also observed that greater interviewer efforts 

have limited effectiveness in reducing refusal rates and thus refusal bias. More recently, 

social researchers have been investigating the use of propensity models to predict the 

likelihood of response based on field process data (Kennickell, 2003; Sangster and 

Meekins, 2004; Groves and Heeringa, 2006; Bates et al., 2008). These data usually 

include call record information such as time and day of the call and outcome of the call. 

For face-to-face surveys, these data might also contain interviewer observations about 

the household and neighbourhood captured by the interviewer during data collection  

These models may inform the design of efficient and effective calling behaviours and 

follow-ups as well as responsive survey designs (Groves and Heeringa, 2006; Laflamme 

et al., 2008), where the continuous measurement and monitoring of the process and 

survey data offers the opportunity to alter the design during the course of the data 

collection to reduce costs and to increase the quality of the survey data. Propensity 

models might also be used to explore the role of the interviewers on survey 

nonresponse (Groves and Couper, 1998; O’Muircheartaigh and Campanelli, 1999; 

Pickery and Loosveldt, 2002; Durrant and Steele, 2009). Blom et al. (2010), for example, 

used a three-level logistic regression model to investigate the role that interviewers play 

in producing differences in response levels across countries in the European Social 

Survey. 

Another factor affecting nonresponse in sample surveys during the data 

collection stage is the mode of data collection. Face-to-face surveys often have the 

highest response rates followed by telephone and mail surveys respectively. Web surveys 

have been rapidly embraced by the commercial research sector as a faster and cheaper 

mode of data collection despite serious concerns about coverage and nonresponse rates 

associated with these surveys (Couper, 2001). Tourangeau et al. (2000) examined the 



4 

 

complex psychological processes that make respondents more likely to cooperate to 

certain modes of data collection. 

After data collection is completed, the second possibility of dealing with 

nonresponse in sample surveys is through post-survey modifications, such as weighting 

adjustments. Weighting methods are widely used to compensate for problems created 

by survey nonresponse. These methods are commonly used to compensate for unit 

nonresponse while imputation is typically but not exclusively employed to deal with 

item nonresponse. This thesis deals with weighting methods and does not consider 

imputation methods.  

 Weighting adjustments make use of auxiliary information to correct for 

nonresponse bias. The basic principle of weighting methods involves using an 

appropriate model based on auxiliary information to estimate response propensities for 

each unit in the sample. Then, these estimated propensities are used to adjust the 

probability-sample weights and produce estimates with lower biases. Estimation of 

response propensities assumes a stochastic approach to model survey nonresponse, 

which views the response units as the result of two probabilistic selections. First, a 

sample is selected from the finite population and then, the response units are realised as 

a subset of the sample. Further details about this stochastic approach can be found in 

Särndal and Lundström (2005). It is possible to distinguish between two types of 

auxiliary variables to use for weighting adjustment purposes are: (a) sample-based 

variables, i.e. variables known for the sampled units but not the entire population; (b) 

population-based variables, i.e. variables known for the entire population. Särndal et al. 

(1992) explored the use of these two types of variables via regression fitting. 

There are different weighting adjustment procedures. One method, called 

inverse probability weighting, is to derive estimates of the response propensities from 

the sample units, and then to use the invert of these estimated probabilities as the 

weighting adjustments. As early as 1949, Politz and Simmons suggested a simple 

method to directly estimate contact probabilities. They proposed first to estimate the 

proportion of time each interviewed person was at home during the interviewing hours 

and divide questionnaires into six groups according to these estimates; and then, use the 

inverse of the group time-at-home estimate as the weighting adjustment factor. 

Bartholomew (1961) described another type of nonresponse adjustment to compensate 

for noncontact. He proposed to treat the second call successes as a random sample of 

all failures at the first call (other than those due to removals or deaths), and give 
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different weights to results from the first and second call. In 1986, Little observed that 

direct estimates of response propensities may result in unstable estimates if some of the 

estimated probabilities are close to zero. Little (1986) suggested sorting the sample by 

estimated response probabilities, forming five groups based on the quintiles of the 

response propensity distribution, and assigning the same weighting adjustment to all 

sampled units within a category. This weighting procedure is usually refers as weighting 

class adjustment. A more recent approach to estimate response propensities is by fitting 

parametric models, such as logistic or probit models, relating the study variable of 

interest and auxiliary variables (Cassel, Särndal and Wretman, 1983; Bethlehem, 1988; 

Fuller & An, 1998; Lundstrom and Särndal, 1999). Nonparametric methods, such as 

CHAID (Chi-square Automatic Interaction Detector; see Kass, 1980) and CART 

(Classification and Regression Trees; see Breiman, 1984), can also be used to estimate 

the response probabilities. Rizzo et al. (1996) compared the estimates obtained through 

several methods for adjusting weights, including nonresponse weight adjustments based 

on CHAID models, to estimates from independent sources. Da Silva and Opsomer 

(2004, 2006) investigated the properties of nonparametric methods that only require the 

response propensities to be related to the auxiliary variables by a smooth but 

unspecified function. Särndal and Lundström (2005) noticed the importance of 

powerful auxiliary variables to effectively model response probabilities and to reduce 

bias.  

Other weighting adjustment procedure is calibration estimation. Calibration 

estimation guarantees that estimates based on data from a sample match previously 

determined benchmarks. The principle of calibration is to derive new weights by 

minimizing the total distance between the initial weights and the new weights, while 

ensuring that the new weights satisfy the benchmark requirements. Deville and Särndal 

(1992) introduced calibration estimation for the full response set-up and showed that 

estimators such as the generalised regression estimator and the poststratified estimator 

are special cases of calibration estimators. These calibration estimators can be modified 

and used to deal with unit nonresponse (Lundström and Särndal, 1999). Benchmarks for 

calibration may be obtained as estimates from a further sample, which may be 

considered sufficiently accurate, or from the population. Therefore, calibration 

estimators can be either sample-based or population-based.  

Another special case of calibration estimator that is extensively used to adjust 

for survey nonresponse is the weighting class adjustment mentioned earlier (Little, 1986). 
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Weighting class adjustment consists on dividing the sample into a number of groups 

and giving each a weight equal to the inverse of its estimated response probability. The 

groups, usually referred to as cells, for the weighting class adjustment should be formed 

allowing for variables that are predictive of response and are correlated to the main 

statistics being produced. This approach can be limited when a large number of auxiliary 

variables are available. Two alternative calibration methods that allow including as many 

auxiliary variables as needed are raking (Deming and Stephan, 1940) and the two-way 

classification method (Särndal and Lundström, 2005). These methods only control to 

marginal totals.  

Weighting adjustments can affect not only nonresponse bias but also the 

variance of an estimator. In fact, they can inflate the variance or they can reduce it (see, 

for example, Little and Vartivarian, 2005). It therefore becomes important to be able to 

estimate the variance of a weighted estimator in the presence of nonresponse. There are 

two methods commonly used to compute variance estimates for complex sample 

surveys: Taylor series linearization (see, for example, Wolter, 2007) and replication (see, 

for example, Fuller, 1998). These methods account for the nonresponse adjustments 

(see, for example, Valliant, 1993; Yung and Rao, 2000). If the variance estimate method 

does not account for the nonresponse adjustments, then the variance estimate might be 

underbiased resulting in short confidence intervals. Valliant (2004) studied through 

simulation the differences between linearization and replication methods to account for 

weighting adjustments on variance estimates. He reported that the linearization variance 

estimators were negatively biased and produced confidence intervals that cover at less 

than the nominal rate and that the jackknife replication estimator generally yields 

confidence intervals that cover at or above the nominal rate.   

1.2 Purpose and outline of the thesis 

This thesis centres on understanding and dealing with unit nonresponse in 

sample surveys during and post data collection. In particular it focuses on three specific 

themes: (1) modelling the process leading to nonresponse using call record data 

(Chapter 2); (2) developing weighting adjustments for clustered nonresponse (Chapter 

3); and (3) investigating variance estimation methods in the presence of nonresponse 

(Chapter 4). The first objective relates to strategies that may be used prior and during 
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data collection to enhance response rates. The last two topics refer to post-survey 

estimation methods to adjust and account for nonresponse. All these approaches aim to 

correct for the potential biasing impact of nonresponse in point estimates and to 

minimise its effects on the associated variance estimates. 

Chapter 2 deals with the two main types of unit nonresponse in sample surveys: 

noncontact and refusal. This chapter focuses on face-to-face surveys but some findings 

may also apply to telephone surveys. It first develops propensity models that predict the 

likelihood of contact in the field conditioning on household, interviewer and area 

influences. Then, it focuses on the process leading to cooperation and jointly models the 

different types of outcomes at each call using interviewer call record data and 

controlling for household and interviewer characteristics. The model allows for four 

different outcomes at each call: full or partial cooperation, refusal, making an 

appointment and other forms of postponement, such as appointment broken or the 

interviewer withdrew to try again later. These models investigate the usefulness of call 

record data and interviewer observations to predict the response outcome in six major 

UK face-to-face surveys.  

Multilevel analysis (e.g. Steele et al., 2004) is used to model the probability of 

contact or cooperation at each call allowing for the hierarchical structure of the data 

with clustering of outcomes within household and clustering of households within a 

cross-classification of areas and interviewers. These models also account for unobserved 

household and interviewer characteristics. To model the process leading to contact a 

multilevel discrete time hazard model is used, conditioning on noncontact made prior to 

that call. To model the process leading to cooperation, conditioning on contact having 

been made with the household, a multilevel multinomial logistic regression analysis (e.g. 

Durrant and Steele, 2009) is employed. Multilevel models are motivated by a range of 

both technical and substantive reasons.  

In Chapter 3, alternative inverse probability weighted estimators for clustered 

nonresponse are investigated. Cluster-specific non-ignorable (CSNI) nonresponse, as 

introduced by Yuan and Little (2007), is considered in this chapter. CSNI describes the 

case when nonresponse may depend on unobserved cluster random effects which may 

be correlated with the survey variables. Three standard forms of inverse probability 

weights are examined: response propensity weights (e.g. Little, 1988), weights based on 

predicted random effects (e.g. Durrant and Steele, 2009) and weights based on estimated 

fixed effects, where the random effects are treated as unknown parameters. A new 
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approach using conditional logistic regression is also proposed. The properties of the 

alternative estimators and associated variance estimators are investigated in this chapter 

through a simulation study and results from an empirical application are presented. 

Chapter 4 reports a simulation study of the properties of alternative generalized 

raking estimators and associated variance estimators with respect to the effects of both 

sampling and nonresponse. The simulation study is designed to mimic two major 

European surveys: the UK Labour Force Survey (LFS) and the German Sample Survey 

of Income and Expenditure (SIE). Three forms of generalized raking estimators are 

considered: the generalized regression estimator, the classical raking ratio estimator and 

the ‘maximum likelihood’ raking estimator (Brackstone and Rao, 1979; Fuller, 2002). 

The GREG estimator is widely used in many surveys, in particular in the context of 

nonresponse (Särndal and Lundström, 2005). The second estimator has been used in 

practice in the LFS and a version of the third estimator has been used in practice in the 

SIE. Alternative forms of linearization variance estimators (Demnati and Rao, 2004; 

Deville and Särndal, 1992), for generalized raking estimators are defined via different 

choices of the weights applied (a) to residuals and (b) to the estimated regression 

coefficients used in calculating the residuals. A grouped jackknife replication method, 

which recomputes weight adjustments for every replicate, is also examined to calculate 

an alternative variance estimator accounting for the nonresponse adjustments.  

The final chapter of this thesis presents some concluding remarks. 
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Chapter 2  

Modelling the process leading to nonresponse 
using call record data 

2.1 Introduction 

Establishing contact with eligible sample units is an essential part of the 

response process together with obtaining productive interviews. In recent years, these 

tasks have become progressively more difficult and so more expensive and time-

consuming (Weeks et al., 1980; Groves and Couper, 1998; Cunningham et al., 2003). 

Increasing contact rates by scheduling calls when householders are more likely to be at 

home may not be productive if at these times refusals are more likely. Therefore, both 

mechanisms need to be understood to develop effective interviewer calling strategies 

that result in increased contact rates and subsequent higher cooperation rates.  Even 

though survey agencies have become increasingly concerned with understanding and 

improving the data collection process, research so far has mainly investigated the final 

outcome, or specific call outcome, of contact/noncontact and cooperation/refusal 

rather than the process leading to these results. Weeks et al. (1980), for example, studied 

best time of day and day of the week to find someone at home in a 1976 US survey at 

the time of the first call. O’Muircheartaigh and Campanelli (1999) explored the influence 

of interviewers on refusals and noncontacts at the final outcome for wave 2 of the 

British Household Panel Survey. Durrant and Steele (2009) modelled the final survey 

outcome of refusal, noncontact or cooperation to investigate the effects of household 

characteristics on household unit nonresponse in six UK face-to-face government 

surveys. None of these studies allows the likelihood of contact or cooperation to vary 

across calls or examines how the call history may affect the outcome of future calls, 

which are some of the aims of this chapter.  

To obtain information about survey data collection that might help to 

understand the response process, survey organisations have started to routinely collect 

call record data, such as day and time of the call, the outcome of the call and, in 
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particular for face-to-face surveys, observations made by the interviewers about the 

physical and social characteristics of the selected household and the neighbourhood. 

Such data are commonly referred as field process data or paradata (Couper, 1998), and 

greatly extend the basic information on interviewer calls. Paradata might also include 

additional information about the sample units from external records, such as presence 

of children or pensioners in the household. Paradata may be used in survey 

organisations to guide decisions on responsive or two-phase sampling designs (Groves 

and Heeringa, 2006; Eckman and O’Muircheartaigh, 2008), and also to obtain general 

knowledge about optimal calling practices to adequately schedule calls and follow-ups 

with the aim of increasing the probability of contact and cooperation (Purdon et al., 

1999; Matsuo et al., 2006).  

So far, analyses of paradata and interviewer calling strategies, in particular for 

face-to-face surveys, have been limited. For example, Weber and Burt (1972) and Weeks 

et al. (1980) examined best times of interviewer visits in face-to-face surveys. Greenberg 

and Stokes (1990) developed a set of rules for scheduling the time of the next call for a 

telephone survey conditioning on calling history. Kulka and Weeks (1988) investigated 

optimal calling protocols for telephone surveys based on the timing of previous calls. 

However, these studies examined average best times of day and days of the week to 

establish contact or cooperation without controlling for household or interviewer 

characteristics. These characteristics may have a significant impact on optimal 

interviewer calling strategies (Groves and Couper, 1998). Other studies controlled for 

basic information about the household or area, but without deriving household-specific 

estimates of the probability of contact or cooperation (Purdon et al., 1999; Groves and 

Couper, 1998; Brick et al. 1996; O’Muircheartaigh and Campanelli, 1999).  Most 

research on best calling strategies has been carried out in the context of telephone 

surveys (e.g. Weeks et al., 1987; Greenberg and Stokes, 1990; Brick et al. 1996) rather 

than face-to-face surveys, although the latter offer a much wider range of observational 

information available for each household and call (Groves and Couper, 1998; 

Greenberg and Stokes, 1990). Previous empirical research which investigated the effect 

of a small number of factors influencing household unit nonresponse have often used 

simple methods such as descriptive analysis techniques or regression models that have 

ignored the hierarchical structure of the data where sample units are nested within 

interviewers (e.g. Purdon et al., 1999; Groves and Couper, 1996, 1998; Wood et al., 2006; 

Groves and Heeringa, 2006). Some studies have used multilevel modelling techniques to 
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analyse interviewer effects on various components of unit nonresponse; however, they 

were based on a single survey with a specific design and survey topic, a fairly small 

number of interviewers and households and a limited amount of information on 

household and interviewer characteristics (Pickery and Loosveldt, 2002, 2004; Pickery et 

al. 2001; O’Muircheartaigh and Campanelli, 1999). Hox and Leeuw (2002), used 

multilevel logistic regression analysis to examine the influence of interviewers’ attitude 

on household survey nonresponse in different countries and several surveys; however, 

their models did not control for household characteristics that might be related to the 

likelihood of achieving cooperation. 

This chapter illustrates the use of a particular type of paradata, interviewer call 

record and interviewer observation data, which are increasingly collected by survey 

organisations. It introduces the reader to the analysis of call record data in a multilevel 

modelling framework. The research presented in this chapter uses multilevel logistic 

analyses, which allows for clustering of households within interviewers, to separately 

study the process leading to contact and cooperation allowing for potential differences 

in the determinants of each type of nonresponse. There are technical and substantive 

advantages for using multilevel models over single-level models. Models that ignore the 

hierarchical structure of the data lead to underestimation of the standard errors of 

regression coefficients, in particular, of cluster-level variables, such as household and 

interviewer variables in this chapter (Snijders and Bosker, 1999; Goldstein, 2011). The 

standard error underestimation might lead to incorrect inferences about the effects of 

such variables. Among practical advantages, multilevel modelling allows exploration of 

substantive questions that is not possible in single-level models. For example, ‘Is the 

extent of between-interviewer variation the same for contact and cooperation?’ and ‘Is 

the extent of between-household and between-interviewer variation the same for 

different types of call outcome?’ This chapter aims to address some of these questions. 

The analyses use data from the Census Link Study, which provides an exceptional 

opportunity to analyse the effectiveness of interviewer calling behaviours and strategies 

to establish contact and obtain subsequent cooperation, controlling for household and 

interviewer characteristics. This study benefits from the availability of relatively rich 

paradata, including information recorded by the interviewer at each call to the 

household, interviewer observations about the household and neighbourhood, 

information about the interviewer-household interaction and detailed information about 

the interviewers themselves. The dataset combines call record data from six major UK 
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face-to-face surveys, which allow more general inferences to be made than in prior work. 

A key strength of these data is that individual and household characteristics from the 

UK 2001 Census are linked to the paradata for both respondent and nonrespondent 

households.  

It is expected that this research will contribute to methodological progress in the 

analysis and modelling of call record data and the specification of suitable models to 

analyse such data. The findings may have important implications for survey practice, 

such as informing responsive survey designs, as defined by Groves and Heeringa (2006), 

effective interviewer calling behaviours, the design of call-backs and follow-ups of 

nonrespondents. Although survey organisations may not have access to information 

such as the control census variables considered in this study, the analysis provides useful 

information about the type of data that could be beneficial for predicting contact and 

cooperation and survey organisations could explore proxies for such variables from 

available data sources. It would also be possible to train interviewers to collect relevant 

observation data for each household and/or each visit to proxy such information.  

This chapter is structured as follows. Section 2.2 describes the data upon which 

the research is based. Section 2.3 focuses on the process leading to contact and 

proposes a propensity model based on call record data and other paradata to predict the 

likelihood of contact at each call, conditioning on household and interviewer 

characteristics. The process leading to cooperation is studied in Section 2.4, modelling 

the response outcome at each call, conditional on contact having been made with the 

household at that call. A summary of the findings with implications for survey practice 

is provided in Section 2.5.  

2.2 Data 

2.2.1 UK 2001 Census Link Study 

The research on this chapter is based on the UK 2001 Census Link Study 

dataset, which was produced by the UK Office for National Statistics (ONS), and 

includes the response outcome of six face-to-face major UK government surveys linked 

to household information from the UK 2001 Census, interviewer observations about 

the household, detailed information about the interviewers and area information from 
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aggregated census data.  The dataset contains a total of 16,799 households (after 

excluding vacant and non-residential addresses, re-issues and unusable records, as 

described in Durrant and Steele, 2009), 565 interviewers and 392 areas defined at the 

local authority district level. The households included in the dataset were selected for 

interview in one of the six surveys during May-June 2001, the months immediately 

following the 2001 Census. 

The six household surveys contained in the Census Link Study are the 

Expenditure and Food Survey (EFS), the Family Resources Survey (FRS), the General 

Household Survey (GHS), the Omnibus Survey (OMN), the National Travel Survey 

(NTS) and the Labour Force Survey (LFS). The surveys collect information based on 

the household as a whole and on the individuals within the households. The analyses in 

this chapter are based on household level data and individual level information was only 

used to derive variables recording information about the household reference person 

(HRP). The HRP variables facilitate moving from individual to household level, as every 

household has only one HRP. The EFS, created in 2001 by merging together the Family 

Expenditure and the National Food surveys, seeks to provide information on the 

pattern of spending and food consumption by households in the UK. The FRS, which 

has been carried out in Great Britain since 1992 and extended to include Northern 

Ireland in 2002, aims to provide information on living standards, people’s relationship 

and interaction with the social security system. The GHS, created in 1971, is a multi-

purpose survey which collects information from people living in private households in 

Great Britain on a range of core topics comprising, for example, family information, 

education, income, and demographic information about household members. The NTS, 

which has been running on an ad hoc basis since 1965 and continuously since 1988, 

aims to provide a comprehensive picture of personal travel behaviour. The OMN which 

began in 1990 is a multi-purpose survey which aims to obtain information about the 

general population or about particular groups. The questionnaire includes a set of core 

classificatory questions and a series of unrelated modules on varying topics at the 

request of customers. Core questions include information on demographic details, 

economic status, job details, employment status, full- or part-time working, and ethnic 

origin. The LFS created in 1979 aims to provide information about the UK labour 

market and unemployment. The survey seeks information on respondent’s personal 

circumstances, their labour market status and income. 
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Figure ‎2.2.1: Refusal and noncontact rates for the six surveys in the Census Link Study dataset 
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Figure 2.2.1 shows refusal and noncontact rates for each of the six surveys in the 

Census Link dataset. The noncontact rates for the surveys range from about 3% to 10%. 

A larger variation is observed among refusal rates across surveys, from around 15% for 

the LFS to 30% for the EFS, which may be explained by differences in the survey topic, 

interview length, length of data collection period, interviewer workload and additional 

requirements such as a diary. Although the noncontact rates might not appear very large 

in comparison to the refusal rates, establishing contact is a costly and time consuming 

process worthy of studying. Further details about these surveys can be found in Durrant 

and Steele (2009). 

A great advantage of the Census link Study is that the survey data collected from 

the six surveys described above have been linked to the 2001 UK census records, 

available for both respondent and nonrespondent households chosen for interview (see 

Fig. 2.2.2). The 2001 census, which took place on 29 April, collected a varied set of 

information on the population, such as household accommodation, demographic 

characteristics (for example, gender, age, marital status), health and provision of care, 

pensioners households, dependent children, qualifications and employment, at that 

particular point in time. This data linkage provides an exceptional opportunity to 

investigate common characteristics of responding and nonresponding households. 

Another major benefit of this study is that relatively rich paradata at household level was 

also linked to the other data sources. These paradata is gathered by the interviewer 

during the data collection period of the six surveys in the study via an interviewer 

observation (IO) questionnaire (see Appendix A1). Further information about these 

data is presented on the following section. In addition, the Census Link Study includes 

detailed information about the interviewers and area information from aggregated 

census data, linked to the household level information. The area is defined as the local 



15 

 

authority district. The interviewer information was collected via a separate survey of all 

face-to-face interviewers employed for the UK Office for National Statistics (ONS) in 

2001 (Interviewer Attitude Survey, IAS). The timing of the IAS was chosen to coincide 

with the UK Census in 2001 and was carried out prior to the surveys’ fieldwork; 

however, some interviewers might have responded after the beginning of the fieldwork. 

Information on interviewers includes socio-demographic characteristics, and 

employment background, such as pay grade and experience, workload and planning, 

attitudes, strategies and behaviours for dealing with noncontacts and refusals as well as 

information about doorstep approaches.  

 

Figure ‎2.2.2: The design of the Census Link Study 2001  

 

 

 

 

 

 

 

 

The linkage of the various data sources with the response outcome of each 

survey, as illustrated in Figure 2.2.2, was carried out by the ONS. Linkage of the survey 

and census data was based on the address of the household, gender, age or date of birth 

and, if necessary, further identifying information. The linkage was carried out separately 

for every survey. About 95% of all households were successfully linked to their census 

record. The linkage of the interviewer observation data and the interviewer attitudinal 

data was based on the interviewer number. A number of quality checks and a significant 

amount of clerical review were carried out to identify and minimise any potential linkage 

errors. All linkage was quality assured by the ONS on the basis of comparisons of the 

distribution of key variables before and after the linkage. Possible effects of linkage 

errors have been described in Herzog et al (2007). Potential effects arising from both 

missing data and measurement error on multilevel models is discussed in Goldstein 

(2010). More detailed information about the rationale of the study, the data and the 
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linkage of the different datasets can be found in White et al. (2001), Durrant and Steele 

(2009) and Beerten and Freeth (2004). 

2.2.2 Call record data and other paradata  

This chapter focuses, in particular, in the usefulness of paradata to predict the 

likelihood of contact and cooperation. The available paradata in the Census Link Study 

contain records of calls, interviewer observations about the household and 

neighbourhood and information about the doorstep interviewer-household interaction. 

The call record data include the time and day of call, brief information on the contact 

strategy used at the call, and the outcome of the call. If contact with the household was 

achieved, the interviewer also captured information on age and gender of the main 

person talked to at each contact and whether this person made any comment or asked 

any question during the introductory conversation with the interviewer. The interviewer 

also recorded (usually at the first visit) their observations about the household and 

neighbourhood, such as type of accommodation, if there were any physical barriers to 

entry to the house, quality of housing and information about the household 

composition, such as any signs of the presence of children. The interviewer observation 

data are, in principle, available even if no contact was made with the household and 

might be used in practice as proxies for unknown census variables. Further call variables 

were derived for the analyses such as the time between calls, the number of noncontact 

calls (both prior to the first contact and in between two contact calls) and the number of 

previous contacts. Such variables, together with the call record variables, are call 

dependent (time varying) and so measured at the call level.  

Some of the information captured by the interviewer via the interviewer 

observation questionnaire coincides with the information provided by the census (e.g. 

type of accommodation, indicator if children present). The models presented in this 

chapter use, wherever possible, the interviewer observation variables as these could 

always be observed and collected during the data gathering while access to census 

information is not usually possible. However, due to low quality of some interviewer 

observations (with large amount of missing data) compared to their census counterpart, 

some census variables, where available, might be included in the models. 

The dataset contains 37879 calls made to establish first contact and a further 

69619 calls after first contact was achieved, including intermediate noncontact calls 
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(noncontact calls after first contact was attained). The maximum number of contact 

calls made to one household is 13, which increases to 15 when noncontact calls are 

included. The median number of contact calls per household made by an interviewer 

(after first contact was established and excluding any intermediate noncontact calls) is 2 

(and average is 2.5). The survey organisation provides calling protocol guidelines to each 

interviewer which indicates that the final response outcome for an address cannot be 

coded as ‘noncontact’ until at least four calls have been made. At least two of these calls 

should be in the evening or on a Saturday. Some general guidelines are also provided on 

how to avoid or deal with a refusal at the doorstep. The interviewer is strongly advised 

to call back at least once after a refusal.  

 

2.3 Using paradata to predict best times of contact 
conditioning on household and interviewer influences 

2.3.1 Introduction 

This section focuses on the process leading to contact and aims to build 

response propensity models based on paradata to predict the likelihood of contact at 

each call, conditioning on household and interviewer characteristics. Discrete-time event 

history analysis (see, for example, Steele et al., 2004) is used to model the propensity of 

contact, allowing for household, interviewer and area effects in a cross-classified 

multilevel model. The model conditions on information available for each household, 

such as from administrative data and interviewer observations at prior calls, interviewer 

characteristics and call record data included as time-varying covariates. The key research 

questions are: 

1. What are the best times of the day and days of the week to establish contact? 

2. What are the best times to establish contact with certain types of households, 

in particular households that are generally more difficult to contact?  

3. To what extent does establishing contact and the success of the timing of 

the call depend on interviewer characteristics?  
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2.3.2 Multilevel discrete time hazard model for the probability of 
contact  

Multilevel event history analysis is used to model the probability of contact at a 

particular call, given that no contact was made prior to that call (i.e. model the number 

of calls to first contact). Households that are not contacted by the end of the data 

collection period have right-censored contact histories. The interviewer is said to have 

made contact with a household at a given call, the dependent variable in the model, if 

he/she was able to talk to at least one responsible resident at the sampled household, 

either face-to-face or through an entry phone. 

Denote by ( )i jk ty the binary indicator of contact, coded 1 if contact is made with 

household i  by interviewer j  in area k  at call t  and 0 if the contact attempt fails. The 

grouping of the j  and k  indices in parentheses, ( )jk , indicates a cross-classification of 

interviewers and areas, that is an interviewer may work in several areas and an area may 

be covered by several interviewers. The conditional probability of contact at call t  given 

no contact before t  – commonly referred to as the discrete-time hazard function – is 

defined as ( ) ( ) ( ) 1Pr( 1 | 0)i jk t i jk t i jk ty y . The multilevel cross-classified discrete-

time hazard model, allowing for a clustering of households within a cross-classification 

of interviewers and areas, may be written 

x z
( ) ' '

( ) ( )

( )

log
1

i jk t
t i jk t i jk t j k

i jk t

u v  ,   (2.3.1) 

where x ( )i jk t  is a vector of time-varying covariates, with coefficients vector  , including 

attributes of calls such as time and day of contact attempt t , number of calls made to 

the household prior to t , time of call at 1t  and two-way interactions between call and 

household-level variables. The vector z ( )i jk t , with coefficient vector  , includes time-

invariant characteristics of households, from interviewer observations and the census; 

interviewers attributes and attitudes, from the Interviewer Attitude Survey; and area 

indicators, from aggregated census information. t  is a function of the call number t  

(‘time’) which allows the probability of contact to vary across calls; here t  is initially 

fitted as a step function, i.e. 1 1 2 2 ...t T TD D D  where 1 2, ,..., TD D D  are 

dummy variables for calls 1,...,t T  with T  the maximum number of calls, but simpler 
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monotonic functions are also explored. Unobserved interviewer and area characteristics 

are represented respectively by normally distributed random effects ju  and kv : 

2~ (0, )j uu N  and 2~ (0, )k vv N .  

 After restructuring the data so that, for each household, there is a record for 

every contact attempt, the multilevel discrete-time event history model (2.3.1) can be 

estimated as a cross-classified model for the binary responses ( )i jk ty . Estimation is 

carried out using Markov chain Monte Carlo (MCMC) methods as implemented in the 

MLwiN software. MCMC methods are used in a Bayesian framework where every 

unknown parameter  must have a prior distribution ( )p . The prior distribution 

quantifies the uncertainty in the values of the unknown model parameters before the 

data are observed. The default non-informative (also known as flat or diffuse) priors 

applied in MLwiN when MCMC estimation is used are: (1) for fixed parameters, 

( ) 1p . This improper uniform prior is functionally equivalent to a proper Normal 

prior with variance 2c , where c  is extremely large with respect to the scale of the 

parameter. An improper prior distribution is a function that is not a true probability 

distribution in that it does not integrate to 1; (2) for scalar variances, 2(1 ) ( , )p , 

where  is very small. This proper prior is more or less equivalent to a Uniform prior 

for 2log( )   (Browne, 2009; Rasbash et al., 2009). The Bayesian approach is used to 

effectively obtain maximum likelihood estimates of the unknown parameters. Other 

numerical approaches used later for estimating multilevel models, such as Gauss-

Hermite quadrature or penalized quasi-likelihood (PQL), would not be feasible for the 

cross-classified model presented in this section. In addition, Rodriguez and Goldman 

(2001) found that quasi-likelihood approximate inference may result in a substantial 

underestimation of the fixed and random effects making this approach less attractive. In 

this section, results from 80000 chains with a burn-in of 5000 are presented; using 

approximate quasi-likelihood estimates (Goldstein, 2003) as starting values for the 

sampling.  

To aid interpretation of the fitted model, predicted probabilities of contact are 

calculated for each value of the categorical covariates, holding constant the values of all 

other covariates in the model at their sample means. To obtain mean probabilities, this 

study averages across interviewer and area-specific unobservables by taking random 

draws from the interviewer and area random effect distributions. The simulation 



20 

 

approach involves generating a large number of pairs of random effect values from 

independent normal distributions with variances 2
û  and 2

v̂ , calculating a predicted 

probability based on each pair of generated values and the estimated coefficients, and 

taking the mean across the simulated values. This procedure is implemented in MLwiN 

and described in Rasbash et al. (2009).  

2.3.3 Results 

The hazard rate and average best times of contact  

This section presents some descriptive statistics on the contact process and 

results from preliminary models that informed the specification of the final multilevel 

model.  

 

Figure ‎2.3.1:  Estimated probabilities of contact for each call (hazard rate)† 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Call number

P
ro

b
ab

il
it

y 
o

f 
co

n
ta

ct

 
† The sample sizes for calls 13-15 are less than 100 households.   

Figure 2.3.1 shows the hazard of contact at each call, based on a simplified 

version of model (2.3.1) with only dummy variables for call number. In line with 

previous studies (e.g. Purdon et al., 1999; Groves and Couper, 1998), this figure shows a 

monotonic decline in the contact rate as the number of calls increases, until about call 9. 

The contact rate is highest at the first call, when about 50% of households were 

contacted, and decreases with each additional call. One possible explanation of this 

declining hazard might be attributed to the heterogeneity of contactability between 
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households. The slight increase in the contact rate for call 9 and 10, and the increase for 

calls 13 and 15, may also indicate that interviewers change their calling strategy and put 

in a greater effort to secure contact towards the end of their contact attempts. Another 

reason could be that interviewers have additional information that leads them to believe 

there is a chance of contact even after many failed attempts. It should be noted that 

from call 13 onwards the estimated probabilities of contact are based on fewer than 100 

households. Based on the monotonic relationship between the probability of contact 

and call number, the specification of the baseline logit hazard, t  in (2.3.1), is simplified 

by including the number of previous calls as a linear term. 

 

 

 
Table ‎2.3.1: Probability of contact at first call, by day and time of call 

  
Contact 

probability 
Total number of 

first calls made 
% of all 

calls 

Monday Morning 0.46 682 4.1 
  Afternoon 0.49 3310 19.8 
  Evening 0.67 947 5.7 
     
Tuesday Morning 0.39 505 3.0 
  Afternoon 0.48 2796 16.7 
  Evening 0.63 810 4.8 
     
Wednesday Morning 0.36 327 2.0 
  Afternoon 0.47 2176 13.0 
  Evening 0.61 683 4.1 
     
Thursday Morning 0.44 290 1.7 
  Afternoon 0.46 1864 11.1 
  Evening 0.59 492 2.9 
     
Friday Morning 0.39 221 1.3 
  Afternoon 0.42 1014 6.1 
  Evening 0.57 286 1.7 
     
Saturday Morning 0.50 60 <1.0 
  Afternoon 0.53 202 1.2 
  Evening 0.43 51 <1.0 
     
Sunday Morning 0.50 10† <1.0 
  Afternoon 0.50 16† <1.0 
  Evening 0.67 9† <1.0 
     
Total   -- 16799 100 

Morning: 0.00-12.00, Afternoon: 12.00-17.00, Evening: 17.00-0.00 
† indicates cells with a sample size of less than 30 
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Table 2.3.1 shows the probability of contact at the first call by time of day and 

day of the week. The most popular times to call are by far weekday afternoons, followed 

by weekday evenings and weekday mornings, with a clear decline in the frequency of 

calls from the beginning to the end of the week for all times of the day. It should be 

noted that due to interviewer working practices only few calls are made at the weekend, 

in particular on a Sunday. The highest contact probabilities can be found for evening 

calls, especially for Sunday to Wednesday evenings with a probability of more than 0.6. 

The chance of making contact in the evening decreases as the week progresses, with a 

comparatively low probability for Saturday evening of 0.43. On weekdays, the 

probability of making contact during the day is below 0.5, with a particularly low 

probability for Wednesday morning. For all weekdays, afternoons show a higher chance 

of contact than mornings. At the weekend the daytime contact probability is 

comparatively high at around 0.5. 

The probability of contact at the second and third calls conditioning on the time 

of the previous call is also explored using descriptive statistics (Table 2.3.2 and 2.3.3 

respectively). Due to small sample sizes, the time of day and day of the week variables 

were merged and categories collapsed to just four, i.e. weekend, weekday morning, 

weekday afternoon and weekday evening. The results may suggest that the best time for 

the second and third calls is a weekday evening, regardless of the time of the previous 

call, which supports earlier findings by Purdon et al. (1999), Groves and Couper (1998) 

and Kulka and Weeks (1988). The effect is greatest if the previous call was at a weekend 

and smallest if it was also made on a weekday evening. 

 

 

Table ‎2.3.2: Probability of contact at second call conditional on timing of the previous call 

Second call First Call 

  
Weekend 

Weekday 
Morning 

Weekday 
afternoon 

Weekday 
Evening 

Overall 

Weekend (239) 0.33 -- 0.38 0.30 0.39 
Weekday morning (487) -- 0.31 0.35 0.28 0.34 
Weekday afternoon (3717) 0.35 0.34 0.37 0.39 0.37 
Weekday evening (3667) 0.65 0.54 0.53 0.50 0.53 

-- indicates cells with a sample size of less than 30. 
The number of second calls made per calling time are given in parentheses.  
All cases where contact was made at the first call are excluded.  
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Table ‎2.3.3: Probability of contact at third call conditional on timing of the previous call 

Third call  Second call 

  
Weekend 

Weekday 
morning 

Weekday 
afternoon 

Weekday 
Evening 

Overall 

Weekend (213) -- -- 0.29 0.30 0.31 

Weekday morning (254) -- -- 0.27 0.25 0.28 

Weekday afternoon (1702) 0.36 0.34 0.30 0.23 0.28 

Weekday evening (2317) 0.59 0.47 0.47 0.39 0.44 
-- indicates cells with a sample size of less than 30 
The number of third calls made per calling time are given in parentheses.  
All cases where contact was made at the first and second calls are excluded. 

It should be noted that the ideal dataset for investigating best time of contact 

would be based on fully randomized calling times for all sample units. Such a design 

would, however, be impractical and very costly, at least for face-to-face surveys. It could 

be achieved to some extent for telephone surveys or experimental designs (Groves and 

Couper, 1998; Carrel and West, 2010). The dataset here, similar to previous work, 

provides information on observed calling times, i.e. the times that the interviewer chose 

to call on a household. If an interviewer’s decision to call at a particular time can be 

regarded as independent of the characteristics of the sample unit, a departure from fully 

randomised calls should not be important. It seems reasonable to assume that 

interviewers choose when to make their first call with little, if any, prior knowledge 

about the sampling units. However, the timing of subsequent calls may depend on 

additional knowledge that the interviewer obtained at an earlier call. The models 

presented in this section attempt to adjust for this potential source of bias by controlling 

for information on the call history, interviewer observation variables and household 

information, which extends previous work on the analysis of call record data that did 

not include such controls (e.g. Bates et al., 2008). In practice, interviewer characteristics 

such as experience might also influence calling times, with more experienced 

interviewers more likely to be better at judging the most productive strategy for a given 

type of household.  Thus, the models also attempt to control for differences between 

interviewer calling strategies by incorporating a number of interviewer characteristics in 

the model. The issue of non-random allocation of calling times to households has been 

discussed further in Purdon et al. (1999), Groves and Couper (1998) and Kulka and 

Weeks (1988). 

The effect of day of the week and time of day is examined in a cross-classified 

multilevel discrete-time hazard model controlling for household, interviewer and area 

characteristics. The estimated coefficients for each category of the time of call variable 
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are provided in Table 2.3.4. The results confirm the indicative findings of Table 2.3.1, 

and largely support the conclusions of previous research, that evenings and weekends 

are optimal times to call (Weeks et al., 1980; Swires-Hennessy and Drake, 1992; Purdon 

et al. 1999; Groves and Couper, 1998). There is pervasive evidence that calling on 

weekday evenings yields the highest probability of contact, with a particularly high 

probability towards the beginning of the week and decreasing thereafter. Calling at the 

weekend, in particular on a Sunday, also leads to a higher probability of response, with 

Sunday evenings showing a similar pattern to early weekday (Mon-Wed) evenings. (Due 

to this finding and the very small number of calls made on a Sunday evening, this 

category was combined with ‘early weekday evening’ in later models, see Table 2.3.5). 

The next most successful times to call are weekday afternoons. Weekday mornings are 

generally the worst times to establish contact. During the week, afternoons are better 

than mornings but it is the other way round at the weekend.  

 

Table ‎2.3.4: Estimated coefficients for the variable ‘day and time of call’ when included 
as a main effect only in the cross-classified multilevel discrete-time hazard model, 
controlling for household, area and interviewer characteristics, but without any 
interaction effects 

 ˆ ( )ste  

Monday  
 
 
 
Tuesday 
 
 
 
Wednesday  
 
 
 
Thursday 
 
 
 
Friday 
 
 
 
Saturday 
 
 
 
Sunday 

Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 

-0.861 (0.085) 
-0.756 (0.051) 
    Reference 

 
-1.084 (0.090) 
-0.800 (0.052) 
-0.063 (0.054) 

 
-1.040 (0.101)  
-0.784 (0.055)  
-0.059 (0.055) 

 
-0.879 (0.102)  
-0.851 (0.058)  
-0.155 (0.059)  

 
-0.998 (0.116)  
-0.871 (0.066)  
-0.187 (0.073)  

 
-0.419 (0.140)  
-0.682 (0.096)  
-0.508 (0.201)  

 
 0.122 (0.527) 
-0.422 (0.336) 
 0.645 (0.453) 

Morning: 0.00-12.00, Afternoon: 12.00-17.00, Evening: 17.00-0.00 
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Results from Table 2.3.4 inform the categorisation of the calling time variable in 

the final model (Table 2.3.5) which distinguishes eight calling times: early week (Mon-

Wed) and late week (Thu-Fri) morning, afternoon and evening and weekend daytime 

and evening. 

Best times of contact for different types of households  

So far the average best times to call on a household was considered. However, 

the chance of making contact at a given time of day will depend on the characteristics of 

the household. Groves and Couper (1998) provided a theoretical framework for 

understanding and studying household survey nonresponse. This framework identifies a 

number of important influences on the likelihood of contacting a sample household, 

including the timing and frequency of the calls, social environmental and socio-

demographic attributes, at home patterns of the householders and the presence of 

physical impediments to gaining access to the household. Such attributes may be 

separated into factors that are under the control of the interviewer or survey 

organisation, such as timing of the call and interviewer contact strategies (e.g. leave a 

card), and factors outside their control, such as characteristics of the household or area 

(Purdon et al., 1999). This analysis aims to control for all of these effects. Previous 

studies that analysed overall best times to contact have found that evening and weekend 

calls are optimal (Weeks et al., 1980; Swires-Hennessy and Drake, 1992). A logical 

question to ask is which households have the highest chance of contact during the day, 

so that survey agencies may reserve evening and weekend times for more difficult cases. 

This research therefore investigates interactions between call times and household 

characteristics to determine best times of contact for particular households. Another 

interesting question for survey agencies is whether changing the timing of the call 

increases the likelihood of contact. Therefore, this research investigates the influence of 

the call history (see Purdon et al., 1999; Groves and Couper, 1998 and Kulka and Weeks, 

1988). A separate indicator for the first call was included in the model and variables 

relating to earlier calls, such as the time of the previous call, were coded zero for the 

first call. This coding allows the coefficients of these call history variables to be 

interpreted as effects for second and subsequent calls. 

This research now investigates the best times to establish contact with certain 

types of households, in particular those households that are generally more difficult to 
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contact. Table 2.3.5 presents parameter estimates of two multilevel discrete-time hazard 

models which take account of household and interviewer characteristics and interactions 

between time-varying variables and household and interviewer characteristics. Model A 

excludes census variables since these would not normally be available to a survey agency. 

Model B represents the final model which aims to understand the process leading to 

contact, including census information. Potential proxies for census variables from 

interviewer observation variables are also explored in this section. The inclusion of 

census variables reduces the DIC (Deviance Information Criterion, Spiegelhalter et al., 

2002) by only a small amount (i.e. by 163 from 46936 for Model A to 46773 for Model 

B), indicating that a model based only on interviewer observation variables does not 

have much less predictive power than the full model. Furthermore, there are no 

differences in the direction of effects between the two models, implying that similar 

results can be obtained also in the absence of additional administrative data, i.e. when 

the survey agency can only rely on recordings by the interviewers to obtain information 

about nonresponding households. 

From Table 2.3.5 it is observed that the probability of contact is highest for the 

first call. The highly significant negative coefficient for number of previous calls after 

the first call indicates a decrease in the odds of contact by 10% ([1-exp(-

0.110)]*100=10%) for each additional call net of all other factors in the model, in line 

with the descriptive analysis shown in Figure 2.3.1. Non-proportional effects of 

covariates are tested by interacting each with number of previous calls, but there is no 

evidence to suggest that the effect of any variable differed across calls. In the following 

a distinction between interviewer observation and census variables is made, although in 

practice, at least some of the census variables could be substituted by variables based on 

interviewer observations. To aid interpretation of the interaction terms in the model and 

in an effort to illustrate how to maximise the likelihood of contact, predicted 

probabilities are provided in Table 2.3.6. (These have been calculated for call 1 but the 

pattern in probabilities is exactly the same for subsequent calls because the lack of 

interactions with the number of previous calls implies that all effects are constant across 

calls.) 
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Table ‎2.3.5: Estimated coefficients (and standard errors) for two multilevel cross-classified logistic 
models for contact: Model A without census variables and Model B with census variables  

Variable 
(ref= Reference category) 

Categories Model A 

ˆ  ˆ( ( ))ste  

Model B 

ˆ  ˆ( ( ))ste  

Constant   0.011 (0.086) -0.870 (0.111)*** 

Survey indicator  
(ref = EFS) 
 

FRS 
GHS 
OMN 
NTS 
LFS 

 0.076 (0.054) 
 0.052 (0.047) 
 0.171 (0.049)*** 
-0.026 (0.049) 
 0.682 (0.053)*** 

 0.077 (0.050) 
 0.022 (0.044) 
 0.064 (0.045) 
-0.008 (0.046) 
 0.280 (0.057)*** 

Call Record Data (time-variant) 

Previous call  indicator 
(ref= First call) 

Call previously made  
 

-0.645 (0.061)*** -0.550 (0.060)*** 

Number of calls previously made  -0.083 (0.009)*** -0.111 (0.009)*** 

Day and time of call 
(ref = Sun-Wed eve) 

Mo-Wed am 
Mo-Wed pm 
Thu-Fri am 
Thur-Fri pm 
Thu-Fri eve 
Sat-Sun am 
Sat-Sun pm 
Sat eve 

-0.536 (0.144)*** 
-0.541 (0.084)*** 
-0.727 (0.208)*** 
-0.792 (0.111)*** 
-0.087 (0.113) 
-0.600 (0.379) 
-0.281 (0.234) 
 0.053 (0.644) 

-0.305 (0.196) 
-0.457 (0.115)*** 
-1.110 (0.284)*** 
-0.625 (0.146)*** 
-0.118 (0.152) 
-0.282 (0.493) 
-0.346 (0.306) 
-2.472 (1.651) 

Time of previous call  
(ref= Weekday evening) 

Weekend 
Weekday morning 
Weekday afternoon 

 0.704 (0.147)*** 
-0.008 (0.104) 
 0.175 (0.052)*** 

 0.615 (0.141)*** 
-0.018 (0.104) 
 0.172 (0.052)*** 

Number of days between calls  
(ref= Same day) 

1-3 days 
4-8 days 
9-14 days 
15+ days 

 0.095 (0.043)** 
 0.257 (0.046)*** 
 0.332 (0.080)*** 
 0.428 (0.154)*** 

 0.089 (0.042)** 
 0.245 (0.045)*** 
 0.311 (0.080)*** 
 0.290 (0.155)* 

Card/message left 
(ref= No card/message left) 

Card/message left  0.104 (0.035)***  0.095 (0.035)*** 

Interviewer Observations (time-invariant) 

Security device 
(ref= security device visible) 

No security device visible  0.210 (0.030)***  0.192 (0.031)*** 

Type of accommodation  
(ref= Not house, i.e. flat, mobile 
home, other) 

House 
 

 0.467 (0.058)***  0.350 (0.057)*** 

Houses in area in good or bad state of 
repair (ref= Good) 

Fair-Bad -0.238 (0.052)*** -0.186 (0.050)*** 

House in a better or worse condition 
than others in area  
(ref= Better) 
 

About the same  
Worse 

-0.127 (0.039)*** 
-0.308 (0.056)*** 

-0.068 (0.040) 
-0.272 (0.056)*** 

Dependent children present  
(ref= Not present) 

Present  0.323 (0.059)*** ---- 

Household-level variables from the Census (time-invariant) 

Age (household reference person) 
(ref=  16 - 34) 
 
 

35 - 49 
50 - 64 
65 - 79 
80 and older 

---- 
---- 
---- 
---- 

 0.165 (0.033)*** 
 0.389 (0.038)*** 
 0.444 (0.069)*** 
 0.535 (0.080)*** 

Household type  
(ref= Single household) 

Couple household 
Multiple household  

---- 
---- 

 0.425 (0.027)*** 
 0.402 (0.075)*** 

Pensioner in household  
(ref= No pensioner in household) 

Pensioner in household ----  0.113 (0.082) 

Person with a limiting long term illness 
present (LLTI) (ref= Not present) 

Household with one or more 
people with LLTI 

----  0.085 (0.055) 

Dependent children present  
(ref= Not present) 

Present ----  0.557 (0.054)*** 
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Adults in employment  
(ref= No) 

Yes ----  0.120 (0.064)** 

Interviewer-level Variables (time-invariant) 

Pay grade 
(ref= Merit 1 and 2) 

Interviewer and advanced 
interviewer 
Merit 3 and field manager 

 0.144 (0.038)*** 
  
0.128 (0.043)*** 

 0.079 (0.047)* 
  
0.129 (0.057)** 

Interviewer qualification   
(ref= Degree or postgraduate, other 
higher education) 

A levels 
GCSE, qualifications below 
this level, no qualification 

-0.110 (0.047)** 
-0.022 (0.035) 

-0.148 (0.059)** 
-0.032 (0.043) 

Interviewer Age  
(ref= 50 years or more) 

Under 50 years -0.122 (0.056)** -0.142 (0.062)** 

Use phone to make appointment 
(ref= Always, frequently, sometimes) 

Rarely, never  0.097 (0.033)***  0.103 (0.041)** 

Interactions between interviewer observations and household characteristics 

Day and time of call * Dependent 
children present 
(ref=Sun-Wed eve and No dependent 
children) 

Mo-Wed am   * Children 
Mo-Wed pm  * Children 
Thu-Fri am    * Children 
Thu-Fri pm    * Children 
Thu-Fri eve    * Children 
Sat-Sun am     * Children 
Sat-Sun pm    * Children 
Sat eve           * Children 

-0.416 (0.131)*** 
-0.256 (0.074)*** 
-0.260 (0.190) 
-0.191 (0.093)** 
-0.043 (0.110) 
 0.187 (0.404) 
-0.152 (0.230) 
 0.063 (0.578) 

-0.090 (0.126) 
 0.146 (0.069)** 
-0.093 (0.187) 
 0.061 (0.090) 
-0.155 (0.098) 
-0.613 (0.358)* 
-0.116 (0.207) 
-0.267 (0.524) 

Day and time of call * Adults in 
employment 
(ref= Sun-Wed eve and No adults in 
employment) 

Mo-Wed am   * Yes 
Mo-Wed pm  * Yes 
Thu-Fri am    * Yes 
Thu-Fri pm    * Yes 
Thu-Fri eve    * Yes 
Sat-Sun am    * Yes 
Sat-Sun pm    * Yes 
Sat eve           * Yes 

---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

-0.552 (0.143)*** 
-0.590 (0.080)*** 
-0.083 (0.202) 
-0.591 (0.103)*** 
 0.034 (0.118) 
-0.381 (0.364) 
-0.028 (0.243) 
 2.669 (1.518)* 

Day and time of call * Household with 
a person with limiting long term illness 
(LLTI) 
(ref= Sun-Wed eve and No person 
with LLTI) 

Mo-Wed am   * LLTI 
Mo-Wed pm  * LLTI 
Thu-Fri am    * LLTI 
Thu-Fri pm    * LLTI 
Thu-Fri eve   * LLTI 
Sat-Sun am    * LLTI 
Sat-Sun pm    * LLTI 
Sat eve           * LLTI 

---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 0.152 (0.118) 
 0.315 (0.069)*** 
 0.193 (0.166) 
 0.131 (0.087) 
-0.045 (0.104) 
 0.369 (0.297) 
 0.274 (0.199) 
 0.435 (0.536) 

Day and time of call * Pensioner in 
household 
(ref= Sun-Wed eve and No pensioner) 

Mo-Wed am   * Pensioner 
Mo-Wed pm  * Pensioner 
Thu-Fri am    * Pensioner 
Thu-Fri pm    * Pensioner 
Thu-Fri eve    * Pensioner 
Sat-Sun am     * Pensioner 
Sat-Sun pm    * Pensioner 
Sat eve           * Pensioner 

---- 
---- 
---- 
---- 
---- 
---- 
---- 
---- 

 0.342 (0.153)** 
 0.318 (0.088)*** 
 0.629 (0.213)*** 
 0.246 (0.113)** 
 0.034 (0.128) 
-0.717 (0.385)*** 
 0.069 (0.265) 
 1.600 (1.551) 

Day and time of call * Indicator if 
house 
(ref= Sun-Wed eve and and Not 
house) 

Mo-Wed am   * House 
Mo-Wed pm  * House 
Thu-Fri am    * House 
Thu-Fri pm    * House 
Thu-Fri eve    * House 
Sat-Sun am     * House 
Sat-Sun pm    * House 
Sat eve           * House 

-0.531 (0.139)*** 
-0.258 (0.078)*** 
-0.338 (0.199)* 
-0.035 (0.104) 
-0.040 (0.105) 
 0.106 (0.347) 
-0.065 (0.214) 
-0.371 (0.567) 

-0.519 (0.145)*** 
-0.191 (0.078)** 
-0.158 (0.201) 
 0.065 (0.104) 
 0.048 (0.100) 
 0.311 (0.357) 
-0.090 (0.214) 
-0.110 (0.564) 

Day and time of call * Indicator if 
house in a good or bad state of repair 
(ref= Sun-Wed eve and Good ) 

Mo-Wed am   * Fair/Bad 
Mo-Wed pm  * Fair/Bad 
Thu-Fri am     * Fair/Bad 
Thu-Fri pm    * Fair/Bad 
Thu-Fri eve    * Fair/Bad 
Sat-Sun am     * Fair/Bad 

 0.012 (0.117) 
 0.198 (0.066)*** 
 0.536 (0.163)*** 
 0.243 (0.085)*** 
 0.157 (0.092)* 
 0.509 (0.327) 

 0.036 (0.120) 
 0.150 (0.065)** 
 0.631 (0.169)*** 
 0.199 (0.085) 
 0.120 (0.090) 
 0.485 (0.327) 
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Sat-Sun pm    * Fair/Bad 
Sat eve           * Fair/Bad 

-0.200 (0.202) 
 0.031 (0.496) 

-0.144 (0.197) 
-0.168 (0.483) 

Day and time of call * Time of 
previous call 
(ref= Sun-Wed eve and Weekday eve) 

Mo-Wed am   * Weekend 
Mo-Wed pm  * Weekend 
Thu-Fri am    * Weekend 
Thu-Fri pm    * Weekend 
Thu-Fri eve    * Weekend 
Sat-Sun am     * Weekend 
Sat-Sun pm     * Weekend 
Sat eve           * Weekend 
 
Mo-Wed am   * Weekday am 
Mo-Wed pm  * Weekday am 
Thu-Fri am    * Weekday am 
Thu-Fri pm    * Weekday am 
Thu-Fri eve    * Weekday am 
Sat-Sun am     * Weekday am 
Sat-Sun pm    * Weekday am 
Sat eve           * Weekday am 
 
Mo-Wed am  * Weekday pm 
Mo-Wed pm  * Weekday pm 
Thu-Fri am    * Weekday pm 
Thu-Fri pm   * Weekday pm 
Thu-Fri eve   * Weekday pm 
Sat-Sun am   * Weekday pm 
Sat-Sun pm   * Weekday pm 
Sat eve           * Weekday pm 

 0.078 (0.408) 
-0.714 (0.223)*** 
-0.552 (0.785) 
-0.189 (0.460) 
-0.682 (0.459) 
-0.240 (0.681) 
-0.833 (0.306)*** 
-1.319 (0.587)** 
 
 0.090 (0.245) 
 0.086 (0.135) 
 0.447 (0.298) 
-0.102 (0.168) 
 0.379 (0.190)** 
 0.574 (0.524) 
 0.149 (0.521) 
 0.014 (1.690) 
 
 0.163 (0.143) 
-0.039 (0.067) 
-0.063 (0.179) 
-0.034 (0.086) 
 0.025 (0.087) 
 0.772 (0.313)** 
-0.444 (0.205)** 
 0.108 (0.584) 

-0.007 (0.417) 
-0.567 (0.224)** 
-0.211 (0.766) 
 0.003 (0.465) 
-0.675 (0.443) 
 0.065 (0.667) 
-0.761 (0.297)** 
-1.203 (0.580)** 
 
 0.098 (0.246) 
 0.156 (0.137) 
 0.492 (0.301) 
 0.043 (0.170) 
 0.359 (0.185)** 
 0.438 (0.521) 
 0.214 (0.508) 
-0.581 (1.628) 
 
 0.211 (0.146) 
-0.009 (0.067) 
-0.074 (0.183) 
 0.014 (0.086) 
-0.021 (0.083) 
 0.853 (0.313)*** 
-0.458 (0.201)** 
-0.048 (0.607) 

Interactions between interviewer observations and interviewer characteristics 

Day and time of call * Interviewer Age 
(ref= Sun-Wed eve and 50 years or 
more)  

Mo-Wed am  * under 50 yrs 
Mo-Wed pm  * under 50 yrs 
Thu-Fri am    * under 50 yrs 
Thu-Fri pm   * under 50 yrs 
Thu-Fri eve   * under 50 yrs 
Sat-Sun am    * under 50 yrs 
Sat-Sun pm   * under 50 yrs 
Sat eve          * under 50 yrs 

 0.096 (0.118) 
 0.017 (0.066) 
 0.044 (0.171) 
-0.023 (0.087) 
-0.194 (0.093)** 
-0.776 (0.339)** 
 0.061 (0.200) 
 0.026 (0.443) 

 0.108 (0.123) 
 0.035 (0.067) 
 0.130 (0.171) 
-0.012 (0.087) 
-0.204 (0.092)** 
-0.716 (0.337)** 
 0.029 (0.193) 
-0.142 (0.440) 

Interviewer variance --  0.089 (0.013)***  0.078 (0.011)*** 

Area variance --  0.006 (0.005)  0.009 (0.005)* 
The estimated coefficients and their standard errors are the means and standard deviations of parameter values across 
80,000 Markov chain Monte Carlo samples, after the burn-in of 5000 and starting values from second order PQL estimation. 
The missing value categories have been suppressed to save space. 

*     significant at the 10% level 
**   significant at the 5% level  
*** significant at the 1% level 

Coding of time of call: am = 0.00-12.00, pm=12.00-17.00, eve= 17.00-0.00 

Household and neighbourhood characteristics based on interviewer observations 

Factors that are outside the direct control of the interviewer (Purdon et al., 

1999), include characteristics of the household that indicate at home patterns of 

household member, socio-demographic characteristics and indicators of physical 

impediments to accessing the household. This study investigates the influence of 

variables that may be regarded as proxies for the time spent at home and lifestyle, such 
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as indicators of a single-person household, presence of dependent children and 

pensioners. Of particular interest is the effect of interviewer observation data as survey 

agencies should be able to collect this information for all households, including 

noncontacts. Such data are especially useful when no information from administrative 

data or census is available. Interviewer data (time-invariant) include information about 

physical barriers to accessing the household (e.g. a locked common entrance, locked 

gate or entry phone), the presence of security devices (e.g. security staff, CCTV cameras 

or burglar alarm), indications about boarded-up or uninhabitable buildings in the area, 

household composition, quality of the housing and how safe the interviewer would feel 

walking in the area after dark. 

This research considers the effects of a range of interviewer observations. All of 

these variables are predictive of contact in initial modelling (i.e. before controlling for 

household and interviewer effects), which suggests such variables are useful for guiding 

the process of establishing contact in the field, in particular in the absence of additional 

administrative data, i.e. when the survey agency can only rely on recordings by the 

interviewers to obtain information about nonresponding households.  

Table 2.3.5 shows the effects of variables that remained significant in the final 

model. As may be expected, houses with no security device visible - such as a security 

gate, burglar alarm, CCTV cameras or security staff - are easier to contact. An 

observation that can be relatively easily recorded by the interviewer is whether the 

household lives in a house or a flat. For almost all times, it is easier to establish contact 

with householders living in a house rather than a flat, and this is true even after 

controlling for household characteristics such as location, number of people in the 

household and presence of children. Interactions between interviewer observation 

variables and time of call are also explored, of which a number are found significant in 

initial modelling. Two interactions remain significant in the final model adjusting for all 

other household level characteristics; these are the interaction between timing of call 

and type of accommodation as well as state of repair of houses in the area. The 

interaction term between the timing of the call and the type of accommodation (Table 

2.3.6) reveals that on afternoons, for any day of the week, it is easier to make contact 

with residents of houses than of flats. Householders living in flats are most likely to be 

contacted in the evenings and on Saturday and Sunday mornings. Contact is found on 

average to be more difficult when the interviewer recorded that houses in the area are in 

a fair or bad state of repair and that the house is in a worse condition than others in the 
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area (Table 2.3.6). The interaction term between timing of the call and state of repair of 

houses in the area provides some indication that the contact rate is better for houses in a 

fair or bad state of repair compared to houses in a good state of repair for Thursday-

Sunday mornings. The fact that people living in fair or bad state of repair houses are 

more likely to be reach during late week morning might be due to these people being 

more likely to be unemployed or to be casual or shift workers and therefore at home 

more during the day. On the other hand, contact rate is better for houses in a good state 

of repair for Sun-Wed evening. These findings might indicate that state of repair of 

houses in the area may be regarded as a proxy for people in full-time employment (or 

people with children) more likely to be at home during the evening.   

It is also found indication that contact is more difficult to establish if there are 

any boarded-up or uninhabitable buildings in the area or if the interviewer does not feel 

safe walking along in the area after dark However, none of these effects remain 

significant after controlling for other interviewer observations and household 

characteristics from the census. These variables could be indicators for social 

deprivation indices not significant once the model effectively controls for other 

household characteristics, such as type of household, employment, area.  

It should be noted that interviewers are also asked to record indication of the 

presence of children, which is (at least in principle) the same information available from 

the census data. It was decided, however, to use the census variable in the final model 

due to the potential higher data quality and less item-nonresponse of this variable. (For 

an interpretation of the effect of this variable see the subsection ‘Household characteristics 

from the Census’).  

Two other call-specific variables that are under the control of the survey 

organisation, and that may determine best times of contact, are the timing of the 

previous call and the length of time since the last call. Considering the main effect of 

time of previous call only (without the interaction term with time of current call in the 

model) it is found that if the previous call is already a weekday evening call then 

establishing contact at the next call becomes increasingly less likely, indicating a 

potentially difficult to contact household. Some indications for a significant interaction 

term between time of current call and time of previous call are found (Tables 2.3.5 and 

2.3.6). If the previous call is a weekend call, it seems advisable to call early during the 

week either in the morning or evening, or on a weekend morning. If the previous call is 

on a weekday afternoon, promising times to call are evening and weekend and Mon-
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Wed mornings. If the previous call is made during the evening, calling again during the 

evening is the most likely to lead to contact, although in comparison to other previous 

calling times the contact rate for such repeated evening calls is smaller. It may be 

conclude that there is some indication for varying the timing of the call. Overall, 

however, evenings and weekends are reliably good times to call. This indicates that 

interviewers may have some (although limited) options in increasing contact rates by 

changing the time of the call, in particular if it is to an evening or weekend. Similar 

conclusions are drawn by Weeks and Kulka (1988), although they presented only 

descriptive statistics for the timing of the first three calls. Purdon et al. (1999) did not 

find a significant interaction between time of current and time of previous call. They 

concluded that if a household is repeatedly called upon during the evening the contact 

probability decreases, indicating a more difficult household. Groves and Couper (1998) 

did not find interpretable conditional effects of the timing of previous calls.   

The effect of the number of days between calls (Table 2.3.5) suggests that 

leaving a few days between calls, ideally about one or two weeks, increases the 

probability of contact compared to returning on the same day. The increased probability 

of contact for call-backs after one or two weeks may reflect effects of additional 

knowledge about the household gathered by the interviewer at the earlier call which led 

them to adopt such a calling schedule. For example, interviewers may have found out 

from neighbours that the household was on holiday. Unfortunately, this type of 

information was not recorded for each call.  

Household characteristics from the Census 

It is well known that single-person households, households without children or 

with primarily young people, and households in urban areas and in flats are the most 

difficult to contact (Durrant and Steele, 2009; Groves and Couper, 1998), and the results 

presented here confirm these findings (see also Table 2.3.6). 

From Table 2.3.6, it can be observed that for almost all call times the probability 

of contact is higher for households with children, with particularly high probabilities on 

weekday evenings, all afternoons and Mon-Wed mornings. The fact that weekday 

afternoons are good times may be related to children being back home from school. For 

households without children, calls made on weekdays during the day are the least likely 

to result in contact, whereas weekday evenings are the most promising. In practice, 

indications of the presence of children may be obtained via interviewer observations (as 
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in Model A) or, at least in some countries, from administrative or register data, such as 

from child benefit records (for an example see Cobben and Schouten, 2007). Although 

estimated coefficients for time of call and dependent children present (Table 2.3.5) 

somewhat differ between Model A and B, the predicted probabilities of contact 

obtained using Model A (not shown here), for the two-way interaction involving these 

two variables, display the same pattern as those in Table 2.3.6 based on Model B. 

Therefore, using either the Census variable or its proxy from the interviewer 

observation data leads to the same modelling conclusions. 

As might be expected, the contact rate for weekday mornings (Mon-Wed) or 

afternoons (Mon-Fri) is higher for households without any adults in employment than 

for households with at least one employed resident (Table 2.3.6). The reverse effect is 

found for the evenings. For households with adults in employment the probability of 

contact for both weekday and weekend evenings are higher than for households in 

unemployment. There is a lower chance of contact for households with adults in 

employment on weekend mornings than for households in unemployment but weekend 

afternoons perform very similarly. The contact rate for Saturday evenings is higher for 

households with employed adults than for those with no one in employment. (An 

indicator of whether any adults are in employment is also available from the interviewer 

observation questionnaire and could be used as proxy for the census variable. Again due 

to the higher data quality of census data the census measure is included in the final 

model. For an example where information on employment status and unemployment 

benefits is available from administrative sources see Cobben and Schouten, 2007.) 

  

Table ‎2.3.6: Predicted probabilities† of contact (in %) for two-way interactions  

Interaction between day and time of call and type of accommodation 

  Type of accommodation 

  House Flats, other 

Day and time  
of call 

Mon, Tue, Wed morning 38.2 42.2 
Mon, Tue, Wed afternoon 42.3 38.6 
Sun, Mon, Tue, Wed evening 58.1 49.6 
Thu, Fri morning 28.6 24.9 
Thu, Fri afternoon 44.5 34.8 
Thu, Fri evening 56.4 46.7 
Sat, Sun morning 58.8 42.7 
Sat, Sun afternoon 47.5 41.2 
Sat evening 9.9 7.9 
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Interaction between day and time of call and state of repair of houses in area 

  State of repair of houses in area 

  Good Fair-Bad 

Day and time  
of call 

Mon, Tue, Wed morning 47.9 44.3 
Mon, Tue, Wed afternoon 44.2 43.4 
Sun, Mon, Tue, Wed evening 55.4 50.8 
Thu, Fri morning 29.5 39.3 
Thu, Fri afternoon 40.2 40.5 
Thu, Fri evening 52.5 50.9 
Sat, Sun morning 48.5 55.8 
Sat, Sun afternoon 46.9 39.0 
Sat evening 9.8 7.1 

 

Interaction between day and time of call and dependent children in household 

  Dependent children present 

  Present Not present 

Day and time  
of call 

Mon, Tue, Wed morning 54.6 43.2 
Mon, Tue, Wed afternoon 56.6 39.6 
Sun, Mon, Tue, Wed evening 63.9 50.6 
Thu, Fri morning 35.3 25.7 
Thu, Fri afternoon 50.5 35.7 
Thu, Fri evening 57.5 47.7 
Sat, Sun morning 42.4 43.8 
Sat, Sun afternoon 53.0 42.2 
Sat evening 10.7 8.2 

 

Interaction between day and time of call and time of previous call 

  Time of previous call 

  Week
end 

Wkday 
am 

Wkday 
pm 

Wkday 
 eve 

Day and time  
of call 

Mon, Tues, Wed morning 60.7 48.0 55.4 46.1 
Mon, Tues, Wed afternoon 43.5 45.7 46.3 42.4 
Sun, Mon, Tues, Wed evening 67.7 53.0 57.6 53.5 
Thu, Fri morning 36.6 38.2 29.9 27.9 
Thu, Fri afternoon 53.3 39.0 42.8 38.4 
Thu, Fri evening 49.1 58.8 54.3 50.6 
Sat, Sun morning 62.9 56.8 70.4 46.6 
Sat, Sun afternoon 41.5 49.8 38.3 45.1 
Sat evening 5.3 5.3 10.3 9.2 

 
Interaction between day and time of call and adults in employment 

  Adults in employment 

  No adult 1+ adult 

Day and time  
of call 

Mon, Tue, Wed morning 50.8 40.4 
Mon, Tue, Wed afternoon 47.1 36.0 
Sun, Mon, Tue, Wed evening 58.6 61.0 
Thu, Fri morning 31.9 32.7 
Thu, Fri afternoon 43.0 32.2 
Thu, Fri evening 55.3 59.0 
Sat, Sun morning 51.4 45.0 
Sat, Sun afternoon 49.8 52.0 
Sat evening 10.9 65.5 
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Interaction between day and time of call and pensioner in household 

  Pensioner in household 

  Present Not present 

Day and time  
of call 

Mon, Tue, Wed morning 56.3 45.2 
Mon, Tue, Wed afternoon 52.0 41.5 
Sun, Mon, Tue, Wed evening 55.4 52.6 
Thu, Fri morning 43.7 27.2 
Thu, Fri afternoon 46.1 37.6 
Thu, Fri evening 53.3 49.7 
Sat, Sun morning 31.8 45.7 
Sat, Sun afternoon 48.6 44.2 
Sat evening 34.6 8.9 

 

Interaction between day and time of call and person with limiting long term illness (LLTI)  

  Person with LLTI  

  Present Not present 

Day and time  
of call 

Mon, Tue, Wed morning 51.4 45.6 
Mon, Tue, Wed afternoon 51.7 42.0 
Sun, Mon, Tue, Wed evening 55.1 53.1 
Thu, Fri morning 39.9 27.6 
Thu, Fri afternoon 43.1 38.0 
Thu, Fri evening 51.1 50.2 
Sat, Sun morning 57.2 46.2 
Sat, Sun afternoon 53.4 44.6 
Sat evening 14.2 9.0 

 

Interaction between day and time of call and interviewer age 

  Interviewer age 

  Under 50 years 50 years or more 

Day and time  
of call 

Mon, Tue, Wed morning 49.6 50.4 
Mon, Tue, Wed afternoon 44.1 46.7 
Sun, Mon, Tue, Wed evening 54.4 57.8 
Thu, Fri morning 31.4 31.6 
Thu, Fri afternoon 39.0 42.6 
Thu, Fri evening 46.5 55.0 
Sat, Sun morning 31.0 51.0 
Sat, Sun afternoon 46.7 49.4 
Sat evening 8.3 10.8 

† Predicted probabilities are calculated by varying the values of the two interacting variables, holding all other 
covariates at their sample mean value. In the case of a categorical variable, the dummy variable associated with a 
particular category takes on the value of the sample proportion in that category instead of the usual 0 or 1 value. 

The call indicator variable has been fixed for call 1 to obtain these predicted probabilities but the trend in predicted 
probabilities would be the same for subsequent calls since interactions with the call-variable were not included.  

Coding of time of call: morning (am)=0.00-12.00, afternoon (pm)=12.00-17.00, evening (eve)=17.00-0.00 

The interviewer also has a good chance of finding someone at home during the 

week if there is at least one pensioner present. Particularly high probabilities of contact 

are observed during the day in the early part of the week. Weekday evenings are also 

good times to establish contact with pensioners. Compared to other types of 

households, the contact rate for households with pensioners is relatively low at the 

weekend, particularly mornings. This may be partially explained by older people being 
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more likely to have religious or family commitments on a Sunday for example. For 

households without a pensioner weekday evenings and weekend mornings are the best 

times to call. There is also a suggestion of a similar effect for households with an older 

household representative, where householders older than 50 are more easily contacted 

during the day on weekdays whereas the daytime contact rate is quite low for 

householders younger than 35; however, this effect is not significant any more once we 

controlled for the interaction effect of pensioners. For any time and day, it is found that 

the older the household representative the more likely it is to establish contact, whereas 

householders aged below 35 are the most difficult to contact (Table 2.3.5).  

From Table 2.3.5 it is observed that the number of people in the household has 

a significant effect on contact, with larger households being easier to contact than 

single-person households. This may be expected since it will be more likely to find at 

least one person at home for larger households. The interaction between timing of call 

and number of people in the household is significant in initial modelling, but not after 

controlling for other markers for at-home patterns such as the presence of children and 

household members in full-time employment.   

Households with at least one person with a limiting long term illness (LLTI) 

have high probabilities of contact throughout the week as would be expected since such 

persons may be more likely to be at home due to their restricted daily activities and 

some may have a carer present. The probability of contacting these households is 

particularly high during the week (Mon-Wed), which is almost as good a time to call as 

evenings and weekends. In preliminary analysis, a very similar effect for households with 

a carer present is found, but due to collinearity with the LLTI variable this variable is 

not included in the final model. Information on the presence of carers or persons with a 

long-term illness may be available in register or administrative databases (for an example 

see Cobben and Schouten, 2007). Alternatively, some crude proxies or indicators may 

be captured by the interviewer, for example via observations regarding wheelchair 

access to the house or a disabled parking permit visible in the car.  

Geographical location and type of area are usually regarded as important 

predictors of noncontact (Groves and Couper, 1998). However, after controlling for 

household characteristics, such as household type, the London and urban-rural 

indicators are no longer significant. Interactions between the geographical variables and 

the timing of the call are also explored. The interaction with the London indicator is 

significant in a simple model, but not after adjusting for all household effects and their 



37 

 

interactions. In the absence of household-level information knowledge about 

geographical location and type of area (urban-rural), which can be easily observed and 

collected by the interviewer, may be regarded as proxies for such household information 

and are expected to be predictive of contact. In addition, area-level variables, such as 

long-term unemployment rate, percentage of older people and children and percentage 

of houses are all found significant in predicting noncontact before controlling for 

household and call-level information, but not in the final model. This implies that area 

variables may be also considered as proxies for household characteristics, in line with 

the findings of O’Muircheartaigh and Campanelli (1999). 

The above findings are based on a pooled analysis of six UK surveys which are 

expected to differ in their contact rates, for example because of differences in their 

design, such as length of data collection period. It is found that the LFS has a 

significantly higher probability of contact than the other surveys considered. This may 

be due to a number of factors, such as LFS interviewers working only on that survey 

whereas normally interviewers may be expected to work on several surveys. They also 

have a comparatively lower workload, in terms of the number of addresses, and receive 

more intensive interviewer training, although it should be noted that the LFS also has 

shorter data collection period than the other surveys. 

Influences of the interviewer on the process of contact 

There is significant, although small, variation between interviewers in their 

contact rates in all models. Inclusion of the interviewer characteristics reduces the 

between-interviewer variance from 0.11 to 0.08, explaining about 27% of the 

interviewer variance. The relatively small between-interviewer variance indicates that 

even though interviewers play a significant role in the process leading to contact, the 

effect of their unknown characteristics might not be strong on the log-odds of contact. 

The between-area variance is substantially smaller than the between-interviewer variance 

and, controlling for household-level and call-level variables halved the between-area 

variance; in the final model area effects are only marginally significant at the 10% level 

(see Table 2.3.5).  

Before looking into the interviewer characteristics that influence the contact 

process, it is important to note the potential problem of interpreting interviewer effects 

that may be confounded with area effects. In clustered survey designs an interviewer is 

normally assigned to one primary sampling unit (PSU) and their workload consists of all 
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sampled households in that PSU. To account at some degree for this potential 

confounding of area and interviewer effect, it is possible to employ an interpenetrated 

sampling design, with interviewers allocated at random to households 

(O’Muircheartaigh and Campanelli, 1999; Schnell and Kreuter, 2001). However, due to 

the high costs involved with implementing an interpenetrating design, this approach is 

rarely used in practice. Some previous studies with no such design ignored area effects 

in the research or area information was not available at all (e.g. Pickery and Loosveldt, 

2004). The six surveys included in this study did not employ randomised interpenetrated 

sampling designs; however, a complete confounding of area and interviewer effects was 

avoided because most interviewers work on a number of surveys and some interviewers 

work across PSUs. In addition, the model allows for random area effects where areas 

are defined as local authority district level, a geographical area considerably larger than a 

PSU. As a result, interviewers and areas are cross-classified, i.e. an interviewer may work 

in several areas and an area may be covered by several interviewers. For other examples 

of the use of multilevel cross-classified models and a detailed discussion of different 

forms of (partial) interpenetrated sampling designs see Durrant et al. (2010) and von 

Sanden (2004), respectively.     

Purdon et al. (1999) and Groves and Couper (1998) considered the role of the 

interviewer in establishing contact. They argued that after adjusting for the timing of the 

call the interviewer should not play a significant role. Groves and Couper (1998) 

nevertheless investigated if there are any further net effects of interviewer characteristics 

and explored simple relationships between interviewer attributes and the probability of 

contact. This study investigates the effects of a number of interviewer characteristics in 

an attempt to explain the between-interviewer variance in contact rates, including socio-

demographic characteristics, experience and work background and interviewer strategies. 

It may be argued that more experienced and higher qualified interviewers may be better 

at establishing contact (for a preliminary analysis see Groves and Couper, 1998, p. 95). 

This research finds pay grade of interviewers to be an important factor in explaining 

part of the differences between interviewers, with interviewers in higher pay grades 

being better at establishing contact. A similar effect was found in Purdon et al. (1999) - 

although contrary to their a priori hypothesis of no interviewer effects after controlling 

for the timing of the call. It is also found that interviewers with a higher qualification 

such as a University degree or postgraduate education have higher contact rates. This 

may indicate that certain types of interviewers may be better at judging the best times to 
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call, for example through gathering information about the household from observation 

and talking to neighbours, and using such information to tailor their calling strategy to 

maximise the chance of contact.  

The model also shows that older interviewers (50 years and over) are more 

successful at establishing contact which may possibly reflect their greater experience or 

the fact that they may appear more trustworthy. Another explanation may be that older 

interviewers may have fewer time-constraining commitments outside their job, such as 

looking after young children, allowing greater flexibility on calling times. The interaction 

between age of the interviewer and timing of the call (see Table 2.3.6) is also explored, 

and some evidence is found that older interviewers may be better in judging the best 

timing of the call for certain types of households: older interviewers are more likely than 

younger interviewers to achieve contact on weekday evenings, in particular Thursday 

and Friday, and on weekend mornings.  

Slightly surprisingly, it is not found any significant main or interaction effects of 

the number of years of interviewer experience after controlling for the timing of the call 

as well as household and area characteristics, even if this is the only interviewer level 

effect in the model. This is in line with Groves and Couper (1998) who also did not find 

an effect of interviewer experience. The expected positive association between 

experience and the probability of contact might be more adequately captured by pay 

grade and qualification and, to some extent, age which are all found to be significant. It 

may be argued that the pay grade of the interviewer captures a combination of length of 

experience and interviewer performance, with better performing interviewers expected 

to be on higher pay grades. This combination of characteristics may therefore be more 

important in explaining differences between interviewers rather than simply the length 

of time an interviewer has been in the job (for a similar effect on refusal see Durrant et 

al., 2009).  

Since survey agencies are particularly interested in behavioural differences 

between interviewers, it is also explored to what extent interviewer strategies influence 

the probability of contact. It is found that interviewers who report that they at least 

sometimes wait to explain the survey, rather than simply leaving behind information, are 

more likely to establish contact (Table 2.3.5), which suggests that interviewers who put 

in more effort and dedicate more time to each sample unit may be more successful at 

securing contact. It is also found that interviewers who always or frequently use the 

phone to establish contact, rather than visiting the household in person, perform worse 
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than interviewers who rarely or never use the phone. Again, this variable may be an 

indicator of interviewer effort. Somewhat surprisingly some interviewer strategies, such 

as how often they check with neighbours, are not found to explain differences amongst 

interviewers. However, it should be noted that these measures of interviewer practice 

are self-reported rather than from direct observation. This non-significant effect may 

have been caused by the fact that most interviewers responded to these types of 

questions in a similar way. This may highlight a potential downside of self-recorded 

interviewer behaviour. As suggested by Groves and Couper (1998), in the context of 

interviewer effects on cooperation given contact, it may be preferable to ask 

interviewers to record their strategy for each call or household. Some support for their 

recommendation is found: the variable indicating whether it is the interviewer’s general 

practice to leave a card or message behind has no significant effect on contact, while the 

time-varying covariate capturing the same information for each call is found to be 

significant, showing an increase in the probability of contact at the next call if a card or 

message was left (see Table 2.3.5).  

It may be argued that more experienced interviewers and interviewers on higher 

pay grades are better at establishing contact with harder-to-reach households. Effects of 

this type could help to inform the allocation of certain interviewers to potentially more 

difficult households. Therefore interaction effects between interviewer characteristics 

and type of household are explored, focusing on households that previous research 

identified as being harder to contact, such as single households, younger people or 

households without children. However, none of the effects explored are found to be 

significant after controlling for the timing of the call and household characteristics. Also 

a number of other interviewer characteristics considered are not found to be associated 

with the probability of contact, including gender of the interviewer, whether they 

worked for another survey organisation or had other paid employment, and indicators 

of whether the interviewer is happy to travel, to work evenings and weekends, or to stay 

overnight. 
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2.4 Modelling the process leading to cooperation or refusal  

2.4.1 Introduction 

This section builds on the research presented above by focussing on the next 

step in the response process: cooperation and refusal. The research presented here aims 

to analyse the process leading to cooperation or refusal. It jointly models the different 

types of outcomes at each call conditional on contact being made with the household by 

using multilevel multinomial logistic regression analysis (see, for example, Pickery and 

Loosveldt, 2002). The models control for household characteristics and also allow for 

the influence of the interviewer on the cooperation stage. The key research questions 

are: 

1. What is the process leading to cooperation/refusal? Do call time-variant 

variables influence this process? 

2. Are interviewer observations useful to predict cooperation? 

3. To what extent does cooperation depend on doorstep interviewer-

householder interactions? 

4. What are best times to establish cooperation? Are these times affected by 

the outcome of previous calls? 

2.4.2 Multilevel multinomial logistic model for the response outcome  

Multilevel multinomial logistic analysis is used to model the response outcome at 

call t , conditional on contact having been made with the household at that call. The 

dependent variable in this study is defined as an indicator of other possible outcome 

versus cooperation, conditioning on contact made with the household. Household 

cooperation is defined as an interview carried out by at least one member of the 

household. (This study does not distinguish between full cooperation, where the whole 

household responds, and partial cooperation where only some household members 

respond). Other possible outcomes at each call are divided into three main components 

of nonresponse and defined as: 

(1) refusal, household refused to participate in the survey 

(2) appointment made, household made an appointment for the interviewer to 

come back at a different time/day  
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(3) other form of postponement, contact made with sampled household but not 

with a responsible resident, broken appointment, interviewer withdrew to 

try again later, e.g. he/she felt threatened. 

The research is interested in the response outcome across all contact calls, not 

just until the first contact or the first time a form of cooperation is established with the 

household. However, some considerations are given to the process leading to first 

cooperation, i.e. the first instance of a cooperation outcome.  

A multilevel model is used to account for the hierarchical structure of the data 

allowing for clustering of outcomes by household or interviewer due to unobserved 

household and interviewer characteristics. The nature of the data, one record per each 

contact call made to a household, makes it possible for an outcome to occur more than 

once within a household. For example, during the data collection period a householder 

might make several appointments, an appointment might be broken more than once, or 

different household members might refuse or cooperate to the interviewer at different 

calls. A multilevel model with household random effects allows for this possibility that 

the events of interest occur more than once to a household. Due to the complexity of 

the modelling, the large number of available household characteristics, and the findings 

in section 2.3.3 (page 37) that area characteristics are negligible once interviewer and 

household effects are controlled for, area level effects are not additionally included in 

the multilevel model presented in this section. 

Denote by tijy  the outcome of call t  ( 1, , it T ) made to household i  

( i n,..., j1 ) by interviewer j  ( j J,...,1 ) conditional on contact being achieved at t .  

The outcome of each call is coded as follows: 1 for a refusal, 2 if an appointment is 

made, 3 for other forms of postponement, and 4 for full or partial cooperation. The 

conditional probability of outcome s  at call t  given contact being achieved at t  is 

denoted by ( ) Pr( )s
tij tijy s , ( )s 1, 2, 3 . A multilevel multinomial logit model for the 

log-odds of outcome s  ( )s 1, 2, 3  relative to outcome 4 (cooperation) may be written  

x z c

( )
( )' ( ) ( )' ( ) ( )' ( ) ( ) ( )

(4)
log

s
tij s s s s s s s s

tij ij j ij j

tij

u v   ,   (2.4.1) 

where x
( )s
tij  is a vector of time-variant covariates, with coefficient vector ( )s , such as 

indicators of the household’s call history prior to t , the time and day of the current call, 



43 

 

information about the doorstep interviewer-householder interaction. The call history 

indicators include the number of calls made to the household until first contact was 

achieved and the number of intermediate noncontacts after first contact (i.e. some 

function of t ), which are derived from all calls regardless of whether contact was made.  

The vector of time-varying covariates also includes an indicator of whether an 

appointment was made with the household at the previous call, which allows estimation 

of transition rates, that is, the probability that an appointment made at call 1t  is 

converted to cooperation at t . z
( )s
ij  is a vector of time-invariant household covariates, 

with coefficient vector ( )s , such as type of accommodation, household in London. 

Time-invariant household characteristics include interviewer observations and census 

variables. The vector c
( )s
j  includes time-invariant interviewer characteristics, such as 

gender, pay grade, with coefficient vector ( )s .  

Unobserved household and interviewer characteristics are represented 

respectively by random effects ( )s
iju  and ( )s

jv .  To allow for the possibility that some types 

of response outcome may have shared or correlated unmeasured influences, random 

effects at the same level are assumed to follow trivariate normal distributions: 

(1) (2) (3)( , , ) ~ ( , )ij ij ij ij uu u u Nu 0  and (1) (2) (3)( , , ) ~ ( , )j j j j vv v v Nv 0 , where u  and v  are 3 × 

3 covariance matrices.  For example, similarity between the ‘appointment’ and ‘other 

type of postponement’ outcomes would be expected to lead to a positive correlation 

between (2)
iju  and (3)

iju  and between (2)
jv  and (3)

jv . 

However, it is found that due to relatively small number of households with 

repeated outcomes of the same type there is not enough information in the data to 

estimate the household- and interviewer-level variances and covariances from the 

multinomial model (2.4.1) with outcome-specific household and interviewer random 

effects. Therefore, a second approach is proposed where outcome-specific loadings are 

used to overcome the estimation issue but to still allow for the effect of the household 

and interviewer unobservables to vary across outcomes. A simplified multilevel 

multinomial logit model for the log-odds of outcome s  relative to outcome 4 

(cooperation) may be written 

 x z c

( )
( )' ( ) ( )' ( ) ( )' ( ) ( ) ( )

(4)
log

s
tij s s s s s s s s

tij ij j ij j

tij

u v   ,  (2.4.2) 
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where unobserved household and interviewer characteristics are represented respectively 

by normally distributed common random effects iju  and jv : 2~ ( , )ij uu N 0  and 

2~ ( , )j vv N 0 . These random effects have now outcome-specific coefficients or 

“loadings” ( )s  and ( )s respectively, with (1)  and (1) fixed to 1 for identification. Thus, 

although there is a set of unmeasured household and interviewer characteristics that 

affect the odds of all non-participation outcomes, their effects may differ across the 

three different survey outcomes. Outcome-specific loadings also allow the between-

household and between-interviewer variance in the log-odds of non-participation to 

differ across outcomes. For example, the between-household variance is 2
u  for refusal 

(due to the identification constraint (1) =1) and (2) 2 2( ) u  for appointments ( 2s ). All 

other components in the model remain as in model (2.4.1). 

Slightly surprisingly, after fitting model (2.4.2), no significant differences across 

the three interviewer-level random effect loadings are found, suggesting that 

unmeasured interviewer characteristics have similar effects on the log-odds of each type 

of non-participation outcome (the likelihood ratio test statistic for a test of the null 

hypothesis H0: 
(1) (2) (3) 1  is 2.8 on 2 d.f., p=0.246). That is, there is no 

evidence for differential random interviewer effects on the three non-participation 

outcomes due to unobserved interviewer characteristics. 

A simplification of model (2.4.2) with loadings on the interviewer random effect 

( )s  (s =1,2,3) constrained to be equal across all three outcomes, may be written  

x z c

( )
( )' ( ) ( )' ( ) ( )' ( ) ( )

(4)
log

s
tij s s s s s s s

tij ij j ij j

tij

u v   .   (2.4.3) 

This chapter uses model (2.4.3) as the final model and presents results in the following 

section. 

The analysis file contains a record for each call that resulted in contact being 

made with the household.  Each household may therefore contribute multiple records, 

up to a maximum of iT , with their sequence of calls terminating in refusal, cooperation 

or the interviewer giving up (right-censored histories). Estimation of the models 

presented above is carried out using maximum likelihood as implemented in the aML 

software package (Lillard and Panis 2003). Where a closed form solution to the 

maximum likelihood function does not exist the residuals at each level are ‘integrated 
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out’ numerically using Gauss-Hermite quadrature. The number of quadrature points 

used is 16. Approximate standard errors are computed based on an approximation to 

the Hessian matrix.  

To aid interpretation of the fitted model, predicted probabilities of each type of 

response outcome might be calculated for each value of a given covariate, holding 

constant the values of all other covariates in the model at their sample means. 

Population averaged probabilities might be obtained as follows: (i) take a large number 

M  of random draws from the household and interviewer random effect distributions 

(based on the estimated random effect variances); (ii) calculate a set of predicted 

probabilities based on each set of generated random effect values and the estimated 

coefficients; and (iii) calculate for each outcome s  the mean of the predicted 

probabilities ( )ˆ stij  across the M  random effect values, where from (2.4.3)  

( )' ( ) ( )' ( ) ( )' ( ) ( )

( )

3
( )' ( ) ( )' ( ) ( )' ( ) ( )

1

(4) (1) (2) (3)

exp
, 1,2,3,

1 exp

1 .

s s s s s s s
tij ij j ij js

tij
r r r r r r r
tij ij j ij j

r

tij tij tij tij

u v
s

u v

  

  

x z c

x z c





 

To evaluate the model fit, likelihood ratio tests are used (Goldstein, 2010). This 

allows the comparison of nested models, for example, to evaluate if the addition of call 

record variables leads to a significant improvement in comparison to a simpler model 

without such variables.  

2.4.3 Results  

To help understand the process leading to cooperation or refusal, some 

descriptive statistics and preliminary modelling are initially presented. Table 2.4.1 

illustrates the probability of each outcome at the first contact with the household by 

time of day and day of the week. At first contact, it may be assumed that the interviewer 

has little, if any, information about the household that might influence his/her calling 

behaviour. In particular, the first contact call is not affected by a previous appointment 

made. Table 2.4.1 shows that most first contacts are made on weekday afternoons, 

followed by weekday evenings and weekday mornings, with a clear decline in the 

number of contacts from the beginning to the end of the week for all times of the day.  
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Overall, 26% of all first contact calls results in a successful interview, 8% in refusal, 43% 

in an appointment made, and the remaining 24% in another type of postponement. The 

probability of immediate cooperation at the first contact call is highest (above 30%) for 

morning and afternoon calls at the beginning of the week, Monday and Tuesday, with a 

clear decline as the week progresses. The lowest cooperation rates are in the evening in 

particular towards the end of the week. On the other hand, householders are more likely 

to make an appointment with the interviewer if contact is made in the evening (above 

45%) and this is for all days of the week but especially at the weekend. The probability 

of refusal and other forms of postponement are fairly stable at around 8% and 25% 

respectively by time of contact. It should be noted that only a few first contact calls are 

made at the weekend, in particular on Sunday. These findings are in line with previous 

literature (Purdon et al., 1999). 

Table ‎2.4.1: Probability of each outcome at first contact, by day and time of call 

  Cooperation Refusal 
Appointment 

made 
Other 

postponement 

Total 
number 
of first 
contact 

made 

% of all 
first  

contacts 

Monday am 0.37  0.09  0.34  0.21  381 2.41 
  pm 0.37  0.07  0.32  0.24  2162 13.70 
  eve 0.25  0.08  0.48  0.20  1648 10.44 
        
Tuesday am 0.31  0.09  0.34  0.26  279 1.77 
  pm 0.31  0.06  0.37  0.26  1919 12.16 
  eve 0.23  0.08  0.49  0.21  1649 10.45 
        
Wednesday am 0.29  0.12  0.40  0.20  214 1.36 
  pm 0.26  0.07  0.43  0.24  1544 9.78 
  eve 0.20  0.08  0.48  0.24  1472 9.33 
        
Thursday am 0.28  0.09  0.39  0.25  212 1.34 
  pm 0.22  0.08  0.42  0.28  1253 7.94 
  eve 0.19  0.08  0.46  0.27 1138 7.21 
        
Friday am 0.23  0.12  0.39  0.27  151 <1.0 
  pm 0.20  0.07  0.46  0.27  735 4.66 
  eve 0.18  0.10  0.51  0.22  580 3.68 
        
Saturday am 0.26  0.05  0.43  0.27  109 <1.0 
  pm 0.14  0.08  0.54  0.24  239 1.51 
  eve 0.12  0.04  0.52  0.33  52 <1.0 
        
Sunday am 0.20  0.20  0.30  0.30  10† <1.0 
  pm 0.11  0.05  0.68  0.16  19† <1.0 
  eve 0.06  0.00  0.69  0.25  16† <1.0 
        
Total   0.26 0.08 0.43 0.24 15782 100  
Morning (am): 0.00-12.00, Afternoon (pm): 12.00-17.00, Evening (eve): 17.00-0.00 
† indicates cells with a sample size of less than 30 
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Since the first contact call is only indicative of the chances of achieving 

cooperation with a household this study now examines changes in the rates of the 

different outcomes across calls. Figure 2.4.1 shows the specific-outcome rates for the 

first seven contact calls. From contact call 7 onwards each outcome rate is based on few 

cases, if any, and so results for these contact calls are not presented here. 

 
 

Figure ‎2.4.1: Specific-outcome rates by contact call number, allowing for repeated cooperation 
events 
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The chance of making an appointment is highest at the first contact call, when 

about 43% of calls end in an appointment made with the householder. It substantially 

decreases at second call to about 17% and then remains stable at around 10% for all 

subsequent calls. That is, after the second contact 1 in 10 visits are likely to finish in an 

appointment made with the householder. The cooperation rate is lowest at the first 

contact call (26%), increases sharply at the second to about 60% and then stabilises at 

just above 70% at the fourth and subsequent calls. The rise in the cooperation rate for 

calls 2 to 4 may be explained by the large number of appointments that were made at 

the early calls, in particular at the first call. It may be speculated that prior appointments 

are usually turned into successful interviews at the next call. The growth in the 

cooperation rate, even after initial contact calls, might also be explained by the presence 

of households with more than one person (multiple households). In these cases, the 

interviewer might seek to obtain cooperation from each household member at different 
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calls. The refusal rate is highest at the first and second contact call (at around 8%) to 

then quickly decrease towards zero as the number of contact increases. The behaviour 

of the refusal rate seems to indicate that people that are inclined to refuse do so in early 

calls. Other forms of postponement are relatively high at the first call (25%), then fall to 

just over 10% and continue to rise again steadily from call 4 onwards. Taken together, 

these patterns suggest that for later calls (from about call 4 onwards) the household 

either cooperates or the interviewer decides to postpone to another time or to stop 

calling, rather than continuing until receiving a refusal. 

It may be argued, as mentioned before, that the results displayed in Figure 2.4.1 

may be driven by the presence of multiple households in the sample, where cooperation 

from each household member could be obtained at different calls. Instead of looking at 

all contact calls, including cooperation occurring more than once to a household, it is 

possible to investigate the change in the rates of the different outcomes across calls until 

first cooperation is obtained, presented in Figure 2.4.2.   

 

 

Figure ‎2.4.2: Specific-outcome rates by contact call number, until first time cooperation  
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Comparing the behaviour of the curves for appointments and other forms of 

postponement, Figure 2.4.1 and 2.4.2 show overall fairly similar results; for first time 

cooperation, however, the other postponement rate increases more rapidly with each 

additional contact, maybe indicating a hidden refusal. The cooperation rate across calls, 

and thus also the refusal rate, performs rather differently from call 2 onwards. Similarly 

to Figure 2.4.1 the cooperation rate increases sharply at the second contact (from 26% 

to 57%), but then decreases as the number of contacts increases. The pattern suggests 

that after the initial rise in the cooperation rate, possibly explained by the number of 

appointments made at the first contact, the likelihood of gaining first cooperation from 

the household reduces with each additional contact call. Likewise, the likelihood of 

refusal increases with the number of contacts made to the household.   

 

Table ‎2.4.2: Estimated coefficients for the variable ‘day and time of call’ when included as a 
main effect in a multilevel multinomial logistic model controlling for household and interviewer 
characteristics  

 
Refusal 

ˆ ( )ste  

Appointment 

ˆ ( )ste  

Other 
postponement 

ˆ ( )ste  

Monday  
 
 
 
Tuesday 
 
 
 
Wednesday  
 
 
 
Thursday 
 
 
 
Friday 
 
 
 
Saturday 
 
 
 
Sunday 

Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 
 
Morning 
Afternoon  
Evening 

-0.149 (0.210) 
-0.449 (0.123) 
ref 
 
-0.069 (0.201) 
-0.707 (0.126) 
-0.217 (0.120) 
 
-0.215 (0.206) 
-0.677 (0.130) 
-0.353 (0.119) 
 
-0.821 (0.221) 
-0.397 (0.135) 
-0.313 (0.125) 
 
-0.285 (0.254) 
-0.438 (0.161) 
-0.204 (0.155) 
 
-0.420 (0.286) 
-0.050 (0.239) 
-2.028 (0.787) 
 
 0.569 (0.691) 
-1.389 (0.679) 
 0.672 (0.684) 

-0.185 (0.125) 
-0.497 (0.075) 
ref  
 
-0.341 (0.129) 
-0.475 (0.076) 
-0.037 (0.072) 
 
-0.464 (0.133) 
-0.475 (0.078) 
-0.133 (0.073) 
 
-0.527 (0.133) 
-0.333 (0.082) 
-0.142 (0.076) 
 
-0.359 (0.157) 
-0.326 (0.097) 
-0.150 (0.098) 
 
-0.407 (0.172) 
 0.129 (0.147) 
-0.337 (0.278) 
 
 0.616 (0.412) 
 0.008 (0.396) 
 1.610 (0.350) 

-0.019 (0.152) 
-0.054 (0.089) 
ref 
 
 0.040 (0.149) 
-0.094 (0.090) 
 0.025 (0.086) 
 
-0.584 (0.164) 
-0.168 (0.093) 
-0.011 (0.087) 
 
-0.389 (0.155) 
 0.061 (0.096) 
 0.090 (0.090) 
 
 0.017 (0.174) 
 0.047 (0.112) 
-0.128 (0.116) 
 
-0.178 (0.195) 
 0.228 (0.171) 
 0.186 (0.306) 
 
 0.418 (0.517) 
-0.844 (0.516) 
 0.621 (0.450) 
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In order to investigate the influence of the day of the week and the time of the 

day on each possible outcome, it is convenient to recode the calling time variable 

reducing its 21 categories. To identify any reasonable pattern on this variable, its effect 

is examined in a multilevel multinomial model controlling for household and interviewer 

characteristics. The estimated coefficients for each category of the calling time variable 

are provided in Table 2.4.2. The sorted net effects on hazards (not shown here), 

together with the indicative findings of Table 2.4.1, suggest a quite different pattern for 

early week and late week, with Sunday more like the early part of the week and Saturday 

more like late week, especially Friday. In addition, the few calls made on Saturdays and 

Sundays made it necessary to merge these categories with other days of the week. These 

results informed the categorisation of the calling time variable in the final model (Table 

2.4.3) which distinguishes six categories: early week (Sun-Tue) and late week (Wed-Sat) 

and morning, afternoon and evening. 

Multilevel multinomial model  

This section discusses the results from the final multilevel multinomial logistic 

model which includes time-varying call characteristics, fixed interviewer observations, 

household and interviewer characteristics, and household and interviewer random 

effects. The model aims to investigate the effect and usefulness of call record data and 

other paradata on the process leading to cooperation or refusal. Here this process is 

modelled across all contact calls. Of particular interest are the influences on a call 

outcome of the interaction between the interviewer and householder at the doorstep, of 

time-varying factors, such as number of previous calls, number of intermediate 

noncontacts after first contact was made, whether a prior appointment is made and of 

time-invariant interviewer observation about the household and neighbourhood. The 

model aims to control for all these factors. The model also controls for household 

information, primarily from the census, and interviewer characteristics that might be 

related to differential calling behaviours, in an attempt to adjust for the potential bias 

introduced by not fully randomised calling times for sample units (see section 2.3.3). It 

should be noted that the model discussed in this section includes an indicator if 

previously cooperation with the household has been achieved. For matter of 

completeness, the process leading to first time cooperation is also modelled for 

comparison. It is found that the results are very close to the final results presented in 
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this section (results are not shown). Parameter estimates of the final model are 

presented in Table 2.4.3. 

Time-varying call characteristics 

The inclusion of time-varying covariates into the model in comparison to a 

model with only census household level variables indicates a significant better fit 

(likelihood ratio test statistic is 2*14216, on 75 d.f., p=0.000), supporting results in Bates 

et al. (2008) who found that the inclusion of such variables ‘greatly improve’ models 

predicting nonresponse. The final model includes an indicator of whether previous 

contact was made with the household and the number of previous calls, distinguishing 

between contact and noncontact calls. It also controls for the number of times 

noncontact occurs after the first contact with the sample unit was achieved 

(intermediate noncontact). The previous contact indicator means that the coefficients of 

number of contact calls are interpreted as the effect on the different forms of non-

participation of each additional call after the first call. This indicator is also included in 

the model to deal with some variables, such as previous appointment indicator, that are 

not defined at the first contact. It is observed from the model that the probabilities of 

refusal, appointment made and other forms of postponement decrease significantly with 

each additional call after first contact was made with the household, controlling for the 

other explanatory variables in the model. On the other hand, the odds of cooperation 

increase with each additional contact made. This is in line with previous research that 

report strong positive effects of having prior contact with the household on the 

propensity of an interview (Groves and Heeringa, 2006). This effect may indicate that 

keeping an ongoing interaction between the interviewer and the householder rather than 

seeking a quick decision on participation from the householder may be more likely to 

lead to a positive outcome. This would support the ‘householder-interviewer interaction 

hypothesis’ of Groves and Couper (1998, page 220). It could also indicate that 

interviewers are persistent in returning to a household if they feel they have a chance of 

a positive outcome. There is a (small) positive effect of the number of calls made until 

first contact on the probability of refusal, with negative effects on the other non-

participation outcomes. This small effect on the likelihood of refusal may provide some 

evidence that households that are more difficult to reach may be more likely to refuse 

once contacted. The effect of the number of intermediate noncontact calls is positive 

for all three non-participation outcomes: the more intermediate noncontact calls are 
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made after first contact the more likely it is that the household refuses, makes an 

appointment or other form of postponement occurs. This may indicate that a 

noncontact could in fact be a hidden evasion or refusal, for example, due to fear of 

crime, which has been hypothesised in the literature (Groves and Couper, 1998; Stoop, 

2005). However, the lack of a correlation between the noncontact and refusal processes 

identified in earlier research (Lynn et al. 2002; Nicoletti and Perachi, 2005; Steele and 

Durrant, 2011) has so far not provided much support for this hypothesis. A model 

controlling for the additional outcome of a noncontact at a call may provide further 

evidence for this phenomenon. Leaving a card or message behind is not found to affect 

the probabilities of any type of nonresponse.  

Regarding the timing of the call, there is significant evidence that the outcome 

of the call may be affected by the time of day and the day of the week. For example, the 

likelihood of refusal is lower for afternoon and late week evening but higher for 

morning and early week evening calls. As one may expect, with a prior appointment the 

likelihood for refusal at the next contact call is greatly reduced. Transition rates are also 

calculated, i.e. the probability that an appointment made at the previous call is converted 

to cooperation at the current call. If the previous call results in an appointment the 

chances of experiencing cooperation at the next call is high (around 80%), and this is 

found to hold for any time of day. For comparison, without a prior appointment 

predicted probabilities for cooperation are below 60% for any calling time. The model 

controls for the case where an appointment is made and the following contact call 

results in another appointment or other form of postponement, such as a broken 

appointment or where the interviewer withdraws to try again later, which may indicate a 

potential lack of willingness to cooperate. Without a previous appointment made, the 

probability of an appointment at the current call is significantly higher (around 30%) 

than that for cases with a previous appointment (around 10%). Similarly, without a 

previous appointment, the probability of other forms of postponement at the current 

call is significantly higher (around 15%) than that for cases with previous appointment 

made (around 9%). These transition rates hold for any calling time. No significant 

interaction between previous appointment made and calling time is found. 

It is important to observe that estimating causal effects of time-varying factors 

such as day and time of call would require randomisation of interviewers to different 

calling strategies. The model attempts to control for differences between these 

interviewer calling strategies and approximate the design that would be required for 
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estimating causal effects by including selected household and interviewer characteristics 

and a previous appointment indicator in the model. The effects of time of the call 

should be, however, interpreted with caution. 

Of particular interest is the effect on the call outcome of what happens at the 

doorstep, especially the initial interaction between the householder and the interviewer. 

Survey organisations might be able to train interviewers to react accordingly to what 

happens at the doorstep or adequately schedule a re-call after some doorstep 

information has been gathered. In particular, the mode of contact appears relevant for 

the likelihood of gaining immediate cooperation: the chances of a refusal, making an 

appointment or other form of postponement are significantly lower if the contact is 

face-to-face rather than through an intercom system, a closed window or a closed door. 

This effect remains after controlling for potential interviewer observation effects about 

the area and household characteristics such as rural/urban households. Non face-to-face 

contact could indicate a potential fear of crime or a reluctance to talk to strangers which 

has been shown in other studies to lead to a higher refusal rate (Groves and Couper, 

1998). If the householder asks at least one question, the chances of refusal, appointment 

or postponement are significantly reduced. Likewise, if the householder makes at least 

one positive or neutral comment as opposed to no comment, the odds of refusal or the 

interviewer withdrawing are much reduced while the odds of making an appointment 

increase. As would be expected, people who engage in a positive or neutral way with the 

interviewer (asking a question or making a comment), potentially expressing some 

interest in the survey, tend to cooperate more than those who do not. On the other 

hand, if the householder makes at least one negative comment, refusal, appointment and 

other postponements are much more likely than if no comment was made. 

Characteristics of the person the interviewer talked to at the doorstep (based on 

interviewer observations) also seem to be useful in predicting the outcome of the call. 

For example, older people (60 and over) are less likely to refuse, make an appointment 

or postpone. A higher cooperation rate for older householders has been noted in other 

studies (Groves and Couper, 1996). If the person at the doorstep is female the call is 

more likely to result in an appointment or a postponement rather than cooperation, 

which may reflect a greater reluctance to speak to strangers or fear of crime among 

women. There is no gender difference in the immediate refusal behaviour.
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Table ‎2.4.3: Estimated coefficients (and standard errors in parentheses) of multilevel multinomial logistic model including household and 
interviewer random effects     

Variable 
(ref = Reference category) 

Categories 

ˆ  ˆ( ( ))ste  

Refusal 
 

ˆ  ˆ( ( ))ste  

appointment 
made 

ˆ  ˆ( ( ))ste  

other 
postponement 

Constant  -3.074 (0.237)***  0.058 (0.119) -0.389 (0.138)*** 

Call record variables (time variant) 

Previous contact  indicator 
(ref =First contact) 

Contact previously made  
 

 1.351 (0.117)*** -0.462 (0.066)*** -0.527 (0.077)*** 

Number of contact calls previously made - -0.352 (0.050)*** -0.534 (0.032)*** -0.427 (0.034)*** 

Number of non-contact calls made until first contact -  0.098 (0.021)*** -0.099 (0.011)*** -0.191 (0.015)*** 

Number of intermediate non-contact calls after first 
contact was made 

-  0.378 (0.032)***  0.285 (0.020)***  0.182 (0.024)*** 

Day and time of contact † 

(ref =Sun-Mon-Tue eve) 

Sun-Mon-Tue am 
Sun-Mon-Tue pm 
Wed-Thurs-Fri-Sat am 
Wed-Thurs-Fri-Sat pm 
Wed-Thurs-Fri-Sat eve 

 0.048 (0.163) 
-0.485 (0.101)*** 
-0.221 (0.139) 
-0.391 (0.098)*** 
-0.295 (0.092)*** 

-0.257 (0.087)*** 
-0.495 (0.052)*** 
-0.466 (0.076)*** 
-0.383 (0.051)*** 
-0.148 (0.049)*** 

-0.023 (0.104) 
-0.134 (0.063)** 
-0.331 (0.090)*** 
-0.083 (0.061) 
-0.005 (0.058) 

Previous Appointment Indicator † 

(ref =No prior appointment made) 

Prior appointment made 
 

-3.397 (0.113)*** -2.560 (0.060)*** -2.454 (0.075)*** 

Previous Cooperation Indicator † 

(ref =No prior cooperation achieved) 

Prior cooperation achieved 
 

-5.653 (0.261)*** -2.712 (0.078)*** -2.784 (0.093)*** 

How contact was made at doorstep 
(ref =Face-to-face) 

Not face-to-face  1.633 (0.108)***  2.227 (0.061)***  1.808 (0.071)*** 

Question made by householder during the interviewer 
introductory conversation 
(ref =No question made) 

At least one question made -1.545 (0.079)*** -0.370 (0.040)*** -1.146 (0.051)*** 

Comment made by householder during the interviewer 
introductory conversation 
(ref =No comment made) 

Positive/neutral comment made 
At least one negative comment made 

-0.892 (0.142)*** 
 4.987 (0.129)*** 

 0.389 (0.043)*** 
 1.207 (0.062)*** 

-0.970 (0.053)*** 
 2.083 (0.063)*** 
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Age of main person the interviewer talked to 
(ref =60 and over) 

Less than 16 
16-34 
35-59 

 0.896 (0.543)* 
 0.223 (0.121)* 
 0.335 (0.098)*** 

 1.507 (0.258)*** 
 0.713 (0.061)***  
 0.517 (0.053)*** 

 4.715 (0.211)*** 
 1.229 (0.074)*** 
 0.603 (0.065)*** 

Gender of main person the interviewer talked to 
(ref =Male) 

Female 
 

-0.102 (0.068)  0.225 (0.035)***  0.119 (0.042)*** 

Interviewer Observations (time invariant) 

Type of accommodation 
(ref =Not house) 

House 
 

 0.446 (0.103)***  0.607 (0.056)***  0.542 (0.067)*** 

House in a better or worse condition than others in area  
(ref =Better/ About the same) 

Worse  0.271 (0.123)**  0.207 (0.067)***  0.201 (0.079)** 

Household-level variables (time invariant) 

Preschool children present  
(ref =No) 

Preschool children -0.337 (0.116)***  0.154 (0.053)*** -0.070 (0.063) 

Household type  
(ref =Single household) 

Couple household 
Multiple household  

 0.374 (0.078)*** 
 0.291 (0.224) 

 0.262 (0.041)*** 
 0.093 (0.117) 

 0.290 (0.049)*** 
 0.197 (0.134) 

Urban/rural indicator 
(ref =Urban) 

Rural -0.192 (0.115)* -0.124 (0.060)** -0.213 (0.074)*** 

Indicator if adults in employment  
(ref =No adults) 

One or more adults  0.115 (0.091)  0.150 (0.048)***  0.359 (0.058)*** 

Educational attainment of Household Reference Person 
(ref =No educational attainment/ A levels, GCSEs) 

First/Higher/College degree/Other 
attainment 

-0.319 (0.086)*** -0.069 (0.042)* -0.186 (0.050)*** 

Survey indicator  
(ref =EFS) 
 

FRS 
GHS 
OMN 
NTS 
LFS 

-0.213 (0.125)* 
-0.534 (0.113)*** 
-0.432 (0.118)*** 
-0.979 (0.111)*** 
-2.909 (0.151)*** 

-0.148 (0.075)* 
-0.117 (0.067)* 
-0.803 (0.071)*** 
-0.428 (0.064)*** 
-2.746 (0.099)*** 

-0.156 (0.087)* 
-0.111 (0.077) 
-0.449 (0.081)*** 
-0.421 (0.072)*** 
-3.327 (0.123)*** 

Interviewer-level variables (time invariant) 

Interviewer experience 
(ref = 9 years or more) 

Less than 1 year 
1 to 2 years 
3 to 8 years 

 0.277 (0.139)** 
 0.187 (0.119) 
 0.178 (0.112) 

 0.019 (0.100) 
 0.011 (0.086) 
-0.029 (0.083) 

 0.140 (0.109) 
 0.121 (0.093) 
 0.088 (0.089) 
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Interviewer qualification 
(ref = Degree or postgraduate, other higher education) 

A levels, GCSEs 
Qualifications below this level, no 
qualification 

-0.229 (0.091)** 
 0.256 (0.217) 

-0.002 (0.066) 
-0.350 (0.155)** 

-0.055 (0.071) 
-0.322 (0.170)* 

Can convince reluctant respondents 
(ref = Less confident) 

More confident -0.397 (0.119)*** -0.169 (0.081)** -0.406 (0.089)*** 

Should persuade most reluctant respondent 
(ref = Strongly agree/agree) 

Neither agree nor disagree 
Disagree/strongly disagree  

-0.378 (0.153)** 
 0.382 (0.120)*** 

-0.055 (0.111) 
 0.130 (0.086) 

-0.214 (0.120)* 
 0.114 (0.093) 

The model is estimated using full information maximum likelihood. Where a closed form solution to the maximum likelihood function does not exist the residuals at each level 
are ‘integrated out’ numerically using Gauss-Hermite quadrature. The number of quadrature points used is 16. Approximate standard errors are computed based on an 
approximation to the Hessian matrix. The missing value categories have been suppressed to save space. 

* significant at the 10% level 
** significant at the 5% level  
***  significant at the 1% level 

†  variable included in an interaction  

Coding of time of call: am = 0.00-12.00, pm=12.00-17.00, eve= 17.00-0.00
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 Time invariant interviewer observations and household characteristics 

Here, the effects of time invariant interviewer observations and household 

characteristics on nonresponse are investigated. The likelihood ratio test, comparing the 

fit of a model without interviewer observation and household characteristics to a model 

with, indicates the significant better fit of the more comprehensive model (the 

likelihood ratio test statistic is 2*258.31, on 33 d.f., p=0.000). It is important to 

remember that this research, in contrast with most previous research, investigates the 

probability of cooperation or refusal at a particular call and not the final response 

outcome. For example, for a certain subgroup in the population, the immediate 

cooperation rate at a particular call might appear lower than expected from the literature 

but due to appointments and other forms of postponements the final cooperation rate 

may be higher in line with expectation.  

Interviewer observations on the household and neighbourhood are found to be 

useful in predicting the outcome of a call. Direct observations about the household as 

well as interviewer evaluations of the area are explored. Results from the previous 

section on the process leading to contact, show that householders living in a house 

rather than a flat are more likely to be contacted. The analysis here shows that those 

living in houses compared to those living in flats have higher chances of immediate 

refusal, although they also have higher chances of making an appointment which might 

result in future cooperation. The interviewer is also asked to judge the condition of the 

house and area. Living in a house that the interviewer reports to be in a worse condition 

than others in the area is associated with higher rates of refusal, appointment made and 

other postponements, as might be expected since socially deprived households have 

been found to be less likely to cooperate in other studies (Goyder, 1987). Physical 

barriers to access the household, such as a locked common entrance, locked gate or 

entry phone, and the presence of security devices, such as security staff, CCTV cameras 

or burglar alarm, are not found to affect the probabilities of refusal and appointment 

made relative to cooperation. However, a positive significant effect of these physical 

impediments on the likelihood of other form of postponement is found (results not 

presented here).  

Some of the variables considered in the present study are available from both 

the census and the interviewer observation questionnaire, for example information on 

the presence of children and the household type. Census variables, where available, are 

included in the final model due to higher quality than interviewer reports. Other studies 
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without access to census variables may be able to include similar information based on 

interviewer observations. For households with pre-school children the immediate 

refusal and other postponement rate are lower. Such households are, however, more 

likely to request an appointment for a different time. This may be expected since, for 

example, households with children might be contacted relatively easily (Table 2.3.5), but 

it may not be convenient to participate in a survey in the presence of children in which 

case an appointment for another time may be made. Refusals, appointments and other 

postponements are more likely outcomes than cooperation in urban areas and for 

couple households. Households with at least one member in employment are more 

likely to postpone either making an appointment or otherwise. Households where the 

household representative has a high educational attainment are less likely to refuse, to 

make an appointment (at a marginal level) or to postpone, leading to a higher 

cooperation rate (see also Goyder, 1987). After controlling for household characteristics, 

such as type of household, and type of area, the London indicator is no longer 

significant. However, in the absence of other information, this indicator may be 

regarded as a proxy for household characteristics and useful to predict cooperation. 

The model also allows for differences in cooperation and refusal across the six 

surveys. It is found the highest refusal, appointment and postponement rates for the 

EFS, a survey with a relatively high response burden due to the requirement to keep a 

diary and a long questionnaire. The lowest rates are achieved for the LFS, a less 

burdensome survey with a comparatively short interview. Further details on the 

differences between the surveys and an analysis of survey-dependent effects on ultimate 

contact and refusal rates can be found in Durrant and Steele (2009).  

Time invariant interviewer characteristics 

The effects of a range of time invariant interviewer characteristics on each 

outcome are now investigated. These characteristics include interviewer attributes, such 

as experience and qualification, and interviewer attitudes towards participation, such as 

confidence and persuasion. The inclusion of interviewer characteristics into the model 

in comparison to a model with only census household level variables and call record 

information indicates a significant better fit (likelihood ratio test statistic is 2*50.61, on 

24 d.f., p=0.000). Several studies have explored the role of the interviewer in survey 

nonresponse and found that length of interviewer experience positively influence 

response rates (Couper and Groves, 1992; Pickery and Loosvelt, 2002; Hox and de 
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Leeuw, 2002; Durrant et al., 2010). This study also finds it to predict higher cooperation 

rates for more experienced interviewers. Interestingly, no effects of experience on 

appointments are found. Experience interviewers might achieve higher response rates 

by adopting certain strategies, such as appear trustworthy and friendly, adapt to the 

situation at the doorstep and react to the respondent, more efficiently than less 

experience interviewers (Morton-Williams, 1993). However, it is important to note that 

self-selection of interviewers might make it difficult to determine causation of length of 

interviewer experience. It may be likely that more effective interviewers (as judged by 

response rates) stay in their jobs for longer than those performing worse. The effect of 

interviewer experience might be then interpreted with caution. Regarding interviewers’ 

qualification, there is evidence in favour of interviewers with an academic attainment 

below college degree, such as A levels or GCSEs, performing better (lower refusal rates) 

than those with a college degree or higher. Interviewers with low or no qualifications 

seem to be less likely to experience appointments or other form of postponements. 

Some interviewer demographic characteristics, such as gender and age, were also 

investigated. Age of the interviewer is not found to affect the probabilities of any type 

of nonresponse; while there is some evidence that female interviewers, which represent 

41% of the interviewer workforce, are less likely to get a refusal from the householder 

than their male counterpart. This gender effect on response rate was also observed by 

Hox and de Leeuw (2002).  This study do not seek to interpret these effects on 

cooperation as demographic interviewer characteristics are usually largely out of the 

control of the survey agencies. A much interesting effect, which is not investigated in 

this research, would be looking at the interaction between these interviewer 

characteristics and sample members characteristics to examine, for example, whether 

homogeneity between interviewers and householders may result in higher cooperation 

rates (Durrant et al., 2010; Groves and Couper, 1998).  

Interviewer attitudes toward cooperation or refusal seem to be good predictors 

of response. A strongly significant effect of the confidence of the interviewer and the 

attitude towards persuasion of reluctant respondents, both measured independently of 

the survey in question, are found. Interviewers who report more confidence in their 

ability to persuade reluctant respondents show a lower probability of refusal. 

Interestingly these interviewers also experience significantly less appointments and other 

forms of postponement. Interviewers who agree they should persuade reluctant 

respondents also have a lower refusal rate than those that disagree with the assertion. 



 60 

No differences on making appointments are observed. This finding is in line with the 

literature indicating that interviewers with a positive attitude towards persuasion 

strategies and who, prior to the survey, are confident about their ability to obtain 

cooperation tend to attain higher response rates (de Leeuw et al., 1997; Groves and 

Couper, 1998; Hox and de Leeuw, 2002; Durrant et al., 2010; Blom et al., 2010). 

Random household and interviewer effects  

Table 2.4.4 presents the estimated household and interviewer random effect 

parameters from the final multilevel multinomial logistic regression model (2.4.3). The 

results show significant residual variation in the log-odds of a nonresponse outcome 

between households and between interviewers, after adjusting for all other covariates in 

the model. This implies that household and interviewer characteristics indeed play an 

important role on the response outcome at a particular call, as would be expected in line 

with previous research on response outcome (O’Muircheartaigh and Campanelli, 1999, 

Pickery and Loosveldt, 2002, Durrant et al, 2010). Comparing results from the previous 

section on the process leading to contact, the variation between interviewers in their 

non-participating outcome rates ( 2ˆ 0.27v ) is higher than the variation in their contact 

rates ( 2ˆ 0.08u ). This might provide some evidence that interviewer effects are more 

important for the process leading to cooperation. This might be due to the fact that this 

process depends much more on interviewer skills and behaviours and the interaction 

between the interviewer and the householder at the doorstep than the process leading to 

contact, which is more determined by timings and household characteristics. 

Unmeasured interviewer characteristics, represented by jv , have the same effect 

on the log-odds of each of the three forms of non-participation. That is, no indication 

of differential random interviewer effects on the three non-participation outcomes due 

to unobserved interviewer characteristics is found (see section 2.4.2). In other words, 

there is no evidence to support a hypothesis that particular interviewer characteristics 

are associated with certain outcomes, for example, that certain types of interviewers 

prefer making appointments. At the household level, however, there is evidence of 

differential effects of unmeasured household characteristics iju  across the three 

outcomes (based on t-tests that the loadings for postponement and appointment are 

equal to 1: 3.1t , p=0.002 for H0: 
(2) 1  and  5.1t , p=0.000 for H0: 

(3) 1 ).  

While there is significant between-household variation in the log-odds of all forms of 
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non-participation, household effects are strongest for refusal and weakest for other 

postponement. As the loading (1)  is fixed at 1 (for refusal), negative loadings for 

appointment, (2) , and other postponement, (3) , suggest that the household 

unobservables that are positively associated with refusal are negatively associated with 

both appointment and other postponement.  In other words, households whose 

unobserved characteristics place them at high risk of refusal tend to be less likely to 

postpone by making an appointment or otherwise. This can be thought as a negative 

correlation between a household's refusal and postponement propensities, after 

adjusting for the covariates in the model.   

Table ‎2.4.4: Estimated household and interviewer random effect parameters from the 
multilevel multinomial logistic regression model (standard errors in parentheses)  

Parameter 
 

Estimate (Standard Error) 

Household common standard deviation u   0.823 (0.132)*** 

Household random effect loadings ( )s   

     (1)  Refusal  1a 

     (2)  Appointment made -0.440 (0.149)*** 

     (3)  Other postponement -0.880 (0.217)*** 

Interviewer common standard deviation v   0.515 (0.029)*** 

  
a        Constrained to equal 1 
***    Significantly different from zero at the 1% level 

2.5 Summary and implications for surveys practice  

This chapter deals with nonresponse in sample surveys during the data 

collection process. The research presented here benefits from the availability of 

relatively rich paradata from six UK interview administrated household surveys. The 

first part of this chapter develops propensity models that predict the likelihood of 

contact in the field conditioning on household and interviewer characteristics. It 

explores the best times to contact different types of households, controlling for 

interviewer and area effects. The second part focuses on understating the process 

leading to cooperation or refusal. Using multilevel multinomial logistic analysis, it jointly 

models four different outcomes at each call using interviewer call record and 

observation data and controlling for household and interviewer influences. This chapter 
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presents the analysis of call record data in a multilevel modelling framework A single-

level model might provide a first working model, but may underestimate standard errors 

of regression coefficients, in particular of higher-level variables. In addition to such 

technical advantages, multilevel models also provide substantive benefits. In particular, 

multilevel models offer conclusions that go beyond the interpretation of single-level 

models. For example they allow exploring the influence of unknown household and 

interviewer characteristics on contact and cooperation via estimated random effects. A 

summary of main results and potential implications for survey practice is presented as 

follows: 

1. The results support earlier findings that weekday evenings and weekend 

daytimes are, on average, the best times to call to achieve contact. However, 

without a prior appointment, households contacted at those times, in particular 

early week (Sun-Tue) evenings, are more likely to refuse, book an appointment 

or postpone in other form than those contacted at other times. It is also found 

that best times to contact depend on household characteristics, especially those 

related to at home patterns. Differences in optimal contact times have been 

found e.g. by type of accommodation and the presence of children, pensioners 

or unemployed persons. A call made at a time previously agreed through a 

booked appointment is most likely to lead to a successful interview for every 

time of the day and day of the week.  

2. Interviewer observations about a household and neighbourhood, for example 

on the type and condition of the house and the presence of children, are useful 

for predicting the likelihood of contact and cooperation. Some interviewer 

observation variables are predictive of contact and cooperation before and after 

controlling for additional information about a household (from the census in the 

present study). These observations might be used as proxies for census 

information that is usually unavailable. 

3. There is significant evidence that time-varying call record information, such as 

features of the call history and of the current call, play a key role in predicting 

contact and the outcome of each future call after contact was made. Of 

particular interest for survey agencies are interviewer strategies on establishing 

contact and gaining cooperation. The contact model shows some significant 

effects of such strategies, for example the probability of contact is higher at the 

next call if the interviewer left a card or message at a previous call. Regarding 
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cooperation, characteristics of the doorstep interaction process between the 

interviewer and the householder, such as how contact was established and 

whether the householder asked questions or made comments, are very relevant. 

4. The multinomial model shows that controlling for all other variables in the 

model, the more contact calls is made the higher the odds of cooperation. This 

may provide some evidence that keeping in contact with the household may 

increase the chances of a successful interview. Rather than pressing for an 

immediate cooperation the interviewer may be advised to keep the conversation 

and the contact with the household going, for example by making an 

appointment for another time (Groves and Couper, 1998). 

5. Area-level variables, geographical location and type of area are found predictive 

of contact before controlling for other household and calling variables, but they 

are not significant in the final model. Therefore, in the absence of additional 

information, area characteristics might be regarded as proxies for household 

characteristics and useful for predicting contact. Similarly, a London indicator is 

found predictive of cooperation before controlling for household characteristics, 

but it is not significant in the final model. 

6. Significant effects of interviewer characteristics on contact and cooperation are 

observed. Important in explaining interviewer differences in contact rates are 

pay grade, qualifications and age. Interviewer experience is not found to be 

important on predicting contact after controlling for these factors. However, it 

is useful on predicting the likelihood of cooperation; more experience 

interviewers are likely to obtain higher cooperation rates. There is evidence that 

some interviewers may be more effective in establishing contact at certain times, 

which may indicate better judgement of when best to call. There is little 

empirical support for the hypothesis that some interviewers are more successful 

in establishing contact with more difficult households, such as single households. 

Strong effects of interviewer confidence and attitude towards persuasion of 

reluctant respondents are found in the multinomial model for cooperation; if 

interviewers express confidence in their abilities to convince reluctant 

respondents and agree they should persuade reluctant respondents, they are 

likely to achieve higher cooperation rates.  

7. Some evidence for differential effects of fixed interviewer characteristics on 

refusal, appointment made and other forms of postponement is found. For 
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example, interviewer experience, although an important predictor of refusal, 

does not seem to impact on the likelihood of appointments or postponements. 

Interviewer confidence, on the contrary, impacts on all three non-participation 

outcomes. 

8. Unmeasured interviewer characteristics have a significant effect on contact and 

cooperation. However, the variation between interviewers in their cooperation 

rates is higher than the variation in their contact rates. In the model for 

cooperation, no evidence for differential effects due to unmeasured interviewer 

characteristics on the three non-participation outcomes is found, i.e. the 

influence of the interviewer random effect is the same across the three non-

participation outcomes.  

9. At the household level, the multinomial model shows evidence of differential 

effects of unmeasured household characteristics across the three non-

participating outcomes: refusal, appointment made and other postponement. 

Negative loadings for postponement outcomes suggest that household 

unobservables that are positively associated with refusal are negatively associated 

with both appointment and other postponement.  

As discussed in the previous sections, the available data are based on a non-

random allocation of calling times to households. The models attempt to control for 

household and interviewer characteristics likely to be associated with the interviewer 

decision on when to call. Nevertheless, as it is possible that the calling time may depend 

on unmeasured household and interviewer characteristics, the effects of day and time of 

the call should be interpreted with caution and inferences about possible causal effects 

of finding should be avoided.  

The results have a number of potential implications for survey practice. They 

may inform the design of efficient and effective calling behaviours and follow-ups as 

well as responsive survey designs to increase response rates and to potentially reduce 

nonresponse bias. The type of models presented may be used to predict the likelihood 

of contact or cooperation at the next call, conditioning on information known to the 

survey organisation or interviewer at each point in time - even in the absence of 

information like here from the census. For example, an interviewer or survey agency 

may be able to observe hints for a potential refusal early on, before a hard refusal occurs. 

It might be then possible to intervene to avoid a refusal, for example, by offering a 
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higher incentive or by sending a more experienced interviewer. These models may also 

be used to estimate response propensities from sample units to be employed for 

adjustment and estimation at the data analysis stage (see Chapter 3). The focus of this 

research is on face-to-face surveys but some findings may also apply to telephone 

surveys.  

The research highlights the benefits of prior information about sample units for 

improving prediction of contact and cooperation, and survey agencies should exploit 

possibilities of data linkage to boost information available about each household or area. 

Such additional information may come from the sampling frame, registers or 

administrative data, as well as previous waves in the case of a longitudinal study - 

available prior to data collection. The availability of such additional data may depend on 

the country and some restrictions on data linkage may apply due to confidentiality and 

data disclosure concerns. The analyses also highlight the relevance of call record 

information and interviewer observations (paradata) captured during data collection to 

inform the process leading to contact and cooperation. These variables could be used as 

proxies of household characteristics if, for example, census data are not available. This 

has also implications for survey organisations that need to carefully consider which type 

of paradata should be recorded at each call, such as outcome of the call, doorstep 

interactions with the householder and interviewer observations about the household and 

neighbourhood.  They also need to assess how best to collect such data, including 

interviewer training.  

The significant interviewer effects in predicting contact imply that survey 

agencies may have a greater choice than previously thought regarding how best to 

contact a household, rather than, as was hypothesised in Purdon et al. (1999), simply 

decisions on the timing of calls. For example, certain interviewers may be allocated to 

more difficult times or cases – at least within fieldwork constraints such as travelling 

times and costs. It may also be advantageous for the survey organisation to be aware of 

other time commitments of interviewers; for example interviewers who have only a 

limited capacity to make evening and weekend calls may need additional support or may 

be allocated certain cases or areas.  
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Chapter 3  

Weighting adjustment for clustered 
nonresponse 

3.1 Introduction 

To produce more accurate estimates of population characteristics in the 

presence of nonresponse weighting adjustment is often carried out to reduce 

nonresponse bias in estimates from sample surveys (e.g. Little, 1986, 1988; Särndal and 

Lundström, 2005). As discussed in Chapter 1, a commonly used weighting technique is 

inverse probability weighting. This technique consists of deriving response propensities 

from sample units under a model and then using the inverse of these estimated 

probabilities as the adjustment weights (e.g. Ekholm and Laaksonen, 1991; Iannaccliione, 

2003). The key to effectively model these response probabilities is the availability of 

auxiliary information for both the respondents and the nonrespondents to the survey. 

Information about the population distribution and other paradata, such as information 

on the interviewers, might also be used in the model. Adjustment weights may be 

combined with sampling weights for a joined treatment of nonresponse and sampling. 

Most discussions of inverse probability weighting assume that responses for 

different units are independent (e.g. Cao et al., 2009; Kim and Kim, 2007). It is not 

uncommon in surveys, however, for nonresponse to be correlated within clusters. 

Chapter 2, for example, shows that interviewers are differentially successful at 

interviewing sample households leading to interviewer (cluster) differential response 

rates. The effect of observed and unobserved interviewer’s characteristics on response 

may result in correlation between the likelihood to participate of different households 

approached by the same interviewer. For example, Durrant et al (2010) found that the 

likelihood of refusal is higher if the interviewer has a college degree but the householder 

does not, and it is highest for the case where the interviewer has only a low or no 

educational attainment and the householder has a professional degree of some form. 

Thus, correlated nonresponse might be observed due to the clustering of households 
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within interviewers. Another example might be a two-stage cluster sample with 

geographical areas as primary sampling units and households as secondary sampling 

units. If nonresponse of households depends on unmeasured area-level characteristics, 

nonresponse intra-cluster correlation may occur simply because of the heterogeneity 

between clusters used for sampling.  

This chapter investigates how to construct inverse probability weights, when 

response is clustered and cluster membership is observed for both responding and 

nonresponding units, as is the case when the clusters are defined by interviewer 

workloads or they define a stage in a multi-stage sampling design. One established 

approach is to use such clusters (or homogeneous sets of clusters) as weighting 

adjustment cells (e.g. Little, 1986), where the implicit model is that response 

probabilities vary just by cell and may be estimated by the cell-level response rates. 

Weighting cell adjustment increases the weights of the respondents by the same amount 

in each cell so that the sum of the adjustment weights of the respondents equals the 

sum of the sampling weights of the complete sample within each cell. This chapter 

considers the more general setting when auxiliary information at the sample level is 

available and include other variables in addition to cluster membership. A natural model 

for nonresponse, given such auxiliary information, is a multilevel model (as discussed in 

Chapter 2), where clustered nonresponse is captured via random effect terms. Peytchev 

(2011), for example, used information on interviewers as auxiliary data in the estimation 

of response propensities to adjust for unit nonresponse. However, Peytchev (2011) only 

used a single-level logistic regression approach ignoring the clustering in the data. This 

chapter investigates how to construct inverse probability weights based on multilevel 

models and assess to what extent these inverse probability weights result in more 

efficient estimates than those obtained by using simpler models that ignore the clustered 

data. 

Yuan and Little (2007) proposed several methods to correct for unit 

nonresponse bias in a two-stage clustered survey. These methods were based on a 

random effects model for the survey variable and thus fall outside the class of weighting 

methods considered here, which aim to model response propensities. This chapter, 

however, makes use of the concept of cluster-specific non-ignorable (CSNI) 

nonresponse proposed by Yuan and Little (2007) to describe the case when 

nonresponse may depend on unobserved cluster random effects which may be 

correlated with the survey variables. Following the example above on educational 
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attainment of interviewers and householders, if household educational level is correlated 

with the survey variables of interest then the dependence of nonresponse on interviewer 

characteristics may result in a CSNI nonresponse mechanism. The cluster-specific non-

ignorable nonresponse has also been discussed, at least implicitly, by Little and Rubin 

(2002, Example 6.24), Shao (2007) and Yuan and Little (2008). The CSNI condition is 

weaker than the usual missing at random (MAR) condition, where the probability of 

response is independent of the survey variables but may depend on other observed 

auxiliary variables. The MAR assumption is conventionally assumed if inverse 

probability weighting is to correct for bias (e.g. Tsiatis, 2006, p.146). A key aim of this 

chapter is to construct weights which exploit the auxiliary information on cluster 

membership and other variables to correct for bias under CSNI, not just MAR. 

This chapter considers three ‘standard’ ways of constructing inverse probability 

weights, including the use of multilevel models as in Chapter 2 and a marginal model 

that ignore the clustering structure of the data, and a new proposed approach using 

conditional logistic regression. It also presents variance estimators for each adjustment 

weighted estimator, assuming weights are treated as fixed. Skinner and D’Arrigo (2011) 

proposed a more complex variance estimator that accounts for the fact that the weights 

are estimated. The properties of the alternative weighted estimators and associated 

variance estimators are investigated through a simulation study. Results from an 

empirical application using data from the Expenditure and Food Survey 2001 are also 

presented.  

The chapter is organised as follows. The basic estimation and modelling 

framework is set out in section 3.2. The different ways of constructing inverse 

probability weights for cluster nonresponse is presented in section 3.3. Variance 

estimation is considered in section 3.4. A simulation study is presented in section 3.5. 

Section 3.6 shows an empirical illustration and some final discussion follows in section 

3.7.  

3.2 Estimation and modelling framework 

Consider a finite population {( , ) | 1,..., , 1,..., }iU i j i N j M , with the jth  

unit in the ith  cluster labelled ( , )i j , from which a probability sample 

{( , ) | 1,..., , 1,..., }is i j i n j m U  is drawn with a given sampling design. Suppose 
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that Pr ( , )ij i j s ,  the probability of selection of ( , )i j  under the sampling design, 

is known and non-zero for each ( , )i j s . Denote the population size 
1

N

iM M and 

the sample size 
1

n

im m . It is of interest to estimate the population total of a generic 

survey variable y , namely 

( , )y iji j U
T y  

where ijy  denotes the value of y for the ( , )i j  unit of U . Note that many other 

parameters may be expressed as a function of such totals and estimated by this function 

of the corresponding estimated totals.  

Let ijR  denote the binary response indicator variable, which is defined for all 

units ( , )i j U , irrespective of which sample s  is selected, such that 

1 ( , )

0 ( , )ij

i j
R

i j

if unit responds

if unit does not respond
 

It is assumed that ijR  is a characteristic of the units in the population, and therefore that 

its values cannot change as a function of which sample s  is selected (‘stable’ 

nonresponse in the terminology of Rubin, 1987, page 30). Thus, it is supposed that 

sampling and nonresponse are unconfounded, i.e. the sample is selected independently 

of the population values of ijR . 

Suppose that ijR , a 1 k  vector of auxiliary variables ijx  and the cluster 

membership indicator i  are observed for all units in s , but that ijy  is only observed for 

respondents, i.e. for units in {( , ) : 1}iji j s R .   

The primary focus of this chapter is on the inverse-probability weighted 

estimator of yT  given by  

( , ,)

ˆ ˆ
y ij ij ij ij

i j s

T d q R y ,     (3.2.1) 

where 1
ij ijd  is the design weight and îjq  is a non-response weight, representing an 

inverse estimated response probability, to be discussed in section 3.3. The estimator in 

(3.2.1) is called the two-phase nonresponse adjusted estimator in Särndal and 

Lundström (2005, equation 6.3). 
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This chapter also considers the so called two-phase generalized regression 

estimator (Särndal and Lundström, 2005, equation 6.4) 

ˆˆ ˆ ˆ ˆ( )yreg y xs xT T T T    ,    (3.2.2) 

where 

( , ,)

ˆ
xs ij ij

i j s

T d x , 
( , ,)

ˆ ˆ ,x ij ij ij ij

i j s

T d q R x


   and 1

( , ,) ( , ,)

ˆ ˆ ˆ( )T T
ij ij ij ij ij ij ij ij ij ij

i j s i j s

d q R x x d q R x y , 

introduced by Cassel et al. (1983). 

In order to construct the nonresponse weights îjq  and to assess the properties 

of the estimators of yT , a modelling framework  for the generation of the ijR  and ijy  

is introduced. It is supposed earlier that sampling and nonresponse are unconfounded, 

that is that the distribution of the ijR  does not depend on the sample outcome s . More 

generally, it is assumed sampling is non-informative in the sense that the distribution of 

( , )ij ijR y  implied by  does not depend on s . 

The basic parametric model considered for ijR , unconditional on ijy ,  is 

Pr( 1 | ) ( )ij i ij iR u h x u  , 2(0, )iu N ,   (3.2.3) 

where iu  denotes a random cluster effect which captures the response intra-cluster 

correlation, (.)h  is a specified inverse link function, such as the inverse logit function, 

and the 1k  vector  and 2  are parameters. The ijR  are assumed mutually 

independent conditional on the iu . This research only considers estimation in the case 

when the number of respondents in each cluster is non-zero. Yuan and Little (2007) 

commented on ways in which biased estimation can arise when this is not the case. For 

example, they noted that, if some sampled clusters do not have any respondents, their 

reweighted random-effects model based approach produces biased estimates as it 

ignores these clusters. 

In addition to the random effects model (3.2.3), the implied marginal model is 

also considered:  

Pr( 1) ( )ij ijR g x ,     (3.2.4) 
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where ( ) ( )ij ij ig x E h x u  and the expectation is taken across the distribution of the 

random effect iu . Note that the random effect will induce a correlation between ijR  and 

ikR  for j k  in this model. 

Response Mechanisms 

For the response mechanism, two principal assumptions regarding the relation 

between ijR  and ijy  are considered. Nonresponse is said to be missing at random (MAR) 

if the ijR  and ijy  are mutually independent, that is Pr( 1 | ) Pr( 1)ij ij ijR y R , given 

that ijx  is treated as fixed characteristics of the units in the population irrespective of 

which sample s  is selected. The mechanism is said to be cluster-specific nonignorable 

nonresponse (CSNI), following Yuan and Little (2007), if model (3.2.3) holds and the ijR  

and ijy  are independent conditional on the iu , that is Pr( 1 | , ) Pr( 1 | )ij ij i ij iR y u R u , 

again holding the ijx fixed. 

To illustrate and motivate the CSNI assumption, suppose ijy  obeys a linear 

multilevel model 

ij ij i ijy x v ,     (3.2.5) 

where iv  and ij  are nested random effect terms with zero means, such that the ijR  are 

conditionally independent of the iv  and ij given the iu and, furthermore, iu  is 

conditionally independent of  the ij  given the iv . Then, when both models (3.2.3) and 

(3.2.5) hold, nonresponse is MAR when iu  and iv  are independent and CSNI otherwise.  

The principal relevance of this chapter is to cases when CSNI holds but MAR does not. 

The key motivating application arises when both nonresponse and the survey variable 

exhibit clustering, which may be represented by the kind of joint cluster effect model for 

,( )ij ijR y  in (3.2.3) and (3.2.5), where the cluster effects display correlation (after 

controlling for observable ijx ). For example, when clustering is by geography, 

correlation between area-level response rates and  area means of the survey variable may 

be induced by a common correlation with average area-level income (which is not 

available as an ijx  variable).    
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3.3 Construction of nonresponse weight 

This section considers the construction of the nonresponse weight îjq  used in 

the estimators in (3.2.1) and (3.2.2), when model (3.2.3) holds. It first considers three 

‘standard’ options and then proposed a new approach using conditional logistic 

regression. 

(i) response propensity weights (Little, 1988):  the inverse link function (.)g  in the 

marginal probability Pr( 1)ijR  in (3.2.4) is assumed known and the weights are set to 

be 1ˆˆ ( )M M
ij ijq g x , where ˆM  is obtained, for example, by maximum likelihood 

estimation (MLE) under the working model of independent observations.   

(ii) weights based on predicted random effects: set  1ˆ ˆˆ ( )RE RE RE
ij ij iq h x u , based on 

the random effects model in (3.2.3), where ˆRE and the ˆRE
iu (and implicitly 2ˆ RE ) might 

be predicted using an approximate ML method, such as in  Diggle et al. (2002, p.174). 

(iii) weights based on estimated fixed effects: set 1ˆ ˆˆ ( )FE FE FE
ij ij iq h x u  as in (ii), but 

where the iu  in (3.2.3) are now treated as unknown parameters (fixed effects, i.e. 

treating cluster as another explanatory variable with number of categories equal to the 

number of clusters appearing in the sample) and ˆFE  and the ˆFE
iu  are MLEs. One 

advantage of this approach compared to (ii) when (.)h  is the inverse logit function is 

that it avoids numerical integration in the computation.  

Skinner and D’Arrigo (2011) presented theoretical reasons why each of the 

above options may not correct adequately for bias from CSNI nonresponse when the 

im  may be small. They proposed an alternative conditional logistic regression approach 

for this case, designed to remove the dependence of the weighting method on the 

random effects.  The basic idea is to construct the weight as 1Pr( 1 | )ij iR R , where 

1

im

i ij
j

R R  is the number of respondents in cluster i.  It may be shown (e.g. Agresti, 

2002, p.251) that when model (3.2.3) holds and (.)h  is the inverse logit function,   
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1

2

1

1

exp( )

Pr( 1 | )

exp( )

i

i ij

i

i i

m

ij ij
B j

ij i m

ij ij
B j

r x

R R

r x

r

r

 ,                  (3.3.1) 

where 1( ,..., )
ii i imr rr  denotes the vector of observed response indicator values in 

cluster i , 1ijB  represents the set of possible values of ir where =1ijr  and ri iR , i.e. 

1 { : =1, r }ij i ij i iB r Rr   and 2iB  denotes the set of possible values of ir  where 

ri iR , i.e. 2 { :  r }i i i iB Rr . The absence of the iu  in (3.3.1) arises from the 

sufficiency of iR for iu . In practice,  is unknown and it is proposed to set 

1ˆˆ Pr( 1 | ; )CML CML
ij ij i iq R R r  , where ĈML  is obtained by conditional ML 

(e.g. Agresti, 2002, p.496; see also Skinner and D’Arrigo, 2011). 

The conditional logistic approach is closer to the fixed effects than the random 

effects approach in the sense that, given , the weights in cluster i  depend only on the 

ijR  in cluster i  and they are not shrunk to a cluster average using outcomes from other 

clusters. In the special case when ij ix x  and ij ix u  is replaced by iu , since ix  is 

effectively confounded with iu , both the conditional logistic and fixed effects weights 

reduce to /i im R  (note that the sizes of 1ijB  and 2iB  are 
1

1
i

i

m

R
and i

i

m

R
 

respectively), the inverse response rate in cluster i ,  a traditional choice of weight with 

clustered survey data (Yuan and Little, 2007). Compared to the random effects approach, 

the conditional logistic approach has the advantage that it does not depend on 

assumptions about the distribution iu  nor about the relation of iu  to ijx . On the other 

hand, it does depend on the assumption that (.)h  is the inverse logit function in order 

that (3.3.1) holds and is free of iu . Note that, since it was assumed that the sampling 

and nonresponse are unconfounded, design weights have not been incorporated in 

either the conditional probability in (3.3.1) or the construction of ĈML . 

The properties of the alternative weighted estimators of yT denoted by 

ˆ ˆ ˆ, ,M FE RE
y y yT T T or ˆCML

yT  when ˆ ˆ ˆ,M RE
ij ij ijq q q or ˆCML

ijq in (3.2.1), and similarly 
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ˆ ˆ ˆ, ,M FE RE
yreg yreg yregT T T  or ˆCML

yregT  when the generalized regression estimator (3.2.2) is considered, 

are investigated through a simulation study in section 3.5. 

3.4 Variance estimation 

In the case of stratified selection of clusters, an approximated variance estimator 

of ˆ
yT , treating adjust weights îjq  as fixed, may be written as (e.g. Stukel et al., 1996):  

2

1

( )
( 1)

h

H
h

i h
h i sh

n
v c c

n
     (3.4.1) 

where 
1 1

ˆ
i im m

i ij ij ij ij ij
j j

c c d R q y , 1

h

h h i
i s

c n c  and hs  denotes the set of hn  clusters 

drawn in stratum h , for 1,...,h H  (it is assumed that 2hn  for each h ). This 

effectively assumes that the ic  may be treated as independent and identically 

distributed within strata, which may be a reasonable approximation for many sampling 

schemes where clusters are selected as primary sampling units (PSUs) and the fraction 

of  PSUs selected in each stratum is small and when nonresponse is independent 

between clusters.  

Skinner and D’Arrigo (2011) outlined a variance linearization approach that 

allows for variability on the estimated weights for the CML case. This approach will not 

be discussed in this thesis.  

3.5 Simulation study  

3.5.1 Description of the study 

A simulation study is now carried out to illustrate the properties of the four 

weighted point estimators in section 3.3 and the variance estimator presented in the 

previous section.  

Six finite populations with 200N  and 10iM M  are constructed, where 

the values of ijx , ijR  and ijy  are generated, respectively, from: 
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1(1, )ij ijx x , 1 (2,1)ijx N , truncated below by 0 and above by 4,  

ijR  model (3.2.3) with (.)h  the inverse logit function, where 0 1( , )T , 2 1 ,  

ijy  model (3.2.5) with 5 , (0,1)ij N  and i i iv u , where (0,1)i N .  

Since ,i  iu  and ij  are generated independently, nonresponse is MAR if  0  and 

CSNI otherwise. The six finite population are created following six possible sets of 

values for the parameters 0 1( , )T  and , representing different missing data 

mechanisms, like this 

(i) MCAR: 0 1( , ) (1,0) , 0  

(ii) MAR: 0 1( , ) (0,0.5) , 0  

(iii) CSNI1: 0 1( , ) (1,0) , 5  

(iv) CSNI2: 0 1( , ) (0,0.5) , 5  

(v) CSNI3: 0 1( , ) (1,0) , 1  

(vi) CSNI4: 0 1( , ) (0,0.5) , 1  

Note that mechanism (i) is described as missing completely at random (MCAR) since 

ijR  is independent of both ijy  and ijx . The values of 0 1( , )  above are chosen so that 

the overall response rate is approximately 70% and the nonresponse is generated 

independent ( 1 0 ) or dependent ( 1 0.5 ) of covariates. The alternatives values of 

 determine the strength of the intra-cluster correlation for the values of ijy . The intra-

cluster correlation of ijy  defined by 

2 2 2 2 2 2 21 27v v x , 

is 0.037 in the MCAR and MAR cases ( 0 ), 0.5 in the CSNI1 and CSNI2 cases 

( 5 ), and 0.07 in the CSNI3 and CSNI4 cases ( 1 ), designed to reflect a realistic 

range of possible values. 

Two sampling designs are applied to these populations: (a) simple random 

cluster sampling with 50n , 10im M ; (b) two stage sampling, with simple random 

sampling at each stage with 50n , 5im . Each sampling scheme is repeated 1000 

times for each population. New values of the response indicator ijR  are generated along 
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with the new samples, while other finite population values are kept fixed. Any samples 

for which 0iR  for some i  are rejected. The estimates of yT  and associated variance 

estimators for the following four weighting approaches are computed: 

(i) M: marginal model (3.2.4)  

(ii) RE: random effects model (3.2.3) 

(iii) FE: fixed effect model (3.2.3) but with random effects treated as unknown 
parameters 

(iv) CML estimated: weights based on (3.3.1) using conditional ML to estimate 
RE , where RE  defines the true model when (3.2.3) holds. 

To help understand the impact of estimating RE  by ĈML , ˆCML
yT  with ĈML  replaced 

by RE , referred as CML
yT , is also included (i.e. ‘CML true parameter’ in Tables 3.5.1 and 

3.5.2). 

3.5.2 Results of the study 

Tables 3.5.1 and 3.5.2 show summary statistics of weighted estimates of the total 

yT  for the different approaches in section 3.3 and for the alternative missing data 

mechanisms and choices of ( , )in m  above. The relative bias reported in the tables is the 

mean of the estimated total across the 1000 samples less the true population total, 

divided by this population total. The relative standard error (SE) is the standard 

deviation of the estimated total across the 1000 replications divided by the true 

population total. The relative root mean squared error (RMSE) is the square root of the 

average squared deviation of the estimated total from the true population total over the 

1000 samples divided by the true population total. 

Bias and standard error properties of the adjusted point estimate 

No evidence of bias is observed in ˆM
yT  under MAR or MCAR, as expected from 

Skinner and D’Arrigo (2011); however, this estimator is significantly biased under the 

CSNI mechanism. The bias of ˆM
yT  decrease when a lower intra-cluster correlation is 

observed, i.e. for cases CSNI3 and CSNI4 when 1 ; but it still remains clear in the 

tables and the marginal estimator, which ignore clustering, is the worst of all estimators 

under cluster-specific nonignorable nonresponse. 



 78 

Regarding the random effect estimator, there is evidence of negative bias of 

ˆRE
yT  under MCAR and MAR ( 0 ) and also under CSNI3 and CSNI4 ( 1 ) where 

the relative bias of the random effect estimator moves in the direction towards its bias 

when 0  (the MCAR and MAR cases). In the cluster-specific nonignorable cases 

with higher intra-cluster correlation (CSNI1 and CSNI2 when 5 ), ˆRE
yT displays bias 

in the same positive direction as ˆM
yT . 

 

Table ‎3.5.1: Simulation estimates of relative bias, standard errors and root mean squared errors 
of weighted estimates of totals for alternative weighting methods and missing data mechanisms. 

Cluster sampling with 50n , 10im . Simulation estimates based on 1000 repeated samples.  

Missing  
data 
mechanism 

Weighting 
Method 

Relative Bias 
(%)1 

Relative  SE 
(%) 

Relative RMSE 
(%) 

MCAR Response prop. (M) (-0.13) 2.33 2.33 
 Random effects (RE) -2.76 2.35 3.63 
 Fixed effects (FE) (0.04) 2.48 2.48 
 CML (estimated) (0.04) 2.48 2.48 
 CML (true parameter) (0.01) 2.92 2.92 
     
MAR Response prop. (M)  (-0.14) 2.34 2.34 
 Random effects (RE) -2.35 2.32 3.30 
 Fixed effects (FE) (0.07) 2.34 2.34 
 CML (estimated) (0.07) 2.34 2.34 
 CML (true parameter) (0.08) 2.48 2.48 
     
CSNI1 Response prop. (M) 11.10 6.19 12.71 
 Random effects (RE) 2.20 6.05 6.44 
 Fixed effects (FE) (-0.14) 6.25 6.25 
 CML (estimated) (-0.14) 6.25 6.25 
 CML (true parameter) (-0.19) 6.43 6.43 
     
CSNI2 Response prop. (M) 11.35 6.19 12.92 
 Random effects (RE) 2.67 6.00 6.57 
 Fixed effects (FE) (-0.13) 6.33 6.33 
 CML (estimated) (-0.12) 6.32 6.32 
 CML (true parameter) (-0.13) 6.43 6.43 
     
CSNI3 Response prop. (M) 2.19 2.50 3.32 
 Random effects (RE) -1.74 2.61 3.13 
 Fixed effects (FE) (0.01) 2.68 2.68 
 CML (estimated) (0.01) 2.68 2.68 
 CML (true parameter) (-0.03) 3.09 3.09 
     
CSNI4 Response prop. (M) 2.23 2.50 3.35 
 Random effects (RE) -1.31 2.56 2.88 
 Fixed effects (FE) (0.03) 2.57 2.57 
 CML (estimated) (0.03) 2.57 2.57 
 CML (true parameter) (0.03) 2.72 2.72 

1 parentheses surround estimates which are within two simulation standard errors of 0. 



 79 

Table ‎3.5.2: Simulation estimates of relative bias, standard errors and root mean squared errors 
of weighted estimates of totals for alternative weighting methods and missing data mechanisms. 

Two-stage sampling with 50n , 5im . Estimates based on 1000 repeated samples.  

Missing  
data 
mechanism 

Weighting 
Method 

Relative Bias 
(%)1 

Relative SE 
(%) 

Relative RMSE 
(%) 

MCAR Response prop. (M) (-0.06) 3.20 3.20 
 Random effects (RE) -3.08 3.33 4.54 
 Fixed effects (FE) (0.18) 3.65 3.66 
 CML (estimated) (0.17) 3.56 3.57 
 CML (true parameter) (0.13) 3.95 3.96 
     
MAR Response prop. (M)  (-0.02) 3.13 3.13 
 Random effects (RE) -2.57 3.20 4.11 
 Fixed effects (FE) (0.19) 3.23 3.24 
 CML (estimated) (0.20) 3.24 3.24 
 CML (true parameter) (0.14) 3.39 3.40 
     
CSNI1 Response prop. (M) 10.39 6.56 12.29 
 Random effects (RE) 3.55 6.44 7.36 
 Fixed effects (FE) (-0.04) 6.66 6.66 
 CML (estimated) (-0.04) 6.64 6.64 
 CML (true parameter) (-0.06) 7.02 7.02 
     
CSNI2 Response prop. (M) 10.75 6.61 12.62 
 Random effects (RE) 4.21 6.37 7.64 
 Fixed effects (FE) (-0.05) 6.77 6.77 
 CML (estimated) (-0.01) 6.74 6.74 
 CML (true parameter) (-0.10) 6.97 6.97 
     
CSNI3 Response prop. (M) 2.10 3.31 3.92 
 Random effects (RE) -1.71 3.49 3.89 
 Fixed effects (FE) (0.14) 3.73 3.73 
 CML (estimated) (0.13) 3.65 3.66 
 CML (true parameter) (0.09) 4.10 4.10 
     
CSNI4 Response prop. (M) 2.21 3.25 3.93 
 Random effects (RE) -1.17 3.37 3.57 
 Fixed effects (FE) (0.14) 3.40 3.40 
 CML (estimated) (0.16) 3.40 3.40 
 CML (true parameter) (0.09) 3.61 3.61 

1 parentheses surround estimates which are within two simulation standard errors of 0. 

The bias of the random effect estimator under cluster-specific non-ignorable 

nonresponse is always of smaller size than this of the marginal estimator, in particular 

for the CSNI1 and CSNI2 cases. The simulation study shows that the random effect 

estimator leads to some bias even for the missing at random mechanism when im  are 

small. A theoretical explanation in the bias of the RE method is available in Skinner and 

D’Arrigo (2011, Section 4) and relates to the potential correlation between the response 

indicator variable ijR  and the estimated random effect ˆRE
iu . Problems with the 
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approximate maximum likelihood estimation method used to obtain ˆRE
iu may be 

another source of the observed bias. Table 3.5.2 and 3.5.1 shows a small decline in the 

relative bias of ˆRE
yT  under MAR when im  increases from 5 (-2.57) to 10 (-2.35) 

respectively. Repeating this study for 20im  and 50im , it is observed that the 

relative bias of ˆRE
yT does indeed decrease as im  increases, with values of -1.67 and -0.78 

as im  takes values 20 and 50 correspondingly. The empirical illustration in section 3.6 

examines the performance of the random effect estimator using data from the 

Expenditure and Food Survey 2001 with cluster mean size equals 40. 

In line with the theoretical results presented by Skinner and D’Arrigo (2011), 

Table 3.5.1 and 3.5.2 show no evidence of bias in CML
yT or ˆCML

yT across all missing data 

mechanisms and sampling schemes. However, one potential disadvantage to this 

conditional maximum likelihood approach is that it becomes increasingly 

computationally intensive for larger im  as the sizes of the sets 1ijB  and 2iB  in (3.3.1) 

grow. 

Regarding the fixed effects estimator, it is observed in Table 3.5.1 and 3.5.2 that 

ˆFE
yT seems to share a similar absence of bias to ˆCML

yT , which may be attractive in 

practice as this estimator does not require so much computation. 

Looking now at the standard errors of the weighted estimates of total, there is 

some evidence in Table 3.5.1 and 3.5.2 that the variance of ˆRE
yT  and ˆM

yT can be slightly 

smaller than those of ˆCML
yT  and ˆFE

yT  for all cases. However, the smaller biases of the 

conditional ML and the fixed effect estimators offset this effect. The RMSEs of the 

latter estimators are always smaller than that of ˆRE
yT  and they are also considerably 

smaller than that of ˆM
yT  for the CSNI cases. The extent to which the smaller bias of 

ˆCML
yT  will offset its larger variance, in MSE terms, will, of course, depend on sample size. 

The RMSE of ˆRE
yT is smaller than that of ˆM

yT  for all cluster-specific nonignorable cases, 

in particular substantially smaller for CSNI cases with higher intra-cluster correlation 

(CSNI1 and CSNI2). 

Comparing ˆCML
yT  and CML

yT , there are some results in the literature (e.g. 

Rosenbaum, 1987; Kim and Kim, 2007) that the use of the estimated rather than the 
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true response propensity can, paradoxically, reduce variance. This is observed in Tables 

3.5.1 and 3.5.2 where the relative standard error of ˆCML
yT  is smaller than that of CML

yT  

for all cases. 

Under cluster-specific nonignorable nonresponse, this simulation study shows 

some potential benefits of multilevel or fixed effects models or conditional logistic 

regression over marginal models (which ignore clustering). Benefits are greater the larger 

the cluster sample size. On the other hand, this simulation shows no benefits from using 

methods that account for the clustering in the data under the missing at random 

assumption. 

 

Generalized regression point estimate 

Table 3.5.3 shows results on the regression estimator ˆ
yregT  in 3.2.2. Results for 

ˆM
yregT  were almost identical to those for ˆM

yT , and are thus not included in the table. 

Results for ˆFE
yregT  and CML

yregT  were almost identical to those for ˆCML
yregT  and are also thus 

not included, although it is of interest to note that the reduction in variance of ˆCML
yregT  vs. 

CML
yregT  observed in Tables 3.5.1 and 3.5.2 seems to disappear once regression estimation 

is used. 

Table 3.5.3 shows that the bias of the multilevel estimator under MCAR and 

MAR is removed by regression estimation. However, it remains biased under the CSNI 

mechanisms with larger values for cases when 5  and smaller ones when 1 . As 

expected, regression estimation does lead to some overall reduction in variance as it 

borrows strength from a linear assisting model. As in previous tables, ˆRE
yregT  does show 

some slight variance gains relative to ˆCML
yregT  but this is offset by bias and the RMSE of 

ˆCML
yregT  is in no cases greater than that of RE

yregT . 
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Table ‎3.5.3: Simulation estimates of relative bias, standard errors and root mean squared errors 
of regression weighted estimates of totals for alternative weighting methods and missing data 
mechanisms. Estimates based on 1000 repeated samples.  

Missing  
Data 
mechanism 

Weighting 
Method 

Relative Bias 
(%)1 

Relative SE 
(%) 

Relative RMSE 
(%) 

50, 10in m     

MCAR Random effects (RE)  (-0.02) 2.29 2.29 
 CML (estimated) (0.06) 2.29 2.29 
     
MAR Random effects (RE)  (-0.01) 2.29 2.29 
 CML (estimated) (0.07) 2.30 2.30 
     
CSNI1 Random effects (RE) 5.02 5.94 7.77 
 CML (estimated) (-0.13) 6.18 6.18 
     
CSNI2 Random effects (RE) 5.06 5.90 7.78 
 CML (estimated) (-0.12) 6.28 6.28 
     
CSNI3 Random effects (RE) 1.02 2.47 2.67 
 CML (estimated) (0.02) 2.51 2.51 
     
CSNI4 Random effects (RE) 1.04 2.46 2.67 
 CML (estimated) (0.03) 2.52 2.52 

50, 5in m     

MCAR Random effects (RE) (0.00) 3.18 3.18 
 CML (estimated) (0.11) 3.17 3.17 
     
MAR Random effects (RE) (0.07) 3.10 3.10 
 CML (estimated) (0.19) 3.12 3.12 
     
CSNI1 Random effects (RE) 6.77 6.29 9.24 
 CML (estimated) (-0.10) 6.50 6.50 
     
CSNI2 Random effects (RE) 6.95 6.25 9.35 
 CML (estimated) (-0.03) 6.66 6.66 
     
CSNI3 Random effects (RE) 1.40 3.28 3.57 
 CML (estimated) (0.07) 3.30 3.30 
     
CSNI4 Random effects (RE) 1.49 3.21 3.54 
 CML (estimated) (0.14) 3.28 3.28 

1 parentheses surround estimates which are within two simulation standard errors of 0. 

Variance estimation of the alternative adjusted estimates 

Table 3.5.4 presents results on the estimation of the variance of the alternative 

weighted estimators for the case of cluster sampling and treating the weights îjq  as fixed. 

The variance estimator in (3.4.1) is used for each estimator under study,   including a 

finite population correction term (1 )n N .  
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The variance estimate for the conditional maximum likelihood estimator and the 

fixed effect estimator are always of considerably smaller size than those for the other 

estimators, with the variance of the marginal estimator performing the worst.  Skinner 

and D’Arrigo (2011) showed that allowing for variation in ˆ  reduces the variance 

estimate of ˆCML
yT ; however, their variance estimator is more complex to compute and 

result in some underestimation, if modest, under the MCAR and MAR missing 

mechanism. In some applications, it may be attractive to obtain simpler variance 

estimators that are always conservative.  

It might be desirable to consider an alternative variance estimate for the random 

and fixed effect estimators that allows for variation in the weights, such as jackknife 

variance estimation as described in Chapter 4. 

 
 

Table ‎3.5.4: Simulation estimates of relative bias, standard errors and root mean squared errors 
of standard error estimators for alternative weighting estimation of totals (treating weights as 

fixed) and missing data mechanisms. Cluster sampling with 50n , 10im . Simulation 

estimates based on 1000 repeated samples. 

Missing data 
mechanism 

Weighting 
Method 

Relative Bias 
(%)1 

Relative SE 
(%) 

Relative RMSE 
(%) 

MCAR Response prop. (M) 92.41 19.42 94.43 
 Random effects (RE) 30.03 13.10 32.77 
 Fixed effects (FE) 10.70 13.76 17.43 
 CML (estimated) 10.71 13.75 17.43 
     
MAR Response prop. (M)  75.64 17.68 77.68 
 Random effects (RE) 22.49 11.72 25.36 
 Fixed effects (FE) 3.93 10.29 11.01 
 CML (estimated) 3.88 10.26 10.97 
     
CSNI1 Response prop. (M) 49.31 14.07 51.28 
 Random effects (RE) 20.14 9.46 22.25 
 Fixed effects (FE) 3.05 10.34 10.78 
 CML (estimated) 3.06 10.34 10.78 
     
CSNI2 Response prop. (M) 44.66 14.02 46.81 
 Random effects (RE) 18.12 9.64 20.52 
 Fixed effects (FE) 1.38 13.27 13.34 
 CML (estimated) 1.44 13.06 13.14 
     
CSNI3 Response prop. (M) 108.46 19.31 110.16 
 Random effects (RE) 37.51 11.88 39.35 
 Fixed effects (FE) 9.44 13.15 16.18 
 CML (estimated) 9.44 13.14 16.18 
     
CSNI4 Response prop. (M) 93.14 18.01 94.86 
 Random effects (RE) 31.06 11.10 32.99 
 Fixed effects (FE) 3.76 12.47 13.02 
 CML (estimated) 3.76 12.36 12.92 

         1 parentheses surround estimates which are within two simulation standard errors of 0. 
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3.6 Empirical application  

This section presents an application of the various estimators presented in the 

previous sections to data from the Expenditure and Food Survey (EFS) collected in 

2001. It aims to estimate three parameters: the proportion of households with at least 

one adult in employment, the proportion of households with at least one pensioner and 

the proportion of single households in the UK using inverse-probability weighted 

estimators with alternative ‘standard’ inverse weights, that is response propensity 

weights (M), weights based on predicted random effects (RE) and weights based on 

estimated fixed effects (FE). The CML approach is not considered in this empirical 

illustration as it becomes extremely computationally intensive with large cluster sizes. 

The EFS, which is part of the UK 2001 Census Link Study dataset presented in Chapter 

2, provides information on the pattern of spending and food consumption by 

households in the UK. In addition to expenditure and food intake, the EFS collects 

socio-demographic information about households, such as household composition and 

employment details. The EFS employs a multi-stage stratified random sampling design 

and requires a face-to-face interview and the filling in of a diary. As described in Chapter 

2, the response outcome of the EFS data from April to October 2001 was linked to the 

2001 Census records, which are available for both respondents and nonrespondents to 

the EFS, providing a rare opportunity to model nonresponse and in turn to adjust for it.  

The analysis sample for this illustration includes 2994 households selected for 

interviewing in the EFS and for which the survey outcome was successfully linked to 

census information and interviewer observation data and the interviewer could be 

identified. Cases such as vacant homes and reissues as well as cases were the survey 

outcome could not be linked to census or interviewer information have been deleted. 

The actual survey variables were not included by the ONS in the dataset. Thus, census 

variables are used in this application as if they were measured in the survey. The unit 

nonresponse rate, which this section aims to adjust for, is about 35%. The estimates in 

this application do not attempt to adjust for the complex sampling scheme as sampling 

weights are not available in the dataset. The clusters are defined by interviewer 

workloads, with 130 clusters of mean size 23 households. Each cluster contains at least 

10 and at most 49 households.  

To obtain inverse estimated response probabilities for weighting adjustment 

purposes, this application first models the response indicator ijR , with refusals and 
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noncontacts both coded as nonresponse, considering the three ‘standard’ approaches 

described in previous sections: (1) a marginal model (3.2.4); (2) a random effect model 

(3.2.3); and (3) a fixed effects model treating cluster as another explanatory variable. The 

inverse logit function is used as the inverse link function for all models.  Table 3.6.1 

presents estimated coefficients and standard errors under the three models for 

nonresponse. Model 3 also produces estimated coefficients for each cluster, but these 

are not presented here for space reasons.  

Table ‎3.6.1: Estimated coefficients (and standard errors) of the three logistic models modelling response  

Variable 
(ref= Reference category) 

Categories Model 1 (M) 

ˆ  ˆ( ( ))ste  

Model 2 (RE) 

ˆ  ˆ( ( ))ste  

Model 3 (FE) 

ˆ  ˆ( ( ))ste  

Constant   0.664 (0.167)***  0.697 (0.173)***  0.636 (0.421) 

Interviewer Observations  

Type of accommodation  
(ref= Not house, i.e. flat, 
mobile home, other) 

House 
 

 0.272 (0.110)***  0.237 (0.112)**  0.200 (0.121)* 

House in a better or 
worse condition than 
others in area  
(ref= Better) 
 

About the same  
Worse 

-0.263 (0.136)** 

-0.700 (0.193)*** 
-0.269 (0.139)** 
-0.740 (0.196)*** 

-0.287 (0.148)** 

-0.876 (0.209)*** 

Household-level variables from the Census 

Dependent children 
present  
(ref= Not present) 

Present  0.442 (0.089)*** 0.454 (0.090)***  0.486 (0.095)*** 

London indicator 
(ref =Not London) 

London -0.512 (0.128)*** -0.508 (0.160)*** -0.374 (0.433) 

Self-employment 
indicator of HRP 
(ref = Not self-employed) 

Self-employed -0.552 (0.134)*** -0.564 (0.135)*** -0.631 (0.143)*** 

Educational attainment of 
HRP 
(ref=A levels/GCSEs) 

First/Higher degree 
No academic qualifications 

 0.407 (0.112)*** 

-0.215 (0.089)** 
 0.423 (0.114)*** 

-0.205 (0.090)** 
 0.492 (0.120)*** 

-0.219 (0.096)** 

Interviewer variance  ---  0.107 (0.038)** --- 

HRP household representative person 
*    significant at the 10% level 
**  significant at the 5% level  
***  significant at the 1% level 

Table 3.6.1 shows that, regardless of the nonresponse model, there are several 

factors significantly influencing nonresponse. This indicates that nonresponse is not 

MCAR. This table displays similar estimated fixed coefficients under the three models. 

Model 2 shows a significant between-interviewer (between-cluster) variance, indicating 

that nonresponse depends on unobserved interviewer effects. It is important to note 

that nonresponse depending on cluster effects is not necessarily non-ignorable. It will 

only be non-ignorable if the cluster effects are correlated with the survey variable of 
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interest, meaning that the MAR assumption fails.  Model 2 allows the calculation of the 

variance partitioning coefficient or intra-cluster correlation, which indicates the 

percentage of observed variation in response attributable to interviewer characteristics. 

The intra-cluster correlation coefficient for Model 2, using the idea of the threshold 

model for logit model (Snijders and Bosker, 1999), is equal to 0.107/(3.29+0.107)= 

0.031. This variance partitioning coefficient indicates that about 3% of the variance on 

response rates is attributable to interviewer characteristics. Comparing with Model 1, 

Model 3 shows that controlling for cluster fixed effects some demographic variables, 

such as London or house indicator, become not significant at the 5% level.  

For any of the variables in Table 3.6.1 to be related to nonresponse bias they 

have to be associated with both nonresponse and the survey variable. Table 3.6.2 

presents the estimated coefficients obtained by regressing the first survey variable of 

interest, ‘households with at least one adult in employment’, on the above explanatory 

variables. Note that the variable ‘self-employment of HRP’ included in the response 

model (Table 3.6.1) is not included in Table 3.6.2 due to high correlation with the 

outcome variable of interest.  

 

Table ‎3.6.2: Estimated coefficients (and standard errors) for three logistic models for the indicator 
household with at least one adult in employment 

Variable 
(ref= Reference category) 

Categories Model 4 (M) 

ˆ  ˆ( ( ))ste  

Model 5 (RE) 

ˆ  ˆ( ( ))ste  

Model 6 (FE) 

ˆ  ˆ( ( ))ste  

Constant  -0.423 (0.169)*** -0.443 (0.172)*** -1.150 (0.445)*** 

Interviewer Observations  

Type of accommodation  
(ref= Not house, i.e. flat, 
mobile home, other) 

House 
 

 0.588 (0.114)***  0.599 (0.115)***  0.689 (0.125) *** 

House in a better or 
worse condition than 
others in area  
(ref= Better) 
 

About the same  
Worse 

-0.076 (0.135) 
 0.029 (0.201) 

-0.065 (0.137) 
 0.037 (0.203) 

-0.033 (0.149) 
 0.057 (0.216) 

Household-level variables from the Census 

Dependent children 
present  
(ref= Not present) 

Present  1.414 (0.097)***  1.414 (0.098)***  1.494 (0.104)*** 

London indicator 
(ref =Not London) 

London -0.105 (0.137) -0.108 (0.157) -0.852 (0.462)* 

Educational attainment of 
HRP 
(ref=A levels/GCSEs) 

First/Higher degree 
No academic qualifications 

 1.022 (0.123)*** 
-0.645 (0.090)*** 

 1.016 (0.123)*** 

-0.639 (0.091)*** 
 1.041 (0.130)*** 
-0.652 (0.097) *** 

Interviewer variance  ---  0.064 (0.033)** --- 

HRP household representative person 
*    significant at the 10% level 
**  significant at the 5% level  
***  significant at the 1% level  



 87 

Table 3.6.2 shows that some of the variables significant on the response model 

are also significant to predict the outcome variable of interest. In addition, Model 5 

indicates that the survey variable of interest also depends on unobserved cluster random 

effects. Similar results are found for the other two survey variables of interest (results 

not shown). The combination of findings from Tables 3.6.1 and 3.6.2 imply that the 

unweighted estimator may be subject to some bias.  

To further assess the response mechanism, the estimated interviewer random 

effects from Model 5, which measure the difference between the average number of 

households with at least one adult in employment reported by an interviewer and the 

average number of households with at least one adult in employment in the whole 

sample, are plotted against the estimated interviewer random effects from the 

nonresponse Model 2 (Fig 3.6.1). This scatterplot seems to show no systematic pattern 

or clear correlation between the random effects from the two models. Therefore, it 

suggests that, provided the mechanism is CSNI, it would appear that a MAR 

assumption is reasonable. The fact that this correlation is not evident means that the M 

or RE estimators may be unbiased in this application.  

 

Figure ‎3.6.1: Estimated random effects from model for survey variable against estimated 
random effects from nonresponse model 

 

 

Table 3.6.3 present the estimates of the three parameters of interest (proportion 

of households with at least one adult in employment, the proportion of households with 
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at least one pensioner and the proportion of single households in the UK) for the three 

weighting methods. The table also presents the unweighted estimates based on 

respondents only and the true proportion derived for the whole sample, i.e. based on 

respondents and nonrespondents to the survey. The latter is only possible because of 

the availability of the Census data. 

Table 3.6.3 shows that nonresponse approximately accounts for a 1.5% point 

difference in the employment estimate (60.20% vs. 58.75%), about 2% point difference 

in the pensioners estimate (31.07% vs. 33.03%), and a 1.7% point difference in the 

single households estimate (28.43% vs. 30.16%). All weighting methods yield similar 

results across different estimates. In particular, the RE method does not appear 

seriously biased in this example compared to the other approaches. The results do not 

indicate any consistent gains for the RE or FE approach compared to weighting using 

the marginal model (i.e. ignoring clustering) in line with the theory that suggests that 

under the MAR assumption there is little to be gained from the method that account for 

the clustering in the data over the M approach (Skinner and D’Arrigo, 2011). Still Table 

3.6.3 also does not show any disadvantages from the RE method compared to the M 

method as observed in the simulation work under the MAR nonresponse mechanisms. 

It should be noted, however, that the conditions here in this application are somewhat 

different than those in the simulation study, for example, in this application the clusters 

are of unequal large sizes.  

Standard errors to the estimates are not included in Table 3.6.3 due to the fact 

that the simulation work shows severe bias on the variance estimates that treat weights 

as fixed, in particular for M and RE. Therefore, this application cannot assess how far 

the differences might be attributable to sampling variation. 

 

Table ‎3.6.3: Estimates of proportion of households with at least one adult in employment, 
proportion of households with at least one pensioner and proportion of single households by 
various weighting methods using data from the EFS  

 
Estimate 

Employment 
% 

Pensioners 
% 

Single 
% 

True value based on the whole sample 
(respondents and nonrespondents) 

58.75 33.03 30.16 

  Unweighted estimator 60.20 31.07 28.43 

  Weighted: Response prop. (M) 58.21 32.68 30.10 

  Weighted: Random effects (RE) 58.43 32.61 30.03 

  Weighted: Fixed effects (FE) 58.63 32.54 30.11 
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3.7 Conclusions 

This chapter proposes different ways of constructing inverse probability weights 

to estimate the finite population total under clustered nonresponse. It compares the 

properties of the alternative weighted estimators for two sampling designs by a 

simulation study and presents results from an empirical application using data from the 

Expenditure and Food Survey 2001.  

The simulation study shows that an effort to allow for clustered response via the 

introduction of predicted random effects into the estimated probability of response can 

actually induce negative relative bias in the inverse probability weighted estimator under 

MAR, when the cluster sizes are not large. For example, a relative bias of about 2% for 

the random effect estimator for small cluster sizes of between 5 and 20 is observed in 

the simulation study. This bias declines to about 1% as the cluster sizes increased to 50. 

Although the empirical application does not show any disadvantages from the random 

effect method compared to the other methods, it does not show any advantage either. 

Therefore, if MAR is plausible, it seems reasonable to employ simple response 

propensity weights based upon a marginal model for response rather than weights based 

on a multilevel model. 

If nonresponse is CSNI but not MAR then the marginal approach may be 

subject to bias, in particular higher relative biases of about 11% are observed when 

allowing for high intra-cluster correlation in both the survey variable and the 

nonresponse process. The proposed CML approach performs the best and removes this 

bias, when the number of sampled clusters is large even if the cluster sizes are small. In 

the simulation study it is also observed that the fixed effects estimator performed 

similarly to the CML estimator and it may be that in practice it will often provide a 

reasonable proxy to this estimator, while not requiring such strong model assumptions 

nor so much computation. Regarding the use of multilevel models to construct inverse 

probability weights under CSNI, the simulation results show some potential benefits of 

the random effects estimator over the simple response propensity estimator based on a 

marginal model, in particular for larger cluster sample sizes.  

In addition to its bias correction advantage, the CML approach is not dependent 

on the assumption that the iu  term in (3.2.3) is Gaussian, nor that it is independent of 

ijx . There are, however, potential disadvantages to the CML approach.  It depends on 
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the logistic form of the model in (3.2.3) and becomes increasingly computationally 

intensive as the sizes of the sets 1ijB  and 2iB  grow. In addition, as observed in the 

simulation study, it can lead to more variable weights and have efficiency disadvantages.  

Regarding efficiency, the simulation study shows that the simple variance 

estimator for the conditional maximum likelihood estimate, treating weights as fixed, is 

always conservative and of considerably smaller size than those for the other estimators. 

The variance of the marginal and random effect estimators perform the worst. For these 

cases, it would be advisable to consider a variance estimator that account for the 

nonresponse adjustments.   

    



 91 

 

Chapter 4  

Variance Estimation for Calibration Weighted 
Estimators in the Presence of Nonresponse 

4.1 Introduction 

Weighting methods that make use of auxiliary information are widely used to 

compensate for potential bias caused by survey nonresponse. However, a concern with 

these methods is that they might result in increased variability in the weights and thereby 

lower the precision of the survey estimates. Therefore, it is necessary to consider the 

effects on bias and variance of the estimates resulting from using different weighting 

adjustments when comparing their relative properties. This chapter focuses on a 

particular type of weighting procedure called calibration. Deville et al. (1993) proposed a 

class of calibration methods, called generalized raking estimation, which can be used for 

estimation in surveys with auxiliary information in the form of known population totals. 

The generalized raking weights have the property to reproduce the known population 

totals when applied to each auxiliary variable. Therefore, a strong correlation between 

the auxiliary variables and the survey variable is essential for the weights to perform 

efficiently on the study variable too. The auxiliary information used for weighting may 

come from one or more external sources, such as administrative data files or census data. 

In some surveys there is also information at the sample level (i.e. for both respondents 

and nonrespondents) on auxiliary variables. For simplicity, this chapter will assume 

auxiliary information as a set of variables that have been measured on respondents to 

the survey and for which information on the population totals is available. 

In this chapter three forms of generalized raking estimator in the presence of 

nonresponse are discussed: the generalized regression estimator (GREG), the classical 

raking ratio estimator and the ‘maximum likelihood’ raking estimator (Brackstone and 

Rao, 1979; Fuller, 2002). These estimators are designed to take account of differences in 

the characteristics of respondents on a set of auxiliary variables with the characteristics 

of the population. Deville and Särndal (1992) and Deville et al. (1993), showed that, 
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under their full response setting and framework, the GREG estimator and the classical 

raking estimator have asymptotically the same properties.  

Raking estimation appears to have a more well-established history of 

applications in many national statistical institutes (NSIs), perhaps because of its ease of 

computation, involving repeated use of standard post-stratification adjustments (Kalton 

and Flores-Cervantes, 2003). In some NSIs, GREG has tended to replace raking 

estimation, and is now used in many surveys (Särndal and Lundström, 2005). One 

reason is that the GREG can be expressed in closed form and computed in one step, 

whereas the computation of a raking estimator is iterative. Perhaps a more important 

reason is that GREG can handle a wider class of auxiliary information, including 

population totals of continuous variables, whereas raking is restricted to the use of 

population counts in the categories of discrete variables. Nevertheless, raking estimation 

continues to be widely used in NSIs in many countries, e.g. the USA and the UK. One 

advantage is that it always produces positive weights, whereas GREG requires 

modification to meet this condition. In addition, raking may reduce nonresponse bias 

more than GREG under certain assumptions (Kalton and Flores-Cervantes, 2003).   

The variances of weighted estimators are often estimated using linearization 

methods (Demnati and Rao, 2004; Wolter, 2007), which rely on the validity of Taylor 

series expansions, or replication techniques (Efron, 1981; Wolter, 2007), which treat the 

sample as it if were the population and repeatedly subsample from this population to 

estimate a variance. A simulation study by Stukel et al. (1996) found little difference 

between two forms of linearization estimators with respect to sampling and observed 

that both the linearization and the jackknife variance estimators show small 

underestimation of the true variance. Stukel et al. (1996) also noted that the jackknife 

approach consistently had smaller biases than the linearization one. However, Stukel et 

al. (1996) simulation work was designed for the full response set-up and there are 

reasons why in the presence of nonresponse different results may be expected. A 

simulation study by Valliant (2004) observed negatively biased linearization variance 

estimators contrary to positively bias jackknife replication variance estimators. 

Conditions for unbiasedness of raking estimation methods under nonresponse 

models vary between estimation methods (e.g. Kalton and Maligalig, 1991; Kalton and 

Flores-Cervantes, 2003) and the choice of variance estimators may be more important in 

the presence of nonresponse (e.g. Fuller, 2002, Sect.8). 
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 This chapter explores alternative forms of linearization variance estimators for 

generalized raking estimators in the presence of unit nonresponse. It also investigates 

one of the most frequently used replication methods of computing variances for 

complex sample surveys called the jackknife method. 

The properties of the alternative raking estimators, including bias and root mean 

square error, and associated variance estimators are investigated through a simulation 

study. This study is designed to mimic these properties with respect to the effects of 

both sampling and nonresponse for two European surveys conducted by NSIs: the 

British Labour Force Survey (LFS) and the German Survey of Income and Expenditure 

(SIE). The GREG estimator is used in practice in the LFS while a version of the 

‘maximum likelihood’ raking estimator is employed in the SIE.  

The chapter is structured as follows. Section 4.2 defines the generalized raking 

estimators. Linearization variance estimators are defined in section 4.3 and replication 

variance estimators in section 4.4. Section 4.5 presents the simulation study with results 

discussed in section 4.6. Some concluding remarks are given in section 4.7. 

4.2 Generalized raking estimation 

Let us first define the three forms of generalized raking estimator in the 

presence of unit nonresponse: a) generalized regression estimator (GREG), b) classical 

raking ratio estimator and c) ‘maximum likelihood’ raking estimator. Consider a finite 

population U from which a probability sample s  is drawn with a given sample design. 

However, as nonresponse occurs, the response set r  is obtained, where r s . The 

objective is to estimate the population total y ii U
T y , where iy  is the value of a 

survey variable for the ith population element, with which is also associated an auxiliary 

vector value 1( , , , , )'i i ij iJx x xx . The population total of x , x ii U
T x , is 

supposed to be accurately known and ix  is known for all units in r . Following Deville 

and Särndal (1992) and Deville et al. (1993), a generalized raking estimator for the 

population total yT  may be written as 

ˆ
y i i

i r

T w y ,     (4.2.1) 
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where the calibration weight iw are as close as possible, according to a specified distance 

function, to the initial weights id  while satisfying the calibration equation: 

i i x
i r

w x T .     (4.2.2) 

The vector xT  is referred to as the vector of calibration totals. A common choice of initial 

weights, which is taken here, is the design weights, i.e. 1
i id , where i is the 

probability that unit i  is sampled.   

Let (.)G  be the distance function from the calibrated weight iw  to the initial 

weight id , with argument i iw d . For every fixed 0id , it is assumed that (.)G is 

positive, differentiable with respect to iw , strictly convex, 1 ' 1 0G G , implying 

that when iw = id the distance between the weights is zero, and '' 1 0G , which makes 

iw = id  a local minimum (Deville and Särndal, 1992; Deville et al., 1993). The class of 

generalized raking weights iw  is obtained by minimising the total sample distance 

( )i i ii r
dG w d ,     (4.2.3) 

subject to the calibration equation (4.2.2). Explicitly, if   denotes a vector of Lagrange 

multipliers, the expression 

( ) 'i i i i i x
i r i r

dG w d w x T     (4.2.4) 

is minimized with respect to the iw . Differentiating (4.2.4) with respect to iw and 

equating to zero results ( ) ' 0i i ig w d x , where /g u G u ud d , and solving for 

iw  leads to the calibration weights: 

ˆ( ' )i i iw d F x ,     (4.2.5) 

where 1( ) ( )F u g u  denotes the inverse function of g u  and λ̂  is the Lagrange 

multiplier which solves the calibration equations: 

)ˆ( 'i i i x
r

d F x x T .       
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Various choices of the distance function (.)G  and associated function (.)F  are 

discussed by Deville and Särndal (1992) (see also Deville et al., 1993 and Fuller, 2009, 

Sect. 2.9). Three are considered in this chapter, which lead to the different generalised 

raking estimators, as follows: 

 a) linear:   2( ) ( )LG u u(1 / 2) 1 , ( )LF u u1
 

 b) multiplicative (raking ratio):    –  MG u u u ulog 1 , MF u uexp   

 c) maximum likelihood raking:    –MLG u u u1 log , 
1

MLF u u1
  

Minimization of expression (4.2.4) using the linear choice of (.)G , ( )LG u , leads 

to the calibration weights: 

1
,ˆ1 'i i i i i i

i r

w d d
x xd

T T x x x ,   (4.2.6) 

where ˆ
xd i i

i r

dT x , and the generalized raking estimator becomes  

ˆ ˆ ˆ ˆ( )'y i i yd x xd r
i r

T w y T T T B ,    (4.2.7) 

the generalised regression estimator (GREG), where ˆ
yd i i

i r

dT y   and 

1
,ˆ

r i i i i i
i r i r

d dB x x x
i

y .    (4.2.8) 

With the second option, the multiplicative choice of (.)G , MG u , the calibrated 

estimator of yT  is the classical raking ratio estimator (Brackstone and Rao, 1979) when xT  

contains the population counts in the categories of two or more categorical auxiliary 

variables. For example, in the context of the British Labour Force Survey, ix  denotes 

the vector of indicator variables of three categorical auxiliary variables: 

1.. .. .1. . . ..1 .. = ( ,  ,  ,  ,  ,  ,  ,  ,  )'i i A i i B i i Cix , 

where ..  = a i 1  if unit i  is in category a  of the first auxiliary variable and 0 otherwise, 

. .b i 1  if unit i  is in category b  of the second auxiliary variable and 0 otherwise and so 

on. The population total xT  of this vector thus contains the population counts in each 

of the (marginal) categories of each of the three auxiliary variables.  The construction of 
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the weights for classical raking ratio estimation has traditionally involved the use of 

iterative proportional fitting (Brackstone and Rao, 1979). Ireland and Kullback (1968) 

demonstrate that this method converges to a solution of the above optimisation 

problem.  

The third option, the function MLG u , leads to an alternative ‘maximum 

likelihood’ version of raking adjustment, when ix  takes the same form, denoting 

indicator variables of categorical auxiliary variables. In this case, the distance (4.2.3) may 

be interpreted as a quantity which is proportional to minus a log likelihood in the case 

of simple random sampling with replacement (Brackstone and Rao, 1979; Fuller, 2002). 

A disadvantage of using a linear form of (.)G  compared to the other choices 

presented in this section is that, as noted by Deville and Särndal (1992), the calibrated 

weights iw  resulting from using the linear function can be positive or negative, whereas 

the multiplicative and ‘maximum likelihood’ cases guarantee positive weights. Deville 

and Särndal (1992) also noted that the multiplicative choice of (.)G  may result in some 

extremely large weights compared to the basic sampling weights id . 

This chapter now turns to the discussion of variance estimation methods for the 

generalised raking estimators, including both linearization and replication variance 

estimation. 

4.3 Linearization variance estimation 

Survey weights that include calibration for nonresponse should not be treated as 

constants when estimating the variances of survey estimates since they are sample 

dependent. One possible approach to deal with this complication is to use linearization 

variance estimators (Wolter, 2007). This approach is usually called the linearization 

method because one first reduces the original nonlinear quantity to an approximate 

linear quantity by using the linear term of the corresponding Taylor series expansion, 

and then constructs the variance formula and an estimator of the variance of this 

linearized quantity.  

Suppose first that ˆ , an estimator of a population parameter  based on a 

sample s  of size n , may be expressed as a linear function of p  estimated totals 1
ˆ ˆ, , pT T  
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1 0
1

ˆ ˆ ˆ ˆ( ,..., )
p

p j j
j

h T T a a T      

The variance of ˆ  may be written as 

1 1 1

ˆ ˆ ˆ ˆ( ) ( , )
p p p

j j j l j l
j j l

V V a T a a T Tcov ,   (4.3.1) 

where the covariance between ˆ
jT  and ˆ

lT , ˆ ˆ( , )j lT Tcov , is equal to variance of ˆ
jT  for j l . 

The variance (4.3.1) can be easily estimated by using estimated covariance terms as 

illustrated in Särndal et al. (1992, page 172).  

However, in the case of h  being a nonlinear function of the p  totals, it is often 

impossible to obtain an exact expression for the sampling variance of the estimator 

1
ˆ ˆ ˆ( ,..., )ph T T . Then, the Taylor linearization method may be used to obtain an 

approximate expression for the variance of ˆ  and also an approximate estimator of this 

variance. This method approximates the nonlinear estimator ˆ  by a pseudo-estimator 

0
ˆ , which is a linear function of 1

ˆ ˆ,..., pT T  and thus easy to manipulate. The technique for 

finding 0
ˆ  consists of the first-order Taylor approximation of the function h , 

expanding around the point 1( , , )pT T , defined as the expectation of 1
ˆ ˆ( , , )pT T ,  and 

neglecting the remainder term. That is 

0
1

ˆ ˆ ˆ( )
p

j j j
j

a T T ,    (4.3.2) 

where 

1 1
ˆ ˆ( ,..., ) ( ,..., )

ˆ
p p

j
j T T T T

h
a

T
. 

When 1
ˆ ˆ,..., pT T  with high probability take values near 1, , pT T , the estimator ˆ  

performs approximately as the linear random variable 0
ˆ . The numeric accuracy of the 

approximation (4.3.2) will vary from one outcome s  to another. Finally, the variance of 

ˆ  can be approximated by the corresponding derived quantities for the linear statistics 

0
ˆ  

0
1

ˆ ˆ ˆ( ) ( )
p

j j
j

V V V a T .    (4.3.3) 
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Now consider the application of the Taylor linearization method to the weighted 

estimators ˆ
yT  defined in section 4.2. This weighted estimator may be expressed as a 

function of estimated totals. For example, if ˆ  denotes the generalised regression 

estimator as defined in (4.2.7), then 4p , 1
ˆ ˆ

ydT T , 2
ˆ ˆ

xdT T , ,
3
ˆ

i i ir
T d x x  and 

4
ˆ

i ir
T d x

i
y  . A nonresponse mechanism is assumed such that each unit in the 

population responds, if sampled, with probability iq , where this probability is not 

dependent on the choice of the sample and different units respond independently. 

Therefore, the response mechanism is viewed as a second phase of sampling and the 

variance is defined with respect to the joint distribution induced by both sampling and 

nonresponse. 

It is important to note that in general the class of weighted estimators presented 

in section 4.2 (and in particular the classical and the “maximum likelihood” raking) 

involves iterative modifications of the initial weights id  to calibrated weights iw  with 

the aim of satisfying the calibration equations (4.2.2). Following Binder and Théberge 

(1988) and Deville et al. (1993), this section seeks to estimate the asymptotic variance of 

the ‘converged’ estimator, i.e. the estimator ˆ
yT , where the iw  are the ‘converged’ 

weights that solve the calibration equations. Some research exits on estimating the 

variance of ˆ
yT  after a finite number of iterations (Deville et al., 1993). 

The nonlinear nature of the weighted estimator ˆ
yT  in (4.2.1) arises through the 

weights iw  and their dependence on λ̂  via expression (4.2.5). It is assumed that in large 

samples, λ̂  converges to a value  . Deville and Särndal (1992) assumed that  0 , but 

this property is based upon the assumption that the estimator of xT , obtained by 

applying the initial weights id  is consistent. This assumption will often be false in the 

case of nonresponse and thus it is not made in this chapter. 

A linearization variance estimator is obtained by approximating var( )i ir
w y  by 

var( )i ir
d z  for a ‘linearized variable’ iz (Deville 1999). First, an expression for ̂  is 

obtained. A Taylor expansion of the calibrated weight ˆ( ' )i i iw d F x  about   results in 

λ λˆ'( )i i i i iw F fd x ,    (4.3.4) 



 99 

where  denotes ‘is asymptotically equivalent to’, ( ' )i iF F x , ( ' )i if f x , and 

/f u dF u du  is assumed to exist. Substituting in the calibration equations we obtain: 

λ λˆ'( )i i i i i i i x
i r i r

w F fx x x Td ,     

and hence 

λ λ

1
,ˆ

i i i i x i i i
i r i r

f Fx x T xd d .   (4.3.5) 

The first matrix in the expression (4.3.5) is assumed non-singular. It may be 

necessary to drop redundant variables from ix  to achieve this. For example, in the 

three-way case within the context of the Labour Force Survey presented in section 4.2, 

each of the sums of the indicator variables .. ,a i . .b i  and ..ci  across a , b and c , 

respectively, equals 1 and it is natural to drop two of these indicators to avoid singularity. 

The non-singular condition might also require (as in Deville and Särndal, 1992) 

modifying the estimator for samples with small probability.  

Substituting in the calibrated estimator results in: 

λ λˆˆ '( )y i i i i i i i i x i i i
i r i r i r

T F f y d Fy B d Fx T xd , (4.3.6) 

where 

 

1
, ,

i i i i i i i i
i r i r

B d f y fx x xd .    (4.3.7) 

Note that i iF f 1  under the assumptions of Deville and Särndal (1992) (since in this 

case 0  and it follows from the assumptions about (.)G  that (0) (0)F f 1 ). Hence, 

under these assumptions, expression (4.3.6) corresponds to Result 5 of Deville and 

Särndal (1992), i.e. the generalized raking estimator is asymptotically equivalent to the 

GREG estimator. Therefore, the asymptotic variance of ˆ
yT  is the same as that of 

,i ii r
d z  where iz  is the linearized variable 

i i i iz F y x ,     (4.3.8) 

assuming that B  converges to a finite limit vector . 
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For the purpose of linearization variance estimation and following the derivation 

above, ˆ
yT  may be treated as the linear estimator ˆ ,i ii r

d z  where 

ˆ ˆˆ ( )i i i iz F y B x ,     (4.3.9) 

and îz  is obtained by replacing the unknown parameters in (4.3.8) by the later discussed 

estimators ˆ
iF  and B̂ . Then, having determined îz , the linearization variance estimator 

for ˆ
yT  for a given sampling design is obtained by using a standard variance estimator for 

that design for a linear estimator, applied to ˆ
i ii r
d z . 

For example, in the case of a stratified multistage sampling design, assuming 

“with replacement” sampling of primary sampling units (PSUs) within strata, a standard 

estimator of the variance of  ˆ
yT  (e.g. Stukel et al., 1996) is given by: 

2

1 1

ˆ ˆ( ) ( )
1

hnH
h

y hj h
h jh

n
V T z z

n
,   (4.3.10) 

where ˆ ,hj hij hjkk
z d z  ,h hj hj

z z n  and ĥjkz  is the value of the variable defined in 

(4.3.9) for the kth  individual within the j th  selected PSU in stratum h . This estimator 

remains appropriate in the presence of nonresponse if individual response in each PSU 

is independent of response in all other PSUs and if at least one individual is observed in 

each selected PSU (Fuller et al., 1994, p.78).  

In order to obtain îz , a number of choices for ˆ
iF  and B̂  are considered in the 

literature. Regarding ˆ
iF , a natural choice implied by the above argument would be to 

select ˆ
iF  such as ˆˆ ( ' )i iF F x . This choice results in the linear estimator written as: 

ˆ ˆ ˆˆ ( ' )( ) ( )i i i i i i i i ii r i r i r
d z d F y w y xx x B B .  (4.3.11) 

This chapter will refer to (4.3.11) as the iw -weighted residuals estimator. Another simpler 

choice for ˆ
iF  would be ˆ

iF 1 , which leads to the id - weighted residuals estimator: 

ˆˆ ( )i i i i ii r i r
d z d y xB .    (4.3.12) 

Deville and Särndal (1992) noted that, in their classical theory with 0 , both choices 

are asymptotically equivalent. However, they expressed a preference for the choice 
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ˆˆ ( ' )i iF F x . This preference is also highlighted by Fuller (2002, p.15), in particular, 

within the nonresponse setting and with 0  not necessarily holding as in this study.  

Regarding B̂ , it follows from the argument on the choices of ˆ
iF  that if  in (4.3.7) 

should be replaced by ˆˆ ( ' )i if f x , giving:  

(i) 
1

, ,ˆ ˆ ˆ
i i i i i i i i

r r

B f y x f x xd d , as also proposed by Demnati and Rao (2004). 

Other choices are 

(ii) ˆ ˆ
r

B = B , as in (4.2.8), as proposed by Deville et al. (1993). 

(iii) 
1

, ,ˆ
i i i i i

r r

B w y x w x x
i

, as proposed by Deville and Särndal (1992, equation 3.4), 

which might be more practical to compute than ˆ
r

B  for users of survey data files which 

include the w
i
 weights but not the 

i
d  weights. 

The extent to which these choices differ depends on the choice of the (.)G  

function. For the linear case ( ) / ( )/f u dF u du d u du1 1  so that the estimators 

in (i) and (ii) are identical. In the case of classical raking adjustment, 

( ) ( ) / ( ) ( )f u d u du u F uexp exp  so that ˆ ˆ
i if F  and ˆˆ ( ' )i i i i id f d F wx  and the 

estimators (i) and (iii) are identical.  For the ‘maximum likelihood’ raking estimator we 

have 1( ) ( )F u u1  and 2( ) ( )f u u1  so that 2ˆ
i i i if wd / d  and the three variance 

estimators are all distinct.  

4.4 Replication variance estimation  

Another class of methods used for computing sampling variance estimators for 

nonlinear survey statistics is subsample replication (Wolter, 2007). These methods derive 

estimates of the parameter of interest from each of several subsamples of the original 

sample and then estimate the variance of the original sample estimator from the 

variability between the subsample estimates.  Following the notation in section 4.2, a 

replication estimator of the variance of ˆ
yT  may be obtained by: (1) constructing a set of 
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A replicate weights w (a)
i

 for ,  ,  a A1 , using different replicate sampling technique 

for the different replication methods; (2) computing for each set of replicate weights an 

estimator ( )ˆ a
yT  of yT in the same way that ˆ

yT  is computed using the weights iw ; (3) 

using the A  replicate estimates and the original sample estimate, compute the estimator 

of the variance of ˆ
yT  using the following equation: 

( ) 2

1

ˆ ˆ ˆ ˆ( ) ( )
A

a
y a y y

a

V T c T T ,    (4.4.1) 

where ac  is a constant which depends on the replication method.  

The construction of the replicate weights w (a)
i

 involves first taking the initial 

weights id and constructing from these a set of initial replication weights d (a)
i

, 

,  ,  a A1 , according to the replication method and the sampling scheme. Then, 

calibration adjustments are applied to each of these A  sets of initial weights separately. 

One frequently used replication technique to calculate variance estimators is the 

jackknife method. In a stratified multistage cluster sampling design, this method is 

applied separately in each stratum at the first stage of sampling, with one primary 

sampling unit (PSU) deleted at a time. The number of replicates in this case is 

,hA n  where 
hn  is the number of PSUs in stratum , ,h H1 and H  is the 

number of strata in the population. To apply the jackknife, let replicate a  correspond to 

deleting PSU j  in stratum h , calculate the replicate initial weights  

.

.

.
a

i h

c i h j

i j h

i

i

d

d d

if observation unit is not in stratum

if observation unit is in stratum but not in PSU

0 if observation unit is in PSU of stratum

(a)
i               (4.4.2) 

where –  /a h hc n n1 , for ,  ,  a A1 . Then use the weights d (a)
i

to compute w (a)
i

 

using generalized raking estimation as in section 4.2. Finally, calculate ( )ˆ a
yT and the 

variance estimator of ˆ
yT  using (4.4.1).  

The jackknife method described above requires that each cluster within each 

stratum is deleted in turn. This could require many recalculations for large surveys and 

thus be prohibitive. An alternative is to group the hn  clusters in the hth  stratum into 

2hg  groups ( h hg n ) and to proceed as if these were the actual clusters (see, for 
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example, Valliant, 2004). Thus each group is deleted in turn and the number of 

recalculations is reduced to .hhg g  The only change in (4.4.1) is in ac  as follows: 

( )h
a

h

g
c

g

1
.     (4.4.3) 

Another subsample replication method for variance estimation is the bootstrap 

method. The idea of the bootstrap method is to use the variance in repeated bootstrap 

sampling to estimate the variance of the point estimator. A bootstrap sample is a simple 

random sample with replacement of size n , for example, selected from the original 

sample. The bootstrap estimator of the variance of ˆ
yT  may be obtained by (4.4.1) where 

ac A1 . This method is computationally more intensive than the Jackknife method 

and is not further investigated in this chapter. For more details about alternative 

bootstrap method and applications see Wolter (2007). 

Section 4.6 reports a simulation study of the properties of group jackknife 

variance estimators of the generalised regression estimator introduced in section 4.2.   

4.5 Simulation studies 

In order to compare the performance of the weighted estimators presented in 

section 4.2 and their corresponding variance estimators, discussed in section 4.3 and 4.4, 

two simulation studies are undertaken by constructing artificial populations using data 

from the Great Britain Labour Force Survey (LFS) and the German Sample Survey of 

Income and Expenditure (SIE). In each case, 1,000R samples are generated from 

these populations by first sampling, in a way designed to mimic as far as possible the 

real sampling scheme after some simplification, and then removing nonresponding cases 

according to two nonresponse models. This study shall refer to the first model as the 

multiplicative nonresponse model and to the second as the additive nonresponse model.   

For every one of the R  samples, point estimates of each of the parameters are 

calculated using generalized raking estimation and variance estimates are computed 

using linearization and replication methods.  The properties of the estimators are then 

summarised.  
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4.5.1 Study based on the British Labour Force Survey  

The British LFS is a quarterly survey of persons living in private households in 

Britain. Its purpose is to provide information on the British labour market which can 

then be used to develop, manage, evaluate and report on labour market policies. It is 

carried out by the Social Survey Division of the Office for National Statistics (ONS). 

Artificial population and sampling design 

In the first simulation study, data from the March-May 1998 quarter of the 

British LFS is treated as an artificial population. The LFS is a very large survey which 

results in approximately 58,000 addresses in the artificial population. From this 

population repeated samples were drawn in a way intended to mimic as far as possible 

the design used for the LFS. Details about the design of the survey can be found in 

ONS (1998, Section 3). Each sample consists of 1211 households (cluster of individuals) 

selected by stratified simple random sampling with proportional allocation across 19 

strata, defined by region of residence. These regions are used to mimic the effect of the 

110 Interviewer Areas (IAs) which defined strata in the LFS. In the LFS all individuals 

in a sampled household are interviewed if possible. In this simulation study, all the 

respondents in a sample household are retained, except those aged under 16, who are 

not relevant for the estimates of interest. 

Unit nonresponse  

Nonresponse probabilities are assigned to each household in the generated 

artificial population. It is assumed in the simulation study that all individuals within a 

household respond. Two different nonresponse models are considered to determine 

whether sampled households respond, a multiplicative and an additive model. 

Information to assign nonresponse probabilities to each selected household of the 

artificial population is obtained from a study of Foster (1998), in line with findings in 

Chapter 2, and takes into account characteristics of households, such as area of 

residence, age and gender of household reference person (HRP). It is assumed that 

household nonresponse depends on these auxiliary variables but not on the survey 

variables of interest, which is similar to assume a missing at random mechanism for 

nonresponse (Little and Rubin, 1987). 
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Multiplicative Nonresponse Model: 

1
iq  = 1.15 × 1.17 (if London) × 1.13 (if HRP aged under 35) × 1.10 (if HRP female) 

Additive Nonresponse Model: 

1
iq  = 1.15 + 0.20 (if London) + 0.15 (if HRP aged under 35) + 0.10 (if HRP female) 

where iq  is the response probability for each household i  in the population, if sampled. 

The response probability is not dependent on the choice of the sample and different 

households respond independently. Kott (2006) and Chang and Kott (2008) consider 

estimating response probabilities using general models of the form )1 ( 'i iq F x  (also 

see Skinner and D’Arrigo, 2011, Sect. 3). The first model assumes multiplicative 

nonresponse, which might be expected to lead to least bias for the raking ratio method 

(see, for example, D’Arrigo and Skinner, 2010, Section 3), and the second model 

assumes additive nonresponse, which might be expected to lead to least bias for the 

GREG estimator (see, for example, Fuller, 2002, Section 8). Therefore, these models are 

designed so that the raking and GREG estimators respectively perform well.  

Weighting and Calibration 

Weights are constructed for responding individuals within selected households, 

with calibration totals consisting of population counts in the categories of three 

categorical auxiliary variables: area of residence, age and gender, and with Horvitz-

Thompson initial weights id , as in section 4.2. The choice of auxiliary variables was 

designed to mimic those used in the LFS. However, because of small numbers of 

individuals within strata due to our artificial population and samples being much smaller 

than those for the original survey, we simplified the LFS calibration variables to the 

following three categorical factors: 

- area of residence (see Appendix A3) with 23 categories;  

- a cross-classification of gender by age groups (with 10 age groups consisting of 

single years for those between 16 and 24 and a separate age group for those 25 or 

older) with 20 categories; 

- a cross-classification of region (Northern England; London and South East; The 

Midlands and East Anglia; Scotland) by gender by age groups (in 15-year age 

groups: 16-29, 30-44, 45-59, 60-75 and 75 or older), with 40 categories. 
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Survey statistics 

The parameters of interest defined for the artificial population are: the total 

number of persons unemployed (TNU), the total number of persons employed (TNE) 

and the total number of persons in the inactive workforce (TNI). These parameters are 

computed using the artificial population of the LFS by 

( )
y jih

jih U

yT  

where jihy  denotes the vector of indicator survey variables: 1 2 3, ,  jih jih jih jihy y y y , 

where 1  =jihy 1  if individual j  in household i  within stratum h  is unemployed and 0 

otherwise, 2  =jihy 1  if individual j  in household i  within stratum h  is employed and 0 

otherwise, and 3  =jihy 1  if individual j  in household i  within stratum h  is inactive and 

0 otherwise. 

For each of the R  simulated samples, point estimates of the TNU, TNE and 

TNI are computed using classical raking estimation, “maximum likelihood” raking 

estimation, and generalized regression estimation and, associated variance estimates are 

calculated using the alternative linearization methods described in section 4.3 and the 

jackknife replication technique illustrated in section 4.4. The properties of these 

estimators, under alternative assumptions about nonresponse, are investigated following 

usual practice in simulation studies. For example: 

(1) The bias of the point estimator ˆ
yT  with respect to the population parameter 

yT  is estimated by: 

1

1ˆ ˆ( ) ( )
R

y y y
r

Bias T T T
R r

, 

where ˆ
yT

r

 is the value of ˆ
yT  for sample r . 

(2) The percent relative bias of the point estimator ˆ
yT  with respect to the 

population parameter is estimated by: 

ˆ( )
* 100y

y

Bias T

T
. 

(3) The simulation variance of the point estimator ˆ
yT  taken over the R  samples 

is estimated by: 
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2

1

1 ˆ ˆ( )
R

y y
r

V T E T
RS

r

, 

where 
1

1ˆ ˆ( )
R

y y
r

E T T
R r

. 

 

 

(4) The simulation variance of the bias estimator (1) from: 

ˆ( )y
V

V Bias T
R

S . 

(5) The root mean square error of the point estimator ˆ
yT is estimated by: 

2ˆ ˆ( )y yRMSE T V Bias T
S

. 

(6) The expectation of the variance estimator of ˆ
yT  taken over the R  samples 

from: 

1

1ˆ ˆˆ ˆ( ) ( )
R

y r y
r

E V T V T
R

, 

where ˆ ˆ( )r yV T  is the value of the variance estimate for sample r . 

(7) The bias of the variance estimator of ˆ
yT with respect to the simulation 

variance (3) is estimated by: 

1

1ˆ ˆˆ ˆ( ) ( )
R

y r y
r

Bias V T V T V
R S

. 

(8) The percent relative bias of the variance estimator of ˆ
yT with respect to the 

simulation variance (3) is estimated by: 

ˆ ˆ( )
*100

y

s

Bias V T

V
. 

(9) The variance of the bias of the variance estimator of ˆ
yT  from: 

ˆ ˆ( )
ˆ ˆ( )

y
y

V V T
V Bias V T

R
, 
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where  
2

1

1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
R

y r y y

r

V V T V T E V T
R 

        . 

(10) The root mean square error of the variance estimator of ˆ
yT  from: 

2
ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )y y yRMSE V T V V T BiasV T . 

(11) A confidence interval for the population parameter yT  for sample r  at the 

approximate 95% level, defined as: 

ˆˆ ˆ( )
ry r yT V T1.96 . 

In order to check if this confidence interval is valid, that is, if the desired 95% 

normal-theory confidence level is attained, an empirical validation is carried out 

by simulation. First, for each sample 1, ,r R , the estimator ˆ
ry
T , the variance 

estimator ˆ ˆ( )r yV T , and the confidence interval defined above are computed. Then, 

for each of the R  confidence intervals computed, observe whether the known 

parameter yT  is included in the interval or not. If K  of the R  intervals are 

found to contain yT , the empirical coverage of the confidence interval is defined 

as the proportion H R . This proportion should lie near the desired 95% 

confidence level. 

Some statistics related to the calibration weights, such as the number of negative 

weights and number of weights more than 10 times the corresponding design weights, 

resulting from using each of the function (.)G  under study are also computed.  

4.5.2 Study based on the German Sample Survey of Income and 
Expenditure  

The Sample Survey of Income and Expenditure (SIE) is a nationwide household 

survey conducted every 5 years by the Federal Statistical Office. The main purpose of 

the survey is to provide information about the economic and social situation of 

households, in particular regarding the distribution of income and expenditure 

(Quatember et al., 2002).   
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Population and Sampling Design 

The second simulation study is based on the 1998 SIE. It uses data from an 

artificial population of 64,326 households, created to represent 20% of all households 

from the Bremen region, excluding those with a monthly household net income of DM 

35,000 or above (DM denotes the currency German marks). The SIE employs a quota 

sampling design which is not attempted to mimic in this simulation study. Instead, 

simple random sampling allowing for nonresponse is employed in this simulation. 

Repeated simple random samples of 1340 households are drawn from the synthetic 

population, representing a sampling fraction of about 1 48 . 

Unit nonresponse  

Even though the SIE quota sampling design does not allow for nonresponse, 

two different nonresponse models are considered in this study for research purposes, a 

multiplicative and an additive. Information to assign nonresponse probabilities to each 

selected household from the artificial population is obtained from results of studies of 

similar surveys in Great Britain: the Family Expenditure Survey and the National Food 

Survey (Foster, 1998). This information takes into account characteristics of households, 

such as socio-economic status and type of household. For each selected sample, the 

subset of responding households is determined by the following nonresponse models:  

Multiplicative Model: 

1
iq  = 1.44 × 1.09 (if HRP self-employed) × 1.03 (if HRP unemployed) × 0.97 (if HRP 

employed) × 1.16 (if no children in the household) 

Additive Model: 

1
iq  = 1.44 + 0.13 (if HRP self-employed) + 0.04 (if HRP unemployed) – 0.04 (if HRP 

employed) + 0.23 (if no children in the household) 

Weighting and Calibration 

As for the LFS study, each sampled household is assigned a weight. In the actual 

SIE the weights are constructed using essentially the maximum likelihood raking 

method by adjusting the sample data simultaneously to the marginal distributions of 

several characteristics, such as household type, social economic status of the household 

reference person, household net income class and region (Bundesland). This study tries 
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to mimic this adjustment as far as possible. However, as for the LFS study, because of 

the reduced scale of the created artificial population and the consequent smaller 

numbers of households within strata, the SIE calibration variables are simplified to 

three categorical factors as follows: 

- household type with 7 categories (mother/father alone + 1 child; mother/father 

alone + 2 or more children; couple with 1 child - spouse employed; couple with 1 

child - spouse unemployed; couple with 2 or more children - spouse employed; 

couple with 2 or more children - spouse unemployed; other); 

- social status of the household reference person with 5 categories (self-employed; 

civil servant or military; employee; worker; unemployed, pensioner, student or 

other); 

- household net income per quarter with 3 categories (0-5,000 DM; 5-7,000 DM; 

7-35,000 DM). 

Survey statistics 

The parameters of interest are the total household net income per quarter (INC) 

and the total household expenditure per quarter (EXP). These parameters are computed 

from the finite artificial population by 

INC EXPy i z ii U i U
T y T zand , 

where iy  and iz  denote the value of the continuous survey variable INC and EXP for 

household i , respectively. 

As in the LFS study, for each of the R  samples, point estimates of the above 

parameters and associated variance estimates are calculated using the different methods 

presented in this chapter. The properties of the estimators are then summarised in the 

following section. 

4.6 Results 

4.6.1 Properties of point estimators  

Table 4.6.1 presents the properties of the point estimators of total number of 

persons unemployed in the LFS study for different calibration methods and alternative 
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assumptions about nonresponse. It also shows the number of negative weights and very 

large weights for the different settings and across all sample units and all 1000 samples. 

Numbers are rounded to the nearest one decimal. An overall observation from this table 

is that the standard error remains virtually constant across alternative raking methods 

for a given nonresponse model. As expected, nonresponse leads to an increase in the 

standard error across all estimators (since the sample size is reduced). Regarding bias, 

the table shows evidence of nonresponse bias relative to the simulation standard error 

of bias ( ( )z 1.96bias se bias ), which is of a similar order for each of the raking methods. 

It is not found that this bias is least when the estimator matches the nonresponse model 

(i.e. the GREG estimator for additive response and the raking estimator for 

multiplicative response) as it might have expected. Perhaps this is because the covariates 

used in the nonresponse models (e.g. the aged 35+ variable) are not all included in the 

calibrating variables. Nevertheless, the nonresponse bias is small (relative bias of about 

1% across weighting methods) in the sense that the root mean square error is very 

similar to the standard error in each case. Under nonresponse, the GREG calibration 

method generates some negative weights whereas this is avoided by the two raking 

methods, as expected. A greater number of very large weights are observed, however, 

for the ‘maximum likelihood’ raking estimator. 

 

Table ‎4.6.1: Simulation properties of point estimators of total unemployed using data from LFS 
(R=1000) 

Nonresponse 
Model/ 
Point Estimator 

Bias  
(simulation 

standard 
error) 

Percent 
Relative 

Bias 

Standard 
Error 

Root 
Mean  

Square 
Error 

Number of 
Negative 
Weights1 

Number of 
Very Large 
Weights1,2 

Complete Response: 

GREG 7.6 (14.3) 0.2 452.8 452.8 0 0 
Classical Raking 8.3 (14.3) 0.2 452.8 452.9 0 0 
‘ML’ Raking 9.0 (14.3) 0.2 453.3 453.4 0 1 

Multiplicative nonresponse: 

GREG -45.6 (15.8) -1.2 498.3 500.3 4 1 
Classical Raking -42.1 (15.8) -1.1 498.8 500.6 0 2 
‘ML’ Raking -39.7 (15.8) -1.0 499.4 501.0 0 7 

Additive nonresponse: 

GREG -37.3 (15.7) -0.9 497.4 498.8 5 1 
Classical Raking -34.7 (15.7) -0.9 497.5 498.7 0 3 
‘ML’ Raking -32.4 (15.8) -0.8 498.1 499.1 0 7 

1the number of such weights across all sample units and all 1000 samples 
2the number of weights more than 10 times the corresponding design weight 
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Corresponding results for the SIE data are presented in Table 4.6.2. The pattern 

of results is broadly similar, although there is now no evidence of significant 

nonresponse bias (i.e. the observed bias could be explained by simulation variation). The 

standard errors and root mean square errors also remain virtually constant across 

weighting methods for a given nonresponse model. There are no negative weights or 

very large weights observed in Table 4.6.2. 

 

Table ‎4.6.2: Simulation properties of point estimators of total income using data from SIE 
(R=1000) 

Nonresponse Model/ 
Point Estimator 

     Bias 
(simulation 

standard error) 

Standard 
Error 

Root 
Mean 

Square 
Error 

Number of 
Negative 
Weights1 

Number of 
Very Large 
Weights1,2 

Complete Response: 

GREG -172.2 (331.3) 10,477.3 10,478.7 0 0 
Classical Raking -170.6 (331.5) 10,484.1 10,485.8 0 0 
‘ML’ Raking -169.8 (331.8) 10,491.5 10,492.9 0 0 

Multiplicative nonresponse: 

GREG -495.7 (429.7) 13,586.8 13,595.8 0 0 
Classical Raking -493.8 (429.6) 13,584.6 13,593.5 0 0 
‘ML’ Raking -463.5 (429.5) 13,582.8 13,590.7 0 0 

Additive nonresponse: 

GREG -473.2 (430.5) 13,614.8 13,623.0 0 0 
Classical Raking -469.4 (430.5) 13,612.9 13,621.0 0 0 
‘ML’ Raking -439.5 (430.5) 13,613.5 13,620.6 0 0 

1the number of such weights across all sample units and all 1000 samples 
2the number of weights more than 10 times the corresponding design weight 

4.6.2 Properties of variance estimators  

The properties of the different linearization estimators of the variances of the 

point estimators of the total unemployed from the LFS are shown in the Table 4.6.3 

(the ‘standard error estimate’ in the table refers to the square root of the variance 

estimate). A number of observations can be made from this table as follows: 

 Using calibrated weights iw  to weight the residuals rather than using initial 

weights id , reduces the bias and root mean squared error of the standard error estimator. 

This is observed across all alternative raking methods and nonresponse assumptions. 

The bias arising from the use of id  weighted residuals in the case of nonresponse is 

particularly important (as noted by Fuller, 2002) but there are also non-negligible 

reductions of bias even in the complete response case. 
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 The choice of weight used in the estimated regression coefficients B̂  for the 

calculation of residuals seems to have little impact. Some slight evidence in favour of 

using initial weights id  to compute B̂  when simultaneously weighting the residuals by 

calibrated weights iw  might be observed.  

 For a given nonresponse setting and choice of weighting the residuals, there is 

little difference in the results for the different choices of point estimator. 

The results in Table 4.6.3 are extended in Table 4.6.4 to consider relative bias of 

the standard error estimators, rather than their absolute bias, and to consider two 

additional parameters: total numbers employed and inactive. From table 4.6.4, it can be 

again observed that the relative bias arising from using id  weighted residuals can be 

substantial in the presence of nonresponse, over 20% in several cases, and that this is 

reduced using the iw  weighted residuals. Again, little change is observed in the percent 

relative bias of the standard error estimators when different choices of weights are used 

in the calculation of B̂  for the residuals. It is important to note that confidence interval 

coverages and relative biases reported in Table 4.6.3 and 4.6.4 respectively are not 

expected to be affected by the small nonresponse bias in the estimates of the totals. 

Corresponding results for the SIE data when estimating total income are shown 

in Table 4.6.5.  Again, the pattern of results is broadly similar to that for the LFS data in 

Table 4.6.3.  For the complete response case, the use of iw -weighted residuals rather 

than id -weighted residuals leads to modest improvement in bias and RMSE of the 

standard error estimators. However, for the nonresponse cases the improvements are 

considerable. Little change in the standard error estimators is observed when modifying 

the choice of weight used to compute the estimated regression coefficients, observing 

again slightly smaller biases when using initial weights to compute B̂  and calibrated 

weights to weight the residuals. However, the results do not suggest that one approach 

leads to consistently lower absolute bias. The results in Table 4.6.5 are extended in Table 

4.6.6 to consider relative bias of the standard error estimators, rather than their absolute 

bias, and to consider one additional parameter: total expenditure per quarter. It is again 

observed that the relative bias arising from using id -weighted residuals can be 

substantial in the presence of nonresponse, over 35% in all cases, and that this is 

reduced using the iw -weighted residuals, for which the relative bias never exceeds about 

3%. 
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Table ‎4.6.3: Properties of linearization variance estimators when estimating total unemployed 
from the LFS (R = 1000) 

Weighting 
Method 

 

w - or d -
weighted 
residuals1 

weight 
used 

for B̂ in 
residual1 

Mean of  
Standard 

Error 
Estimator 

Bias of 
SE Estimator 

(simulation s.e.) 

RMSE   
of SE 

Estimator 

Coverage2 
of Confidence 

Interval (%) 

Complete Response:     

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

433.9 
434.3 
442.8 
441.9 

-18.8 (0.9) 
-18.5 (0.9) 
-10.0 (1.0) 
-10.8 (1.0) 

33.4 
33.3 
31.9 
32.0 

93.5 
93.5 
93.8 
93.7 

Classical 
Raking 

 
d  
d  
w  
w  

 
d  
w  
d  
w  

 
433.9 
434.2 
443.0 
442.0 

 
-18.8 (0.9) 
-18.5 (0.9) 
-9.8 (1.0) 

-10.7 (1.0) 

 
33.4 
33.3 
32.0 
32.0 

 
93.5 
93.5 
93.8 
93.8 

‘ML’ 
Raking 

 
d  
d  
d  

     w  
w  
w  

 
d  
w  
df  

d  
w  
df  

 
433.9 
434.3 
435.4 
443.7 
442.3 
441.6 

 
-19.4 (0.9) 
-19.1 (0.9) 
-17.9 (0.9) 
-9.6 (1.0) 

-11.1 (1.0) 
-11.8 (1.0) 

 
33.7 
33.6 
33.0 
32.5 
32.4 
32.3 

 
93.5 
93.5 
93.5 
93.7 
93.7 
93.7 

Multiplicative nonresponse:     

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

385.7 
  386.1 

489.5 
   487.8 

-112.6 (0.9) 
      -112.1 (0.9) 

-8.8 (1.2) 
-10.4 (1.2) 

116.0 
115.5 
39.2 
39.2 

85.8 
85.8 
94.2 
94.2 

Classical 
Raking 

 
d  
d  
w  
w  

 
d  
w  
d  
w  

 
385.7 
386.1 
490.3 
488.4 

 
-113.1 (0.9) 
-112.7 (0.9) 

-8.5 (1.2) 
-10.4 (1.2) 

 
116.5 
116.1 
39.6 
39.5 

 
85.7 
85.7 
94.3 

 94.1 

‘ML’ 
Raking 

 
d  
d  
d  

     w  
w  
w  

 
d  
w  
df  

d  
w  
df  

 
385.7 
386.2 
387.8 
491.9 
488.9 
487.5 

 
-113.7 (0.9) 
-113.2 (0.9) 
-111.6 (0.9) 

-7.5 (1.3) 
-10.5 (1.2) 
-11.9 (1.2) 

 
117.1 
116.6 
115.0 
40.4 
39.9 
39.8 

 
85.4 
85.6 
85.8 
94.2 
94.0 
94.0 

Additive nonresponse:     

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

386.5 
387.0 
489.3 
487.6 

-110.9 (0.9) 
-110.5 (0.9) 

-8.2 (1.2) 
-9.8 (1.2) 

114.4 
113.9 
39.0 
39.0 

86.0 
86.0 
94.6 
94.6 

Classical 
Raking 

 
d  
d  
w  
w  

 
d  
w  
d  
w  

 
386.5 
387.0 
490.1 
488.1 

 
-111.0 (0.9) 
-110.6 (0.9) 

-7.4 (1.2) 
-9.4 (1.2) 

 
114.4 
114.0 
39.2 
39.1 

 
85.8 
85.8 
94.7 
94.6 

‘ML’ 
Raking 

 
d  
d  
d  

     w  
w  
w  

 
d  
w  
df  

d  
w  
df  

 
386.5 
387.0 
388.6 
491.6 
488.6 
487.3 

 
-111.6 (0.9) 
-111.1 (0.9) 
-109.5 (0.9) 

-6.5 (1.3) 
-9.5 (1.2) 

-10.8 (1.2) 

 
115.0 
114.6 
113.0 
40.0 
39.5 
39.4 

 
85.6 
85.6 
85.9 
94.7 
94.6 
94.6 

Figures in bold indicate the best approach under each scenario 

1 see text following equation (4.3.11), where choices df ,d  and w  correspond to B̂  in (i), (ii) and (iii) respectively  
2 percentage of 95% normal-theory confidence intervals containing true value 
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Table ‎4.6.4: Percent relative bias of linearization standard error estimators of unemployed, 
employed and inactive totals from LFS (R = 1000) 

Weighting Method 

 

w - or d -
weighted 
residuals1 

weight 
used 

for B̂ in 
residual1 

Percent Relative Bias of Standard Error 
Estimator 

Unemployed Employed Inactive 

Complete Response:    

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

-4.2 
-4.1 
-2.2 
-2.4 

-3.4 
-3.3 
-2.2 
-2.3 

0.5 
0.6 
1.9 
1.7 

Classical Raking 

 

d  
d  
w  
w  

 

d  
w  
d  
w  

 
-4.2 
-4.1 
-2.2 
-2.4 

 
-3.3 
-3.2 
-2.1 
-2.2 

 
0.7 
0.8 
2.1 
1.9 

‘ML’ Raking 

 

d  
d  
d  

     w  
w  
w  

 

d  
w  
df  

d  
w  
df  

 
-4.3 
-4.2 
-4.0 
-2.1 
-2.4 
-2.6 

 
-3.3 
-3.3 
-3.1 
-2.0 
-2.2 
-2.3 

 
0.7 
0.8 
1.1 
2.3 
1.9 
1.8 

Multiplicative nonresponse:    

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

-22.6 
-22.5 
-1.8 
-2.1 

-22.3 
-22.2 
-3.3 
-3.5 

-18.2 
-18.1 

1.8 
1.5 

Classical Raking 

 

d  
d  
w  
w  

 

d  
w  
d  
w  

 
-22.7 
-22.6 
-1.7 
-2.1 

 
-30.6 
-30.5 
-13.5 
-13.7 

 
-18.4 
-18.3 

1.7 
1.3 

‘ML’ Raking 

 

d  
d  
d  

     w  
w  
w  

 

d  
w  
df  

d  
w  
df  

 
-22.8 
-22.7 
-22.3 
-1.5 
-2.1 
-2.4 

 
-22.0 
-21.9 
-21.7 
-2.7 
-3.1 
-3.3 

 
-18.4 
-18.3 
-17.9 

1.9 
1.3 
1.1 

Additive nonresponse:    

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

-22.3 
-22.2 
-1.6 
-2.0 

-21.8 
-21.7 
-2.9 
-3.1 

-18.5 
-18.4 

1.1 
0.8 

Classical Raking 

 

d  
d  
w  
w  

 

d  
w  
d  
w  

 
-22.3 
-22.2 
-1.5 
-1.9 

 
-30.2 
-30.1 
-13.3 
-13.5 

 
-18.0 
-17.9 

1.8 
1.4 

‘ML’ Raking 

 

d  
d  
d  

     w  
w  
w  

 

d  
w  
df  

d  
w  
df  

 
-22.4 
-22.3 
-22.0 
-1.3 
-1.9 
-2.2 

 
-21.6 
-21.5 
-21.3 
-2.4 
-2.8 
-3.0 

 
-18.0 
-17.9 
-17.6 

2.0 
1.5 
1.3 

Figures in bold indicate the best approach under each nonresponse scenario 

1see text following equation (4.3.11), where df ,d  and w  correspond to B̂  in (i), (ii) and (iii) respectively  
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Table ‎4.6.5: Properties of linearization variance estimators when estimating total income from 
the SIE (R = 1000) 

Estimator 

 

w - or d -
weighted 
residuals1 

weight 
used 

for B̂ in 
residual1 

Mean of 
Standard 

Error 
Estimator 

Bias of 
SE Estimator 

(simulation s.e.) 

RMSE 
of SE 

Estimator 

Coverage2 

of 
Confidence 
Interval (%) 

Complete Response:     

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

10,338.8 
10,339.2 
10,377.9 
10,376.8 

-138.5 (6.9) 
-138.2 (6.9) 
-99.5 (6.9) 

-100.5 (6.9) 

259.0 
258.8 
240.0 
240.3 

93.8 
93.8 
94.1 
94.1 

Classical 
Raking 

 
d  
d  
w  
w  

 
d  
w  
d  
w  

 
10,338.8 
10,339.2 
10,370.0 
10,376.9 

 
-145.3 (6.9) 
-144.9 (6.9) 
-106.1 (6.9) 
-107.2 (6.9) 

 
262.7 
262.5 
243.1 
243.5 

 
93.8 
93.8 
94.0 
94.0 

‘ML’ Raking 

 
d  
d  
d  

     w  
w  
w  

 
d  
w  
df  

d  
w  
df  

 
10,338.8 
10,339.2 
10,340.3 
10,378.3 
10,377.1 
10,376.7 

 
-152.7 (6.9) 
-152.4 (6.9) 
-151.3 (6.9) 
-113.2 (6.9) 
-114.4 (6.9) 
-114.8 (6.9) 

 
266.9 
266.7 
266.1 
246.5 
247.0 
247.2 

 
93.9 
93.9 
94.0 
94.0 
94.0 
94.0 

Multiplicative nonresponse:     

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

8,104.7 
8,105.5 

13,214.5 
13,210.9 

-5,482.1 (7.4) 
-5,481.3 (7.4) 
-372.3 (12.8) 
-375.9 (12.8) 

5,487.1 
5,486.3 

549.7 
551.7 

75.8 
75.8 
94.5 
94.5 

Classical 
Raking 

 
d  
d  
w  
w  

 
d  
w  
d  
w  

 
8,104.7 
8,105.5 

13,214.1 
13,210.4 

 
-5,479.8 (7.4) 
-5,479.1 (7.4) 
-370.4 (12.8) 
-374.2 (12.8) 

 
5,484.9 
5,484.1 

549.4 
551.5 

 
75.8 
75.8 
94.5 
94.5 

‘ML’ Raking 

 
d  
d  
d  

     w  
w  
w  

 
d  
w  
df  

d  
w  
df  

 
8,104.7 
8,105.5 
8,108.1 

13,215.2 
13,210.6 
13,208.9 

 
-5,478.1 (7.4) 
-5,477.3 (7.4) 
-5,474.7 (7.4) 
-367.6 (12.9) 
-372.2 (12.9) 
-373.9 (12.9) 

 
5,483.1 
5,482.3 
5,479.7 

549.4 
551.6 
552.3 

 
75.8 
75.8 
75.9 
94.5 
94.5 
94.5 

Additive nonresponse:     

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

8,106.3 
8,107.1 

13,207.9 
13,204.3 

-5,508.5 (7.4) 
-5,507.7 (74) 
-407.0 (12.8) 
-410.5 (12.8) 

5,513.5 
5,512.7 

573.8 
575.9 

75.6 
75.6 
94.3 
94.3 

Classical 
Raking 

 
d  
d  
w  
w  

 
d  
w  
d  
w  

 
8,106.3 
8,107.1 

13,207.7 
13,203.9 

 
-5,506.6 (7.4) 
-5,505.9 (7.4) 
-405.3 (12.8) 
-409.0 (12.8) 

 
5,511.6 
5,510.9 

573.6 
575.8 

 
75.7 
75.7 
94.1 
94.1 

‘ML’ Raking 

 
d  
d  
d  

     w  
w  
w  

 
d  
w  
df  

d  
w  
df  

 
8,106.3 
8,107.1 
8,109.7 

13,208.9 
13,204.2 
13,202.5 

 
-5,507.2 (7.4) 
-5,506.4 (7.4) 
-5,503.8 (7.4) 
-404.6 (12.9) 
-409.2 (12.9) 
-411.0 (12.9) 

 
5,512.2 
5,511.4 
5,508.8 

574.8 
577.3 
578.1 

 
75.9 
75.9 
75.9 
94.1 
94.1 
94.1 

Figures in bold indicate the best approach under each scenario 

1see text following equation (4.3.11), where choices df ,d  and w  correspond to B̂  in (i), (ii) and (iii) respectively  
2 percentage of 95% normal-theory confidence intervals containing true value 
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Table ‎4.6.6: Percent relative bias of linearization variance estimators of expenditure and income 
totals from SIE (R= 1000) 

Weighting Method 

 

w - or d -
weighted 
residuals 

 
weight used 

for B̂ in 
residual1 

Percent Relative Bias of Standard 
Error Estimator 

Expenditure Income 

Complete Response:   

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

0.7 
0.7 
1.3 
1.3 

-1.3 
-1.3 
-1.0 
-1.0 

Classical Raking 

 

d  
d  
w  
w  

 

d  
w  
d  
w  

 
0.7 
0.7 
1.2 
1.2 

 
-1.4 
-1.4 
-1.0 
-1.0 

‘ML’ Raking 

 

d  
d  
d  

     w  
w  
w  

 

d  
w  
df  

d  
w  
df  

 
0.6 
0.6 
0.6 
1.2 
1.2 
1.2 

 
-1.5 
-1.5 
-1.4 
-1.1 
-1.1 
-1.1 

Multiplicative nonresponse:   

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

-38.2 
-38.2 
-0.3 
-0.3 

-40.4 
-40.3 
-2.7 
-2.8 

Classical Raking 

 

d  
d  
w  
w  

 

d  
w  
d  
w  

 
-38.2 
-38.2 
-0.3 
-0.3 

 
-40.3 
-40.3 
-2.7 
-2.8 

‘ML’ Raking 

 

d  
d  
d  

     w  
w  
w  

 

d  
w  
df  

d  
w  
df  

 
-38.2 
-38.2 
-38.2 
-0.3 
-0.3 
-0.4 

 
-40.3 
-40.3 
-40.3 
-2.7 
-2.7 
-2.8 

Additive nonresponse:   

GREG 

d  
d  
w  
w  

d  
w  
d  
w  

-38.1 
-38.1 
-0.2 
-0.2 

-40.5 
-40.5 
-3.0 
-3.0 

Classical Raking 

 

d  
d  
w  
w  

 

d  
w  
d  
w  

 
-38.1 
-38.1 
-0.2 
-0.2 

 
-40.5 
-40.5 
-3.0 
-3.0 

‘ML’ Raking 

 

d  
d  
d  

     w  
w  
w  

 

d  
w  
df  

d  
w  
df  

 
-38.2 
-38.2 
-38.1 
-0.2 
-0.3 
-0.3 

 
-40.5 
-40.5 
-40.4 
-3.0 
-3.0 
-3.0 

Figures in bold indicate the best approach under each nonresponse scenario 

 1 see text following equation (4.3.11), where df ,d  and w  correspond to B̂  in (i), (ii) and (iii) respectively  
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Table 4.6.7 presents the properties of group jackknife estimators of the variance 

of the generalised regression point estimator of the total number of persons 

unemployed in the LFS study for different assumptions about nonresponse (the 

‘standard error estimate’ in the table refers to the square root of the variance estimate).  

Since the jackknife calculations are very time-consuming, and larger biases of the 

standard error estimator compared to the linearization approach are observed (see Table 

4.6.3 and 4.6.4), the jackknife method is not employed in this simulation study for the 

other generalised raking estimators. For the generalised regression calibration method, 

two versions of the grouped jackknife variance estimators are computed with number of 

groups 38, 76g . In each case, the initial sample within each of the 19 strata is equally 

divided into 19g  random groups and deleted one at a time to create the replications.  

 

Table ‎4.6.7: Properties of alternatives jackknife variance estimators of the GREG point 
estimator of the total unemployed from the LFS (R = 1000) 

Nonresponse 
Model 

g  

Mean of  
Standard 

Error 
Estimator 

Bias of 
SE 

Estimator 
(simulation s.e.) 

 
Percent 
Relative 

Bias 

RMSE   
of SE 

Estimator 

Coverage1 
of 

Confidence 
Interval (%) 

Complete 
Response 
 

38 
76 

 

501.3 
508.8 

 

48.6 (4.1) 
56.0 (2.5) 

 

10.7 
12.4 

139.1 
97.6 

 

94.5 
95.9 

 
Multiplicative 
nonresponse 
 

38 
76 

 

569.2 
579.2 

 

71.0 (3.8) 
81.0 (4.2) 

 

14.2 
16.3 

177.8 
154.5 

 

95.1 
95.9 

 
Additive 
nonresponse 
 

38 
76 

 

568.8 
575.6 

 

71.4 (5.4) 
78.1 (4.1) 

 

14.4 
15.7 

184.9 
150.8 

 

94.8 
95.8 

 
1 percentage of 95% normal-theory confidence intervals containing true value 

Table 4.6.7 shows evidence of positive bias, relative to the simulation standard 

error, for all grouped jackknife estimators. Slightly larger biases are observed for the 

estimators computed with more number of groups (i.e. 76g ) . However, it is 

important to observe that the RMSEs of these latter estimators are always smaller than 

those of the jackknife estimators computed with less number of groups. This indicates 

that standard errors of grouped jackknife variance estimators computed with more 

groups are smaller than those computed with fewer groups, offsetting the bias effect. 

Under the complete response set-up, jackknife relative biases are always of larger 

magnitude than those observed from the linearization methods. The same applies under 

nonresponse for the linearization methods that use calibrated weights iw  to weight the 
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residuals (see Table 4.6.4). Some reduction in absolute bias is observed when jackknife is 

compared to linearization using id  weighted residuals. 

 Valliant (2004) compared four versions of grouped jackknife variance 

estimators, with 10, 25, 50, 100g , by conducting a simulation study using a 

poststratified population similar to the British LFS and selecting samples of size 

100, 250, 500n and .  In line with the results presented in this section, he observed 

positive relative biases for all grouped jackknife variance estimates with biases ranging 

from 8.4% for the jackknife estimator with least number of groups to 20.4% for the 

jackknife estimator with most number of groups, for 100n . He noted that the biases 

reduce for other sample sizes but the pattern of positive biases always persists. 

Regarding confidence interval coverage, Table 4.6.7 shows at least 95% coverage 

for both group choices and alternative nonresponse assumption. The larger 

overestimation for the grouped jackknife estimator with 76g  is accompanied by some 

overcoverage by confidence intervals, even though the excess above the nominal level is 

small. Valliant (2004) showed similar results for the two larger sample sizes with at least 

95% coverage for all variance estimators. 

 The linearization estimators in this study give underestimates of variances and 

confidence intervals that tend to cover at lower, if small in some cases, than nominal 

level. On the other hand, the jackknife estimators tend to overestimate variances with 

estimated confidence intervals slightly above the nominal level. 

4.7 Conclusions  

The simulation study show little difference between the bias or variance 

properties of the three calibration estimators considered: the GREG estimator, the 

classical raking estimator and the maximum likelihood raking estimator. Some small 

differences in the distribution of extreme weights are observed. A few negative weights 

are observed for the GREG estimator, whereas weights are necessarily positive for both 

raking estimators. Some very large weights are observed for the maximum likelihood 

raking estimator.  

Amongst the linearization variance estimators, the main finding is the contrast 

between the approach which weights residuals by the design weight and that which 
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weights them by the calibrated weight. It is found that the latter variance estimator tends 

always to have reduced bias and that this effect is very marked in the presence of 

nonresponse, when the former estimator could be severely negative biased. The bias of 

the latter estimator, if negative, is generally small and the coverage level of the associated 

confidence intervals is generally close to the nominal coverage. Alternative ways of 

weighting the observations in constructing the regression coefficients, when calculating 

the residuals in the linearization variance estimator, are considered but little effect is 

observed and there is no evidence that this choice is important in practice. In general, 

the findings for the categorical variables in the British Labour Force Survey are 

remarkably similar to the findings for the continuous variables in the German Income 

and Expenditure survey. 

Unlike the linearization variance estimators, the simulation presented in this 

chapter shows that the grouped jackknife estimators of the variance of the generalised 

regression point estimator of the total number of persons unemployed in the LFS tend 

to be an overestimate. This overestimation causes some small overcoverage by 

confidence intervals. Thus, the jackknife approach results in nominal coverage but at the 

expense of larger overestimation. The jackknife method is much more intensive 

computationally than the linearization approach, but it does not require working out a 

variance expression for each particular parameter of interest, which might be a burden 

in some complex multipurpose surveys.  



 121 

 

Chapter 5  

Conclusions 

This doctoral thesis focuses on understanding and dealing with unit 

nonresponse in sample surveys during and post data collection. The first part of this 

thesis (Chapter 2) relates to strategies that may be used prior and during data collection 

to enhance response rates. The following chapters (Chapter 3 and 4) refer to post-

survey estimation methods to adjust and account for nonresponse. In this chapter the 

main findings of this doctoral research are summarised and some limitations and further 

work are discussed. 

5.1 Summary and implications for survey practice 

Chapter 2 illustrates the use of field process data or paradata, particularly 

interviewer call record and interviewer observation data, to separately model the process 

of establishing contact and cooperation with sample members in face-to-face surveys. It 

aims to better understand the process leading to contact or cooperation rather than 

focussing on predicting the final response outcome. It also introduces the reader to the 

analysis of call record data in a multilevel modelling framework, motivated by a range of 

both technical and substantive reasons. The analyses in this chapter use data from the 

Census Link Study 2001, which provides an exceptional opportunity to analyse the 

effectiveness of interviewer calling behaviours and strategies to establish contact and 

obtain subsequent cooperation, controlling for household and interviewer characteristics. 

The dataset combines rich paradata from six major UK interview administrated 

household surveys. 

Results from this chapter indicate that time-varying call record information, such 

as features of the call history and of the current call, play a key role in predicting contact 

and the subsequent outcome of each call. For example, the results support earlier 

findings that weekday evenings and weekend daytime are, on average, the best times to 

establish contact with a household. Although, without a prior appointment, households 
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contacted at those times are more likely to refuse; the analysis here shows that they also 

have higher chances of making an appointment which might result in future 

cooperation. Of particular interest for survey agencies are interviewer strategies to 

achieve contact and gaining cooperation. The contact model shows some significant 

effects of such strategies, for example the probability of contact is higher at the next call 

if the interviewer left a card or message at a previous call. Regarding cooperation, 

characteristics of the doorstep interaction process between the interviewer and the 

householder, such as how contact was established and whether the householder asked 

questions or made comments, seem to be of relevance. This chapter provides 

substantial evidence that interviewer observations about a household and 

neighbourhood are useful for predicting the likelihood of contact and cooperation. 

Some of these observations are predictive of contact and cooperation before and after 

controlling for additional census information about the household. Interviewer 

observations, such as the presence of dependent children, type and condition of the 

house, might be regarded as proxies for census information that is usually unavailable. 

Area characteristics might also be considered as proxies for household characteristics 

and useful for predicting contact and cooperation. This research finds a number of 

significant effects of interviewer characteristics on the process leading to contact and 

cooperation. Important in explaining interviewer differences in contact rates are pay 

grade, qualifications and age. The attitude of the interviewer towards refusal conversion 

and the interviewer’s self-confidence play an important role in the cooperation process. 

The length of interviewer experience, although not significant for achieving contact 

after controlling for other variables in the model, is significantly negatively associated 

with refusal at the doorstep. Some evidence for differential effects of fixed interviewer 

characteristics across the three non-participating outcomes -refusals, appointments 

made and other forms of postponement- is found. Unmeasured interviewer 

characteristics have a significant effect on contact and cooperation. However, the 

variation between interviewers in their cooperation rates is higher than the variation in 

their contact rates, providing some evidence that interviewer effects are more important 

for the process leading to cooperation. This might be due to the fact that this process 

depends much more on interviewer skills and behaviours and the interaction between 

the interviewer and the householder at the doorstep than the process leading to contact, 

which is more determined by timings and household characteristics. The influence of 

the interviewer random effect is the same across refusal, appointment made and other 
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forms of postponement. In contrast, this research shows evidence of differential effects 

of unmeasured household characteristics across the three non-participating outcomes. 

Household unobservables that are positively associated with refusal are negatively 

associated with appointments made and other forms of postponements. 

The results in Chapter 2 have a number of potential implications for survey 

practice. The type of models presented and the variables identified as important to 

predict contact and cooperation may be used to inform the design of efficient and 

effective calling behaviours and follow-ups as well as responsive survey designs (Groves 

and Heeringa, 2006; Laflamme et al., 2008) - even in the absence of information like 

here from the census. For example, an interviewer or survey agency may be able to 

observe hints for a potential refusal early on, such as certain comments or questions 

from a householder or an increased number of initial or intermediate non-contacts, 

before a hard refusal occurs. Such hints may inform early intervention schemes that 

survey agencies can employ before the end of the data collection period to increase final 

response rates and to potentially reduce nonresponse bias. Survey organisations could 

respond to such difficult cases by changing the contacting strategy, for example, by 

offering a higher incentive or by sending a more experienced interviewer. A particular 

application of such models might be within the context of longitudinal surveys where 

call record data and a wide range of information on the sample member are available 

from previous waves. The models may also inform improvements for interviewer 

training and interviewer selection, for example, survey organisations may assess how to 

improve interviewers’ training to best deal with the initial interaction with the 

householder at the doorstep. The research in this chapter highlights important 

advantages of gathering call record information and interviewer observations during 

data collection to inform the process leading to contact and cooperation. These 

variables could be used as proxies of household characteristics if census or 

administrative data are not available. This has also implications for survey agencies that 

need to carefully consider which types of paradata should be recorded at each call and 

how best to collect such data, including interviewer training. The significant interviewer 

effects in predicting contact and cooperation imply that survey organisations may be 

able to allocate certain interviewers to more difficult cases - at least within fieldwork 

constrains such as travelling and costs. The models developed in this study might also 

be useful to estimate response propensities to be used for adjustment and estimation at 

the data analysis stage, as investigated in the following chapter. 
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Chapter 3 explores alternative inverse probability weighted estimators for 

clustered nonresponse when cluster membership is observed for both responding and 

nonresponding units. That, for example, could be the case when the clusters are defined 

by interviewer workloads as in the previous chapter. This research considers three 

‘standard’ ways of constructing inverse probability weights, including the use of 

multilevel models as in Chapter 2 and marginal models that ignore the clustering 

structure of the data. It also proposes a new approach using conditional maximum 

likelihood (CML). This chapter investigates to what extent inverse probability weights 

based on multilevel models result in more efficient estimates than those obtained by 

using simpler models that ignore the clustered data. A key aim is to construct weights 

which exploit the auxiliary information on cluster membership and other variables to 

correct for bias under cluster-specific non-ignorable (CSNI) nonresponse as proposed 

by Yuan and Little (2007), not just missing at random (MAR). It also examines variance 

estimators for each adjusted weighted estimator, assuming weights are treated as fixed. 

The properties of the alternative weighted estimators for two sampling designs and 

associated variance estimators are investigated through a simulation study. Results from 

an empirical application using data from the Expenditure and Food Survey 2001 are also 

presented.  

The simulation study in Chapter 3 shows that under MAR nonresponse, when 

the cluster sizes are not large, the use of nonresponse weights based on predicted 

random effects can in fact bring negative relative bias in the inverse probability weighted 

estimator. The empirical application, however, does not show any disadvantages from 

the estimator based on predicted random effects compared to the others. If MAR is 

plausible, particularly for small cluster sample sizes, it seems reasonable to employ in 

practice simple response propensity weights based upon a marginal model for response 

rather than weights based on a multilevel model. On the other hand, under a CSNI 

nonresponse mechanism, not just MAR, the simulation results indicate that the marginal 

approach may be subject to bias. In this case, the new proposed approach using 

conditional maximum likelihood seems to perform the best and thus is is recommended. 

According to the simulation findings, the fixed effects estimator performs similarly to 

the CML estimator. This may indicate that in practice this estimator might often provide 

a reasonable approximation to the CML estimator, while requiring less computation 

time and not such strong model assumptions. Regarding the performance of the 

random effect estimator under CSNI, some potential benefits of this estimator over the 
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simple response propensity estimator based on a marginal model are observed, in 

particular for larger cluster sample sizes. 

The simple variance estimators presented in Chapter 3, treating weights as fixed, 

show some large relative biases for the marginal and random effect estimators. It would 

be sensible to consider variance estimators that account for the nonresponse 

adjustments. Alternative variance estimation methods for a particular class of weighted 

estimators in the presence of nonresponse are discussed in Chapter 4.   

Chapter 4 focuses on a particular class of weighting procedure called calibration. 

It reports a simulation study of the properties of three forms of generalized raking 

estimators: the GREG estimator, the classical raking estimator and the maximum 

likelihood raking estimator; and associated variance estimators with respect to the 

effects of both sampling and nonresponse. The simulation study is designed to mimic 

two major European surveys: the UK Labour Force Survey (LFS) and the German 

Sample Survey of Income and Expenditure (SIE). The research in this chapter explores 

alternative forms of linearization variance estimators for generalized raking estimators in 

the presence of unit nonresponse. It also investigates one of the most frequently used 

replication methods, the jackknife method, of computing variances for complex sample 

surveys accounting for nonresponse. 

The simulation study in Chapter 4 shows little difference between the bias or 

variance properties of the three calibration estimators considered. Some small 

differences in the distribution of extreme weights are observed: the maximum likelihood 

raking estimator has the most very large weights and the GREG estimator is the only 

one with a few negative weights. The main finding regarding the linearization variance 

estimators is the difference between the approach that weights the residuals by the 

design weight and the approach that weights them by the calibrated weight. The latter 

variance estimator tends to have smaller negative bias and this effect is very marked in 

the presence of nonresponse, when the estimator that weights the residuals by the 

design weight could be severely negative biased. Alternative ways of weighting the 

observations in constructing the regression coefficients, when calculating the residuals in 

the linearization variance estimator, are considered but little effect is observed and there 

is no evidence that this choice is important in practice. Regarding jackknife variance 

estimation, the simulation shows that the grouped jackknife estimators tend to be an 

overestimate. This overestimation causes some small overcoverage of confidence 

intervals.  
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5.2 Limitations and further work 

A potential limitation of the study presented in Chapter 2 is that the available 

data are based on a non-random allocation of calling times to households. That is, the 

data are not obtained via a controlled experiment but reflect observational data. The 

models attempt to control for important household and interviewer characteristics likely 

to be associated with the interviewer decision on when to call. Nonetheless, as it is 

possible that the calling time may depend on unmeasured household and interviewer 

characteristics, the effects of calling times should be interpreted with caution and 

statements about possible casual effects should be limited. Another possible limitation 

of the data is that some information on specific interviewing strategies only reflects 

what an interviewer does in general (self-reported) and is not recorded at the call level 

(direct observation). For example, the variable indicating whether it is the interviewer’s 

general practice to leave a card or message behind has no significant effect on contact; 

however, the time-varying covariate capturing the same information for each call is 

found significant. As suggested by Groves and Couper (1998), it may be preferable to 

ask interviewers to record their strategy for each call or household. More information at 

the call level may therefore be necessary to identify general trends on interviewer 

tailoring abilities.  

The following are a number of specific recommendations for future research on 

paradata and nonresponse. The positive effect of the number of intermediate 

noncontact calls on refusal, discussed in Section 2.4.3, might provide some evidence to 

support the hypothesis that a noncontact call could in fact be a hidden evasion or 

refusal (Groves and Couper, 1998; Stoop, 2005). The lack of a correlation between the 

noncontact and refusal processes identified in earlier research (Lynn et al. 2002; 

Nicoletti and Perachi, 2005; Steele and Durrant, 2011) has so far not provided much 

support for this hypothesis. Further research might be needed to investigate this 

possible phenomenon, for example, including the additional outcome of a noncontact at 

a call in the modelling. 

It may be argued that certain interviewers are better at gaining cooperation with 

harder cases. For example, more experienced interviewers may be more successful in 

dealing with householders that make negative comments or have questions. Effects of 

this type could help to inform the allocation of certain interviewers to potentially more 
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difficult households. Although the first part of this chapter explores interaction effects 

between interviewer characteristics and type of household in the context of contact, the 

section on the process leading to cooperation does not investigate such effects. Further 

work is needed to examine the hypothesis that some interviewers might be more 

successful in dealing with more difficult cases. 

The overall aim of Chapter 2 is to contribute to a better understanding of the 

processes leading to contact and cooperation and the influence of factors that are 

associated with these processes. The results might inform strategies prior and during 

data collection to enhance response rates and to potentially reduce nonresponse bias. 

However, this research has not specifically investigated the relationship between 

nonresponse rates and nonresponse bias, which occurs when respondents differ from 

the nonrespondents with respect to the characteristics to be investigated. Further efforts 

are needed to investigate the use of paradata to reduce potential sources of nonresponse 

bias during the data collection process and to inform responsive survey designs with the 

aim of reducing such bias. Also, the potential uses of paradata in post-survey 

adjustments needs to be investigated further. 

It is important to note that paradata can be subject to measurement errors and 

missing items and further research is needed to investigate the extent and potential 

sources of such error. Careful considerations need to be given on how to improve the 

quality of paradata as inaccurate information is likely to affect the resulting estimates 

and conclusions drawn from the application of such data. 

Moving to Chapter 3, in line with the theory (Skinner and D’Arrigo, 2011) the 

empirical illustration suggests that under the missing at random assumption there is little 

to be gained from the method that account for the clustering in the data over the 

marginal approach. To gain further experience with these methods, further empirical 

studies could be conducted under the CSNI mechanism, not just MAR.  

The conditional maximum likelihood approach shows a significant bias 

correction advantage under CSNI; however, it depends on the logistic form of the 

model in (3.2.3) and becomes increasingly computationally intensive as the sizes of the 

clusters grow. In addition, as observed in the simulation study, it can lead to more 

variable weights and can have efficiency disadvantages. A simpler modification of this 

approach would be to use what Little (1986) called response propensity stratification, 

forming classes by grouping values of the estimated CML weights and then replacing 

this weight by the inverse observed response rate in the group. This approach may be 
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less sensitive to the logistic link function assumption and may help smooth large values 

of estimated CML weights. 

Chapter 3 presents an approximation of the required variance estimators treating 

the adjusted weights as fixed. Skinner and D’Arrigo (2011) outlined a more precise 

variance linearization approach that allows for variability on the estimated weights for 

the CML case. Further work might be needed to extend this approach to consider 

variance estimation that accounts for weighting adjustments for the other inverse 

probability weighted estimators presented in this chapter. 

Finally, the Jackknife variance estimation methods presented in Chapter 4 

require the calibration adjustments to be applied to each set of weights. For the classical 

raking ratio estimator and the ‘maximum likelihood’ raking estimator, this requires, in 

principle, iterating the raking method until convergence in each case. This imposes a 

high computational burden and results in the exclusion from this chapter of a jackknife 

variance estimator for these raking estimates. An alternative approach could be to 

reduce the number of iterations of the raking method, in particular by using a one-step 

jackknife (Shao and Tu, 1995, p.191). One version of the one-step jackknife, adopted by 

Canty and Davison (1999), is simply to stop after ‘one step’ of the raking adjustment to 

the initial replication weights, rather than continuing to convergence. This one step 

might consist of one step of Newton’s method (Deville et al., 1993). Canty and Davison 

(1999) compared the performance of their one-step jackknife method with the jackknife 

method involving five iterations. They found that the performance of the variance 

estimator is actually worse for five iterations and concluded that “overall, the best 

jackknife strategy appears to be to use one iteration” (page 387). Alternatively, the one 

step of the raking adjustment could be applied to a set of calibrated weights formed by 

replacing the initial weights in (4.4.2) by the raked weights. These approaches should be 

asymptotically equivalent (Shao and Tu, 1995) but their finite sample properties require 

further study. Either of these one-step methods still requires the inversion of a matrix in 

the one step of Newton’s method for each replicate and this could still be 

computationally heavy. This repeated inversion of a matrix could be avoided by use of 

the estimation function jackknife, studied by Rao and Tausi (2003). More research is 

needed to investigate alternative jackknife variance estimation methods. 
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Appendices 

A1 - Interviewer Observation Form 

The Interviewer Observation Form is a double-sided A5 booklet. Only the key pages 
are reproduced here; the pages for recording calls 02 onwards are broadly the same as 
the ones for recording call 01. 
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A2 - R code to compute weighted estimates of totals for the 
M, FE and RE weighting methods and CNI1 mechanism. 

# This script run simulation study for population of 200 clusters of 10 units each, where 50 clusters are 
selected and all elements within clusters are sampled. 
  
# Population 3: delta=5 gamma1=0 gamma0=1 
 
# Overall response rate 70%.   
 
library(VGAM) 
library(MASS)   
 
pop <- read.table("C:\\...\\population3.dat", header = TRUE) 
 
M<-200     # number of clusters in the population 
Ni<-rep(10,200)    # cluster sizes 
N<-sum(Ni)     # population size 
w.parameter<-1     # standard deviation w2=1 
w2.parameter<-1    # w2=1 
thau.parameter<-1    # standard deviation thau2=1 
m<-50   # PSU sample size (clusters) 
n<-10   # SSU sample size (households)  
 
r<-1000 
true.ypop.Total<-sum(pop$yij) 
yPSW.Point.Est.Total.logit<-array(rep(0,r),dim=c(1,1,r)) 
yFIXED.Point.Est.Total.logit<-array(rep(0,r),dim=c(1,1,r)) 
yRMC1.Point.Est.Total<-array(rep(0,r),dim=c(1,1,r)) 
Tyreg.PSW<-array(rep(0,r),dim=c(1,1,r)) 
Tyreg.FIXED<-array(rep(0,r),dim=c(1,1,r)) 
Tyreg.RMC1<-array(rep(0,r),dim=c(1,1,r)) 
overall.response<-array(rep(0,r),dim=c(1,1,r)) 
inclusion.probi<-m/M # constant inclusion prob within clusters 
inc.prob.ij<-rep(inclusion.probi,N) 
pop<-cbind(pop,inc.prob.ij) 
 
# SIMULATION LOOP  
set.seed(38) 
seeds.in.r <- sample(c(0:2023), size=r, replace=F)  
for (j in 1:r){ 
cat(date(),"starting simulation loop pop1, r=",j,"\n") 
set.seed(seeds.in.r[j])   
# DRAW THE SAMPLE  
# Sample m=50 PSU from population 
PSU.id<-sample(1:M, m, F)  # select 50 PSU (clusters)   
PSU.id<-sort(PSU.id) 
# Select all elements from each PSU 
z <- 0 
while(z<20) {  
sample.n<-NA  # initialize sample matrix 
for (h in PSU.id) {  
sample<-pop[pop$i==h,] 
sample.n<-rbind(sample.n,sample) 
} 
sample.n<-sample.n[-c(1),]    
sample.size<-dim(sample.n)[1] # total sample size  
sample.n$uij<-runif(sample.size,0,1) 
for (k in 1:sample.size){ 
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if(sample.n$uij[k]<=sample.n$Prij[k]) sample.n$rij[k]=1 
if(sample.n$uij[k]>sample.n$Prij[k]) sample.n$rij[k]=0 
} 
sample.r<-sample.n[sample.n$rij==1,]     # delete non-respondents 
sample.size.r<-dim(sample.r)[1]  # sample size respondents 
ri<-NA 
yi<-NA 
for(k in PSU.id){ 
 ri.loop<-length(sample.n[sample.n$i==k & sample.n$rij==1,1]) 
 yi.mean<-mean(sample.n[sample.n$i==k & sample.n$rij==1,6]) 
 ri<-rbind(ri,ri.loop) 
 yi<-rbind(yi,yi.mean) 
 } 
ri<-ri[-c(1),]    
yi<-yi[-c(1),]    
if (length(yi[!is.nan(yi)])==m) { z <- 20 } else { z <- z+1 } 
} 
sample.r$response.ratei<-rep(ri/n,ri) 
sample.r$wij<-(sample.r$inc.prob.ij*sample.r$response.ratei)^(-1) 
overall.response[j]<-sample.size.r/(m*n) 
 
# M estimator (using the link 'logit') 
Propensity.model.logit<-glm(rij ~ x1ij,family = binomial(link="logit"), data = sample.n) 
phi.ij.logit<-
exp(coef(Propensity.model.logit)[1]+coef(Propensity.model.logit)[2]*sample.r$x1ij))/(1+(exp(coef(Propen
sity.model.logit)[1]+coef(Propensity.model.logit)[2]*sample.r$x1ij))) 
weight.ij.logit<-(inclusion.probi*phi.ij.logit)^(-1) 
yPSW.Point.Est.Total.logit[j]<-sum(weight.ij.logit*sample.r$yij) 
 
lambda1<-(sum((sample.r$inc.prob.ij*phi.ij.logit)^(-1)*t(sample.r$x1ij)*sample.r$x1ij)^(-
1))*(sum((sample.r$inc.prob.ij*phi.ij.logit)^(-1)*t(sample.r$x1ij)*sample.r$yij)) 
Txs<-sum(((sample.n$inc.prob.ij)^(-1))*sample.n$x1ij) 
Tx1<-sum(((sample.r$inc.prob.ij*phi.ij.logit)^(-1))*sample.r$x1ij) 
Tyreg.PSW[j]<-yPSW.Point.Est.Total.logit[j]+((Txs-Tx1)*lambda1) # GREG using M weights 
 
# FE estimator (using the link 'logit') 
sample.n$uj<-as.factor(sample.n$i) 
sample.r$uj<-as.factor(sample.r$i) 
 
Fixed.model.logit<-glm(rij ~ x1ij + uj, family = binomial(link="logit"), data = sample.n) 
uj.logit<-
c(0,coef(Fixed.model.logit)[3],coef(Fixed.model.logit)[4],coef(Fixed.model.logit)[5],coef(Fixed.model.logit)
[6],coef(Fixed.model.logit)[7],coef(Fixed.model.logit)[8],coef(Fixed.model.logit)[9],coef(Fixed.model.logit)
[10],coef(Fixed.model.logit)[11],coef(Fixed.model.logit)[12],coef(Fixed.model.logit)[13],coef(Fixed.model.l
ogit)[14],coef(Fixed.model.logit)[15],coef(Fixed.model.logit)[16],coef(Fixed.model.logit)[17],coef(Fixed.m
odel.logit)[18],coef(Fixed.model.logit)[19],coef(Fixed.model.logit)[20],coef(Fixed.model.logit)[21],coef(Fix
ed.model.logit)[22],coef(Fixed.model.logit)[23],coef(Fixed.model.logit)[24],coef(Fixed.model.logit)[25],coe
f(Fixed.model.logit)[26],coef(Fixed.model.logit)[27],coef(Fixed.model.logit)[28],coef(Fixed.model.logit)[29
],coef(Fixed.model.logit)[30],coef(Fixed.model.logit)[31],coef(Fixed.model.logit)[32],coef(Fixed.model.logi
t)[33],coef(Fixed.model.logit)[34],coef(Fixed.model.logit)[35],coef(Fixed.model.logit)[36],coef(Fixed.mode
l.logit)[37],coef(Fixed.model.logit)[38],coef(Fixed.model.logit)[39],coef(Fixed.model.logit)[40],coef(Fixed.
model.logit)[41],coef(Fixed.model.logit)[42],coef(Fixed.model.logit)[43],coef(Fixed.model.logit)[44],coef(F
ixed.model.logit)[45],coef(Fixed.model.logit)[46],coef(Fixed.model.logit)[47],coef(Fixed.model.logit)[48],c
oef(Fixed.model.logit)[49],coef(Fixed.model.logit)[50],coef(Fixed.model.logit)[51]) 
 
u.ij.logit<-rep(uj.logit,ri)    # create fixed effects for each respondent 
f.phi.ij.logit<-
(exp(coef(Fixed.model.logit)[1]+coef(Fixed.model.logit)[2]*sample.r$x1ij+u.ij.logit))/(1+(exp(coef(Fixed.
model.logit)[1]+coef(Fixed.model.logit)[2]*sample.r$x1ij+u.ij.logit))) 
f.weight.ij.logit<-(inclusion.probi*f.phi.ij.logit)^(-1) 
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yFIXED.Point.Est.Total.logit[j]<-sum(f.weight.ij.logit*sample.r$yij) 
 
lambda2<-(sum((sample.r$inc.prob.ij*f.phi.ij.logit)^(-1)*t(sample.r$x1ij)*sample.r$x1ij)^(-
1))*(sum((sample.r$inc.prob.ij*f.phi.ij.logit)^(-1)*t(sample.r$x1ij)*sample.r$yij)) 
Tx2<-sum(((sample.r$inc.prob.ij*f.phi.ij.logit)^(-1))*sample.r$x1ij) 
Tyreg.FIXED[j]<-yFIXED.Point.Est.Total.logit[j]+((Txs-Tx2)*lambda2)  # GREG using FE 
weights 
 
# RE estimator  
Response.model.RMC1<-glmmPQL(rij ~ x1ij, random = ~1|i, family = binomial(link="logit"), data = 
sample.n) 
ranef.ij<-rep(ranef(Response.model.RMC1,drop = TRUE)[[1]],ri)    # create random effects for each 
respondent 
phi.ij.RMC1<-
(exp(fixef(Response.model.RMC1)[1]+fixef(Response.model.RMC1)[2]*sample.r$x1ij+ranef.ij))/(1+(exp(
fixef(Response.model.RMC1)[1]+fixef(Response.model.RMC1)[2]*sample.r$x1ij+ranef.ij))) 
weight.ij.RMC1<-(inclusion.probi*phi.ij.RMC1)^(-1) 
yRMC1.Point.Est.Total[j]<-sum(weight.ij.RMC1*sample.r$yij) 
 
lambda3<-(sum((sample.r$inc.prob.ij*phi.ij.RMC1)^(-1)*t(sample.r$x1ij)*sample.r$x1ij)^(-
1))*(sum((sample.r$inc.prob.ij*phi.ij.RMC1)^(-1)*t(sample.r$x1ij)*sample.r$yij)) 
Tx3<-sum(((sample.r$inc.prob.ij*phi.ij.RMC1)^(-1))*sample.r$x1ij) 
Tyreg.RMC1[j]<-yRMC1.Point.Est.Total[j]+((Txs-Tx3)*lambda3) # GREG using RE weights 
} 

A3 - Area of residence 

Area Counties 

1 Cleveland, Cumbria and Durham 

2 Northumberland, Tyne & Wear and Humberside 

3 North Yorkshire, West Yorkshire and South Yorkshire 

4 Derbyshire, Leicestershire and Nottinghamshire 

5 Lincolnshire, Northamptonshire and Cambridgeshire 

6 Norfolk and Suffolk 

7 Bedfordshire, Hertfordshire and Essex 

8 Inner London and Outer London 

9 East Sussex, West Sussex, Kent and Surrey 

10 Hampshire, Isle of Wight, Dorset and Wiltshire 

11 Berkshire, Buckinghamshire and Oxfordshire 

12 Avon, Gloucestershire and Somerset 

13 Cornwall and Devon 

14 Hereford & Worcester, Shropshire and Staffordshire 

15 Warwickshire and West Midlands 

16 Cheshire and Merseyside 

17 Greater Manchester and Lancashire 

18 Clwyd, Dyfed, Gwent and Gwynedd 

19 Mid Glamorgan, South Glamorgan, West Glamorgan and Powys 

20 Border, central and Dumfries & Galloway 

21 Fife and Grampian 

22 Highland, Tayside and Northern & Western Isles 

23 Lothian and Strathclyde 
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A4 - R code to compute calibrated weights using linear 
function 

# FUNCTION CALIBRATION 
# This function compute the calibration weights according to Deville and Sarndal (1992) method for 
different distance functions. 
 
Var.Margin.1 <- Sample$STR1 
Var.Margin.2 <- Sample$STR2 
Var.Margin.3 <- Sample$STR3 
 
# FIND THE LABEL USED FOR THE FIRST MARGIN 
Table <- table(Var.Margin.1) 
Modalities.Margin.1 <- dimnames(Table)[[1]] 
mode(Modalities.Margin.1) <- "numeric" 
NB.Modalities.Margin.1 <- length(Modalities.Margin.1) 
 
# FIND THE LABEL USED FOR THE SECOND MARGIN 
Table <- table(Var.Margin.2) 
Modalities.Margin.2 <- dimnames(Table)[[1]] 
mode(Modalities.Margin.2) <- "numeric" 
NB.Modalities.Margin.2 <- length(Modalities.Margin.2) 
 
# FIND THE LABEL USED FOR THE THIRD MARGIN 
Table <- table(Var.Margin.3) 
Modalities.Margin.3 <- dimnames(Table)[[1]] 
mode(Modalities.Margin.3) <- "numeric" 
NB.Modalities.Margin.3 <- length(Modalities.Margin.3) 
 
# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE FIRST MARGIN 
Mat.Margin.1 <- matrix(rep(0,times=NB.Modalities.Margin.1*Sample.Size),ncol=NB.Modalities.Margin.1, 
nrow=Sample.Size) 
for(j in (1:NB.Modalities.Margin.1)) 
 { 
 Modalities <- Modalities.Margin.1[j] 
 Mat.Margin.1[,j] <- as.numeric(Var.Margin.1 == Modalities) 
 } 
  
# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE SECOND MARGIN 
Mat.Margin.2 <- matrix(rep(0,times=NB.Modalities.Margin.2*Sample.Size),ncol=NB.Modalities.Margin.2, 
nrow=Sample.Size) 
for(j in (1:NB.Modalities.Margin.2)) 
 { 
 Modalities <- Modalities.Margin.2[j] 
 Mat.Margin.2[,j] <- as.numeric(Var.Margin.2 == Modalities) 
 } 
 
# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE THIRD MARGIN 
Mat.Margin.3 <- matrix(rep(0,times=NB.Modalities.Margin.3*Sample.Size),ncol=NB.Modalities.Margin.3, 
nrow=Sample.Size) 
for(j in (1:NB.Modalities.Margin.3)) 
 { 
 Modalities <- Modalities.Margin.3[j] 
 Mat.Margin.3[,j] <- as.numeric(Var.Margin.3 == Modalities) 
 } 
Calibration.Matrix.X <- cbind(Mat.Margin.1,Mat.Margin.2,Mat.Margin.3)  # Sample value of the 
calibration variables 
 
Tot <- c(3372,4568,8031,5611,3722,2943,5956,11712,7420,6166,3960,3905,2814,4406,6030,4411, 
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7314,2927,2710,1118,1841,1334,6291,930,874,820,809,724,711,710,664,720,44624,869,849,828,773,696, 
689,805,744,816,49907,2994,3678,3297,2460,719,3359,4775,3744,2729,923,2301,3005,2781,2075,731,2605, 
3337,2971,2307,795,3117,4011,3363,2806,1251,3651,5022,4025,2956,1426,2509,3186,2826,2251,1047,272
9,3668,3155,2706,1271)  # Vector of known population margins 
 
# FIND THE LABEL USED FOR THE SURVEY VARIABLE 
Table <- table(Sample$EMP) 
Modalities.EMP <- dimnames(Table)[[1]] 
mode(Modalities.EMP) <- "numeric" 
NB.Modalities.EMP <- length(Modalities.EMP) 
 
# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE SURVEY VARIABLE 
Mat.EMP <- 
matrix(rep(0,times=NB.Modalities.EMP*Sample.Size),ncol=NB.Modalities.EMP ,nrow=Sample.Size) 
for(j in (1:NB.Modalities.EMP)) 
 { 
 Modalities <- Modalities.EMP[j] 
 Mat.EMP[,j] <- as.numeric(Sample$EMP == Modalities) 
 } 
  
"CALIBRATION"<- 
function(Distance.Function.Number, Mat.X.s, Pop.Total.X, Vect.Pi.s, L, U) 
{ 
 Sample.Size <- length(Vect.Pi.s) 
 Design.Weights <- 1/Vect.Pi.s 
 f <- rep(1, times = Sample.Size) 
 Mat.X.s <- as.matrix(Mat.X.s) 
 Pop.Total.X <- as.vector(Pop.Total.X) 
 if(Distance.Function.Number == 1) { 
  Calibration.Weights.s <- CalibDeville.f(F1.f, F1der.f,  
   Mat.X.s, Pop.Total.X, Design.Weights, f) 
 } 
 if(Distance.Function.Number == 2) { 
  Calibration.Weights.s <- CalibDeville.f(F2.f, F2der.f,  
   Mat.X.s, Pop.Total.X, Design.Weights, f) 
 } 
 if(Distance.Function.Number == 4) { 
  Calibration.Weights.s <- CalibDeville.f(F4.f, F4der.f,  
   Mat.X.s, Pop.Total.X, Design.Weights, f) 
 } 
  GINVERSE.T.Mat.X.s.Diag.C.s <- GINVERSE(T.Mat.X.s.Diag.C.s %*%  
   Mat.X.s) 
  T.Pop.Total.X.Minus.Est.Total.X <- t(Pop.Total.X - Est.Total.X) 
  Calibration.Weights.s <- T.Pop.Total.X.Minus.Est.Total.X %*%  
   GINVERSE.T.Mat.X.s.Diag.C.s %*% T.Mat.X.s.Diag.C.s 
  Calibration.Weights.s <- Calibration.Weights.s * Vect.Pi.s 
  Calibration.Weights.s <- T.Vect.1.s + Calibration.Weights.s 
  Calibration.Weights.s <- as.vector(Calibration.Weights.s) 
 } 
# OUTPUT 
 Calibration.Weights.s 
} 
"CalibDeville.f"<- 
function(F.func, Fder.func, X, Tx, d, f, limit = 10, eps = 1e-005, ets =  
 1e-005) 
{ 
# Computes weights using several alternative distance funtions 
# proposed by Deville & Särndal(1992). 
# Input parameters: 
#  F.func - function defining calibration distance from Deville & Sarndal; 
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#  Fder.func - gradient of function defining calibration distance; 
#  X      - sample data matrix for auxiliary (x) variables to be used for calibration; 
#  Tx     - vector of population totals for calibration; 
#  d      - vector of design weights for each sample unit; 
#  f      - vector for scale factors; currently used only for vector of 1s; 
#  limit  - maximum number of iterations to perform if convergence not achieved. 
# Output produced: 
#  vector of calibrated weights; 
# Residual function that defines nonlinear system to be solved to obtain lambda: 
 residuos <- function(lamb, F.func, X, Tx, d, f) 
 { 
# Function for computing residuals of linear model given X 
# Converts data into proper object classes 
  lamb <- matrix(lamb, ncol = 1) 
  d <- matrix(d, ncol = 1) 
  f <- matrix(f, ncol = 1) 
  Tx <- matrix(Tx, ncol = 1) # Compute required residuals   
  u <- X %*% lamb  
 # Compute estimated total of x variables using HT estimator 
  Txpi <- t(X) %*% d 
  t(X) %*% ((F.func(u * f) - 1) * d) - (Tx - Txpi) 
 } 
# Function to compute Jacobian of specified distance function 
# needed for solving for lambda 
 jacobiano <- function(lamb, Fder.func, X, Tx, d, f) 
 { 
# Converts data into proper object classes 
  lamb <- matrix(lamb, ncol = 1) 
  d <- matrix(d, ncol = 1) 
  f <- matrix(f, ncol = 1) 
  Tx <- matrix(Tx, ncol = 1) 
  u <- X %*% lamb 
  t(X) %*% diag(as.vector(d * (Fder.func(f * u) * f)), nrow =  
   length(d)) %*% X 
 } 
# Compute estimated total of x variables using HT estimator 
 Txpi <- t(X) %*% d # Initializing lambda 
 lamb <- GINVERSE(t(X) %*% diag(d) %*% X) %*% (Tx - Txpi) 
 u <- X %*% lamb # Calibration weights 
 h <- max(u) 
 if (h > 0.99) { 
  position <- cbind(u,c(1:length(u))) 
  x.value <- X[position[u==h,2],] 
  tita <- 0.99/(x.value %*% lamb) 
  lamb <- c(tita) * lamb 
 } 
 # Initializing values required for solution 
 Func <- residuos(lamb, F.func, X, Tx, d, f) 
 Jota <- jacobiano(lamb, Fder.func, X, Tx, d, f) 
 delta <- GINVERSE(Jota) %*% ( - Func) 
 it <- 1 # Computes lambda by Newton's method 
 while(((sum(delta^2) >= eps || sum(abs(Func)) >= ets) && (it <- it + 1) < 
  limit)) { 
  Func <- residuos(lamb, F.func, X, Tx, d, f) 
  Jota <- jacobiano(lamb, Fder.func, X, Tx, d, f) 
  delta <- GINVERSE(Jota) %*% ( - Func) 
  lamb <- lamb + delta 
  u <- X %*% lamb # Calibration weights 
  h <- max(u) 
  if (h > 0.99) { 
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   lamb.before <- lamb - delta 
   position <- cbind(u,c(1:length(u))) 
   x.value <- X[position[u==h,2],] 
   tita <- (0.99 - x.value %*% lamb.before)/(x.value%*%(lamb - lamb.before)) 
   lamb <- lamb.before + c(tita) * (lamb - lamb.before) 
   } 
 } 
  u <- X %*% lamb # Calibration weights 
  w.v <- as.vector(d * F.func(f * u))  
 
 # Defines output to be provided by function 
 return(w.v) 
} 
"F1.f"<- function(u) {1 + u } 
"F2.f"<- function(u) {exp(u)} 
"F4.f"<- function(u) {(1 - u)^(-1)} 
"F1der.f"<- function(u){rep(1, length(u))} 
"F2der.f"<- function(u) {exp(u)} 
"F4der.f"<- function(u) {(1 - u)^(-2)} 
 
"GINVERSE"<- function(x, tol = sqrt(.Machine$double.eps)) { 
 if(length(dim(x)) > 2) 
  stop("x must be a matrix or vector") 
 svdX <- svd(x) 
 if(is.complex(x)) 
  svdX$u <- Conj(svdX$u) 
 NotZero <- svdX$d > tol * svdX$d[1] 
 ans <- if(all(NotZero)) svdX$v %*% ((1/svdX$d) * t(svdX$u)) else if(! 
  any(NotZero)) { 
  if(is.matrix(x)) 
  array(0, dim(x)[2:1]) 
  else matrix(0, 1, length(x)) 
 } 
 else svdX$v[, NotZero] %*% ((1/svdX$d[NotZero]) * t(svdX$u[, NotZero])) 
 attr(ans, "rank") <- sum(NotZero) 
 ans 
} 
 
Weights.Cal <- CALIBRATION(1, Calibration.Matrix.X, Tot, Sample$Pi, 0.62, 1.85) # Vector of 
calibrated weights using the linear function 

A5 - R code to compute weighted residuals 

# FUNCTION CALIBRATION.RESIDUALS 
#  * The "Weights.of.Residuals" and the "Weights.for.Coef.Regression" 
#    can be (i) the initial weights of function "CALIBRATION.WEIGHTS" 
#    or (ii) the final weights of function "CALIBRATION.WEIGHTS". 
#  * The weights for "Weights.for.Coef.Regression" must be positive. 
 
CALIBRATION.RESIDUALS <- 
function(Vect.Y,Weights.of.Residuals,Weights.for.Coef.Regression,Mat.Cal.Var) 
 { 
# PUT THE DATA IN A SINGLE DATA FRAME 
 
Data <- data.frame(cbind(Vect.Y,Mat.Cal.Var)) 
 
# CREATE THE NAME AND THE FORMULA FOR THE WEIGHTED LEAST SQUARE FIT 
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NB.Cal.Var <- as.numeric(dim(Mat.Cal.Var)[2])  
List.Name.Variables <- c("Y") 
Formula <- "Y ~ -1" 
 
for(i in (1:(NB.Cal.Var))) 
 { 
 Name.New.Variable <- paste("X",i,sep="") 
 Formula <- paste(Formula," + ",Name.New.Variable,sep="") 
 List.Name.Variables <- c(List.Name.Variables,Name.New.Variable) 
 } 
 
Formula <- as.formula(Formula) 
List.Blank <- dimnames(Data)[[1]] 
Names.List <- list(List.Blank,List.Name.Variables) 
dimnames(Data) <- Names.List 
  
# THE WEIGHTED LEAST SQUARE FIT 
 
Model.Fit <- lm(formula=Formula,data=Data,weights=Weights.for.Coef.Regression)  # 
One option for singular is put: singular.ok=T 
 
# THE WEIGHTED RESIDUALS 
 
Residuals <- residuals(Model.Fit) * Weights.of.Residuals 
 
# OUTPUT 
 
Residuals 
 } 
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