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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
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Doctor of Philosophy

UNDERSTANDING AND DEALING WITH UNIT NONRESPONSE DURING
AND POST SURVEY DATA COLLECTION

By Julia D’Arrigo

Nonresponse in sample surveys is a longstanding concern among social
researchers and survey methodologists. In addition to potential biases in point estimates,
nonresponse can result in inflation of the variances of such estimates. This thesis
focuses on understanding and dealing with unit nonresponse in sample surveys during
and post data collection. In particular it looks at modelling the process leading to
nonresponse using call record data; developing weighting adjustments for clustered
nonresponse; and investigating variance estimation methods in the presence of
nonresponse. During data collection, effective interviewer calling behaviours are critical
in achieving contact and subsequent cooperation. Recent developments in the survey
data collection process have led to the collection of so-called paradata, which greatly
extend the basic information on interviewer calls. The first part of the thesis develops
multilevel models based on a particular type of paradata, call record data and interviewer
observations, to predict the likelihood of contact and cooperation conditioning on
household and interviewer characteristics. The research is based on the UK 2001
Census Link Study dataset. The results have implications for survey practice and, among
others, inform the design of effective interviewer calling strategies, including responsive
survey designs. Post-survey estimation methods to adjust and account for nonresponse,
such as weighting methods, include inverse probability weighting and generalized raking
estimation. The second part of the thesis investigates alternative inverse probability
weighted estimators for clustered nonresponse through a simulation study. Results from
an empirical application using data from the Expenditure and Food Survey 2001 are
presented. It also discusses three forms of generalized raking estimator in the presence
of nonresponse. Weighting methods might result in increased variability in the weights
and thereby lower the precision of the survey estimates. This thesis explores alternative
forms of linearization and replication variance estimators for generalized raking

estimators under nonresponse that allow for variation in the weights.
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Chapter 1
Introduction

1.1 Nonresponse in sample surveys

Nonresponse in sample surveys is a longstanding concern among social
researchers and survey methodologists. Nonresponse occurs when sampled members
do not provide the requested information for one or more survey variables or are not
contacted during the data collection process. For example, Hansen and Hurwitz (19406)
pointed out the problem with large nonresponse rates on mail questionnaire surveys and
proposed following-up the mail attempts by taking a subsample of nonrespondents with
face-to-face interviews. Kish (1965) observed that differences in response rates across
subgroups may introduce bias into survey estimates. In addition to potential biases in
point estimates, nonresponse can result in inflation of the variances of point estimates
due to reduced sample sizes.

Nonresponse bias usually receives much attention in the survey literature
(Groves, 2006; Olson, 2000) as it is the main reason that survey agencies dedicate great
efforts to reduce and adjust for nonresponse. Nonresponse bias occurs when
respondents differ from the nonrespondents with respect to the characteristics to be
investigated. Nonresponse bias is an important menace to the validity of all survey
estimates.

In recent decades, problems caused by nonresponse have increasingly concerned
survey practitioners as many surveys appear to show a decline in response rates. Curtin
et al. (2005) presented falling response rates in several United States household surveys;
de Leeuw and de Heer (2002) found that response rates have been declining over
several years across different types of surveys in 16 developed countries; Tourangeau
(2004) reviewed three recent developments in survey methodology within the context of
decreasing response rates for all types of surveys: new methods of telephone sampling,
new theories regarding causes and consequences of nonresponse, and new modes of

data collection.



In general two types of nonresponse behaviour can be distinguished: unit and
item nonresponse. Unit nonresponse occurs when eligible sample units fail to respond
to a survey, e.g. because of noncontact, explicit refusal to cooperate or other reasons
such as language barrier. Item nonresponse occurs when responding units do not
answer some of the survey questions. The focus of this thesis is on unit nonresponse
and does not further examine the concept of item nonresponse.

Unit nonresponse might be classified into three main components: noncontact,
inability to respond and explicit refusal to cooperate. Noncontact includes both the
failure of the interviewer to locate the sample unit and the failure to make contact with
the sample unit. For example, noncontact may refer to the interviewer inability to talk to
a responsible resident at the sampled household in a face-to-face or telephone survey.
Those who fail to respond to a survey due to reasons such as ill health, infirmity and
language barrier are classified as unable to respond. The last category refers to those
who clearly refuse to participate in the survey after contact has been made.

There are two broad areas of research on dealing with survey unit nonresponse
which involve: (a) strategies prior and during data collection to enhance response rates,
including response survey designs and follow-up surveys; and (b) post-survey estimation
methods that include some sort of adjustment to compensate for nonresponse.

Research to support (a) requires understanding nonresponse as a social
phenomenon. This includes research looking at how nonresponse depends on individual
and household characteristics as well as interviewer attributes. Goyder (1987), Groves
and Couper (1998), Stoop (2005), and Durrant and Steele (2009) reviewed this vast
literature and observed differences in response levels by characteristics such as age,
geography and employment status of the household representative. Groves and Couper
(1998) and Durrant and Steele (2009) also noted a quite distinct underlying nonresponse
process for noncontact and refusal, observing that some predictors, such as
employment status of the household representative, have opposite effects on the
probability of noncontact and refusal.

Some efforts to increase response rates include incentives, more call attempts
and follow-ups. Goyder (1987) showed that incentives are likely to result in higher
response rates, even after controlling for survey design characteristics, such as length of
the survey, sponsor or topic. Singer et al. (1999) found that monetary incentives were
more effective in increasing response rates than gifts. They also observed that the effect

of incentives is inversely proportional to the response rate: the lower the response rate
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the larger the effect of an incentive. Goyder (1994), Hopkins and Gullickson (1992) and
Singer et al. (1999) found that the impact of incentives given at the time of the survey
request was greater than promised incentives. On the other hand, incentives can
potentially introduce bias in the data by getting disproportionately more units from a
select population subgroup into the respondent group (see Singer, 2002; Singer and
Kulka, 2002 for general reviews of incentives).

Lynn et al. (2002) found that extended interviewer efforts, such as more call
attempts and follow-ups, appear to reduce certain types of nonresponse biases due to
increased contact rates. However, they also observed that greater interviewer efforts
have limited effectiveness in reducing refusal rates and thus refusal bias. More recently,
social researchers have been investigating the use of propensity models to predict the
likelihood of response based on field process data (Kennickell, 2003; Sangster and
Meekins, 2004; Groves and Heeringa, 2006; Bates et al., 2008). These data usually
include call record information such as time and day of the call and outcome of the call.
For face-to-face surveys, these data might also contain interviewer observations about
the household and neighbourhood captured by the interviewer during data collection
These models may inform the design of efficient and effective calling behaviours and
follow-ups as well as responsive survey designs (Groves and Heeringa, 2006; Laflamme
et al., 2008), where the continuous measurement and monitoring of the process and
survey data offers the opportunity to alter the design during the course of the data
collection to reduce costs and to increase the quality of the survey data. Propensity
models might also be used to explore the role of the interviewers on survey
nonresponse (Groves and Couper, 1998; O’Muircheartaigh and Campanelli, 1999;
Pickery and Loosveldt, 2002; Durrant and Steele, 2009). Blom et al. (2010), for example,
used a three-level logistic regression model to investigate the role that interviewers play
in producing differences in response levels across countries in the European Social
Survey.

Another factor affecting nonresponse in sample surveys during the data
collection stage is the mode of data collection. Face-to-face surveys often have the
highest response rates followed by telephone and mail surveys respectively. Web surveys
have been rapidly embraced by the commercial research sector as a faster and cheaper
mode of data collection despite serious concerns about coverage and nonresponse rates

associated with these surveys (Couper, 2001). Tourangeau et al. (2000) examined the



complex psychological processes that make respondents more likely to cooperate to
certain modes of data collection.

After data collection is completed, the second possibility of dealing with
nonresponse in sample surveys is through post-survey modifications, such as weighting
adjustments. Weighting methods are widely used to compensate for problems created
by survey nonresponse. These methods are commonly used to compensate for unit
nonresponse while imputation is typically but not exclusively employed to deal with
item nonresponse. This thesis deals with weighting methods and does not consider
imputation methods.

Weighting adjustments make use of auxiliary information to correct for
nonresponse bias. The basic principle of weighting methods involves using an
appropriate model based on auxiliary information to estimate response propensities for
each unit in the sample. Then, these estimated propensities are used to adjust the
probability-sample weights and produce estimates with lower biases. Estimation of
response propensities assumes a stochastic approach to model survey nonresponse,
which views the response units as the result of two probabilistic selections. First, a
sample is selected from the finite population and then, the response units are realised as
a subset of the sample. Further details about this stochastic approach can be found in
Sirndal and Lundstréom (2005). It is possible to distinguish between two types of
auxiliary variables to use for weighting adjustment purposes are: (a) sample-based
variables, i.e. variables known for the sampled units but not the entire population; (b)
population-based variables, i.e. variables known for the entire population. Sirndal et al.
(1992) explored the use of these two types of variables via regression fitting.

There are different weighting adjustment procedures. One method, called
inverse probability weighting, is to derive estimates of the response propensities from
the sample units, and then to use the invert of these estimated probabilities as the
weighting adjustments. As early as 1949, Politz and Simmons suggested a simple
method to directly estimate contact probabilities. They proposed first to estimate the
proportion of time each interviewed person was at home during the interviewing hours
and divide questionnaires into six groups according to these estimates; and then, use the
inverse of the group time-at-home estimate as the weighting adjustment factor.
Bartholomew (1961) described another type of nonresponse adjustment to compensate
for noncontact. He proposed to treat the second call successes as a random sample of

all failures at the first call (other than those due to removals or deaths), and give
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different weights to results from the first and second call. In 1986, Little observed that
direct estimates of response propensities may result in unstable estimates if some of the
estimated probabilities are close to zero. Little (1986) suggested sorting the sample by
estimated response probabilities, forming five groups based on the quintiles of the
response propensity distribution, and assigning the same weighting adjustment to all
sampled units within a category. This weighting procedure is usually refers as weighting
class adjustment. A more recent approach to estimate response propensities is by fitting
parametric models, such as logistic or probit models, relating the study variable of
interest and auxiliary variables (Cassel, Sirndal and Wretman, 1983; Bethlehem, 1988;
Fuller & An, 1998; Lundstrom and Sirndal, 1999). Nonparametric methods, such as
CHAID (Chi-square Automatic Interaction Detector; see Kass, 1980) and CART
(Classification and Regression Trees; see Breiman, 1984), can also be used to estimate
the response probabilities. Rizzo et al. (1996) compared the estimates obtained through
several methods for adjusting weights, including nonresponse weight adjustments based
on CHAID models, to estimates from independent sources. Da Silva and Opsomer
(2004, 2000) investigated the properties of nonparametric methods that only require the
response propensities to be related to the auxiliary variables by a smooth but
unspecified function. Sirndal and Lundstrém (2005) noticed the importance of
powerful auxiliary variables to effectively model response probabilities and to reduce
bias.

Other weighting adjustment procedure is calibration estimation. Calibration
estimation guarantees that estimates based on data from a sample match previously
determined benchmarks. The principle of calibration is to derive new weights by
minimizing the total distance between the initial weights and the new weights, while
ensuring that the new weights satisfy the benchmark requirements. Deville and Sirndal
(1992) introduced calibration estimation for the full response set-up and showed that
estimators such as the generalised regression estimator and the poststratified estimator
are special cases of calibration estimators. These calibration estimators can be modified
and used to deal with unit nonresponse (Lundstrém and Sirndal, 1999). Benchmarks for
calibration may be obtained as estimates from a further sample, which may be
considered sufficiently accurate, or from the population. Therefore, calibration
estimators can be either sample-based or population-based.

Another special case of calibration estimator that is extensively used to adjust

for survey nonresponse is the weighting class adjustment mentioned earlier (Little, 1980).
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Weighting class adjustment consists on dividing the sample into a number of groups
and giving each a weight equal to the inverse of its estimated response probability. The
groups, usually referred to as cells, for the weighting class adjustment should be formed
allowing for variables that are predictive of response and are correlated to the main
statistics being produced. This approach can be limited when a large number of auxiliary
variables are available. Two alternative calibration methods that allow including as many
auxiliary variables as needed are raking (Deming and Stephan, 1940) and the two-way
classification method (Sirndal and Lundstrém, 2005). These methods only control to
marginal totals.

Weighting adjustments can affect not only nonresponse bias but also the
variance of an estimator. In fact, they can inflate the variance or they can reduce it (see,
for example, Little and Vartivarian, 2005). It therefore becomes important to be able to
estimate the variance of a weighted estimator in the presence of nonresponse. There are
two methods commonly used to compute variance estimates for complex sample
surveys: Taylor series linearization (see, for example, Wolter, 2007) and replication (see,
for example, Fuller, 1998). These methods account for the nonresponse adjustments
(see, for example, Valliant, 1993; Yung and Rao, 2000). If the variance estimate method
does not account for the nonresponse adjustments, then the variance estimate might be
underbiased resulting in short confidence intervals. Valliant (2004) studied through
simulation the differences between linearization and replication methods to account for
weighting adjustments on variance estimates. He reported that the linearization variance
estimators were negatively biased and produced confidence intervals that cover at less
than the nominal rate and that the jackknife replication estimator generally yields

confidence intervals that cover at or above the nominal rate.

1.2 Purpose and outline of the thesis

This thesis centres on understanding and dealing with unit nonresponse in
sample surveys during and post data collection. In particular it focuses on three specific
themes: (1) modelling the process leading to nonresponse using call record data
(Chapter 2); (2) developing weighting adjustments for clustered nonresponse (Chapter
3); and (3) investigating variance estimation methods in the presence of nonresponse

(Chapter 4). The first objective relates to strategies that may be used prior and during



data collection to enhance response rates. The last two topics refer to post-survey
estimation methods to adjust and account for nonresponse. All these approaches aim to
correct for the potential biasing impact of nonresponse in point estimates and to
minimise its effects on the associated variance estimates.

Chapter 2 deals with the two main types of unit nonresponse in sample surveys:
noncontact and refusal. This chapter focuses on face-to-face surveys but some findings
may also apply to telephone surveys. It first develops propensity models that predict the
likelihood of contact in the field conditioning on household, interviewer and area
influences. Then, it focuses on the process leading to cooperation and jointly models the
different types of outcomes at each call using interviewer call record data and
controlling for household and interviewer characteristics. The model allows for four
different outcomes at each call: full or partial cooperation, refusal, making an
appointment and other forms of postponement, such as appointment broken or the
interviewer withdrew to try again later. These models investigate the usefulness of call
record data and interviewer observations to predict the response outcome in six major
UK face-to-face surveys.

Multilevel analysis (e.g. Steele et al., 2004) is used to model the probability of
contact or cooperation at each call allowing for the hierarchical structure of the data
with clustering of outcomes within household and clustering of households within a
cross-classification of areas and interviewers. These models also account for unobserved
household and interviewer characteristics. To model the process leading to contact a
multilevel discrete time hazard model is used, conditioning on noncontact made prior to
that call. To model the process leading to cooperation, conditioning on contact having
been made with the household, a multilevel multinomial logistic regression analysis (e.g.
Durrant and Steele, 2009) is employed. Multilevel models are motivated by a range of
both technical and substantive reasons.

In Chapter 3, alternative inverse probability weighted estimators for clustered
nonresponse are investigated. Cluster-specific non-ignorable (CSNI) nonresponse, as
introduced by Yuan and Little (2007), is considered in this chapter. CSNI describes the
case when nonresponse may depend on unobserved cluster random effects which may
be correlated with the survey variables. Three standard forms of inverse probability
weights are examined: response propensity weights (e.g. Little, 1988), weights based on
predicted random effects (e.g. Durrant and Steele, 2009) and weights based on estimated

fixed effects, where the random effects are treated as unknown parameters. A new
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approach using conditional logistic regression is also proposed. The properties of the
alternative estimators and associated variance estimators are investigated in this chapter
through a simulation study and results from an empirical application are presented.

Chapter 4 reports a simulation study of the properties of alternative generalized
raking estimators and associated variance estimators with respect to the effects of both
sampling and nonresponse. The simulation study is designed to mimic two major
European surveys: the UK Labour Force Survey (LFS) and the German Sample Survey
of Income and Expenditure (SIE). Three forms of generalized raking estimators are
considered: the generalized regression estimator, the classical raking ratio estimator and
the ‘maximum likelihood’ raking estimator (Brackstone and Rao, 1979; Fuller, 2002).
The GREG estimator is widely used in many surveys, in particular in the context of
nonresponse (Sirndal and Lundstrém, 2005). The second estimator has been used in
practice in the LFS and a version of the third estimator has been used in practice in the
SIE. Alternative forms of linearization variance estimators (Demnati and Rao, 2004;
Deville and Sirndal, 1992), for generalized raking estimators are defined via different
choices of the weights applied (a) to residuals and (b) to the estimated regression
coefficients used in calculating the residuals. A grouped jackknife replication method,
which recomputes weight adjustments for every replicate, is also examined to calculate
an alternative variance estimator accounting for the nonresponse adjustments.

The final chapter of this thesis presents some concluding remarks.



Chapter 2

Modelling the process leading to nonresponse
using call record data

2.1 Introduction

Establishing contact with eligible sample units is an essential part of the
response process together with obtaining productive interviews. In recent years, these
tasks have become progressively more difficult and so more expensive and time-
consuming (Weeks et al., 1980; Groves and Couper, 1998; Cunningham et al., 2003).
Increasing contact rates by scheduling calls when householders are more likely to be at
home may not be productive if at these times refusals are more likely. Therefore, both
mechanisms need to be understood to develop effective interviewer calling strategies
that result in increased contact rates and subsequent higher cooperation rates. Even
though survey agencies have become increasingly concerned with understanding and
improving the data collection process, research so far has mainly investigated the final
outcome, ot specific call outcome, of contact/noncontact and cooperation/refusal
rather than the process leading to these results. Weeks et al. (1980), for example, studied
best time of day and day of the week to find someone at home in a 1976 US survey at
the time of the first call. O’Muircheartaigh and Campanelli (1999) explored the influence
of interviewers on refusals and noncontacts at the final outcome for wave 2 of the
British Household Panel Survey. Durrant and Steele (2009) modelled the final survey
outcome of refusal, noncontact or cooperation to investigate the effects of household
characteristics on household unit nonresponse in six UK face-to-face government
surveys. None of these studies allows the likelihood of contact or cooperation to vary
across calls or examines how the call history may affect the outcome of future calls,
which are some of the aims of this chapter.

To obtain information about survey data collection that might help to
understand the response process, survey organisations have started to routinely collect

call record data, such as day and time of the call, the outcome of the call and, in



particular for face-to-face surveys, observations made by the interviewers about the
physical and social characteristics of the selected household and the neighbourhood.
Such data are commonly referred as field process data or paradata (Couper, 1998), and
greatly extend the basic information on interviewer calls. Paradata might also include
additional information about the sample units from external records, such as presence
of children or pensioners in the household. Paradata may be used in survey
organisations to guide decisions on responsive or two-phase sampling designs (Groves
and Heeringa, 2006; Eckman and O’Muircheartaigh, 2008), and also to obtain general
knowledge about optimal calling practices to adequately schedule calls and follow-ups
with the aim of increasing the probability of contact and cooperation (Purdon et al.,
1999; Matsuo et al., 2000).

So far, analyses of paradata and interviewer calling strategies, in particular for
face-to-face surveys, have been limited. For example, Weber and Burt (1972) and Weeks
et al. (1980) examined best times of interviewer visits in face-to-face surveys. Greenberg
and Stokes (1990) developed a set of rules for scheduling the time of the next call for a
telephone survey conditioning on calling history. Kulka and Weeks (1988) investigated
optimal calling protocols for telephone surveys based on the timing of previous calls.
However, these studies examined average best times of day and days of the week to
establish contact or cooperation without controlling for household or interviewer
characteristics. These characteristics may have a significant impact on optimal
interviewer calling strategies (Groves and Couper, 1998). Other studies controlled for
basic information about the household or area, but without deriving household-specific
estimates of the probability of contact or cooperation (Purdon et al., 1999; Groves and
Couper, 1998; Brick et al. 1996; O’Muircheartaich and Campanelli, 1999). Most
research on best calling strategies has been carried out in the context of telephone
surveys (e.g. Weeks et al., 1987; Greenberg and Stokes, 1990; Brick et al. 1996) rather
than face-to-face surveys, although the latter offer a much wider range of observational
information available for each household and call (Groves and Couper, 1998;
Greenberg and Stokes, 1990). Previous empirical research which investigated the effect
of a small number of factors influencing household unit nonresponse have often used
simple methods such as descriptive analysis techniques or regression models that have
ignored the hierarchical structure of the data where sample units are nested within
interviewers (e.g. Purdon et al., 1999; Groves and Couper, 1996, 1998; Wood et al., 2000;

Groves and Heeringa, 2006). Some studies have used multilevel modelling techniques to
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analyse interviewer effects on various components of unit nonresponse; however, they
were based on a single survey with a specific design and survey topic, a fairly small
number of interviewers and households and a limited amount of information on
household and interviewer characteristics (Pickery and Loosveldt, 2002, 2004; Pickery et
al. 2001; O’Muircheartaigh and Campanelli, 1999). Hox and Leeuw (2002), used
multilevel logistic regression analysis to examine the influence of interviewers’ attitude
on household survey nonresponse in different countries and several surveys; however,
their models did not control for household characteristics that might be related to the
likelihood of achieving cooperation.

This chapter illustrates the use of a particular type of paradata, interviewer call
record and interviewer observation data, which are increasingly collected by survey
organisations. It introduces the reader to the analysis of call record data in a multilevel
modelling framework. The research presented in this chapter uses multilevel logistic
analyses, which allows for clustering of households within interviewers, to separately
study the process leading to contact and cooperation allowing for potential differences
in the determinants of each type of nonresponse. There are technical and substantive
advantages for using multilevel models over single-level models. Models that ignore the
hierarchical structure of the data lead to underestimation of the standard errors of
regression coefficients, in particular, of cluster-level variables, such as household and
interviewer variables in this chapter (Snijders and Bosker, 1999; Goldstein, 2011). The
standard error underestimation might lead to incorrect inferences about the effects of
such variables. Among practical advantages, multilevel modelling allows exploration of
substantive questions that is not possible in single-level models. For example, ‘Is the
extent of between-interviewer variation the same for contact and cooperation?” and ‘Is
the extent of between-household and between-interviewer variation the same for
different types of call outcome?’ This chapter aims to address some of these questions.
The analyses use data from the Census Link Study, which provides an exceptional
opportunity to analyse the effectiveness of interviewer calling behaviours and strategies
to establish contact and obtain subsequent cooperation, controlling for household and
interviewer characteristics. This study benefits from the availability of relatively rich
paradata, including information recorded by the interviewer at each call to the
household, interviewer observations about the household and neighbourhood,
information about the interviewer-household interaction and detailed information about

the interviewers themselves. The dataset combines call record data from six major UK
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face-to-face surveys, which allow more general inferences to be made than in prior work.
A key strength of these data is that individual and household characteristics from the
UK 2001 Census are linked to the paradata for both respondent and nonrespondent
households.

It is expected that this research will contribute to methodological progress in the
analysis and modelling of call record data and the specification of suitable models to
analyse such data. The findings may have important implications for survey practice,
such as informing responsive survey designs, as defined by Groves and Heeringa (2000),
effective interviewer calling behaviours, the design of call-backs and follow-ups of
nonrespondents. Although survey organisations may not have access to information
such as the control census variables considered in this study, the analysis provides useful
information about the type of data that could be beneficial for predicting contact and
cooperation and survey organisations could explore proxies for such variables from
available data sources. It would also be possible to train interviewers to collect relevant
observation data for each household and/or each visit to proxy such information.

This chapter is structured as follows. Section 2.2 describes the data upon which
the research is based. Section 2.3 focuses on the process leading to contact and
proposes a propensity model based on call record data and other paradata to predict the
likelihood of contact at each call, conditioning on household and interviewer
characteristics. The process leading to cooperation is studied in Section 2.4, modelling
the response outcome at each call, conditional on contact having been made with the
household at that call. A summary of the findings with implications for survey practice

is provided in Section 2.5.

2.2 Data

2.2.1 UK 2001 Census Link Study

The research on this chapter is based on the UK 2001 Census Link Study
dataset, which was produced by the UK Office for National Statistics (ONS), and
includes the response outcome of six face-to-face major UK government surveys linked
to household information from the UK 2001 Census, interviewer observations about

the household, detailed information about the intetrviewers and area information from
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aggregated census data. The dataset contains a total of 16,799 households (after
excluding vacant and non-residential addresses, re-issues and unusable records, as
described in Durrant and Steele, 2009), 565 interviewers and 392 areas defined at the
local authority district level. The households included in the dataset were selected for
interview in one of the six surveys during May-June 2001, the months immediately
following the 2001 Census.

The six household surveys contained in the Census Link Study are the
Expenditure and Food Survey (EFS), the Family Resources Survey (FRS), the General
Household Survey (GHS), the Omnibus Survey (OMN), the National Travel Survey
(NTS) and the Labour Force Survey (LES). The surveys collect information based on
the household as a whole and on the individuals within the households. The analyses in
this chapter are based on household level data and individual level information was only
used to derive variables recording information about the household reference person
(HRP). The HRP variables facilitate moving from individual to household level, as every
household has only one HRP. The EFS, created in 2001 by merging together the Family
Expenditure and the National Food surveys, seeks to provide information on the
pattern of spending and food consumption by households in the UK. The FRS, which
has been carried out in Great Britain since 1992 and extended to include Northern
Ireland in 2002, aims to provide information on living standards, people’s relationship
and interaction with the social security system. The GHS, created in 1971, is a multi-
purpose survey which collects information from people living in private households in
Great Britain on a range of core topics comprising, for example, family information,
education, income, and demographic information about household members. The NTS,
which has been running on an ad hoc basis since 1965 and continuously since 1988,
aims to provide a comprehensive picture of personal travel behaviour. The OMN which
began in 1990 is a multi-purpose survey which aims to obtain information about the
general population or about particular groups. The questionnaire includes a set of core
classificatory questions and a series of unrelated modules on varying topics at the
request of customers. Core questions include information on demographic details,
economic status, job details, employment status, full- or part-time working, and ethnic
origin. The LFS created in 1979 aims to provide information about the UK labour
market and unemployment. The survey seeks information on respondent’s personal

circumstances, their labour market status and income.
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Figure 2.2.1: Refusal and noncontact rates for the six surveys in the Census Link Study dataset
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Figure 2.2.1 shows refusal and noncontact rates for each of the six surveys in the
Census Link dataset. The noncontact rates for the surveys range from about 3% to 10%.
A larger variation is observed among refusal rates across surveys, from around 15% for
the LEFS to 30% for the EFS, which may be explained by differences in the survey topic,
interview length, length of data collection period, interviewer workload and additional
requirements such as a diary. Although the noncontact rates might not appear very large
in comparison to the refusal rates, establishing contact is a costly and time consuming
process worthy of studying. Further details about these surveys can be found in Durrant
and Steele (2009).

A great advantage of the Census link Study is that the survey data collected from
the six surveys described above have been linked to the 2001 UK census records,
available for both respondent and nonrespondent households chosen for interview (see
Fig. 2.2.2). The 2001 census, which took place on 29 April, collected a varied set of
information on the population, such as household accommodation, demographic
characteristics (for example, gender, age, marital status), health and provision of care,
pensioners households, dependent children, qualifications and employment, at that
particular point in time. This data linkage provides an exceptional opportunity to
investigate common characteristics of responding and nonresponding households.
Another major benefit of this study is that relatively rich paradata at household level was
also linked to the other data sources. These paradata is gathered by the interviewer
during the data collection period of the six surveys in the study via an interviewer
observation (IO) questionnaire (see Appendix Al). Further information about these
data is presented on the following section. In addition, the Census Link Study includes
detailed information about the interviewers and area information from aggregated

census data, linked to the household level information. The area is defined as the local
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authority district. The interviewer information was collected via a separate survey of all
face-to-face interviewers employed for the UK Office for National Statistics (ONS) in
2001 (Interviewer Attitude Survey, IAS). The timing of the IAS was chosen to coincide
with the UK Census in 2001 and was carried out prior to the surveys’ fieldwork;
however, some interviewers might have responded after the beginning of the fieldwork.
Information on interviewers includes socio-demographic characteristics, and
employment background, such as pay grade and experience, workload and planning,
attitudes, strategies and behaviours for dealing with noncontacts and refusals as well as

information about doorstep approaches.

Figure 2.2.2: The design of the Census Link Study 2001
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The linkage of the various data sources with the response outcome of each
survey, as illustrated in Figure 2.2.2, was carried out by the ONS. Linkage of the survey
and census data was based on the address of the household, gender, age or date of birth
and, if necessary, further identifying information. The linkage was carried out separately
for every survey. About 95% of all households were successfully linked to their census
record. The linkage of the interviewer observation data and the interviewer attitudinal
data was based on the interviewer number. A number of quality checks and a significant
amount of clerical review were carried out to identify and minimise any potential linkage
errors. All linkage was quality assured by the ONS on the basis of comparisons of the
distribution of key variables before and after the linkage. Possible effects of linkage
errors have been described in Herzog et al (2007). Potential effects arising from both
missing data and measurement error on multilevel models is discussed in Goldstein

(2010). More detailed information about the rationale of the study, the data and the
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linkage of the different datasets can be found in White et al. (2001), Durrant and Steele
(2009) and Beerten and Freeth (2004).

2.2.2 Call record data and other paradata

This chapter focuses, in particular, in the usefulness of paradata to predict the
likelihood of contact and cooperation. The available paradata in the Census Link Study
contain records of calls, interviewer observations about the household and
neighbourhood and information about the doorstep interviewer-household interaction.
The call record data include the time and day of call, brief information on the contact
strategy used at the call, and the outcome of the call. If contact with the household was
achieved, the interviewer also captured information on age and gender of the main
person talked to at each contact and whether this person made any comment or asked
any question during the introductory conversation with the interviewer. The interviewer
also recorded (usually at the first visit) their observations about the household and
neighbourhood, such as type of accommodation, if there were any physical barriers to
entty to the house, quality of housing and information about the household
composition, such as any signs of the presence of children. The interviewer observation
data are, in principle, available even if no contact was made with the household and
might be used in practice as proxies for unknown census variables. Further call variables
were derived for the analyses such as the time between calls, the number of noncontact
calls (both prior to the first contact and in between two contact calls) and the number of
previous contacts. Such variables, together with the call record variables, are call
dependent (time varying) and so measured at the call level.

Some of the information captured by the interviewer via the interviewer
observation questionnaire coincides with the information provided by the census (e.g.
type of accommodation, indicator if children present). The models presented in this
chapter use, wherever possible, the interviewer observation variables as these could
always be observed and collected during the data gathering while access to census
information is not usually possible. However, due to low quality of some interviewer
observations (with large amount of missing data) compared to their census counterpart,
some census variables, where available, might be included in the models.

The dataset contains 37879 calls made to establish first contact and a further

09619 calls after first contact was achieved, including intermediate noncontact calls

16



(noncontact calls after first contact was attained). The maximum number of contact
calls made to one household is 13, which increases to 15 when noncontact calls are
included. The median number of contact calls per household made by an interviewer
(after first contact was established and excluding any intermediate noncontact calls) is 2
(and average is 2.5). The survey organisation provides calling protocol guidelines to each
interviewer which indicates that the final response outcome for an address cannot be
coded as ‘noncontact’ until at least four calls have been made. At least two of these calls
should be in the evening or on a Saturday. Some general guidelines are also provided on
how to avoid or deal with a refusal at the doorstep. The interviewer is strongly advised

to call back at least once after a refusal.

2.3 Using paradata to predict best times of contact
conditioning on household and interviewer influences

2.3.1 Introduction

This section focuses on the process leading to contact and aims to build
response propensity models based on paradata to predict the likelihood of contact at
each call, conditioning on household and interviewer characteristics. Discrete-time event
history analysis (see, for example, Steele et al., 2004) is used to model the propensity of
contact, allowing for household, interviewer and area effects in a cross-classified
multilevel model. The model conditions on information available for each household,
such as from administrative data and interviewer observations at prior calls, interviewer
characteristics and call record data included as time-varying covariates. The key research

questions are:

1. What are the best times of the day and days of the week to establish contact?

2. What are the best times to establish contact with certain types of households,
in particular households that are generally more difficult to contact?

3. To what extent does establishing contact and the success of the timing of

the call depend on interviewer characteristics?
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2.3.2 Multilevel discrete time hazard model for the probability of
contact

Multilevel event history analysis is used to model the probability of contact at a
particular call, given that no contact was made prior to that call (i.e. model the number
of calls to first contact). Households that are not contacted by the end of the data
collection period have right-censored contact histories. The interviewer is said to have
made contact with a household at a given call, the dependent variable in the model, if
he/she was able to talk to at least one responsible resident at the sampled household,

either face-to-face or through an entry phone.

Denote by y, ;. the binary indicator of contact, coded 1 if contact is made with

household i by interviewer j in area k at call ¢ and O if the contact attempt fails. The
grouping of the j and & indices in parentheses, (jk), indicates a cross-classification of

interviewers and areas, that is an interviewer may work in several areas and an area may
be covered by several interviewers. The conditional probability of contact at call ¢ given

no contact before ¢ — commonly referred to as the discrete-time hazard function — is

defined as m, ), = Pr(y, ), =11%, , =0). The multilevel cross-classified discrete-

(gk)t 1
time hazard model, allowing for a clustering of households within a cross-classification

of interviewers and areas, may be written

™.
i(jk)t ! !
log g =, + B X T8 2, T U+, (2.3.1)

L=

where x, ., . is a vector of time-varying covariates, with coefficients vector g, including

(k)¢
attributes of calls such as time and day of contact attempt ¢, number of calls made to

the household prior to ¢, time of call at ¢t —1 and two-way interactions between call and

household-level variables. The vector z, with coefficient vector &, includes time-

(jk)t >
invariant characteristics of households, from interviewer observations and the census;

interviewers attributes and attitudes, from the Interviewer Attitude Survey; and area

indicators, from aggregated census information. «a, is a function of the call number ¢

(‘time’) which allows the probability of contact to vary across calls; here «, is initially

fitted as a step function, ie. a, =D + oD, +..+a,D, where D,,D,,...,D

 are

dummy variables for calls ¢t =1,...,7 with T the maximum number of calls, but simpler
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monotonic functions are also explored. Unobserved interviewer and area characteristics

are represented respectively by normally distributed random effects u; and v, :
u; ~ N(0,0%) and v, ~ N(0,07).

After restructuring the data so that, for each household, there is a record for
every contact attempt, the multilevel discrete-time event history model (2.3.1) can be

estimated as a cross-classified model for the binary responses y, ., . . Estimation is

(k)
carried out using Markov chain Monte Carlo (MCMC) methods as implemented in the
MLwiN software. MCMC methods are used in a Bayesian framework where every
unknown parameter § must have a prior distribution p(f) . The prior distribution
quantifies the uncertainty in the values of the unknown model parameters before the
data are observed. The default non-informative (also known as flat or diffuse) priors
applied in MLwiN when MCMC estimation is used are: (1) for fixed parameters,
p(B) x 1. This improper uniform prior is functionally equivalent to a proper Normal

2

b

prior with variance ¢°, where ¢ is extremely large with respect to the scale of the

parameter. An improper prior distribution is a function that is not a true probability

distribution in that it does not integrate to 1; (2) for scalar variances, p(l/ 0%) ~T(e,e),

where ¢ is very small. This proper prior is more or less equivalent to a Uniform prior
for log(o®) (Browne, 2009; Rasbash et al., 2009). The Bayesian approach is used to

effectively obtain maximum likelihood estimates of the unknown parameters. Other
numerical approaches used later for estimating multilevel models, such as Gauss-
Hermite quadrature or penalized quasi-likelihood (PQL), would not be feasible for the
cross-classified model presented in this section. In addition, Rodriguez and Goldman
(2001) found that quasi-likelihood approximate inference may result in a substantial
underestimation of the fixed and random effects making this approach less attractive. In
this section, results from 80000 chains with a burn-in of 5000 are presented; using
approximate quasi-likelihood estimates (Goldstein, 2003) as starting values for the
sampling.

To aid interpretation of the fitted model, predicted probabilities of contact are
calculated for each value of the categorical covariates, holding constant the values of all
other covariates in the model at their sample means. To obtain mean probabilities, this
study averages across interviewer and area-specific unobservables by taking random

draws from the interviewer and area random effect distributions. The simulation
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approach involves generating a large number of pairs of random effect values from

2
u

independent normal distributions with variances 62 and 67, calculating a predicted

probability based on each pair of generated values and the estimated coefficients, and
taking the mean across the simulated values. This procedure is implemented in MLwiN

and described in Rasbash et al. (2009).

2.3.3 Results

The hazard rate and average best times of contact

This section presents some descriptive statistics on the contact process and
results from preliminary models that informed the specification of the final multilevel

model.

Figure 2.3.1: Estimated probabilities of contact for each call (hazard rate)t
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T The sample sizes for calls 13-15 are less than 100 households.

Figure 2.3.1 shows the hazard of contact at each call, based on a simplified
version of model (2.3.1) with only dummy variables for call number. In line with
previous studies (e.g. Purdon et al., 1999; Groves and Couper, 1998), this figure shows a
monotonic decline in the contact rate as the number of calls increases, until about call 9.
The contact rate is highest at the first call, when about 50% of households were
contacted, and decreases with each additional call. One possible explanation of this

declining hazard might be attributed to the heterogeneity of contactability between
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households. The slight increase in the contact rate for call 9 and 10, and the increase for
calls 13 and 15, may also indicate that interviewers change their calling strategy and put
in a greater effort to secure contact towards the end of their contact attempts. Another
reason could be that interviewers have additional information that leads them to believe
there is a chance of contact even after many failed attempts. It should be noted that
from call 13 onwards the estimated probabilities of contact are based on fewer than 100
households. Based on the monotonic relationship between the probability of contact

and call number, the specification of the baseline logit hazard, «, in (2.3.1), is simplified

t

by including the number of previous calls as a linear term.

Table 2.3.1: Probability of contact at first call, by day and time of call

Contact  Total number of % of all

probability first calls made calls

Monday Morning 0.46 682 4.1
Afternoon 0.49 3310 19.8

Evening 0.67 947 5.7

Tuesday Morning 0.39 505 3.0
Afternoon 0.48 2796 16.7

Evening 0.63 810 4.8

Wednesday Morning 0.36 327 2.0
Afternoon 0.47 2176 13.0

Evening 0.61 683 4.1

Thursday Morning 0.44 290 1.7
Afternoon 0.46 1864 11.1

Evening 0.59 492 2.9

Friday Morning 0.39 221 1.3
Afternoon 0.42 1014 6.1

Evening 0.57 286 1.7

Saturday Morning 0.50 60 <1.0
Afternoon 0.53 202 1.2

Evening 0.43 51 <1.0

Sunday Morning 0.50 10t <1.0
Afternoon 0.50 16t <1.0

Evening 0.67 9t <1.0

Total - 16799 100

Morning: 0.00-12.00, Afternoon: 12.00-17.00, Evening: 17.00-0.00
T indicates cells with a sample size of less than 30
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Table 2.3.1 shows the probability of contact at the first call by time of day and
day of the week. The most popular times to call are by far weekday afternoons, followed
by weekday evenings and weekday mornings, with a clear decline in the frequency of
calls from the beginning to the end of the week for all times of the day. It should be
noted that due to interviewer working practices only few calls are made at the weekend,
in particular on a Sunday. The highest contact probabilities can be found for evening
calls, especially for Sunday to Wednesday evenings with a probability of more than 0.6.
The chance of making contact in the evening decreases as the week progresses, with a
comparatively low probability for Saturday evening of 0.43. On weekdays, the
probability of making contact during the day is below 0.5, with a particularly low
probability for Wednesday morning. For all weekdays, afternoons show a higher chance
of contact than mornings. At the weekend the daytime contact probability is
comparatively high at around 0.5.

The probability of contact at the second and third calls conditioning on the time
of the previous call is also explored using descriptive statistics (Table 2.3.2 and 2.3.3
respectively). Due to small sample sizes, the time of day and day of the week variables
were merged and categories collapsed to just four, ie. weekend, weekday morning,
weekday afternoon and weekday evening. The results may suggest that the best time for
the second and third calls is a weekday evening, regardless of the time of the previous
call, which supports eatlier findings by Purdon et al. (1999), Groves and Couper (1998)
and Kulka and Weeks (1988). The effect is greatest if the previous call was at a weekend

and smallest if it was also made on a weekday evening.

Table 2.3.2: Probability of contact at second call conditional on timing of the previous call

Second call First Call
Weckend Weekc.:lay Weekday Weekf:lay Overall
Morning afternoon Evening
Weekend (239) 0.33 - 0.38 0.30 0.39
Weekday morning (487) - 0.31 0.35 0.28 0.34
Weekday afternoon (3717) 0.35 0.34 0.37 0.39 0.37
Weekday evening (3667) 0.65 0.54 0.53 0.50 0.53

-- indicates cells with a sample size of less than 30.
The number of second calls made per calling time are given in parentheses.
All cases where contact was made at the first call are excluded.
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Table 2.3.3: Probability of contact at third call conditional on timing of the previous call

Third call Second call
Weekend Weekd ay Weckday \X/eek'day Opverall
morning afternoon  Evening
Weekend (213) - - 0.29 0.30 0.31
Weekday morning (254) - - 0.27 0.25 0.28
Weekday afternoon (1702) 0.36 0.34 0.30 0.23 0.28
Weekday evening (2317) 0.59 0.47 0.47 0.39 0.44

-- indicates cells with a sample size of less than 30
The number of third calls made per calling time are given in parentheses.
All cases where contact was made at the first and second calls are excluded.

It should be noted that the ideal dataset for investigating best time of contact
would be based on fully randomized calling times for all sample units. Such a design
would, however, be impractical and very costly, at least for face-to-face surveys. It could
be achieved to some extent for telephone surveys or experimental designs (Groves and
Couper, 1998; Carrel and West, 2010). The dataset here, similar to previous work,
provides information on observed calling times, i.e. the times that the interviewer chose
to call on a household. If an interviewer’s decision to call at a particular time can be
regarded as independent of the characteristics of the sample unit, a departure from fully
randomised calls should not be important. It seems reasonable to assume that
interviewers choose when to make their first call with little, if any, prior knowledge
about the sampling units. However, the timing of subsequent calls may depend on
additional knowledge that the interviewer obtained at an earlier call. The models
presented in this section attempt to adjust for this potential source of bias by controlling
for information on the call history, interviewer observation variables and household
information, which extends previous work on the analysis of call record data that did
not include such controls (e.g. Bates et al., 2008). In practice, interviewer characteristics
such as experience might also influence calling times, with more experienced
interviewers more likely to be better at judging the most productive strategy for a given
type of household. Thus, the models also attempt to control for differences between
interviewer calling strategies by incorporating a number of interviewer characteristics in
the model. The issue of non-random allocation of calling times to households has been
discussed further in Purdon et al. (1999), Groves and Couper (1998) and Kulka and
Weeks (1988).

The effect of day of the week and time of day is examined in a cross-classified
multilevel discrete-time hazard model controlling for household, interviewer and area

characteristics. The estimated coefficients for each category of the time of call variable
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are provided in Table 2.3.4. The results confirm the indicative findings of Table 2.3.1,
and largely support the conclusions of previous research, that evenings and weekends
are optimal times to call (Weeks et al., 1980; Swires-Hennessy and Drake, 1992; Purdon
et al. 1999; Groves and Couper, 1998). There is pervasive evidence that calling on
weekday evenings yields the highest probability of contact, with a particularly high
probability towards the beginning of the week and decreasing thereafter. Calling at the
weekend, in particular on a Sunday, also leads to a higher probability of response, with
Sunday evenings showing a similar pattern to early weekday (Mon-Wed) evenings. (Due
to this finding and the very small number of calls made on a Sunday evening, this
category was combined with ‘early weekday evening’ in later models, see Table 2.3.5).
The next most successful times to call are weekday afternoons. Weekday mornings are
generally the worst times to establish contact. During the week, afternoons are better

than mornings but it is the other way round at the weekend.

Table 2.3.4: Estimated coefficients for the variable ‘day and time of call’ when included
as a main effect only in the cross-classified multilevel discrete-time hazard model,
controlling for houschold, area and interviewer characteristics, but without any
interaction effects

B (ste)
Monday Morning -0.861 (0.085)
Afternoon -0.756 (0.051)
Evening Reference
Tuesday Morning -1.084 (0.090)
Afternoon -0.800 (0.052)
Evening -0.063 (0.054)
Wednesday Morning -1.040 (0.101)
Afternoon -0.784 (0.055)
Evening -0.059 (0.055)
Thursday Morning -0.879 (0.102)
Afternoon -0.851 (0.058)
Evening -0.155 (0.059)
Friday Morning -0.998 (0.1106)
Afternoon -0.871 (0.0606)
Evening -0.187 (0.073)
Saturday Morning -0.419 (0.140)
Afternoon -0.682 (0.0906)
Evening -0.508 (0.201)
Sunday Morning 0.122 (0.527)
Afternoon -0.422 (0.3306)
Evening 0.645 (0.453)

Morning: 0.00-12.00, Afternoon: 12.00-17.00, Evening: 17.00-0.00
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Results from Table 2.3.4 inform the categorisation of the calling time variable in
the final model (Table 2.3.5) which distinguishes eight calling times: early week (Mon-
Wed) and late week (Thu-Fri) morning, afternoon and evening and weekend daytime

and evening,.

Best times of contact for different types of households

So far the average best times to call on a household was considered. However,
the chance of making contact at a given time of day will depend on the characteristics of
the household. Groves and Couper (1998) provided a theoretical framework for
understanding and studying household survey nonresponse. This framework identifies a
number of important influences on the likelihood of contacting a sample household,
including the timing and frequency of the calls, social environmental and socio-
demographic attributes, at home patterns of the householders and the presence of
physical impediments to gaining access to the household. Such attributes may be
separated into factors that are under the control of the interviewer or survey
organisation, such as timing of the call and interviewer contact strategies (e.g. leave a
card), and factors outside their control, such as characteristics of the household or area
(Purdon et al., 1999). This analysis aims to control for all of these effects. Previous
studies that analysed overall best times to contact have found that evening and weekend
calls are optimal (Weeks et al., 1980; Swires-Hennessy and Drake, 1992). A logical
question to ask is which households have the highest chance of contact during the day,
so that survey agencies may reserve evening and weekend times for more difficult cases.
This research therefore investigates interactions between call times and household
characteristics to determine best times of contact for particular households. Another
interesting question for survey agencies is whether changing the timing of the call
increases the likelihood of contact. Therefore, this research investigates the influence of
the call history (see Purdon et al., 1999; Groves and Couper, 1998 and Kulka and Weeks,
1988). A separate indicator for the first call was included in the model and variables
relating to earlier calls, such as the time of the previous call, were coded zero for the
first call. This coding allows the coefficients of these call history variables to be
interpreted as effects for second and subsequent calls.

This research now investigates the best times to establish contact with certain

types of households, in particular those households that are generally more difficult to
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contact. Table 2.3.5 presents parameter estimates of two multilevel discrete-time hazard
models which take account of household and interviewer characteristics and interactions
between time-varying variables and household and interviewer characteristics. Model A
excludes census variables since these would not normally be available to a survey agency.
Model B represents the final model which aims to understand the process leading to
contact, including census information. Potential proxies for census variables from
interviewer observation variables are also explored in this section. The inclusion of
census variables reduces the DIC (Deviance Information Criterion, Spiegelhalter et al.,
2002) by only a small amount (i.e. by 163 from 46936 for Model A to 46773 for Model
B), indicating that a model based only on interviewer observation variables does not
have much less predictive power than the full model. Furthermore, there are no
differences in the direction of effects between the two models, implying that similar
results can be obtained also in the absence of additional administrative data, i.e. when
the survey agency can only rely on recordings by the interviewers to obtain information
about nonresponding households.

From Table 2.3.5 it is observed that the probability of contact is highest for the
first call. The highly significant negative coefficient for number of previous calls after
the first call indicates a decrease in the odds of contact by 10% ([1-exp(-
0.110)]*100=10%) for each additional call net of all other factors in the model, in line
with the descriptive analysis shown in Figure 2.3.1. Non-proportional effects of
covariates are tested by interacting each with number of previous calls, but there is no
evidence to suggest that the effect of any variable differed across calls. In the following
a distinction between interviewer observation and census variables is made, although in
practice, at least some of the census variables could be substituted by variables based on
interviewer observations. To aid interpretation of the interaction terms in the model and
in an effort to illustrate how to maximise the likelihood of contact, predicted
probabilities are provided in Table 2.3.6. (These have been calculated for call 1 but the
pattern in probabilities is exactly the same for subsequent calls because the lack of
interactions with the number of previous calls implies that all effects are constant across

calls.)
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Table 2.3.5: Estimated coefficients (and standard errors) for two multilevel cross-classified logistic
models for contact: Model A without census variables and Model B with census variables

Variable Categories Model A Model B
(ref= Reference category) 3 (ste(,@)) 3 (ste(ﬁ))
Constant 0.011 (0.086) 20.870 (0.111)7F
Sutvey indicator FRS 0.076 (0.054) 0.077 (0.050)
(ref = EFS) GHS 0.052 (0.047) 0.022 (0.044)
OMN 0.171 (0.049)*** 0.064 (0.045)
NTS -0.026 (0.049) -0.008 (0.0406)
LFS 0.682 (0.053)*** 0.280 (0.057)***

Call Record Data (time-variant)

Previous call indicator
(ref= First call)

Call previously made

-0.645 (0.061)***

-0.550 (0.060)*x**

Number of calls previously made

-0.083 (0.009)***

-0.111 (0.009)***

Day and time of call Mo-Wed am -0.536 (0.144)**+ | -0.305 (0.1906)
(ref = Sun-Wed eve) Mo-Wed pm -0.541 (0.084)*** | -0.457 (0.115)***
Thu-Fri am -0.727 (0.208)*%* | -1.110 (0.284)***
Thut-Fri pm -0.792 (0.111)*%* | -0.625 (0.146)***
Thu-Fri eve -0.087 (0.113) -0.118 (0.152)
Sat-Sun am -0.600 (0.379) -0.282 (0.493)
Sat-Sun pm -0.281 (0.234) -0.346 (0.300)
Sat eve 0.053 (0.644) -2.472 (1.651)
Time of previous call Weekend 0.704 (0.147)%*+* 0.615 (0.141)***
(ref= Weekday evening) Weekday morning -0.008 (0.104) -0.018 (0.104)
Weekday afternoon 0.175 (0.052)*** 0.172 (0.052)***
Number of days between calls 1-3 days 0.095 (0.043)** 0.089 (0.042)**
(ref= Same day) 4-8 days 0.257 (0.046)*** 0.245 (0.045)***
9-14 days 0.332 (0.080)*** 0.311 (0.080)***
15+ days 0.428 (0.154)%+* 0.290 (0.155)*
Card/message left Card/message left 0.104 (0.035)*** 0.095 (0.035)***

(ref= No card/message left)

Interviewer Observations (time-invariant)

Security device
(ref= security device visible)

No security device visible

0.210 (0.030)***

0.192 (0.031)***

Type of accommodation House 0.467 (0.058)*** 0.350 (0.057)***
(tef= Not house, i.e. flat, mobile

home, other)

Houses in area in good or bad state of | Fair-Bad -0.238 (0.052)*** | -0.186 (0.050)***

repair (ref= Good)

House in a better or worse condition

About the same

~0.127 (0.039)%%*

-0.068 (0.040)

than others in area Worse -0.308 (0.056)*** | -0.272 (0.056)***
(ref= Better)
Dependent children present Present 0.323 (0.059)*** | -

(ref= Not present)

Household-level variables from the Census (time-invariant)

Age (household reference person) 35-49 - 0.165 (0.033)***
(ref= 16 - 34) 50 - 64 - 0.389 (0.038)***
65-79 - 0.444 (0.069)***
80 and older — 0.535 (0.080)***
Household type Couple household ---- 0.425 (0.027)***
(ref= Single household) Multiple household o 0.402 (0.075)***

Pensioner in household
(ref= No pensioner in household)

Pensioner in household

0.113 (0.082)

Person with a limiting long term illness
present (LLTT) (ref= Not present)

Household with one or more
people with LLTI

0.085 (0.055)

Dependent children present
(ref= Not present)

Present

0.557 (0.054)%*
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Adults in employment
(ref= No)

Yes

0.120 (0.064)**

Interviewer-level Variables (time-invariant)

Pay grade
(ref= Merit 1 and 2)

Interviewer and advanced
interviewer
Merit 3 and field manager

0.144 (0.038)***

0.128 (0.043)***

0.079 (0.047)*

0.129 (0.057)**

Interviewer qualification
(ref= Degtee or postgraduate, other
higher education)

A levels
GCSE, qualifications below
this level, no qualification

20.110 (0.047)%
-0.022 (0.035)

-0.148 (0.059)**
-0.032 (0.043)

Interviewer Age
(ref= 50 years or more)

Under 50 years

-0.122 (0.056)**

-0.142 (0.062)**

Use phone to make appointment
(ref= Always, frequently, sometimes)

Rarely, never

0.097 (0.033)***

0.103 (0.041)**

Interactions between interviewer observations and household characteristics

Day and time of call * Dependent
children present

Mo-Wed am * Children
Mo-Wed pm * Children

~0.416 (0.131)%%*
-0.256 (0.074)%+*

-0.090 (0.126)
0.146 (0.069)**

(ref=Sun-Wed eve and No dependent | Thu-Friam * Children -0.260 (0.190) -0.093 (0.187)
children) Thu-Fri pm  * Children -0.191 (0.093)** 0.061 (0.090)
Thu-Fri eve * Children -0.043 (0.110) -0.155 (0.098)
Sat-Sunam  * Children 0.187 (0.404) -0.613 (0.358)*
Sat-Sun pm  * Children -0.152 (0.230) -0.116 (0.207)
Sat eve * Children 0.063 (0.578) -0.267 (0.524)
Day and time of call * Adults in Mo-Wed am  * Yes - -0.552 (0.143)***
employment Mo-Wed pm * Yes e -0.590 (0.080)***
(ref= Sun-Wed eve and No adults in Thu-Friam * Yes - -0.083 (0.202)
employment) Thu-Fri pm  * Yes - -0.591 (0.103)***
Thu-Frieve * Yes - 0.034 (0.118)
Sat-Sunam * Yes - -0.381 (0.364)
Sat-Sun pm  * Yes e -0.028 (0.243)
Sat eve *Yes — 2.669 (1.518)*
Day and time of call * Household with | Mo-Wed am * LLTI - 0.152 (0.118)
a person with limiting long term illness | Mo-Wed pm * LLTI - 0.315 (0.069)***
(LLTT) Thu-Friam *LLTI - 0.193 (0.166)
(ref= Sun-Wed eve and No person Thu-Fri pm * LLTI - 0.131 (0.087)
with LLTT) Thu-Fri eve * LLTI - -0.045 (0.104)
Sat-Sunam * LLTI - 0.369 (0.297)
Sat-Sun pm * LLTI - 0.274 (0.199)
Sat eve * LTI — 0.435 (0.536)
Day and time of call * Pensioner in Mo-Wed am * Pensioner - 0.342 (0.153)**

household

Mo-Wed pm * Pensioner

0.318 (0.088)***

(ref= Sun-Wed eve and No pensioner) | Thu-Friam * Pensioner - 0.629 (0.213)***
Thu-Fri pm * Pensioner - 0.246 (0.113)**
Thu-Frieve * Pensioner ---- 0.034 (0.128)
Sat-Sunam  * Pensioner ---- -0.717 (0.385)***
Sat-Sun pm  * Pensioner ---- 0.069 (0.265)
Sat eve * Pensioner — 1.600 (1.551)
Day and time of call * Indicator if Mo-Wed am * House -0.531 (0.139)*** | -0.519 (0.145)***
house Mo-Wed pm * House -0.258 (0.078)*** | -0.191 (0.078)**
(ref= Sun-Wed eve and and Not Thu-Friam * House -0.338 (0.199)* -0.158 (0.201)
house) Thu-Fri pm * House -0.035 (0.104) 0.065 (0.104)
Thu-Fri eve * House -0.040 (0.105) 0.048 (0.100)
Sat-Sunam  * House 0.106 (0.347) 0.311 (0.357)
Sat-Sun pm  * House -0.065 (0.214) -0.090 (0.214)
Sat eve * House -0.371 (0.567) -0.110 (0.564)
Day and time of call * Indicator if Mo-Wed am * Fair/Bad 0.012 (0.117) 0.036 (0.120)

house in a good or bad state of repair
(ref= Sun-Wed eve and Good )

Mo-Wed pm * Fair/Bad
Thu-Friam  * Fair/Bad
Thu-Fri pm * Fair/Bad
Thu-Fri eve * Fair/Bad
Sat-Sunam  * Fair/Bad

0.198 (0.066)***
0.536 (0.163)%**
0.243 (0.085)**
0.157 (0.092)*
0.509 (0.327)

0.150 (0.065)**
0.631 (0.169)%**
0.199 (0.085)
0.120 (0.090)
0.485 (0.327)
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Sat-Sun pm  * Fair/Bad
Sat eve * Fair/Bad

-0.200 (0.202)
0.031 (0.496)

-0.144 (0.197)
-0.168 (0.483)

Day and time of call * Time of
previous call

(ref= Sun-Wed eve and Weekday eve)

Mo-Wed am * Weekend
Mo-Wed pm * Weekend
Thu-Fri am * Weekend
Thu-Fri pm * Weekend
Thu-Fri eve * Weekend

Sat-Sun am  * Weekend
Sat-Sun pm  * Weekend
Sat eve * Weekend

Mo-Wed am * Weekday am
Mo-Wed pm * Weekday am
Thu-Friam * Weekday am
Thu-Fri pm * Weekday am
Thu-Fri eve * Weekday am
Sat-Sunam  * Weekday am
Sat-Sun pm  * Weekday am
Sat eve * Weekday am

Mo-Wed am * Weekday pm
Mo-Wed pm * Weekday pm
Thu-Friam * Weckday pm
Thu-Fri pm * Weekday pm
Thu-Fri eve * Weekday pm
Sat-Sun am * Weekday pm

Sat-Sun pm  * Weekday pm

Sat eve * Weekday pm

0.078 (0.408)
-0.714 (0.223)%+*
-0.552 (0.785)
-0.189 (0.460)
-0.682 (0.459)
-0.240 (0.681)
-0.833 (0.306)%+*
-1.319 (0.587)%*

0.090 (0.245)
0.086 (0.135)
0.447 (0.298)
-0.102 (0.168)
0.379 (0.190)**
0.574 (0.524)
0.149 (0.521)
0.014 (1.690)

0.163 (0.143)
-0.039 (0.067)
-0.063 (0.179)
-0.034 (0.086)
0.025 (0.087)
0.772 (0.313)%*
-0.444 (0.205)%*
0.108 (0.584)

-0.007 (0.417)
-0.567 (0.224)%*
-0.211 (0.766)
0.003 (0.465)
-0.675 (0.443)
0.065 (0.667)
-0.761 (0.207)**
-1.203 (0.580)**

0.098 (0.246)
0.156 (0.137)
0.492 (0.301)
0.043 (0.170)
0.359 (0.185)%*
0.438 (0.521)
0.214 (0.508)
-0.581 (1.628)

0.211 (0.146)
-0.009 (0.067)
-0.074 (0.183)
0.014 (0.086)
-0.021 (0.083)
0.853 (0.313)%**
-0.458 (0.201)%*
-0.048 (0.607)

Interactions between interviewer observations and interviewer characteristics

Day and time of call * Interviewer Age
(ref= Sun-Wed eve and 50 years or

more)

Mo-Wed am * under 50 yrs
Mo-Wed pm * under 50 yrs
Thu-Friam * under 50 yrs
Thu-Fri pm * under 50 yrs
Thu-Fri eve * under 50 yrs
Sat-Sun am  * under 50 yrs
Sat-Sun pm  * under 50 yrs
Sat eve * under 50 yrs

0.096 (0.118)
0.017 (0.066)
0.044 (0.171)
-0.023 (0.087)
-0.194 (0.093)%*
-0.776 (0.339)%*
0.061 (0.200)
0.026 (0.443)

0.108 (0.123)
0.035 (0.067)
0.130 (0.171)
-0.012 (0.087)
-0.204 (0.092)**
-0.716 (0.337)%*
0.029 (0.193)
-0.142 (0.440)

Interviewer variance

0.089 (0.013)***

0.078 (0.011)***

Area variance

0.006 (0.005)

0.009 (0.005)*

The estimated coefficients and their standard errors are the means and standard deviations of parameter values across
80,000 Markov chain Monte Carlo samples, after the burn-in of 5000 and starting values from second order PQL estimation.
The missing value categories have been suppressed to save space.

*  significant at the 10% level
** significant at the 5% level
*H¥ significant at the 1% level

Coding of time of call: am = 0.00-12.00, pm=12.00-17.00, eve= 17.00-0.00

Household and neighbourhood characteristics based on interviewer observations

Factors that are outside the direct control of the interviewer (Purdon et al.,

1999), include characteristics of the houschold that indicate at home patterns of

household member, socio-demographic characteristics and indicators of physical

impediments to accessing the household. This study investigates the influence of

variables that may be regarded as proxies for the time spent at home and lifestyle, such
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as indicators of a single-person household, presence of dependent children and
pensioners. Of particular interest is the effect of interviewer observation data as survey
agencies should be able to collect this information for all households, including
noncontacts. Such data are especially useful when no information from administrative
data or census is available. Interviewer data (time-invariant) include information about
physical barriers to accessing the household (e.g. a locked common entrance, locked
gate or entry phone), the presence of security devices (e.g. security staff, CCTV cameras
or burglar alarm), indications about boarded-up or uninhabitable buildings in the area,
household composition, quality of the housing and how safe the interviewer would feel
walking in the area after dark.

This research considers the effects of a range of interviewer observations. All of
these variables are predictive of contact in initial modelling (i.e. before controlling for
household and interviewer effects), which suggests such variables are useful for guiding
the process of establishing contact in the field, in particular in the absence of additional
administrative data, i.e. when the survey agency can only rely on recordings by the
interviewers to obtain information about nonresponding households.

Table 2.3.5 shows the effects of variables that remained significant in the final
model. As may be expected, houses with no security device visible - such as a security
gate, burglar alarm, CCTV cameras or security staff - are easier to contact. An
observation that can be relatively easily recorded by the interviewer is whether the
household lives in a2 house or a flat. For almost all times, it is easier to establish contact
with householders living in a house rather than a flat, and this is true even after
controlling for household characteristics such as location, number of people in the
household and presence of children. Interactions between interviewer observation
variables and time of call are also explored, of which a number are found significant in
initial modelling. Two interactions remain significant in the final model adjusting for all
other household level characteristics; these are the interaction between timing of call
and type of accommodation as well as state of repair of houses in the area. The
interaction term between the timing of the call and the type of accommodation (Table
2.3.0) reveals that on afternoons, for any day of the week, it is easier to make contact
with residents of houses than of flats. Householders living in flats are most likely to be
contacted in the evenings and on Saturday and Sunday mornings. Contact is found on
average to be more difficult when the interviewer recorded that houses in the area are in

a fair or bad state of repair and that the house is in a worse condition than others in the
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area (Table 2.3.6). The interaction term between timing of the call and state of repair of
houses in the area provides some indication that the contact rate is better for houses in a
fair or bad state of repair compared to houses in a good state of repair for Thursday-
Sunday mornings. The fact that people living in fair or bad state of repair houses are
more likely to be reach during late week morning might be due to these people being
more likely to be unemployed or to be casual or shift workers and therefore at home
more during the day. On the other hand, contact rate is better for houses in a good state
of repair for Sun-Wed evening. These findings might indicate that state of repair of
houses in the area may be regarded as a proxy for people in full-time employment (or
people with children) more likely to be at home during the evening.

It is also found indication that contact is more difficult to establish if there are
any boarded-up or uninhabitable buildings in the area or if the interviewer does not feel
safe walking along in the area after dark However, none of these effects remain
significant after controlling for other interviewer observations and household
characteristics from the census. These wvariables could be indicators for social
deprivation indices not significant once the model effectively controls for other
household characteristics, such as type of household, employment, area.

It should be noted that interviewers are also asked to record indication of the
presence of children, which is (at least in principle) the same information available from
the census data. It was decided, however, to use the census variable in the final model
due to the potential higher data quality and less item-nonresponse of this variable. (For
an interpretation of the effect of this variable see the subsection ‘Howusehold characteristics
from the Census’).

Two other call-specific variables that are under the control of the survey
organisation, and that may determine best times of contact, are the timing of the
previous call and the length of time since the last call. Considering the main effect of
time of previous call only (without the interaction term with time of current call in the
model) it is found that if the previous call is already a weekday evening call then
establishing contact at the next call becomes increasingly less likely, indicating a
potentially difficult to contact household. Some indications for a significant interaction
term between time of current call and time of previous call are found (Tables 2.3.5 and
2.3.6). If the previous call is a weekend call, it seems advisable to call early during the
week either in the morning or evening, or on a weekend morning. If the previous call is

on a weekday afternoon, promising times to call are evening and weekend and Mon-
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Wed mornings. If the previous call is made during the evening, calling again during the
evening is the most likely to lead to contact, although in comparison to other previous
calling times the contact rate for such repeated evening calls is smaller. It may be
conclude that there is some indication for varying the timing of the call. Overall,
however, evenings and weekends are reliably good times to call. This indicates that
interviewers may have some (although limited) options in increasing contact rates by
changing the time of the call, in particular if it is to an evening or weekend. Similar
conclusions are drawn by Weeks and Kulka (1988), although they presented only
descriptive statistics for the timing of the first three calls. Purdon et al. (1999) did not
find a significant interaction between time of current and time of previous call. They
concluded that if a household is repeatedly called upon during the evening the contact
probability decreases, indicating a more difficult household. Groves and Couper (1998)
did not find interpretable conditional effects of the timing of previous calls.

The effect of the number of days between calls (Table 2.3.5) suggests that
leaving a few days between calls, ideally about one or two weeks, increases the
probability of contact compared to returning on the same day. The increased probability
of contact for call-backs after one or two weeks may reflect effects of additional
knowledge about the household gathered by the interviewer at the eatlier call which led
them to adopt such a calling schedule. For example, interviewers may have found out
from neighbours that the household was on holiday. Unfortunately, this type of

information was not recorded for each call.

Household characteristics from the Census

It is well known that single-person households, households without children or
with primarily young people, and households in urban areas and in flats are the most
difficult to contact (Durrant and Steele, 2009; Groves and Couper, 1998), and the results
presented here confirm these findings (see also Table 2.3.6).

From Table 2.3.6, it can be observed that for almost all call times the probability
of contact is higher for households with children, with particulatly high probabilities on
weekday evenings, all afternoons and Mon-Wed mornings. The fact that weekday
afternoons are good times may be related to children being back home from school. For
households without children, calls made on weekdays during the day are the least likely
to result in contact, whereas weekday evenings are the most promising. In practice,

indications of the presence of children may be obtained via interviewer observations (as
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in Model A) or, at least in some countries, from administrative or register data, such as
from child benefit records (for an example see Cobben and Schouten, 2007). Although
estimated coefficients for time of call and dependent children present (Table 2.3.5)
somewhat differ between Model A and B, the predicted probabilities of contact
obtained using Model A (not shown here), for the two-way interaction involving these
two variables, display the same pattern as those in Table 2.3.6 based on Model B.
Therefore, using either the Census variable or its proxy from the interviewer
observation data leads to the same modelling conclusions.

As might be expected, the contact rate for weekday mornings (Mon-Wed) or
afternoons (Mon-Fri) is higher for households without any adults in employment than
for households with at least one employed resident (Table 2.3.6). The reverse effect is
found for the evenings. For households with adults in employment the probability of
contact for both weekday and weekend evenings are higher than for households in
unemployment. There is a lower chance of contact for households with adults in
employment on weekend mornings than for households in unemployment but weekend
afternoons perform very similarly. The contact rate for Saturday evenings is higher for
households with employed adults than for those with no one in employment. (An
indicator of whether any adults are in employment is also available from the interviewer
observation questionnaire and could be used as proxy for the census variable. Again due
to the higher data quality of census data the census measure is included in the final
model. For an example where information on employment status and unemployment

benefits is available from administrative sources see Cobben and Schouten, 2007.)

Table 2.3.6: Predicted probabilitiest of contact (in %) for two-way interactions

Interaction between day and time of call and type of accommodation

Type of accommodation
House Flats, other

Mon, Tue, Wed morning 38.2 42.2

Mon, Tue, Wed afternoon 42.3 38.6

Sun, Mon, Tue, Wed evening 58.1 49.6

Day and time Thu, Fr% morning 28.6 24.9
of call Thu, Fri afternoon 44.5 34.8
Thu, Fri evening 56.4 46.7

Sat, Sun morning 58.8 42.7

Sat, Sun afternoon 47.5 41.2

Sat evening 9.9 7.9
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Interaction between day and time of call and state of repair of houses in area

State of repair of houses in area

Good Fair-Bad
Mon, Tue, Wed morning 479 44.3
Mon, Tue, Wed afternoon 44.2 434
Sun, Mon, Tue, Wed evening 55.4 50.8
Day and time Thu, Fr@ morning 29.5 39.3
of call Thu, Fr% afterpoon 40.2 40.5
Thu, Fri evening 52.5 50.9
Sat, Sun morning 48.5 55.8
Sat, Sun afternoon 46.9 39.0
Sat evening 9.8 7.1

Interaction between day and time of call and dependent children in household

Dependent children present

Present Not present
Mon, Tue, Wed morning 54.6 43.2
Mon, Tue, Wed afternoon 56.6 39.6
Sun, Mon, Tue, Wed evening 63.9 50.6
Day and time Thu, Fr% morning 35.3 25.7
of call Thu, Fri afternoon 50.5 35.7
Thu, Fri evening 57.5 47.7
Sat, Sun morning 42.4 43.8
Sat, Sun afternoon 53.0 42.2
Sat evening 10.7 8.2

Interaction between day and time of call and time of previous call

Time of previous call

Week | Wkday | Wkday Wkday

end am pm eve

Mon, Tues, Wed morning 60.7 48.0 55.4 46.1

Mon, Tues, Wed afternoon 43,5 45,7 46.3 42.4

Sun, Mon, Tues, Wed evening 67.7 53.0 57.6 53.5

Day and time Thu, Fri morning 36.6 38.2 29.9 27.9
of call Thu, Fri afternoon 53.3 39.0 42.8 38.4
Thu, Fri evening 49.1 58.8 54.3 50.6

Sat, Sun morning 62.9 56.8 70.4 46.6

Sat, Sun afternoon 41.5 49.8 38.3 451

Sat evening 5.3 5.3 10.3 9.2

Interaction between day and time of call and adults in employment

Adults in employment

No adult 1+ adult
Mon, Tue, Wed morning 50.8 40.4
Mon, Tue, Wed afternoon 471 36.0
Sun, Mon, Tue, Wed evening 58.6 61.0
Day and time Thu, Fri morning 31.9 32.7
of call Thu, Fr% aftergoon 43.0 32.2
Thu, Fri evening 55.3 59.0
Sat, Sun morning 51.4 45.0
Sat, Sun afternoon 49.8 52.0
Sat evening 10.9 65.5
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Interaction between day and time of call and pensioner in household

Pensioner in household
Present Not present
Mon, Tue, Wed morning 56.3 45.2
Mon, Tue, Wed afternoon 52.0 41.5
Sun, Mon, Tue, Wed evening 55.4 52.6
Day and time Thu, Fr% morning 43.7 27.2
of call Thu, Fr% afterpoon 46.1 37.6
Thu, Fri evening 53.3 49.7
Sat, Sun morning 31.8 45.7
Sat, Sun afternoon 48.6 44.2
Sat evening 34.6 8.9

Interaction between day and time of call and person with limiting long term illness (LLTI)

Person with LLTI
Present Not present
Mon, Tue, Wed morning 51.4 45.6
Mon, Tue, Wed afternoon 51.7 42.0
Sun, Mon, Tue, Wed evening 55.1 53.1
Day and time Thu, Fr@ morning 39.9 27.6
of call Thu, Fri afternoon 431 38.0
Thu, Fri evening 51.1 50.2
Sat, Sun morning 57.2 46.2
Sat, Sun afternoon 53.4 44.6
Sat evening 14.2 9.0

Interaction between day and time of call and interviewer age

Interviewer age
Under 50 years 50 years or more
Mon, Tue, Wed morning 49.6 50.4
Mon, Tue, Wed afternoon 441 46.7
Sun, Mon, Tue, Wed evening 54.4 57.8
Day and time Thu, Fr% morning 31.4 31.6
of call Thu, Fri afternoon 39.0 42.6
Thu, Fri evening 46.5 55.0
Sat, Sun morning 31.0 51.0
Sat, Sun afternoon 46.7 49.4
Sat evening 8.3 10.8

T Predicted probabilities are calculated by varying the values of the two interacting variables, holding all other
covariates at their sample mean value. In the case of a categorical variable, the dummy variable associated with a
particular category takes on the value of the sample proportion in that category instead of the usual 0 or 1 value.

The call indicator variable has been fixed for call 1 to obtain these predicted probabilities but the trend in predicted
probabilities would be the same for subsequent calls since interactions with the call-variable were not included.

Coding of time of call: morning (am)=0.00-12.00, afternoon (pm)=12.00-17.00, evening (eve)=17.00-0.00

The interviewer also has a good chance of finding someone at home during the
week if there is at least one pensioner present. Particularly high probabilities of contact
are observed during the day in the early part of the week. Weekday evenings are also
good times to establish contact with pensioners. Compared to other types of
households, the contact rate for households with pensioners is relatively low at the

weekend, particularly mornings. This may be partially explained by older people being
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more likely to have religious or family commitments on a Sunday for example. For
households without a pensioner weekday evenings and weekend mornings are the best
times to call. There is also a suggestion of a similar effect for households with an older
household representative, where householders older than 50 are more easily contacted
during the day on weekdays whereas the daytime contact rate is quite low for
householders younger than 35; however, this effect is not significant any more once we
controlled for the interaction effect of pensioners. For any time and day, it is found that
the older the household representative the more likely it is to establish contact, whereas
householders aged below 35 are the most difficult to contact (Table 2.3.5).

From Table 2.3.5 it is observed that the number of people in the household has
a significant effect on contact, with larger households being easier to contact than
single-person households. This may be expected since it will be more likely to find at
least one person at home for larger households. The interaction between timing of call
and number of people in the household is significant in initial modelling, but not after
controlling for other markers for at-home patterns such as the presence of children and
household members in full-time employment.

Households with at least one person with a limiting long term illness (LLTI)
have high probabilities of contact throughout the week as would be expected since such
persons may be more likely to be at home due to their restricted daily activities and
some may have a carer present. The probability of contacting these households is
particularly high during the week (Mon-Wed), which is almost as good a time to call as
evenings and weekends. In preliminary analysis, a very similar effect for households with
a carer present is found, but due to collinearity with the LLTT variable this variable is
not included in the final model. Information on the presence of carers or persons with a
long-term illness may be available in register or administrative databases (for an example
see Cobben and Schouten, 2007). Alternatively, some crude proxies or indicators may
be captured by the interviewer, for example via observations regarding wheelchair
access to the house or a disabled parking permit visible in the car.

Geographical location and type of area are usually regarded as important
predictors of noncontact (Groves and Couper, 1998). However, after controlling for
household characteristics, such as household type, the London and urban-rural
indicators are no longer significant. Interactions between the geographical variables and
the timing of the call are also explored. The interaction with the London indicator is

significant in a simple model, but not after adjusting for all household effects and their

36



interactions. In the absence of household-level information knowledge about
geographical location and type of area (urban-rural), which can be easily observed and
collected by the interviewer, may be regarded as proxies for such household information
and are expected to be predictive of contact. In addition, area-level variables, such as
long-term unemployment rate, percentage of older people and children and percentage
of houses are all found significant in predicting noncontact before controlling for
household and call-level information, but not in the final model. This implies that area
variables may be also considered as proxies for household characteristics, in line with
the findings of O’Muircheartaigh and Campanelli (1999).

The above findings are based on a pooled analysis of six UK surveys which are
expected to differ in their contact rates, for example because of differences in their
design, such as length of data collection period. It is found that the LFS has a
significantly higher probability of contact than the other surveys considered. This may
be due to a number of factors, such as LIS interviewers working only on that survey
whereas normally interviewers may be expected to work on several surveys. They also
have a comparatively lower workload, in terms of the number of addresses, and receive
more intensive interviewer training, although it should be noted that the LIS also has

shorter data collection period than the other surveys.

Influences of the interviewer on the process of contact

There is significant, although small, variation between interviewers in their
contact rates in all models. Inclusion of the interviewer characteristics reduces the
between-interviewer variance from 0.11 to 0.08, explaining about 27% of the
interviewer variance. The relatively small between-interviewer variance indicates that
even though interviewers play a significant role in the process leading to contact, the
effect of their unknown characteristics might not be strong on the log-odds of contact.
The between-area variance is substantially smaller than the between-interviewer variance
and, controlling for household-level and call-level variables halved the between-area
variance; in the final model area effects are only marginally significant at the 10% level
(see Table 2.3.5).

Before looking into the interviewer characteristics that influence the contact
process, it is important to note the potential problem of interpreting interviewer effects
that may be confounded with area effects. In clustered survey designs an interviewer is

normally assigned to one primary sampling unit (PSU) and their workload consists of all
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sampled households in that PSU. To account at some degree for this potential
confounding of area and interviewer effect, it is possible to employ an interpenetrated
sampling  design, with interviewers allocated at random to households
(O’Muircheartaigh and Campanelli, 1999; Schnell and Kreuter, 2001). However, due to
the high costs involved with implementing an interpenetrating design, this approach is
rarely used in practice. Some previous studies with no such design ignored area effects
in the research or area information was not available at all (e.g. Pickery and Loosveldt,
2004). The six surveys included in this study did not employ randomised interpenetrated
sampling designs; however, a complete confounding of area and interviewer effects was
avoided because most interviewers work on a number of surveys and some interviewers
work across PSUs. In addition, the model allows for random area effects where areas
are defined as local authority district level, a geographical area considerably larger than a
PSU. As a result, interviewers and areas are cross-classified, i.e. an interviewer may work
in several areas and an area may be covered by several interviewers. For other examples
of the use of multilevel cross-classified models and a detailed discussion of different
forms of (partial) interpenetrated sampling designs see Durrant et al. (2010) and von
Sanden (2004), respectively.

Purdon et al. (1999) and Groves and Couper (1998) considered the role of the
interviewer in establishing contact. They argued that after adjusting for the timing of the
call the interviewer should not play a significant role. Groves and Couper (1998)
nevertheless investigated if there are any further net effects of interviewer characteristics
and explored simple relationships between interviewer attributes and the probability of
contact. This study investigates the effects of a number of interviewer characteristics in
an attempt to explain the between-interviewer variance in contact rates, including socio-
demographic characteristics, experience and work background and interviewer strategies.
It may be argued that more experienced and higher qualified interviewers may be better
at establishing contact (for a preliminary analysis see Groves and Couper, 1998, p. 95).
This research finds pay grade of interviewers to be an important factor in explaining
part of the differences between interviewers, with interviewers in higher pay grades
being better at establishing contact. A similar effect was found in Purdon et al. (1999) -
although contrary to their a priori hypothesis of no interviewer effects after controlling
for the timing of the call. It is also found that interviewers with a higher qualification
such as a University degree or postgraduate education have higher contact rates. This

may indicate that certain types of interviewers may be better at judging the best times to
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call, for example through gathering information about the household from observation
and talking to neighbours, and using such information to tailor their calling strategy to
maximise the chance of contact.

The model also shows that older interviewers (50 years and over) are more
successful at establishing contact which may possibly reflect their greater experience or
the fact that they may appear more trustworthy. Another explanation may be that older
interviewers may have fewer time-constraining commitments outside their job, such as
looking after young children, allowing greater flexibility on calling times. The interaction
between age of the interviewer and timing of the call (see Table 2.3.6) is also explored,
and some evidence is found that older interviewers may be better in judging the best
timing of the call for certain types of households: older interviewers are more likely than
younger interviewers to achieve contact on weekday evenings, in particular Thursday
and Friday, and on weekend mornings.

Slightly surprisingly, it is not found any significant main or interaction effects of
the number of years of interviewer experience after controlling for the timing of the call
as well as household and area characteristics, even if this is the only interviewer level
effect in the model. This is in line with Groves and Couper (1998) who also did not find
an effect of interviewer experience. The expected positive association between
experience and the probability of contact might be more adequately captured by pay
grade and qualification and, to some extent, age which are all found to be significant. It
may be argued that the pay grade of the interviewer captures a combination of length of
experience and interviewer performance, with better performing interviewers expected
to be on higher pay grades. This combination of characteristics may therefore be more
important in explaining differences between interviewers rather than simply the length
of time an interviewer has been in the job (for a similar effect on refusal see Durrant et
al., 2009).

Since survey agencies are particularly interested in behavioural differences
between interviewers, it is also explored to what extent interviewer strategies influence
the probability of contact. It is found that interviewers who report that they at least
sometimes wait to explain the survey, rather than simply leaving behind information, are
more likely to establish contact (Table 2.3.5), which suggests that interviewers who put
in more effort and dedicate more time to each sample unit may be more successful at
securing contact. It is also found that interviewers who always or frequently use the

phone to establish contact, rather than visiting the household in person, perform worse
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than interviewers who rarely or never use the phone. Again, this variable may be an
indicator of interviewer effort. Somewhat surprisingly some interviewer strategies, such
as how often they check with neighbours, are not found to explain differences amongst
interviewers. However, it should be noted that these measures of interviewer practice
are self-reported rather than from direct observation. This non-significant effect may
have been caused by the fact that most interviewers responded to these types of
questions in a similar way. This may highlight a potential downside of self-recorded
interviewer behaviour. As suggested by Groves and Couper (1998), in the context of
interviewer effects on cooperation given contact, it may be preferable to ask
interviewers to record their strategy for each call or household. Some support for their
recommendation is found: the variable indicating whether it is the interviewer’s general
practice to leave a card or message behind has no significant effect on contact, while the
time-varying covariate capturing the same information for each call is found to be
significant, showing an increase in the probability of contact at the next call if a card or
message was left (see Table 2.3.5).

It may be argued that more experienced interviewers and interviewers on higher
pay grades are better at establishing contact with harder-to-reach households. Effects of
this type could help to inform the allocation of certain interviewers to potentially more
difficult households. Therefore interaction effects between interviewer characteristics
and type of household are explored, focusing on households that previous research
identified as being harder to contact, such as single households, younger people or
households without children. However, none of the effects explored are found to be
significant after controlling for the timing of the call and household characteristics. Also
a number of other interviewer characteristics considered are not found to be associated
with the probability of contact, including gender of the interviewer, whether they
worked for another survey organisation or had other paid employment, and indicators
of whether the interviewer is happy to travel, to work evenings and weekends, or to stay

overnight.
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2.4 Modelling the process leading to cooperation or refusal

2.4.1 Introduction

This section builds on the research presented above by focussing on the next
step in the response process: cooperation and refusal. The research presented here aims
to analyse the process leading to cooperation or refusal. It jointly models the different
types of outcomes at each call conditional on contact being made with the household by
using multilevel multinomial logistic regression analysis (see, for example, Pickery and
Loosveldt, 2002). The models control for household characteristics and also allow for
the influence of the interviewer on the cooperation stage. The key research questions
are:

1. What is the process leading to cooperation/refusal? Do call time-variant
variables influence this process?

2. Are interviewer observations useful to predict cooperation?

3. To what extent does cooperation depend on doorstep interviewer-
householder interactions?

4. What are best times to establish cooperation? Are these times affected by

the outcome of previous calls?

2.4.2 Multilevel multinomial logistic model for the response outcome

Multilevel multinomial logistic analysis is used to model the response outcome at
call t, conditional on contact having been made with the household at that call. The
dependent variable in this study is defined as an indicator of other possible outcome
versus cooperation, conditioning on contact made with the household. Household
cooperation is defined as an interview carried out by at least one member of the
household. (This study does not distinguish between full cooperation, where the whole
household responds, and partial cooperation where only some household members
respond). Other possible outcomes at each call are divided into three main components

of nonresponse and defined as:

(1) refusal, household refused to participate in the survey
(2) appointment made, household made an appointment for the interviewer to

come back at a different time/day
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(3) other form of postponement, contact made with sampled household but not
with a responsible resident, broken appointment, interviewer withdrew to

try again later, e.g. he/she felt threatened.

The research is interested in the response outcome across all contact calls, not
just until the first contact or the first time a form of cooperation is established with the
household. However, some considerations are given to the process leading to first

cooperation, i.e. the first instance of a cooperation outcome.

A multilevel model is used to account for the hierarchical structure of the data
allowing for clustering of outcomes by household or interviewer due to unobserved
household and interviewer characteristics. The nature of the data, one record per each
contact call made to a household, makes it possible for an outcome to occur more than
once within a household. For example, during the data collection period a householder
might make several appointments, an appointment might be broken more than once, or
different household members might refuse or cooperate to the interviewer at different
calls. A multilevel model with household random effects allows for this possibility that
the events of interest occur more than once to a household. Due to the complexity of
the modelling, the large number of available household characteristics, and the findings
in section 2.3.3 (page 37) that area characteristics are negligible once interviewer and
household effects are controlled for, area level effects are not additionally included in

the multilevel model presented in this section.

Denote by y,, the outcome of call ¢ (t=1,...,7;) made to houschold i
(i= 1,...,nj) by interviewer j (j=1,...,J) conditional on contact being achieved at ¢.

The outcome of each call is coded as follows: 1 for a refusal, 2 if an appointment is
made, 3 for other forms of postponement, and 4 for full or partial cooperation. The

conditional probability of outcome s at call ¢ given contact being achieved at ¢ is
denoted by WEZ) =Pr(y,, =), (s=1,2,3). A multilevel multinomial logit model for the

log-odds of outcome s (s =1,2,3) relative to outcome 4 (cooperation) may be written

(s)
7T 7 1 1 1

log| 12| = B 4+ 62 + @) 4 ol 4, (2.4.1)
T

tij

where xifj) is a vector of time-variant covariates, with coefficient vector B, such as

indicators of the household’s call history prior to ¢, the time and day of the current call,
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information about the doorstep interviewer-householder interaction. The call history
indicators include the number of calls made to the household until first contact was
achieved and the number of intermediate noncontacts after first contact (i.e. some
function of t), which are derived from a// calls regardless of whether contact was made.
The vector of time-varying covariates also includes an indicator of whether an
appointment was made with the household at the previous call, which allows estimation

of transition rates, that is, the probability that an appointment made at call ¢ —1 is

converted to cooperation at ¢. zgj) is a vector of time-invariant household covariates,

with coefficient vector ), such as type of accommodation, household in London.

Time-invariant household characteristics include interviewer observations and census

variables. The vector C(].S) includes time-invariant interviewer characteristics, such as

gender, pay grade, with coefficient vector a*.

Unobserved household and interviewer characteristics are represented

respectively by random effects ul(.].s) and vg.s) . To allow for the possibility that some types

of response outcome may have shared or correlated unmeasured influences, random

effects at the same level are assumed to follow trivariate normal distributions:

u = (Y u? ) ~ N(o, Q) and v, = WD, 0?3y < N(o, Q), where Q and Q are 3 X

g = gty 7YY
3 covariance matrices. For example, similarity between the ‘appointment’ and ‘other
type of postponement’ outcomes would be expected to lead to a positive correlation

between uff) and ul(f) and between v'? and Uf’).

However, it is found that due to relatively small number of households with
repeated outcomes of the same type there is not enough information in the data to
estimate the household- and interviewer-level variances and covariances from the
multinomial model (2.4.1) with outcome-specific household and interviewer random
effects. Therefore, a second approach is proposed where outcome-specific loadings are
used to overcome the estimation issue but to still allow for the effect of the household
and interviewer unobservables to vary across outcomes. A simplified multilevel
multinomial logit model for the log-odds of outcome s relative to outcome 4
(cooperation) may be written

(s)
7T 7l 1 1 1
log|—2-| = B + 692 + a'el) 4+ A, 4y, (2.4.2)

) tij ij j
tij
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where unobserved household and interviewer characteristics are represented respectively

by normally distributed common random effects w, and v, : wu, ~ N(0,02) and
v ~N(0,a§). These random effects have now outcome-specific coefficients or

“loadings” A and 4 respectively, with AW and 4 fixed to 1 for identification. Thus,
although there is a set of unmeasured household and interviewer characteristics that
affect the odds of all non-participation outcomes, their effects may differ across the
three different survey outcomes. Outcome-specific loadings also allow the between-

household and between-interviewer variance in the log-odds of non-participation to

differ across outcomes. For example, the between-household vatiance is o? for refusal

(due to the identification constraint AV =1) and (\®)?0? for appointments (s = 2). All

other components in the model remain as in model (2.4.1).

Slightly surprisingly, after fitting model (2.4.2), no significant differences across
the three interviewer-level random effect loadings are found, suggesting that
unmeasured interviewer characteristics have similar effects on the log-odds of each type

of non-participation outcome (the likelihood ratio test statistic for a test of the null
hypothesis Hy: 7" =~® =~® =1 is 2.8 on 2 d.f., p=0.246). That is, there is no
evidence for differential random interviewer effects on the three non-participation

outcomes due to unobserved interviewer characteristics.

A simplification of model (2.4.2) with loadings on the interviewer random effect

7 (s =1,2,3) constrained to be equal across all three outcomes, may be written

(s)
T, , , ,
log| —2 | = g% + 6928 4 oel) 4 A0y, 4o (2.4.3)

) tij i j
tij
This chapter uses model (2.4.3) as the final model and presents results in the following
section.

The analysis file contains a record for each call that resulted in contact being
made with the household. Each household may therefore contribute multiple records,
up to a maximum of T, with their sequence of calls terminating in refusal, cooperation
or the interviewer giving up (right-censored histories). Estimation of the models
presented above is carried out using maximum likelihood as implemented in the aML
software package (Lillard and Panis 2003). Where a closed form solution to the

maximum likelihood function does not exist the residuals at each level are ‘integrated
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out’ numerically using Gauss-Hermite quadrature. The number of quadrature points
used is 16. Approximate standard errors are computed based on an approximation to
the Hessian matrix.

To aid interpretation of the fitted model, predicted probabilities of each type of
response outcome might be calculated for each value of a given covariate, holding
constant the values of all other covariates in the model at their sample means.
Population averaged probabilities might be obtained as follows: (i) take a large number
M of random draws from the household and interviewer random effect distributions
(based on the estimated random effect variances); (i) calculate a set of predicted
probabilities based on each set of generated random effect values and the estimated

coefficients; and (iii) calculate for each outcome s the mean of the predicted

probabilities wij) across the M random effect values, where from (2.4.3)

exp BOXY + 807 4 g 1 Ay 1o

) = —— . s=123
(1) (r) (r)'5(r) (r)'a(r) ()
l-l—Z:lexp Bx) +67 7 +al el + 2, o,
4) _ 1) (2) (3)
T = 1 A Al S

To evaluate the model fit, likelihood ratio tests are used (Goldstein, 2010). This
allows the comparison of nested models, for example, to evaluate if the addition of call
record variables leads to a significant improvement in comparison to a simpler model

without such variables.

2.4.3 Results

To help understand the process leading to cooperation or refusal, some
descriptive statistics and preliminary modelling are initially presented. Table 2.4.1
illustrates the probability of each outcome at the first contact with the household by
time of day and day of the week. At first contact, it may be assumed that the interviewer
has little, if any, information about the household that might influence his/her calling
behaviour. In particular, the first contact call is not affected by a previous appointment
made. Table 2.4.1 shows that most first contacts are made on weekday afternoons,
followed by weekday evenings and weekday mornings, with a clear decline in the

number of contacts from the beginning to the end of the week for all times of the day.
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Overall, 26% of all first contact calls results in a successful interview, 8% in refusal, 43%
in an appointment made, and the remaining 24% in another type of postponement. The
probability of immediate cooperation at the first contact call is highest (above 30%) for
morning and afternoon calls at the beginning of the week, Monday and Tuesday, with a
clear decline as the week progresses. The lowest cooperation rates are in the evening in
particular towards the end of the week. On the other hand, householders are more likely
to make an appointment with the interviewer if contact is made in the evening (above
45%) and this is for all days of the week but especially at the weekend. The probability
of refusal and other forms of postponement are fairly stable at around 8% and 25%
respectively by time of contact. It should be noted that only a few first contact calls are
made at the weekend, in particular on Sunday. These findings are in line with previous

literature (Purdon et al., 1999).

Table 2.4.1: Probability of each outcome at first contact, by day and time of call

Total
) number % of all
Cooperation  Refusal Appointment Other of first first

made  postponement

contact  contacts

made
Monday am 0.37 0.09 0.34 0.21 381 2.41
pm 0.37 0.07 0.32 0.24 2162 13.70
eve 0.25 0.08 0.48 0.20 1648 10.44
Tuesday am 0.31 0.09 0.34 0.26 279 1.77
pm 0.31 0.06 0.37 0.26 1919 12.16
eve 0.23 0.08 0.49 0.21 1649 10.45
Wednesday am 0.29 0.12 0.40 0.20 214 1.36
pm 0.26 0.07 0.43 0.24 1544 9.78
eve 0.20 0.08 0.48 0.24 1472 9.33
Thursday am 0.28 0.09 0.39 0.25 212 1.34
pm 0.22 0.08 0.42 0.28 1253 7.94
eve 0.19 0.08 0.46 0.27 1138 7.21
Friday am 0.23 0.12 0.39 0.27 151 <1.0
pm 0.20 0.07 0.46 0.27 735 4.66
eve 0.18 0.10 0.51 0.22 580 3.68
Saturday am 0.26 0.05 0.43 0.27 109 <1.0
pm 0.14 0.08 0.54 0.24 239 1.51
eve 0.12 0.04 0.52 0.33 52 <1.0
Sunday am 0.20 0.20 0.30 0.30 10t <1.0
pm 0.11 0.05 0.68 0.16 19t <1.0
eve 0.06 0.00 0.69 0.25 161 <1.0
Total 0.26 0.08 0.43 0.24 15782 100

Morning (am): 0.00-12.00, Afternoon (pm): 12.00-17.00, Evening (eve): 17.00-0.00
T indicates cells with a sample size of less than 30
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Since the first contact call is only indicative of the chances of achieving
cooperation with a household this study now examines changes in the rates of the
different outcomes across calls. Figure 2.4.1 shows the specific-outcome rates for the
first seven contact calls. From contact call 7 onwards each outcome rate is based on few

cases, if any, and so results for these contact calls are not presented here.

Figure 2.4.1: Specific-outcome rates by contact call number, allowing for repeated cooperation
events
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The chance of making an appointment is highest at the first contact call, when
about 43% of calls end in an appointment made with the householder. It substantially
decreases at second call to about 17% and then remains stable at around 10% for all
subsequent calls. That is, after the second contact 1 in 10 visits are likely to finish in an
appointment made with the householder. The cooperation rate is lowest at the first
contact call (26%), increases sharply at the second to about 60% and then stabilises at
just above 70% at the fourth and subsequent calls. The rise in the cooperation rate for
calls 2 to 4 may be explained by the large number of appointments that were made at
the early calls, in particular at the first call. It may be speculated that prior appointments
are usually turned into successful interviews at the next call. The growth in the
cooperation rate, even after initial contact calls, might also be explained by the presence
of households with more than one person (multiple households). In these cases, the

interviewer might seek to obtain cooperation from each household member at different
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calls. The refusal rate is highest at the first and second contact call (at around 8%) to
then quickly decrease towards zero as the number of contact increases. The behaviour
of the refusal rate seems to indicate that people that are inclined to refuse do so in eatly
calls. Other forms of postponement are relatively high at the first call (25%), then fall to
just over 10% and continue to rise again steadily from call 4 onwards. Taken together,
these patterns suggest that for later calls (from about call 4 onwards) the household
either cooperates or the interviewer decides to postpone to another time or to stop
calling, rather than continuing until receiving a refusal.

It may be argued, as mentioned before, that the results displayed in Figure 2.4.1
may be driven by the presence of multiple households in the sample, where cooperation
from each household member could be obtained at different calls. Instead of looking at
all contact calls, including cooperation occurring more than once to a household, it is
possible to investigate the change in the rates of the different outcomes across calls #n#/

first cogperation is obtained, presented in Figure 2.4.2.

Figure 2.4.2: Specific-outcome rates by contact call number, until first time cooperation
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Comparing the behaviour of the curves for appointments and other forms of
postponement, Figure 2.4.1 and 2.4.2 show overall fairly similar results; for first time
cooperation, however, the other postponement rate increases more rapidly with each
additional contact, maybe indicating a hidden refusal. The cooperation rate across calls,
and thus also the refusal rate, performs rather differently from call 2 onwards. Similarly
to Figure 2.4.1 the cooperation rate increases sharply at the second contact (from 26%
to 57%), but then decreases as the number of contacts increases. The pattern suggests
that after the initial rise in the cooperation rate, possibly explained by the number of
appointments made at the first contact, the likelihood of gaining first cooperation from
the household reduces with each additional contact call. Likewise, the likelihood of

refusal increases with the number of contacts made to the household.

Table 2.4.2: Estimated coefficients for the variable ‘day and time of call’ when included as a
main effect in a multilevel multinomial logistic model controlling for household and interviewer
characteristics

Other
Refusal Appointment postponement
B (ste) B (ste) B (ste)
Monday Morning -0.149 (0.210) -0.185 (0.125) -0.019 (0.152)
Afternoon -0.449 (0.123) -0.497 (0.075) -0.054 (0.089)
Evening ref ref ref
Tuesday Morning -0.069 (0.201) -0.341 (0.129) 0.040 (0.149)
Afternoon -0.707 (0.1206) -0.475 (0.0706) -0.094 (0.090)
Evening -0.217 (0.120) -0.037 (0.072) 0.025 (0.086)
Wednesday Morning -0.215 (0.2006) -0.464 (0.133) -0.584 (0.164)
Afternoon -0.677 (0.130) -0.475 (0.078) -0.168 (0.093)
Evening -0.353 (0.119) -0.133 (0.073) -0.011 (0.087)
Thursday Morning -0.821 (0.221) -0.527 (0.133) -0.389 (0.155)
Afternoon -0.397 (0.135) -0.333 (0.082) 0.061 (0.096)
Evening -0.313 (0.125) -0.142 (0.0706) 0.090 (0.090)
Friday Morning -0.285 (0.254) -0.359 (0.157) 0.017 (0.174)
Afternoon -0.438 (0.161) -0.326 (0.097) 0.047 (0.112)
Evening -0.204 (0.155) -0.150 (0.098) -0.128 (0.110)
Saturday Morning -0.420 (0.280) -0.407 (0.172) -0.178 (0.195)
Afternoon -0.050 (0.239) 0.129 (0.147) 0.228 (0.171)
Evening -2.028 (0.787) -0.337 (0.278) 0.186 (0.300)
Sunday Morning 0.569 (0.691) 0.616 (0.412) 0.418 (0.517)
Afternoon -1.389 (0.679) 0.008 (0.396) -0.844 (0.5106)
Evening 0.672 (0.684) 1.610 (0.350) 0.621 (0.450)
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In order to investigate the influence of the day of the week and the time of the
day on each possible outcome, it is convenient to recode the calling time variable
reducing its 21 categories. To identify any reasonable pattern on this variable, its effect
is examined in a multilevel multinomial model controlling for household and interviewer
characteristics. The estimated coefficients for each category of the calling time variable
are provided in Table 2.4.2. The sorted net effects on hazards (not shown here),
together with the indicative findings of Table 2.4.1, suggest a quite different pattern for
early week and late week, with Sunday more like the eatly part of the week and Saturday
more like late week, especially Friday. In addition, the few calls made on Saturdays and
Sundays made it necessary to merge these categories with other days of the week. These
results informed the categorisation of the calling time variable in the final model (Table
2.4.3) which distinguishes six categories: early week (Sun-Tue) and late week (Wed-Sat)

and morning, afternoon and evening.

Multilevel multinomial model

This section discusses the results from the final multilevel multinomial logistic
model which includes time-varying call characteristics, fixed interviewer observations,
household and interviewer characteristics, and household and interviewer random
effects. The model aims to investigate the effect and usefulness of call record data and
other paradata on the process leading to cooperation or refusal. Here this process is
modelled across all contact calls. Of particular interest are the influences on a call
outcome of the interaction between the interviewer and householder at the doorstep, of
time-varying factors, such as number of previous calls, number of intermediate
noncontacts after first contact was made, whether a prior appointment is made and of
time-invariant interviewer observation about the household and neighbourhood. The
model aims to control for all these factors. The model also controls for household
information, primarily from the census, and interviewer characteristics that might be
related to differential calling behaviours, in an attempt to adjust for the potential bias
introduced by not fully randomised calling times for sample units (see section 2.3.3). It
should be noted that the model discussed in this section includes an indicator if
previously cooperation with the household has been achieved. For matter of
completeness, the process leading to first time cooperation is also modelled for

comparison. It is found that the results are very close to the final results presented in
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this section (results are not shown). Parameter estimates of the final model are

presented in Table 2.4.3.

Time-varying call characteristics

The inclusion of time-varying covariates into the model in comparison to a
model with only census household level variables indicates a significant better fit
(likelihood ratio test statistic is 2¥14216, on 75 d.f., p=0.000), supporting results in Bates
et al. (2008) who found that the inclusion of such variables ‘greatly improve’ models
predicting nonresponse. The final model includes an indicator of whether previous
contact was made with the household and the number of previous calls, distinguishing
between contact and noncontact calls. It also controls for the number of times
noncontact occurs after the first contact with the sample unit was achieved
(intermediate noncontact). The previous contact indicator means that the coefficients of
number of contact calls are interpreted as the effect on the different forms of non-
participation of each additional call after the first call. This indicator is also included in
the model to deal with some variables, such as previous appointment indicator, that are
not defined at the first contact. It is observed from the model that the probabilities of
refusal, appointment made and other forms of postponement decrease significantly with
each additional call after first contact was made with the household, controlling for the
other explanatory variables in the model. On the other hand, the odds of cooperation
increase with each additional contact made. This is in line with previous research that
report strong positive effects of having prior contact with the household on the
propensity of an interview (Groves and Heeringa, 20006). This effect may indicate that
keeping an ongoing interaction between the interviewer and the householder rather than
seeking a quick decision on participation from the householder may be more likely to
lead to a positive outcome. This would support the ‘householder-interviewer interaction
hypothesis’ of Groves and Couper (1998, page 220). It could also indicate that
interviewers are persistent in returning to a household if they feel they have a chance of
a positive outcome. There is a (small) positive effect of the number of calls made until
first contact on the probability of refusal, with negative effects on the other non-
participation outcomes. This small effect on the likelihood of refusal may provide some
evidence that households that are more difficult to reach may be more likely to refuse
once contacted. The effect of the number of intermediate noncontact calls is positive

for all three non-participation outcomes: the more intermediate noncontact calls are
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made after first contact the more likely it is that the household refuses, makes an
appointment or other form of postponement occurs. This may indicate that a
noncontact could in fact be a hidden evasion or refusal, for example, due to fear of
crime, which has been hypothesised in the literature (Groves and Couper, 1998; Stoop,
2005). However, the lack of a correlation between the noncontact and refusal processes
identified in earlier research (Lynn et al. 2002; Nicoletti and Perachi, 2005; Steele and
Durrant, 2011) has so far not provided much support for this hypothesis. A model
controlling for the additional outcome of a noncontact at a call may provide further
evidence for this phenomenon. Leaving a card or message behind is not found to affect
the probabilities of any type of nonresponse.

Regarding the timing of the call, there is significant evidence that the outcome
of the call may be affected by the time of day and the day of the week. For example, the
likelihood of refusal is lower for afternoon and late week evening but higher for
morning and early week evening calls. As one may expect, with a prior appointment the
likelihood for refusal at the next contact call is greatly reduced. Transition rates are also
calculated, i.e. the probability that an appointment made at the previous call is converted
to cooperation at the current call. If the previous call results in an appointment the
chances of experiencing cooperation at the next call is high (around 80%), and this is
found to hold for any time of day. For comparison, without a prior appointment
predicted probabilities for cooperation are below 60% for any calling time. The model
controls for the case where an appointment is made and the following contact call
results in another appointment or other form of postponement, such as a broken
appointment or where the interviewer withdraws to try again later, which may indicate a
potential lack of willingness to cooperate. Without a previous appointment made, the
probability of an appointment at the current call is significantly higher (around 30%)
than that for cases with a previous appointment (around 10%). Similarly, without a
previous appointment, the probability of other forms of postponement at the current
call is significantly higher (around 15%) than that for cases with previous appointment
made (around 9%). These transition rates hold for any calling time. No significant
interaction between previous appointment made and calling time is found.

It is important to observe that estimating causal effects of time-varying factors
such as day and time of call would require randomisation of interviewers to different
calling strategies. The model attempts to control for differences between these

interviewer calling strategies and approximate the design that would be required for
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estimating causal effects by including selected household and interviewer characteristics
and a previous appointment indicator in the model. The effects of time of the call
should be, however, interpreted with caution.

Of particular interest is the effect on the call outcome of what happens at the
doorstep, especially the initial interaction between the householder and the interviewer.
Survey organisations might be able to train interviewers to react accordingly to what
happens at the doorstep or adequately schedule a re-call after some doorstep
information has been gathered. In particular, the mode of contact appears relevant for
the likelihood of gaining immediate cooperation: the chances of a refusal, making an
appointment or other form of postponement are significantly lower if the contact is
face-to-face rather than through an intercom system, a closed window or a closed door.
This effect remains after controlling for potential interviewer observation effects about
the area and household characteristics such as rural/urban households. Non face-to-face
contact could indicate a potential fear of crime or a reluctance to talk to strangers which
has been shown in other studies to lead to a higher refusal rate (Groves and Couper,
1998). If the householder asks at least one question, the chances of refusal, appointment
or postponement are significantly reduced. Likewise, if the householder makes at least
one positive or neutral comment as opposed to no comment, the odds of refusal or the
interviewer withdrawing are much reduced while the odds of making an appointment
increase. As would be expected, people who engage in a positive or neutral way with the
interviewer (asking a question or making a comment), potentially expressing some
interest in the survey, tend to cooperate more than those who do not. On the other
hand, if the householder makes at least one negative comment, refusal, appointment and
other postponements are much more likely than if no comment was made.

Characteristics of the person the interviewer talked to at the doorstep (based on
interviewer observations) also seem to be useful in predicting the outcome of the call.
For example, older people (60 and over) are less likely to refuse, make an appointment
or postpone. A higher cooperation rate for older householders has been noted in other
studies (Groves and Couper, 1996). If the person at the doorstep is female the call is
more likely to result in an appointment or a postponement rather than cooperation,
which may reflect a greater reluctance to speak to strangers or fear of crime among

women. There is no gender difference in the immediate refusal behaviour.
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Table 2.4.3: Estimated coefficients (and standard errors in parentheses) of multilevel

interviewer random effects

multinomial logistic model including household and

Variable
(ref = Reference category)

Categories

B (ste(B))
Refusal

B (ste(0))
appointment
made

B (ste(3))

other
postponement

Constant

-3.074 (0.237)**x*

0.058 (0.119)

-0.389 (0.138)*x**

Call record variables (time variant)

Previous contact indicator
(ref =First contact)

Contact previously made

1.351 (0.117)**

-0.462 (0.066)***

-0.527 (0.077)*xx*

Number of contact calls previously made

-0.352 (0.050)*x*

-0.534 (0.032)%%*

~0.427 (0.034)%%*

Number of non-contact calls made until first contact

0.098 (0.021)%**

-0.099 (0.011)%%*

-0.191 (0.015)%%*

Number of intermediate non-contact calls after first
contact was made

0.378 (0.032)%%*

0.285 (0.020)***

0.182 (0.024)***

Day and time of contact T
(ref =Sun-Mon-Tue eve)

Sun-Mon-Tue am
Sun-Mon-Tue pm
Wed-Thurs-Fri-Sat am
Wed-Thurs-Fri-Sat pm
Wed-Thurs-Fri-Sat eve

0.048 (0.163)
-0.485 (0.101)%+*
-0.221 (0.139)

-0.391 (0.098)%+*
-0.295 (0.092)%+*

-0.257 (0.087)%%*
-0.495 (0.052)%+*
-0.466 (0.076)%+*
-0.383 (0.051)%+*
-0.148 (0.049)%+*

20,023 (0.104)
-0.134 (0.063)**
-0.331 (0.090)***
-0.083 (0.061)
-0.005 (0.058)

Previous Appointment Indicator 'l'
(ref =No prior appointment made)

Prior appointment made

-3.397 (0.113)%%*

~2.560 (0.060)%+*

2,454 (0.075)%%*

Previous Cooperation Indicator
(ref =No prior cooperation achieved)

Prior cooperation achieved

-5.653 (0.261)%%*

2,712 (0.078)%%*

2,784 (0.093)%%*

How contact was made at doorstep
(ref =Face-to-face)

Not face-to-face

1.633 (0.108)**

2.227 (0.061)%**

1.808 (0.071)%%*

Question made by householder during the interviewer
introductory conversation
(ref =No question made)

At least one question made

1,545 (0.079)%%*

-0.370 (0.040)%%*

-1.146 (0.051)***

Comment made by householder during the interviewer
introductory conversation
(ref =No comment made)

Positive/neutral comment made
At least one negative comment made

-0.892 (0.142)%%*
4.987 (0.129)%+*

0.389 (0.043)%**
1.207 (0.062)%+*

20.970 (0.053)%%*
2.083 (0.063)***
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Age of main person the interviewer talked to

Less than 16

0.896 (0.543)*

1.507 (0.258)*x**

4715 (0.211)%%*

(ref =60 and over) 16-34 0.223 (0.121)* 0.713 (0.061)*** 1.229 (0.074)***
35-59 0.335 (0.098)*** 0.517 (0.053)*** 0.603 (0.065)***

Gender of main person the interviewer talked to Female -0.102 (0.068) 0.225 (0.035)%** 0.119 (0.042)***

(ref =Male)

Interviewer Observations (time invariant)

Type of accommodation House 0.446 (0.103)*** 0.607 (0.056)*** 0.542 (0.067)***

(ref =Not house)

House in a better or worse condition than others in area | Worse 0.271 (0.123)** 0.207 (0.067)*** 0.201 (0.079)**

(tef =Better/ About the same)

Household-level variables (time invariant)

Preschool children present

Preschool children

~0.337 (0.116)%**

0.154 (0.053)***

-0.070 (0.063)

(ref =No)

Household type Couple household 0.374 (0.078)*** 0.262 (0.041)*** 0.290 (0.049)***
(ref =Single household) Multiple household 0.291 (0.224) 0.093 (0.117) 0.197 (0.134)
Urban/rural indicator Rural -0.192 (0.115)* -0.124 (0.060)** -0.213 (0.074)***

(ref =Urban)

Indicator if adults in employment
(ref =No adults)

One or more adults

0.115 (0.091)

0.150 (0.048)%**

0.359 (0.058)%**

Educational attainment of Household Reference Person
(ref =No educational attainment/ A levels, GCSEs)

First/Higher/College degree/Other
attainment

-0.319 (0.086)%**

-0.069 (0.042)*

-0.186 (0.050)%**

Survey indicator
(ref =EFS)

FRS
GHS
OMN
NTS
LFS

20.213 (0.125)%
-0.534 (0.113)%+*
-0.432 (0.118)%+*
-0.979 (0.111)%+*
2,909 (0.151)%+*

20.148 (0.075)*
-0.117 (0.067)*

-0.803 (0.071)%%*
-0.428 (0.064)%+*
-2.746 (0.099)%+*

20.156 (0.087)*
-0.111 (0.077)

-0.449 (0.081)%+*
-0.421 (0.072)%%*
-3.327 (0.123)%%*

Interviewer-level variables (time invariant)

Interviewer experience
(ref =9 years or more)

Less than 1 year
1 to 2 years
3 to 8 years

0.277 (0.139)**
0.187 (0.119)
0.178 (0.112)

0.019 (0.100)
0.011 (0.086)
-0.029 (0.083)

0.140 (0.109)
0.121 (0.093)
0.088 (0.089)
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Interviewer qualification
(ref = Degtee or postgraduate, other higher education)

A levels, GCSEs
Qualifications below this level, no
qualification

-0.229 (0.091)%*
0.256 (0.217)

-0.002 (0.066)
-0.350 (0.155)%*

-0.055 (0.071)
-0.322 (0.170)*

Can convince reluctant respondents
(ref = Less confident)

More confident

-0.397 (0.119)*x*

-0.169 (0.081)**

-0.406 (0.089)*x*

Should persuade most reluctant respondent
(ref = Strongly agree/agtee)

Neither agree nor disagree
Disagree/strongly disagtree

-0.378 (0.153)**
0.382 (0.120)***

20.055 (0.111)
0.130 (0.086)

-0.214 (0.120)*
0.114 (0.093)

The model is estimated using full information maximum likelihood. Where a closed form solution to the maximum likelihood function does not exist the residuals at each level
are ‘integrated out’ numerically using Gauss-Hermite quadrature. The number of quadrature points used is 16. Approximate standard errors are computed based on an

approximation to the Hessian matrix. The missing value categories have been suppressed to save space.

*  significant at the 10% level
** significant at the 5% level
**significant at the 1% level

T  vatiable included in an interaction

Coding of time of call: am = 0.00-12.00, pm=12.00-17.00, eve= 17.00-0.00
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Time invariant interviewer observations and household characteristics

Here, the effects of time invariant interviewer observations and household
characteristics on nonresponse are investigated. The likelihood ratio test, comparing the
fit of a model without interviewer observation and household characteristics to a model
with, indicates the significant better fit of the more comprehensive model (the
likelihood ratio test statistic is 2*258.31, on 33 d.f., p=0.000). It is important to
remember that this research, in contrast with most previous research, investigates the
probability of cooperation or refusal at a particular call and not the final response
outcome. For example, for a certain subgroup in the population, the immediate
cooperation rate at a particular call might appear lower than expected from the literature
but due to appointments and other forms of postponements the final cooperation rate
may be higher in line with expectation.

Interviewer observations on the household and neighbourhood are found to be
useful in predicting the outcome of a call. Direct observations about the household as
well as interviewer evaluations of the area are explored. Results from the previous
section on the process leading to contact, show that householders living in a house
rather than a flat are more likely to be contacted. The analysis here shows that those
living in houses compared to those living in flats have higher chances of immediate
refusal, although they also have higher chances of making an appointment which might
result in future cooperation. The interviewer is also asked to judge the condition of the
house and area. Living in a house that the interviewer reports to be in a worse condition
than others in the area is associated with higher rates of refusal, appointment made and
other postponements, as might be expected since socially deprived households have
been found to be less likely to cooperate in other studies (Goyder, 1987). Physical
barriers to access the household, such as a locked common entrance, locked gate or
entry phone, and the presence of security devices, such as security staff, CCTV cameras
or burglar alarm, are not found to affect the probabilities of refusal and appointment
made relative to cooperation. However, a positive significant effect of these physical
impediments on the likelihood of other form of postponement is found (results not
presented here).

Some of the variables considered in the present study are available from both
the census and the interviewer observation questionnaire, for example information on
the presence of children and the household type. Census variables, where available, are

included in the final model due to higher quality than interviewer reports. Other studies
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without access to census variables may be able to include similar information based on
interviewer observations. For households with pre-school children the immediate
refusal and other postponement rate are lower. Such households are, however, more
likely to request an appointment for a different time. This may be expected since, for
example, households with children might be contacted relatively easily (Table 2.3.5), but
it may not be convenient to participate in a survey in the presence of children in which
case an appointment for another time may be made. Refusals, appointments and other
postponements are more likely outcomes than cooperation in urban areas and for
couple households. Households with at least one member in employment are more
likely to postpone either making an appointment or otherwise. Households where the
household representative has a high educational attainment are less likely to refuse, to
make an appointment (at a marginal level) or to postpone, leading to a higher
cooperation rate (see also Goyder, 1987). After controlling for household characteristics,
such as type of household, and type of area, the London indicator is no longer
significant. However, in the absence of other information, this indicator may be
regarded as a proxy for household characteristics and useful to predict cooperation.

The model also allows for differences in cooperation and refusal across the six
surveys. It is found the highest refusal, appointment and postponement rates for the
EFS, a survey with a relatively high response burden due to the requirement to keep a
diary and a long questionnaire. The lowest rates are achieved for the LIS, a less
burdensome survey with a comparatively short interview. Further details on the
differences between the surveys and an analysis of survey-dependent effects on ultimate

contact and refusal rates can be found in Durrant and Steele (2009).

Time invariant interviewer characteristics

The effects of a range of time invariant interviewer characteristics on each
outcome are now investigated. These characteristics include interviewer attributes, such
as experience and qualification, and interviewer attitudes towards participation, such as
confidence and persuasion. The inclusion of interviewer characteristics into the model
in comparison to a model with only census household level variables and call record
information indicates a significant better fit (likelihood ratio test statistic is 2*50.61, on
24 d.f.,, p=0.000). Several studies have explored the role of the interviewer in survey
nonresponse and found that length of interviewer experience positively influence

response rates (Couper and Groves, 1992; Pickery and Loosvelt, 2002; Hox and de
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Leeuw, 2002; Durrant et al., 2010). This study also finds it to predict higher cooperation
rates for more experienced interviewers. Interestingly, no effects of experience on
appointments are found. Experience interviewers might achieve higher response rates
by adopting certain strategies, such as appear trustworthy and friendly, adapt to the
situation at the doorstep and react to the respondent, more efficiently than less
experience interviewers (Morton-Williams, 1993). However, it is important to note that
self-selection of interviewers might make it difficult to determine causation of length of
interviewer experience. It may be likely that more effective interviewers (as judged by
response rates) stay in their jobs for longer than those performing worse. The effect of
interviewer experience might be then interpreted with caution. Regarding interviewers’
qualification, there is evidence in favour of interviewers with an academic attainment
below college degree, such as A levels or GCSEs, performing better (lower refusal rates)
than those with a college degree or higher. Interviewers with low or no qualifications
seem to be less likely to experience appointments or other form of postponements.

Some interviewer demographic characteristics, such as gender and age, were also
investigated. Age of the interviewer is not found to affect the probabilities of any type
of nonresponse; while there is some evidence that female interviewers, which represent
41% of the interviewer workforce, are less likely to get a refusal from the householder
than their male counterpart. This gender effect on response rate was also observed by
Hox and de Leeuw (2002). This study do not seek to interpret these effects on
cooperation as demographic interviewer characteristics are usually largely out of the
control of the survey agencies. A much interesting effect, which is not investigated in
this research, would be looking at the interaction between these interviewer
characteristics and sample members characteristics to examine, for example, whether
homogeneity between interviewers and householders may result in higher cooperation
rates (Durrant et al., 2010; Groves and Couper, 1998).

Interviewer attitudes toward cooperation or refusal seem to be good predictors
of response. A strongly significant effect of the confidence of the interviewer and the
attitude towards persuasion of reluctant respondents, both measured independently of
the survey in question, are found. Interviewers who report more confidence in their
ability to persuade reluctant respondents show a lower probability of refusal.
Interestingly these interviewers also experience significantly less appointments and other
forms of postponement. Interviewers who agree they should persuade reluctant

respondents also have a lower refusal rate than those that disagree with the assertion.
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No differences on making appointments are observed. This finding is in line with the
literature indicating that interviewers with a positive attitude towards persuasion
strategies and who, prior to the survey, are confident about their ability to obtain
cooperation tend to attain higher response rates (de Leeuw et al., 1997; Groves and

Couper, 1998; Hox and de Leeuw, 2002; Durrant et al., 2010; Blom et al., 2010).

Random housebold and interviewer effects

Table 2.4.4 presents the estimated household and interviewer random effect
parameters from the final multilevel multinomial logistic regression model (2.4.3). The
results show significant residual variation in the log-odds of a nonresponse outcome
between households and between interviewers, after adjusting for all other covariates in
the model. This implies that household and interviewer characteristics indeed play an
important role on the response outcome at a particular call, as would be expected in line
with previous research on response outcome (O’Muircheartaigh and Campanelli, 1999,
Pickery and Loosveldt, 2002, Durrant et al, 2010). Comparing results from the previous

section on the process leading to contact, the variation between interviewers in their

non-participating outcome rates (67 = 0.27) is higher than the variation in their contact

rates (67 = 0.08). This might provide some evidence that interviewer effects are more

important for the process leading to cooperation. This might be due to the fact that this
process depends much more on interviewer skills and behaviours and the interaction
between the interviewer and the householder at the doorstep than the process leading to

contact, which is more determined by timings and household characteristics.

Unmeasured interviewer characteristics, represented by v, have the same effect

on the log-odds of each of the three forms of non-participation. That is, no indication
of differential random interviewer effects on the three non-participation outcomes due
to unobserved interviewer characteristics is found (see section 2.4.2). In other words,
there is no evidence to support a hypothesis that particular interviewer characteristics
are associated with certain outcomes, for example, that certain types of interviewers

prefer making appointments. At the household level, however, there is evidence of

differential effects of unmeasured household characteristics u,; Aacross the three

outcomes (based on #~tests that the loadings for postponement and appointment are
equal to 1: t =3.1, p=0.002 for Hy A® =1 and ¢=5.1, p=0.000 for H; A\® =1).

While there is significant between-household variation in the log-odds of all forms of
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non-participation, household effects are strongest for refusal and weakest for other
postponement. As the loading A? is fixed at 1 (for refusal), negative loadings for

appointment, A? | and other postponement, A®) | suggest that the household

b b

unobservables that are positively associated with refusal are negatively associated with
both appointment and other postponement. In other words, households whose
unobserved characteristics place them at high risk of refusal tend to be less likely to
postpone by making an appointment or otherwise. This can be thought as a negative
correlation between a household's refusal and postponement propensities, after

adjusting for the covariates in the model.

Table 2.4.4: Estimated houschold and interviewer random effect parameters from the
multilevel multinomial logistic regression model (standard errors in parentheses)

Parameter Estimate (Standard Error)

Household common standard deviation o, 0.823 (0.132)%**
()

Household random effect loadings A

AW Refusal 12
@) Appointment made -0.440 (0.149)%%*
A® Other postponement -0.880 (0.217)%*
Interviewer common standard deviation 0 0.515 (0.029)***
a Constrained to equal 1

*#% - Significantly different from zero at the 1% level

2.5 Summary and implications for surveys practice

This chapter deals with nonresponse in sample surveys during the data
collection process. The research presented here benefits from the availability of
relatively rich paradata from six UK interview administrated household surveys. The
first part of this chapter develops propensity models that predict the likelihood of
contact in the field conditioning on household and interviewer characteristics. It
explores the best times to contact different types of households, controlling for
interviewer and area effects. The second part focuses on understating the process
leading to cooperation or refusal. Using multilevel multinomial logistic analysis, it jointly
models four different outcomes at each call using interviewer call record and

observation data and controlling for household and interviewer influences. This chapter
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presents the analysis of call record data in a multilevel modelling framework A single-

level model might provide a first working model, but may underestimate standard errors

of regression coefficients, in particular of higher-level variables. In addition to such

technical advantages, multilevel models also provide substantive benefits. In particular,

multilevel models offer conclusions that go beyond the interpretation of single-level

models. For example they allow exploring the influence of unknown household and

interviewer characteristics on contact and cooperation via estimated random effects. A

summary of main results and potential implications for survey practice is presented as

follows:

1.

The results support earlier findings that weekday evenings and weekend
daytimes are, on average, the best times to call to achieve contact. However,
without a prior appointment, households contacted at those times, in particular
early week (Sun-Tue) evenings, are more likely to refuse, book an appointment
or postpone in other form than those contacted at other times. It is also found
that best times to contact depend on household characteristics, especially those
related to at home patterns. Differences in optimal contact times have been
found e.g. by type of accommodation and the presence of children, pensioners
or unemployed persons. A call made at a time previously agreed through a
booked appointment is most likely to lead to a successful interview for every
time of the day and day of the week.

Interviewer observations about a household and neighbourhood, for example
on the type and condition of the house and the presence of children, are useful
for predicting the likelihood of contact and cooperation. Some interviewer
observation variables are predictive of contact and cooperation before and after
controlling for additional information about a household (from the census in the
present study). These observations might be used as proxies for census
information that is usually unavailable.

There is significant evidence that time-varying call record information, such as
features of the call history and of the current call, play a key role in predicting
contact and the outcome of each future call after contact was made. Of
particular interest for survey agencies are interviewer strategies on establishing
contact and gaining cooperation. The contact model shows some significant
effects of such strategies, for example the probability of contact is higher at the

next call if the interviewer left a card or message at a previous call. Regarding
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cooperation, characteristics of the doorstep interaction process between the
interviewer and the householder, such as how contact was established and
whether the householder asked questions or made comments, are very relevant.
The multinomial model shows that controlling for all other variables in the
model, the more contact calls is made the higher the odds of cooperation. This
may provide some evidence that keeping in contact with the household may
increase the chances of a successful interview. Rather than pressing for an
immediate cooperation the interviewer may be advised to keep the conversation
and the contact with the household going, for example by making an
appointment for another time (Groves and Couper, 1998).

Area-level variables, geographical location and type of area are found predictive
of contact before controlling for other household and calling variables, but they
are not significant in the final model. Therefore, in the absence of additional
information, area characteristics might be regarded as proxies for household
characteristics and useful for predicting contact. Similarly, a London indicator is
found predictive of cooperation before controlling for household characteristics,
but it is not significant in the final model.

Significant effects of interviewer characteristics on contact and cooperation are
observed. Important in explaining interviewer differences in contact rates are
pay grade, qualifications and age. Interviewer experience is not found to be
important on predicting contact after controlling for these factors. However, it
is useful on predicting the likelihood of cooperation; more experience
interviewers are likely to obtain higher cooperation rates. There is evidence that
some interviewers may be more effective in establishing contact at certain times,
which may indicate better judgement of when best to call. There is little
empirical support for the hypothesis that some interviewers are more successful
in establishing contact with more difficult households, such as single households.
Strong effects of interviewer confidence and attitude towards persuasion of
reluctant respondents are found in the multinomial model for cooperation; if
interviewers express confidence in their abilities to convince reluctant
respondents and agree they should persuade reluctant respondents, they are
likely to achieve higher cooperation rates.

Some evidence for differential effects of fixed interviewer characteristics on

refusal, appointment made and other forms of postponement is found. For
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example, interviewer experience, although an important predictor of refusal,
does not seem to impact on the likelithood of appointments or postponements.
Interviewer confidence, on the contrary, impacts on all three non-participation
outcomes.

8. Unmeasured interviewer characteristics have a significant effect on contact and
cooperation. However, the variation between interviewers in their cooperation
rates is higher than the variation in their contact rates. In the model for
cooperation, no evidence for differential effects due to unmeasured interviewer
characteristics on the three non-participation outcomes is found, ie. the
influence of the interviewer random effect is the same across the three non-
participation outcomes.

9. At the household level, the multinomial model shows evidence of differential
effects of unmeasured household characteristics across the three non-
participating outcomes: refusal, appointment made and other postponement.
Negative loadings for postponement outcomes suggest that household
unobservables that are positively associated with refusal are negatively associated

with both appointment and other postponement.

As discussed in the previous sections, the available data are based on a non-
random allocation of calling times to households. The models attempt to control for
household and interviewer characteristics likely to be associated with the interviewer
decision on when to call. Nevertheless, as it is possible that the calling time may depend
on unmeasured household and interviewer characteristics, the effects of day and time of
the call should be interpreted with caution and inferences about possible causal effects
of finding should be avoided.

The results have a number of potential implications for survey practice. They
may inform the design of efficient and effective calling behaviours and follow-ups as
well as responsive survey designs to increase response rates and to potentially reduce
nonresponse bias. The type of models presented may be used to predict the likelihood
of contact or cooperation at the next call, conditioning on information known to the
survey organisation or interviewer at each point in time - even in the absence of
information like here from the census. For example, an interviewer or survey agency
may be able to observe hints for a potential refusal early on, before a hard refusal occurs.

It might be then possible to intervene to avoid a refusal, for example, by offering a
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higher incentive or by sending a more experienced interviewer. These models may also
be used to estimate response propensities from sample units to be employed for
adjustment and estimation at the data analysis stage (see Chapter 3). The focus of this
research is on face-to-face surveys but some findings may also apply to telephone
surveys.

The research highlights the benefits of prior information about sample units for
improving prediction of contact and cooperation, and survey agencies should exploit
possibilities of data linkage to boost information available about each household or area.
Such additional information may come from the sampling frame, registers or
administrative data, as well as previous waves in the case of a longitudinal study -
available prior to data collection. The availability of such additional data may depend on
the country and some restrictions on data linkage may apply due to confidentiality and
data disclosure concerns. The analyses also highlight the relevance of call record
information and interviewer observations (paradata) captured during data collection to
inform the process leading to contact and cooperation. These variables could be used as
proxies of household characteristics if, for example, census data are not available. This
has also implications for survey organisations that need to carefully consider which type
of paradata should be recorded at each call, such as outcome of the call, doorstep
interactions with the householder and interviewer observations about the household and
neighbourhood. They also need to assess how best to collect such data, including
interviewer training.

The significant interviewer effects in predicting contact imply that survey
agencies may have a greater choice than previously thought regarding how best to
contact a household, rather than, as was hypothesised in Purdon et al. (1999), simply
decisions on the timing of calls. For example, certain interviewers may be allocated to
more difficult times or cases — at least within fieldwork constraints such as travelling
times and costs. It may also be advantageous for the survey organisation to be aware of
other time commitments of interviewers; for example interviewers who have only a
limited capacity to make evening and weekend calls may need additional support or may

be allocated certain cases or areas.
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Chapter 3

Weighting adjustment for clustered
nonresponse

3.1 Introduction

To produce more accurate estimates of population characteristics in the
presence of nonresponse weighting adjustment is often carried out to reduce
nonresponse bias in estimates from sample surveys (e.g. Little, 1986, 1988; Sirndal and
Lundstrom, 2005). As discussed in Chapter 1, a commonly used weighting technique is
inverse probability weighting. This technique consists of deriving response propensities
from sample units under a model and then using the inverse of these estimated
probabilities as the adjustment weights (e.g. Ekholm and Laaksonen, 1991; Iannaccliione,
2003). The key to effectively model these response probabilities is the availability of
auxiliary information for both the respondents and the nonrespondents to the survey.
Information about the population distribution and other paradata, such as information
on the interviewers, might also be used in the model. Adjustment weights may be
combined with sampling weights for a joined treatment of nonresponse and sampling.

Most discussions of inverse probability weighting assume that responses for
different units are independent (e.g. Cao et al, 2009; Kim and Kim, 2007). It is not
uncommon in surveys, however, for nonresponse to be correlated within clusters.
Chapter 2, for example, shows that interviewers are differentially successful at
interviewing sample households leading to interviewer (cluster) differential response
rates. The effect of observed and unobserved interviewer’s characteristics on response
may result in correlation between the likelihood to participate of different households
approached by the same interviewer. For example, Durrant et al (2010) found that the
likelihood of refusal is higher if the interviewer has a college degree but the householder
does not, and it is highest for the case where the interviewer has only a low or no
educational attainment and the householder has a professional degree of some form.

Thus, correlated nonresponse might be observed due to the clustering of households
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within interviewers. Another example might be a two-stage cluster sample with
geographical areas as primary sampling units and households as secondary sampling
units. If nonresponse of households depends on unmeasured area-level characteristics,
nonresponse intra-cluster correlation may occur simply because of the heterogeneity
between clusters used for sampling.

This chapter investigates how to construct inverse probability weights, when
response is clustered and cluster membership is observed for both responding and
nonresponding units, as is the case when the clusters are defined by interviewer
workloads or they define a stage in a multi-stage sampling design. One established
approach is to use such clusters (or homogeneous sets of clusters) as weighting
adjustment cells (e.g. Little, 1986), where the implicit model is that response
probabilities vary just by cell and may be estimated by the cell-level response rates.
Weighting cell adjustment increases the weights of the respondents by the same amount
in each cell so that the sum of the adjustment weights of the respondents equals the
sum of the sampling weights of the complete sample within each cell. This chapter
considers the more general setting when auxiliary information at the sample level is
available and include other variables in addition to cluster membership. A natural model
for nonresponse, given such auxiliary information, is a multilevel model (as discussed in
Chapter 2), where clustered nonresponse is captured via random effect terms. Peytchev
(2011), for example, used information on interviewers as auxiliary data in the estimation
of response propensities to adjust for unit nonresponse. However, Peytchev (2011) only
used a single-level logistic regression approach ignoring the clustering in the data. This
chapter investigates how to construct inverse probability weights based on multilevel
models and assess to what extent these inverse probability weights result in more
efficient estimates than those obtained by using simpler models that ignore the clustered
data.

Yuan and Little (2007) proposed several methods to correct for unit
nonresponse bias in a two-stage clustered survey. These methods were based on a
random effects model for the survey variable and thus fall outside the class of weighting
methods considered here, which aim to model response propensities. This chapter,
however, makes use of the concept of cluster-specific non-ignorable (CSNI)
nonresponse proposed by Yuan and Little (2007) to describe the case when
nonresponse may depend on unobserved cluster random effects which may be

correlated with the survey variables. Following the example above on educational
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attainment of interviewers and householders, if household educational level is correlated
with the survey variables of interest then the dependence of nonresponse on interviewer
characteristics may result in a CSNI nonresponse mechanism. The cluster-specific non-
ignorable nonresponse has also been discussed, at least implicitly, by Little and Rubin
(2002, Example 6.24), Shao (2007) and Yuan and Little (2008). The CSNI condition is
weaker than the usual missing at random (MAR) condition, where the probability of
response is independent of the survey variables but may depend on other observed
auxiliary variables. The MAR assumption is conventionally assumed if inverse
probability weighting is to correct for bias (e.g. Tsiatis, 20006, p.146). A key aim of this
chapter is to construct weights which exploit the auxiliary information on cluster
membership and other variables to correct for bias under CSNI, not just MAR.

This chapter considers three ‘standard’ ways of constructing inverse probability
weights, including the use of multilevel models as in Chapter 2 and a marginal model
that ignore the clustering structure of the data, and a new proposed approach using
conditional logistic regression. It also presents variance estimators for each adjustment
weighted estimator, assuming weights are treated as fixed. Skinner and D’Arrigo (2011)
proposed a more complex variance estimator that accounts for the fact that the weights
are estimated. The properties of the alternative weighted estimators and associated
variance estimators are investigated through a simulation study. Results from an
empirical application using data from the Expenditure and Food Survey 2001 are also
presented.

The chapter is organised as follows. The basic estimation and modelling
framework is set out in section 3.2. The different ways of constructing inverse
probability weights for cluster nonresponse is presented in section 3.3. Variance
estimation is considered in section 3.4. A simulation study is presented in section 3.5.
Section 3.6 shows an empirical illustration and some final discussion follows in section

3.7.

3.2 Estimation and modelling framework

Consider a finite population U = {(i,5)|i =1,...,N,j=1,...,M,} , with the jth
unit in the 4th cluster labelled (4,5) , from which a probability sample

s={(,5)|i=1,...,n,j =1,...,m;} CU is drawn with a given sampling design. Suppose
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that 7, =Pr (i,j) € s , the probability of selection of (i, j) under the sampling design,
is known and non-zero for each (i, j) € s. Denote the population size M = Ziv M, and

the sample size m = Zf m, . It is of interest to estimate the population total of a generic

survey variable y, namely
T,= Z(z‘,j)einj

where Y denotes the value of y for the (i,j) unit of U . Note that many other

parameters may be expressed as a function of such totals and estimated by this function

of the corresponding estimated totals.

Let R denote the binary response indicator variable, which is defined for all

units (i,7) € U, irrespective of which sample s is selected, such that

1 if unit (4, j) responds
U |0 if unit (4, 7) does not respond

It is assumed that R, is a characteristic of the units in the population, and therefore that

its values cannot change as a function of which sample s is selected (‘stable’
nonresponse in the terminology of Rubin, 1987, page 30). Thus, it is supposed that

sampling and nonresponse are unconfounded, i.e. the sample is selected independently

of the population values of R, .

Suppose that R, a 1xk vector of auxiliary variables z; and the cluster
membership indicator i are observed for all units in s, but that y, is only observed for
respondents, i.e. for units in {(i,j) € s: R, =1}.

The primary focus of this chapter is on the inverse-probability weighted
estimator of T given by

Ty = Z dij(jini,jyzj’ (3.2.1)

(i.4,)€s

where d; = 7@1 is the design weight and g, is a non-response weight, representing an
inverse estimated response probability, to be discussed in section 3.3. The estimator in
(3.2.1) is called the two-phase nonresponse adjusted estimator in Sdrndal and

Lundstrom (2005, equation 6.3).
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This chapter also considers the so called two-phase generalized regression

estimator (Sirndal and Lundstrom, 2005, equation 6.4)

A A

LIS N e Y (3.2.2)

yreg
where
- r A O N T  \-1 a T
T, = Z U Z d;G;R;X;, and X = ( ,Z dyi;Rywgw,) " 0 dug Ry,
(i,4,)€s (i,j,)es (i.4,)€s (i,4,)€s

introduced by Cassel et al. (1983).

In order to construct the nontesponse weights ¢, and to assess the properties

of the estimators of T, a modelling framework ¢ for the generation of the R, and Y

is introduced. It is supposed earlier that sampling and nonresponse are unconfounded,

that is that the distribution of the RU. does not depend on the sample outcome s. More

generally, it is assumed sampling is non-informative in the sense that the distribution of

(R;.y,) implied by ¢ does not depend on s.
The basic parametric model considered for R, unconditional on Yy > is
Pr(R, =1|u) = h(z;8+w) , u, ~ N(O, %), (3.2.3)
where u; denotes a random cluster effect which captures the response intra-cluster
correlation, h(.) is a specified inverse link function, such as the inverse logit function,

and the kx1 vector 3 and 72 are parameters. The R, are assumed mutually

independent conditional on the w,. This research only considers estimation in the case

when the number of respondents in each cluster is non-zero. Yuan and Little (2007)
commented on ways in which biased estimation can arise when this is not the case. For
example, they noted that, if some sampled clusters do not have any respondents, their
reweighted random-effects model based approach produces biased estimates as it
ignores these clusters.

In addition to the random effects model (3.2.3), the implied marginal model is

also considered:

Pr(R, = 1) = g(z,0), (3.2.4)
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where 9(z,B) = E, [h(a;z.jﬂ +u, )} and the expectation is taken across the distribution of the
random effect u,. Note that the random effect will induce a correlation between Rij and

R, for j=Fk in this model.

Response Mechanisms

For the response mechanism, two principal assumptions regarding the relation

between R and y. are considered. Nonresponse is said to be missing at random (MAR)
ij ij

if the R; and y,; are mutually independent, that is Pr(R; =1|y,)=Pr(R, =1), given

that T, is treated as fixed characteristics of the units in the population irrespective of

which sample s is selected. The mechanism is said to be cluster-specific nonignorable

nonresponse (CSNI), following Yuan and Little (2007), if model (3.2.3) holds and the R;,
and y,; are independent conditional on the w,, thatis Pr(R; =1y, ,u,) =Pr(R, =1|uv,),
again holding the T fixed.

To illustrate and motivate the CSNI assumption, suppose Y, obeys a linear
multilevel model

Yy = T A+ +ey, (3.2.5)

where v, and e, are nested random effect terms with zero means, such that the R, are

conditionally independent of the v, and £ given the wu, and, furthermore, wu, is

conditionally independent of the ¢ given the v,. Then, when both models (3.2.3) and

(3.2.5) hold, nonresponse is MAR when u, and v, are independent and CSNI otherwise.

The principal relevance of this chapter is to cases when CSNI holds but MAR does not.
The key motivating application arises when both nonresponse and the survey variable

exhibit clustering, which may be represented by the kind of joint cluster effect model for

(R,y,) in (3.2.3) and (3.2.5), where the cluster effects display correlation (after

controlling for observable z, ). For example, when clustering is by geography,

correlation between area-level response rates and area means of the survey variable may
be induced by a common correlation with average area-level income (which is not

available as an z;; variable).
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3.3 Construction of nonresponse weight

This section considers the construction of the nonresponse weight Q; used in

the estimators in (3.2.1) and (3.2.2), when model (3.2.3) holds. It first considers three
‘standard’ options and then proposed a new approach using conditional logistic
regression.

() response propensity weights (Little, 1988): the inverse link function g(.) in the

marginal probability Pr(R; =1) in (3.2.4) is assumed known and the weights are set to

be ng = g(xijBM y!, where Y is obtained, for example, by maximum likelihood

estimation (MLE) under the working model of independent observations.
(1) wezghts based on predicted random effects: set (ng = h(azljﬁARE +4/")", based on

the random effects model in (3.2.3), where 3% and the @ (and implicitly 7*) might

be predicted using an approximate ML method, such as in Diggle et al. (2002, p.174).

(i) weights based on estimated fixed effects: set c}i?E = h(xUBF Ey ﬁZF Fy7 as in (i), but
where the u, in (3.2.3) are now treated as unknown parameters (fixed effects, i.c.
treating cluster as another explanatory variable with number of categories equal to the
number of clusters appearing in the sample) and 37 and the @" are MLEs. One
advantage of this approach compared to (i) when A(.) is the inverse logit function is
that it avoids numerical integration in the computation.

Skinner and D’Arrigo (2011) presented theoretical reasons why each of the
above options may not correct adequately for bias from CSNI nonresponse when the
m, may be small. They proposed an alternative conditional logistic regression approach
for this case, designed to remove the dependence of the weighting method on the
random effects. The basic idea is to construct the weight as Pr(R, =1| R, +)71, where

R, = ZRU is the number of respondents in cluster i. It may be shown (e.g. Agrest,
=1

2002, p.251) that when model (3.2.3) holds and h(.) is the inverse logit function,
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Zepormﬁ

reB,

Pr(R, =1|R,)= """ , (3.3.1)

ZepormB

r,€B,,

where r, = (r ,r. ) denotes the vector of observed response indicator values in

11777 Himy,

cluster i, B, represents the set of possible values of r, where =1 and r,, =R, , i.e.
i 7 ] 1+ 1+

B, ={r:n=1,1, =R } and B, denotes the sct of possible values of r, where

=R _,ie By, ={r: 1 _=R_}. The absence of the u, in (3.3.1) arises from the

L it 2%

sufficiency of R, for u, . In practice, # is unknown and it is proposed to set

zngL Pr(R, ;=1 (R, =71 ;8= BMEY T where SME is obtained by conditional ML

(e.g. Agresti, 2002, p.496; see also Skinner and D’Arrigo, 2011).

The conditional logistic approach is closer to the fixed effects than the random

effects approach in the sense that, given 3, the weights in cluster i depend only on the

R, in cluster i and they are not shrunk to a cluster average using outcomes from other
clusters. In the special case when z. =z, and z 3+ is replaced by u , since z, is
ij i ij i i i

effectively confounded with u,, both the conditional logistic and fixed effects weights

m. —1
k ] and
R, 1

m.
i

R

i+

reduce to m, /R (note that the sizes of B .. and B, are
i i+ 1ij 2

respectively), the inverse response rate in cluster ¢, a traditional choice of weight with
clustered survey data (Yuan and Little, 2007). Compared to the random effects approach,
the conditional logistic approach has the advantage that it does not depend on
assumptions about the distribution u, nor about the relation of u; to z;. On the other
hand, it does depend on the assumption that &(.) is the inverse logit function in order
that (3.3.1) holds and is free of u,. Note that, since it was assumed that the sampling
and nonresponse are unconfounded, design weights have not been incorporated in
3OML

either the conditional probability in (3.3.1) or the construction of 3

The properties of the alternative weighted estimators of 7, denoted by

T, T TRE or TM when . =¢", ¢ or ¢™ in (3.2.1), and similarly
Y Y Y Y %) 1) ) 1j
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M TFE RE or T?ﬁgL

vrea> Lureg> Loren , when the generalized regression estimator (3.2.2) is considered,

are investigated through a simulation study in section 3.5.

3.4 Variance estimation

In the case of stratified selection of clusters, an approximated variance estimator

of Ty , treating adjust weights ¢, as fixed, may be written as (e.g. Stukel et al., 19906):

A n
v=> h—l) >o(e, — g,) (3.4.1)

m
i

m

_ -5\ 5 = _ -1

where ¢, = E ¢y = E d,R.q,,, ¢ =m, g ¢, and s, denotes the set of n, clusters
/ ~

j=1 i€sy,

drawn in stratum h, for h=1,.,H (it is assumed that n, >2 for each % ). This

h

effectively assumes that the ¢, may be treated as independent and identically

distributed within strata, which may be a reasonable approximation for many sampling
schemes where clusters are selected as primary sampling units (PSUs) and the fraction
of PSUs selected in each stratum is small and when nonresponse is independent
between clusters.

Skinner and D’Arrigo (2011) outlined a variance linearization approach that
allows for variability on the estimated weights for the CML case. This approach will not

be discussed in this thesis.

3.5 Simulation study

3.5.1 Description of the study

A simulation study is now carried out to illustrate the properties of the four
weighted point estimators in section 3.3 and the variance estimator presented in the
previous section.

Six finite populations with N =200 and M, = M =10 are constructed, where

the values of z,., R. and y . are generated, respectively, from:
) ) Y
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.~ N(2,1), truncated below by 0 and above by 4,

z; =Lz,), 7,

j [t}
R, ~ model (3.2.3) with &(.) the inverse logit function, where = (3,,0, yort=1

b b

Yy ~ model (3.2.5) with A =5, £ ™~ N(0,1) and v, = o, + 6u, , where o, ~ N(0,1).

Since a;, u, and ¢,

are generated independently, nonresponse is MAR if § =0 and
ij

CSNI otherwise. The six finite population are created following six possible sets of
values for the parameters 8= (3,,3)" and &, representing different missing data

mechanisms, like this
@) MCAR: (8,,8)=(1,0), § =0
(i) MAR: (8,,8,)=(0,0.5), § =0
(iiiy CSNII: (8,,8,) =(1,0), 6 =5
(iv) CSNI2: (8,,8,) = (0,0.5), § =5
(v) CSNI3: (8,,8) = (1,0), 6 =1
(vi) CSNI4: (8,,8,) = (0,0.5), § =1

Note that mechanism (i) is described as missing completely at random (MCAR) since

R, is independent of both Yy and T - The values of (3,,3,) above are chosen so that
the overall response rate is approximately 70% and the nonresponse is generated

independent (8, =0) or dependent (3, =0.5) of covariates. The alternatives values of

6 determine the strength of the intra-cluster correlation for the values of Yy - The intra-

cluster correlation of y, defined by

02/o§+a§>\2+af = 1+52/27+52 ,

v

is 0.037 in the MCAR and MAR cases (6 =0), 0.5 in the CSNI1 and CSNI2 cases
(6 =5), and 0.07 in the CSNI3 and CSNI4 cases (6 =1), designed to reflect a realistic
range of possible values.

Two sampling designs are applied to these populations: (a) simple random

cluster sampling with n =50, m, = M =10; (b) two stage sampling, with simple random
sampling at each stage with n =50, m, = 5. Each sampling scheme is repeated 1000

times for each population. New values of the response indicator R, are generated along
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with the new samples, while other finite population values are kept fixed. Any samples

for which R, =0 for some i are rejected. The estimates of T and associated variance
estimators for the following four weighting approaches are computed:

(i) M: marginal model (3.2.4)
(i) RE:random effects model (3.2.3)

(i) FE: fixed effect model (3.2.3) but with random effects treated as unknown
parameters

iv) CML estimated: weights based on (3.3.1) using conditional ML to estimate
g g
B where B defines the true model when (3.2.3) holds.

To help understand the impact of estimating 8% by replaced

CML, T,CML Wlth /BCML
Y

by 8" referred as TyCML , is also included (i.e. ‘CML true parameter’ in Tables 3.5.1 and

3.5.2).

3.5.2 Results of the study

Tables 3.5.1 and 3.5.2 show summary statistics of weighted estimates of the total

T, for the different approaches in section 3.3 and for the alternative missing data

mechanisms and choices of (n,m;) above. The relative bias reported in the tables is the

mean of the estimated total across the 1000 samples less the true population total,
divided by this population total. The relative standard error (SE) is the standard
deviation of the estimated total across the 1000 replications divided by the true
population total. The relative root mean squared error (RMSE) is the square root of the
average squared deviation of the estimated total from the true population total over the

1000 samples divided by the true population total.

Bias and standard error properties of the adjusted point estimate

No evidence of bias is observed in TyM under MAR or MCAR, as expected from

Skinner and D’Arrigo (2011); however, this estimator is significantly biased under the

CSNI mechanism. The bias of TyM decrease when a lower intra-cluster correlation is

observed, i.e. for cases CSNI3 and CSNI4 when § =1; but it still remains clear in the
tables and the marginal estimator, which ignore clustering, is the worst of all estimators

under cluster-specific nonignorable nonresponse.
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Regarding the random effect estimator, there is evidence of negative bias of

TyRE under MCAR and MAR (6 =0) and also under CSNI3 and CSNI4 (6 =1) where

the relative bias of the random effect estimator moves in the direction towards its bias

when 6§ =0 (the MCAR and MAR cases). In the cluster-specific nonignorable cases

with higher intra-cluster correlation (CSNI1 and CSNI2 when 6 =5), TyRE displays bias
in the same positive direction as TAyM .

Table 3.5.1: Simulation estimates of relative bias, standard errors and root mean squared errors
of weighted estimates of totals for alternative weighting methods and missing data mechanisms.

Cluster sampling with n = 50, m, = 10. Simulation estimates based on 1000 repeated samples.

i\l/ftsasmg Weighting Relative Bias Relative SE Relative RMSE
mechanism Method (0! (o) (7o)
MCAR Response prop. (M) (-0.13) 2.33 2.33
Random effects (RE) -2.76 2.35 3.03
Fixed effects (FE) (0.04) 2.48 2.48
CML (estimated) (0.04) 2.48 2.48
CML (true parameter) (0.01) 2.92 2.92
MAR Response prop. (M) (-0.14) 2.34 2.34
Random effects (RE) -2.35 2.32 3.30
Fixed effects (FE) (0.07) 2.34 2.34
CML (estimated) (0.07) 2.34 2.34
CML (true parameter) (0.08) 2.48 2.48
CSNI1 Response prop. (M) 11.10 6.19 12.71
Random effects (RE) 2.20 6.05 6.44
Fixed effects (FE) (-0.14) 6.25 6.25
CML (estimated) (-0.14) 6.25 6.25
CML (true parameter) (-0.19) 6.43 6.43
CSNI2 Response prop. (M) 11.35 6.19 12.92
Random effects (RE) 2.67 6.00 6.57
Fixed effects (FE) (-0.13) 6.33 6.33
CML (estimated) (-0.12) 6.32 0.32
CML (true parameter) (-0.13) 6.43 6.43
CSNI3 Response prop. (M) 2.19 2.50 3.32
Random effects (RE) -1.74 2.61 3.13
Fixed effects (FE) (0.01) 2.68 2.68
CML (estimated) (0.01) 2.68 2.68
CML (true parameter) (-0.03) 3.09 3.09
CSNI4 Response prop. (M) 2.23 2.50 3.35
Random effects (RE) -1.31 2.56 2.88
Fixed effects (FE) (0.03) 2.57 2.57
CML (estimated) (0.03) 2.57 2.57
CML (true parameter) (0.03) 2.72 2.72

! parentheses surround estimates which are within two simulation standard errors of 0.
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Table 3.5.2: Simulation estimates of relative bias, standard errors and root mean squared errors
of weighted estimates of totals for alternative weighting methods and missing data mechanisms.

Two-stage sampling with n =50, m, = 5. Estimates based on 1000 repeated samples.

g/if:mg Weighting Relative Bias Relative SE Relative RMSE
mechanism Method (%o)! (%) (%o)
MCAR Response prop. (M) (-0.006) 3.20 3.20
Random effects (RE) -3.08 3.33 4.54
Fixed effects (FE) 0.18) 3.65 3.66
CML (estimated) 0.17) 3.56 3.57
CML (true parameter) 0.13) 3.95 3.96
MAR Response prop. (M) (-0.02) 3.13 3.13
Random effects (RE) -2.57 3.20 4.11
Fixed effects (FE) 0.19) 3.23 3.24
CML (estimated) (0.20) 3.24 3.24
CML (true parameter) 0.14) 3.39 3.40
CSNI1 Response prop. (M) 10.39 6.56 12.29
Random effects (RE) 3.55 6.44 7.36
Fixed effects (FE) (-0.04) 06.66 6.66
CML (estimated) (-0.04) 0.64 06.64
CML (true parameter) (-0.06) 7.02 7.02
CSNI2 Response prop. (M) 10.75 6.61 12.62
Random effects (RE) 4.21 6.37 7.64
Fixed effects (FE) (-0.05) 6.77 6.77
CML (estimated) (-0.01) 6.74 6.74
CML (true parameter) (-0.10) 6.97 6.97
CSNI3 Response prop. (M) 2.10 3.31 3.92
Random effects (RE) -1.71 3.49 3.89
Fixed effects (FE) 0.14) 3.73 3.73
CML (estimated) 0.13) 3.65 3.66
CML (true parameter) (0.09) 4.10 4.10
CSNI4 Response prop. (M) 2.21 3.25 3.93
Random effects (RE) -1.17 3.37 3.57
Fixed effects (FE) 0.14) 3.40 3.40
CML (estimated) (0.106) 3.40 3.40
CML (true parameter) (0.09) 3.61 3.61

! parentheses surround estimates which are within two simulation standard errors of 0.

The bias of the random effect estimator under cluster-specific non-ignorable
nonresponse is always of smaller size than this of the marginal estimator, in particular
for the CSNI1 and CSNI2 cases. The simulation study shows that the random effect

estimator leads to some bias even for the missing at random mechanism when m, are

small. A theoretical explanation in the bias of the RE method is available in Skinner and
D’Arrigo (2011, Section 4) and relates to the potential correlation between the response
E

indicator wvariable RU and the estimated random effect uf Problems with the
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approximate maximum likelihood estimation method used to obtain 4" may be
another source of the observed bias. Table 3.5.2 and 3.5.1 shows a small decline in the

relative bias of TyRE under MAR when m, increases from 5 (-2.57) to 10 (-2.35)
respectively. Repeating this study for m, =20 and m, =50, it is observed that the
relative bias of TyRE does indeed decrease as m, increases, with values of -1.67 and -0.78

as m, takes values 20 and 50 correspondingly. The empirical illustration in section 3.6

examines the performance of the random effect estimator using data from the
Expenditure and Food Survey 2001 with cluster mean size equals 40.

In line with the theoretical results presented by Skinner and D’Arrigo (2011),
Table 3.5.1 and 3.5.2 show no evidence of bias in TyCML ot TyCML across all missing data

mechanisms and sampling schemes. However, one potential disadvantage to this

conditional maximum likelihood approach is that it becomes increasingly

computationally intensive for larger m, as the sizes of the sets B, and B, in (3.3.1)

grow.

Regarding the fixed effects estimator, it is observed in Table 3.5.1 and 3.5.2 that

TUF ¥ seems to share a similar absence of bias to TyCML , which may be attractive in

practice as this estimator does not require so much computation.

Looking now at the standard errors of the weighted estimates of total, there is

some evidence in Table 3.5.1 and 3.5.2 that the variance of TyRE and TyM can be slightly

smaller than those of TyCML and TyF F for all cases. However, the smaller biases of the

conditional ML and the fixed effect estimators offset this effect. The RMSEs of the

latter estimators are always smaller than that of TyRE and they are also considerably
smaller than that of TyM for the CSNI cases. The extent to which the smaller bias of

TyCML will offset its larger variance, in MSE terms, will, of course, depend on sample size.

The RMSE of TyRE is smaller than that of TyM for all cluster-specific nonignorable cases,

in particular substantially smaller for CSNI cases with higher intra-cluster correlation

(CSNI1 and CSNI2).

Comparing TfML and TyCML , there are some results in the literature (e.g.

Rosenbaum, 1987; Kim and Kim, 2007) that the use of the estimated rather than the
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true response propensity can, paradoxically, reduce variance. This is observed in Tables

3.5.1 and 3.5.2 where the relative standard error of Tycm is smaller than that of TyCML

for all cases.

Under cluster-specific nonignorable nonresponse, this simulation study shows
some potential benefits of multilevel or fixed effects models or conditional logistic
regression over marginal models (which ignore clustering). Benefits are greater the larger
the cluster sample size. On the other hand, this simulation shows no benefits from using
methods that account for the clustering in the data under the missing at random

assumption.

Generalized regression point estimate
Table 3.5.3 shows results on the regression estimator qu in 3.2.2. Results for

T  were almost identical to those for TUM and are thus not included in the table.

yreg >

Results for TU}: f] and Tycrf\? were almost identical to those for JﬁgL and are also thus

FOML
yreg

not included, although it is of interest to note that the reduction in variance of vs.

T CML
yreg

observed in Tables 3.5.1 and 3.5.2 seems to disappear once regression estimation
is used.

Table 3.5.3 shows that the bias of the multilevel estimator under MCAR and
MAR is removed by regression estimation. However, it remains biased under the CSNI

mechanisms with larger values for cases when 6§ =5 and smaller ones when 6§ =1. As

expected, regression estimation does lead to some overall reduction in variance as it

borrows strength from a linear assisting model. As in previous tables, Tﬂi does show

some slight variance gains relative to Tﬁ? but this is offset by bias and the RMSE of

TQML
yreg

TRE

is in no cases greater than that of oreg
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Table 3.5.3: Simulation estimates of relative bias, standard errors and root mean squared errors
of regression weighted estimates of totals for alternative weighting methods and missing data
mechanisms. Estimates based on 1000 repeated samples.

Il\)/[:t:ng Weighting Relative Bias Relative SE Relative RMSE
0/\1 0 0
mechanism Method (%) (%) (%)
n =50, m, =10
MCAR Random effects (RE) (-0.02) 2.29 2.29
CML (estimated) (0.00) 2.29 2.29
MAR Random effects (RE) (-0.01) 2.29 2.29
CML (estimated) 0.07) 2.30 2.30
CSNI1 Random effects (RE) 5.02 5.94 7.77
CML (estimated) (-0.13) 06.18 0.18
CSNI2 Random effects (RE) 5.06 5.90 7.78
CML (estimated) (-0.12) 6.28 6.28
CSNI3 Random effects (RE) 1.02 2.47 2.67
CML (estimated) 0.02) 2.51 2.51
CSNI4 Random effects (RE) 1.04 2.46 2.67
CML (estimated) (0.03) 2.52 2.52
n=>50,m, =5
MCAR Random effects (RE) (0.00) 3.18 3.18
CML (estimated) (0.11) 3.17 3.17
MAR Random effects (RE) 0.07) 3.10 3.10
CML (estimated) 0.19) 3.12 3.12
CSNI1 Random effects (RE) 6.77 6.29 9.24
CML (estimated) (-0.10) 6.50 6.50
CSNI2 Random effects (RE) 6.95 6.25 9.35
CML (estimated) (-0.03) 6.66 6.66
CSNI3 Random effects (RE) 1.40 3.28 3.57
CML (estimated) 0.07) 3.30 3.30
CSNI4 Random effects (RE) 1.49 3.21 3.54
CML (estimated) 0.14 3.28 3.28

1 parentheses surround estimates which are within two simulation standard errors of 0.

Variance estimation of the alternative adjusted estimates

Table 3.5.4 presents results on the estimation of the variance of the alternative

weighted estimators for the case of cluster sampling and treating the weights ¢, as fixed.

The variance estimator in (3.4.1) is used for each estimator under study, including a

finite population correction term (1 — n/ N).
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The variance estimate for the conditional maximum likelihood estimator and the
fixed effect estimator are always of considerably smaller size than those for the other

estimators, with the variance of the marginal estimator performing the worst. Skinner

and D’Arrigo (2011) showed that allowing for variation in 3 reduces the variance
estimate of TyCML ; however, their variance estimator is more complex to compute and

result in some underestimation, if modest, under the MCAR and MAR missing
mechanism. In some applications, it may be attractive to obtain simpler variance
estimators that are always conservative.

It might be desirable to consider an alternative variance estimate for the random
and fixed effect estimators that allows for variation in the weights, such as jackknife

variance estimation as described in Chapter 4.

Table 3.5.4: Simulation estimates of relative bias, standard errors and root mean squared errors
of standard error estimators for alternative weighting estimation of totals (treating weights as

fixed) and missing data mechanisms. Cluster sampling with n =50, m, =10 . Simulation

estimates based on 1000 repeated samples.

Missing data Weighting Relative Bias Relative SE Relative RMSE
mechanism Method (%o)! (%) (%)
MCAR Response prop. (M) 92.41 19.42 94.43
Random effects (RE) 30.03 13.10 32.77
Fixed effects (FE) 10.70 13.76 17.43
CML (estimated) 10.71 13.75 17.43
MAR Response prop. (M) 75.64 17.68 77.68
Random effects (RE) 22.49 11.72 25.36
Fixed effects (FE) 3.93 10.29 11.01
CML (estimated) 3.88 10.26 10.97
CSNI1 Response prop. (M) 49.31 14.07 51.28
Random effects (RE) 20.14 9.46 22.25
Fixed effects (FE) 3.05 10.34 10.78
CML (estimated) 3.06 10.34 10.78
CSNI2 Response prop. (M) 44.66 14.02 46.81
Random effects (RE) 18.12 9.64 20.52
Fixed effects (FE) 1.38 13.27 13.34
CML (estimated) 1.44 13.06 13.14
CSNI3 Response prop. (M) 108.46 19.31 110.16
Random effects (RE) 37.51 11.88 39.35
Fixed effects (FE) 9.44 13.15 16.18
CML (estimated) 9.44 13.14 16.18
CSNI4 Response prop. (M) 93.14 18.01 94.86
Random effects (RE) 31.06 11.10 32.99
Fixed effects (FE) 3.76 12.47 13.02
CML (estimated) 3.76 12.36 12.92

! parentheses surround estimates which are within two simulation standard errors of 0.
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3.6 Empirical application

This section presents an application of the various estimators presented in the
previous sections to data from the Expenditure and Food Survey (EFS) collected in
2001. It aims to estimate three parameters: the proportion of households with at least
one adult in employment, the proportion of households with at least one pensioner and
the proportion of single households in the UK using inverse-probability weighted
estimators with alternative ‘standard’ inverse weights, that is response propensity
weights (M), weights based on predicted random effects (RE) and weights based on
estimated fixed effects (FE). The CML approach is not considered in this empirical
illustration as it becomes extremely computationally intensive with large cluster sizes.
The EFS, which is part of the UK 2001 Census Link Study dataset presented in Chapter
2, provides information on the pattern of spending and food consumption by
households in the UK. In addition to expenditure and food intake, the EFS collects
socio-demographic information about households, such as household composition and
employment details. The EFS employs a multi-stage stratified random sampling design
and requires a face-to-face interview and the filling in of a diary. As described in Chapter
2, the response outcome of the EFS data from April to October 2001 was linked to the
2001 Census records, which are available for both respondents and nonrespondents to
the EFS, providing a rare opportunity to model nonresponse and in turn to adjust for it.

The analysis sample for this illustration includes 2994 households selected for
interviewing in the EFS and for which the survey outcome was successfully linked to
census information and interviewer observation data and the interviewer could be
identified. Cases such as vacant homes and reissues as well as cases were the survey
outcome could not be linked to census or interviewer information have been deleted.
The actual survey variables were not included by the ONS in the dataset. Thus, census
variables are used in this application as if they were measured in the survey. The unit
nonresponse rate, which this section aims to adjust for, is about 35%. The estimates in
this application do not attempt to adjust for the complex sampling scheme as sampling
weights are not available in the dataset. The clusters are defined by interviewer
workloads, with 130 clusters of mean size 23 households. Each cluster contains at least
10 and at most 49 households.

To obtain inverse estimated response probabilities for weighting adjustment

purposes, this application first models the response indicator R, with refusals and

84



noncontacts both coded as nonresponse, considering the three ‘standard’ approaches
described in previous sections: (1) a marginal model (3.2.4); (2) a random effect model
(3.2.3); and (3) a fixed effects model treating cluster as another explanatory variable. The
inverse logit function is used as the inverse link function for all models. Table 3.6.1
presents estimated coefficients and standard errors under the three models for
nonresponse. Model 3 also produces estimated coefficients for each cluster, but these

are not presented here for space reasons.

Table 3.6.1: Estimated coefficients (and standard errors) of the three logistic models modelling response

Variable Categories Model 1 (M) Model 2 (RE) Model 3 (FE)
(ref= Reference category) B (Ste(B)) B (ste(ﬂA)) B (ste(ﬂA))
Constant 0.664 (0.167)x* 0.697 (0.173)xxx 0.636 (0.421)
Interviewer Observations

Type of accommodation | House 0.272 (0.110)%x* 0.237 (0.112)** 0.200 (0.121)*

(ref= Not house, i.c. flat,
mobile home, other)

House in a better or About the same -0.263 (0.136)** -0.269 (0.139)* -0.287 (0.148)**
worse condition than Worse -0.700 (0.193)# | -0.740 (0.196)* | -0.876 (0.209)%**
others in area
(ref= Better)

Household-level variables from the Census

Dependent children Present 0.442 (0.089)++ | 0.454 (0.090)**+ 0.486 (0.095)**+
present

(ref= Not present)

London indicator London -0.512 (0.128)+++ | -0.508 (0.160)*=+ | -0.374 (0.433)
(ref =Not London)

Self-employment Self-employed -0.552 (0.134)%* | -0.564 (0.135)*+ | -0.631 (0.143)***
indicator of HRP

(ref = Not self-employed)

Educational attainment of | First/Higher degree 0.407 (0.112)%xx 0.423 (0.114)%x 0.492 (0.120)%**
HRP No academic qualifications | -0.215 (0.089)*+ -0.205 (0.090)* -0.219 (0.096)**
(ref=A levels/GCSEjs)

Interviewer variance -—- 0.107 (0.038)** -—-

HRP houschold representative person
*  significant at the 10% level

* - significant at the 5% level
*HEsignificant at the 1% level

Table 3.6.1 shows that, regardless of the nonresponse model, there are several
factors significantly influencing nonresponse. This indicates that nonresponse is not
MCAR. This table displays similar estimated fixed coefficients under the three models.
Model 2 shows a significant between-interviewer (between-cluster) variance, indicating
that nonresponse depends on unobserved interviewer effects. It is important to note
that nonresponse depending on cluster effects is not necessarily non-ignorable. It will

only be non-ignorable if the cluster effects are correlated with the survey variable of
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interest, meaning that the MAR assumption fails. Model 2 allows the calculation of the
variance partitioning coefficient or intra-cluster correlation, which indicates the
percentage of observed variation in response attributable to interviewer characteristics.
The intra-cluster correlation coefficient for Model 2, using the idea of the threshold
model for logit model (Snijders and Bosker, 1999), is equal to 0.107/(3.29+0.107)=
0.031. This variance partitioning coefficient indicates that about 3% of the variance on
response rates is attributable to interviewer characteristics. Comparing with Model 1,
Model 3 shows that controlling for cluster fixed effects some demographic variables,
such as London or house indicator, become not significant at the 5% level.

For any of the variables in Table 3.6.1 to be related to nonresponse bias they
have to be associated with both nonresponse and the survey variable. Table 3.6.2
presents the estimated coefficients obtained by regressing the first survey variable of
interest, ‘households with at least one adult in employment’, on the above explanatory
variables. Note that the variable ‘self-employment of HRP’ included in the response

model (Table 3.6.1) is not included in Table 3.6.2 due to high correlation with the

outcome variable of interest.

Table 3.6.2: Estimated coefficients (and standard errors) for three logistic models for the indicator
household with at least one adult in employment

(ref= Not house, i.c. flat,
mobile home, other)

Variable Categories Model 4 (M) Model 5 (RE) Model 6 (FE)
(ref= Reference category) B (ste(ﬁ)) B (Ste(B)) B (Ste(B))
Constant -0.423 (0.169)% | -0.443 (0.172)%+x | -1.150 (0.445)%**
Interviewer Observations

Type of accommodation | House 0.588 (0.114)%+x 0.599 (0.115)* 0.689 (0.125) **

House in a better or
worse condition than
others in area

(ref= Better)

About the same
Worse

-0.076 (0.135)
0.029 (0.201)

20.065 (0.137)
0.037 (0.203)

-0.033 (0.149)
0.057 (0.216)

Household-level variables from the Census

HRP
(ref=A levels/ GCSEs)

No academic qualifications

-0.645 (0.090) =+

-0.639 (0.091)++

Dependent children Present 1.414 (0.097 ) 1.414 (0.098)xxx 1.494 (0.104)***
present

(ref= Not present)

London indicator London -0.105 (0.137) -0.108 (0.157) -0.852 (0.462)*
(ref =Not London)

Educational attainment of | First/Higher degree 1.022 (0.123)%** 1.016 (0.123)%* 1.041 (0.130)%**

-0.652 (0.097) #++

Interviewer variance

0.064 (0.033)+

HRP houscehold representative

person

* significant at the 10% level

** significant at the 5% level

*E - significant at the 1% level
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Table 3.6.2 shows that some of the variables significant on the response model
are also significant to predict the outcome variable of interest. In addition, Model 5
indicates that the survey variable of interest also depends on unobserved cluster random
effects. Similar results are found for the other two survey variables of interest (results
not shown). The combination of findings from Tables 3.6.1 and 3.6.2 imply that the
unweighted estimator may be subject to some bias.

To further assess the response mechanism, the estimated interviewer random
effects from Model 5, which measure the difference between the average number of
households with at least one adult in employment reported by an interviewer and the
average number of households with at least one adult in employment in the whole
sample, are plotted against the estimated interviewer random effects from the
nonresponse Model 2 (Fig 3.6.1). This scatterplot seems to show no systematic pattern
or clear correlation between the random effects from the two models. Therefore, it
suggests that, provided the mechanism is CSNI, it would appear that a MAR
assumption is reasonable. The fact that this correlation is not evident means that the M

or RE estimators may be unbiased in this application.

Figure 3.6.1: Estimated random effects from model for survey variable against estimated
random effects from nonresponse model
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*
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Estumated interviewer random effect from Model 5

Table 3.6.3 present the estimates of the three parameters of interest (proportion

of households with at least one adult in employment, the proportion of households with
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at least one pensioner and the proportion of single households in the UK) for the three
weighting methods. The table also presents the unweighted estimates based on
respondents only and the true proportion derived for the whole sample, i.e. based on
respondents and nonrespondents to the survey. The latter is only possible because of
the availability of the Census data.

Table 3.6.3 shows that nonresponse approximately accounts for a 1.5% point
difference in the employment estimate (60.20% vs. 58.75%), about 2% point difference
in the pensioners estimate (31.07% vs. 33.03%), and a 1.7% point difference in the
single households estimate (28.43% vs. 30.16%). All weighting methods yield similar
results across different estimates. In particular, the RE method does not appear
seriously biased in this example compared to the other approaches. The results do not
indicate any consistent gains for the RE or FE approach compared to weighting using
the marginal model (i.e. ignoring clustering) in line with the theory that suggests that
under the MAR assumption there is little to be gained from the method that account for
the clustering in the data over the M approach (Skinner and D’Arrigo, 2011). Still Table
3.6.3 also does not show any disadvantages from the RE method compared to the M
method as observed in the simulation work under the MAR nonresponse mechanisms.
It should be noted, however, that the conditions here in this application are somewhat
different than those in the simulation study, for example, in this application the clusters
are of unequal large sizes.

Standard errors to the estimates are not included in Table 3.6.3 due to the fact
that the simulation work shows severe bias on the variance estimates that treat weights
as fixed, in particular for M and RE. Therefore, this application cannot assess how far

the differences might be attributable to sampling variation.

Table 3.6.3: Estimates of proportion of households with at least one adult in employment,
proportion of households with at least one pensioner and proportion of single households by
various weighting methods using data from the EFS

Estimate
Employment Pensioners Single
% % %

True value based on the whole sample 58,75 33.03 3016
(respondents and nonrespondents)

Unweighted estimator 60.20 31.07 28.43

Weighted: Response prop. (M) 58.21 32.68 30.10

Weighted: Random effects (RE) 58.43 32.61 30.03

Weighted: Fixed effects (FE) 58.63 32.54 30.11
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3.7 Conclusions

This chapter proposes different ways of constructing inverse probability weights
to estimate the finite population total under clustered nonresponse. It compares the
properties of the alternative weighted estimators for two sampling designs by a
simulation study and presents results from an empirical application using data from the
Expenditure and Food Survey 2001.

The simulation study shows that an effort to allow for clustered response via the
introduction of predicted random effects into the estimated probability of response can
actually induce negative relative bias in the inverse probability weighted estimator under
MAR, when the cluster sizes are not large. For example, a relative bias of about 2% for
the random effect estimator for small cluster sizes of between 5 and 20 is observed in
the simulation study. This bias declines to about 1% as the cluster sizes increased to 50.
Although the empirical application does not show any disadvantages from the random
effect method compared to the other methods, it does not show any advantage either.
Therefore, if MAR is plausible, it seems reasonable to employ simple response
propensity weights based upon a marginal model for response rather than weights based
on a multilevel model.

If nonresponse is CSNI but not MAR then the marginal approach may be
subject to bias, in particular higher relative biases of about 11% are observed when
allowing for high intra-cluster correlation in both the survey variable and the
nonresponse process. The proposed CML approach performs the best and removes this
bias, when the number of sampled clusters is large even if the cluster sizes are small. In
the simulation study it is also observed that the fixed effects estimator performed
similarly to the CML estimator and it may be that in practice it will often provide a
reasonable proxy to this estimator, while not requiring such strong model assumptions
nor so much computation. Regarding the use of multilevel models to construct inverse
probability weights under CSNI, the simulation results show some potential benefits of
the random effects estimator over the simple response propensity estimator based on a
marginal model, in particular for larger cluster sample sizes.

In addition to its bias correction advantage, the CML approach is not dependent

on the assumption that the u, term in (3.2.3) is Gaussian, nor that it is independent of

z,; . There are, however, potential disadvantages to the CML approach. It depends on
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the logistic form of the model in (3.2.3) and becomes increasingly computationally

intensive as the sizes of the sets B, and B, grow. In addition, as observed in the

i
simulation study, it can lead to more variable weights and have efficiency disadvantages.
Regarding efficiency, the simulation study shows that the simple variance
estimator for the conditional maximum likelihood estimate, treating weights as fixed, is
always conservative and of considerably smaller size than those for the other estimators.
The variance of the marginal and random effect estimators perform the worst. For these
cases, it would be advisable to consider a variance estimator that account for the

nonresponse adjustments.
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Chapter 4

Variance Estimation for Calibration Weighted
Estimators in the Presence of Nonresponse

4.1 Introduction

Weighting methods that make use of auxiliary information are widely used to
compensate for potential bias caused by survey nonresponse. However, a concern with
these methods is that they might result in increased variability in the weights and thereby
lower the precision of the survey estimates. Therefore, it is necessary to consider the
effects on bias and variance of the estimates resulting from using different weighting
adjustments when comparing their relative properties. This chapter focuses on a
particular type of weighting procedure called calibration. Deville et al. (1993) proposed a
class of calibration methods, called generalized raking estimation, which can be used for
estimation in surveys with auxiliary information in the form of known population totals.
The generalized raking weights have the property to reproduce the known population
totals when applied to each auxiliary variable. Therefore, a strong correlation between
the auxiliary variables and the survey variable is essential for the weights to perform
efficiently on the study variable too. The auxiliary information used for weighting may
come from one or more external sources, such as administrative data files or census data.
In some surveys there is also information at the sample level (i.e. for both respondents
and nonrespondents) on auxiliary variables. For simplicity, this chapter will assume
auxiliary information as a set of variables that have been measured on respondents to
the survey and for which information on the population totals is available.

In this chapter three forms of generalized raking estimator in the presence of
nonresponse are discussed: the generalized regression estimator (GREG), the classical
raking ratio estimator and the ‘maximum likelihood’ raking estimator (Brackstone and
Rao, 1979; Fuller, 2002). These estimators are designed to take account of differences in
the characteristics of respondents on a set of auxiliary variables with the characteristics

of the population. Deville and Sirndal (1992) and Deville et al. (1993), showed that,
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under their full response setting and framework, the GREG estimator and the classical
raking estimator have asymptotically the same properties.

Raking estimation appears to have a more well-established history of
applications in many national statistical institutes (NSls), perhaps because of its ease of
computation, involving repeated use of standard post-stratification adjustments (Kalton
and Flores-Cervantes, 2003). In some NSIs, GREG has tended to replace raking
estimation, and is now used in many surveys (Sirndal and Lundstrom, 2005). One
reason is that the GREG can be expressed in closed form and computed in one step,
whereas the computation of a raking estimator is iterative. Perhaps a more important
reason is that GREG can handle a wider class of auxiliary information, including
population totals of continuous variables, whereas raking is restricted to the use of
population counts in the categories of discrete variables. Nevertheless, raking estimation
continues to be widely used in NSIs in many countries, e.g. the USA and the UK. One
advantage is that it always produces positive weights, whereas GREG requires
modification to meet this condition. In addition, raking may reduce nonresponse bias
more than GREG under certain assumptions (Kalton and Flores-Cervantes, 2003).

The variances of weighted estimators are often estimated using linearization
methods (Demnati and Rao, 2004; Wolter, 2007), which rely on the validity of Taylor
series expansions, or replication techniques (Efron, 1981; Wolter, 2007), which treat the
sample as it if were the population and repeatedly subsample from this population to
estimate a variance. A simulation study by Stukel et al. (1996) found little difference
between two forms of linearization estimators with respect to sampling and observed
that both the linearization and the jackknife variance estimators show small
underestimation of the true variance. Stukel et al. (1996) also noted that the jackknife
approach consistently had smaller biases than the linearization one. However, Stukel et
al. (1996) simulation work was designed for the full response set-up and there are
reasons why in the presence of nonresponse different results may be expected. A
simulation study by Valliant (2004) observed negatively biased linearization variance
estimators contrary to positively bias jackknife replication variance estimators.

Conditions for unbiasedness of raking estimation methods under nonresponse
models vary between estimation methods (e.g. Kalton and Maligalig, 1991; Kalton and
Flores-Cervantes, 2003) and the choice of variance estimators may be more important in

the presence of nonresponse (e.g. Fuller, 2002, Sect.8).
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This chapter explores alternative forms of linearization variance estimators for
generalized raking estimators in the presence of unit nonresponse. It also investigates
one of the most frequently used replication methods of computing variances for
complex sample surveys called the jackknife method.

The properties of the alternative raking estimators, including bias and root mean
square error, and associated variance estimators are investigated through a simulation
study. This study is designed to mimic these properties with respect to the effects of
both sampling and nonresponse for two European surveys conducted by NSIs: the
British Labour Force Survey (LFS) and the German Survey of Income and Expenditure
(SIE). The GREG estimator is used in practice in the LFS while a version of the
‘maximum likelihood’ raking estimator is employed in the SIE.

The chapter is structured as follows. Section 4.2 defines the generalized raking
estimators. Linearization variance estimators are defined in section 4.3 and replication
variance estimators in section 4.4. Section 4.5 presents the simulation study with results

discussed in section 4.6. Some concluding remarks are given in section 4.7.

4.2 Generalized raking estimation

Let us first define the three forms of generalized raking estimator in the
presence of unit nonresponse: a) generalized regression estimator (GREG), b) classical
raking ratio estimator and ¢) ‘maximum likelihood’ raking estimator. Consider a finite
population U from which a probability sample s is drawn with a given sample design.

However, as nonresponse occurs, the response set r is obtained, where r Cs. The

objective is to estimate the population total T =" where y. is the value of a
Y i

icv Yi>
survey variable for the ith population element, with which is also associated an auxiliary

~x,x,) . The population total of x, Tg;zz X. , is

vector value X, = (z,,,- g I

supposed to be accurately known and x; is known for all units in r. Following Deville
and Sirndal (1992) and Deville et al. (1993), a generalized raking estimator for the

population total T may be written as
y

Ty = sz’yi s (4.2.1)

er
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where the calibration weight w, are as close as possible, according to a specified distance

tunction, to the znitial weights d; while satistying the calibration equation:

wx, =T,. 4.2.2)

ier
The vector T is referred to as the vector of calibration totals. A common choice of initial
weights, which is taken here, is the design weights, ie. d, = 7T;1

where m, is the

b

probability that unit ¢ is sampled.

Let G(.) be the distance function from the calibrated weight w, to the initial
weight d, , with argument w, /di . For every fixed d, >0, it is assumed that G(.)is
positive, differentiable with respect to w, , strictly convex, G 1 =G'1 =0, implying
that when w; = d, the distance between the weights is zero, and G" 1 >0, which makes
w; = d, a local minimum (Deville and Sirndal, 1992; Deville et al., 1993). The class of

generalized raking weights w, is obtained by minimising the total sample distance

D e 4G, [d), 4.2.3)

subject to the calibration equation (4.2.2). Explicitly, if & denotes a vector of Lagrange

multipliers, the expression

ZdiG(wi/di) - 7"[ w;X; — Tx] (4.2.4)

icr
is minimized with respect to the w, . Differentiating (4.2.4) with respect to w, and
equating to zero results g(w, / d)—x'A=0, where g u =dG u /du, and solving for
w, leads to the calibration weights:
w, = d,F(x, '), (4.2.5)
where F(u) =g '(u) denotes the inverse function of g v and i is the Lagrange

multiplier which solves the calibration equations:

ST F(x,'M)x =T,.
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Various choices of the distance function G(.) and associated function F(.) are
discussed by Deville and Sirndal (1992) (see also Deville et al., 1993 and Fuller, 2009,
Sect. 2.9). Three are considered in this chapter, which lead to the different generalised
raking estimators, as follows:

a) linear. G (u)=@1/2(u—17 F(u)=1+u

b) multiplicative (raking ratio): G

'y U =ulogu — ut+l, Fy, u =exp u

-1
u = 1—u

¢) maximum likelihood raking: G

'y W = u—1—log u , F

ML

Minimization of expression (4.2.4) using the linear choice of G(.), G, (u), leads
to the calibration weights:

1
w=d|l+ T, T, '[Zdlxlxl] X, (4.2.6)

icr

where T g = E d x. , and the generalized raking estimator becomes
T 11
ier

=Y wy, =T, +(T,-T,)8B, 4.2.7)

-
ier

the generalised regression estimator (GREG), where 'fy .= dy, and

icr

—1
ér = [ dixz‘ X;] Zdixi yi . (428)
ier

ier
With the second option, the multiplicative choice of G(.), G,, u , the calibrated

estimator of T is the classical raking ratio estimator (Brackstone and Rao, 1979) when T,

contains the population counts in the categories of two or more categorical auxiliary
variables. For example, in the context of the British Labour Force Survey, x; denotes

the vector of indicator variables of three categorical auxiliary variables:

— !
Xi - (61..2'7 e (SA..Z" 6.1.2" Y 6.3.2" 6..12" ’ 602) >
where ¢ . =1 if unit i is in category a of the first auxiliary variable and 0 otherwise,

6,, =1 if unit 7 is in category b of the second auxiliary variable and 0 otherwise and so

on. The population total T of this vector thus contains the population counts in each

of the (marginal) categories of each of the three auxiliary variables. The construction of
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the weights for classical raking ratio estimation has traditionally involved the use of
iterative proportional fitting (Brackstone and Rao, 1979). Ireland and Kullback (1968)
demonstrate that this method converges to a solution of the above optimisation
problem.

The third option, the function G

W U > leads to an alternative ‘maximum

likelihood’ version of raking adjustment, when X, takes the same form, denoting

indicator variables of categorical auxiliary variables. In this case, the distance (4.2.3) may
be interpreted as a quantity which is proportional to minus a log likelihood in the case
of simple random sampling with replacement (Brackstone and Rao, 1979; Fuller, 2002).
A disadvantage of using a linear form of G(.) compared to the other choices
presented in this section is that, as noted by Deville and Sirndal (1992), the calibrated

weights w, resulting from using the linear function can be positive or negative, whereas

the multiplicative and ‘maximum likelthood’ cases guarantee positive weights. Deville

and Sirndal (1992) also noted that the multiplicative choice of G(.) may result in some
extremely large weights compared to the basic sampling weights d, .
This chapter now turns to the discussion of variance estimation methods for the

generalised raking estimators, including both linearization and replication variance

estimation.

4.3 Linearization variance estimation

Survey weights that include calibration for nonresponse should not be treated as
constants when estimating the variances of survey estimates since they are sample
dependent. One possible approach to deal with this complication is to use linearization
variance estimators (Wolter, 2007). This approach is usually called the linearization
method because one first reduces the original nonlinear quantity to an approximate
linear quantity by using the linear term of the corresponding Taylor series expansion,
and then constructs the variance formula and an estimator of the variance of this
linearized quantity.

Suppose first that 6 , an estimator of a population parameter § based on a

sample s of size n, may be expressed as a linear function of p estimated totals f’l,---,Tp
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=1
The variance of § may be written as
. . P .
V)=V Z;ajTj = X;;ajal cov(T, 1)), (4.3.1)
j= j=ll=

where the covariance between Tj and Tz ) COV(TJ.,TZ) , 1s equal to variance of Tj for j=1.

The variance (4.3.1) can be easily estimated by using estimated covariance terms as
illustrated in Sirndal et al. (1992, page 172).

However, in the case of h being a nonlinear function of the p totals, it is often
impossible to obtain an exact expression for the sampling variance of the estimator

0 =n(T

1,...,Tp). Then, the Taylor linearization method may be used to obtain an
approximate expression for the variance of 6 and also an approximate estimator of this
variance. This method approximates the nonlinear estimator § by a pseudo-estimator

éo , which is a linear function of Tl,...,Tp and thus easy to manipulate. The technique for

finding 90 consists of the first-order Taylor approximation of the function h

expanding around the point (Tl,m,Tp), defined as the expectation of (Tl,m,Tp), and

neglecting the remainder term. That is

~ p A
0~0,=0+ Z:laj(fj ~T), (4.3.2)
=

When Tp"'va with high probability take values near T,-.T,, the estimator 6

performs approximately as the linear random variable éo . The numeric accuracy of the

approximation (4.3.2) will vary from one outcome s to another. Finally, the variance of
§ can be approximated by the corresponding derived quantities for the linear statistics
0y

V(0)~ V() =V . (4.3.3)

p -
g a.T.
L4757
J=1
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Now consider the application of the Taylor linearization method to the weighted

estimators TU defined in section 4.2. This weighted estimator may be expressed as a

function of estimated totals. For example, if 6 denotes the generalised regression

estimator as defined in (4.2.7), then p=4, I, =T, T, =T Ts = Zrdl.xl.x; and

yd > T Tad

T4 :Z dxy; . A nonresponse mechanism is assumed such that each unit in the

population responds, if sampled, with probability ¢,, where this probability is not
dependent on the choice of the sample and different units respond independently.
Therefore, the response mechanism is viewed as a second phase of sampling and the
variance is defined with respect to the joint distribution induced by both sampling and
nonresponse.

It is important to note that in general the class of weighted estimators presented

in section 4.2 (and in particular the classical and the “maximum likelihood” raking)
involves iterative modifications of the initial weights d; to calibrated weights w, with

the aim of satisfying the calibration equations (4.2.2). Following Binder and Théberge

(1988) and Deville et al. (1993), this section seeks to estimate the asymptotic variance of

b

the ‘converged’ estimator, ie. the estimator Ty where the w; are the ‘converged’

weights that solve the calibration equations. Some research exits on estimating the

variance of Ty after a finite number of iterations (Deville et al., 1993).
The nonlinear nature of the weighted estimator f’y in (4.2.1) arises through the
weights w, and their dependence on A via expression (4.2.5). It is assumed that in large

samples, A converges to a value L. Deville and Sirndal (1992) assumed that A =0, but

this property is based upon the assumption that the estimator of T , obtained by

applying the initial weights d, is consistent. This assumption will often be false in the
case of nonresponse and thus it is not made in this chapter.

A linearization variance estimator is obtained by approximating var(zr wy,) by
var(zrdizi) for a ‘linearized variable’ z, (Deville 1999). First, an expression for A s

obtained. A Taylor expansion of the calibrated weight w, = d.F(x;,'A) about A results in

w, ~ d,[F + £ ' (=), (4.3.4)
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where ~ denotes ‘s asymptotically equivalent to’, F, = F(x,'A), f = f(x,'A), and

f u =dF u /du is assumed to exist. Substituting in the calibration equations we obtain:

dowX, = ZdL[F; +fz‘xz"(5‘ _k)}xi =T

ier ier
and hence

1
A=A~ Zdifixl.x;

er

T - > dFx,|. (4.3.5)

er

The first matrix in the expression (4.3.5) is assumed non-singular. It may be
necessary to drop redundant variables from X, to achieve this. For example, in the
three-way case within the context of the Labour Force Survey presented in section 4.2,

each of the sums of the indicator variables § ., ¢,. and 6 . across a, band c,

b.i
respectively, equals 1 and it is natural to drop two of these indicators to avoid singularity.
The non-singular condition might also require (as in Deville and Sirndal, 1992)
modifying the estimator for samples with small probability.

Substituting in the calibrated estimator results in:

T oY d[F A+ X =Wy, = Do dFy, + BT, =S dEX|,  (43.6)
er ier icr
where
—1
B= Zdifiin; Zdifi,xy',x;; 4.3.7)
1T Eer

Note that F, = f =1 under the assumptions of Deville and Sirndal (1992) (since in this
case A =0 and it follows from the assumptions about G(.) that F(0) = f(0) =1). Hence,

under these assumptions, expression (4.3.6) corresponds to Result 5 of Deville and

Sirndal (1992), i.e. the generalized raking estimator is asymptotically equivalent to the

GREG estimator. Therefore, the asymptotic variance of Tu is the same as that of

> i, diz, where 2, is the linearized variable

2z, =F y —BX. , (4.3.8)

assuming that B converges to a finite limit vector 3.
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For the purpose of linearization variance estimation and following the derivation

1710

above, Tu may be treated as the linear estimator Zmd.é. where

2 =F(y, —BXx), (4.3.9)

K3 3

and Z; is obtained by replacing the unknown parameters in (4.3.8) by the later discussed
estimators F: and B. Then, having determined z,, the linearization variance estimator

for TU for a given sampling design is obtained by using a standard variance estimator for

that design for a linear estimator, applied to » . d.z, .
For example, in the case of a stratified multistage sampling design, assuming
“with replacement” sampling of primary sampling units (PSUs) within strata, a standard

estimator of the variance of T (e.g. Stukel et al., 1996) is given by:
Y

™

PRICHEEA (4.3.10)

J=1

q pn
V(T,) = —*

A1 -1

where 2 = Zk i 2 = Zj 2, / n, , and 2 18 the value of the variable defined in

(4.3.9) for the kth individual within the jth selected PSU in stratum h. This estimator
remains appropriate in the presence of nonresponse if individual response in each PSU

is independent of response in all other PSUs and if at least one individual is observed in

each selected PSU (Fuller et al., 1994, p.78).

In order to obtain Z,, a number of choices for FZ and B are considered in the
literature. Regarding F,, a natural choice implied by the above argument would be to

select 13; such as 1:: = F(x, 'A). This choice results in the linear estimator written as:

Yoz = dF(X My, —Bx)=>"_ w(y, —Bxz). (4.3.11)
This chapter will refer to (4.3.11) as the w_ -wesghted residnals estimator. Another simpler
choice for F, would be F, =1, which leads to the d. - weighted residnals estimator:

dz, =

er 1t icr

d(y. —Bx.). (4.3.12)

Deville and Sirndal (1992) noted that, in their classical theory with A =0, both choices

are asymptotically equivalent. However, they expressed a preference for the choice
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F = F(x,'%). This preference is also highlighted by Fuller (2002, p.15), in particular,

3

within the nonresponse setting and with A = 0 not necessarily holding as in this study.

Regarding B, it follows from the argument on the choices of F that f, in (4.3.7)
should be replaced by f, = f(x,'}), giving:

—1

() B= , as also proposed by Demnati and Rao (2004).

Zdiffzyﬁ%

Zdiﬁ,xz’x;

Other choices are
(i) B=B,,asin (4.2.8), as proposed by Deville et al. (1993).

—1

(i) B = wzx;| ,as proposed by Deville and Sirndal (1992, equation 3.4),

Z WYx;
-

T

which might be more practical to compute than I_3>r for users of survey data files which

include the w, weights but not the d; weights.

The extent to which these choices differ depends on the choice of the G(.)
function. For the linear case f(u) =dF u /du=d(1+u)/du=1 so that the estimators
in (1) and (i) are identical. In the case of «classical raking adjustment,
fu) = d[exp(u)| / du = exp(u) = F(u) so that f =F and df =dF(x'A)=w, and the
estimators (i) and (iii) are identical. For the ‘maximum likelithood raking estimator we
have F(u)=(1—u)" and f(u)=(1—u)* so that d, fz =w’ /d; and the three variance

estimators are all distinct.

4.4 Replication variance estimation

Another class of methods used for computing sampling variance estimators for
nonlinear survey statistics is subsample replication (\Wolter, 2007). These methods derive
estimates of the parameter of interest from each of several subsamples of the original
sample and then estimate the variance of the original sample estimator from the

variability between the subsample estimates. Following the notation in section 4.2, a

replication estimator of the variance of Ty may be obtained by: (1) constructing a set of
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Ateplicate weights w® for a=1, ..., A, using different replicate sampling technique
for the different replication methods; (2) computing for each set of replicate weights an

estimator 7 of T in the same way that T is computed using the weights w. ; (3)
Y Y Y L

using the A replicate estimates and the original sample estimate, compute the estimator

of the variance of T using the following equation:
Y
V(T)=> c (T T ), 4.4.1)

where ¢, is a constant which depends on the replication method.
The construction of the replicate weights w{“) involves first taking the initial

weights d; and constructing from these a set of initial replication weights d@ ,
a=1, ..., A, according to the replication method and the sampling scheme. Then,

calibration adjustments are applied to each of these A sets of initial weights separately.

One frequently used replication technique to calculate variance estimators is the
Jackknife method. In a stratified multistage cluster sampling design, this method is
applied separately in each stratum at the first stage of sampling, with one primary
sampling unit (PSU) deleted at a time. The number of replicates in this case is

A=>"n,, where n, is the number of PSUs in stratum h=1,...H and H is the

h
number of strata in the population. To apply the jackknife, let replicate a correspond to

deleting PSU j in stratum h, calculate the replicate initial weights

di if observation unit ¢ is not in stratum h.
@ _ : o unit 4 s | - :
di¥ = di/ca if observation unit 4 is in stratum h but not in PSU j. (4.4.2)
0 if observation unit 4 is in PSU j of stratum h.
where ¢, = n, — 1 /n,, for a=1, ..., A. Then use the weights dl.(‘l) to compute wi(‘l)

using generalized raking estimation as in section 4.2. Finally, calculate TU(“) and the

variance estimator of f; using (4.4.1).
Y

The jackknife method described above requires that each cluster within each

stratum is deleted in turn. This could require many recalculations for large surveys and

thus be prohibitive. An alternative is to group the n, clusters in the hth stratum into

g, >2 groups (g, <n,) and to proceed as if these were the actual clusters (see, for
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example, Valliant, 2004). Thus each group is deleted in turn and the number of

recalculations is reduced to g = g,. The only change in (4.4.1) is in ¢, as follows:

¢ = . (4.4.3)

Another subsample replication method for variance estimation is the boofstrap
method. The idea of the bootstrap method is to use the variance in repeated bootstrap
sampling to estimate the variance of the point estimator. A bootstrap sample is a simple

random sample with replacement of size n, for example, selected from the original

sample. The bootstrap estimator of the variance of TU may be obtained by (4.4.1) where
c, = 1/ A. This method is computationally more intensive than the Jackknife method

and is not further investigated in this chapter. For more details about alternative
bootstrap method and applications see Wolter (2007).
Section 4.6 reports a simulation study of the properties of group jackknife

variance estimators of the generalised regression estimator introduced in section 4.2.

4.5 Simulation studies

In order to compare the performance of the weighted estimators presented in
section 4.2 and their corresponding variance estimators, discussed in section 4.3 and 4.4,
two simulation studies are undertaken by constructing artificial populations using data
from the Great Britain Labour Force Survey (LFS) and the German Sample Survey of
Income and Expenditure (SIE). In each case, R =1,000 samples are generated from
these populations by first sampling, in a way designed to mimic as far as possible the
real sampling scheme after some simplification, and then removing nonresponding cases
according to two nonresponse models. This study shall refer to the first model as the
multiplicative nonresponse model and to the second as the additive nonresponse model.

For every one of the R samples, point estimates of each of the parameters are
calculated using generalized raking estimation and variance estimates are computed
using linearization and replication methods. The properties of the estimators are then

summarised.
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4.5.1 Study based on the British Labour Force Survey

The British LES is a quarterly survey of persons living in private households in
Britain. Its purpose is to provide information on the British labour market which can
then be used to develop, manage, evaluate and report on labour market policies. It is

carried out by the Social Survey Division of the Office for National Statistics (ONS).

Artificial population and sampling design

In the first simulation study, data from the March-May 1998 quarter of the
British LES is treated as an artificial population. The LES is a very large survey which
results in approximately 58,000 addresses in the artificial population. From this
population repeated samples were drawn in a way intended to mimic as far as possible
the design used for the LFS. Details about the design of the survey can be found in
ONS (1998, Section 3). Each sample consists of 1211 households (cluster of individuals)
selected by stratified simple random sampling with proportional allocation across 19
strata, defined by region of residence. These regions are used to mimic the effect of the
110 Interviewer Areas (IAs) which defined strata in the LES. In the LFS 4/ individuals
in a sampled household are interviewed if possible. In this simulation study, all the
respondents in a sample household are retained, except those aged under 16, who are

not relevant for the estimates of interest.

Unit nonresponse

Nonresponse probabilities are assigned to each household in the generated
artificial population. It is assumed in the simulation study that all individuals within a
household respond. Two different nonresponse models are considered to determine
whether sampled houscholds respond, a multiplicative and an additive model.
Information to assign nonresponse probabilities to each selected household of the
artificial population is obtained from a study of Foster (1998), in line with findings in
Chapter 2, and takes into account characteristics of households, such as area of
residence, age and gender of household reference person (HRP). It is assumed that
household nonresponse depends on these auxiliary variables but not on the survey
variables of interest, which is similar to assume a missing at random mechanism for

nonresponse (Little and Rubin, 1987).
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Multiplicative Nonresponse Model:

g, = 1.15 x 1.17 (if London) x 1.13 (if HRP aged under 35) x 1.10 (if HRP female)
Additive Nonresponse Model:

g,' =1.15+ 0.20 (if London) + 0.15 (if HRP aged under 35) + 0.10 (if HRP female)

where ¢, is the response probability for each household i in the population, if sampled.

The response probability is not dependent on the choice of the sample and different

households respond independently. Kott (2006) and Chang and Kott (2008) consider
estimating response probabilities using general models of the form ¢, ' = F (z,'a) (also

see Skinner and D’Arrigo, 2011, Sect. 3). The first model assumes multiplicative
nonresponse, which might be expected to lead to least bias for the raking ratio method
(see, for example, D’Arrigo and Skinner, 2010, Section 3), and the second model
assumes additive nonresponse, which might be expected to lead to least bias for the
GREG estimator (see, for example, Fuller, 2002, Section 8). Therefore, these models are

designed so that the raking and GREG estimators respectively perform well.

Weighting and Calibration
Weights are constructed for responding individuals within selected households,
with calibration totals consisting of population counts in the categories of three

categorical auxiliary variables: area of residence, age and gender, and with Horvitz-
Thompson initial weights d, , as in section 4.2. The choice of auxiliary variables was

designed to mimic those used in the LFS. However, because of small numbers of
individuals within strata due to our artificial population and samples being much smaller
than those for the original survey, we simplified the LES calibration variables to the
following three categorical factors:
- area of residence (see Appendix A3) with 23 categories;
- a cross-classification of gender by age groups (with 10 age groups consisting of
single years for those between 16 and 24 and a separate age group for those 25 or
older) with 20 categories;
- a cross-classification of region (Northern England; London and South East; The
Midlands and East Anglia; Scotland) by gender by age groups (in 15-year age
groups: 16-29, 30-44, 45-59, 60-75 and 75 or older), with 40 categories.
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Survey statistics

The parameters of interest defined for the artificial population are: the total
number of persons unemployed (TNU), the total number of persons employed (TNE)
and the total number of persons in the inactive workforce (TNI). These parameters are

computed using the artificial population of the LFS by

where Ysin denotes the vector of indicator survey variables: Yin = YujinoYajin Yajin >

where Yy = 1 if individual j in household ¢ within stratum h is unemployed and 0

otherwise, Yo, =1 if individual j in household i within stratum h is employed and 0

otherwise, and =1 if individual j in household i within stratum A is inactive and

Y3in
0 otherwise.

For each of the R simulated samples, point estimates of the TNU, TNE and
TNI are computed using classical raking estimation, “maximum likelihood” raking
estimation, and generalized regression estimation and, associated variance estimates are
calculated using the alternative linearization methods described in section 4.3 and the
jackknife replication technique illustrated in section 4.4. The properties of these

estimators, under alternative assumptions about nonresponse, are investigated following

usual practice in simulation studies. For example:
(1) The bias of the point estimator Ty with respect to the population parameter
T is estimated by:
v

. 1 E .
Bias(T)) = =>_(T, ~T)),

r=1

where T,U is the value of Ty for sample r.

r

(2) The percent relative bias of the point estimator Ty with respect to the

population parameter is estimated by:
Bias(T )
——2*100.

Y

(3) The simulation variance of the point estimator f’y taken over the R samples

is estimated by:
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where E Z

(4) The simulation variance of the bias estimator (1) from:
s (P = Vs
V[Bzas (Ty)] =%

(5) The root mean square error of the point estimator Tu is estimated by:

RMSE(T \jv + Bzas T }2 .

(6) The expectation of the variance estimator of Ty taken over the R samples

from:

AL

'ﬂ>
:ulH

where VT(TQ) is the value of the variance estimate for sample r.

(7) The bias of the variance estimator of Ty with respect to the simulation

variance (3) is estimated by
Bms[V(T )] m = [Vy,(iju) - vs} .

(8) The percent relative bias of the variance estimator of Ty with respect to the

simulation variance (3) is estimated by:

Bias[V(Ty)] 100

L

(9) The variance of the bias of the variance estimator of Ty from:
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where VIV(T) =2 3 (1) -E[V(R,) ]|

r=1

(10) The root mean square error of the variance estimator of Ty from:

RMSE|V(T, )]z\/v[V(Ty)}Jr Bias|V(T,)| 2

(11) A confidence interval for the population parameter T, for sample r at the

approximate 95% level, defined as:

T, +£1.96 /Vr(Ty).

In order to check if this confidence interval is valid, that is, if the desired 95%

normal-theory confidence level is attained, an empirical validation is carried out

by simulation. First, for each sample r =1,...,R, the estimator Ty , the variance

estimator I};(Ty) , and the confidence interval defined above are computed. Then,

for each of the R confidence intervals computed, observe whether the known

parameter T, is included in the interval or not. If K of the R intervals are
found to contain T, the empirical coverage of the confidence interval is defined
as the proportion H/R. This proportion should lie near the desired 95%

confidence level.

Some statistics related to the calibration weights, such as the number of negative

weights and number of weights more than 10 times the corresponding design weights,

resulting from using each of the function G(.) under study are also computed.

4.5.2 Study based on the German Sample Survey of Income and

Expenditure

The Sample Survey of Income and Expenditure (SIE) is a nationwide household

survey conducted every 5 years by the Federal Statistical Office. The main purpose of

the survey is to provide information about the economic and social situation of

households, in particular regarding the distribution of income and expenditure

(Quatember et al., 2002).
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Population and Sampling Design

The second simulation study is based on the 1998 SIE. It uses data from an
artificial population of 64,326 households, created to represent 20% of all households
from the Bremen region, excluding those with a monthly household net income of DM
35,000 or above (DM denotes the currency German marks). The SIE employs a quota
sampling design which is not attempted to mimic in this simulation study. Instead,
simple random sampling allowing for nonresponse is employed in this simulation.

Repeated simple random samples of 1340 households are drawn from the synthetic

population, representing a sampling fraction of about 1/ 48.

Unit nonresponse

Even though the SIE quota sampling design does not allow for nonresponse,
two different nonresponse models are considered in this study for research purposes, a
multiplicative and an additive. Information to assign nonresponse probabilities to each
selected household from the artificial population is obtained from results of studies of
similar surveys in Great Britain: the Family Expenditure Survey and the National Food
Survey (Foster, 1998). This information takes into account characteristics of households,
such as socio-economic status and type of household. For each selected sample, the

subset of responding households is determined by the following nonresponse models:

Multiplicative Model:
g,' = 1.44 X 1.09 (if HRP self-employed) X 1.03 (if HRP unemployed) X 0.97 (if HRP

employed) X 1.16 (if no children in the household)

Additive Model:
q;l = 1.44 + 0.13 (if HRP self-employed) + 0.04 (if HRP unemployed) — 0.04 (if HRP

employed) + 0.23 (if no children in the household)

Weighting and Calibration

As for the LFS study, each sampled household is assigned a weight. In the actual
SIE the weights are constructed using essentially the maximum likelihood raking
method by adjusting the sample data simultaneously to the marginal distributions of
several characteristics, such as household type, social economic status of the household

reference person, household net income class and region (Bundesland). This study tries
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to mimic this adjustment as far as possible. However, as for the LFS study, because of
the reduced scale of the created artificial population and the consequent smaller
numbers of households within strata, the SIE calibration variables are simplified to
three categorical factors as follows:
- household type with 7 categories (mother/father alone + 1 child; mother/father
alone + 2 or more children; couple with 1 child - spouse employed; couple with 1
child - spouse unemployed; couple with 2 or more children - spouse employed;
couple with 2 or more children - spouse unemployed; other);
- social status of the household reference person with 5 categories (self-employed;
civil servant or military; employee; worker; unemployed, pensioner, student or
other);
- household net income per quarter with 3 categories (0-5,000 DM; 5-7,000 DM;
7-35,000 DM).

Survey statistics
The parameters of interest are the total household net income per quarter (INC)
and the total household expenditure per quarter (EXP). These parameters are computed

from the finite artificial population by
T;/INC - ZZEU Yi and TZEXP - ZiEU %io

where y, and z, denote the value of the continuous survey variable INC and EXP for

household i, respectively.

As in the LFS study, for each of the R samples, point estimates of the above
parameters and associated variance estimates are calculated using the different methods
presented in this chapter. The properties of the estimators are then summarised in the

following section.

4.6 Results

4.6.1 Properties of point estimators

Table 4.6.1 presents the properties of the point estimators of total number of

persons unemployed in the LES study for different calibration methods and alternative
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assumptions about nonresponse. It also shows the number of negative weights and very
large weights for the different settings and across all sample units and all 1000 samples.
Numbers are rounded to the nearest one decimal. An overall observation from this table
is that the standard error remains virtually constant across alternative raking methods
for a given nonresponse model. As expected, nonresponse leads to an increase in the
standard error across all estimators (since the sample size is reduced). Regarding bias,

the table shows evidence of nonresponse bias relative to the simulation standard error

of bias (z = /az'ax/ se(bias) > 1.96), which is of a similar order for each of the raking methods.

It is not found that this bias is least when the estimator matches the nonresponse model
(.e. the GREG estimator for additive response and the raking estimator for
multiplicative response) as it might have expected. Perhaps this is because the covariates
used in the nonresponse models (e.g. the aged 35+ variable) are not all included in the
calibrating variables. Nevertheless, the nonresponse bias is small (relative bias of about
1% across weighting methods) in the sense that the root mean square error is very
similar to the standard error in each case. Under nonresponse, the GREG calibration
method generates some negative weights whereas this is avoided by the two raking
methods, as expected. A greater number of very large weights are observed, however,

for the ‘maximum likelihood’ raking estimator.

Table 4.6.1: Simulation properties of point estimators of total unemployed using data from LFS
(R=1000)

Nonresponse . Blas Percent Root Number of ~ Number of
(simulation . Standard ~ Mean .

Model/ tandard Relative Error  Squar Negative  Very Large

Point Estimator standa Bias © quare Weights! Weights!2

error) Error

Complete Response:

GREG 7.6 (14.3) 0.2 452.8 452.8 0 0

Classical Raking 8.3 (14.3) 0.2 452.8 452.9 0 0

‘ML’ Raking 9.0 (14.3) 0.2 453.3 453.4 0 1

Multiplicative nonresponse:

GREG -45.6 (15.8) -1.2 498.3 500.3 4 1

Classical Raking -42.1 (15.8) -1.1 498.8 500.6 0 2

‘ML’ Raking -39.7 (15.8) -1.0 499.4 501.0 0 7

Additive nonresponse:

GREG -37.3 (15.7) -0.9 497.4 498.8 5 1

Classical Raking -34.7 (15.7) -0.9 497.5 498.7 0

‘ML’ Raking -32.4 (15.8) -0.8 498.1 499.1 0 7

Ithe number of such weights across all sample units and all 1000 samples
2the number of weights more than 10 times the corresponding design weight
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Corresponding results for the SIE data are presented in Table 4.6.2. The pattern
of results is broadly similar, although there is now no evidence of significant
nonresponse bias (i.e. the observed bias could be explained by simulation variation). The
standard errors and root mean square errors also remain virtually constant across
weighting methods for a given nonresponse model. There are no negative weights or

very large weights observed in Table 4.6.2.

Table 4.6.2: Simulation properties of point estimators of total income using data from SIE
(R=1000)

. Root
Nontesponse Model/ . B.las Standard Mean Number.of Number of
. . (simulation Negative ~ Very Large
Point Estimator Error Square ; .
standard error) Weights!  Weights!?
Error
Complete Response:
GREG -172.2 (331.3) 10,477.3 10,478.7 0 0
Classical Raking -170.6 (331.5) 10,484.1 10,485.8 0 0
‘ML’ Raking -169.8 (331.8) 10,491.5 10,492.9 0 0
Multiplicative nonresponse:
GREG -495.7 (429.7) 13,586.8 13,595.8 0 0
Classical Raking -493.8 (429.0) 13,584.6 13,593.5 0 0
‘ML’ Raking -463.5 (429.5) 13,582.8 13,590.7 0 0
Additive nonresponse:
GREG -473.2 (430.5) 13,614.8 13,623.0 0 0
Classical Raking -469.4 (430.5) 13,612.9 13,621.0 0 0
‘ML’ Raking -439.5 (430.5) 13,613.5 13,620.6 0 0

Ithe number of such weights across all sample units and all 1000 samples
2the number of weights more than 10 times the corresponding design weight

4.6.2 Properties of variance estimators

The properties of the different linearization estimators of the variances of the
point estimators of the total unemployed from the LES are shown in the Table 4.6.3
(the ‘standard error estimate’ in the table refers to the square root of the variance

estimate). A number of observations can be made from this table as follows:

e Using calibrated weights w, to weight the residuals rather than using initial
weights d,, reduces the bias and root mean squared error of the standard error estimator.
This is observed across all alternative raking methods and nonresponse assumptions.
The bias arising from the use of d; weighted residuals in the case of nonresponse is

particularly important (as noted by Fuller, 2002) but there are also non-negligible

reductions of bias even in the complete response case.
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e The choice of weight used in the estimated regression coefficients B for the

calculation of residuals seems to have little impact. Some slight evidence in favour of

using initial weights d. to compute B when simultaneously weighting the residuals by
calibrated weights w, might be observed.

e For a given nonresponse setting and choice of weighting the residuals, there is
little difference in the results for the different choices of point estimator.

The results in Table 4.6.3 are extended in Table 4.6.4 to consider relative bias of
the standard error estimators, rather than their absolute bias, and to consider two
additional parameters: total numbers employed and inactive. From table 4.6.4, it can be
again observed that the relative bias arising from using d, weighted residuals can be
substantial in the presence of nonresponse, over 20% in several cases, and that this is
reduced using the w, weighted residuals. Again, little change is observed in the percent
relative bias of the standard error estimators when different choices of weights are used
in the calculation of B for the residuals. It is important to note that confidence interval
coverages and relative biases reported in Table 4.6.3 and 4.6.4 respectively are not
expected to be affected by the small nonresponse bias in the estimates of the totals.

Corresponding results for the SIE data when estimating total income are shown
in Table 4.6.5. Again, the pattern of results is broadly similar to that for the LES data in

Table 4.6.3. For the complete response case, the use of w, -weighted residuals rather

than d, -weighted residuals leads to modest improvement in bias and RMSE of the

standard error estimators. However, for the nonresponse cases the improvements are
considerable. Little change in the standard error estimators is observed when modifying
the choice of weight used to compute the estimated regression coefficients, observing
again slightly smaller biases when using initial weights to compute B and calibrated
weights to weight the residuals. However, the results do not suggest that one approach
leads to consistently lower absolute bias. The results in Table 4.6.5 are extended in Table
4.6.6 to consider relative bias of the standard error estimators, rather than their absolute

bias, and to consider one additional parameter: total expenditure per quarter. It is again

observed that the relative bias arising from using d, -weighted residuals can be

substantial in the presence of nonresponse, over 35% in all cases, and that this is
reduced using the w; -weighted residuals, for which the relative bias never exceeds about

3%.
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Table 4.6.3: Propetties of linearization variance estimators when estimating total unemployed

from the LFS (R = 1000)

weight Mean of .
L Bias of RMSE Coverage?
E/[(/ei%hzng w-o il d(i uf e.d Starﬁdard SE Estimator of SE  of Confidence
etho weighte fo.rB mn ot (simulation s.e.)  Estimator Interval (%)
residuals!  residuall Estimator
Complete Response:
d d 433.9 -18.8 (0.9) 334 935
d w 4343 -18.5 (0.9) 333 93.5
GREG w d 442.8 -10.0 (1.0) 31.9 93.8
w w 441.9 -10.8 (1.0) 32.0 93.7
4 d d 433.9 -18.8 (0.9) 33.4 93.5
Classical d w 434.2 -18.5 (0.9) 333 93.5
Raking w d 443.0 9.8 (1.0) 32.0 93.8
w w 442.0 -10.7 (1.0) 32.0 93.8
d d 433.9 -19.4 (0.9) 33.7 93.5
d w 4343 -19.1 (0.9) 33.6 93.5
‘ML’ d af 4354 -17.9 (0.9) 33.0 93.5
Raking w d 443.7 -9.6 (1.0) 32.5 93.7
w w 4423 -11.1 (1.0) 32.4 93.7
w af 441.6 -11.8 (1.0) 32.3 93.7
Multiplicative nonresponse:
d d 385.7 1126 (0.9) 116.0 85.8
d w 386.1 -112.1 (0.9) 115.5 85.8
GREG w d 489.5 -8.8 (1.2) 39.2 94.2
w w 487.8 -10.4 (1.2) 39.2 94.2
‘ d d 385.7 113.1 (0.9) 116.5 85.7
Classical d w 386.1 1127 (0.9) 116.1 85.7
Raking w d 490.3 -8.5 (1.2) 39.6 94.3
w w 488.4 -10.4 (1.2) 39.5 94.1
d d 385.7 113.7 (0.9) 117.1 85.4
d w 386.2 113.2 (0.9) 116.6 85.6
ML d df 387.8 1116 (0.9) 115.0 85.8
Raking w d 491.9 -7.5 (1.3) 40.4 94.2
w w 488.9 -10.5 (1.2) 39.9 94.0
w df 487.5 -11.9 (1.2) 39.8 94.0
Additive nonresponse:
d d 386.5 -110.9 (0.9) 114.4 86.0
d w 387.0 1105 (0.9) 113.9 86.0
GREG w d 489.3 -8.2 (1.2) 39.0 94.6
w w 487.6 -9.8 (1.2) 39.0 94.6
. d d 386.5 -111.0 (0.9) 114.4 85.8
Classical d w 387.0 110.6 (0.9) 114.0 85.8
Raking w d 490.1 7.4 (1.2) 39.2 94.7
w w 488.1 9.4 (1.2) 39.1 94.6
d d 386.5 1116 (0.9) 115.0 85.6
d w 387.0 1111 (0.9) 114.6 85.6
ML d df 388.6 -109.5 (0.9) 113.0 85.9
Raking w d 491.6 -6.5 (1.3) 40.0 94.7
w w 488.6 9.5 (1.2) 39.5 94.6
w daf 487.3 -10.8 (1.2) 39.4 94.6

Figures in bold indicate the best approach under each scenario

Isee text following equation (4.3.11), where choices df ,d and w correspond to B in (@), (i) and (iii) respectively

2 percentage of 95% normal-theory confidence intervals containing true value
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Table 4.6.4: Percent relative bias of linearization standard etror estimators of unemployed,

employed and inactive totals from LFS (R = 1000)

weight Percent Relative Bias of Standard Error
Weighting Method w-or d- o e.d Bstimator
We1ghted for Bin A
residuals'  residual! Unemployed Employed Inactive
Complete Response:
d d -4.2 -3.4 0.5
d w -4.1 -3.3 0.6
GREG w d -2.2 -2.2 1.9
w w -2.4 -2.3 1.7
d d -4.2 -3.3 0.7
Classical Raking d w -4.1 -3.2 0.8
w d -2.2 -2.1 2.1
w w -2.4 -2.2 1.9
d d -4.3 -3.3 0.7
d w -4.2 -3.3 0.8
‘ML’ Raking d df -4.0 3.1 1.1
w d -2.1 -2.0 23
w w -2.4 -2.2 1.9
w af -2.6 -2.3 1.8
Multiplicative nonresponse:
d d -22.6 -22.3 -18.2
d w -22.5 -22.2 -18.1
GREG w d -1.8 -3.3 1.8
w w -2.1 -3.5 1.5
d d -22.7 -30.6 -18.4
Classical Raking d w -22.6 -30.5 -18.3
w d -1.7 -13.5 1.7
w w -2.1 -13.7 13
d d -22.8 22,0 -18.4
d w -22.7 -21.9 -18.3
‘ML’ Raking d af 223 21.7 -17.9
w d -1.5 -2.7 1.9
w w -2.1 -3.1 1.3
w df -2.4 -3.3 1.1
Additive nonresponse:
d d -22.3 -21.8 -18.5
d w -22.2 -21.7 -18.4
GREG w d -1.6 -2.9 1.1
w w -2.0 -3.1 0.8
d d -22.3 -30.2 -18.0
Classical Raking d w -22.2 -30.1 -17.9
w d -1.5 -13.3 1.8
w w -1.9 -13.5 1.4
d d 224 21.6 -18.0
d w -22.3 -21.5 -17.9
‘ML’ Raking d daf 22,0 -21.3 -17.6
w d -1.3 -2.4 2.0
w w -1.9 -2.8 1.5
w af -2.2 -3.0 1.3

Figures in bold indicate the best approach under each nonresponse scenario

Isee text following equation (4.3.11), where df ,d and w correspond to B in (i), (ii) and (iii) respectively
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Table 4.6.5: Properties of linearization variance estimators when estimating total income from

the SIE (R = 1000)

ight 2
weig Mean of Bias of RMSE Coverage
. w-or d- used Standard . of
Estimator . A SE Estimator of SE
weighted  for Bin Error (simulation s.c.) Estimator Confidence
residuals!  residuall Estimator B Interval (%)
Complete Response:
d d 10,338.8 -138.5 (6.9) 259.0 93.8
d w 10,339.2 -138.2 (6.9) 258.8 93.8
GREG w d 10,377.9 -99.5 (6.9) 240.0 94.1
w w 10,376.8 -100.5 (6.9) 240.3 94.1
) d d 10,338.8 -145.3 (6.9) 262.7 93.8
Classical d w 10,339.2 144.9 (6.9) 262.5 93.8
Raking w d 10,370.0 -106.1 (6.9) 243.1 94.0
w w 10,376.9 -107.2 (6.9) 243.5 94.0
d d 10,338.8 -152.7 (6.9) 266.9 93.9
d w 10,339.2 -152.4 (6.9) 266.7 93.9
ML Raking d df 10,340.3 1513 (6.9) 266.1 94.0
w d 10,378.3 -113.2 (6.9) 246.5 94.0
w w 10,377.1 -114.4 (6.9) 247.0 94.0
w af 10,376.7 -114.8 (6.9) 247.2 94.0
Multiplicative nonresponse:
d d 8,104.7 -5,482.1 (7.4) 5,487.1 75.8
d w 8,105.5 -5,481.3 (7.4) 5,486.3 75.8
GREG w d 13,214.5 -372.3 (12.8) 549.7 94.5
w w 13,210.9 -375.9 (12.8) 551.7 94.5
) d d 8,104.7 -5,479.8 (7.4) 5,484.9 75.8
Classical d w 8,105.5 5,479.1 (7.4) 5,484.1 75.8
Raking w d 13,214.1 -370.4 (12.8) 549.4 94.5
w w 13,210.4 -374.2 (12.8) 551.5 94.5
d d 8,104.7 -5,478.1 (7.4) 5,483.1 75.8
d w 8,105.5 -5,477.3 (7.4) 5,482.3 75.8
ML’ Raking d df 8,108.1 -5,474.7 (7.4) 5,479.7 75.9
w d 13,215.2 -367.6 (12.9) 549.4 94.5
w w 13,210.6 -372.2 (12.9) 551.6 94.5
w af 13,208.9 -373.9 (12.9) 552.3 94.5
Addjtive nonresponse:
d d 8,106.3 -5,508.5 (7.4) 5,513.5 75.6
d w 8,107.1 -5,507.7 (74) 5,512.7 75.6
GREG w d 13,207.9 -407.0 (12.8) 573.8 94.3
w w 13,204.3 -410.5 (12.8) 575.9 94.3
. d d 8,106.3 -5,506.6 (7.4) 5,511.6 75.7
Classical d w 8,107.1 -5,505.9 (7.4) 5,510.9 75.7
Raking w d 13,207.7 -405.3 (12.8) 573.6 94.1
w w 13,203.9 -409.0 (12.8) 575.8 94.1
d d 8,106.3 -5,507.2 (7.4) 5,512.2 75.9
d w 8,107.1 -5,506.4 (7.4) 5,511.4 75.9
ML’ Raking d df 8,109.7 -5,503.8 (7.4) 5,508.8 75.9
w d 13,208.9 -404.6 (12.9) 574.8 94.1
w w 13,204.2 -409.2 (12.9) 577.3 94.1
w af 13,202.5 -411.0 (12.9) 578.1 94.1

Figures in bold indicate the best approach under each scenario

Isee text following equation (4.3.11), where choices df ,d and w correspond to B in (@), (i) and (iii) respectively

2 percentage of 95% normal-theory confidence intervals containing true value
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Table 4.6.6: Percent relative bias of linearization variance estimators of expenditure and income

totals from SIE (R= 1000)

Percent Relative Bias of Standard

Weighting Method w - or d-  weight uAsefd Error Estimator
We1ghted for Bin .
cesiduals residual! Expenditure Income
Complete Response:
d d 0.7 -1.3
d w 0.7 -1.3
GREG w d 1.3 -1.0
w w 1.3 -1.0
d d 0.7 -1.4
Classical Raking d w 0.7 -1.4
w d 1.2 -1.0
w w 1.2 -1.0
d d 0.6 1.5
d w 0.6 -1.5
‘ML’ Raking d af 0.6 1.4
w d 1.2 -1.1
w w 1.2 -1.1
w df 1.2 -11
Multiplicative nonresponse:
d d -38.2 -40.4
d w -38.2 -40.3
GREG w d -0.3 -2.7
w w -0.3 -2.8
d d -38.2 -40.3
Classical Raking d w -38.2 -40.3
w d -0.3 -2.7
w w -0.3 -2.8
d d -38.2 -40.3
d w -38.2 -40.3
‘ML’ Raking d daf -38.2 -40.3
w d -0.3 -2.7
w w -0.3 -2.7
w df -0.4 -2.8
Additive nonresponse:
d d -38.1 -40.5
d w -38.1 -40.5
GREG w d -0.2 -3.0
w w -0.2 -3.0
d d -38.1 -40.5
Classical Raking d w -38.1 -40.5
w d -0.2 -3.0
w w -0.2 -3.0
d d -38.2 -40.5
d w -38.2 -40.5
‘ML’ Raking d df -38.1 -40.4
w d -0.2 -3.0
w w -0.3 -3.0
w df -0.3 -3.0

Figures in bold indicate the best approach under each nonresponse scenario

!'see text following equation (4.3.11), where df ,d and w correspond to B in (i), (i) and (iii) respectively
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Table 4.6.7 presents the properties of group jackknife estimators of the variance
of the generalised regression point estimator of the total number of persons
unemployed in the LFS study for different assumptions about nonresponse (the
‘standard error estimate’ in the table refers to the square root of the variance estimate).
Since the jackknife calculations are very time-consuming, and larger biases of the
standard error estimator compared to the linearization approach are observed (see Table
4.6.3 and 4.6.4), the jackknife method is not employed in this simulation study for the
other generalised raking estimators. For the generalised regression calibration method,
two versions of the grouped jackknife variance estimators are computed with number of

groups g = 38, 76. In each case, the initial sample within each of the 19 strata is equally

divided into g/ 19 random groups and deleted one at a time to create the replications.

Table 4.6.7: Properties of alternatives jackknife variance estimators of the GREG point
estimator of the total unemployed from the LFS (R = 1000)

Mean of Bias of RMSE Coverage!

Nonresponse g Standard SE Percent of SE of
Model Error Estimator Relative Estimator Confidence
Estimator  (simulation s.e.) Bias Interval (%)

Complete 38 501.3 48.6 (4.1) 10.7 139.1 94.5
Response 76 508.8 56.0 (2.5) 12.4 97.6 95.9
Multplicative 38 569.2 71.0 (3.8) 14.2 177.8 95.1
nonresponse 76 579.2 81.0 (4.2) 16.3 154.5 95.9
Additive 38 568.8 71.4 (5.4) 14.4 184.9 94.8
nonresponse 76 575.6 78.1 (4.1) 15.7 150.8 95.8

1 percentage of 95% normal-theory confidence intervals containing true value

Table 4.6.7 shows evidence of positive bias, relative to the simulation standard
error, for all grouped jackknife estimators. Slightly larger biases are observed for the
estimators computed with more number of groups (ie. ¢=76) . However, it is
important to observe that the RMSEs of these latter estimators are always smaller than
those of the jackknife estimators computed with less number of groups. This indicates
that standard errors of grouped jackknife variance estimators computed with more
groups are smaller than those computed with fewer groups, offsetting the bias effect.

Under the complete response set-up, jackknife relative biases are always of larger

magnitude than those observed from the linearization methods. The same applies under

nonresponse for the linearization methods that use calibrated weights w, to weight the

118



residuals (see Table 4.6.4). Some reduction in absolute bias is observed when jackknife is
compared to linearization using d, weighted residuals.

Valliant (2004) compared four versions of grouped jackknife variance

estimators, with ¢ =10, 25,50,100 , by conducting a simulation study using a

poststratified population similar to the British LFS and selecting samples of size

n =100, 250, and 500 . In line with the results presented in this section, he observed

positive relative biases for all grouped jackknife variance estimates with biases ranging
from 8.4% for the jackknife estimator with least number of groups to 20.4% for the
jackknife estimator with most number of groups, for n =100. He noted that the biases
reduce for other sample sizes but the pattern of positive biases always persists.

Regarding confidence interval coverage, Table 4.6.7 shows at least 95% coverage
for both group choices and alternative nonresponse assumption. The larger
overestimation for the grouped jackknife estimator with g = 76 is accompanied by some
overcoverage by confidence intervals, even though the excess above the nominal level is
small. Valliant (2004) showed similar results for the two larger sample sizes with at least
95% coverage for all variance estimators.

The linearization estimators in this study give underestimates of variances and
confidence intervals that tend to cover at lower, if small in some cases, than nominal
level. On the other hand, the jackknife estimators tend to overestimate variances with

estimated confidence intervals slightly above the nominal level.

4.7 Conclusions

The simulation study show little difference between the bias or variance
properties of the three calibration estimators considered: the GREG estimator, the
classical raking estimator and the maximum likelihood raking estimator. Some small
differences in the distribution of extreme weights are observed. A few negative weights
are observed for the GREG estimator, whereas weights are necessarily positive for both
raking estimators. Some very large weights are observed for the maximum likelihood
raking estimator.

Amongst the linearization variance estimators, the main finding is the contrast

between the approach which weights residuals by the design weight and that which
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weights them by the calibrated weight. It is found that the latter variance estimator tends
always to have reduced bias and that this effect is very marked in the presence of
nonresponse, when the former estimator could be severely negative biased. The bias of
the latter estimator, if negative, is generally small and the coverage level of the associated
confidence intervals is generally close to the nominal coverage. Alternative ways of
weighting the observations in constructing the regression coefficients, when calculating
the residuals in the linearization variance estimator, are considered but little effect is
observed and there is no evidence that this choice is important in practice. In general,
the findings for the categorical variables in the British Labour Force Survey are
remarkably similar to the findings for the continuous variables in the German Income
and Expenditure survey.

Unlike the linearization variance estimators, the simulation presented in this
chapter shows that the grouped jackknife estimators of the variance of the generalised
regression point estimator of the total number of persons unemployed in the LFS tend
to be an overestimate. This overestimation causes some small overcoverage by
confidence intervals. Thus, the jackknife approach results in nominal coverage but at the
expense of larger overestimation. The jackknife method is much more intensive
computationally than the linearization approach, but it does not require working out a
variance expression for each particular parameter of interest, which might be a burden

in some complex multipurpose surveys.
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Chapter 5

Conclusions

This doctoral thesis focuses on understanding and dealing with unit
nonresponse in sample surveys during and post data collection. The first part of this
thesis (Chapter 2) relates to strategies that may be used prior and during data collection
to enhance response rates. The following chapters (Chapter 3 and 4) refer to post-
survey estimation methods to adjust and account for nonresponse. In this chapter the
main findings of this doctoral research are summarised and some limitations and further

work are discussed.

5.1 Summary and implications for survey practice

Chapter 2 illustrates the use of field process data or paradata, particularly
interviewer call record and interviewer observation data, to separately model the process
of establishing contact and cooperation with sample members in face-to-face surveys. It
aims to better understand the process leading to contact or cooperation rather than
focussing on predicting the final response outcome. It also introduces the reader to the
analysis of call record data in a multilevel modelling framework, motivated by a range of
both technical and substantive reasons. The analyses in this chapter use data from the
Census Link Study 2001, which provides an exceptional opportunity to analyse the
effectiveness of interviewer calling behaviours and strategies to establish contact and
obtain subsequent cooperation, controlling for household and interviewer characteristics.
The dataset combines rich paradata from six major UK interview administrated
household surveys.

Results from this chapter indicate that time-varying call record information, such
as features of the call history and of the current call, play a key role in predicting contact
and the subsequent outcome of each call. For example, the results support earlier
findings that weekday evenings and weekend daytime are, on average, the best times to

establish contact with a household. Although, without a prior appointment, households
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contacted at those times are more likely to refuse; the analysis here shows that they also
have higher chances of making an appointment which might result in future
cooperation. Of particular interest for survey agencies are interviewer strategies to
achieve contact and gaining cooperation. The contact model shows some significant
effects of such strategies, for example the probability of contact is higher at the next call
if the interviewer left a card or message at a previous call. Regarding cooperation,
characteristics of the doorstep interaction process between the interviewer and the
householder, such as how contact was established and whether the householder asked
questions or made comments, seem to be of relevance. This chapter provides
substantial evidence that interviewer observations about a household and
neighbourhood are useful for predicting the likelihood of contact and cooperation.
Some of these observations are predictive of contact and cooperation before and after
controlling for additional census information about the household. Interviewer
observations, such as the presence of dependent children, type and condition of the
house, might be regarded as proxies for census information that is usually unavailable.
Area characteristics might also be considered as proxies for household characteristics
and useful for predicting contact and cooperation. This research finds a number of
significant effects of interviewer characteristics on the process leading to contact and
cooperation. Important in explaining interviewer differences in contact rates are pay
grade, qualifications and age. The attitude of the interviewer towards refusal conversion
and the interviewer’s self-confidence play an important role in the cooperation process.
The length of interviewer experience, although not significant for achieving contact
after controlling for other variables in the model, is significantly negatively associated
with refusal at the doorstep. Some evidence for differential effects of fixed interviewer
characteristics across the three non-participating outcomes -refusals, appointments
made and other forms of postponement- is found. Unmeasured interviewer
characteristics have a significant effect on contact and cooperation. However, the
variation between interviewers in their cooperation rates is higher than the variation in
their contact rates, providing some evidence that interviewer effects are more important
for the process leading to cooperation. This might be due to the fact that this process
depends much more on interviewer skills and behaviours and the interaction between
the interviewer and the householder at the doorstep than the process leading to contact,
which is more determined by timings and household characteristics. The influence of

the interviewer random effect is the same across refusal, appointment made and other
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forms of postponement. In contrast, this research shows evidence of differential effects
of unmeasured household characteristics across the three non-participating outcomes.
Household unobservables that are positively associated with refusal are negatively
associated with appointments made and other forms of postponements.

The results in Chapter 2 have a number of potential implications for survey
practice. The type of models presented and the variables identified as important to
predict contact and cooperation may be used to inform the design of efficient and
effective calling behaviours and follow-ups as well as responsive survey designs (Groves
and Heeringa, 2006; Laflamme et al., 2008) - even in the absence of information like
here from the census. For example, an interviewer or survey agency may be able to
observe hints for a potential refusal early on, such as certain comments or questions
from a householder or an increased number of initial or intermediate non-contacts,
before a hard refusal occurs. Such hints may inform early intervention schemes that
survey agencies can employ before the end of the data collection period to increase final
response rates and to potentially reduce nonresponse bias. Survey organisations could
respond to such difficult cases by changing the contacting strategy, for example, by
offering a higher incentive or by sending a more experienced interviewer. A particular
application of such models might be within the context of longitudinal surveys where
call record data and a wide range of information on the sample member are available
from previous waves. The models may also inform improvements for interviewer
training and interviewer selection, for example, survey organisations may assess how to
improve interviewers’ training to best deal with the initial interaction with the
householder at the doorstep. The research in this chapter highlights important
advantages of gathering call record information and interviewer observations during
data collection to inform the process leading to contact and cooperation. These
variables could be wused as proxies of household characteristics if census or
administrative data are not available. This has also implications for survey agencies that
need to carefully consider which types of paradata should be recorded at each call and
how best to collect such data, including interviewer training. The significant interviewer
effects in predicting contact and cooperation imply that survey organisations may be
able to allocate certain interviewers to more difficult cases - at least within fieldwork
constrains such as travelling and costs. The models developed in this study might also
be useful to estimate response propensities to be used for adjustment and estimation at

the data analysis stage, as investigated in the following chapter.
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Chapter 3 explores alternative inverse probability weighted estimators for
clustered nonresponse when cluster membership is observed for both responding and
nonresponding units. That, for example, could be the case when the clusters are defined
by interviewer workloads as in the previous chapter. This research considers three
‘standard’ ways of constructing inverse probability weights, including the use of
multilevel models as in Chapter 2 and marginal models that ignore the clustering
structure of the data. It also proposes a new approach using conditional maximum
likelihood (CML). This chapter investigates to what extent inverse probability weights
based on multilevel models result in more efficient estimates than those obtained by
using simpler models that ignore the clustered data. A key aim is to construct weights
which exploit the auxiliary information on cluster membership and other variables to
correct for bias under cluster-specific non-ignorable (CSNI) nonresponse as proposed
by Yuan and Little (2007), not just missing at random (MAR). It also examines variance
estimators for each adjusted weighted estimator, assuming weights are treated as fixed.
The properties of the alternative weighted estimators for two sampling designs and
associated variance estimators are investigated through a simulation study. Results from
an empirical application using data from the Expenditure and Food Survey 2001 are also
presented.

The simulation study in Chapter 3 shows that under MAR nonresponse, when
the cluster sizes are not large, the use of nonresponse weights based on predicted
random effects can in fact bring negative relative bias in the inverse probability weighted
estimator. The empirical application, however, does not show any disadvantages from
the estimator based on predicted random effects compared to the others. If MAR is
plausible, particularly for small cluster sample sizes, it seems reasonable to employ in
practice simple response propensity weights based upon a marginal model for response
rather than weights based on a multilevel model. On the other hand, under a CSNI
nonresponse mechanism, not just MAR, the simulation results indicate that the marginal
approach may be subject to bias. In this case, the new proposed approach using
conditional maximum likelihood seems to perform the best and thus is is recommended.
According to the simulation findings, the fixed effects estimator performs similarly to
the CML estimator. This may indicate that in practice this estimator might often provide
a reasonable approximation to the CML estimator, while requiring less computation
time and not such strong model assumptions. Regarding the performance of the

random effect estimator under CSNI, some potential benefits of this estimator over the
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simple response propensity estimator based on a marginal model are observed, in
particular for larger cluster sample sizes.

The simple variance estimators presented in Chapter 3, treating weights as fixed,
show some large relative biases for the marginal and random effect estimators. It would
be sensible to consider variance estimators that account for the nonresponse
adjustments. Alternative variance estimation methods for a particular class of weighted
estimators in the presence of nonresponse are discussed in Chapter 4.

Chapter 4 focuses on a particular class of weighting procedure called calibration.
It reports a simulation study of the properties of three forms of generalized raking
estimators: the GREG estimator, the classical raking estimator and the maximum
likelihood raking estimator; and associated variance estimators with respect to the
effects of both sampling and nonresponse. The simulation study is designed to mimic
two major European surveys: the UK Labour Force Survey (LEFS) and the German
Sample Survey of Income and Expenditure (SIE). The research in this chapter explores
alternative forms of linearization variance estimators for generalized raking estimators in
the presence of unit nonresponse. It also investigates one of the most frequently used
replication methods, the jackknife method, of computing variances for complex sample
surveys accounting for nonresponse.

The simulation study in Chapter 4 shows little difference between the bias or
variance properties of the three calibration estimators considered. Some small
differences in the distribution of extreme weights are observed: the maximum likelihood
raking estimator has the most very large weights and the GREG estimator is the only
one with a few negative weights. The main finding regarding the linearization variance
estimators is the difference between the approach that weights the residuals by the
design weight and the approach that weights them by the calibrated weight. The latter
variance estimator tends to have smaller negative bias and this effect is very marked in
the presence of nonresponse, when the estimator that weights the residuals by the
design weight could be severely negative biased. Alternative ways of weighting the
observations in constructing the regression coefficients, when calculating the residuals in
the linearization vatiance estimator, are considered but little effect is observed and there
is no evidence that this choice is important in practice. Regarding jackknife variance
estimation, the simulation shows that the grouped jackknife estimators tend to be an
overestimate. This overestimation causes some small overcoverage of confidence

intervals.
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5.2 Limitations and further work

A potential limitation of the study presented in Chapter 2 is that the available
data are based on a non-random allocation of calling times to households. That is, the
data are not obtained via a controlled experiment but reflect observational data. The
models attempt to control for important household and interviewer characteristics likely
to be associated with the interviewer decision on when to call. Nonetheless, as it is
possible that the calling time may depend on unmeasured household and interviewer
characteristics, the effects of calling times should be interpreted with caution and
statements about possible casual effects should be limited. Another possible limitation
of the data is that some information on specific interviewing strategies only reflects
what an interviewer does in general (self-reported) and is not recorded at the call level
(direct observation). For example, the variable indicating whether it is the interviewer’s
general practice to leave a card or message behind has no significant effect on contact;
however, the time-varying covariate capturing the same information for each call is
found significant. As suggested by Groves and Couper (1998), it may be preferable to
ask interviewers to record their strategy for each call or household. More information at
the call level may therefore be necessary to identify general trends on interviewer
tailoring abilities.

The following are a number of specific recommendations for future research on
paradata and nonresponse. The positive effect of the number of intermediate
noncontact calls on refusal, discussed in Section 2.4.3, might provide some evidence to
support the hypothesis that a noncontact call could in fact be a hidden evasion or
refusal (Groves and Couper, 1998; Stoop, 2005). The lack of a correlation between the
noncontact and refusal processes identified in eatlier research (Lynn et al. 2002;
Nicoletti and Perachi, 2005; Steele and Durrant, 2011) has so far not provided much
support for this hypothesis. Further research might be needed to investigate this
possible phenomenon, for example, including the additional outcome of a noncontact at
a call in the modelling.

It may be argued that certain interviewers are better at gaining cooperation with
harder cases. For example, more experienced interviewers may be more successful in
dealing with householders that make negative comments or have questions. Effects of

this type could help to inform the allocation of certain interviewers to potentially more
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difficult households. Although the first part of this chapter explores interaction effects
between interviewer characteristics and type of household in the context of contact, the
section on the process leading to cooperation does not investigate such effects. Further
work is needed to examine the hypothesis that some interviewers might be more
successful in dealing with more difficult cases.

The overall aim of Chapter 2 is to contribute to a better understanding of the
processes leading to contact and cooperation and the influence of factors that are
associated with these processes. The results might inform strategies prior and during
data collection to enhance response rates and to potentially reduce nonresponse bias.
However, this research has not specifically investigated the relationship between
nonresponse rates and nonresponse bias, which occurs when respondents differ from
the nonrespondents with respect to the characteristics to be investigated. Further efforts
are needed to investigate the use of paradata to reduce potential sources of nonresponse
bias during the data collection process and to inform responsive survey designs with the
aim of reducing such bias. Also, the potential uses of paradata in post-survey
adjustments needs to be investigated further.

It is important to note that paradata can be subject to measurement errors and
missing items and further research is needed to investigate the extent and potential
sources of such error. Careful considerations need to be given on how to improve the
quality of paradata as inaccurate information is likely to affect the resulting estimates
and conclusions drawn from the application of such data.

Moving to Chapter 3, in line with the theory (Skinner and D’Arrigo, 2011) the
empirical illustration suggests that under the missing at random assumption there is little
to be gained from the method that account for the clustering in the data over the
marginal approach. To gain further experience with these methods, further empirical
studies could be conducted under the CSNI mechanism, not just MAR.

The conditional maximum likelthood approach shows a significant bias
correction advantage under CSNI; however, it depends on the logistic form of the
model in (3.2.3) and becomes increasingly computationally intensive as the sizes of the
clusters grow. In addition, as observed in the simulation study, it can lead to more
variable weights and can have efficiency disadvantages. A simpler modification of this
approach would be to use what Little (1986) called response propensity stratification,
forming classes by grouping values of the estimated CML weights and then replacing

this weight by the inverse observed response rate in the group. This approach may be
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less sensitive to the logistic link function assumption and may help smooth large values
of estimated CML weights.

Chapter 3 presents an approximation of the required variance estimators treating
the adjusted weights as fixed. Skinner and D’Arrigo (2011) outlined a more precise
variance linearization approach that allows for variability on the estimated weights for
the CML case. Further work might be needed to extend this approach to consider
variance estimation that accounts for weighting adjustments for the other inverse
probability weighted estimators presented in this chapter.

Finally, the Jackknife variance estimation methods presented in Chapter 4
require the calibration adjustments to be applied to each set of weights. For the classical
raking ratio estimator and the ‘maximum likelihood’ raking estimator, this requires, in
principle, iterating the raking method until convergence in each case. This imposes a
high computational burden and results in the exclusion from this chapter of a jackknife
variance estimator for these raking estimates. An alternative approach could be to
reduce the number of iterations of the raking method, in particular by using a one-step
jackknife (Shao and Tu, 1995, p.191). One version of the one-step jackknife, adopted by
Canty and Davison (1999), is simply to stop after ‘one step’ of the raking adjustment to
the initial replication weights, rather than continuing to convergence. This one step
might consist of one step of Newton’s method (Deville et al., 1993). Canty and Davison
(1999) compared the performance of their one-step jackknife method with the jackknife
method involving five iterations. They found that the performance of the variance
estimator is actually worse for five iterations and concluded that “overall, the best
jackknife strategy appears to be to use one iteration” (page 387). Alternatively, the one
step of the raking adjustment could be applied to a set of calibrated weights formed by
replacing the initial weights in (4.4.2) by the raked weights. These approaches should be
asymptotically equivalent (Shao and Tu, 1995) but their finite sample properties require
further study. Either of these one-step methods still requires the inversion of a matrix in
the one step of Newton’s method for each replicate and this could still be
computationally heavy. This repeated inversion of a matrix could be avoided by use of
the estimation function jackknife, studied by Rao and Tausi (2003). More research is

needed to investigate alternative jackknife variance estimation methods.
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The Interviewer Observation Form is a double-sided A5 booklet. Only the key pages
are reproduced here; the pages for recording calls 02 onwards are broadly the same as

the ones for recording call 01.

A1l - Interviewer Observation Form
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A2 - R code to compute weighted estimates of totals for the
M, FE and RE weighting methods and CNI1 mechanism.

# This script run simulation study for population of 200 clusters of 10 units each, where 50 clusters are
selected and all elements within clusters are sampled.

# Population 3: delta=5 gammal=0 gamma0=1
# Overall response rate 70%.

library(VGAM)
library(MASS)

pop <- read.table("C:\\...\\population3.dat", header = TRUE)

M<-200 # number of clusters in the population
Ni<-rep(10,200) # cluster sizes

N<-sum(Ni) # population size

w.parameter<-1 # standard deviation w2=1
w2.parameter<-1 # w2=1

thau.parameter<-1 # standard deviation thau2=1

m<-50 # PSU sample size (clusters)

n<-10 # SSU sample size (households)
r<-1000

true.ypop.Total<-sum(pop$yij)

yPSW.Point.Est. Total.logit<-array(rep(0,r),dim=c(1,1,r))
yFIXED.Point.Est. Total logit<-array(rep(0,r),dim=c(1,1,r))
yRMC1.Point.Est. Total<-array(rep(0,r),dim=c(1,1,r))
Tyreg. PSW<-array(rep(0,r),dim=c(1,1,r))

Tyreg. FIXED <-array(rep(0,r),dim=c(1,1,r))

Tyreg. RMC1<-array(rep(0,r),dim=c(1,1,r))
overall.response<-array(rep(0,r),dim=c(1,1,1))
inclusion.probi<-m/M # constant inclusion prob within clusters
inc.prob.ij<-rep(inclusion.probi,N)
pop<-cbind(pop,inc.prob.ij)

# SIMULATION LOOP

set.seed(38)

seeds.in.r <- sample(c(0:2023), size=t, replace=F)
for (jin 1:1){

cat(date(),"statting simulation loop pop1, t=",j,"\n")
set.seed(seeds.in.r[j])

# DRAW THE SAMPLE

# Sample m=50 PSU from population

PSU.id<-sample(1:M, m, F) # select 50 PSU (clusters)

PSU.id<-sort(PSU.id)

# Select all elements from each PSU
z<-0

while(z<20) {

sample.n<-NA # initialize sample matrix
for (h in PSU.id) {
sample<-pop[pop$i==h,]
sample.n<-rbind(sample.n,sample)

}

sample.n<-sample.n[-c(1),]
sample.size<-dim(sample.n)[1] # total sample size
sample.n$uij<-runif(sample.size,0,1)

for (k in 1:sample.size){
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if(sample.n$uij[k] <=sample.n$Prij[k]) sample.n$rij[k]=1
if(sample.n$uij[k]>sample.n$Prij[k]) sample.n$rij[k]=0

sample.r<-sample.n[sample.n$rij==1,] # delete non-respondents
sample.size.r<-dim(sample.r)[1] # sample size respondents
ri<-NA

yi<-NA

for(k in PSU.id){

riloop<-length(sample.n[sample.n$i==k & sample.n$rij==1,1])
yl.mean<-mean(sample.n[sample.n$i==k & sample.n$rij==1,6])
ri<-rbind(ri,ri.loop)
yi<-rbind(yi,yi.mean)
}

ri<-ri[-c(1),]

yi<-yi[-c(1),]

if (length(yi[lis.nan(yi)])==m) { z <- 20 } else { z <- z+1 }

sample.t$response.ratei<-rep(ti/n,ti)
sample.r$wij<-(sample.r$inc.prob.ij*sample.r§response.ratei)~(-1)
overall.response(j]<-sample.size.r/ (m*n)

# M estimator (using the link 'logit’)

Propensity.model.logit<-glm(tij ~ x1ij,family = binomial(link="logit"), data = sample.n)

phiij.logit<-

exp(coef(Propensity.model.logit)[1]+coef(Propensity.model.logit) [2]*sample.t$x1ij)) / (1 +(exp(coef(Propen
sity.model.logit)[1]+coef(Propensity.model.logit)[2]*sample.r$x1ij)))
weight.ij.logit<-(inclusion.probi*phi.ij.logit)~(-1)

yPSW.Point.Est. Total.logit[j] <-sum(weight.ij.logit*sample.r$yij)

lambdal<-(sum((sample.r$inc.prob.ij*phi.ij.logit) " (-1)*t(sample.r$x1ij)*sample.r$x1ij) "~ (-
1))*(sum((sample.r§inc.prob.ij*phi.ij.logit)~(-1)*t(sample.r$x1ij)*sample.r$yij))
Txs<-sum(((sample.n$inc.prob.ij)*(-1)) *sample.n$x1ij)

Tx1<-sum(((sample.r§inc.prob.ij*phi.ij.logit) " (-1))*sample.r§x1ij)

Tyreg. PSW[j]<-yPSW.Point.Est. Total.logit[j] +((Txs-Tx1)*lambdal) # GREG using M weights

# FE estimator (using the link 'logit")
sample.n$uj<-as.factor(sample.n$i)
sample.r$uj<-as.factor(sample.r$i)

Fixed.model.logit<-glm(tij ~ x1ij + uj, family = binomial(link="logit"), data = sample.n)

uj.logit<-
c(0,coef(Fixed.model.logit)[3],coef(Fixed.model.logit)[4],coef(Fixed.model.logit)[5],coef(Fixed.model.logit)
[6],coef(Fixed.model.logit)[7],coef(Fixed.model.logit) [8] ,coef(Fixed.model.logit) [9] ,coef(Fixed.model.logit)
[10],coef(Fixed.model.logit)[11],coef(Fixed.model.logit) [12],coef(Fixed.model.logit) [13],coef(Fixed.model.l
ogit)[14],coef(Fixed.model.logit) [15],coef(Fixed.model.logit)[16],coef(Fixed.model.logit)[17],coef(Fixed.m
odel.logit)[18],coef(Fixed.model.logit)[19],coef(Fixed.model.logit) [20] ,coef(Fixed.model.logit) [21],coef(Fix
ed.model.logit)[22],coef(Fixed.model.logit)[23],coef(Fixed.model.logit)[24] ,coef(Fixed.model.logit)[25] ,coe
f(Fixed.model.logit)[26],coef(Fixed.model.logit)[27] ,coef(Fixed.model.logit) [28] ,coef(Fixed.model.logit) [29
],coef(Fixed.model.logit)[30],coef(Fixed.model.logit)[31],coef(Fixed.model.logit)[32],coef(Fixed.model.logi
t)[33],coef(Fixed.model.logit) [34],coef(Fixed.model.logit) [35],coef(Fixed.model.logit) [36] ,coef(Fixed.mode
Llogit)[37],coef(Fixed.model.logit)[38],coef(Fixed.model.logit) [39] ,coef(Fixed.model.logit) [40],coef(Fixed.
model.logit)[41],coef(Fixed.model.logit)[42],coef(Fixed.model.logit)[43],coef(Fixed.model.logit) [44] ,coef(I’
ixed.model.logit)[45],coef(Fixed.model.logit)[46],coef(Fixed.model.logit)[47] ,coef(Fixed.model.logit)[48]
ocf(Fixed.model.logit)[49],coef(Fixed.model.logit) [50] ,coef(Fixed.model.logit) [51])

uij.logit<-rep(uj.logit,ri) # create fixed effects for each respondent

f.phi.ij.logit<-

(exp(coef(Fixed.model.logit)[1] +coef(Fixed.model logit) [2] *sample.t$x 1ij+u.ij.logit)) / (1 +(exp(coef(Fixed.
model.logit)[1]+coef(Fixed.model.logit)[2]*sample.r$x1ij+u.ij.logit)))
f.weight.ij.logit<-(inclusion.probi*f.phi.ij.logit)"(-1)
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yFIXED.Point.Est. Total logit[j] <-sum(f.weight.ij.logit*sample.r§yij)

lambda2<-(sum((sample.r$inc.prob.ij*f.phi.ij.logit)~(-1)*t(sample.r$x1ij) *sample.r$x 1ij) (-
1))*(sum((sample.r§inc.prob.ij*f.phi.ij.logit) ~(-1)*t(sample.r$x 1ij)*sample.t$yij))
Tx2<-sum(((sample.r$inc.prob.ij*f.phi.ij.logit)~(-1))*sample.r$x1ij)

Tyreg. FIXEDIj]<-yFIXED.Point.Est. Total.logit[j] + ((Txs-Tx2)*lambda2) # GREG using FE
weights

# RE estimator

Response.model. RMC1<-glmmPQL(tij ~ x1ij, random = ~1|i, family = binomial(link="logit"), data =
sample.n)

ranef.ij<-rep(ranef(Response.model. RMC1,drop = TRUE)[[1]],xi) # create random effects for each
respondent

phi.ij RMC1<-

(exp(fixef(Response.model RMC1)[1]+fixef(Response.model RMC1) [2]*sample.t$x1ij+ranef.ij)) / (1+ (exp(
fixef(Response.model. RMC1)[1]+fixef(Response.model. RMC1) [2]*sample.r§x1ij+ranef.ij)))

weight.ij. RMC1 <-(inclusion.probi*phi.ij RMC1)"(-1)

yRMC1.Point.Est. Total[j] <-sum(weight.ij RMC1*sample.r$yij)

lambda3<-(sum((sample.r$inc.prob.ij*phi.ij RMC1)" (- 1) *t(sample.r$x1ij) *sample.r$x1ij) " (-
1))*(sum((sample.r§inc.prob.ij*phi.if. RMC1)"(-1)*t(sample.r$x 1ij) *sample.r$yij))
Tx3<-sum(((sample.r$inc.prob.ij*phi.if. RMC1)"(-1))*sample.r$x1ij)

Tyreg. RMC1[j]<-yRMC1.Point.Est.Total[j]+((Txs-Tx3)*lambda3) # GREG using RE weights

A3 - Area of residence

Area Counties
1 Cleveland, Cumbria and Durham
2 Northumberland, Tyne & Wear and Humberside
3 North Yorkshire, West Yorkshire and South Yorkshire
4 Derbyshire, Leicestershire and Nottinghamshire
5 Lincolnshire, Northamptonshire and Cambridgeshire
6 Norfolk and Suffolk
7 Bedfordshire, Hertfordshire and Essex
8 Inner London and Outer London
9 East Sussex, West Sussex, Kent and Surrey
10 Hampshire, Isle of Wight, Dorset and Wiltshire
11 Berkshire, Buckinghamshire and Oxfordshire
12 Avon, Gloucestershite and Somerset
13 Cornwall and Devon
14 Hereford & Worcester, Shropshire and Staffordshire
15 Warwickshire and West Midlands
16 Cheshire and Merseyside
17 Greater Manchester and Lancashire
18 Clwyd, Dyfed, Gwent and Gwynedd
19 Mid Glamorgan, South Glamorgan, West Glamorgan and Powys
20 Border, central and Dumfries & Galloway
21 Fife and Grampian
22 Highland, Tayside and Northern & Western Isles
23 Lothian and Strathclyde
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A4 - R code to compute calibrated weights using linear
function

# FUNCTION CALIBRATION
# This function compute the calibration weights according to Deville and Sarndal (1992) method for
different distance functions.

Var.Margin.1 <- Sample$STR1
Var.Margin.2 <- Sample$STR2
Var.Margin.3 <- Sample$STR3

# FIND THE LABEL USED FOR THE FIRST MARGIN
Table <- table(Var.Margin.1)

Modalities.Margin.1 <- dimnames(Table)[[1]]
mode(Modalities.Margin.1) <- "numeric"
NB.Modalities.Margin.1 <- length(Modalities.Margin.1)

# FIND THE LABEL USED FOR THE SECOND MARGIN
Table <- table(Var.Margin.2)

Modalities.Margin.2 <- dimnames(Table)[[1]]
mode(Modalities.Margin.2) <- "numeric"
NB.Modalities.Margin.2 <- length(Modalities.Margin.2)

# FIND THE LABEL USED FOR THE THIRD MARGIN
Table <- table(Var.Margin.3)

Modalities.Margin.3 <- dimnames(Table)[[1]]
mode(Modalities.Margin.3) <- "numeric"
NB.Modalities.Margin.3 <- length(Modalities.Margin.3)

# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE FIRST MARGIN
Mat.Margin.1 <- matrix(rep(0,times=NB.Modalities.Margin.1*Sample.Size),ncol=NB.Modalities.Margin.1,
nrow=Sample.Size)
for(j in (1:NB.Modalities.Margin.1))
i
Modalities <- Modalities.Margin.1[j]
Mat.Margin.1[,j] <- as.numeric(Var.Margin.1 == Modalities)

}

# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE SECOND MARGIN
Mat.Margin.2 <- matrix(rep(0,times=NB.Modalities.Margin.2*Sample.Size),ncol=NB.Modalities. Margin.2,
nrow=Sample.Size)

for(j in (1:NB.Modalities.Margin.2))

{
Modalities <- Modalities.Margin.2[j]

Mat.Margin.2[,j] <- as.numeric(Var.Margin.2 == Modalities)

# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE THIRD MARGIN
Mat.Margin.3 <- matrix(rep(0,times=NB.Modalities.Margin.3*Sample.Size),ncol=NB.Modalities.Margin.3,
nrow=Sample.Size)

for(j in (1:NB.Modalities.Margin.3))

{
Modalities <- Modalities.Margin.3[j]
Mat.Margin.3[,j] <- as.numeric(Var.Margin.3 == Modalities)

Calibration.Matrix.X <- cbind(Mat.Margin.1,Mat.Margin.2,Mat.Margin.3) # Sample value of the
calibration variables

Tot <- ¢(3372,4568,8031,5611,3722,2943,5956,11712,7420,6166,3960,3905,2814,4406,6030,4411,
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7314,2927,2710,1118,1841,1334,6291,930,874,820,809,724,711,710,664,720,44624,869,849,828,773,696,
689,805,744,816,49907,2994,3678,3297,2460,719,3359,4775,3744,2729,923,2301,3005,2781,2075,731,2605,
3337,2971,2307,795,3117,4011,3363,2806,1251,3651,5022,4025,2956,1426,2509,3186,2826,2251,1047,272
9,3668,3155,2706,1271) # Vector of known population margins

# FIND THE LABEL USED FOR THE SURVEY VARIABLE
Table <- table(Sample}EMP)

Modalities. EMP <- dimnames(Table)[[1]]

mode(Modalities. EMP) <- "numeric"

NB.Modalities. EMP <- length(Modalities. EMP)

# CREATE THE MATRIX OF AUXILIARY VARIABLES FOR THE SURVEY VARIABLE
Mat.EMP <-

matrix(rep(0,times=NB.Modalities. EMP*Sample.Size),ncol=NB.Modalities. EMP ,nrow=Sample.Size)
for(j in (1:NB.Modalities. EMP))

Modalities <- Modalities. EMPY[j]
Mat. EMPJ,j] <- as.numeric(Sample} EMP == Modalities)

"CALIBRATION"<-
function(Distance.Function.Number, Mat.X.s, Pop.Total. X, Vect.Pis, L, U)
{
Sample.Size <- length(Vect.Pi.s)
Design.Weights <- 1/Vect.Pis
f <- rep(1, times = Sample.Size)
Mat.X.s <- as.matrix(Mat.X.s)
Pop.Total. X <- as.vector(Pop.Total.X)
if(Distance.Function Number == 1) {
Calibration.Weights.s <- CalibDeville.f(F1.f, Flder.f,
Mat.X.s, Pop.Total. X, Design.Weights, f)
}
if(Distance.Function.Number == 2) {
Calibration.Weights.s <- CalibDeville.f(F2.f, F2der.f,
Mat.X.s, Pop.Total. X, Design.Weights, f)
}
if(Distance.Function Number == 4) {
Calibration.Weights.s <- CalibDeville.f(F4.f, F4der.f,
Mat.X.s, Pop.Total. X, Design.Weights, f)

GINVERSE.T.Mat.X.s.Diag.C.s <- GINVERSE(T.Mat.X.s.Diag.C.s %*%
Mat.X.s)
T.Pop.Total. X.Minus.Est.Total. X <- t(Pop.Total. X - Est.Total.X)
Calibration.Weights.s <- T.Pop.Total. X.Minus.Est. Total. X %*%
GINVERSE.T.Mat.X.s.Diag.C.s %*% T.Mat.X.s.Diag.C.s
Calibration.Weights.s <- Calibration.Weights.s * Vect.Pi.s
Calibration.Weights.s <- T.Vect.1.s + Calibration.Weights.s
Calibration.Weights.s <- as.vector(Calibration.Weights.s)
}
# OUTPUT
Calibration.Weights.s

"CalibDeville.f"<-

function(F.func, Fder.func, X, Tx, d, f, limit = 10, eps = 1e-005, ets =
1e-005)

{

# Computes weights using several alternative distance funtions

# proposed by Deville & Sirndal(1992).

# Input parameters:

# F.func - function defining calibration distance from Deville & Sarndal;
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# Fder.func - gradient of function defining calibration distance;

# X - sample data matrix for auxiliary (x) vatiables to be used for calibration;
# Tx - vector of population totals for calibration;

# d - vector of design weights for each sample unit;

# f - vector for scale factors; currently used only for vector of 1s;

# limit - maximum number of iterations to perform if convergence not achieved.
# Output produced:
# vector of calibrated weights;
# Residual function that defines nonlinear system to be solved to obtain lambda:
residuos <- function(lamb, F.func, X, Tx, d, f)
{
# Function for computing residuals of linear model given X
# Converts data into proper object classes
lamb <- matrix(lamb, ncol = 1)
d <- matrix(d, ncol = 1)
f <- matrix(f, ncol = 1)
Tx <- matrix(Tx, ncol = 1) # Compute required residuals
u <- X %*% lamb
# Compute estimated total of x variables using HT estimator
Txpi <- t(X) %*% d
t(X) %*% ((F.func(u * f) - 1) * d) - (Tx - Txpi)

# Function to compute Jacobian of specified distance function
# needed for solving for lambda
jacobiano <- function(lamb, Fder.func, X, Tx, d, f)
{
# Converts data into proper object classes
lamb <- matrix(lamb, ncol = 1)
d <- matrix(d, ncol = 1)
f <- matrix(f, ncol = 1)
Tx <- matrix(Tx, ncol = 1)
u <- X %*% lamb
t(X) %*% diag(as.vector(d * (Fder.func(f * u) * f)), nrow =
length(d)) %*% X
}
# Compute estimated total of x variables using HT estimator
Txpi <- t(X) %*% d # Initializing lambda
lamb <- GINVERSE(t(X) %*% diag(d) %*% X) %*% (Tx - Txpi)
u <- X %*% lamb# Calibration weights
h <- max(u)
if (h>0.99) {
position <- cbind(u,c(1:length(u)))
x.value <- X[position[u==h,2],]
tita <- 0.99/(x.value %*% lamb)
lamb <- c(tita) * lamb
}
# Initializing values required for solution
Func <- residuos(lamb, F.func, X, Tx, d, f)
Jota <- jacobiano(lamb, Fder.func, X, Tx, d, f)
delta <- GINVERSE(Jota) %*% ( - Func)
it<-1 # Computes lambda by Newton's method
while(((sum(delta™2) >= eps | | sum(abs(Func)) >= ets) && (it <-it + 1) <
limit)) {
Func <- residuos(lamb, F.func, X, Tx, d, f)
Jota <- jacobiano(lamb, Fder.func, X, Tx, d, f)
delta <- GINVERSE(Jota) %*% ( - Func)
lamb <- lamb + delta
u <- X %*% lamb# Calibration weights
h <- max(u)
if (h>0.99) {
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lamb.before <- lamb - delta

position <- cbind(u,c(1:length(u)))

x.value <- X[position[u==h,2],]

tita <- (0.99 - x.value %*% lamb.before)/ (x.value%*%(lamb - lamb.before))
lamb <- lamb.before + c(tita) * (lamb - lamb.before)

}

u <- X %*% lamb# Calibration weights
w.v <- as.vector(d * F.func(f * u))

# Defines output to be provided by function
return(w.v)

}

"F1.f'<- function(u) {1 + u }

"F2.£"<- function(u) {exp(u)}

"F4.f'<- function(u) {(1 - w"(-1)}

"Flder.f"<- function(u) {rep(1, length(u))}

"F2der.f"<- function(u) {exp(u)}

"F4der.f"<- functon(u) {(1 - w"*(-2)}

"GINVERSE"<- function(x, tol = sqrt(.Machine$double.eps)) {
if(length(dim(x)) > 2)
stop("x must be a matrix or vector")
svdX <- svd(x)
if(is.complex(x))
svdX$u <- Conj(svdX$u)
NotZero <- svdX$d > tol * svdX$d[1]
ans <- if(all(NotZero)) svdX$v %*% ((1/svdX8d) * t(svdX$u)) else if(!
any(NotZero)) {
if(is.matrix(x))
array(0, dim(x)[2:1])
else matrix(0, 1, length(x))

}

else svdX$v[, NotZero] %*% ((1/svdX$d[NotZero]) * t(svdX$u[, NotZero]))
attr(ans, "rank") <- sum(NotZero)

ans

}

Weights.Cal <- CALIBRATTION(1, Calibration.Matrix.X, Tot, Sample$Pi, 0.62, 1.85) # Vector of
calibrated weights using the linear function

A5 - R code to compute weighted residuals

# FUNCTION CALIBRATION.RESIDUALS

# * The "Weights.of.Residuals" and the "Weights.for.Coef.Regression"

# can be (i) the initial weights of function "CALIBRATION.WEIGHTS"
# or (i) the final weights of function "CALIBRATION.WEIGHTS".

# * The weights for "Weights.for.Coef.Regression" must be positive.

CALIBRATION.RESIDUALS <-
function(Vect.Y,Weights.of Residuals,Weights.for.Coef.Regression,Mat.Cal.Var)

{
# PUT THE DATA IN A SINGLE DATA FRAME
Data <- data.frame(cbind(Vect.Y,Mat.Cal.Var))

# CREATE THE NAME AND THE FORMULA FOR THE WEIGHTED LEAST SQUARE FIT
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NB.Cal.Var <- as.numeric(dim(Mat.Cal.Var)[2])
List.Name.Vatiables <- c¢("Y")
Formula <-"Y ~ -1"

for(i in (1:(NB.Cal.Var)))
{

Name.New.Variable <- paste("X",i,sep="")

Formula <- paste(Formula," + ",Name.New.Variable,sep="")

List. Name.Variables <- c(List.Name.Variables,Name.New.Variable)
}

Formula <- as.formula(Formula)

List.Blank <- dimnames(Data)[[1]]

Names.List <- list(List.Blank,List. Name.Variables)
dimnames(Data) <- Names.List

# THE WEIGHTED LEAST SQUARE FIT

Model.Fit <- Im(formula=Formula,data=Data,weights=Weights.for.Coef.Regression)

One option for singular is put: singular.ok=T

# THE WEIGHTED RESIDUALS

Residuals <- residuals(Model.Fit) * Weights.of.Residuals
# OUTPUT

Residuals
}
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