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Abstract

There are often reasons to suppose that there is dependence between
the time to event and time to censoring, or informative censoring, for sur-
vival data, particularly when considering medical data. This is because
the decision to treat or not is often made according to prognosis, usually
with the most ill patients being prioritised. Due to identifiability issues,
sensitivity analyses are often used to assess whether non-informative cen-
soring can lead to misleading results. In this paper, a sensitivity analy-
sis method for piecewise exponential survival models is presented. This
method assesses the sensitivity of the results of standard survival models
to small amounts of dependence between the time to failure and time to
censoring variables. It uses the same assumption about the dependence
between the time to failure and time to censoring as previous sensitiv-
ity analyses for both standard parametric survival models and the Cox
model. However, the method presented in this paper allows the use of
more flexible models for the marginal distributions whilst remaining com-
putationally simple. A simulation study is used to assess the accuracy of
the sensitivity analysis method and identify the situations in which it is
suitable to use this method. The study found that the sensitivity analy-
sis performs well in many situations, but not when the data has a high
proportion of censoring.

1 Introduction

A feature of survival data is that the end point of interest may not be observed
for some individuals, leading to censored observations. In general, standard
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methods assume that the time to failure and time to censoring variables are
independent and therefore any censoring is non-informative. However there
are many cases where this assumption may not be valid. In this paper, the
survival of patients on the waiting list for a liver transplant will be considered,
where those who are removed for transplantation are censored. Generally, these
are the most ill patients on the list so it is unlikely that time to death and
time to transplantation are independent. If there is dependence between the
time to failure and time to censoring variables, then the censoring is said to
be informative (Collett 2003). In particular informative right censoring will be
considered.

If there is informative censoring in a data set, but it is assumed that it is
non-informative, then the results of the analysis may be biased. The direction
of this bias depends on the sign of the correlation between the time to failure
and time to censoring variables. With non-informative censoring, those who are
censored are representative of the individuals at risk at the time of censoring. If
there is a positive (negative) association between the two variables then those
who are censored would have a smaller (larger) expected survival time than
those who remain at risk. Standard methods would then over(under)estimate
the survivor function. The magnitude of the bias will tend to increase as the
number of censored observations increases.

It is not possible to use the observed data to determine whether a dataset has
informative censoring or the extent of the dependence between the time to failure
and time to censoring variables; see Tsiatis (1975). Therefore, an alternative
is to use a sensitivity analysis. This allows any parameters that control the
dependence between the time to failure and time to censoring variables to be
varied over a range of sensible values so the effect that this has on the inferences
can be seen. From here it can be assessed whether informative censoring is likely
to be an issue in the analysis.

In recent years, various sensitivity analyses have been suggested to assess
the effect of informative censoring on the inferences obtained when analysing
survival data, including Zhang and Heitjan (2006), Ruan and Gray (2008) and
Huang and Zhang (2008). Siannis et al. (2005) introduce a sensitivity analysis
for informative censoring in parametric survival models. This approximates the
change in the parameter estimates obtained if a small amount of dependence
between the time to failure and time to censoring variables is assumed instead of
independence. This particular sensitivity analysis appeals because it produces
an approximation that is straightforward to apply with results that are easy
to interpret. The same assumption about the joint distribution of the time to
failure and time to censoring variables is used in Siannis (2011) to develop a
sensitivity analysis for the Cox proportional hazards model. This approach is
more flexible and can be applied to a wider range of data sets, but is more
computationally intensive.

In this paper, we use piecewise exponential models which lead to sensitivity
analyses that are more flexible than those for the standard parametric models
and computationally simpler than those for the Cox model. We use the same
assumption about the dependence between the time to failure and time to cen-
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soring as Siannis et al. (2005), but our method may be preferable as it combines
the strengths of each of the methods in these papers.

The following section outlines the model used and assumptions made. The
equations needed to conduct the sensitivity analysis are derived in Section 3.
The method is then applied to data on the time from registration to death on the
waiting list for patients registered for a liver transplant in Section 4. This data
set is a good exemplar data set as it is found that standard parametric models
do not provide a good fit for time to censoring. The details of a simulation study
carried out to assess the accuracy of the sensitivity analysis method are given
in Section 5. This allows both the strengths and weaknesses of the methods to
be identified. A discussion of the method is given in Section 6.

2 Notation and model

The form of the joint distribution of T , the failure time and C, the censor-
ing time, is needed so that the dependence between the two variables can be
assessed. However, only Y = min(T,C) and an indicator function I(T ≤ C)
are observed. This means that some additional assumptions will be required to
identify the joint distribution.

A piecewise parametric model with piecewise constant hazard functions will
be used for the marginal distributions of both T and C. This is known as
the piecewise exponential model and was introduced in Breslow (1974). This
means that the hazard is constant over a given interval, but may vary between
intervals.

As intervals have been introduced into the model, a piecewise approach is
required to generate the log-likelihood. The piecewise approach requires a time
variable corresponding to each interval for each individual which can be obtained
using the observation time, yi, for each individual. Therefore the exposure time
for individual i in intervals j is defined as

yij = aj − aj−1 j = 1, . . . , Ni − 1

yij = yi − aNi−1 j = Ni,

where aj is the endpoint of the jth interval. Here Ni denotes the number of
the interval in which individual i experiences either failure or the censoring of
interest at time yi. Once having experienced one of these events, individual i
has no further exposure in later intevals.

In this framework, there are three possible times that may be observed for
each individual in any of the intervals. These are T , the failure time, CI , the
censoring that occurs within an interval, and CE , the censoring at the end of an
interval. The censoring at the end of each interval, which has been introduced
by the use of a piecewise model, is assumed to be independent of any censoring
that takes place in the intervals.

Two indicator variables are needed, first to distinguish between a failure time
and a censored time and then to distinguish between the two different types of
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censoring. These indicator variables are

Iij =

{
1, if ith individual fails in jth interval

0, if ith individual does not fail in jth interval

and, when Iij = 0,

Zij =

{
1, if ith individual is censored before the end of jth interval

0, if ith individual is censored at the end of jth interval.

As we are using a piecewise exponential model, we can take advantage of
the lack of memory between the intervals. If we condition on T > aj−1, then
the survivor function ST (t|T > aj−1) = ST (t − aj−1) for the jth interval de-
pends only on the parameter associated with that interval, θj . The mean of the
distribution in the jth interval is given by θ−1j Let tj = t− aj−1 be the amount
of time passed in the jth interval, then the survivor function can be denoted
by ST (tj , θj). For the ith individual, the survivor function for the jth interval
would be ST (yij , θj). The density, hazard and integrated hazard functions for
T in the jth interval,

fT (tj , θj) = − d

dt
ST (tj , θj), hT (tj , θj) = − d

dt
logST (tj , θj),

and HT (tj , θj) = − logST (tj , θj),

also only depend on θj . The score and information functions for the density
function fT (tj , θj) are defined by

sT (t, θj) =
∂

∂θj
log fT (tj , θj) and iθj = VarT {sT (T, θj)}.

Similarly, if we condition on C > aj−1 then the survivor function SC(c|C >
aj−1) for CI in the jth interval only depends on the nuisance parameter, γj .
For ease of notation, without ambiguity subscript C will be used for functions
relating to CI . Let cj = c − aj−1 and the survivor function for CI in the
jth interval can be denoted SC(cj , γj). There are the corresponding functions
fC(cj , γj), hC(cj , γj), HC(cj , γj), sC(c, γj) and iγj for CI .

It is now necessary to make an assumption concerning the conditional distri-
bution of CI given T , so that we can identify the joint distribution of T and CI .
As in Siannis et al. (2005), Siannis (2004) and Siannis (2011), we assume that
the conditional distribution of CI given T has the same parametric distribution
as the marginal distribution of CI . However, the parameter of the conditional
density is allowed to depend on T . Therefore, the conditional density in the jth
interval can be written explicitly as

fC|T (cj |tj , γj , δ, θj) = fC(cj , γj + δi−1/2γj B(tj , θj)),

where iγj is the information function for CI . The dependence between T and
CI is defined by δ and BT (t, θ). These can be thought of, respectively, as a
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correlation coefficient, that quantifies the amount of dependence between the
two processes, and a bias function which gives a form to this dependence.

As we will let the parameters vary between the intervals, we will have the
vectors θ and γ with θj and γj being the scalar parameters in the jth of the m
intervals in our model.

3 Sensitivity analysis

In this section, a sensitivity analysis is developed that can be applied to piece-
wise parametric models. The aim is to approximate the difference between the
parameter estimates from the dependent model and those from the indepen-
dent model. As piecewise parametric survival models will be assumed for the
marginal distributions of the failure and censoring variables, there will be differ-
ent parameter values in each of the intervals used. Therefore, let θ̂δj denote the
parameter estimate in the jth interval for the model that assumes informative
censoring and similarly θ̂0j is the parameter estimate for the jth interval from
the model that assumes non-informative censoring.

The log-likelihood function `δ(θ,γ) when T and CI are dependent is

`δ(θ,γ) =

n∑
i=1

m∑
j=1

{
Iij logK1(yij) + Zij(1− Iij) logK2(yij)

+ (1− Iij)(1− Zij) logK3(yij)
}
, (1)

where

K1(yij) =

∫ ∞
yij

fT,C(yij , u)du,

K2(yij) =

∫ ∞
yij

fT,C(u, yij)du

and K3(yij) =

∫ ∞
yij

∫ ∞
yij

fT,C(t, c)dt dc. (2)

These can be thought of as the likelihood contributions for each of the three
types of observations that may occur in each interval. To avoid having inte-
grals in the above contributions that cannot be evaluated analytically, the joint
density for T and CI in the jth interval is written

fT,C(tj , cj) = fT (tj , θj)fC(cj , γj + δi−1/2γj B(tj , θj))

' fT (tj , θj)fC(cj , γj)[1 + δi−1/2γj sC(cj , γj)B(tj , θj)].

So, when the approximations of the contributions in (2) are substituted into
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(1), the log-likelihood becomes:

`δ(θ,γ) ' `0(θ,γ)− δ
n∑
i=1

m∑
j=1

i−1/2γj

{
IijBT (yij , θj)

∂

∂γj
HC(yij , γj)

+ (1− Iij)(1− Zij)
∂

∂γj
HC(yij , γj)µ(yij , θj)

− Zij(1− Iij)sC(yij , γj)µ(yij , θj)
}
, (3)

where

µ(yij , θj) =

∫∞
yij
fT (u, θj)BT (u, θj)du

ST (yij , θj)

and

`0(θ,γ) =

n∑
i=1

m∑
j=1

{
Zij(1− Iij) log hC(yij , γj)−HC(yij , γj)

+ Iij log hT (yij , θj)−HT (yij , θj)
}
.

Note that `0(θ,γ) is the log-likelihood in the non-informative censoring model.
A proportional hazards structure is used to simplify some of the terms in

(3), so that the hazard functions of T and CI become

hT (tj , θj) = eθjh∗T (tj) and hC(cj , γj) = eγjh∗C(cj),

where h∗T (tj) and h∗C(cj) are baseline hazard functions. Consequently, the score
and information functions become

sT (tj , θj) = 1−HT (tj , θj), sC(cj , γj) = 1−HC(cj , γj)

and iθj = iγj = 1.

If the bias function is assumed to be the standardized score function, B(tj , θj) =

i
−1/2
θj

sT (tj , θj), as in Siannis et al.(2005), then

B(tj , θj) = 1−HT (tj , θj) and µ(tj , θj) = HT (tj , θj).

An expression for the difference in the parameter estimates for the jth of the
m parameters of interest can be obtained using Taylor expansions of the score
functions

r0(θ̂0j) =
∂

∂θj
`0(θ,γ)

∣∣∣∣
θ̂0j

and rδ(θ̂δj) =
∂

∂θj
`δ(θ,γ)

∣∣∣∣
θ̂δj

. (4)

These are the score functions for the jth interval under the assumption of non-
informative and informative censoring respectively. The score functions given
in (4) are expanded about θj and set equal to zero at θ̂j to give

r0(θ̂0j) ' r0(θj)− (θ̂0j − θj)ij(θ) = 0

rδ(θ̂δj) ' rδ(θj)− (θ̂δj − θj)ij(θ) = 0 (5)
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where

ij(θ) = − ∂2

∂θ2j
`0(θ,γ).

Rearranging the two equations in (5) gives

(θ̂δj − θ̂0j)ij(θ) ' rδ(θj)− r0(θj). (6)

If the values from the proportional hazards structure are substituted into (3) and
the resulting form of the log-likelihood is then used in (6), the approximation
to the difference in the parameter estimates for the jth of the m parameters
becomes:

θ̂δj − θ̂0j ' δij(θ)−1
∑
i∈Rj

HT (yij , θj)
[
HC(yij , γj)− (1− Iij)Zij

]
,

where Rj is the risk set in the jth interval.
Covariates also need to be included in the model, so that the hazard function

of the ith individual in the jth interval is defined to be

hij = exp(αj +

p∑
k=1

βkxik).

See Friedman (1982) for a full description of such models. This model is equiv-
alent to splitting θ′jx into an intercept for each interval, αj , and a component
for the p covariates included in the model, given by

∑p
k=1 βkxik, which remains

constant over the intervals. Here, θj is the vector of parameters for the jth in-
terval, the first element corresponds to the intercept term in the jth interval and
the other elements to the covariates that remain constant for all j. Similarly,
we can define γj for the model for time to censoring including covariates.

In order to incorporate covariates in the sensitivity analysis for piecewise
parametric models, the scalar parameters θj and γj in the jth interval are
replaced by wj(x) = θ′jx and zj(x) = γ′jx respectively. This approach is similar
to that used in Siannis (2004) who perform a sensitivity analysis on the function
w(x) = θ′x rather than θ when incorporating covariates. This means that the
equation that can be used to carry out the sensitivity analysis is

ŵδj(x)− ŵ0j(x) ' δ

∑
i∈Rj

HT (yij , wj(x))[HC(yij , zj(x))− (1− Iij)Zij ]∑
i∈Rj

HT (yij , wj(x))
, (7)

where the change in the parameter estimates is estimated for a covariate vector
of interest, x, when a suitable value for the corresponding nuisance function,
zj(x), has been substituted into the equation.

When wj(x) = θ′jx and zj(x) = γ′jx the hazard and integrated hazard
functions for T and C with piecewise exponential marginal distributions can be
expressed as:
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hT (tj ,θj ,x) = ewj(x) hC(cj ,γj ,x) = ezj(x)

HT (tj ,θj ,x) = ewj(x)tj HC(cj ,γj ,x) = ezj(x)cj (8)

The approximation for ŵδj(x)− ŵ0j(x) when conducting a sensitivity anal-
ysis on wj(x) is obtained by substituting the functions from (8) into (7). This
then gives:

ŵδj(x)− ŵ0j(x) ' δ

∑
i∈Rj

{eẑ0j(x)y2ij − yij(1− Iij)Zij}∑
i∈Rj

yij
. (9)

The value of z0j(x) used in (9) is ẑ0j(x), the estimated linear predictor for time
to censoring under the assumption of non-informative censoring. The sensitiv-
ity analysis equation in (9) may be applied to each interval individually, which
allows the particular intervals with the largest estimated changes in parame-
ter estimates to be identified. It should be noted that the sensitivity analysis
equation in (9) only applies to the given covariate vector, x.

4 Liver registration data

Liver transplantation is the only treatment option for patients whose livers are
failing. In the UK, those judged suitable for a transplant are registered with
NHS Blood and Transplant, but a national shortage of organ donors means that
some patients die waiting for their transplant. Analyses of factors affecting time
to death informs policy for the selection of patients for transplantation.

Data provided by NHS Blood and Transplant contain information on 4594
adult patients who were first registered for an elective liver transplant between
1 January 2000 and 31 December 2008 in the UK. Patients are followed until
they are removed from the waiting list, whether that be due to death, receiving
a liver transplant or other reasons. Patients that were still on the list at the
time of compiling the data set were censored, but we can treat this censoring as
independent, along with any end of interval censoring. Removal from the list for
transplantation is a form of potentially informative censoring. This is because,
generally, the patients that have the worst prognosis and are therefore closer to
death are the ones that receive transplants. Also, some patients were removed
from the list for reasons other than death or transplantation. A patient removed
due to deteriorating condition was assumed to have died on the day of removal.
Otherwise the patient was non-informatively censored at the time of removal.

Of the variables whose values are known at registration, patient age, ethnic-
ity, primary liver disease(PLD) category, and UKELD (UK model for End-stage
Liver Disease) score at registration were found to significantly affect the haz-
ard of death following registration. The UKELD score is a measure of disease
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Table 1: Patient ethnicity levels

Level Patient ethnicity
1 White (n=4077)
2 Asian or Asian-British (n=332)
3 Black or Black-British (n=103)
4 Chinese/Oriental (n=34)
7 Other (n=48)

Table 2: Primary liver disease groupings that are used in the Liver Registration
data set. The numbers of patients included in each group are also given.

Level Primary liver disease group
1 Primary biliary cirrhosis (PBC) (n=580)
2 Primary sclerosing cholangitis (PSC) (n=434)
3 Alcoholic liver disease (ALD) (n=1142)
4 Auto-immune + cryptogenic disease (AID) (n=523)
5 Hepatitis C cirrhosis (HCV) (n=686)
6 Hepatitis B cirrhosis (HBV) (n=162)
7 Cancers (n=208)
8 Metabolic liver disease (n=196)
9 Other liver diseases (n=489)
10 Acute hepatic failure (n=130)

severity based on several clinical measurements, the details of which are given
in Barber et al. (2011). The groupings used for patient ethnicity and PLD
are given in Tables 1 and 2 respectively. These variables were identified using
parametric survival models that assume non-informative censoring.

Of all the patients in the dataset, 2650 had full information for the variables
that were found to be significant. This is because for some of the earlier years
in the time period considered, less patient information had to be supplied to
the UK Transplant Registry (UKTR). The patients with missing data are not
considerably different from the rest when considering the covariates for which
information was available, so they will be excluded from the analysis. There
were 423 events in this reduced data set, 304 were observed deaths and 119
were removals due to deteriorating condition. There were 1899 potentially in-
formatively censored observations where patients had been removed from the
list for transplantation. The remaining 328 observations were patients that were
censored for non-informative reasons.

4.1 Application of sensitivity analysis

It is assumed that the lifetime and censoring variables each have piecewise ex-
ponential marginal distributions. The starting values for the cut points are the
quantiles of the distribution of the time to death variable. The models with the
cut points that give the largest value of the likelihood were found for 3 and 4
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intervals. The log-cumulative hazard plots were then examined to check if the
assumed model is appropriate. The 3-interval model was found to be appropri-
ate and the 4-interval model did not seem to give any improvement. Therefore
in the interest of parsimony, we used the 3-interval model with cut points at 40
and 165 days.

To determine whether these models gave a significantly better fit than the
corresponding standard Weibull models, the differences in −2 log L̂ for the mod-
els were found. If the true hazard is Weibull, then the difference in −2 log L̂
for the Weibull model and the piecewise exponential model should be approxi-
mately χ2

m−2, where m is the number of intervals in the piecewise exponential
distribution. The piecewise exponential model was significantly better than the
Weibull for time to censoring (p < 0.0001) but not for time to death (p=0.85).
As the same form of model must be used for both time to death and time
to censoring when applying the sensitivity analysis, then the use of piecewise
exponential models for the marginal distributions of the failure and censoring
variables is justified for the Liver Registration data.

Expression (9) can be used to apply the sensitivity analysis to this data set.
However, (9) gives the change in parameter estimates for a specified x. But x
varies across patients, so the difference between ŵδj(x) and ŵ0j(x) for all the
individuals in the jth interval needs to be assessed. The simplest way to do this
is to plot the estimated value of ŵδj(x)−ŵ0j(x) against the entire range of values
that ẑj(x), the estimated linear predictor for x for time to censoring in the jth
interval, takes across all the individuals in the jth interval. The distributions of
ẑj(x) for the Liver Registration data are shown by the boxplots in Figure 1. We
see that the median value of ẑj(x) decreases across the intervals, which shows
that the hazard of censoring is generally smaller in the later intervals. We also
see that the majority of patients have values of ẑj(x) that fall in the middle of
the observed range for each interval, with only a small number at either of the
extremes.

The results of the sensitivity analysis are shown in Figure 2. This figure
shows the plots with two different values of δ: 0.3, the largest value of δ used
for the sensitivity analysis in Siannis et al. (2005), and 0.2, a more conservative
value. It can be seen from Figure 2 that the second and third intervals have
larger estimated values of ŵδj(x) − ŵ0j(x) than the first interval. The largest
values of ŵδj(x) − ŵ0j(x) are observed for the patients with the largest values
of ẑj(x) or the highest hazards of censoring. However if we consider the distri-
butions of ẑj(x) shown in Figure 1, then we can see that only a small number
of individuals will have these large changes in ŵδj(x) − ŵ0j(x). This means
the effect of informative censoring is small for the majority of patients in the
Liver Registration data. However, as some individuals have a large estimated
change in the linear predictors, then any inferences may be misleading if non-
informative censoring was assumed, and there is even a moderate amount of
dependence between the time to death and time to censoring variables.

10



Figure 1: Boxplots showing the distribution of ẑj(x) in each of the intervals for
the Liver Registration data.

Figure 2: Plot of sensitivity analysis expression in (9) for observed values of ẑj(x)
for the Liver Registration data in each of the three intervals with δ = 0.2, 0.3.
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4.2 Comparing results to those obtained by fitting depen-
dent model

To assess the validity of the method in Section 4.1 for this dataset, the model
that accounts for dependence is fitted to the dataset as well. The simplification
used to obtain (3) was necessary to get a closed form of the equations for the
sensitivity analysis, but is not necessary when fitting the dependent model. So,
now the likelihood for the dependent model will be derived. The joint density
of T and CI in the jth interval can be written as

fT,C(tj , cj) = fT (tj , θj)fC|T (cj |tj , γj , δ, θj) (10)

As in Section 3 it is assumed that

fC|T (cj |tj , γj , δ,θj) = fC(cj , γj + δi−1/2γj B(tj ,θj ,x)), (11)

with iγj = 1 and B(tj ,θj ,x) = 1− eθ
′
jxt under the proportional hazards struc-

ture.
In addition, it is assumed that both T and CI have piecewise exponential

marginal models, so in the jth interval

fT (tj ,θj ,x) = eθ
′
jx exp(−eθ

′
jxtj) and fC(cj , η) = eη exp(−eηcj), (12)

where the linear combination γTj x is replaced by a scalar parameter η, as it is
just a nuisance parameter.

If (10) and (11) are combined, and then the exponential forms in (12) are
substituted into the resulting equation, the joint distribution can be written as

fT,C(t, c) = eθ
′
jxe− exp{θ′

jx}tjeη+δ(1−exp{θ
′
jx}tj)e− exp(η+δ(1−exp{θ′

jx}tj))cj . (13)

The parameter estimates for the full model will be obtained by finding the
maximum likelihood estimates of the likelihood in (1) but with contributions

K1(yij) = eθ
′
jxije− exp{θ′

jxij}yije− exp(η+δ(1−exp{θ′
jxij}yij))yij

K2(yij) =

∫ ∞
yij

eθ
′
jxije− exp{θ′

jxij}ueη+δ(1−exp{θ
′
jxij}u)

× e− exp(η+δ(1−exp{θ′
jxij}u))yijdu

and

K3(yij) =

∫ ∞
yij

eθ
′
jxije− exp{θ′

jxij}ue− exp(η+δ(1−exp{θ′
jxij}u))yijdu.

These were obtained by substituting the form of the joint distribution given in
(13) into (2).

The model fitted gives δ = 0.1863 with 95% confidence interval (-0.0394,
0.4120), this shows that even after making identifying assumptions there is
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little information about the value of δ as the 95% confidence interval for the
estimate is wide. For the Liver Registration data set, it is not even possible to
infer that δ is significantly different from zero. This highlights the need for a
sensitivity analysis that allows values of δ to be varied in a sensible range and
indicates whether inferences based on the parameter of interest are likely to be
affected by the assumption of differing amounts of dependence between the time
to failure and time to censoring variables.

The sensitivity analysis described in Section 4.1 is applied with δ = 0.1863
so that estimated change in ŵδ(x) and ŵ0(x) given by the sensitivity analysis
can be directly compared to the observed change in the estimated linear pre-
dictors. This will us allow us to assess how accurate the sensitivity analysis is
at estimating the change in ŵδ(x) and ŵ0(x). When the sensitivity analysis
was applied to the Liver Registration data set using δ = 0.1863, the largest
estimated change in the estimated linear predictors was 0.42 for the final inter-
val. When calculating the difference between ŵδ(x) and ŵ0(x) for each of the
individuals in the data set, the largest difference observed over all intervals was
0.25.

This result shows that for the Liver Registration data, the sensitivity analysis
overestimates the change in the estimated linear predictors. However, only a
small number of the patients in the data will have a discrepancy that is this
large. We already know that the sensitivity analysis gives the largest changes in
ŵδ(x) and ŵ0(x) for the patients with the largest values of ẑj(x). From Figure
1, we know that only a small number of patients have values of ẑj(x) that are
that large. So, for the majority of individuals in the Liver Registration data
the discrepancy between the results of the sensitivity analysis and the change
in ŵδ(x) and ŵ0(x) using the results of the dependent model is small.

To see if the sensitivity analysis always overestimates the change in ŵδ(x)
and ŵ0(x), a simulation study is carried out. The details of this simulation
study are given in the next section.

5 Simulations

The aim of the simulation study is to see how much the sensitivity analysis either
over or under estimates the actual change in the estimated linear predictors
at a given level of δ. A combination of different values of the parameters θ,
γ and δ will be used. This will give data sets that have differing amounts
of censoring, from small to large. The data are simulated from a 2-interval
piecewise exponential distribution with no other covariates. An arbitrary cut-
point is chosen for each situation to give approximately equal numbers of events
in the two intervals. For each different combination of θ, γ and δ, 500 replicates
are simulated. In all the simulations, it is assumed that n = 2000. Then, the
dependent model is fitted and the sensitivity analysis applied to each simulated
data set so that the results can be compared.

When fitting the dependent model, the value of δ will be fixed. This is
because there is very little information about δ in the data, even after identifying
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Figure 3: Effect of different combinations of the parameters δ, θ and γ on
mean of D observed. The plots show the effect of θ on the mean observed as δ
increases, for each different level of γ

assumptions have been made, so there is much variation in the values of δ
obtained. This would make it difficult to make meaningful comparisons between
different parameter combinations. The amount of dependence assumed in the
sensitivity analysis was the fixed value of δ used when fitting the dependent
model.

For each replication the parameter estimates from the dependent model, θ̂
(d)

δ ,
were found along with the parameter estimates approximated by the sensitivity

analysis, θ̂
(s)

δ . The value D = (θ̂
(d)

δ − θ̂0) − (θ̂
(s)

δ − θ̂0) is of interest. The
element of D with the largest magnitude is found as this corresponds to the
largest discrepancy between the results of the dependent model and the results
of the sensitivity analysis. If this term is negative, then the sensitivity analysis
overestimates the change in the parameter estimates. The mean values of the
largest element of D were calculated along with a 95% confidence interval for
the mean. These results are summarised graphically in Figure 3. The plots
in Figure 3 show the effect of θ on the mean observed as δ increases, at each
different level of γ.

The majority of the means observed in Figure 3 are negative, which means
that generally the sensitivity analysis overestimates the change in the parameter
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estimates. From the plots in Figure 3, it can be seen that generally we observe
the larger means when δ is greater than 0.3, and γ and θ are similar in size or γ >
θ. The greater the difference between γ and θ, the bigger the mean difference
we observe. As the size of γ relative to θ increases, the hazard rate of censoring
is also increasing relative to the hazard rate for failure. So the simulated data
sets would generally contain an increasing proportion of censored observations.
Therefore we observe the largest changes in the mean of D when there is a
relatively large proportion of censored observations in the data set. Also as the
magnitude of δ increases, the size of the mean also increases, especially in the
situations with relatively large amounts of censoring.

To establish the effects of the individual parameters on the simulation results,
an analysis of variance model that included all the main effects and interactions
between θ, γ and δ was fitted. The ANOVA shows that there is a significant
3 factor interaction between δ, θ and γ (p < 0.0001). As θ increases the mean
observed generally decreases. There is a greater rate of decrease for larger values
of γ when δ is negative. This is because as θ increases there is a greater decrease
in the proportion of censored observations in the simulated data sets with larger
values of γ. Conversely, for positive δ, the decrease in the proportion of censored
observations as θ increases is greatest for the simulated data sets with smaller
values of γ, so these values have the greatest rate of decrease in the mean. The
rate of decrease in the mean is also affected by the magnitude of δ. For larger
magnitudes of δ, the rate of decrease in the mean as θ increases is larger. This
makes intuitive sense as the effect of censored observations on the results of the
sensitivity analysis increases as the magnitude of δ increases.

There are a handful of situations that are found to have means that are
significantly different from most of the other means. These are when θ = −6
and γ = −3, θ = −8 and γ = −5 and θ = −8 and γ = −6, all for δ = 0.4. These
situations are highlighted in Figure 3 by the circles on some of the plots. It is
easy to see that the means in these cases are larger than the other means.

Further investigations revealed that in these cases, some of the data sets had
large outlying values that caused a large increase in the value of the sensitivity
index, U. This meant that the sensitivity analysis performed particularly badly
for these data sets, resulting in an increased mean for D. This tells us that
the accuracy of the sensitivity analysis is affected by the size of the observations
included in each interval. This was observed in section 4.1 as the widest intervals
had the largest estimated changes in the parameter estimates. So the accuracy
of the sensitivity analysis for piecewise exponential models can be improved by
dividing the time into a larger number of small intervals.

The results of the simulation study carried out in this section suggest that
the sensitivity analysis is not a good approximation of the change in parame-
ter estimates when there is heavy censoring and δ becomes large. This could
help to explain why the sensitivity analysis overestimated the actual change in
parameter estimates for the Liver Registration dataset. In this dataset there
is heavy censoring, with 71.7% of patients having a potentially informatively
censored time and a further 12.4% having a non-informatively censored time.

However, even though some situations have been identified where the sen-
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sitivity analysis does not give a good approximation to the dependent model,
the simulation study in this section shows that there are many situations when
the sensitivity analysis does provide a reasonable approximation to the depen-
dent model. This means that while the sensitivity analysis in Section 3 was not
as accurate as we would have hoped for the Liver Registration data, it is still
suitable for application in other situations.

6 Discussion

Cox proportional hazards models are often used when modelling times to events
in medical data. However, if there are potentially informatively censored ob-
servations in the data, the sensitivity analyses used to assess the effect of these
observations on the results of the standard Cox model can be more computa-
tionally intensive than those that use parametric models. The method outlined
in this paper uses a model that can be viewed as a “simple computational ap-
proximation to the Cox nonparametric model” (Aitken et al. 1983). In fact, as
stated in Aitken et al. (1983), the piecewise exponential model with intervals
defined by the observed events is equivalent to the Cox model. Therefore, the
piecewise exponential model is as flexible as the Cox model but has the added
advantage that the form of the baseline hazard is known which makes sensitivity
analyses easier to apply.

The sensitivity analysis presented in this paper only incorporates covariates
using a linear predictor. This means the effect of informative censoring on the
individual parameter estimates cannot be estimated using the method derived
in this paper. However, one objective of the analysis of medical data is to be
able to inform patients about their expected survival time. As it is the linear
predictor that drives the survival process, then from a patient perspective our
analysis considers the right quantity.

There is no objective method that identifies when the changes in the esti-
mated linear predictors given by the sensitivity analysis have a significant effect
on inferences about the effect of covariates on the hazard of death. Therefore it
may be more useful to look at the effect on another value that uses the linear
predictor for time to death rather than the linear predictor itself. For example,
in the liver transplantation setting, the effect on the median survival time or the
estimated survival function might be considered, as these could potentially be
used to inform patients of their likely survival time on the waiting list without
a transplant based on their disease severity etc.

Finally, if the sensitivity analysis does suggest that the assumption of infor-
mative censoring has an effect on inferences about the effect of covariates on the
hazard of the event of interest then inverse probability of censoring weighted
(IPCW) methods can be easily applied in practice. IPCW estimators (Robins
and Rotnitzky 1992, Robins 1993, Robins and Finkelstein 2000) do not require
the amount of dependence between time to event and time to censoring to be
specified, which means fewer untestable assumptions are required to implement
these methods.
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