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Abstract

Ground level ozone is one of the six criteria primary pollutants that is moni-

tored by the United States Environmental Protection Agency. Statistical meth-

ods are increasingly being used to model ground level ozone concentration data.

This thesis is motivated by the need to perform practical data analysis, and to

develop methods for modelling of ozone concentration data observed over a vast

study region in the eastern United States (US).

For the purposes of analysis, we use two space-time modelling strategies:

the dynamic linear models (DLM) and the auto-regressive (AR) models and

obtain predictions and forecasts for set aside validation data. These methods

are developed under the Bayesian paradigm and MCMC sampling techniques

are used to explore the posterior and predictive distributions. Particularly, for

analysis, we use a subset data set from the state of New York to illustrate the

methods. Both the DLM and AR modelling approaches are compared in detail

using the predictive and forecast distributions induced by them. The comparisons

are facilitated by a number of theoretical results. These show better properties

for the AR models under some conditions, which have been shown to hold for

the real life example that we considered.

To address the challenge of modelling large dimensional spatio-temporal ozone

concentration data, we adopt Gaussian predictive processes (GPP) technique and

propose a rich hierarchical spatio-temporal AR model. The important utility of

this method lies in the ability to predict the primary ozone standard at any given

location for the modelled period from 1997-2006 in the eastern US. Different sen-

sitivity analyses are performed, and, in addition, hold-out data sets are used for

model validation. Specifically, this new modelling approach has been illustrated

for evaluating meteorologically adjusted trends in the primary ozone standard

in the eastern US over the 10 year period. This helps in understanding spatial

patterns and trends in ozone levels, which in turn will help in evaluating emission

reduction policies that directly affect many industries.



Forecasting of ozone levels is also an important problem in air pollution mon-

itoring. We compare different spatio-temporal models for their forecasting abil-

ities. The GPP based models provide the best forecast for set aside validation

data.

In addition, in this thesis we use computer simulation model output as an

explanatory variable for modelling the observed ozone data. Thus, the proposed

methods can also be seen as a spatio-temporal downscaler model for incorporat-

ing output from numerical models, where the grid-level output from numerical

models is used as a covariate in the point level model for observed data. This type

of space and time varying covariate information enriches the regression settings

like the methods used in this thesis.

Currently there is no package available that can fit space-time environmen-

tal data using Bayesian hierarchical spatio-temporal models. In this thesis we,

therefore, develop a software package named spTimer in R. The spTimer package

with its ability to fit, predict and forecast using a number of Bayesian hierarchical

space-time models can be used for modelling a wide variety of large space-time

environmental data. This package is built in C language to be computationally

efficient. However, this C-code is hidden from the user and the methods can be

implemented by anyone familiar with the R language.

This thesis can be extended in several ways for example, for multivariate

data, for non-Gaussian first stage data, and for data observed in environmental

monitoring of stream networks.
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Chapter 1

Introduction

This thesis considers analysis and modelling of daily maximum eight-hour average

ground level ozone (O3) concentrations. Specifically, we use Bayesian modelling

approaches to predict and forecast ozone levels for spatio-temporal fields. These

are important problems since ground level ozone concentrations have harmful

effects on human health. In addition, it is important to find better models

and faster computational techniques to obtain predictions and forecasts. These

are the primary motivations of this thesis. Before going further on modelling

approaches, we describe what is ozone and why we need to analyse ozone con-

centrations in the next section.

1.1 What is Ozone?

Ozone is a colourless and odourless reactive gas that occurs naturally in the

atmosphere. It occurs in two layers of the earth’s surface, namely the tropo-

sphere and the stratosphere. The troposphere is the lowest portion of earth’s

atmosphere and it ranges between 4 to 11 miles above ground depending on the

latitude of the location (Mohanakumar, 2008; Chapter 1). The stratosphere, the

second layer of the earth’s atmosphere, is stratified in temperature, with warmer

layers higher up and cooler layers farther down, see Figure 1.1. The stratosphere

is situated between about 10 miles to 31 miles altitude above the surface at mod-

erate latitudes. Ozone found in the troposphere has detrimental health effects

while ozone in the stratosphere protects the earth’s inhabitant from the sun’s

ultra violate (UV) rays.

1
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Figure 1.1: Ozone layer in the earth’s stratosphere (picture source: NOAA).

1.1.1 Ozone Formation

Chemically ozone is a molecule composed of three atoms of oxygen and is created

in the stratosphere when highly energetic solar radiation strikes oxygen molecules

(O2) and causes the two oxygen atoms to split apart. If a freed atom joins into

another oxygen molecule then it forms ozone. This process is also known as

photolysis (McGarth and Norrish, 1957). However, in the troposphere, ozone

is created by chemical reactions between oxides of nitrogen (NOx) and volatile

organic compounds (VOC) in the presence of sunlight. The major source of NOx

and VOC are the emissions from industrial facilities and electric utilities, motor

vehicle exhaust, gasoline vapours and the chemical solutions of solids or gases in

a liquid1.

1.1.2 Good Effects of Ozone

Ozone in the stratosphere is good, because in this level ozone helps to pro-

tect life on earth by absorbing UV radiation from the sun. UV radiation can

cause skin cancer, cataracts (a clouding that develops in the crystalline lens of

the human eye) and can harm immune system of human beings. UV can also

damage sensitive crops (e.g., soybeans), and destroy some types of marine life

(e.g.,phytoplankton)2. Thus, the increase of ozone in the stratosphere protects

earth’s life from the UV radiation of the sun, see Figure 1.1.

1For more details see: http://www.epa.gov/glo/
2http://www.epa.gov/air/ozonepollution/
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1.1.3 Harmful Effects of Ozone

Ground level ozone (i.e., in the troposphere) is a pollutant that has direct and

indirect bad effects on human health. It is a secondary pollutant and formed

by a slow and complicated series of reactions from primary pollutants (see Sub-

section 1.1.1).

One of the main concerns regarding ground level ozone is its harmful effects on

human lung functions, specifically, the damage it causes to the lung tissues, and

subsequent respiratory functions. Studies have shown that susceptible persons

suffering from bronchitis and asthma are specially likely to be affected most by

high levels of ozone (see, WHO, 1979; 1987). Ozone is also responsible in reducing

the immune system’s ability to fight off bacterial infections in the respiratory

system. Also, it is a main ingredient of urban smog (USEPA, 1999a).

Tropospheric ozone also damages vegetation and ecosystem, since high ozone

concentration levels can affect the ability of plants to produce and store food.

Effects on long-living species such as trees may accumulate over the years, re-

sulting in damage to entire forests and the related ecosystems (Ashmore, 2005;

Sitch et al., 2007).

1.1.4 Ozone’s Effect on Climate

Ozone occurring throughout the troposphere acts as a greenhouse gas (GHG),

which traps heat from the sun and warms the earth’s surface. Ozone’s impact

on climate consists of changes in temperature. Most of the atmospheric warming

from tropospheric ozone comes from absorption of infrared energy radiated back

towards space from the earth’s ground surface. Hence, it may have an effect on

global climate change (IPCC, 2007a, Chapter 7). A study evaluating the effects

of changing global climate on regional ozone levels in 15 cities in the United

States (US) finds, for instance, that average summer time daily maximum ozone

concentrations could increase by 2.7 parts per billion (ppb) for a 5-year span

in the 2020s and 4.2 ppb for a 5-year span in the 2050s. As a result, more

people, specially the young and the elderly, might be forced to restrict outdoor

activities (NRDC, 2004) when the ozone levels are high. Again, according to

the Intergovernmental Panel on Climate Change (IPCC), tropospheric ozone is

the third most important GHG after carbon dioxide (CO2) and methane (CH4),
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that absorb heat radiation coming from the surface of the earth and trap this

heat in the troposphere (IPCC, 2007b), see Figure 1.2.
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Figure 1.2: Three important green house gases (GHGs) that have effect on cli-
mate change.

1.2 Ozone Monitoring

This section describes how we can measure ground level ozone concentrations.

Particularly, we provide information based on the ozone measurement approaches

taken by the United States Environmental Protection Agency (USEPA). We also

define how the hourly and daily ozone levels are obtained from hourly readings.

1.2.1 Ozone Monitoring Stations

In the eastern US, there is a large number of monitoring stations recording hourly

ozone levels. Some of these stations are located in urban areas while some others

are found in rural areas and the remaining sites are located near pollutant sources

such as power stations. The monitoring sites in the urban areas, particularly

around big cities, are known as National Air Monitoring Stations/State and Local

Air Monitoring Stations (NAMS/SLAMS)3, whereas the Clean Air Status and

Trends Network (CASTNET)4 sites operate in mostly non-urban areas, see for

example, Figure 1.3 for a map of these sites in Ohio. The number of monitoring

sites in CASTNET is relatively smaller than that in the NAMS/SLAMS.

3http://www.epa.gov/cludygxb/programs/namslam.html
4http://www.epa.gov/castnet/
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Figure 1.3: A map showing ozone monitoring sites in Ohio.

1.2.2 Hourly and Daily Ozone Concentrations

Initially the observed ozone concentrations are measured hourly. From these

hourly readings, the USEPA calculates the daily maximum one hour and eight-

hour average ozone concentrations. The daily maximum one hour average ozone

concentrations focus on short time exposure at a high level and the eight-hour

average provides greater protection against longer time exposure at a moderate

level (USEPA, 1996). Our main interest will be the daily maximum eight-hour

average ozone levels instead of the hourly ozone concentrations, because current

air pollution regulations of the US are based on this. We now define a few key

summary statistics of ozone concentration levels that are used in this thesis.

Daily Maximum Eight-Hour Average Ozone Concentrations

The daily maximum eight-hour average ozone level is the maximum of averages

of the eight successive hourly ozone concentrations in a day. The procedure for

obtaining the daily maximum eight-hour average ozone levels is as follows:

The eight-hour average ozone concentration at the current hour t is the simple

average of the eight-hourly concentrations at the current hour t, four past hours

(t− 1, t− 2, t− 3, and t− 4), and the three future hours (t+ 1, t+ 2, and t+ 3).

For example, the eight-hour average at 2 P.M. will be the simple average of the
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hourly ozone readings from 10 A.M. to 5 P.M.

The maximum of these eight-hour averages for a day is the daily maximum

eight-hour ozone levels for that day. Note that the daily maximum for a particular

calendar day will depend on the hourly ozone levels for 8-11 P.M. of the previous

day and the hourly readings for midnight, 1 A.M. and 2 A.M. of the next day.

Annual 4th Highest Measurements

The annual 4th highest daily maximum eight-hour average is straightforwardly

obtained as the 4th highest value of the daily maximum eight-hour averages for

that year. Note that this is site specific, i.e., each location will have its annual

4th highest measurement (see details in USEPA, 1998).

Three-year Rolling Average Measurements

The three-year rolling average of the annual 4th highest daily maximum eight-

hour average ozone concentration is obtained by averaging the annual 4th highest

eight-hour daily maximum concentration levels over three successive years and

assigning the average to the final year of averaging.

1.3 Ozone Standards

1.3.1 Air Quality Index (AQI)

A number of air quality indicators have been developed and used to understated

and measure the air pollution exposure, for example, Ott (1978), Khanna (2000),

Cogliani (2001), Chan and Yao (2008), Dingenen et al. (2009), Lee et al. (2011).

USEPA uses the Air Quality Index (AQI), which is a uniform index for report-

ing and forecasting daily air quality for the US (USEPA, 1999b). It is used to

report the five most common ambient air pollutants that are regulated under the

Clean Air Act5: ground-level ozone, particulate matter, carbon monoxide, sulfur

dioxide, and nitrogen dioxide. The AQI tells how clean or polluted the air is and

how to avoid potential health effects.

The AQI uses a normalised scale from 0 to 500. Since levels rarely exceed

a value of 200 in the US, in most cases only the range from 0 to 300 is shown.

5see http://www.epa.gov/air/caa/



1.3 Ozone Standards 7

The higher the AQI value, the greater the level of pollution and the greater

the effects in health. The AQI is divided into six categories that correspond

to different levels of health concern. For ozone, the breakpoints between these

categories were selected based on a review of the health effects evidence. This

evidence included concentration-response functions derived from a series of con-

trolled human exposure studies (e.g., Folinsbee et al., 1988; Horstmann et al.,

1990; McDonnell et al., 1991). Table 1.1 provides the cut points for the ground

level ozone concentrations6.

Index Levels of Cautionary Statements
Values Health Concern

0-50 Good None.

51-100 Moderate Unusually sensitive people should consider
reducing prolonged or heavy exertion outdoors.

101-150 Unhealthy for Active children and adults, and people
Sensitive Groups with lung disease, such as asthma, should

reduce prolonged or heavy exertion outdoors.

151-200 Unhealthy Active children and adults, and people
with lung disease, such as asthma, should

avoid prolonged or heavy exertion outdoors.
Everyone else, should reduce prolonged

or heavy exertion outdoors.

201-300 Very Unhealthy Active children and adults, and people with
lung disease, such as asthma, should avoid
all outdoor exertion. Everyone else, should
avoid prolonged or heavy exertion outdoors.

301-500 Hazardous Everyone should avoid all
physical activity outdoors.

Table 1.1: The Air Quality Index guide including the cautionary statements and
actions people can take to reduce their risk from exposure to air pollution at
different levels of health concern.

1.3.2 Primary Ambient Air Quality Standard for Ozone

The Clean Air Act established two types of national air quality standards for

ground level ozone: (i) Primary standards and (ii) Secondary standards. The

primary standards set limits to protect public health, including the health of

sensitive populations such as asthmatics, children, and the elderly.

The primary standards promulgated in 1997 was set at 80 ppb for averaged

6reference: http://www.airnow.gov/
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over an eight-hour period. Allowing for rounding, USEPA considered areas with

readings as high as 85 ppb to have attained the standard. The review completed

in 2008 found evidence of health effects, at levels of exposure below the 80 ppb

standard. As a result, both USEPA and the Clean Air Scientific Advisory Com-

mittee (CASAC) recommended strengthening the standard to 75 ppb in 2008.

The primary ozone standard is met if the three year average of the annual

4th highest daily maximum eight-hour average is less than 75 parts per billion

(ppb). In this thesis the value 85 ppb will be used since we only analyse data

until 2006 (see Chapter 4). A site is designated as a non-attainment site if the

primary standard is not met at that site.

Note that the primary standard is site specific. However, ozone concentrations

are only monitored in few fixed monitoring sites in each state, see e.g., Figure 1.3.

That is why it is important to spatially model and predict ozone concentration

levels. Section 1.5 provides a review of the modelling strategies for ozone levels.

1.4 Ozone Forecasting using Computer Models

1.4.1 Computer Simulation Models

To forecast ground level ozone concentration in a very fine spatial resolution, the

National Oceanic and Atmospheric Administration (NOAA) in the US designed

the Community Multi-scale Air Quality (CMAQ) modelling system7. The Na-

tional Centers for Environmental Prediction (NCEP)8 developed an Eta model

(Black, 1994; Rogers et al., 1996), and later, Otte et al. (2005) described the

linkage between the Eta and the CMAQ model and proposed the Eta-CMAQ

model. In the Eta-CMAQ, the Eta modelling approach is used to prepare the

meteorological fields for input to the CMAQ system. The NCEP product gen-

erator software is used to perform bilinear interpolations and nearest-neighbour

mapping of the Eta Post-processor output from Eta forecasting domain to the

CMAQ forecast domain. The processing of the emission data for various pollu-

tant sources has been adapted from the Sparse Matrix Operator Kernel Emissions

(SMOKE) modelling system (Houyoux et al., 2000) on the basis of the USEPA

national emission inventory.

7http://www.epa.gov/amad/CMAQ/index.html
8http://www.ncep.noaa.gov/
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1.4.2 CMAQ System

The CMAQ model is a deterministic differential equations model which takes sev-

eral inputs based on meteorology, transportation dynamics, emission and ground

characteristics that affect the level of air pollutants. It contains an interface

processor which incorporates information from different modules such as meteo-

rology, emissions and photolysis rates. These modules are actually smaller com-

puter programmes, which provide information to the Chemical Transition Model

(CTM) and also act as components in the system that can be replaced if they are

not satisfactory enough. The CTM itself consists of six physical and chemical

process components: advection and diffusion, gas phase chemistry, plume-in-

grid modelling, particle modelling and visibility, cloud processes, and photolysis

rates. The CMAQ modelling systems also contain the following processors and

interfaces:

(i) Meteorology-Chemistry Interface Processor (MCIP) interpolates the me-

teorological data needed and computes the cloud, surface and planetary

boundary parameters.

(ii) Emission-Chemistry Interface Processor (ECIP) generates hourly emission

data for the CMAQ.

(iii) Initial Conditions (ICON) provide concentration fields for chemicals for the

initial simulation state.

(iv) For the grids surrounding the modelling domains Boundary Conditions

(BCON) provides concentration fields for chemicals.

(v) Photolysis Processor (JPROC) deals with the temporally varying photolysis

rates and uses temperature, aerosol density and earth’s surface sunlight

reflectivity raw data to produce the initial photolysis rates and a table of

photo-dissociation reaction rates for the CTM.

Process analysis and aggregation is the final stage of the CMAQ modelling sys-

tem. Here, the process analysis detects errors and uncertainties in a model

through data analysis and many parametrisation schemes. For further details

on CMAQ systems, see Ching and Byun (1999).
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The CMAQ model provided by the NOAA uses emission inventories, meteo-

rological information and land use to estimate average pollution levels of ozone

concentrations for the gridded cells over successive time periods9. The Eta-

CMAQ model produces forecasts of ozone concentration levels up to 48 hours in

advance and these forecasts do not use any observed data during this forecast

period of 48 hours. The forecast values of ozone levels are obtained over 12 kilo-

metre grids. There are 259 × 268 grid cells that cover much of the continental

US.

The CMAQ models provide spatio-temporal coverage in a large area, however

it has limitations. For example, as this is a computer simulation model it is not

an exact representation of real situations. Moreover, the model output is biased

due to errors in emission inventories.

1.4.3 Data Assimilation

The CMAQ model is not a statistical model but a deterministic differential equa-

tion model. Often, probability forecasts are more informative than the determin-

istic estimates, and the probabilistic forecasts can be produced by combining

observations and computer simulation models. This type of approach is called

data assimilation (DA). Moreover, the CMAQ forecasts are obtained for a grid

cell while the observed daily ozone data are obtained at a particular location

referenced by a longitude-latitude pair. This leads to the spatial misalignment

problem between the CMAQ output and the observed ozone data. This problem

is well known in literature (see for example, Lorence, 1986; Jun and Stein, 2004;

Fuentes and Raftery, 2005). Recently, several new modelling techniques such as

the downscaler models have been suggested. See for example, Berrocal et al.,

2010a, 2010b; Zidek et al., 2011 and references therein.

In Section 1.4.2 we explained that output of the CMAQ models do not use

any observed ozone data. Henceforth, we can assume that observed data are

independent of the CMAQ output. In this thesis we use the daily CMAQ output

as a covariate (Sahu et al., 2009) to model observed ozone concentration levels,

since it is reasonable to expect that these two will be very similar (see Figure 1.4).

It can be observed that CMAQ output sometimes capture the actual measure-

ment process very well, however, in other times it fails due to its deterministic

9http://www.epa.gov/asmdnerl/CMAQ/
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Figure 1.4: Time series plot of the observed daily ozone concentrations and
CMAQ output for the grid cell that includes the data site in the state of Alabama
for the month of July, 2006.

approach.

1.5 Review of Modelling Strategies for Ozone Con-

centrations

Recently, there has been a surge of interest in modelling ozone concentration

levels. A growing diversity of literature on statistical methodologies are available

in this context. We review some key modelling approaches that have been used to

model ozone concentrations. Following the review, we provide a brief discussion

on the need of scale transformation for modelling ozone levels.

1.5.1 Regression Based Approaches

Most of the approaches for modelling ozone levels are based on linear and non-

linear regression methodology. There is a huge literature discussing regression

approaches (e.g., Cassmassi and Bassett, 1991; Feister and Balzer, 1991; Fiore et

al., 1998; Fioletov et al., 2002) where the ozone levels are modelled as functions

of key meteorological variables, for example, temperature, wind speed, humidity,

air pressure and cloud cover. Feister and Balzer (1991) used 313 meteorological

parameters from three main sources: (a) geopotential at 18 grid points in Central

Europe; (b) synoptic meteorological data; and (c) aerological data from a few
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European stations. They provide a long-term trend of changes of surface ozone

from 1972-1987. They conclude that cloudiness are probably not the main cause

of the long-term changes in surface ozone, but changes in ozone trend are effected

by the circulation and concentration of ozone precursors (e.g., NOx, VOC). Fiore

et al. (1998) also support the result of Feister and Balzer (1991) for the long-term

trends in median and 90th percentile ozone concentrations at 549 sites across the

US for the 1980-1995 period.

There are also papers discussing time series modelling of ozone levels, where

the residuals are considered to have autocorrelation. For example, Galbally et

al. (1986) develop a linear regression model to analyse the daily maximum one

hour average ozone levels. Due to the high autocorrelation both in the raw data

and the residuals this method considers the lag one autocorrelation of the errors.

Temperature, wind speed and some other meteorological variables are also used,

however they do not estimate any trend in their analysis.

Korsog and Wolff (1991) provide a robust regression methodology to analyse

the urban daily maximum one hour ozone levels of eight major population centres

in the north-eastern US. Their study examined the trends in ozone levels from

1973 to 1983. They found that the 75th percentile ozone concentrations are a

good statistic for determining trends. In their analysis the surface temperature

and upper air temperature variables were found to be the best predictors of ozone

levels.

Bloomfield et al. (1996) discuss that statistical linear models have difficulty

to capture the complex relationships between the meteorological variables and

ozone. To overcome this difficulty they develop a parametric non-linear model.

They used twelve meteorological variables as covariates in the model and esti-

mated the trend in ozone levels from 1981 to 1991 in Chicago.

Huang and Smith (1999) extended the non-linear approach to classification

and regression trees (Breiman et al., 1984), where the meteorological influence

is treated non-linearly through a regression tree. A particular advantage of this

approach is that it allows to estimate different trends within the clusters produced

by the regression tree analysis. They use ozone concentration data from Chicago

to analyse their model and provide ozone-trend for 10 years (1981-1991).

Cox and Chu (1993) formulated a predictive model to analyse daily ozone

concentrations using generalised linear models (GLM), assuming a conditional
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Weibull distribution for the ozone concentrations given meteorology. They ap-

plied their modelling strategy to the annual distribution of ground-level ozone in

43 urban areas throughout the US. Their model includes a trend component that

adjusts the annual rate of change in ozone for concurrent impacts of meteorolog-

ical conditions, e.g., surface temperature and wind speed. Their results suggest

that meteorologically adjusted upper percentiles of the distribution of daily max-

imum one hour ozone levels are decreasing in most urban areas over the period

from 1981 to 1991. They also show that without meteorological components the

assessed trends underestimate the rate of reduction in ozone.

Following the lines of Cox and Chu (1993) and Huang and Smith (1999), Coc-

chi et al. (2005) model the daily ozone levels under the Bayesian paradigm. They

analysed the series of daily maxima of ozone concentrations over the metropoli-

tan area of Bologna, in North of Italy for the period 1994 to 2002. Their analysis

highlights the need for standardising the meteorological variables when assess-

ing long-term trend in ozone concentrations. They also found that the trend

obtained from the standardised meteorological variables behave differently com-

pared to the yearly median of ozone observations.

Davis et al. (1998) analysed ozone concentrations using singular value de-

composition and clustering to select the meteorological variables and used gener-

alised additive models (GAM) to develop functional relationship between ozone

and meteorological variables. They used one hour average ozone concentration

levels from several sites in Houston, Texas, and did not estimate any trend in

ozone levels. GAM are also used by Davis and Speckman (1999) to make next-

day predictions of ozone levels in the Houston area and used the daily maximum

eight-hour average ozone concentration data for analysis.

Camalier et al. (2007) also used GAM for modelling the daily maximum

eight-hour average ozone concentrations in 39 of the 53 metropolitan areas that

have been used in USEPA report (USEPA, 2004) for the period 1998-2004. Their

approach also describes the statistical methodology for meteorologically adjusted

ozone trends and characterises the relationship between meteorological variables

and ozone. They use separate models for each urban area and do not consider

the spatial correlation.

The approach of Dynamic linear models (DLM) described in West and Har-

rison (1997) are used by Zheng et al. (2007) to analyse ozone concentrations.
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However, they do not consider any spatial correlations between the observations

in different sites in the models. Here they compare this approach with the GAM

to estimate trends in ozone concentration levels in the eastern US for the period

1997-2004. They also compared the results from both models for four monitor-

ing locations chosen through principal components analysis (PCA) to represent

regional patterns in ozone concentrations. After adjusting for the meteorolog-

ical influence by the PCA, they found that the overall ozone trend showed a

downward pattern for all four locations.

Quantile regression approach is used by Sousa et al. (2009), where they

analysed the influence of the meteorological variables (e.g., temperature, solar

radiation, wind direction and relative humidity) on hourly ozone concentration

levels. In their study, hourly ozone data is used for the months June, July and

August in 2003, that are obtained from urban location in Oporto, Northern

Portugal. They forecast next day hourly ozone levels but did not obtain trends.

They concluded that the quantile regression approach is useful to evidence the

heterogeneity of the influence of the meteorological variables on different ozone

levels.

1.5.2 Spatio-temporal Approaches

Spatial and spatio-temporal modelling are also popular for analysing ozone con-

centration levels. Guttorp et al. (1994) examine hourly ozone concentration

data obtained from 17 sites concentrated around the Sacramento area of the San

Joaquin Valley of California. They apply a spatio-temporal analysis, which indi-

cated a relatively simple spatial covariance structure at night-time, and a more

complex one during the afternoon. A simple separable space-time covariance

model is used to analyse these data.

Carroll et al. (1997) develop another spatio-temporal model with an exponen-

tial space-time covariance function and applied it to hourly ozone concentration

levels obtained from twelve monitoring sites in Harris County, Texas. The model

they proposed for the ozone prediction consists of decomposing the ozone data

into a trend part and an irregular part. Along with building the model, they

develop a fast model-fitting method that can cope with the massive amounts of

available data and the substantial number of missing observations.

Huerta et al. (2004) use the spatio-temporal version of the DLM (developed
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by Stroud et al., 2001), and apply it to hourly ozone concentration data obtained

from 19 monitoring sites in Mexico city. This DLM is a state-space model and

incorporates spatial covariance structure for the ozone levels and model param-

eters. They use seasonal variation and temperature as covariate effects in their

model and analyse using Bayesian methods. Their methods provide short-term

forecasts and spatial interpolations for the ozone concentration levels, however

they do not estimate trends in ozone levels.

McMillan et al. (2005) proposed a hierarchical Bayesian model that describes

the spatio–temporal behaviour of daily ozone levels within a domain covering

Lake Michigan. Their model incorporates linkages between ozone and meteo-

rology and estimates ozone levels over the entire modelling domain based upon

unevenly distributed monitoring data. They provide prediction on spatial fields

of ozone concentrations considering effects of the meteorological variables, such as

temperature, humidity, pressure, and wind speed and direction. Trend analysis

for ozone levels are not discussed in their study.

Sahu et al. (2007) propose another spatio-temporal method to analyse daily

ozone levels based on autoregressive (AR) modelling. They use daily maximum

eight-hour average ozone levels obtained from 53 monitoring sites in Ohio. Their

model incorporates meteorological variables: maximum temperature, average rel-

ative humidity and wind speed in the morning and in the afternoon, observed at

a collection of ozone monitoring sites as well as at several weather stations where

ozone levels have not been observed. They handle this misalignment through

spatial modelling. Their model is hierarchical in nature and specified within a

Bayesian framework. They analyse 8 years of data from 1997-2004 and provide

predictions at the validation sites. Long-term trends in ozone concentration lev-

els are also analysed. In addition, they provide annual summaries of the ozone

levels.

Using similar types of models, Sahu et al. (2009) provide next day forecast

of the daily maximum eight-hour ozone concentration levels in the eastern US

using 390 monitoring locations. They use forecast data obtained from a computer

simulated model (see Section 1.4) as a predictor for the observed ozone levels in

the eastern US.

Dou et al. (2010) compare the Bayesian spatial predictor (BSP) method (Le

and Zidek, 1992; 2006) with the DLM for analysing hourly ozone concentration
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data from several sites in Illinois, Missouri and Kentucky. The BSP has been

proposed as an alternative to kriging (see Section 2.5 for kriging). Dou et al.

(2010) provide spatial interpolations at the validation sites for both methods and

have concluded that the BSP performs as well as the DLM and in some cases

of missing observations, the BSP performs better for prediction. Following this

Dou et al. (2011) also provide temporal forecast of hourly ozone concentrations

using the BSP.

Another method, Bayesian melding (Fuentes and Raftery, 2005), is used by

Liu et al. (2011) for predicting ozone concentrations in the unmonitored loca-

tions. They used data from the deterministic Air Quality Model (AQM) and the

MAQSIP (Multi-scale Air Quality Simulation Platform) model. The melding

methodology is applied and compared with kriging to predict and map spatial

fields. However, they do not obtain any trends in ozone levels.

Bayesian spatial quantile regression modelling is proposed by Reich et al.

(2011) to analyse daily maximum eight-hour average ozone concentrations in

the eastern US. Different meteorological variables (e.g., average temperature,

maximum wind speed and average cloud cover) are used as covariate on modelling

ozone levels. They conclude that meteorological variables are strongly associated

with ozone levels and the effects are stronger in the right tail than the centre of

the distribution.

1.5.3 Scale Transformation of Ozone Concentrations

There are many modelling approaches where the original scale of ozone levels are

used (e.g., Feister and Balzer, 1991; Fiore et al., 1998; Davis et al., 1998). How-

ever, in original scale ozone concentrations are unstable and as a result different

variance stabilising transformations have been proposed in the literature. For

example, the logarithmic transformation has been applied by Bloomfield et al.

(1996) and Korsog and Wolff (1991). However, the log scale introduces negative

skewness (Sahu et al., 2007). A popular approach is the square root transforma-

tion, see e.g., Galbally et al. (1986), Cox and Chu (1993), Sahu et al. (2007).

The square root transformation is adopted in this thesis because it encourages

symmetry and stabilises the variance of the data (Carroll et al., 1997; Sahu et

al., 2007; 2009).
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1.6 Literature Review for the big-n Problem

Statistical modelling is often infeasible for ozone concentration data obtained

from a large number of monitoring sites, because of the limitations in existing

computational ability. This problem is also known as big-n problem in literature

(see e.g., Banerjee et al., 2004, page-387; Xia and Gelfand, 2006; Shekhar and

Xiong, 2008).

In the big-n problem, exact likelihood based inference becomes unstable and

infeasible since it involves computing quadratic forms and determinants associ-

ated with a large variance-covariance matrix (Stein, 2008). The large n dimen-

sional variance-covariance matrix decomposition involves O(n3) computational

complexity in time and O(n2) in storage that increases with the increase of spa-

tial locations n (Cressie and Johannesson 2008). This problem, also arises in

evaluation of the joint or conditional distributions in Gaussian processes mod-

els under hierarchical Bayesian setup (Banerjee et al. 2004), particularly, for

example, in iterative algorithms.

The early approaches to solve the big-n problem are based on ad-hoc, for

example, local kriging (Cressie, 1993), and sub-sampling from a large spatial

dimension by a moving window approach see for example, Hass (1995); Pardo-

Iguzquiza and Dowd (1997). However, these easy methods ignore a moderate

amount of observed data in analysis.

The gradual methodological improvement leads to different approximation

techniques of kriging equations, for example, low rank kriging (Nychka et al.

1996) where the reduced spatial points are obtained using space filling algo-

rithm (Johnson et al. 1990). Kammann and Wand (2003) use this approach

and account for non-linear covariate effects by the geoadditive models. Spectral

domain approach is also used to reduce the dimension where likelihood approx-

imation of the kriging equation is used (Stein, 1999; Paciorek, 2007), and has

the limitations for analysing multivariate processes with non-stationary covari-

ance functions. Xia and Gelfand (2006) use the moving average technique to

approximate spatial random process as a linear combination of smaller random

variables, thus reducing the large spatial dimension. However, their method is

also only applicable for stationary spatial processes. Spatial prediction based on

low rank smoothing splines is also used for massive spatial data sets (Hastie 1996,
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Johannesson and Cressie 2004). Another technique, the Gaussian Markov ran-

dom fields (Rue and Held, 2006) approximation with sparse matrix algorithms,

is used to solve the problem for large spatial datasets (Hartman and Hossjer,

2008). However, their method is more suitable for areal data rather than point

referenced spatial data sets. To overcome this problem, recently Lindgren and

Rue (2011) used an explicit link between the Gaussian Markov random fields and

Gaussian fields using a stochastic partial differential equation approach to tackle

the gap. Reich et al. (2011) used a spatial quantile approach considering non-

Gaussian processes in the models. They use quantile parameters as the reduced

dimension of the data. However, their approach is sensitive to the choice of the

number of quantiles.

Furthermore, multi-resolution spatial models (Huang, et al., 2002, Johannes-

son and Cressie, 2004, Johannesson, et al., 2007) can capture the non-stationarity

of the data and provide fast optimal estimates. However, these methods cannot

capture the heterogeneity across large spatial regions. Approaches like low rank

and moderate rank matrix (Stein 2007, 2008) are also used to reduce the dimen-

sion of the data.

Fixed rank kriging (Cressie and Johannesson, 2008), can also handle the mod-

elling of massive spatial data. These approaches capture the non-stationarity and

heterogeneity in the data, but choice of smoothing parameters (e.g., basis func-

tions) and knots sometimes may increase the complexity of the models. Moreover,

their approach is not based on the likelihood function, because of the difficulties

in maximisation with large number of parameters.

To avoid approaches related to the basis functions and to utilise the likeli-

hood based approach, Banerjee et al. (2008) proposed the Gaussian predictive

processes, that can analyse the heterogeneity of the massive spatial data and

can easily handle the problem of the smoothness parameter with a solution of

the big-N problem. However, the non-spatial error term of this approach induces

positive bias and later Finley et al. (2009) proposed a modified process to ad-

dress this problem. In addition, Guhaniyogi et al. (2011) introduced an adaptive

technique for choosing knot sizes, where stochastic modelling of knots is used

instead of fixing them in the predictive process models.

In this thesis, we adopt the Gaussian predictive processes methodology and

propose a spatio-temporal model that can analyse ozone concentration levels ob-
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tained from the vast region of the eastern Unites States (US), details are provided

in later Chapter 6.

1.7 Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 reviews the statistical techniques that are used in spatial analysis.

We also discuss the fundamental geo-statistical methodologies to analyse spatial

and spatio-temporal data, particularly the approaches we have used in this thesis.

A review of the Bayesian paradigm is discussed in Chapter 3. Different

Bayesian modelling strategies, criteria of model choice are explained in this chap-

ter. We also discuss the Spatio-temporal Bayesian Gaussian processes models

that have been adopted in this thesis to analyse ground level ozone concentra-

tions.

Chapter 4 gives a description of available data that we use in this thesis. We

describe data preparation, editing and cleaning which is necessary for the raw

ozone data we obtained from the United States environmental protection agency

(USEPA) for the whole eastern US. The computer simulation model output values

are also discussed in this chapter. Different types of meteorological data are

provided by the National Climatic Data Center (NCDC)10, however in this thesis

we only consider the variables that have significant effects on ozone. We also

present summary statistics for all data sets after getting into analysable form.

In Chapter 5, we experiment with two different modelling strategies: the

DLM (Huerta et al., 2004) and the AR models (Sahu et al., 2007). Theoretical

properties of the models are discussed and compared to find out similarities and

dissimilarities. To compare the model performances we provide simulation exam-

ples together with a real life application on daily maximum ozone concentrations

observed in several sites in the state of New York for the months of July and

August, 2006. We use CMAQ output as a covariate in the models. We conclude

that the AR models perform better compared to the DLM both in theories and

in practical example.

To analyse and model large dimensional data obtained from the whole east-

ern US, we propose a new spatio-temporal modelling strategy in Chapter 6. The

10http://www.ncdc.noaa.gov/oa/ncdc.html
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proposed model is based on the Gaussian predictive processes (GPP) approxi-

mation and also considers the temporal dependency through the random effects.

The methodology of tackling spatial misalignment between ozone monitoring and

meteorological monitoring locations are also discussed in this chapter. Initially

we use a smaller part of the full data set consisting of four states for comparing

the proposed modelling approach with the AR models used in Chapter 5. We

find better predictive performance of the GPP based models over the AR models.

Here, we also obtain long term meteorology adjusted and unadjusted trends in

ozone levels from 1997 to 2006 and discuss on the non-attainments of the primary

ozone standards.

Chapter 7 describes the forecasting methodology of the models discussed in

the earlier chapters. Three weeks of data from the eastern US are used in this

chapter for analysis. Similar to Chapter 6, we compare the GPP based models

with the GP, DLM, and AR models using a smaller set of data. We conclude

that the model based on GPP approximation is the best among other modelling

strategies. Finally we obtain one day ahead forecast for 7 days at the CMAQ

grid locations spread around the eastern US.

In Chapter 8 we discuss the software package spTimer that have developed

as a part of this thesis. This package is built using low-level language C that

is hidden from the user and is designed for the open-source popular statistical

software R. Currently, this package can fit, predict and forecast data using three

types of Gaussian process spatio-temporal models. To validate the code we use

several simulation studies and re-estimate the true model parameters. We also

provide validation results for the simulated data sets.

Some concluding remarks are presented in Chapter 9. Here we discuss the

summary of the thesis and introduce some idea that can be extended for future

work.

1.8 Summary

The primary aim of this study is to model and analyse the daily maximum eight-

hour average ground level ozone concentrations obtained from a large number of

sites in the eastern US. Our interest is to predict and forecast ozone levels at

unmonitored locations and also at future time points along with their associated
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uncertainties through rigorous statistical models. In this chapter we provide a

brief description of ozone concentration levels and its effects on human health,

plant and vegetations. We also discuss a review of the available spatial and non-

spatial modelling approaches to analyse the ozone concentration levels. Review

of analysing large spatial data sets is also discussed to solve the well known big-n

problem.



Chapter 2

Review of Geostatistics

2.1 Introduction

The statistical methods in analysing spatial data date back to Matheron (1963),

where he proposed the term geostatistics and developed a range of estimation

techniques in mining using spatial statistical approaches. Geostatistical analysis

is important for modelling and understanding the spatial variability of a quantity

that may vary in space, for example, ozone concentration levels, rainfall, and soil

structure.

Spatio-temporal modelling is more recent than the spatial analysis methods

and a large literature has evolved in the last two decades (see for example, Baner-

jee et al., 2004; Le and Zidek, 2006; Finkenstadt et al., 2007; Gelfand et al., 2010

and references therein). Throughout the thesis, we will use the basic approaches

and assumptions of the spatio-temporal models stated in this chapter.

This chapter reviews the geostatistical methods together with their properties

and assumptions. The plan of this chapter is as follows: In Section 2.2 we

describe different types of spatial data. Section 2.3 discusses the spatial and

spatio-temporal processes. In Section 2.4 we provide the basic characteristics of

the spatio-temporal covariance functions. We discuss different types of spatial

interpolation techniques, also known as kriging in Section 2.5. In Section 2.6, we

provide some brief description on cartography and geodetic distances. Finally,

Section 2.7 ends this chapter with summary remarks.

22
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2.2 Types of Spatial Data

Spatially dependent data are often classified into three major types see e.g.,

Banerjee et al. (2004, Chapter 1). These are: (i) point-referenced data (ii) point

pattern data, and (iii) areal data. Below we discuss these three types of data.

2.2.1 Point-referenced Data

In point-referenced data (also known as geostatistical data) the random observa-

tion Z(s) is measured at a location s ∈ S ⊂ ℜd, and s varies continuously over

the study region S. Theoretically the number of locations in S is infinite. For

example see Figure 1.3 where the ozone concentration levels are monitored in

several sites in the state of Ohio.

2.2.2 Point Pattern Data

The second type of spatial data is known as point pattern data, where the study

domain S is random and its index set gives the locations of random events that

describe the observed spatial point patterns. An example of point pattern data

is given in Figure 2.1, where the points represent locations of 3605 trees of the

species Beilschmiedia pendula (Lauraceae) in a 1000 by 500 meter rectangular

sampling region in the tropical rain forest of Barro Colorado Island (Condit,

1998).
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Figure 2.1: Example of point pattern data showing locations of trees in the rain
forest of Barro Colorado Island.
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2.2.3 Areal Data

The third and final type of spatial data is known as areal data, where the study

domain S is a fixed subset with regular or irregular shape, but partitioned into a

finite number of areal units with well-defined boundaries. For example, Figure 2.2

shows the average 4th highest ozone concentration levels for the 33 states in the

eastern US in 1997.

Year 1997

Good (0-70 ppb)
Moderate (71-80 ppb)
Severe (81-100 ppb)
Unhealthy (101-150 ppb)
Very Unhealthy (more than 150 ppb)
No Information (Missing)

Figure 2.2: A choropleth map of the statewise average 4th highest ozone concen-
tration levels in 1997.

Henceforth, we only describe modelling strategies for analysing point-referenced

data since the main objective of this thesis is to model daily ozone concentration

levels observed in many fixed monitoring stations in the eastern US study region.

2.3 Spatial and Spatio-temporal Processes

Let s be any spatial location within the study region S. We write the spatial

random process as:

Z(s) : s ∈ S ⊂ ℜd

where, Z(s) is the measurement of the attribute of interest at location s. Nota-

tionally, for n different locations, the measurements can be written as, Z(s) =

(Z(s1), ..., Z(sn))′. To express the spatio-temporal process we need to include
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temporal identity on the spatial process.

The spatial process Z(s) can be extended to a spatio-temporal process with

the help of an additional index, t for time. Thus we can use the notation:

Z(s, t) : s ∈ S ⊂ ℜd, t ∈ ℜ

to denote the spatio-temporal process of interest. When we have observed the

Z(s, t) process at n spatial locations s1, ..., sn at t different time points, we may

write the spatio-temporal process Z(s, t) = (Z(s1, t), ..., Z(sn, t))
′, 1 ≤ t ≤ T .

However, from a mathematical perspective, we can also represent the spatio-

temporal process as a multivariate spatial process with dimension d+ 1, see e.g.,

Le and Zidek, (2006). They argue that every time point of the spatio-temporal

process can be regarded as a separate spatial random field.

In this study, we will consider models for Z(s, t) to be fully parametrised

by the set of p (say) parameters θθθ = (θ1, ..., θp)′. Our aim is to model the

spatio-temporal dependence present in the observations, with a view to making

a prediction Z(s0, t) at a new position s0, or to provide a forecast at a future

time point.

2.4 Characteristics of Space-time Covariance Func-

tions

2.4.1 Stationarity

Before going further on model discussions, we define the terms stationarity and

isotropy. The idea of stationarity comes from the general theory of stochastic

processes. Consider two spatial locations, s and s + h, where h ∈ ℜd. A spatial

process is called strictly stationary if, for any given n ≥ 1, any set of n sites

{s1, ..., sn} and for any h ∈ ℜd, the joint distributions of Z(s) and Z(s + h) are

same, i.e.,

π(Z(s1), ..., Z(sn)) = π(Z(s1 + h), ..., Z(sn + h)).

Assume that the process has a valid covariance function Cov(Z(s), Z(s + h)).

The process Z(s) is known as second-order stationary (also known as weak sta-
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tionary), if

Cov(Z(s), Z(s + h)) = C(h), ∀ s ∈ S, h ∈ ℜd,

where, C(h) is a function that depends on the difference in the spatial locations,

h. For non-stationary spatial process either or both the above type of stationarity

do not hold.

The function C(h), that we have defined earlier is known as covariogram. The

intrinsic stationary defines only the first and second moments of the differences

Z(s + h) − Z(s) but not anything about their distributions.

Similarly, spatio-temporal process say, Z(s, t) is considered to be mean sta-

tionary within its spatio-temporal domain S × T , if its mean process is constant

within spatio-temporal domain (Bruno et al., 2009). For weak stationary of the

spatio-temporal process Z(s, t) the mean function is assumed to be constant and

the covariance function is assumed to depend on spatial and temporal covari-

ances. We can observe that mean stationary only implies weak stationary if

the first two moments i.e., mean and variance exist, whereas weak stationary

only implies strict stationary if the spatio-temporal random process Z(s, t) is a

Gaussian process, details of Gaussian process is given in Section 3.4.

2.4.2 Isotropy

A spatial process Z(s) is termed as isotropic if its covariance function C(h)

depends only on the distance |h| between the two locations s and s + h. A process

which is not isotropic is called anisotropic. Covariance functions of anisotropic

processes exhibit different behaviour in different directions. Isotropic processes

are popular because of their simplicity, and easy interpretability.

There are common parametric isotropic models available in spatial analysis.

These models are in simple parametric form and are available as candidates for

the semivariogram γ(h). Figure 2.3 shows some of the covariance functions based

on different isotropic models.

2.4.3 Separable and Nonseparable Covariance Functions

The separability of models refers to formation of the spatio-temporal covariance

function as a product of the spatial and temporal covariance functions (see for
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Figure 2.3: Some illustrations of covariance functions based on parametric
isotropic models.

example Rouhani and Mayers 1990, Le and Zidek 2006, Diggle and Ribeiro 2007).

A separable spatio-temporal covariance function is defined as:

C(Z(s, t);Z(s′, t′)) = CS(s, s′)CT (t, t′)

where, s and s′ are the spatial locations and t and t′ are the temporal points, and

the terms CS(s, s′) and CT (t, t′) represent the spatial and temporal covariance

functions respectively. A space-time covariance function is called nonseparable if

it cannot be represented as the product of spatial and temporal functions. For a

separable process, the space time covariance function can be modelled separately.

The main advantage of assuming separability is the computational conve-

nience, since the spatio-temporal covariance matrix can be written as the Kro-

necker product of two smaller dimensional matrices. However, there are many

nonseparable models available. Cressie and Huang (1999) introduced several

classes of nonseparable stationary covariance functions to model spatio-temporal

data. They used Fourier transforms in their approach, and used the Bochner’s

theorem (1955) to guarantee positive definiteness for the covariance function.

There are other approaches for constructing non-stationary covariance function

see, for example Gneiting (2002), Stein (2005), Bruno et al. (2009) and the

references therein.
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2.4.4 Some Parametric Covariance Functions

In this section we discuss some parametric covariance functions (see Figure 2.3).

We can write the covariance function C(h) as:

C(h) = σ2κ(si, sj ; Φ)

where, σ2 is the common variance term and κ(si, sj ; Φ) is the spatial correlation

between locations si and sj with smoothness and decay parameters Φ. In this

thesis we frequently use the spatial exponential correlation function defined as:

κ(si, sj ;φ) = exp(−φ||si − sj ||), φ > 0,

where, ||si − sj || is the distance between sites si and sj , and φ is the spatial

decay parameter. We also use Gaussian and spherical correlation function. The

Gaussian correlation function is defined as:

κ(si, sj ;φ) = exp(−φ||si − sj ||2), φ > 0,

and we can define the spherical correlation function as:

κ(si, sj ;φ) = 1 − 3

2
φ||si − sj || +

1

2
(φ||si − sj ||)3), 0 < ||si − sj || < 1/φ,

The Matérn correlation function (Matérn 1986) that we used in this thesis is

defined as:

κ(si, sj ;φ, ν) =
1

2ν−1Γ(ν)
(2

√
ν||si − sj ||φ)νKν(2

√
ν||si − sj ||φ), φ > 0, ν > 0,

where, Kν is the modified Bessel function of the second kind with order ν. The

special cases of this correlation function are also available in exponential and

Gaussian form by replacing ν = 1/2 and ν → ∞ respectively. For convenience,

we also use ν = 2/3 to obtain a close form of the Matérn correlation function,

for more details see Cressie (1993) and Banerjee et al. (2004).
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2.5 Kriging

In this section we discuss the classical approaches to spatial interpolation. In

1951, D.G. Krige, a South African mining engineer developed a method that was

able to perform a spatial prediction for small amount of data. Later, Matheron

(1963) formalised that method and termed it Kriging. Several enhancements of

this method have been developed to deal with particular applications (see for

example, Cressie, 1993 Chapter 3 and Stein, 1999). Some of the enhancements

with mathematical settings are described below.

2.5.1 Simple Kriging

Let the stochastic response η(s) (point-referenced data) at site s be strictly sta-

tionary, so that it is written as:

Z(s) = µ(s) + η(s) (2.1)

where, µ(s) is a known function and η(s) is the spatial error process and assumed

it to be Gaussian with mean zero and covariance matrix ΣΣΣ (say). Let Z(s) =

(z(s1), ..., z(sn))′. The mean and variance of the process is written as, E(Z(s)) =

µ(s) and V ar(Z(s)) = ΣΣΣ. To obtain prediction at unknown site s0, we can

estimate the optimal prediction Z(s0) as:

Ẑ(s0) = µ̂(s0) + C ′ΣΣΣ−1(Z(s) − µ(s)).

where, C ′ = Cov(Z(s), Z(s0)). This type of kriging is known as simple kriging.

2.5.2 Ordinary Kriging

Assume that the mean process µ(s) = µ is known and does not vary with spatial

locations s, hence the model in equation (2.1) is written as:

Z(s) = µ+ η(s).
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The estimated optimal prediction Z(s0) at site s0 is known as the ordinary krig-

ing, and is written as:

Ẑ(s0) = µ̂+ C ′ΣΣΣ−1(Z(s) − µ̂),

where, µ̂ = (1′ΣΣΣ−11)−11′ΣΣΣ−1Z(s), and 1 is a vector with all elements equal to 1.

2.5.3 Universal Kriging

Assume the mean process µ(s) is unknown and it varies over space in the linear

regression form µ(s) = X(s)′βββ, and the covariance function ΣΣΣ is known as in the

model (2.1). The model is written as:

Z(s) = XT (s)βββ + ηηη(s),

where, ηηη(s) = (η(s1), ..., η(sn))′ and ηηη(s) ∼ N(0,ΣΣΣ), Z(s) = (Z(s1), ..., Z(sn))′,

βββ = (β1, ..., βp)′ is the p (say) parameters and XT (s) is the p×n covariate matrix.

Hence, we can estimate the optimal prediction at site s0 as:

Ẑ(s0) = XT (s0)β̂ββ + C ′ΣΣΣ−1(Z(s) − X(s)β̂ββ).

where, β̂ββ = (XT (s)ΣΣΣ−1X(s))−1XT (s)ΣΣΣ−1Z(s). This type of kriging is known as

the universal kriging.

Classical methods of kriging lack the ability to incorporate uncertainty as-

sociated with parameter estimation, and they are based on the assumption of

an isotropic covariance function that is sometimes unrealistic in environmental

applications. To overcome these problems the Bayesian approaches to kriging

have been developed. We briefly discuss this in the next Chapter 3.

2.6 Cartography

Cartography is the study of making maps in ways that represents the spatial

information. In maps, spatial data are presented with a valid coordinate system.

In cartography and spatial analysis, one of the important questions is how to

measure distance of the earth’s surface. The earth has irregular spherical shape,

this makes it difficult to obtain actual measurement of the surface of the earth.



2.6 Cartography 31

In this section we briefly describe how spatial statisticians and geographers de-

termine the distance between two locations in the earth’s surface.

2.6.1 Geodetic Distances

In spatial statistics we model the spatial dependence between two random vari-

ables as a function of the distance between the two sites where they were observed.

The ordinary Euclidean distance can be used to measure the distance for data

sets covering relatively small spatial domains. However, for large spatial regions,

e.g., north America, we need to consider the curvature of the earth to calculate

such distances, see Figure 2.4.

Figure 2.4: A map of north America illustrating the curvature pattern of the
earth.

In geostatistics it is preferable to obtain distance between two observation

sites using geodetic (or geodesic) distances but not using Euclidean distances (for

further readings see Banerjee et al., 2004, Chapter 1).

Geodetic distance is based on earth’s longitude and latitude positions. Most

common approach to measure the geodetic distance is known as the spherical

law of Cosines. For example, for two points P1 = (λ1, θ1) and P2 = (λ2, θ2) on

earth’s surface, the geodetic distance d12 can be obtained as:

d12 = R cos−1(sin θ1 sin θ2 + cos θ1 cos θ2 cos(λ1 − λ2))

where, R is the radius of the earth. Throughout this thesis we use the above

formula for calculation of the geodetic distance between two spatial locations.
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2.7 Summary

In this chapter we have reviewed the geostatistical methods and related concepts.

We briefly discuss different types of spatial data and spatio-temporal processes.

We also discuss some important characteristics of the space-time covariance func-

tions. The kriging approaches are described to predict at unmonitored spatial

locations. Some topics related to cartography are also discussed in this chapter.
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Review of Bayesian Modelling

3.1 Introduction

The Bayesian paradigm is used for making inference throughout this thesis. In

this chapter we provide an overview of the key concepts in Bayesian modelling.

A Bayesian approach is more natural than the traditional frequentist approaches

since it lets us deal with the uncertainty in the model and its parameters. In

Bayesian analysis the prior distribution has influence on the uncertainty of the

model and the total uncertainty can be represented by a probability distribu-

tion. Particularly in environmental applications, it is important to evaluate the

uncertainty and to give a scientific interpretation using probability statements.

For more detailed introduction to Bayesian modelling, see Gelman et al. (2004),

Bernardo and Smith (1994). For applications in spatial and spatio-temporal

modelling, Banerjee et al. (2004) provide an overview of Bayesian modelling.

In Section 3.2 of this chapter, we describe the fundamental elements of the

Bayesian paradigm. Section 3.3 provides a brief explanation of the Bayesian

model choice criteria. Section 3.4 describes some space-time Bayesian modelling

strategies in details. Finally in Section 3.5 we provide few summary remarks.

3.2 Bayesian Modelling and Computation

3.2.1 Bayesian Framework

In the Bayesian framework we update the prior knowledge using Bayes theorem

to the posterior distribution. Let, f(z|θθθ) be the likelihood function of parameters

33
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θθθ = (θ1, ..., θp)′ based on the observed data z = (z1, ..., zn)′. If we have a prior

distribution π(θθθ) for the parameters, then using the Bayes theorem we can obtain

the posterior distribution as:

π(θθθ|z) =
f(z|θθθ)π(θθθ)∫

Θ f(z|θθθ)π(θθθ)dθθθ
, (3.1)

where, the denominator of the above equation (3.1) is the integral over the pa-

rameter space Θ. This integral is also known as the marginal likelihood of the

data z and it is free of the parameters θθθ, hence can be treated as a constant. That

is why the posterior distribution is often written as proportional to the product

of the likelihood and the prior distribution, i.e.,

π(θθθ|z) ∝ f(z|θθθ)π(θθθ).

Bayesian methodology typically proceeds in the following steps: (i) write the

likelihood of the parameters for a given set of data, (ii) assign prior distributions

to the unknown parameters, (iii) calculate the posterior distribution and (iv)

make inference based on the updated information in the posterior distribution.

3.2.2 Prior Choices

The choice of the prior distributions is a very important step in any Bayesian

analysis. The most attractive choice of prior distributions should be the one

that best takes into account any previous knowledge. These types of priors are

known as informative priors. However, there is often no clear choice of prior

distributions for unknown parameters.

For various likelihood functions, there exists prior distributions that lead to

a posterior distribution, which comes from the same distribution family as the

prior. These types of prior distributions are known as conjugate priors. For

example, the prior distribution conjugate to a Bernoulli likelihood is a Beta dis-

tribution, and for a Poisson likelihood the conjugate prior distribution is the

Gamma distribution. Choice of this type of prior distribution is attractive be-

cause of its straightforward computation. However, for different posterior and

prior distribution families this type of prior might not be available.

To overcome this conjugacy problem, prior ignorance is used with a proper
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prior specification with large variability. For example, the inverse-gamma distri-

bution is used for the non-negative variance parameters in the models.

For the noninformative prior (also known as vague prior), the uniform dis-

tribution is commonly used. Besides in many situations Jeffrey’s rule is applied

to obtain the noninformative prior distribution (Gelman et al., 2004, page, 62),

where the noninformative prior distribution is taken as proportional to the square

root of the determinant of the Fisher’s information matrix.

3.2.3 Markov Chain Monte Carlo (MCMC)

In Bayesian analysis, complex hierarchical models are often analytically intractable

and are hard to fit. Therefore Markov chain Monte Carlo (MCMC) methods are

now popular for evaluating features of posterior distributions needed for making

inference. In MCMC we generate a sequence of samples from the joint probability

distribution of random variables. The purpose of such a sequence is to approxi-

mate the joint distribution, or to compute an integral (such as an expected value).

For example, let z, be the vector of the observed data and θθθ the parameter vector.

The MCMC algorithm generates a Markov chain, {θθθ(j)}n
j=1, from the posterior

distribution π(θθθ|z), where n is the number of MCMC samples. Then, the samples

are used to estimate integrals using Monte Carlo methods. Thus, we get,

Ê(h(θθθ)) =

∫

Θ
h(θθθ)π(θθθ|z)dθθθ,

where, h(θθθ) is a function of θθθ.

There are number of different MCMC simulation techniques available, for

example, Metropolis-Hastings algorithm, and Gibbs sampling. Details of these

techniques are found in Gelman et al. (2004), and Chen et al. (2000).

Convergence of the MCMC algorithm is often hard to detect. Several con-

vergence diagnostic methods exist, see for example, Gelman et al. (2004), Gilks

et al. (1996). However, the time series plots of the MCMC iterates usually

indicate the convergence properties of the MCMC algorithms. Ideally, the auto-

correlation between successive iterates should be low and higher order auto-

correlation should die down rapidly.
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3.2.4 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953 and Hastings,

1970) is an MCMC method for obtaining random samples. Here, we draw samples

from a non-standard posterior distribution by rejecting samples obtained from a

proposal distribution in an appropriate fashion.

The MH algorithms are based on a Markov chain that depends on samples

drawn from a proposal distribution and an acceptance-rejection mechanism. The

proposal suggests an arbitrary next step in the chain and the acceptance-rejection

step makes sure the appropriate limiting direction is maintained by rejecting

unwanted moves of the chain. For example, let, π(θθθ|z) be the density from which

we want to sample. We chose a proposal density q(θθθ′|θθθ) where θθθ denotes the

current point. We write the MH algorithm as follows:

(i) Sample a candidate value θθθ′ from the proposal density q(θθθ′|θθθ).

(ii) Calculate the acceptance probability α(θθθ,θθθ′) = min
{

1, π(θθθ′|z)q(θθθ|θθθ′)
π(θθθ|z)q(θθθ′|θθθ)

}
.

(iii) Sample a uniformly distributed random variable U on (0, 1).

(iv) If, U < α(θθθ,θθθ′) then accept the candidate value else assign the present

value to the new value.

We use the MH algorithm in particular, if the posterior distribution and the

conditional distributions are not standard distributions. There are some special

cases of the MH algorithm as discussed below:

Metropolis Algorithm

The Metropolis algorithm is a especial case of the MH algorithm, where q(.|θθθ) =

q(θθθ|.). This yields the acceptance probability as:

α(θθθ,θθθ′) = min

{
1,
π(θθθ′|z)

π(θθθ|z)

}

Here, the acceptance ratio only depends on the ratio of the values of the target

density π(θθθ′|z)
π(θθθ|z) .
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Random-walk Metropolis

In random-walk (RW) Metropolis algorithm, we draw candidate from the follow-

ing RW model,

θθθ′ = θθθ + τǫǫǫ,

where, ǫǫǫ is an independent error term with mean zero, and τ is a scaling factor,

which we call the tuning parameter in this thesis. For a symmetric RW model,

we get q(.|θθθ) = q(θθθ|.), hence, the RW Metropolis algorithm is equivalent to the

Metropolis algorithm.

3.2.5 Acceptance Rates

The tuning parameter determines the rate of acceptance in the Metropolis-

Hastings algorithm. Large values allow bigger moves around the sample space

with more rejections and small values yield a small rejection. A number of other

factors effects the desired rate of acceptance, for example, choice of proposal

distribution and the initial value of the chain. It is suggested that for Gaussian

random walk proposals the desired acceptance rate is around 20-40% (see Gelman

et al., 1997, 2004, and references therein) when the parameter is one-dimensional.

3.2.6 Gibbs Sampler

The Gibbs sampler, introduced by Geman and Geman (1984), has been developed

by Gelfand and Smith (1990). The Gibbs sampler simulates from multidimen-

sional posterior distributions by iteratively sampling from the lower-dimensional

conditional posterior distributions. Unlike the previous MH algorithms, the

Gibbs sampler updates the chain one component at a time, instead of updat-

ing the entire vector. For example, starting from an initial value θ(0), at iteration

j, the Gibbs sampler draws:

θ
(j)
1 ∼ π(θ1|θ(j−1)

2 , θ
(j−1)
3 , ..., θ(j−1)

p , z)

θ
(j)
2 ∼ π(θ2|θ(j)

1 , θ
(j−1)
3 , ..., θ(j−1)

p , z)

... ...

θ(j)
p ∼ π(θk|θ(j)

1 , θ
(j)
2 , ..., θ

(j)
p−1, z).
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The densities on the right hand sides of the above are called the complete con-

ditional distributions or full conditional distributions. Throughout the thesis we

will use the Gibbs Sampling approach to analyse and fit the Bayesian models.

3.3 Bayesian Model Choice Criteria

3.3.1 Bayes Factor

Suppose we have two models M1 and M2 with data z and the corresponding

marginal likelihoods are π(z|M1) and π(z|M2). The Bayesian model choice cri-

terion “Bayes factor” for these two models is given by,

BF =
π(z|M1)

π(z|M2)

There are many methods available for approximating the marginal likelihoods for

calculating the Bayes factor, see for example, Newton and Raftery (1994), Chib

(1995) and Meng and Wong (1996). The Bayes factor, however, is more difficult

to compute for large dimensional problems and is not considered any further in

this thesis. Instead we use the model choice criteria discussed in Section 3.3.3,

which is most suitable when the Gaussian distribution is employed at the first

stage of a hierarchical Bayesian model.

3.3.2 Deviance Information Criteria

Spiegelhalter et al. (2002) introduce the deviance information criteria (DIC)

based on the posterior mean of the model parameters and the averages of the

deviances (Dempster 1974) using a sample from the posterior distribution. Let z

be the observed data with unknown quantities θ and π(z,θ) be the joint posterior

distribution. We can write the Bayesian deviance as:

D(θ) = −2L(θ|z)

where, L(θ|z) is the log-likelihood of the model. Now the goodness of fit of a

model is obtained as D̄ = Eθ|z(D) and the model complexity is written as:

pD = Eθ|z(D) −D[Eθ|z(θ)]
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Thus finally the DIC is obtained as:

DIC = Eθ|z(D) + pD = D[Eθ|z(θ)] + 2pD

The model with lower DIC value indicates a better fitting model.

3.3.3 Predictive Model Choice Criteria

The predictive model choice criterion (PMCC), see e.g. Gelfand and Ghosh

(1998), is suitable for comparing models with normally distributed error and is

given by:

PMCC =
n∑

i=1

E(Zi,rep − zi)
2 +

n∑

i=1

Var(Zi,rep), (3.2)

where Zi,rep denotes a future replicate of the data zi. The first term in the

above is a goodness of fit term while the second is a penalty term for model

complexity. The model with the smallest value of PMCC is selected among the

competing models. Thus, to be selected a model must strike a good balance

between goodness of fit and model complexity. Throughout the thesis we use

PMCC as a Bayesian model choice criteria.

3.3.4 Criteria for Validations

To compare the quality of predictions and forecasts obtained from the fitted

models, in this thesis we use some validation criteria (see for example, Atkinson

and Lloyd 1998, Moyeed and Papritz 2002, Stephenson 2006, and Yip 2009). We

use the root mean squared error (RMSE), mean absolute error (MAE), relative

bias (rBIAS), and relative mean separation (rMSEP). These validation criteria

are defined as:

RMSE =

√√√√ 1

m

m∑

i=1

(ẑi − zi)
2

MAE =
1

m

m∑

i=1

|ẑi − zi|

rBIAS =
1

mz̄

m∑

i=1

(ẑi − zi)

rMSEP =
m∑

i=1

(ẑi − zi)
2/

m∑

i=1

(z̄p − zi)
2,
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where, m is the total number of observations we want to validate, zi is the data

indexed by i, ẑi is the prediction value, z̄ and z̄p are the arithmetic mean of the

observations and predictions respectively.

3.4 Gaussian Process Models

A Gaussian process is a collection of random variables, any finite number of

which have a Gaussian distribution with valid mean and variance. There is a

huge literature on modelling spatio-temporal data based on Gaussian processes

(see details in Section 1.5). In this section we describe some hierarchical Bayesian

models, that are used in this thesis to analyse the daily maximum eight-hour

average ozone levels.

3.4.1 Bayesian Linear Regression Models

Let Z be the n× 1 response vector and X be an n× p design matrix. We write

the linear model as:

Z = Xβ + ǫ, ǫ ∼ N(0, σ2I)

where, β is the p × 1 vector of parameters, σ2 is the variance parameter of the

error process and I is the n× n identity matrix.

Under Bayesian approach, we specify the prior distributions for the unknown

model parameters. For example flat prior distributions as: π(β) ∝ 1, and for

variance parameter as: π(σ2) ∼ IG(a, b). Hence, we obtain the full conditional

posterior distribution for β as:

π(β|σ2, z) ∼ N((XT X)−1XT z, σ2(XT X)−1)

and for σ2 as:

π(σ2|β, z) ∼ IG

(
a+

n

2
, b+

1

2
(z − Xβ)T (z − Xβ)

)

We use Gibbs sampler to draw samples from the conditional distributions.

Suppose that we have observed new predictor values X̃ and we want to predict
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the outcome Z̃. Thus, we obtain the posterior predictive distribution as:

π(Z̃|z) =

∫
π(Z̃|z,β, σ2)π(β, σ2|z)dβdσ2

where, π(Z̃|z,β, σ2) ∼ N(X̃β, σ2I), and we can use MCMC methods to evaluate

this integral.

3.4.2 Bayesian Kriging

Kitanidis (1986) provided one of the earliest articles using the Bayesian approach

in spatial interpolation. He developed a theoretical framework for deriving the

predictive distribution of a spatially dependent random variable with a covariance

field assumed to be known. He derived the kriging estimator and its variance as

special cases of the posterior mean and variance respectively under the Bayesian

paradigm. However, the assumption of a known covariance function makes it dif-

ficult for application to wider settings. So, Handcock and Stein (1993) advanced

the Kitanidis theory by assuming the covariance function as a functional form of

the parameters. Their approach is extended by De Oliveria et al. (1997) where

the random fields are non-linearly transformed to Gaussian distributions and un-

certainty associated with such transformation is also considered. By now there

is a substantial literature on this, see for example, Ecker and Gelfand (1997),

Banerjee et al. (2004), Le and Zidek (2006) and the references therein.

The basic Bayesian model with Gaussian random effects can be written as:

Z(s) = µµµ(s) + ηηη(s) + ǫǫǫ(s),

where Z(s) = (Z(s1), ..., Z(sn))′ is the observed data, µµµ(s) is the mean function

at location s, defined as µµµ(s) = X(s)′βββ. The residuals are partitioned where

ηηη(s) is the spatially correlated error and distributed as zero mean stationary

Gaussian spatial process with covariance σ2
ηΣ, where Σ is a correlation matrix

with Σij = κ(si − sj ;φ), i, j = 1, ..., n and κ(.) is a valid isotropic correlation

function, φ is a spatial decay parameter. The second part ǫǫǫ(s) is the non-spatial

uncorrelated pure error also distributed normally with mean zero and variance

σ2
ǫ I, where I is the identity matrix. Thus, we can write,

Z(s)|θθθ ∼ N(X′(s)βββ, σ2
ηΣ + σ2

ǫ I).
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Let the collection of model parameters be given by θθθ = (βββ, σ2
η, σ

2
ǫ , φ)′, θθθ ∈ Θ and

let π(θθθ) denote the prior distribution for θθθ. The posterior distribution is obtained

as:

π(θθθ|z(s)) ∝ f(z(s)|θθθ)π(θθθ)

where, f(z(s)|θθθ) is the likelihood function of the parameters. The posterior

predictive distribution Z(s′|.) at an unobserved site s′ is given by:

π(Z(s′)|z(s)) =

∫

Θ
π(Z(s′)|θθθ, z(s))π(θθθ|z(s))dθθθ

where, π(Z(s′)|θθθ, z(s)) is the probability density function of Z(s′) at an unob-

served site given θθθ and z(s), and π(θθθ|z(s)) is the posterior distribution of θθθ.

MCMC methods (see details in Section 3.2) can be used to evaluate the above

integral.

3.4.3 Bayesian Spatio-temporal Gaussian Process (GP) Models

Let Z(si, t) denote the observed point-referenced data and O(si, t) is the true

value corresponding to Z(si, t) at site si, at time t, i = 1, ..., n and t = 1, ..., T .

In vector notation, Zt = (Z(s1, t), ..., Z(sn, t))
′ and Ot = (O(s1, t), ..., O(sn, t))

′,

we write the spatio-temporal linear regression models as:

Zt = Ot + ǫt, (3.3)

Ot = Xtβ + ηt (3.4)

where, Xt is the n × p design matrix of covariate effects and β = (β1, ..., βp)′ is

the p×1 vector of parameters respectively. The term ǫt = (ǫ(s1, t), ..., ǫ(sn, t))
′ ∼

N(0, σ2
ǫ In) is the independently distributed white noise error with variance σ2

ǫ

also known as the nugget effect, and In is the n × n identity matrix. The term

ηt = (η(s1, t), ..., η(sn, t))
′ ∼ N(0,Ση) is the spatially correlated error, with n×n

variance-covariance matrix Ση = σ2
ηSη = σ2

ηκ(si, sj ;φ, ν), i, j = 1, ..., n; σ2
η is

the site invariant common variance and κ(.;φ, ν) is the spatial correlation matrix

with spatial decay φ and smoothness ν parameters. The errors ǫt and ηt are

assumed to be independent of each other.

Suppose we want to predict at location s′ at time t. The posterior predic-

tive distribution for Z(s′, t) is obtained by integrating over the parameters with
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respect to the joint posterior distribution as:

π(Z(s′, t)|z) =

∫
π(Z(s′, t)|Ol(s

′, t), σ2
ǫ , z)π(O(s′, t)|θ)π(θ|z)dO(s′, t)dθ (3.5)

where, θ = (β, σ2
η, φ, ν)′. According to (3.3) we obtain,

Z(s′, t) ∼ N(O(s′, t), σ2
ǫ ), (3.6)

where, O(s′, t) is the true prediction values at site s′, and we obtain the samples

for O(s′, t) from:


 O(s′, t)

Ot


 ∼ N




 X(s′, t)β

Xtβ


 , σ2

η


 1 Sη,12

Sη,21 Sη




 , (3.7)

where, Sη,12 is 1 × n with ith entry given by, κ(si, s
′;φ, .), i = 1, ..., n and

Sη,12 = S′
η,21. In summary, we draw sample θ(j), j ≥ 1, from the full con-

ditional posterior distributions and then draw O(j)(s′, t) from (3.7) and finally

draw Z(j)(s′, t) from (3.6).

3.4.4 Bayesian Spatio-temporal Dynamic Linear Models (DLM)

The DLM, developed as a result of the popularity of Kalman filtering (Kalman

1960) methods, provide a dynamical state-space system that is thought to evolve

from a pair of state and observation equations. The DLM is a state-space model

and its Bayesian version is introduced by West and Harrison (1997), where in

each time point the model parameter changes because the model is assumed it

is locally appropriate in time. This sequential and dynamic approach is used

in the spatio-temporal modelling by Stroud et al. (2001). Huerta et al. (2004)

elaborate the DLM for temporal non-stationarities in the data. In general, the

DLM is written as:

Zt = Ftθθθt + νννt, t ≥ 1, (3.8)

θθθt = θθθt−1 +ωωωt, t ≥ 1, (3.9)

where, the first equation (3.8) is known as the observation equation and the sec-

ond equation (3.9) is known as the system equation. In the DLM equations, Zt =
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(Z(s1, t), ..., Z(sn, t))
′ denote the observation vector for any 1 ≤ t ≤ T , and T is

the maximum number of time points in the data. Here νννt = (ν(s1, t), ..., ν(sn, t))
′

is the spatially correlated error and is assumed to follow the N(0,Σν) distribu-

tion. The term Ft is the matrix of the covariate effects. We also assume that

ωωωt ∼ N(0, σ2
ωI), where I denotes the identity matrix of appropriate order, and

the initial state θθθ0 is assumed to follow N(µµµ, σ2
θI) distribution for suitable values

of the hyper-parameters µµµ and σ2
θ . The observations are spatially correlated,

hence a spatially correlated covariance matrix must be assumed for Σν . For con-

venience, in this thesis we assume the exponential covariance function to model

spatial dependence and let

Σν = σ2
νSν = σ2

ν exp(−φνD)

where φ > 0 is a spatial correlation decay parameter assumed to be known, and

the n × n distance matrix D has elements dij , the distance between si and sj ,

i, j = 1, ..., n.

Huerta et al. (2004) considered the above DLM structure and used tem-

perature as a covariate effect on ozone. They and similarly Duo et al. (2010)

used a seasonal component Skt(ak), k = 1, 2, at time t, that consists of sine and

cosine terms to describe the seasonal pattern of the ozone concentrations (see

Section 1.5). Unlike these authors we do not include any seasonal term in the

models as the seasonal terms are more relevant for modelling the diurnal cyclic

components often present in the hourly ozone data.

To accommodate the covariate effects Xt and intercept at time t, we can

assume that Ft = (1,Xt); consequently θθθt = (αt, βt)
′. The error ωωωt in the DLM

system equation, hence is written as, ωωωt = (ωα
t , ω

β
t )′, where ωα

t ∼ N(0, σ2
ω) and

ωβ
t ∼ N(0, σ2

ωβ).

In Bayesian structure, the function of the joint posterior distribution of the

DLM based on Huerta et al. (2004) is π(θθθ, σ2
ω, σ

2
ωβ, σ

2
θ , φ|z). So, the spatial

interpolation at new site s′ and time t is obtained from the posterior predictive

distribution,

π(Z(s′, t)|θθθt, σ
2
ω, σ

2
ωβ, σ

2
ν , σ

2
θ , φ)

The MCMC algorithm can be applied to obtain the samples form the posterior

distributions.
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3.4.5 Bayesian Spatio-temporal Auto-regressive (AR) Models

We consider the AR model as proposed by Sahu et al. (2007), to analyse spatio-

temporal ozone concentration data. Let Zlt = (Zl(s1, t), ..., Zl(sn, t))
′ be the

vector of observed and Olt = (Ol(s1, t), ..., Ol(sn, t))
′ be the true square-root

ozone concentration levels in day t and year l, t = 1, ..., T , l = 1, ..., r at sites s.

In matrix notation the AR model is as follows:

Zlt = Olt + ǫǫǫlt, ǫǫǫlt ∼ N(0, σ2
ǫ I),

Ol1 = µl1 + γγγl, γγγl ∼ N(0,ΣΣΣγ),

Olt = ξl1 + ρOl(t−1) + Xltβββ + ηηηlt, ηηηlt ∼ N(0,ΣΣΣη),

where, ǫǫǫlt = (ǫl(s1, t), ..., ǫl(sn, t)) is a white-noise process with σ2
ǫ as the nugget

effect. The term γγγl = (γl(s1, 1), ..., γl(s1, 1))′ is the regional effect in year l at

site s over a global level µl. The term ηηηlt = (ηl(s1, t), ..., ηl(sn, t))
′ is the spatially

correlated error, ρ is the autoregressive process parameter with 0 < ρ < 1, ξl is the

global annual intercept, and Xlt is the covariate effects on true ozone levels. The

covariance functions ΣΣΣη = σ2
ηSη and ΣΣΣγ = σ2

γSγ have elements σ2
η exp(−φηdij)

and σ2
γ exp(−φγdij). The term Xltβββ is written as:

Xltβββ =




x′
l(s1, t)

...

x′
l(sn, t)







β1

...

βp


 =




xl1(s1, t) xl2(s1, t) ... xlp(s1, t)

... ... ... ...

xl1(sn, t) xl2(sn, t) ... xlp(sn, t)







β1

...

βp




We obtain the conditional mean and variance of Zlt as E(Zlt|Olt) = Olt and

V ar(Zlt|Olt) = σ2
ǫ I respectively. Hence, Zlt|Olt ∼ N(Olt, σ

2
ǫ I). Again, the

conditional mean and variance of Olt is obtained as: E(Olt|Ol(t−1)) = ϑϑϑlt and

V ar(Olt|Ol(t−1)) = V ar(ηηηlt) = ΣΣΣη, where, ϑϑϑlt = ξl1+ρOl(t−1). Hence, Olt|Ol(t−1) ∼
N(ϑϑϑlt,ΣΣΣη), for t = 2, ..., T . Let θθθ represent all parameters in the models and writ-

ten as θθθ = (µl, ξl, ρ,βββ, σ
2
ǫ , σ

2
γ , σ

2
η).

A simpler version of the AR model is also available (Sahu, 2011), where the

true values are modelled for time t, starting from day one, i.e., t = 1, ..., T and

l = 1, ..., r using the equation as:

Olt = ρOlt−1 + Xltβ + ηlt (3.10)
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where, the initial value for Ol0 is assigned a prior distribution with mean µl and

covariance matrix Σl = σ2
l S0, where S0 has elements exp(−φ0dij), i, j = 1, ..., n.

The predictive distribution of the observation Zl(s
′, t′) at location s′ and at

time t is written as:

Zl(s
′, t) ∼ N(O(s′, t), σ2

ǫ )

Hence, the posterior predictive distribution can be obtained as:

π(Zl(s
′, t)|z) =

∫
π(Zl(s

′, t)|O(s′, t), σ2
ǫ ) × π(Ol(s

′, t)|θθθ, z∗)

×π(θθθ, z∗|z) × π(θ|z)dOl(s
′, t)dz∗dθθθ,

where, z∗ denote the missing data, z denote the all non-missing data, see details

in Sahu et al. (2007). Similar to all other Bayesian approaches we can use MCMC

methods to draw samples from the posterior distribution.

3.5 Summary

In this chapter we provide a short review of Bayesian modelling. We discuss

the Bayesian framework, choices for different types prior distributions and the

MCMC algorithms. We also provide several model choice criteria for choosing

different Bayesian models but only use the PMCC further in the later chapters

of this thesis. Some Gaussian process spatio-temporal models are also discussed

that are used in this thesis for analysing daily ozone concentration levels.



Chapter 4

Data Description

4.1 Introduction

We have already mentioned in Chapter 1 that our main interest is to model and

analyse the daily maximum eight-hour average ozone concentration levels in a

study region in the eastern US. There are large number of ozone monitoring sites

in the eastern US, and there are problems associated with data collection methods

in many of these sites. A lot of missing data arises due to this. In addition, there

are instances of extreme observations at some of these sites. In this chapter we

provide details regarding the procedures we have adopted for data cleaning and

editing so that the data can be readily used for modelling purposes.

The eastern US ozone data set that we obtain after cleaning has daily ozone

concentration levels for 153 days in the ozone season (May to September) for

years 1997 to 2006 from 691 locations, see Figure 4.1. In this chapter we also

provide many summary statistics and graphical displays to describe this large

data set. We also obtain the summary statistics used to monitor the primary

ozone standard as defined in Section 1.3.2. These summary statistics will be used

in model based analysis in the later chapters.

Apart from the observed values, we have also obtained the CMAQ output

for the daily maximum eight-hour ozone concentration levels, see Section 1.4 for

details on CMAQ. As expected there is no missing data in these computer output.

We present summaries of these forecasts and compare with those of the observed

ozone concentration data.

It is well known that ground level ozone is affected by meteorological vari-

47
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NAMS/SLAMS sites
CASTNET sites
Validation sites
Meteorological sites

Figure 4.1: A plot of the 691 ozone monitoring locations in the eastern US,
among them 646 are from NAMS/SLAMS and 45 are from CASTNETS. Hold-
out sites for model validation are superimposed in the map together with the 746
meteorological monitoring sites in the eastern US.

ables such as, temperature, relative humidity and wind speed (see Section 1.5).

Hence, in our study we also include these meteorological variables obtained from

the National Climatic Data Center (NCDC)1 of US Department of Commerce.

We provide the data processing and summary statistics of these meteorological

variables.

4.2 Daily Ozone Data

For 691 monitoring sites in the eastern US, with 10 years of data for 153 days

in each year we get 1,057,230 observations for ozone concentrations. However,

among them 110,363 (= 10.44%) observations are missing, and each site has

more than 50% data of ozone levels. We also observe among these sites, 646

are from NAMS/SLAMS and rest of the site (45 sites) are from CASTNET (see

Figure 4.1). The information regarding the NAMS/SLAMS and the CASTNET

sites are given in Section 1.2.

1see, http://www.ncdc.noaa.gov/oa/ncdc.html
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4.2.1 Data Preparation, Editing and Cleaning

The USEPA collects daily ozone concentration levels from about 1700 monitoring

sites covering the 50 states of US. We consider a part of the eastern US as our

study region (see Figure 4.1), where we finally have data from 691 sites.

Sites with more than 50% missing observations are discarded from the 1700

monitoring sites. We also remove ozone monitoring sites on the offshore area as

we want to model the ozone concentration levels in the inland areas only.

During the 10 years of data collection the original locations of about 20 sites

(out of 691) moved to a new location, which is a short distance away. For

convenience, we treat the two locations to be the same and reference the combined

site by the longitude latitude combination of the most recent site. For example,

a site in the state of Alabama has longitude -87.005 for the period 1997 to 1999,

but the same site has different longitude value -87.004 for the period 2000 to

2006. Hence, we replace the site longitude position in 1997-1999 by the longitude

position in 2000-2006.

Additionally, there are 15 pairs of sites in our data set, which are less than a

kilometre apart. For convenience and to reduce the number of sites for modelling

we combine these pairs of sites as follows:

• We divide 15 pairs of sites into two categories, according to the nature

of the observed data. The first category contains the 13 pairs for which

there are relatively small differences between the ozone concentration levels.

Figure 4.2 provides a typical example of the difference between the ozone

concentration levels. We combine the observed ozone concentrations from

these types of pairs by taking simple average of the available data from the

two sites and we also refer the combined site by one of the two sites that

is selected arbitrarily.

In this category, six pairs of sites have missing values in only one or both

of the two sites in the pair. For these pairs we simply combine the two

sites by replacing the missing observation by the available observation and

if both sites in the pair are missing then that observation in the combined

site is treated as missing. Here, we refer the combined site by the site that

has less missing observations in the pair.

• In the second category, the observation from one site contained many high
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Figure 4.2: Time series plot of relatively small differences in ozone levels for a
pair of sites.

out of range values, such as 500, see for example Figure 4.3. For this pair

we replace such outlying observations by the observations from the other

site in the pair, and we refer the combined site by the site that has no

outlier.
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Figure 4.3: Time series plot of differences in ozone levels for a pair of sites that
represent the second category: extreme observation.

4.2.2 Descriptive Statistics

In this section we discuss some summary statistics and graphical displays of

the data set we prepared in the previous section. Recall that we have daily

data from 691 monitoring sites for 153 (= T ) days in a year (from May 1 to

September 30) for 10 (= r) years. Out of these 1,057,230 (= nrT ) possible

observations, 110,363 (i.e., 10.44%) are missing. The first three years contain

a higher percentage (15% − 25%) of missing observations compared to the later

years. This is possibly because of the improvement in data collection methods

after the millenium. However, the percentage of missingness increased to a double
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digit number after 2004.

From Table 4.1, we can see that the available ozone concentration values

range from 0.22 ppb to 246.22 ppb with mean 50.41 ppb and median 49.37 ppb.

Minimum Mean Median Maximum

0.22 50.41 49.37 246.22

Table 4.1: Summary statistics for daily maximum eight-hour average ozone con-
centration levels in parts per billion (ppb).

The box-plot of ozone concentration values by year are given in Figure 4.4.

Here, we can observe that the overall level goes up in the year 1998, comes down

to the lowest level in 2000, and then rises again and comes down in the year 2004.

After that the level again rises in 2005 and comes down in 2006.
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Figure 4.4: Box-plot of daily maximum eight-hour ozone concentration levels by
years.

Figure 4.5 shows the levels of ozone concentration for different months. Here,

we can observe that on average the ozone levels are highest in July and August

and lowest in September. The levels in May and June are similar.

Figure 4.6 represents the box-plot of the ozone concentration levels of the

different states within our study region of the eastern US. Some states, e.g.,

Maryland and Tennessee have much higher ozone levels than some others e.g.,

Maine and Vermont. The average ozone levels in most states fall between these

two extremes and the levels in a state like New York, seems to represent a typical

state. To illustrate, we shall analyse the ozone levels observed in New York in

much more detail in Chapter 5.
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4.2.3 Annual 4th Highest Maximum Ozone Concentrations

Figure 4.7 provides a time series plot of the annual 4th highest maximum ozone

concentrations for 691 sites in the eastern US. The figure shows the presence of

some outlying monitoring sites for which there were some unusually high level

of ozone concentration values. Most of the sites had their annual 4th highest

concentration values greater than 85 ppb, which is the standard used in this

thesis, see Section 1.3.

Most of the sites show a regular pattern, which yields an increase in 1998

and 1999, then decrease in 2000, again increase in 2002, decrease in 2004 and

finally after a little increase in 2005 it decreased in 2006. This pattern of 4th

highest maximum ozone concentrations is approximately similar to the pattern

showed by the box-plot of the daily maximum eight-hour ozone concentration

levels provided in Figure 4.4.
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Figure 4.7: Time series plot of the 4th highest maximum ozone concentrations
for 691 sites in the eastern US.

4.2.4 Three-Year Rolling Averages

The three-year rolling average of the annual 4th highest daily maximum ozone

levels is obtained by taking the average of three years and aligning that with the

last year of averaging, see Section 1.2.2.

For our eastern US data set we calculate the three year rolling averages for the

years 1999-2006. The time-series plot of the three-year rolling averages shows a
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downward slope in time (see Figure 4.8). Except for a few outliers the three-year

averages range from 60-110 ppb.
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Figure 4.8: Time series plot of three-year rolling average of the 4th highest
maximum ozone concentrations for 691 sites in the eastern US.

We discuss these outliers in Section 4.5.

4.3 CMAQ Output

In this thesis we use the CMAQ output as a covariate in the modelling (for

details of CMAQ, see Section 1.4). These data are obtained for 9119 grid cells

that covers the eastern US, see Figure 4.9. However, to use the data in modelling

ozone concentration levels, we need to find the appropriate number of CMAQ

grid cell points that match with the number of ozone monitoring sites. We have

CMAQ output for 153 days in 2006 and 21 days (June 24 to July 15) in 2010.

In this thesis, we use a part of the first set of CMAQ output as a covariate to

compare different modelling strategies for ozone levels (see Chapter 5) and the

second set of data is used to obtain next day forecasts for ozone levels using a

novel methodology (see Chapter 7).

4.3.1 Data Preparation for CMAQ Output

We have already mentioned that the total number of observed ozone monitoring

sites is 691, hence we need to locate possibly 691 grid cells for the CMAQ data.
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Pennsylvania

Figure 4.9: Panel (a) shows the 9119 CMAQ grid cells covering our study region
in the eastern US. Panel (b) represents the CMAQ grid cells for the state of
Pennsylvania.

Usually, in each grid cell we obtain one ozone monitoring site. However there are

some grid cells where we can get more than one monitoring sites, for example, in

the District of Columbia we have seen five ozone monitoring sites that are in one

CMAQ grid cell. Therefore, for modelling purposes, the CMAQ values of that

grid cell is used for modelling ozone levels of all five ozone monitoring sites in

the District of Columbia.

4.3.2 Descriptive Statistics for CMAQ Output

The CMAQ output provides broadly similar patterns as the observed ozone val-

ues. However, there exists dissimilarities between them. For example, Table 4.2

shows that the CMAQ output varies from 2.70 ppb to 131.00 ppb where the

observed ozone varies from 1.88 ppb to 141.50 ppb in 2006. The average and

median of the forecast values and observed ozone levels also differ slightly.

Minimum Mean Median Maximum

Observed O3 1.88 48.19 48.00 141.50

CMAQ output 2.70 51.25 51.02 131.00

Table 4.2: Summary statistics for daily maximum eight-hour average ozone con-
centration levels and CMAQ forecast values in ppb in year 2006.
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4.4 Meteorological Data

The meteorological data for the variables: maximum temperature, dew points

and average wind speed are obtained from the NCDC2. Figure 4.1 shows 746

monitoring sites of the meteorological variables together with the ozone moni-

toring sites in the eastern US. We have a total of 3,424,140 observations for 153

days in 10 years from 746 meteorological monitoring sites for the three variables.

Among them 682,351 (i.e., 19.93%) are missing.

4.4.1 Data Preparation for Meteorological Variables

For convenience, we use the temperature on the ◦C (degree Celsius) scale rather

than the ◦F (degree Fahrenheit) scale as used in the US. We also work with

relative percentage humidity obtained using3:

Td × a

Td + b
=
T × a

T + b
+ ln

[
RH

100

]
(4.1)

where, a = 17.271 and b = 237.7◦C are fixed constants, Td is the dew point and

T is the temperature in ◦C, and RH is the percentage relative humidity.

We can see from Figure 4.1 that there are some sites where both meteoro-

logical and ozone concentration data are observed and there are also some other

sites where only one type of data are observed. This misalignment in the data

are handled using the spatial kriging (see Section 2.5) method. This approach of

handling misalignment using kriging is applied in different literature (for example

see, Reich et al., 2011). Thus, after kriging we obtain a final non-missing data set

of the meteorological variables for 691 ozone monitoring sites in the eastern US.

Details of managing misalignment are discussed in Section 6.6.4 of this thesis.

4.4.2 Descriptive Statistics for Meteorological Variables

In this section we describe some summary statistics related to the maximum

temperature, relative humidity and average wind speed in the eastern US. We

can observe from Table 4.3 that maximum temperature varies from −1.30◦C

to 42.28◦C. The mean and median RH are 5.74% and 5.66% respectively. The

2National Climatic Data Center (NCDC), website: http://www.ncdc.noaa.gov/oa/ncdc.html
3provided by NOAA, see http://www.hpc.ncep.noaa.gov/html/dewrh.shtml
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average wind speed is measured in nautical miles per hour, varies from 0.39 knots

to 40.06 knots.

Meteorological variables Minimum Mean Median Maximum

Maximum Temp. (◦C) -1.30 27.61 28.30 42.28

Relative humidity (%) 2.11 5.74 5.66 13.29

Average wind speed 0.39 5.51 5.18 40.06

Table 4.3: Summary statistics for daily maximum temperature in ◦C, percentage
relative humidity and average wind speed in nautical miles in the eastern US.

Table 4.4 shows the correlation between observed ozone levels with the sig-

nificant meteorological variables used in the modelling. We observe maximum

temperature has a positive correlation with the observed maximum 8 hour ozone

levels, whereas wind speed and relative humidity show negative correlation with

ozone levels.

o8hrmax TEMP WDSP RH

o8hrmax 1.00 0.40 -0.23 -0.54
TEMP 0.40 1.00 -0.27 -0.41
WDSP -0.23 -0.27 1.00 0.17
RH -0.54 -0.41 0.17 1.00

Table 4.4: Correlation matrix of daily maximum 8 hour ozone levels and meteo-
rological variables. Here, TEMP is maximum temperature in ◦C, WDSP is the
average wind speed in nautical miles and RH is the percentage relative humidity
in the eastern US.

Figure 4.10(a) shows box-plot of the daily maximum temperature trend in

the eastern US. Remarkably, the trend in maximum temperature matches closely

with the overall trend in ozone levels in Figure 4.4. From Figure 4.10(b) and (c),

we observe that the overall trend in average wind speed shows approximately the

same pattern compared to the RH. However, there are some dissimilarities too,

for example, in year 2003 the wind speed is lower than the years 2002 and 2004.

We also observe the variability for the average wind speed is relatively higher

compared to temperature and RH.
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Figure 4.10: Box-plot of the three meteorological variables by years, (a) daily
maximum temperature levels (◦C) (b) relative humidity in percentage and (c)
daily average wind speed in nautical miles per hour in the eastern US.



4.5 Some Outliers in the Observed Ozone Concentration Levels 59

4.5 Some Outliers in the Observed Ozone Concentra-

tion Levels

We observe some outliers from the annual 4th highest maximum and 3-year

rolling average plots (see Figure 4.7 and 4.8). The monitoring sites for those

outlier observations are identified, where all of them are NAMS/SLAMS sites

(for NAMS/SLAMS sites see details in Section 1.2). Figure 4.11 represents the

5 monitoring sites superimposed in the eastern US map.

A

B
C

D

E

Figure 4.11: Map of the eastern US for the ozone monitoring sites with superim-
posed outlier observation locations A to E.

There are several factors that can increase ozone levels dramatically, for ex-

ample effects of meteorological variables, sudden increase of the ozone emission

sources etc. We observe major increase in ozone levels in the mid summer sea-

sons, i.e., in the months of June and July. For example, Figure 4.12 shows the

time-series plots of ozone levels for months June and July in 2002. We can also

observe from the meteorological variables that the standard deviations for maxi-

mum temperature, relative humidity and wind speed are 3.0, 0.7, and 1.8 in the

month of July 2002, which is relatively higher compared to the average monthly

standard deviations 2.3, 0.4, and 1.2 respectively.
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Figure 4.12: Time-series plot of ozone levels for location E, for the months of
June and July in 2002.

4.6 Ozone Data for Forecast Models

Alongside the 10 years daily ozone concentration data in the eastern US, we have

another set of daily ozone data for three weeks starting from 23 June to 14 July,

2010. We use this data set for forecasting of 7 days ahead that are analysed in

Chapter 7. CMAQ output are also available for this time period that are used

as covariate in the models.

Figure 4.13 represents the map of the eastern US, where ozone monitoring

and CMAQ grid locations are superimposed. In the following sections we will

provide some descriptive statistics related to the ozone and CMAQ output.

Fitted locations
Validation sites
CMAQ grid locations

Figure 4.13: Plot of the 639 ozone monitoring sites in the eastern US in 2010.
62 hold-out sites, 577 sites for fitting forecast models, and 1451 CMAQ grid
locations are superimposed.
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Minimum Mean Median Maximum

Ozone levels 0.00 50.62 50.99 113.00

CMAQ output 16.50 59.19 60.36 145.50

Table 4.5: Summary statistics for daily ozone levels and CMAQ output in the
eastern US.

4.6.1 Descriptive Statistics

In this data set we have 13,419 ozone observations for 21 days in 639 ozone mon-

itoring locations, among them 299 (≈ 2.23%) are missing. As expected we do

not have any missing observations for the CMAQ grid output. Table 4.5 provides

the summary statistics for ozone levels and CMAQ data, where we observe aver-

age level ozone measurement is littile bit higher for the CMAQ output. We use

this data set in Chapter 7 to obtain forecast in the future time and for forecast

validations.

4.7 Summary

In this chapter we present different data editing techniques and summary statis-

tics of the daily ozone concentration levels. In addition, we describe data obtained

from the computer simulated models known as CMAQ. We also describe meteo-

rological data with their summary statistics. In the rest of this thesis we will use

the data described in this chapter.



Chapter 5

Model Comparisons

5.1 Introduction

Several approaches have been proposed to model daily ozone concentration levels.

Section 1.5 provides a review of these. In this chapter we compare two such

approaches: the dynamic linear models (DLM) (Stroud et al., 2001; Huerta et

al., 2004) and the hierarchical auto-regressive (AR) models (Sahu et al., 2007).

There are few articles that compare dynamic linear approach with other mod-

els for ozone concentration levels. Zheng et al. (2007) used DLM and generalised

additive models (GAM) to explain trend in ozone levels, however they do not con-

sider the spatial correlations and applied principal component analysis (PCA) to

represent regional patterns of ozone concentrations. Their results indicate both

methods can easily estimate trends in ozone levels and provide good predictions.

They conclude that additive models are attractive when estimates are needed

quickly or when many similar but separate site specific analyses are required. In

addition, dynamic models are much more flexible, readily addressing such issues

as autocorrelation, the presence of missing values, and estimation of long-term

trends or cyclical patterns.

Dou et al. (2010) compare the space-time version of the DLM with another

estimation method, the Bayesian spatial predictor (BSP) (see details in Le and

Zidek, 2006) to analyse hourly ozone concentrations. They conclude that BSP

works at least as well as the DLM, and requires much less computational power,

see Section 1.5.

In this chapter we compare the DLM with the AR modelling strategies by

62
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providing some theoretical results regarding the predictive and forecasting dis-

tributions obtained using simplified versions of these models. The simplified

models do not consider the covariate effects, but they represent the underlying

basic spatio-temporal characteristics of the models.

We also simulate four replicated datasets from both models and compare their

performances. As expected, the fitted model performs best when it is also the true

simulation model. The models are also applied to a real-life ozone concentration

data set obtained from New York for the months of July and August, 2006 (see

Section 4.2 for data description).

The remainder of this chapter is organised as follows: in Section 5.2, we briefly

describe both models and their simplified versions. Section 5.3 discusses the prop-

erties and theoretical results that we have obtained for the models. Section 5.4

provides a simulation study and the real data example on daily maximum eight-

hour ozone concentration levels in New York. Finally, a few summary remarks

are given in Section 5.5.

5.2 Model Specifications

The DLM and the hierarchical AR models are discussed in Section 3.4. The

simplified versions of both the models are described below.

5.2.1 Simplified DLM

Following Dou et al. (2010), we consider a simplified version of the DLM where

we assume that there are no covariate effects, i.e. Ft = 1, in equation (3.8), which

corresponds to the model that has a site invariant mean. Consequently, ωt turns

out to be a scalar, and we assume ωt ∼ N(0, σ2
ω). The simplified model is given

by:

Z(si, t) = θt + ν(si, t) (5.1)

θt = θt−1 + ωt (5.2)

we assume the initial condition θ0 ∼ N(µ, σ2
θ).
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5.2.2 Simplified AR Models

To simplify the AR models, we again consider no effect of the meteorological

variables on true ozone levels O(si, t). We also assume no global intercepts to

further simplify the model. The simplified AR model is written as:

Z(si, t) = O(si, t) + ǫ(si, t), t = 1, 2, ..., T (5.3)

O(si, t) = ρO(si, t− 1) + η(si, t), t = 1, 2, ..., T (5.4)

with initial condition O(si, 0) ∼ N(µ,Σ0), where Σ0 has elements σ2
0 exp(−φ0dij),

with φ0 as a decay parameter.

5.3 Theoretical Results

For comparison of two modelling strategies: the DLM and the AR models, we

consider their simplified versions stated in equations (5.1)-(5.2) and (5.3)-(5.4).

We assume that the required components σ2
ν , σ

2
θ , σ

2
ω and σ2

ǫ , σ
2
0, σ

2
η of the respec-

tive models are known constants, and the autoregressive parameter ρ is also

known for the AR model. These are assumed for the purpose of obtaining the

theoretical results. In Appendix A we provide the proofs of the theories and

required calculations.

5.3.1 Some Properties of the DLM and the AR Models

We provide some properties of the AR models and compare those with the prop-

erties of the DLM obtained by Dou et al. (2010). Now, the variance-covariance

structure (see Dou et al., 2010) of Z(si, t) and Z(sj , t+k) for the DLM is written

as:

Cov[Z(si, t), Z(sj , t+ k)] = σ2
θ + tσ2

ω + σ2
ν exp(−φdij)1(k = 0). (5.5)

where, k ≥ 0 is an integer and 1(k = 0) is the indicator function for the variance

(σ2
ν) of the spatially correlated error term of the model.

We now obtain a similar result for the AR models as follows. For any positive
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integer t the AR models imply that:

Z(si, t) = ǫ(si, t) + η(si, t) + ρ η(si, t− 1) + ...+ ρt−1 η(si, 1) + ρtO(si, 0),

and for any integer k > 0:

Z(sj , t+ k) = ǫ(sj , t+ k) + η(sj , t+ k) + ρ η(sj , t+ k − 1) + ...+ ρk−1 η(sj , t+ 1)

+ ρk η(sj , t) + ρk+1 η(sj , t− 1) + ...+ ρt+k−1 η(sj , 1) + ρt+k O(sj , 0).

The assumptions of the AR models state that the spatial errors η(si, t) and

η(sj , t + k) are independent if k > 0 and the hierarchical error ǫ(si, t) is inde-

pendent of the spatial error η(sj , t), and the initial random variable O(si, 0) is

independent of both η(si, t) and ǫ(si, t). Hence, we have

Cov(Z(si, t), Z(sj , t+ k)) = Cov(ǫ(si, t), ǫ(sj , t+ k)) + ρ2t+k Cov(O(si, 0), O(sj , 0))

+ ρk Cov(η(si, t), η(sj , t)) + ρk+2 Cov(η(si, t− 1), η(sj , t− 1))

+ ...+ ρk+2t−2 Cov(η(si, 1), η(sj , 1))

= ρ2t+kσ2
0 exp(−φ0dij) + ρk 1−ρ2t

1−ρ2 σ
2
η exp(−φηdij).

Thus we arrive at the following general covariance function of the observations

Z(si, t) and Z(sj , t+ k) at locations si, sj , at time t and t+ k as:

Cov[Z(si, t), Z(sj , t+ k)] = ρ2t+kσ2
0 exp(−φ0dij) + ρk

[
1 − ρ2t

1 − ρ2

]
σ2

η exp(−φηdij)

+σ2
ǫ 1(k = 0). (5.6)

where, k ≥ 0 is an integer and 1(k = 0) is the indicator function for the nugget

effect (σ2
ǫ ) of the model.

These two general covariance functions given in equations (5.5) and (5.6)

enable us to study many properties of the two models as discussed in the following

two sub-sections. Details of the calculation are given in Appendix A.

5.3.2 Comparison of Correlation Structures

Using the expression for the general covariance function in equation (5.5) Dou et

al. (2010) obtained the following results:

(i) Cor(Z(si, t), Z(sj , t + k)) for i 6= j attains its maximum at k = 0 and
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decreases as k increases. This can be a reasonable property since the cor-

relation between observations at different locations can be expected to be

the maximum at the current time because both of those locations may be

influenced similarly by the prevailing meteorological and other conditions,

e.g., power station emission volumes, affecting ozone production. The cor-

relation should decrease at different times due to possible mismatches in

the meteorological conditions at different times.

(ii) Cor(Z(si, t), Z(sj , t)) → 1 as t → ∞ for i 6= j. This seems to be an

unreasonable property. The correlation between any two fixed monitors

should not increase with time.

(iii) Cor(Z(si, t), Z(sj , t)) → 1 as dij → 0 for i 6= j. This is a reasonable

property since the observations at two locations close to each other should

be very similar.

(iv) Cor(Z(si, t), Z(sj , t)) → σ2

θ
+tσ2

ω

σ2

θ
+tσ2

ω+σ2
ν

as dij → ∞ for i 6= j. Ideally, this limit

should be close to 0 since the observations at two far away locations should

tend to be independent of each other. In order to achieve this ideal limit,

Dou et al. (2010) suggested replacing σ2
ω by σ2

ω/T and taking σ2
θ much

smaller than σ2
ν .

Similar properties of the AR models can be derived using the general covari-

ance function obtained in equation (5.6).

(i) As in the DLM case, Cor(Z(si, t), Z(sj , t + k)) for i 6= j decreases as k

increases.

(ii) Cor(Z(si, t), Z(sj , t)) → σ2
η exp(−φdij)

σ2
ǫ (1−ρ2)+σ2

η
as t → ∞ for i 6= j, where φ. Unlike

the case for the DLM, this correlation does not approach 1.

(iii) Cor(Z(si, t), Z(sj , t)) → 1 as dij → 0 for i 6= j. This is a reasonable

property as in the case for the DLM.

(iv) Cor(Z(si, t), Z(sj , t)) → 0 as dij → ∞ for i 6= j. Unlike the case for the

DLM, here the ideal limit is reached without any further condition or model

adjustments.
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5.3.3 Comparison of Variance Inequalities for Predictions

The differences in covariance structure imply very different behaviour in model

based predictions and forecasting. In this section we investigate the prediction

variances by examining five important inequalities capturing various possibilities

for predictions. We compare the results for the AR models with those for the

DLM obtained by Dou et al. (2010).

For simplicity we consider prediction at an unmonitored site s0 given the

observations at a monitored site s1. We assume that all the parameters, ρ, φ, σ2
θ ,

σ2
ν , σ2

ω, σ2
0, σ2

η, σ2
ǫ are known. Hence the conditional variance of Z(s0, t) given

Z(s1, t
′) for any t and t′ will be the predictive variance in the Bayesian setting

since there is no need to integrate over any unknown parameters to obtain the

predictive distributions. The comparisons performed in the simulation study and

the real data example in the next section do not make these assumptions.

For the simplified versions of the DLM and the AR models in equations (5.1)-

(5.2) and (5.3)-(5.4) respectively, with n = 1 and t = 1, 2, the joint distribution

of observations (z(s0, 1), z(s0, 2), z(s1, 1), z(s2, 2))′ can be written as: N(0,Σ),

where Σ is the variance-covariance matrix, obtained from equation (5.5) for the

DLM and from equation (5.6) for the AR models.

By simple calculations we obtain the following conditional variances for the

AR models:

Var(Z(s0, 1)|Z(s1, 1)) = σ2
ǫ + ρ2σ2

0 + σ2
η − ζ2 (σ2

0
ρ2+σ2

η)2

σ2
ǫ +ρ2σ2

0
+σ2

η

Var(Z(s0, 2)|Z(s1, 2)) = σ2
ǫ + ρ4σ2

0 + (1 + ρ2)σ2
η − ζ2 {ρ4σ2

0
+(1+ρ2)σ2

η}2

σ2
ǫ +ρ4σ2

0
+(1+ρ2)σ2

η
,

where ζ = exp(−φd01) denotes the spatial correlation between the observations

at the two sites at any given time. The general covariance function (5.6) also

allows us to calculate the conditional variances Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2))

and Var(Z(s0, 2)|Z(s1, 1), Z(s1, 2)); the expressions for these are long and given

in Appendix A.

• Now, we obtain the following results involving the conditional variances for

the AR models:

Var(Z(s0, 1)|Z(s1, 1)) − Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2)) = N1

∆1(σ2
ǫ +ρ2σ2

0
+σ2

η)

Var(Z(s0, 2)|Z(s1, 2)) − Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2)) = N1

∆1(σ2
ǫ +ρ4σ2

0
+(1+ρ2)σ2

η)
,
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where

N1 = ζ2ρ2σ4
ǫ (ρ2σ2

0 + σ2
η)2

and

∆1 = σ4
ǫ + σ2

η(ρ2σ2
0 + σ2

η) + σ2
ǫ {ρ2(1 + ρ2)σ2

0 + (2 + ρ2)σ2
η}.

Thus the above two differences in variances are always non-negative. These

two variance inequalities ascertain that the variance of the spatial prediction

at site s0 using data from both time points will always be smaller than that

when the spatial prediction is done using data from only one time point.

Dou et al. (2010) prove the exact same results for the DLM as:

Var(Z(s0, 1)|Z(s1, 1)) − Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2)) = N2

∆2(σ2

θ
+σ2

ω+σ2
ν)

Var(Z(s0, 2)|Z(s1, 2)) − Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2)) = N2

∆2(σ2

θ
+2σ2

ω+σ2
ν)
,

where

N2 = σ4
ν(σ2

θ + σ2
ω)2(1 − ζ)2

and

∆2 = (σ2
θ + σ2

ω + σ2
ν)(σ2

θ + 2σ2
ω + σ2

ν) − (σ2
θ + σ2

ω)2.

A striking difference between the two models lies in the expression for the

factor in the numerator. Observe that both differences have a factor ζ2

in the numerator which implies that the differences increase as the spatial

correlation ζ increases. Intuitively, this is a very desirable property since

spatial prediction should become more accurate as the spatial correlation

increases. However, the same conclusion cannot be reached for the DLM

since the variance differences involves the spatial correlation ζ only through

a factor (1−ζ)2 in the numerator. This seems to be an undesirable property

of the DLM.

• Dou et al. (2010) prove that, for the DLM, conditioned on the same amount

of data, the predictive variance of Z(s0, 1) would be no greater than that

of Z(s0, 2), that is,

Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2)) ≤ Var(Z(s0, 2)|Z(s1, 1), Z(s1, 2)).
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The same inequality holds for the AR models only under the condition

κ ≡
σ2

η

σ2
0

≥ 1 − ρ2. (5.7)

Note that this always holds if we set ρ = 1 as in the DLM case. For other

values of ρ, this condition implies that the ratio of the process and the

initial variance, κ must be bounded below by 1 − ρ2. This condition holds

if we set σ2
0 to be the limiting variance of ηt given by σ2

η/(1 − ρ2) as t > ∞.

However, this is a troublesome property as the conditional variance in-

creases by time. Hence, under the condition in equation (5.7), the AR

model can perform better than the DLM.

• All four conditional variances discussed so far for both the models can be

proved to be monotonically decreasing function of spatial correlation ζ, or

equivalently, increasing function of the distance, d01 between the data site,

s1 and the predictions site, s0.

• In the time series modelling framework, it is worthwhile to investigate

whether or not it is possible to make more accurate spatial prediction by

conditioning on additional temporal data. That is, whether inequalities

such as

Var(Z(s0, 2)|Z(s1, 2)) > Var(Z(s0, 2)|Z(s1, 1), Z(s1, 2)), (5.8)

can be expected to hold. The above inequality, however, is always true

due to the fact that the conditional variance decreases as the number of

conditioning random variables increases in a nested fashion.

A slight re-formulation of the above question is often more useful in prac-

tical modelling. Would the inequality (5.8) hold if for the prediction prob-

lem in the left hand side we ignore the data at time t = 1 completely

and apply the model at time t = 2 for the first time? In this case,

Var(Z(s0, 2)|Z(s1, 2)) when the model is applied for the first time at t = 2

will be exactly the same as Var(Z(s0, 1)|Z(s1, 1)). Hence, we need to in-
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vestigate what conditions will guarantee the inequality

Var(Z(s0, 1)|Z(s1, 1)) − Var(Z(s0, 2)|Z(s1, 1), Z(s1, 2)) > 0. (5.9)

For the DLM, Dou et al. (2010) show that (5.9) holds if and only if

σ2
w

σ2
θ

<
κ+ 1

κ
, (5.10)

where κ =
σ2

η

σ2

0

≡ σ2
ν

σ2

θ

under the DLM. Note that this condition (5.10) is free

of the spatial correlation parameter ζ. We now investigate the conditions

under which (5.9) holds for the AR models.

The analysis for the AR models is more complicated due to the presence

of the extra temporal correlation parameter ρ. We consider the following

special and limiting cases. Straightforward calculations yield that the vari-

ance difference in equation (5.9) is negative if σ2
0 = 0. In addition it goes

to ∞ as σ2
0 → ∞; hence, large values of σ2

0 will guarantee that (5.9) holds.

Now it is interesting to investigate what happens if σ2
0 takes any other

value. We can prove that equation (5.9) holds if

σ2
ǫ

σ2
0

<
κ+ ρ2

κ− (1 − ρ2)
,

when ζ approaches 1 (i.e. for large spatial correlation). Observe that for

ρ = 1 the above condition reduces to the one for the DLM case (5.10) if

σ2
θ ≡ σ2

0 and σ2
w ≡ σ2

ǫ . Note that κ+ρ2

κ−(1−ρ2)
≥ κ+1

κ
always for any value

of 0 < ρ2 < 1. This implies that the inequality (5.9) holds for a wider

range of parameter values under the AR models than the DLM. We can

also prove that, when ζ → 0 the inequality (5.9) holds if in addition we

have σ2
0 > σ2

η/(1 − ρ2).

5.3.4 Comparison of Variance Inequalities for Forecasts

In this section we provide some properties of the models for conditional variances

for forecasting at an unmonitored site s0. Similar to the previous section we as-

sume all parameters of the models are known. For the simplified version of the

DLM and the AR models in equations (5.1)-(5.2) and (5.3)-(5.4) respectively,
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with n = 1 and t = 1, 2 and forecast at time t = 3, the joint distribution of ob-

servations (z(s0, 3), z(s0, 2), z(s1, 1), z(s1, 2), z(s2, 1), z(s2, 2))′ can be written as:

N(0,Σ), where Σ is the variance-covariance matrix, obtained from equation (5.5)

for the DLM, and from equation (5.6) for the AR models.

• The conditional variances of forecast for the DLM can be obtained as:

Var(Z(s0, 3)|Z(s1, 2)) = σ2
θ + σ2

ν + 3σ2
ω − (σ2

θ + 2σ2
ω)2

σ2
θ + σ2

ν + 2σ2
ω

.

For the AR models we can write the same conditional variances as:

Var(Z(s0, 3)|Z(s1, 2)) = ρ6σ2
0+(1+ρ2+ρ4)σ2

η+σ2
ǫ −ζ2 (ρ5σ2

0 + ρσ2
η + ρ3σ2

η)2

ρ4σ2
0 + σ2

η + ρ2σ2
η + σ2

ǫ

.

From the forecast variances of the DLM we can see that it does not depend

on the spatial correlation between sites s0 and s1. However, for the AR

models, the increase in spatial correlation (i.e., ζ → 1) yields less forecast

variability, a desirable property.

• Similar to the prediction inequalities in equations (5.8) and (5.9), we can

write the forecast conditional variance at time t = 3 given data at time

t = 2 is equal to the conditional variance for forecasting based on only one

time point, i.e., at time t = 2 given data at site s1 as:

Var(Z(s0, 3)|Z(s1, 2)) = Var(Z(s0, 2)|Z(s1, 1)).

We can obtain the following inequality similar to equation (5.9):

Var(Z(s0, 2)|Z(s1, 1)) − Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)) > 0. (5.11)

For the AR models the inequality in equation (5.11) holds as σ2
0 → ∞,

henceforth large values of σ2
0 will guarantee the inequality holds.

Other results for the forecast conditional variances are also similar to the

conditional variances of predictions discussed in Section 5.3.3.

• For both models the forecast variances with less amount of temporal ob-

servations is greater than the forecast variance with more temporal obser-
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vations. Hence, for both models we can write the inequality:

Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)) ≤ Var(Z(s0, 3)|Z(s1, 2)). (5.12)

Again for more spatial observations, we can write the inequality:

Var(Z(s0, 3)|Z(s1, 1), Z(s2, 2)) ≤ Var(Z(s0, 3)|Z(s1, 2)). (5.13)

Hence, the conditional variance of forecasts decreases for the increase in

both temporal and spatial observations.

In summary, the AR models are likely to have better properties if the initial

variance σ2
0 is large compared to the process variance σ2

η. In practical exam-

ples where the models are more complex and parameters are unknown, we will

not be able to verify the conditions required for the theoretical results, and we

must, therefore, rely on empirical evidence. This is where various Bayesian and

non-Bayesian model choice criteria can be used to perform model choice. The

following section discusses this with several simulation and a real data example.

5.4 Examples

In this section we compare the DLM and AR models in practical data modelling

situations where these are often implemented. We use the DLM and the AR

models that are stated in Section 3.4. Unlike Hureta et al. (2004) and Duo et

al. (2010), we do not include any seasonal term in the models for daily ozone

data, because seasonal terms are more relevant for modelling the diurnal cyclic

components often present in the hourly ozone data.

We consider modelling daily eight-hour maximum ozone concentration data

from the 29 ozone monitoring sites in the state of New York for 62 days in the

months of July and August in 2006. We shall use data from 25 sites for model

fitting and the data from the remaining 4 sites will be used for model validation

purposes. The state of New York is considered as the spatial domain because the

ozone monitoring network in this state represents typical practical situations: a

cluster of few sites in and around a big city (the city of New York here) and a

moderate number of other sites, situated large distances apart, covering a vast
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region; see Figure 5.1 for a map of New York and the location of the monitoring

sites. The data from 62 (= T ) days in July and August are modelled since these

are in the high ozone season in the USA. The spatio-temporal domain considered

here represents a moderate computational problem where we can implement the

models and obtain results using a reasonable amount of computing time and

effort.
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Figure 5.1: A map of the 29 ozone monitoring sites in the state of New York.
Four randomly chosen sites labelled A,B,C and D are used for validation purposes
and the remaining 25 sites (numbered 1 to 25) are used for modelling.

In the practical modelling of this section, following Sahu et al. (2009), as the

single covariate we include the output of a computer simulation model known

as the CMAQ model. Details of CMAQ modelling are given in Section 1.4 of

Chapter 1. In both the DLM and the AR models we use the daily maximum

eight-hour CMAQ ozone concentration output for the grid cell covering the mon-

itoring site as the covariate. The spatial predictions at the unmonitored sites are

performed using the CMAQ output at the corresponding grid cells. In our models

we have also included other meteorological covariates (see Section 4.4) such as

the daily maximum temperature, but none of those turn out to be significant in

the presence of the CMAQ output. Figure 5.2 shows a strong linear relationship

between ozone concentration values and the corresponding CMAQ output.

The full Bayesian model is completed by specifying prior distributions for all
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Figure 5.2: A scatter plot of daily maximum eight-hour average ozone concen-
tration levels (ppb) against the CMAQ output (ppb) for the grid cells covering
that monitoring sites from 25 sites in New York for 62 days in July and August
2006.

the unknown parameters. We work with the inverse of the variance components

σ2
ǫ , σ

2
η, σ2

0, σ2
ν , σ2

θ and σ2
ω and assume an independent gamma prior distribution

with parameters a and b having mean a/b for each of 1/σ2
ǫ , 1/σ2

η, 1/σ2
0, 1/σ2

ν ,

1/σ2
θ and 1/σ2

ω. In our implementation we take a = 2 and b = 1 implying

that these variance components have prior mean 1 and infinite variance. We

assign a flat prior N(0, 104) for the regression co-efficient β. Following Sahu

et al. (2009) we use an empirical Bayes method to estimate the value of the

spatial correlation decay parameters φν , φη and φ0 since these parameters are

often difficult to estimate from a joint Bayesian model, see Sahu et al. (2009) for

more in this regard. We also use random-walk metropolis sampling scheme for

the spatial decay parameter considering common φ. Both methods are used to

obtain results as detailed below.

The fully specified Bayesian DLM and AR models cannot be compared using

exact analytic methods as done in Section 5.3. Hence we use the PMCC model

selection criteria (see Section 3.3) to compare the models. To assess the quality

of the predictions we use validation criterion discussed in Section 3.3.4. The con-

clusions regarding the model choice and comparison turned to be the same as the

ones reported below using PMCC and RMSE. For model fitting and predictions,

we use the R package spTimer, that is developed as a part of this research (for
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further details see Chapter 8).

5.4.1 A Simulation Example

We first provide a simulation example where we test out the two model choice

criteria and the MCMC code we developed for fitting the two sets of models.

We simulate four data sets from each of the DLM and AR models. Each data

set consists of observations from 29 monitoring sites and 62 days in July and

August, 2006. Note that the simulation model includes the CMAQ output as

the single covariate. As mentioned above, data from 25 sites will be used for

model fitting and the data from the remaining 4 sites will be used for model

validation purposes. For both models we set the common value of φ at 0.01 for

both simulation and fitting. The choice of the simulation model parameters is

guided by the practical example provided in Section 5.4.3. For the AR simulation

models we set ρ = 0.2, σ2
ǫ = 0.04, σ2

η = 0.6, σ2
0 = 0.2, µ = 8.0, ξ = 1.0, and

β = 0.6. For the simulation from the DLM we assume: σ2
ν = 0.5, Σω = 0.06I,

Σθ = 0.2I, and µµµ = (1.0, 0.6)′.

We implement the Gibbs sampler for each of the DLM and AR models where

we keep the value of φ fixed at the simulation value; see the real data example

below on how to choose this in practice. We note that the MCMC chains con-

verge rapidly for both the models. 15000 iterates are used for making inference

after discarding the first 5000 iterations. We also use multiple parallel runs and

calculated the Gelman and Rubin statistics (Gelman and Rubin 1992), which we

found to be satisfactory.

5.4.2 Results for the Simulation Example

Table 5.1 presents the values of the PMCC and RMSE for the two models fitted to

four replicated simulation data sets from each of the two models. As expected, we

see that both the model choice criteria pick the true simulation model. Note also

that when data are simulated from the DLM the performance of the incorrectly

fitted AR models is not too far away from the DLM. However, when the data are

simulated from the AR models the performance of the incorrectly fitted DLM is

some distance away from the AR models. Thus the AR models provide reasonably

good performance even when data are simulated from the DLM.
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Simulation Model
AR DLM

Fitted Model
AR DLM AR DLM

Data Set PMCC RMSE PMCC RMSE PMCC RMSE PMCC RMSE

1 831.35 3.36 1223.93 4.03 855.05 3.47 784.87 3.30
2 824.47 3.29 1201.52 4.00 894.21 3.62 797.61 3.52
3 865.15 3.47 1325.71 4.30 847.44 3.40 751.02 3.17
4 852.91 3.42 1311.24 4.23 841.67 3.38 745.42 3.14

Table 5.1: PMCC & RMSE for the DLM and AR models where each model has
been fitted to four replicated simulation data sets.

Some other validation criteria are given in Table 5.2, where all those criteria

pick the correct simulation model in each case. Figures 5.3 and 5.4 provide the

prediction plots for both models for a validation site. It is observed that the AR

model has smaller range of 95% prediction intervals compared to the DLM in

both cases. We now proceed to the real data example.

AR data Methods MAE rBIAS rMSEP

1 AR 2.71 -0.024 0.14
DLM 2.93 -0.005 0.18

2 AR 2.56 -0.009 0.08
DLM 3.05 -0.005 0.09

3 AR 2.95 0.012 0.11
DLM 3.21 -0.021 0.14

4 AR 2.89 0.009 0.15
DLM 3.12 -0.001 0.17

DLM data

1 AR 2.81 0.022 0.18
DLM 2.32 -0.011 0.04

2 AR 2.92 0.003 0.23
DLM 2.44 -0.003 0.04

3 AR 2.75 0.022 0.23
DLM 2.37 -0.011 0.06

4 AR 2.31 0.013 0.21
DLM 2.04 -0.009 0.05

Table 5.2: MAE, rBIAS & rMSEP for the DLM and AR models where each
model has been fitted to four replicated simulation data sets.
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Figure 5.3: DLM and AR predictions at a site for the dataset generated from
the DLM. The 95% prediction intervals obtained from both models are also su-
perimposed.
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Figure 5.4: DLM and AR predictions at a site for the dataset generated from the
AR models. The 95% prediction intervals obtained from both models are also
superimposed.
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5.4.3 The New York Data Example

We analyse the New York data set obtained from 29 monitoring sites for 62 days

in July and August in 2006. Out of these 1798 observations 80 (4.45%) were

found to be missing which we assume to be at random. In our Bayesian inference

setup using MCMC we simply treat these missing values as unknown parameters

and simulate from their full conditional distributions at each MCMC iteration.

As mentioned previously, we use data from 25 sites for model fitting and

the data from the remaining four sites (labelled A-D in Figure 5.1) are used

for validation. For covariate effect we use the output obtained from the CMAQ

models. We consider those observations of CMAQ grid locations that are closest

to the sites of the ozone observation (for details see Section 1.4).

Boxplot of the data from the 25 monitoring sites are provided in Figure 5.5.

The plot shows moderately high level (more than 50 ppb) of ozone concentration

values for most days. There is no apparent strong overall trend, although it seems

that there is a slight decreasing trend during the last two weeks in August.
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Figure 5.5: Boxplot of the daily maximum 8-hour average ozone concentration
levels from 25 monitoring sites in New York for 62 Days in July and August 2006.
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5.4.4 Sensitivity of the Prior Distributions

In this section we check the sensitivity of the prior distributions for the variance

parameters. For both models we consider the variance parameters (i.e., σ2
ǫ , σ2

η

and σ2
0 for the AR models; σ2

ν , σ2
ω and σ2

θ for the DLM) to follow inverse Gamma

distribution with hyper-parameters a and b. To obtain a proper prior we used

a = 2 and b = 1, and furthermore we fix φη, φ0 and φν at 0.01 based on the

results in Section 5.4.5. Here, to find the sensitivity of the prior distributions we

change the values of the parameters a and b. We use the RMSE as the indicator

to compare between different prior distributions.

Table 5.3 provides some RMSE results for choosing different prior specifi-

cations. We can see for small changes in the hyper-prior parameters yields no

change in the RMSE. However, for a higher value of the hyper-parameter change

the validation result a lot. In the later case prior is very informative and RMSE

is very large due to the very tight constraints implied by the informative prior.

Changes in a Changes in b

Hyper-prior AR DLM Hyper-prior pair AR DLM

(2, 1) 6.92 8.62 (2, 2) 6.92 8.63
(3, 1) 6.93 8.63 (2, 3) 6.93 8.63
(4, 1) 6.93 8.65 (2, 4) 6.93 8.64

(1000, 1) 7.26 9.05 (2, 1000) 7.28 9.13

Table 5.3: RMSE for the DLM and AR models under different hyper-prior spec-
ifications.

5.4.5 Empirical Bayes Method for Choice of the Spatial Decay

We first use the validation data set to choose the spatial decay parameters φν for

the DLM and φη and φ0 for the AR models. For each of these we consider the set

of possible values: 0.05, 0.01, 0.005, 0.001 and choose the combination which pro-

vides the least value of the RMSE for the New York Data set. Tables 5.4 and 5.5

provide the RMSE values for different values of the decay parameters for the

DLM and AR models, respectively. For the DLM, using Table 5.4 we choose φν

to be 0.01 and for the AR models using Table 5.5 shows that the optimal value

of both the decay parameters φη and φ0 is 0.01. Note that this value of the

spatial decay parameter corresponds to a spatial range of about 300 kilometres,
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i.e. spatial correlation becomes negligible after 300 kilometres.

φν 0.050 0.010 0.005 0.001

RMSE 8.86 8.57 8.93 8.84

Table 5.4: RMSE values for the DLM for different values of φν .

φη

0.050 0.010 0.005 0.001

φ0 0.050 7.08 6.98 7.69 8.75
0.010 7.03 6.92 7.61 8.66
0.005 7.05 6.96 7.62 8.67
0.001 7.02 6.95 7.61 8.64

Table 5.5: RMSE values for the AR for different values of φη and φ0.

The optimal values of the RMSE for the selected DLM and AR models are

8.57 and 6.92, respectively. This shows that the AR models perform much better

in model validation than the DLM. In fact, these overall RMSE’s are averages of

the RMSE for each of the four validation sites, see Table 5.6. The RMSE for site

D is highest since this is the farthest validation site from its nearest data site,

see Figure 5.1. This table shows that the AR models outperform the DLM in all

four validation sites. Moreover, the values of the PMCC criterion for the selected

DLM and AR models are 847.9 and 1360.6, respectively. This also confirms that

the AR models are better suited for this particular data set.

A B C D Overall

AR 6.19 6.67 7.01 7.81 6.92
DLM 7.15 8.17 9.22 9.73 8.57

Table 5.6: RMSE values for the selected DLM and AR models for the overall
and four validation sites.

Figure 5.6 shows the trace plots for DLM parameters σ2
ν , σ2

ω and σ2
θ , and

Table 5.7 provides the posterior summary statistics of the parameters σ2
ν , σ2

ω and

σ2
θ .

Table 5.8 provides the parameter estimates for the adopted AR models. It

shows that the CMAQ output is a significant predictor since β is significant. The

temporal correlation parameter ρ is also estimated to be significant. The estimate

of the variance components show that the initial variance, σ2
0 is much larger than
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Figure 5.6: MCMC trace plots for the parameters σ2
ν , σ2

ω and σ2
θ of the DLM

for the New York data. The dashed line represents the initial values for the
corresponding parameter.

Measurements σ2
ν σ2

ω σ2
θ

2.5% 0.495 0.049 0.044
Mean 0.558 0.056 0.050

Median 0.547 0.056 0.050
97.5% 0.607 0.063 0.057

Table 5.7: Summary statistics of the posterior distributions for the parameters
σ2

ν , σ2
ω and σ2

θ .

the other two variance components. Thus the theoretical results discussed in

Section 5.3 that required a large value of σ2
0 are likely to hold here.

Model Measurements ρ ξ β µ σ2
ǫ σ2

η σ2
0

AR

2.5% 0.18 0.52 0.55 7.91 0.036 0.5194 1.03
Mean 0.23 1.07 0.62 8.04 0.039 0.5600 1.75
Median 0.23 1.07 0.62 8.04 0.038 0.5600 1.68
97.5% 0.27 1.58 0.68 8.16 0.041 0.6042 2.94

Table 5.8: Summary statistics of the posterior distributions for the parameters
ρ, ξ, β, µ, σ2

ǫ , σ2
η and σ2

0 for the AR models.

The MCMC trace plots of AR model parameters σ2
ǫ , σ2

η, µ, ρ, ξ and β are

given in Figure 5.7 and these indicate quick convergence.

5.4.6 Metropolis-Hastings Sampling for the Spatial Decay

In Section 5.4.5 we use empirical Bayes approach to estimate the spatial decay

parameter for the models. In this section we consider a common spatial decay

parameter, i.e., φ for the models. Henceforth, we use the Metropolis sampling al-

gorithm to draw samples for φ. With appropriate tuning we obtain the acceptance
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Figure 5.7: MCMC trace plots for the parameters σ2
ǫ , σ2

η, µ, ρ, ξ and β of the AR
models fitted to the New York data set. The dashed line represents the initial
values for the corresponding parameter.

rate for φ as 30.07% and 34.2% for the DLM and the AR models respectively.

The estimates of φ are 0.011 for the DLM and 0.012 for the AR models, and are

statistically significant. We also observe the PMCC value is 735.22 for the AR

models that is lower than the PMCC value 1066.04 of the DLM.

Table 5.9 provides the parameter estimates for the AR model adopted using

Metropolis algorithm of the φ parameter. It shows that the CMAQ output is a

significant predictor since β is significant. The temporal correlation parameter

ρ is also estimated to be significant. The spatial decay parameter is estimated

to be 0.012. The estimates of the variance components show that on average,

the initial variance, σ2
0, is much larger than the process variance, σ2

η; hence the

theoretical results which required a large initial variance will hold.

Mean 95% interval

µ 8.431 (7.582, 8.991)
ξ 1.226 (0.793, 1.811)
ρ 0.198 (0.157, 0.235)
β 0.669 (0.581, 0.734)
σ2

ǫ 0.048 (0.037, 0.065)
σ2

η 0.255 (0.198, 0.377)

σ2
0 0.689 (0.592, 0.768)
φ 0.012 (0.009, 0.016)

Table 5.9: Parameter estimates of the selected AR model.
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The RMSEs are given in Table 5.10, and we observe the AR model performs

better compared to the DLM. We also get better results for the random walk

Metropolis sampling than the empirical Bayes approach (see Table 5.6). Hence-

forth, in the following Chapters we use the Metropolis sampling scheme to sample

φ parameter.

A B C D Overall

AR 5.86 6.96 6.93 7.34 6.77
DLM 7.16 7.72 7.56 8.10 7.64

Table 5.10: RMSE values for the selected DLM and AR models for the overall
and the four validation sites using the random walk Metropolis sampling.

5.4.7 Forecasts

We have also performed one step ahead forecasts using the DLM, and the AR

models. Table 5.11 provides the RMSEs for the one step ahead forecast. The

RMSE values obtained for the CMAQ observations are also presented. It is

clearly observed that the AR models give smaller MSE compared to the other

methods. We discuss forecasting further in Chapter 7, where different modelling

strategies are compared.

DLM AR models CMAQ

9.61 8.65 11.85

Table 5.11: RMSE for seven day forecast using the DLM, the AR models, and
the CMAQ values for the New York data set.

All these provide additional justifications for choosing the AR models for

modelling the daily ozone data considered here.

5.5 Conclusions

In this Chapter, we compare the DLM and the AR modelling approaches to

analyse the ozone concentration levels observed in New York in July-August,

2006. Here, we also provide some important properties and theoretical results for

both the models. Theoretical results for simple versions of the two sets of models

show better properties for the AR models under some conditions which have been

shown to hold for the practical data example considered in this thesis. We have



5.5 Conclusions 84

followed this investigation by a simulation study for a more practical version of

the models. As expected, the simulation study shows better performance of the

DLM when the data are simulated from it. Similarly, the AR models are seen to

be better when the data are simulated from it. Finally, we have compared the

models by fitting them to a real data set for daily maximum eight-hour average

ozone concentration levels in the state of New York for 62 days in July and

August, 2006. A predictive Bayesian model choice criterion as well as set aside

validation data show that the fitted AR model performs much better than the

fitted DLM. These results show that the AR models can be much better than

the DLM in practical ozone data modelling situations.



Chapter 6

Trend in Ozone Levels using

Models based on Predictive

Processes Approximations

6.1 Introduction

Results obtained in Chapter 5 show that the hierarchical autoregressive (AR)

models provide better model fits and have superior predictive performances than

the DLM. The hierarchical AR models, however, are not suitable for analysing

large data sets observed over vast study regions such as the eastern United States

(US). The problem here lies in inverting high dimensional spatial covariance

matrices repeatedly in iterative model fitting algorithms. This is known as the

big-n problem in literature (see details in Section 1.6).

Motivated by the need to model large data sets, this Chapter extends the

Gaussian predictive processes (GPP) approximation technique of Banerjee et

al. (2008) to include auto-regressive terms of the latent underlying space-time

process. This auto-regressive process is defined at a set of a smaller number

of knot locations within the study region and then spatial interpolation, i.e.

kriging, is used to approximate the original space-time process. The model is

fully specified within a hierarchical Bayesian setup and is implemented using

Markov chain Monte Carlo (MCMC) techniques.

This study assesses that the proposed approximation modelling method offers

a reliable solution to analyse large and non-stationary spatio-temporal ground

85
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level ozone observations. Here, we aim to predict spatial patterns of the ozone

levels in the eastern US and detect their long-term trends after adjusting for the

effects of meteorological variables. We use a smaller data set to illustrate and

compare the hierarchical AR and the GPP approximation models; and then use

10 years eastern US data to fit the models and obtain trends in ozone levels.

In this chapter we implement the Gibbs sampler for each of the GPP based

approximation model where the Metropolis algorithm is used for sampling the

φ parameter. We note that the MCMC chains converge rapidly for the models.

15000 iterates are used for making inference after discarding the first 5000 itera-

tions. We also used multiple parallel runs and calculated the Gelman and Rubin

statistics (Gelman and Rubin 1992), which we found to be satisfactory.

The rest of this chapter is organised as follows: Section 6.2 introduces the

modified version of the hierarchical AR models discussed in Chapters 3 and 5.

The following Section 6.3 represents the modelling strategy for large dimensional

data using modified AR models based on GPP approximations. Section 6.4 de-

scribes the joint posterior details for the proposed models. The prediction details

are then discussed in Section 6.5. In Section 6.6 we illustrate the proposed mod-

elling approach for a smaller data set consisting of four states of the eastern US.

The proposed model is compared with the hierarchical AR models in Section 6.7

using the four-state data example. The following Section 6.8 represents the anal-

ysis and prediction of the full eastern US data using the proposed model. Finally,

we present some concluding remarks in Section 6.9.

6.2 Modified AR Models

The hierarchical AR models described in Section 3.4.5 assume the AR model for

the true values of the modelled response Olt. Following Papamichael (2011)

we modify this model so that the modified version does not assume a true level

Ol(si, t) for each Zl(si, t) but instead assumes a space-time random-effect denoted

by ηl(si, t). It then assumes an AR model for these space-time random effects.

The top level general space-time random effect model is assumed to be:

Zlt = Xltβ + ηlt + ǫlt, l = 1, ..., r, t = 1, ..., T. (6.1)
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where ǫlt ∼ N(0, σ2
ǫ I) where I is the identity matrix. In the next stage of the

modelling hierarchy the AR model is assumed as:

ηlt = ρηlt−1 + δlt, (6.2)

where δlt ∼ N(0, σ2κ(d;φ)). Here κ(d;φ) denotes the correlation function which

we take to be the exponential correlation function κ(d;φ) = exp(−dφ) in our

illustration, although other choices can be adopted. Finally, the initial condition

is assumed to be:

ηl(si, 0) ∼ N(0, σ2
0κ(d;φ0)) (6.3)

where σ2
0 and φ0 are unknown parameters.

Note that the marginal mean of the random effects ηlt is zero, but the con-

ditional mean given ηlt−1 is no longer zero due to the auto-regressive specifica-

tion (6.2). This specification also implies a non-stationary marginal covariance

function for ηlt that does not need to be explicitly derived nor is it required since

model fitting proceeds through the conditional specification (6.2).

6.3 Models Based on GPP Approximations

The auto-regressive models specified in Section 6.2 create a random effect ηl(si, t)

in (6.1) corresponding to each data point Zl(si, t). This will lead to the big-n

problem, as discussed in Section 1.6 when n is large. To overcome this problem

we propose a dimension reduction technique through a kriging approximation

following Banerjee et al. (2008).

The main idea here is to define the random effects ηl(si, t) at a smaller number

of locations, called the knots, and then use kriging to predict those random effects

at the data locations. The auto-regressive model is only assumed for the random

effects at the knot locations and not for all the random effects at the observation

location. The method proceeds as follows:

At the top level we continue to assume the model (6.1), but we do not

specify ηlt directly through the auto-regressive model (6.2). Instead, we se-

lect m << n knot locations, denoted by s∗
1, ..., s

∗
m within the study region and

let the spatial random effects at these locations at time l and t be denoted by

wlt = (wl(s
∗
1, t), . . . , wl(s

∗
m, t))

′. Discussion regarding the choice of these loca-
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tions is given below. Assuming an underlying Gaussian process independently at

each time point l and t, Banerjee et al. (2008) show that the process ηlt can be

approximated by

η̃lt = Awlt (6.4)

with A = CS−1
w where C denotes the n by m cross-correlation matrix between ηlt

and wlt, and Sw is the correlation matrix of wlt. Note that the common spatial

variance parameter does not affect the above since it cancels in the product CS−1
w .

Also, there is no contribution of the means of either ηlt or wlt in the above since

those means are assumed to be 0.

The proposal here is to use the GPP approximation η̃lt instead of ηlt in the

top level model (6.1), thus we assume that:

Zlt = Xltβ + η̃lt + ǫlt, l = 1, . . . r, t = 1, . . . , T, (6.5)

where η̃lt is as given in (6.4). Analogous to (6.2), we specify wlt at the knots

conditionally given wlt−1 as:

wlt = ρwlt−1 + ξlt, (6.6)

where ξlt ∼ N(0, σ2
wκ(d;φw)) independently. Again we assume that wl0 ∼

N(0, σ2
l S0) independently for each l = 1, . . . , r, where the elements of the co-

variance matrix S0 are obtained using the correlation function, κ(d;φ0), i.e. the

same correlation function as previously but with a different variance component

for each year and also possibly with a different decay parameter φ0 in the corre-

lation function.

The above modelling specifications are justified using the usual hierarchical

modelling philosophies in the sense that the top level model is a mixed model with

mean zero random effects and these random effects have structured correlations

as implied by the spatial auto-regressive model at the second stage (6.6). These

two model equations, together with the initial condition, however, are neither

intended to, nor will ever imply the auto-regressive model (6.2) for the original

random effects ηlt except for trivial cases such as the one where m = n and all

the knot locations coincide with the data locations. In general such a property

can never be expected to hold without further conditions.
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6.4 Joint Posterior Details

Define N = nrT and let θ denote all the parameters β, ρ, σ2
ǫ , σ2

w, φ, φ0, σ2
l , l =

1, ..., r. Further, let z∗ denote the missing data and z denote all the non-missing

data. The log of the joint posterior distribution for the models in equations (6.5)

and (6.6), denoted by log π(θ, z∗|z) is written as:

−N

2
log σ2

ǫ − 1

2σ2
ǫ

r∑

l=1

T∑

t=1

(Zlt − Xltβ −Awlt)
′(Zlt − Xltβ −Awlt)

−mrT

2
log σ2

w − rT

2
log |Sw| − 1

2σ2
w

r∑

l=1

T∑

t=1

(wlt − ρwlt−1)′S−1
w (wlt − ρwlt−1)

−m

2

r∑

l=1

log σ2
l − r

2
log |S0| − 1

2

r∑

l=1

1

σ2
l

wl0S−1
0 wl0 + log π(θ) (6.7)

where, log π(θ) is the log of the prior distribution for the parameter θ. We

assume the prior distributions β ∼ N(0, 104), ρ ∼ N(0, 104)I(0 < ρ < 1).

Further, the prior distributions for the variance parameters are: 1/σ2
ǫ ∼ G(a, b),

1/σ2
w ∼ G(a, b), where the Gamma distribution has mean a/b. We shall choose

the values of a and b in such a way that guarantees a proper prior distribution

for these variance components, see Chapter 3 for more on prior distributions.

6.4.1 Full Conditional Distribution for Covariate Coefficients

From the kernel of the joint posterior distribution (6.7), we obtain the full con-

ditional distribution of the covariate coefficient, β as N(∆χ,∆) where,

∆−1 =
1

σ2
ǫ

r∑

l=1

T∑

t=1

X ′
ltXlt + 10−4I,

χ =
1

σ2
ǫ

r∑

l=1

T∑

t=1

X ′
lt(Zlt −Awlt).

6.4.2 Full Conditional Distribution for Autoregressive Parame-

ter

The full conditional distribution of the auto-regressive parameter ρ isN(∆χ,∆)I(0 <

ρ < 1) where,

∆−1 =
r∑

l=1

T∑

t=1

w′
lt−1Qwwlt−1 + 10−4



6.4 Joint Posterior Details 90

χ =
r∑

l=1

T∑

t=1

w′
lt−1Qwwlt

where Qw = Σ−1
w .

6.4.3 Full Conditional Distribution for Variance Parameters

We also obtain the full conditional distributions for the variance parameters of the

models from the kernel of the posterior distribution in (6.7). The full conditional

distribution of 1

σ2
ǫ

is given by:

G

(
N

2
+ a, b+

1

2

r∑

l=1

T∑

t=1

(Zlt −Xltβ −Awlt)
′(Zlt −Xltβ −Awlt)

)

Similarly, the full conditional distribution for 1

σ2
w

is written as:

G

(
mrT

2
+ a, b+

1

2

r∑

l=1

T∑

t=1

(wlt − ρwlt−1)′Qw(wlt − ρwlt−1)

)

The full conditional distribution of σ2
l for l = 1, . . . , r is given by:

G

(
m

2
+ a, b+

1

2
wl0S−1

0 wl0

)
.

6.4.4 Full Conditional Distribution for Spatial Error Processes

The full conditional distribution for wlt is given by: N(∆χ,∆) where

∆−1 =
1

σ2
ǫ

A′A+Qw + ρ2Qw

χ =
1

σ2
ǫ

A′(Zlt −Xltβ) +Qwwlt−1 +Qwwlt+1,

for 1 ≤ t < T . For t = T , we have

∆−1 =
1

σ2
ǫ

A′A+Qw

χ =
1

σ2
ǫ

A′(Zlt −Xltβ) +Qwwlt−1.
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The full conditional distribution of wl0 is given by N(∆χ,∆) where,

∆−1 = ρ2Qw +Q−1
0

χ = ρQwwl1 + µlΣ
−1
0 1m,

where Q0 = Σ−1
0 .

6.4.5 Sampling the Spatial-Decay Parameter

We observe from the posterior distribution in (6.7) that the full conditional distri-

bution of φw is not available in closed form. The log of the conditional posterior

density (up to an additive constant) is given by:

log π(φw|...) = log π(φw)− rT

2
log |Sw|− 1

2

r∑

l=1

T∑

t=1

(wlt −ρwlt−1)′Qw(wlt −ρwlt−1)

Similarly, the log of the conditional posterior density of φ0 (up to an additive

constant) is given by:

log π(φ0|.) = log π(φ0) − r

2
log(|S0|) − 1

2

r∑

l=1

1

σ2
l

wl0S−1
0 wl0.

6.4.6 Sampling the Missing Observations

Using the nugget effect we obtain the conditional distribution for missing obser-

vations (z∗) as:

π(z∗
lt|.) ∼ N

(
µ∗

lt, σ
2
ǫ

)

where, µ∗
lt is the q × 1 mean vector at time t = 1, ..., T and l = 1, ..., r, for

the q missing values that is equal to X∗
ltβ + η̃lt, where X∗

lt is the corresponding

covariates related to the q independent missing observations.

We use Markov chain Monte Carlo (MCMC) techniques (see details in Chap-

ter 3) to obtain the estimates of the parameters. Further, in this chapter for

simplicity we assume the spatial decay parameters for wl0 and wlt are same, i.e.,

φ0 = φw = φ, however one can treat them differently. Hence, we sample and

estimate the spatial decay parameter φ, instead of φ0 and φw, from the posterior

density π(φ|ρ,w, z) that do not have any closed form of the distribution. Hence-

forth, we use Metropolis-Hasting (MH) algorithm (see details in Chapter 3) to
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sample φ, given data.

6.5 Prediction Details

We want to predict the response Zl(s
′, t) at a new site s′ and time l and t.

According to the top-level model (6.1), we obtain:

Zl(s
′, t) = xl(s

′, t)′β + η̃l(s
′, t) + ǫl(s

′, t), l = 1, . . . r, t = 1, . . . , T, (6.8)

where xl(s
′, t) denotes the covariate value at the new location at time l and t, and

the scalar η̃l(s
′, t) is obtained using the following equation, obtained analogously

as (6.4),

η̃l(s
′, t) = c′(s′)S−1

w wlt (6.9)

where the kth element of the m by 1 vector c(s′) is given by ψ(d;φ) where d is

the distance between the sites s∗
k and s′.

Prediction is straightforward under any MCMC sampling scheme. At each

iteration, j say, first one obtains the approximation η̃
(j)
l (s′, t) calculated using

the current parameter iterates θ(j) and w
(j)
lt . The next step is to generate a new

Z
(j)
l (s′, t) using the model (6.8) and plugging in θ(j).

6.6 Illustration of the GPP based Models for the Four

States Example

In this section, we illustrate the proposed GPP approximation models for the four

states data. We use data obtained from the four states, e.g., Illinois, Indiana,

Ohio, and Kentucky for the period of 10 years starting from 1997 to 2006 (see

Chapter 4). We also use three meteorological variables, i.e., maximum tempera-

ture in ◦C, average wind speed in nautical miles, and average relative humidity

in percentage (see Chapter 4 for more details). Figure 6.1 represents the map of

four states, and the ozone and meteorological monitoring sites. We fit data from

148 sites and 10%≈ 16 of the total 164 sites are set aside for validation purpose.

Rest of this section will elaborate the GPP approximate model fitting and the

sensitivity analysis.

From Figure 6.2 we observe the yearly trend in daily ozone levels in the four
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Fitted sites
Validation sites
Meteorological sites
Knot points

Figure 6.1: A map of the four states, Ohio, Indiana, Illinois and Kentucky. Total
164 ozone monitoring locations (of which 148 are used for model fitting and 16 are
for validation), 88 meteorological sites and 107 grid knot points are superimposed.

states. The box-plot by years for all states have similar patterns. For example,

the overall ozone level goes up in years 1998 and 1999 and comes down in 2000

and again goes up in 2002 and so on. Some extreme outlying daily ozone levels

are recorded in the Ohio and Illinois states in 1999. Table 6.1 represents the

summary statistics for ozone and meteorological variables used in this chapter.

Ozone levels vary a great deal between 1.00 ppb to 241.40 ppb, we also observe

high variability for wind speed.

Minimum Mean Median Maximum

Ozone 1.00 51.86 51.12 241.40
Max. Temp. 7.95 27.15 27.82 40.01
RH 0.78 3.65 3.56 9.09
WDSP 0.00 5.76 5.46 21.26

Table 6.1: Summary statistics for ozone levels (in ppb), maximum temperature
(Max. Temp.) in degree C, percentage relative humidity (RH) and average wind
speed (WDSP) in nautical miles per hour in the four states for years 1997-2006.

6.6.1 Sensitivity of Knot Sizes

We define five different sets of regular grid locations randomly starting from 6×6,

8 × 8, 10 × 10, 12 × 12 and 14 × 14 over the four states. From these regular grids,

we choose the points inside the boundary of the four states as knot locations to

fit the GPP based models, and finally consider knot sizes 26, 40, 60, 107 and 138
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Figure 6.2: Box-plot of ozone levels observed in Illinois, Indiana, Ohio, and
Kentucky by years.

respectively. Figure 6.1 shows an example of the knot location points (here, 107

knots) that we consider to model the ozone concentration data of the four states.

From Table 6.2 we obtain the model performance and validation criteria (see

details in Section 3.3) for different set of knots. As expected, both validation

and model choice criteria show better results as the number of knots increases.

However, we observe the difference between the results for knot sizes 107 and 138

are very small. This result gives us an idea that after a particular choice of knot

size the predictive performance of the models are approximately same. Hence,

in this thesis we choose knot size 107 to analyse further the four states data.

Validation Criteria Model Choice Criterion

Knots RMSE MAE rBIAS rMSEP GoF + P = PMCC

26 6.31 4.58 -0.006 0.15 35424.70+44128.77=79553.47
40 6.19 4.48 -0.009 0.15 32595.85+42797.55=75393.40
60 6.17 4.44 -0.006 0.15 30977.74+42128.34=73106.08
107 6.07 4.37 -0.009 0.14 28143.46+40893.51=69036.97
138 6.06 4.36 -0.009 0.14 27690.84+40503.23=68194.07

Table 6.2: Values of the model choice and validation criteria for different knot
sizes for the four states example.
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6.6.2 Sensitivity of Prior Selection

A sensitivity study has been conducted for different hyper-parameter values of

the Gamma distribution. Knot size 107 is considered here as discussed in Sec-

tion 6.6.1. Table 6.3 shows validation and model choice results for different

combinations of the hyper-parameters. We observe prior specification with a = 2

and b = 1 gives the best validation and model choice results compared to other

combinations of a and b.

Gamma Prior Distribution

Validation Criteria Model Choice Criterion

Gamma(a,b) RMSE MAE GoF + P = PMCC

(a=2,b=1) 6.07 4.37 28143.46+40893.51=69036.97
(a=1,b=1) 6.10 4.41 29370.61+40273.76=69644.37
(a=2,b=2) 6.10 4.40 29383.05+40373.42=69756.47

(a=10,b=10) 6.10 4.41 29432.03+40188.96=69620.99

Table 6.3: Values of the model choice and validation criteria for different hyper-
parameters for the four states example.

6.6.3 Choice for Sampling Spatial Decay Parameter

The full conditional distribution of the spatial decay (φ) parameter does not

have any closed form. Hence, we can use different types of sampling scheme for

choosing φ parameter. We can also use the empirical Bayes approach that has

been discussed in Section 5.4.5, however omitted for brevity.

In this section we discuss only discrete and random-walk sampling strategies

and see their performance based on the predictive and model choice criteria.

For random-walk we use Metropolis-Hastings approach and use a suitable tuning

parameter to obtain acceptance rate between 20% to 40% (see Gelman et al.

1997). Appropriate tuning yields 32.4% acceptance rate for the φ parameter. For

discrete sampling of φ we choose points that are defined from 0.001 to 0.1 with 50

equal segments. Table 6.4 represents the results based on both sampling scheme,

where better performance of random-walk Metropolis approach is observed over

the discrete sampling.
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Sensitivity for φ sampling

Validation Criteria Model Choice Criterion

RMSE MAE GoF + P = PMCC

Discrete 6.16 4.46 29493.75+40235.93=69729.68
Random-walk 6.07 4.37 28143.46+40893.51=69036.97

Table 6.4: Values of the model choice and validation criteria for different sampling
of φ for the four states example.

6.6.4 Adjustment of the Spatial Misalignment

From Figure 6.1 we observe that there are misalignments between ozone and

meteorological monitoring locations. To adjust the misalignment we use Kriging

method discussed in Section 2.5. In this section we use two techniques for Kriging,

first one is the single kriging (SK) and second one is the multiple kriging (MK).

In the SK approach we krige the meteorological variables into the ozone moni-

toring sites only once and use these kriged values as covariates in the models. For

MK, we sample the meteorological variables in each iteration from normal distri-

bution with mean and variance defined by the kriged values and corresponding

kriged variances respectively. The former case, does not take into account the

variation that occurred due to kriging in the MCMC iteration algorithm. The

MK approach includes the effect of kriging variance in the iteration, however

yields computational burden.

Table 6.5 provides model choice and validation results for the GPP based

model. Here we use both SK and MK adjustment techniques of spatial misalign-

ment to measure the performance. We observe, the RMSE is larger for the MK

approach, in addition the penalty of the model choice criteria is very large com-

pared to the SK approach. We also observe the 95% prediction coverage for the

SK is smaller than the MK, however is much closer than the coverage obtained

from MK approach. Henceforth, the rest of the analysis is done considering of

SK approach of adjusting spatial mis-alignment.

6.6.5 Results for Different Sets of Hold-Out Sites

The consistency in the model prediction are observed through the data of different

sets of hold-out sites. We randomly choose 7 hold-out data sets, each of them

consists of ozone observations from 16 monitoring sites. These 16 hold-out sites
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Validation Criteria Model Choice Criterion Coverage (%)

RMSE MAE GoF + P = PMCC 95%

SK 6.07 4.37 28143.46+40893.51=69036.97 92.88
MK 8.05 6.14 42931.68+113752.95=156684.63 100.00

Table 6.5: Values of the model choice and validation criteria for single kriging
(SK) and multiple kriging (MK) approach for imputing missing meteorological
data.

are randomly chosen from the 164 ozone monitoring sites in the four states.

Figure 6.3 represents the four states map, where data sets of different validation

sites are given in numbers.
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Figure 6.3: Different sets of hold-out validation sites are numbered in the map
of the four states.

From Table 6.6 we observe that for 107 knot sizes, the RMSE of the different

hold-out data sets varies from 6.07 to 6.20. We also observe the prediction interval

varies from 80.60% to 93.98%.

6.7 Comparison with the Hierarchical AR Models

This section is devoted to comparing the proposed GPP approximation models

with the hierarchical AR models (see Section 3.4.5). Note that the proposed

model does not directly approximate the AR model and hence the latter is not

likely to be uniformly better than the former, and therefore this comparison is
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Validation Criteria

Data set RMSE MAE rBIAS rMSEP Coverage

1 6.09 4.42 -0.007 0.15 93.98%
2 6.20 4.55 -0.005 0.16 80.60%
3 6.08 4.42 -0.004 0.15 90.26%
4 6.07 4.37 -0.009 0.14 92.88%
5 6.11 4.52 -0.008 0.16 84.67%
6 6.10 4.50 -0.009 0.16 84.87%
7 6.07 4.36 -0.009 0.14 91.58%

Table 6.6: Validation criteria for different sets of hold-out sites using 107 knots
for the four states example.

meaningful. Both the models use the same three covariates, namely, maximum

temperature (MaxTemp), relative humidity (RH) and wind speed (WDSP). In

both the cases we also adopt the same prior distributions and use the Metropolis-

Hastings sampling algorithm for sampling the spatial decay parameters. In the

GPP based proposed model we use 107 knot points as decided in Section 6.6.1.

The estimates of the parameters of the two models are provided in Table 6.7,

except for the parameters µl and σ2
l under the hierarchical AR model and σ2

l

under the GPP based model, l = 1, ..., r since those estimates are not interesting

for model comparison purposes. Both the models show significant effect of the

three covariates, although the effects get attenuated under the hierarchical AR

model due to the presence of the temporal auto-regression.

Further discussion about these effects is provided in Section 6.8. However,

there are large differences between the two models as regards to the estimates

of spatial and temporal correlations. The temporal correlation under the AR

model (0.523) is much larger than the same for the GPP based model (0.102).

This is due to the fact that the auto-regressive model for the Sahu et al. version is

assumed for the true ozone levels which are highly temporally correlated, whereas

the GPP based model assumes the auto-regression for the latent random effects

which are also significantly temporally correlated but at a magnitude lower than

that for the true ozone levels in AR model. However, to compensate for this low

value of temporal correlation, the GPP based model has estimated a much higher

level of spatial correlation since the spatial decay of 0.0036 is much smaller for

this model compared to the same, 0.012, for the full hierarchical AR model. The

estimates of the variance components, under both the models, show that more
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variation is explained by the spatial effects than the pure error.

The two models are compared using the PMCC and the two model validation

criteria: RMSE and MAE. We also report the nominal coverage of the 95%

prediction intervals for the out of sample validation data. These three validation

statistics are based on 21,008 (=24480–3472) daily observations (see details in

Chapter 4).

Parameter Mean sd 2.5% 97.5%

AR Model

Intercept 4.447 0.061 4.346 4.541
Max.Temp. 0.016 0.001 0.013 0.018

RH –0.314 0.010 –0.325 –0.302
WDSP –0.061 0.002 –0.065 –0.057

ρ 0.523 0.002 0.519 0.526
σ2

ǫ 0.056 0.001 0.055 0.058
σ2

η 0.537 0.038 0.527 0.540

φ 0.0120 0.0006 0.0119 0.0121

GPP based Model

Intercept 6.353 0.056 6.224 6.445
MaxTemp 0.060 0.001 0.057 0.063

RH –0.179 0.009 –0.198 –0.160
WDSP –0.033 0.001 –0.036 –0.031

ρ 0.102 0.003 0.095 0.109
σ2

ǫ 0.169 0.001 0.167 0.171
σ2

w 0.457 0.004 0.449 0.466
φ 0.0036 0.0001 0.0030 0.0041

Table 6.7: Parameter estimates of the two AR models.

P G P+G RMSE MAE Coverage (%)

Full 90,807.32 41,077.80 131,885.10 6.82 5.04 93.50
GPP 40,893.51 28,143.46 69,036.97 6.07 4.37 92.88

Table 6.8: Model comparison results for the hierarchical AR and GPP based
models.

Model comparison results presented in Table 6.8 almost uniformly give ev-

idence in favour of the the proposed GPP based models. Components of the

PMCC show that the GPP based model provides a much better fit than the

AR model. Both the RMSE and MAE are also better for the proposed model.

However, the nominal coverage is slightly smaller for the proposed method, but

this is not much of a cause for concern since both are close to 95%. The GPP
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based model fitting requires about 2.24 hours of computing time while the full

AR model takes about 7.86 hours. Thus the GPP based model implementation

requires less than a third of the computing time needed for fitting the AR model.

In conclusion, the GPP based model not only provides a faster and better fit but

also validates better than the hierarchical AR model. In the next section, for the

full eastern US data, we shall only consider the GPP based model.

6.8 Analysis for the Eastern US Ozone Concentration

Levels

In this section we analyse the full eastern US data set introduced in Chapter 4.

We use data from 622 monitoring sites to model and the data for the remaining

69 sites are set aside for validation, see Figure 4.1.

We continue to use the three meteorological variables as covariates in the

model. We choose the same prior and the Metropolis-Hastings sampling method

for the spatial decay parameter φ. To select the number of knots we start with

regular grid sizes of 12 × 12, 15 × 15, 20 × 20 and 25 × 25 and then only retain

the points inside the land boundary of the eastern US that gives us 68, 105, 156

and 269 points respectively. As in previous section we fit and predict using the

model with these knot sizes and obtain the two validation statistics: RMSE and

MAE in Table 6.9.

Knot Sizes

269 156 105 68

RMSE 6.41 6.42 6.78 7.09
MAE 4.73 4.75 5.02 5.26

Table 6.9: Two model validation criteria for different knot sizes

As has already been seen in Section 6.6, the performance gets better with

increasing grid sizes, but the improvement in performance is only marginal when

the grid size goes up to 269 from 156. The much smaller computational burden

with 156 knot points outweighs this marginal improvement in the validation

statistics. Henceforth we proceed with grid size 156 in our analysis. Figure 6.4

provides a map of the eastern US with these grid points superimposed.

Parameter estimates of the fitted model with 156 knot points are provided in
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Figure 6.4: A map of the eastern US with 156 grid knot points superimposed.

Table 6.10. All three covariates, Max.Temp., WDSP, and RH, remain significant

in the spatio-temporal model with a positive effect of MaxTemp and negative

effects of the other two. This is in accordance with the results in the literature

in ozone modelling, see e.g. in Section 1.5. The auto-regressive parameter is

also significant and the pure error variance σ2
ǫ is estimated smaller than the

spatial variance σ2
w. The spatial decay parameter is estimated to be 0.0018 which

corresponds to an effective spatial range (Sahu, 2011) of 1666.7 kilometres that is

about half of the maximum distance between any two locations inside the study

region.

Mean sd 2.5% 97.5%

Intercept 6.817 0.101 6.604 6.991
MaxTemp 0.027 0.001 0.025 0.029

RH –0.243 0.004 –0.251 –0.234
WDSP –0.009 0.002 –0.013 –0.006

ρ 0.132 0.002 0.128 0.136
σ2

ǫ 0.266 0.001 0.265 0.267
σ2

w 0.729 0.014 0.708 0.770
φ 0.0018 0.0001 0.0017 0.0019

Table 6.10: Parameter estimates of the fitted GPP based AR model for the
eastern US data.

We now turn to the validation of the ozone summaries: the annual 4th highest
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maximum and the 3-year rolling average (see Section 1.2) of these. Table 6.11

provides the validation statistics. We also report the validation statistics for

these summaries obtained using simple kriging using the fields package (Fields

Development Team 2006). In this method the daily ozone levels are first kriged

and then those are aggregated up to the annual levels. It is remarkable that

the proposed method is able to perform better in out of sample predictions than

standard kriging which is well known to be difficult to beat using model based

approaches (Liu et al., 2011). This shows that the model is very accurate in

predicting the ozone standard based on the annual summaries.

Annual 4th highest 3-year average

Kriging Model Kriging Model

RMSE 5.41 5.24 4.27 4.21
MAE 4.38 4.17 3.51 3.36

Table 6.11: Two validation criteria for the annual ozone summaries

Figure 6.5 examines this in more detail where the predicted values of these

summaries are plotted against the observed values. The plot provides evidence

of accurate prediction with a slight tendency to over predict. The actual over

prediction percentage for the annual 4th highest maximum is 52% while the same

for the 3-year rolling averages is slightly higher at 56% which are reasonable.

Hence we proceed to make predictive inference for the ozone standard based on

these model based annual summaries.

We perform predictions at 936 locations inside the land-boundary of the east-

ern US obtained from a regular grid. At each of these sites we spatially interpolate

the daily maximum 8-hour average ozone level on each of 153 days in every year

using the details in Section 6.5. These daily levels are then aggregated up to the

annual levels. Figures 6.6 to 6.10 provide the model based interpolated maps

of annual 4th highest maximum ozone levels for the years 1997-2006. Observed

values of these annual maxima from a selected number of sites (data from all the

691 sites are not plotted to avoid clutter) are also superimposed and those show

reasonably good agreement with the predicted values.

Similarly, Figures 6.11 to 6.14 plot the model based interpolated maps of

the 3-year rolling averages of the annual 4th highest maximum ozone concentra-

tion levels for the years 1999-2006. The plotted observed values of these rolling
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Figure 6.5: Scatter plots of the prediction against the observed values, (a): an-
nual 4th highest maximum, (b) 3-year rolling average of the annual 4th highest
maximum. The y = x line is superimposed.
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Figure 6.6: Model based interpolation of the annual 4th highest maximum ozone
levels, panel (a) for 1997 and (b) for 1998. Observed data from a few selected
sites, to enhance readability, are superimposed.
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Figure 6.7: Model based interpolation of the annual 4th highest maximum ozone
levels, panel (a) for 1999 and (b) for 2000. Observed data from a few selected
sites, to enhance readability, are superimposed.
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Figure 6.8: Model based interpolation of the annual 4th highest maximum ozone
levels, panel (a) for 2001 and (b) for 2002. Observed data from a few selected
sites, to enhance readability, are superimposed.
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Figure 6.9: Model based interpolation of the annual 4th highest maximum ozone
levels, panel (a) for 2003 and (b) for 2004. Observed data from a few selected
sites, to enhance readability, are superimposed.
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Figure 6.10: Model based interpolation of the annual 4th highest maximum ozone
levels, panel (a) for 2005 and (b) for 2006. Observed data from a few selected
sites, to enhance readability, are superimposed.
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averages are also in good agreement with the predicted values. The uncertainty

maps corresponding to the prediction maps in Figures 6.6 and 6.14 showed larger

uncertainty for the locations which are farther away from the monitoring sites.

We study the relative percentage trends both for the meteorologically ad-

justed and the unadjusted levels in Figure 6.15 for 1997-2006. We observe that

for most locations the trends are negatively significant.

The model based predictive maps of the probability that the 3-year rolling

average of the annual 4th highest maximum ozone level is greater than 85 ppb,

i.e. non-compliance with respect to the primary ozone standard, are provided in

Figures 6.16 to 6.19. The plots show that many areas were out of compliance

in the earlier years 1999-2003. However, starting in 2004 most areas started to

comply with the primary ozone standard and except for some areas covering the

New York City area and the north-east corner of the state of Ohio.

6.9 Summary

A fast hierarchical Bayesian auto-regressive model for both spatially and tem-

porally rich data sets has been developed in this chapter. The methods have

been shown to be accurate and feasible for simultaneous modelling and analysis

of a large data set with more than a million observations using computationally

intensive MCMC sampling algorithms. The hierarchical auto-regressive models

have been shown to validate well for completely out of sample predictions.

Specifically, the methods have been illustrated for evaluating meteorologically

adjusted trends in the primary ozone standard in the eastern US over a 10 year

period from 1997-2006. To our knowledge no such Bayesian model based analysis

exists for the same data and the same modelling purposes. An important utility

of the high resolution space-time model lies in the ability to predict the primary

ozone standard at any given location for the modelled period. This helps in

understanding spatial patterns in ozone levels and trends both at the meteoro-

logically adjusted and unadjusted levels which in turn will help evaluating the

industrial emission reduction policies.
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Figure 6.11: Model based interpolation of the 3-year rolling average of the annual
4th highest maximum ozone levels for 8 years panel (a) for 1999 and panel (b)
for 2000. Observed data from a few selected sites, to enhance readability, are
superimposed.
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Figure 6.12: Model based interpolation of the 3-year rolling average of the annual
4th highest maximum ozone levels for 8 years panel (a) for 2001 and panel (b)
for 2002. Observed data from a few selected sites, to enhance readability, are
superimposed.
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Figure 6.13: Model based interpolation of the 3-year rolling average of the annual
4th highest maximum ozone levels for 8 years panel (a) for 2003 and panel (b)
for 2004. Observed data from a few selected sites, to enhance readability, are
superimposed.
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Figure 6.14: Model based interpolation of the 3-year rolling average of the annual
4th highest maximum ozone levels for 8 years panel (a) for 2005 and panel (b)
for 2006. Observed data from a few selected sites, to enhance readability, are
superimposed.
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Figure 6.15: Plots of the relative percentage change between years 1997 and 2006:
(a) Meteorologically adjusted and (b) unadjusted.
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Figure 6.16: Model based interpolated maps of the probability that the 3-year
rolling average of the annual 4th highest maximum ozone level is greater than 85
ppb for the years 1999 panel (a) and 2000 panel (b). Observed 3-year averages
from a few selected sites, to enhance readability, are superimposed.
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Figure 6.17: Model based interpolated maps of the probability that the 3-year
rolling average of the annual 4th highest maximum ozone level is greater than
85 ppb for the years 2001 panel (a) to 2002 panel (b). Observed 3-year averages
from a few selected sites, to enhance readability, are superimposed.
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Figure 6.18: Model based interpolated maps of the probability that the 3-year
rolling average of the annual 4th highest maximum ozone level is greater than 85
ppb for the years 2003 panel (a) and 2004 panel (b). Observed 3-year averages
from a few selected sites, to enhance readability, are superimposed.
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Figure 6.19: Model based interpolated maps of the probability that the 3-year
rolling average of the annual 4th highest maximum ozone level is greater than 85
ppb for the years 2005 panel (a) and 2006 panel (b). Observed 3-year averages
from a few selected sites, to enhance readability, are superimposed.



Chapter 7

Forecasting of the Daily

Eight-Hour Maximum Ozone

Levels

7.1 Introduction

In this chapter we use forecasting methods to estimate values of ozone levels at

future time points. Forecasting can be done at any spatial location where there

is no monitoring station, and also at any ozone monitoring site. We develop the

forecasting methods using a number of spatio-temporal models introduced in the

previous chapters. The spatio-temporal Gaussian process (GP) linear regression

models (Section 3.4.3), the dynamic linear models (DLM) in Section 3.4.4, and

the auto-regressive (AR) models discussed in Section 3.4.5, are well suited for

forecasting ozone concentrations (Huerta et al., 2004; Sahu et al., 2009). How-

ever, these are very expensive computationally and are sometimes infeasible when

the number of monitoring sites are large. This is also known as the big-n prob-

lem as discussed in Section 1.6. To solve the big-n problem we have developed a

spatio-temporal AR modelling strategy based on Gaussian predictive processes

(GPP) approximation that has been discussed earlier in Chapter 6. In this chap-

ter, we illustrate the GPP based model for forecasting large dimensional ozone

data obtained from the eastern US and compare forecast performance with the

other models discussed in this thesis.

The rest of this chapter is organised as follows: Section 7.2 describes the
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forecasting methods for the spatio-temporal models. A comparison of the fore-

casting performances is provided in Section 7.3 for a smaller data set consisting

of monitoring data from four states in the eastern US. In Section 7.4 we illustrate

the GPP based models for forecasting with sensitivity analyses. Section 7.5 anal-

yses the full eastern US data and obtains the next days forecasts using the GPP

approximation model. Finally in Section 7.6 we provide a number of conclusions.

7.2 Forecasting Methods

7.2.1 Forecasting using GP Models

Recall that the spatio-temporal Gaussian process (GP) models as discussed in

Section 3.4.3 are given by:

Zl(si, t) = Ol(si, t) + ǫl(si, t), (7.1)

Ol(si, t) = xl(si, t)β + ηl(si, t) (7.2)

where, Zl(si, t) and Ol(si, t) are the observed and true values at site si, day

t and year l respectively, i = 1, ..., n, t = 1, ..., T and l = 1, ..., r. The term

xl(si, t) is the 1 × p vector of co-variates, and β contains the unknown regression

coefficients. ǫl(si, t) is the pure error processes and ηl(si, t) is the spatial random

effect. Details are given in Section 3.4.3.

We obtain one step ahead forecast distribution Zl(s
′, T+1) at any unobserved

location s′ at time T + 1 as:

Zl(s
′, T + 1) = Ol(s

′, T + 1) + ǫl(s
′, T + 1),

Ol(s
′, T + 1) = xl(s

′, T + 1)β + ηl(s
′, T + 1)

For the MCMC algorithm samples are drawn from the forecast distribution by

composition. We first obtain the joint distribution of OlT +1, which is given by

the distribution N(xlT +1β,Ση). Then we obtain the conditional distribution of

π(Ol(s
′, T + 1)|OlT +1), which is normally distributed with mean

xl(s
′, T + 1)β + Ση12Σ−1

η (OlT +1 − xlT +1β)
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and variance

σ2
η(1 − Ση,12Σ−1

η Ση,21)

Thus, at each MCMC iteration we draw OlT +1. Then we draw O
(j)
l (s′, T + 1)

conditionally given OlT +1, and finally draw Z
(j)
l (s′, T + 1) from N(O

(j)
l (s′, T +

1), σ2
ǫ

(j)
), where j ≥ 1 is the iteration index.

Now for forecasting at any observed site si at time T + 1 we obtain:

Zl(si, T + 1) = Ol(si, T + 1) + ǫl(si, T + 1),

Ol(si, T + 1) = xl(si, T + 1)β + ηl(si, T + 1)

Thus at each iteration we draw a forecast iterate Z
(j)
l (si, T + 1) from the normal

distribution with mean O
(j)
l (si, T + 1) = xl(si, T + 1)β(j) + η

(j)
l (si, T + 1) and

variance σ2
ǫ

(j)
, where j ≥ 1.

7.2.2 Forecasting using DLM

The spatio-temporal DLM has been described in Section 3.4.4. We recall the

model as:

Zl(si, t) = xl(si, t)θt + νl(si, t),

θt = θt−1 +ωωωt, t ≥ 1,

The model terms have been defined earlier. We also obtain the initial information

θ0 from N(µµµ, σ2
θI). The posterior distribution of the state parameter at time

point T is obtained as θT |. ∼ N(µT −1, σ
2
ωI). Hence, one step ahead forecast

distribution at new site s′ at time T + 1 is written as:

Zl(s
′, T + 1) = xl(s

′, T + 1)θT +1 + νl(s
′, T + 1)

θT +1 = θT +ωωωT +1, t ≥ 1,

Thus we get,

π(Zl(s
′, T + 1)|θθθT , σ

2
ν , σ

2
ω, φ) ∼ N(xl(s

′, T + 1)µT , σ
2
ω(xlT +1x′

lT +1) + Σν)
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where, µT and σ2
ω are the mean and variances of θ at time T + 1. That is, at

each iteration j we draw Z
(j)
l (s′, T + 1) from the above distribution. Similarly,

forecasting at the observation sites we draw samples for Z
(j)
l (si, T + 1) at each

iteration j ≥ 1.

7.2.3 Forecasting using AR Models

Recall from Section 3.4.5, we write the AR models as:

Zl(si, t) = Ol(si, t) + ǫl(si, t)

Ol(si, t) = ρOl(si, t− 1) + xl(si, t)β + ηl(si, t)

The terms of the equations are defined in Section 3.4.5. In the AR models the

predictive distribution of Z(s′, T + 1) is determined by the true forecast value

Ol(s
′, T + 1). Thus according to (3.10) we simulate Ol(s

′, T + 1) from marginal

distribution with mean given by ρOl(s
′, T ) + xl(s

′, T + 1)β with site invariant

variance σ2
η. We use marginal distribution instead of conditional distribution

because we already obtain the conditional distribution given observed information

upto time T and r at the monitoring sites s1, ..., sn, and at the future time T + 1

there is no new available information to condition on except for the new regressor

values xl(s
′, T + 1) in the model.

Thus, in each iteration j, we obtain the forecast of Z
(j)
l (s′, T + 1) with mean

O
(j)
l (s′, T + 1) = ρ(j)O

(j)
l (s′, T ) + xl(s

′, T + 1)β(j) and variance σ2
ǫ

(j)
, j ≥ 1.

Henceforth, for forecasting at the observed locations si we need to draw samples

for Z
(j)
l (si, T + 1) following similar steps discussed earlier.

7.2.4 Forecasting using Models Based on GPP Approximations

Recall from Section 6.2, we write the AR models based on GPP approximation

as:

Zl(si, t) = xl(si, t)β + η̃l(si, t) + ǫl(si, t), (7.3)

η̃l(si, t) = Awl(si, t) (7.4)

wl(si, t) = ρwl(si, t− 1) + ξl(si, t) (7.5)
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The notations are defined in Section 6.2. Under a Bayesian hierarchical setup,

we use the MCMC algorithm to obtain estimates of the model parameters (see

Chapter 3).

At an unobserved location s′, the one step ahead Bayesian forecast is given

by the predictive distribution of Zl(s
′, T + 1), that we determine form the equa-

tion (6.8) replacing t with T + 1. Thus the one step ahead forecast distribution

has the mean

xl(s
′, T + 1)′β + η̃l(s

′, T + 1)

and variance σ2
ǫ when all the parameters are known. We also obtain η̃l(s

′, T + 1)

from (6.9) as:

η̃l(s
′, T + 1) = c′(s′)S−1

w wlT +1

where we get wlT +1 from (7.5). Thus, at each MCMC iteration we draw a forecast

value Z
(j)
l (s′, T + 1) from the normal distribution with mean Xl(s

′, T + 1)β(j) +

η̃
(j)
l (s′, T + 1) and variance σ2

ǫ
(j)

, j ≥ 1. We obtain the forecasts Z
(j)
l (si, T + 1)

at the observation location si, i = 1, ..., n, similarly.

In the following sections, models based on GPP approximation are used to

obtain forecasts and these forecasts are compared with the ones obtained from

the GP, DLM and the AR models. We also obtain forecast results for both fitting

and validation sites using the models.

In all our illustrations below we have diagnosed MCMC convergence by visual

examination of the time-series plots of the MCMC iterates. We also used multiple

parallel runs and calculated the Gelman and Rubin statistics (Gelman and Rubin

1992), which we found to be satisfactory. We have used 15,000 iterations to make

inference after discarding first 5000 iterates to mitigate the effect of initial values.

7.3 Comparison of the Forecast Models

7.3.1 Example: Four States Data Set

In this section the GPP approximation model is compared with the GP, DLM

and AR models for forecasting (see Section 7.2). Similar to Section 6.6, a smaller

subset of the whole eastern US data consisting of four states, Illinois, Indiana,

Ohio and Kentucky (see Figure 7.1) is used to facilitate the comparison. We

have 147 ozone monitoring sites inside these four states during 14th June to 8th
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July, 2010, to illustrate the forecasts. We set aside data from 20 randomly chosen

locations for the forecast validation. This choice is also repeated 7 times in an

experiment to observe the effect of the choice of these validation sites. For the

GPP based models knot size is taken as 107, that has been chosen from the sen-

sitivity analysis we have performed in Section 7.4.1. We use 7 and 14 consecutive

days observation from 1 July to 7 July and 24 June to 7 July and obtain forecast

on 8th July 2010. Different model validation criteria (see Section 3.3) are used

to compare the models and also for performing sensitivity analysis.

The CMAQ grid output (see Section 1.4) in the eastern US for this period is

also used in the model for ozone data. The CMAQ output values are used as a

covariate in the ozone model in the same fashion as we have discussed previously

in Chapter 5. This modelling technique is also known as the downscaling method,

see Berrocal et al. (2010a, 2010b); and also as data assimilation method as

discussed in Section 1.4.3.

Monitoring sites
CMAQ grid locations

Figure 7.1: A map of the four states, Ohio, Indiana, Illinois and Kentucky. 147
ozone monitoring locations are superimposed.

7.3.2 Comparison Results

In this section we compare the models using both the predictive model choice

criteria (PMCC) and the forecast validation criteria. It is observed from Table 7.1

that forecasting using GPP approximation model is the best. The PMCC values

provided in Table 7.2 also confirm that the GPP based model is the best among

all the spatio-temporal models that we consider here.
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Table 7.3 provides the nominal coverage for the 95% intervals for the forecasts

of ozone levels at the hold-out sites. We observe that GP and GPP based ap-

proximation models show coverage probability near 95%, whereas the DLM has

the smallest nominal coverage and AR has a little bit higher nominal coverage

than 95%.

Forecast Validation

7 Days Data 14 Days Data

Models RMSE MAE rMSEP RMSE MAE rMSEP

GP 12.85 10.75 0.82 12.78 10.70 0.82
DLM 12.10 10.06 0.78 12.05 10.01 0.77
AR 10.58 8.65 0.70 10.55 8.64 0.70
GPP 9.10 7.04 0.65 9.06 7.00 0.65

Table 7.1: Values of the forecast validation criteria for the GP, the DLM, the
AR, and the models based on GPP approximations.

7 Days Data 14 Days Data

Models GoF P PMCC GoF P PMCC

GP 1388.43 1704.65 3093.08 2375.78 2986.44 5362.22
DLM 1150.98 1644.56 2795.54 2083.95 2865.88 4949.83
AR 796.45 1857.64 2654.09 1409.68 3271.02 4680.70
GPP 865.55 1074.86 1940.41 1749.09 2113.3 3862.39

Table 7.2: Values of the PMCC for the GP, DLM, AR, and the models based on
GPP approximations. Here, GoF is the goodness of fit and P is the penalty.

Nominal coverage (95% intervals) for the Hold-out Sites

Using 7 Days Data Using 14 Days Data

Day GP DLM AR GPP GP DLM AR GPP

08/07 94.44 84.10 97.42 93.95 94.65 85.76 97.81 94.55

Table 7.3: Nominal coverage of the 95% intervals for the one-step ahead forecasts
at the 20 randomly chosen validation sites.

Finally, we conclude that the GPP based model is the best among all the

models we have considered here. Henceforth, in the following sections, we only

use the GPP based approximation model and study its sensitivity for forecasting.
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7.4 Sensitivity Analysis of the Forecasts Based on

GPP Models

7.4.1 Sensitivity of Knot Sizes

Similar to Section 6.6, we define five different sets of regular grid locations starting

from 6 × 6, 8 × 8, 10 × 10, 12 × 12 and 14 × 14 over the four states. These grid

sizes lead to knot-sizes of 26, 40, 60, 107 and 138 respectively that are inside the

boundary of the four states.

For different set of knot sizes and for 7 & 14 consecutive days data the values

of the forecast validation criteria for the forecasts made on 8 July 2010, are

given in Table 7.4. As expected, the RMSE decreases as the knot size increases

and we observe that the differences between the validation criteria for knot sizes

107 and 138 are very small. Thus, similar to the spatial interpolation results in

Section 6.6.1 we observe that after a particular choice of knot size the forecasting

performance of the models are approximately same.

Forecast Validation

7 Days Data 14 Days Data

Knots RMSE MAE rMSEP RMSE MAE rMSEP

26 10.11 8.35 0.67 10.08 8.30 0.66
40 9.75 7.82 0.66 9.70 7.79 0.66
60 9.48 7.36 0.66 9.47 7.36 0.65
107 9.10 7.04 0.65 9.06 7.01 0.65
138 9.08 7.02 0.65 9.06 7.00 0.65

Table 7.4: Values of the forecast validation criteria for different knot sizes for the
7 and 14 days data in the four states example on 8 July, 2010.

7.4.2 Sensitivity of Prior Selection

In this section, different hyper-parameter values of the prior distributions are

used for the GPP based models with knot size 107. Table 7.5 shows different

forecast validation criteria for four different sets of values of a and b, the hyper-

parameters of the gamma prior distribution for the variance components. The

validation criteria values are not very sensitive to the choice of the a and b and

the combination a = 2 and b = 1 provides the best results. Henceforth, this

choice will be adopted in our analysis.
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Forecast Validation

7 Days Data 14 Days Data

(a,b) RMSE MAE rMSEP RMSE MAE rMSEP

(2,1) 9.10 7.04 0.65 9.06 7.00 0.65
(1,1) 9.11 7.10 0.66 9.10 7.08 0.65
(2,2) 9.15 7.18 0.66 9.13 7.16 0.66
(10,10) 9.35 7.34 0.68 9.30 7.29 0.67

Table 7.5: Values of the forecast validation criteria for different hyper-parameter
values for the GPP based models fitted to 7 and 14 days data from the four
states. The forecasts are made for 8th July 2010 in both the model fitting cases.

7.4.3 Choice of the Sampling Method for the Spatial Decay Pa-

rameter

Here we compare the Metropolis-Hastings sampling method for the spatial decay

parameter, φ with the discrete sampling method corresponding to the assumption

of a discrete prior for φ, see Section 3.2. We tune the variance of the proposal

distribution for the Metropolis-Hastings to achieve an acceptance rate of 29.85%.

In the case of the discrete sampling for φ we assume the discrete uniform prior

distribution on 50 equally spaced values in the interval 0.001 to 0.1. Table 7.6

represents the results from these two sampling schemes, where better performance

is observed for the random walk approach.

Forecast Validation

7 Days Data 14 Days Data

RMSE MAE rMSEP RMSE MAE rMSEP

Discrete 9.14 7.17 0.68 9.13 7.15 0.68
Continuous 9.10 7.04 0.65 9.06 7.00 0.65

Table 7.6: Values of the forecast validation criteria for different sampling ap-
proaches of φ for the 7 and 14 days data in the four states example on 8 July
2010.

7.4.4 Results for Different Sets of Hold-Out Sites

We randomly choose 7 hold-out data sets, each of which consists of ozone con-

centrations from 20 monitoring sites. From Table 7.7 we observe that when the

knot size is 107 the RMSE varies between 9.10 and 11.50 for forecasting made

using the 7-days data. For forecasting using 14 days data the RMSE varies be-
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tween 9.06 and 11.33. We also observe that the nominal coverage varies between

93.15% to 96.20%, showing very good accuracy of the forecasts.

Forecast Validation

7 Days Data 14 Days Data

Data set RMSE MAE rMSEP RMSE MAE rMSEP

1 9.10 7.04 0.65 9.06 7.00 0.65
2 10.98 8.88 0.72 10.85 8.82 0.72
3 11.50 9.94 0.74 11.33 9.68 0.74
4 9.76 7.85 0.68 9.72 7.80 0.68
5 9.88 7.96 0.68 9.85 7.88 0.67
6 9.15 7.19 0.66 9.14 7.19 0.66
7 9.34 7.30 0.66 9.32 7.28 0.65

Table 7.7: Values of the forecast validation criteria for different sets of hold-out
sites using 107 knots.

7.5 Analysis of the Full Eastern US Data

In this section we evaluate the forecasting performance using daily ozone con-

centration data for the three week study period from 23 June to 14 July, 2010.

Data are available from 639 ozone monitoring sites in the eastern US and we use

data from 577 sites to fit our models and the data from 62 sites are set aside

for validation purposes. Details of the ozone concentration data with summary

statistics are given in Section 4.6.

As in Section 7.3.1, we use a running window of data for 7 and 14 days

observations to fit the models and provide the one step ahead forecasts. For

example, 7 days data, say from 1 July to 7 July are used to forecast for 8th July.

Similarly when the models are fitted using 14 days data, say from 24 June to 7

July the forecasts are made for the ozone concentration levels on the 8th of July.

This is done to see the performance of forecasts models for the same day based

on 7 and 14 days data.

Similar to the illustration given in Section 7.3.1, we include CMAQ grid out-

put as a covariate in the models. As expected, we see from Figure 7.2 that there

are similarities in the patterns between the observed and CMAQ gird output,

however in some cases, the CMAQ output over estimates the actual observations

in the eastern US study region.
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Figure 7.2: Box-plot for the observed and CMAQ grid output for 21 days from
all 639 sites in the eastern US.

In this section we only use the GPP based model, because the other models

are not suitable for analysing large dimensional data set (see Chapter 6). The

forecasts made by the GPP based model are then compared with the CMAQ

forecasts as discussed in Section 1.4.

7.5.1 Knot Size Selection

As seen previously in Section 7.4 increase in the number of knot locations yields

better forecasting for the GPP approximation models. This is also confirmed

here by the results presented in Table 7.8.

The number of knots used in Section 6.8 for the predictions are also considered

here starting from 68, 105, 156, and 269, that are inside the boundary of the

eastern US study region. We observe the model performance is only marginally

improved when knot size goes up to 269 from 156. Henceforth, we proceed with

the knot size 156, similar to Section 6.8 which has a much smaller computational

burden.

7.5.2 Parameter Estimates

In this section we discuss the parameter estimates for the GPP based model for

the eastern US study region. Table 7.9 provides the MCMC summary statistics

for the model parameters using 7 days data from 1 July–7 July. We observe

that the CMAQ variable is a significant predictor since β1 is significant because
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Forecast Validation

7 Days Data 14 Days Data

Knots RMSE MAE rBIAS rMSEP RMSE MAE rBIAS rMSEP

68 12.98 11.98 -0.11 0.82 12.85 11.78 -0.11 0.80
105 12.01 10.05 -0.10 0.78 12.01 10.04 -0.10 0.75
156 11.17 9.22 -0.09 0.65 11.11 9.18 -0.09 0.65
269 11.15 9.21 -0.09 0.65 11.10 9.18 -0.09 0.65

Table 7.8: Values of the forecast validation criteria for different knot sizes for
the GPP based models fitted to 7 and 14 days data from the four states. The
forecasts are made for 8th July 2010 in both the model fitting cases.

the 95% interval does not contain zero. The temporal correlation of the latent

random effects is also statistically significant. The estimate of the spatial decay

parameter is 0.0024, that corresponds to an effective range of 1250 kilometers. As

expected, the estimates of the variance components show that the nugget effect

has smaller variability than the spatial error variance σ2
w. Similar parameter

estimates are obtained when the model is fitted to other data sets, e.g., data

from 2–8 July and so on, see Table 7.10. We omit other summary statistics of

the model parameters for brevity.

Table 7.11 shows the estimates of the model parameters using 14 consecutive

days observations. We observe that the estimates are approximately same as the

estimates reported in Table 7.9 and 7.10 obtained using 7 days data sets.

Mean Median sd 95% interval

β0 4.3974 4.3984 0.1768 (4.0525, 4.7452)
β1 0.3264 0.3263 0.0213 (0.2854, 0.3684)
ρ 0.2109 0.2108 0.0451 (0.1232, 0.2998)
σ2

ǫ 0.2477 0.2476 0.0061 (0.2358, 0.2597)
σ2

w 0.5291 0.5261 0.0574 (0.4271, 0.6503)
φ 0.0024 0.0024 0.0003 (0.0019, 0.0030)

Table 7.9: Parameter estimates for the proposed AR models based on GPP
approximation, fitted with 7 days observations from 1 July–7 July, 2010.

7.5.3 Comparison with the CMAQ Output

This section is devoted to comparing the proposed models with the CMAQ fore-

casts. Table 7.12 represents the RMSE values (see details in Section 3.3) for the

models based on GPP approximations. The RMSE obtained from CMAQ output
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Days Parameters

Fitted Forecast β0 β1 ρ σ2
ǫ σ2

w φ

2/7-8/7 9/7 Mean 4.34 0.33 0.20 0.26 0.49 0.0024
sd 0.16 0.02 0.05 0.007 0.06 0.0004

3/7-9/7 10/7 Mean 4.18 0.35 0.20 0.26 0.49 0.0024
sd 0.18 0.03 0.05 0.006 0.05 0.0003

4/7-10/7 11/7 Mean 4.15 0.35 0.19 0.30 0.46 0.0024
sd 0.17 0.03 0.04 0.007 0.06 0.0003

5/7-11/7 12/7 Mean 4.14 0.34 0.19 0.30 0.45 0.0024
sd 0.17 0.02 0.04 0.006 0.06 0.0004

6/7-12/7 13/7 Mean 4.06 0.35 0.17 0.30 0.45 0.0024
sd 0.18 0.04 0.06 0.007 0.07 0.0004

7/7-13/7 14/7 Mean 4.12 0.33 0.16 0.31 0.46 0.0024
sd 0.17 0.03 0.05 0.005 0.06 0.0003

Table 7.10: Parameter estimates (mean and sd) for the models based on GPP
approximation fitted using 7 consecutive days observations.

Days Parameters

Fitted Forecast β0 β1 ρ σ2
ǫ σ2

w φ

24/6-7/7 8/7 Mean 3.90 0.38 0.21 0.24 0.42 0.0025
sd 0.19 0.02 0.08 0.008 0.06 0.0002

25/6-8/7 9/7 Mean 3.92 0.37 0.21 0.25 0.43 0.0025
sd 0.15 0.03 0.07 0.006 0.05 0.0003

26/6-9/7 10/7 Mean 3.95 0.37 0.21 0.26 0.43 0.0025
sd 0.21 0.02 0.08 0.006 0.06 0.0002

27/6-10/7 11/7 Mean 4.01 0.36 0.21 0.26 0.43 0.0025
sd 0.20 0.03 0.07 0.009 0.07 0.0002

28/6-11/7 12/7 Mean 4.05 0.35 0.20 0.26 0.42 0.0025
sd 0.19 0.03 0.09 0.006 0.05 0.0002

29/6-12/7 13/7 Mean 4.11 0.34 0.20 0.26 0.43 0.0025
sd 0.18 0.03 0.08 0.007 0.05 0.0003

30/6-13/7 14/7 Mean 4.24 0.33 0.19 0.27 0.43 0.0025

sd 0.22 0.04 0.09 0.009 0.09 0.0003

Table 7.11: Parameter estimates (mean and sd) for the models based on GPP
approximation fitted with 14 days observations starting from 24 June to 13 July,
2010.
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values are also given. Forecast validation results are also obtained for 7 and 14

consecutive days data sets starting from 23 June to 13 July 2010. These forecast

results are obtained from both hold-out and fitted sites.

As expected, we observe much better performance of the GPP based models

compared to the CMAQ model. The RMSE is smaller for the GPP approximation

model in all forecast days (i.e., 8–14 July) than the CMAQ models. We also

observe that the RMSEs are smaller for the GPP based model for both hold-out

and fitted data. Table 7.12 also indicates that the RMSEs are smaller for the

data sets fitted with 14 days data compared to 7 days data using the GPP based

models. This is because 14 days data provides more information to model fitting

than 7 days data.

7 Days Data Set

Fitted Forecast Hold-out Sites Fitted Sites

GPP CMAQ GPP CMAQ

1/7-7/7 8/7 11.17 20.52 11.09 17.42

2/7-8/7 9/7 10.79 19.68 10.63 16.02

3/7-9/7 10/7 8.59 16.36 8.96 15.27

4/7-10/7 11/7 8.18 15.51 9.00 13.46

5/7-11/7 12/7 8.67 13.12 9.16 13.71

6/7-12/7 13/7 11.24 20.36 11.18 16.29

7/7-13/7 14/7 9.21 18.10 11.01 17.56

14 Days Data Set

24/6-7/7 8/7 10.07 20.52 11.05 17.42

25/6-8/7 9/7 10.57 19.68 10.29 16.02

26/6-9/7 10/07 7.85 16.36 8.94 15.27

27/6-10/7 11/07 8.11 15.51 8.49 13.46

28/6-11/7 12/07 8.31 13.12 9.00 13.71

29/6-12/7 13/07 10.70 20.36 11.65 16.29

30/6-13/7 14/07 8.61 18.10 10.07 17.56

Table 7.12: Values of the forecast RMSE for the models based on GPP approxi-
mation and the CMAQ output in the hold-out and fitted sites.

The nominal coverages for the hold-out data are given in Table 7.13 for the

GPP approximation models. We observe that these are close to 95% for all the

days, which indicates that the uncertainties in the forecasts are about right.

Figure 7.3 shows the scatter plot of the forecasts against observed values for

the hold-out locations. The proposed model shows better forecasting performance

compared to the CMAQ models. We also observe from Table 7.14 that the CMAQ
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Nominal coverage (95% interval)

8/7 9/7 10/7 11/7 12/7 13/7 14/7

7 Days 93.55 93.75 94.96 95.16 94.96 93.75 95.56
14 Days 94.62 94.30 94.84 95.05 94.62 94.84 94.84

Table 7.13: Nominal coverage of the 95% intervals for the hold-out data for the
models based on GPP approximations.

model over estimates the actual observations.
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Figure 7.3: A scatter plot of forecasts against observations in the 62 hold-out
sites. The symbols ‘C’ and ‘P’ represents the CMAQ output and the GPP based
models respectively.

7.5.4 Forecast Maps

Figures 7.4 to 7.7 show the mean surface plot of the forecast for 8–14 July using

the GPP based approximate models. Observed values of the ozone levels from

a selected number of sites are also superimposed. Data from all the monitoring

sites are not plotted to avoid clutter. We observe that the forecast values show

a very good agreement with the actual values. The uncertainties in forecast are

presented in Figures 7.8 to 7.11 using the standard deviation for the forecasts.

Forecast maps of sd in 8–14 July shows that the overall sd varies between 6.0

to 9.0. The CMAQ output is also presented in Figures 7.12 to 7.15, where we

observe that it over estimates the actual values in most of the areas.
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Figure 7.4: Forecast maps of the average daily ozone levels using the GPP based
model for 7 days, panel (a) for 8 July and (b) for 9 July. Actual observations are
also superimposed. The colour scheme is different for different maps.
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Figure 7.5: Forecast maps of the average daily ozone levels using the GPP based
model for 7 days, panel (a) for 10 July and (b) for 11 July. Actual observations
are also superimposed. The colour scheme is different for different maps.
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Figure 7.6: Forecast maps of the average daily ozone levels using the GPP based
model for 7 days, panel (a) for 12 July and (b) for 13 July. Actual observations
are also superimposed. The colour scheme is different for different maps.
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GPP CMAQ

Over estimation 51.65% 91.60%
Under estimation 48.35% 8.40%

Table 7.14: Percentage of over and under estimation of forecasts in the hold-out
locations, for the models based on GPP approximation and the CMAQ output.
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Figure 7.7: Forecast maps of the average daily ozone levels using the GPP based
model for 7 days for 14 July. Actual observations are also superimposed.
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Figure 7.8: Forecast uncertainty (standard deviations) maps for the eastern US,
using the GPP based model for 7 days, panel (a) for 8 July and (b) for 9 July.
The colour scheme is different for different maps.
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Figure 7.9: Forecast uncertainty (standard deviations) maps for the eastern US,
using the GPP based model for 7 days, panel (a) for 10 July and (b) for 11 July.
The colour scheme is different for different maps.
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Figure 7.10: Forecast uncertainty (standard deviations) maps for the eastern US,
using the GPP based model for 7 days, panel (a) for 12 July and (b) for 13 July.
The colour scheme is different for different maps.
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Figure 7.11: Forecast uncertainty (standard deviations) maps for the eastern US,
using the GPP based model for 7 days for 14 July.
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Figure 7.12: Forecast maps of the average daily ozone levels using the CMAQ
model for 7 days, panel (a) for 8 July and (b) for 9 July. Actual observations are
also superimposed. The colour scheme is different for different maps.
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Figure 7.13: Forecast maps of the average daily ozone levels using the CMAQ
model for 7 days, panel (a) for 10 July and (b) for 11 July. Actual observations
are also superimposed. The colour scheme is different for different maps.
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Figure 7.14: Forecast maps of the average daily ozone levels using the CMAQ
model for 7 days, panel (a) for 12 July and (g) for 13 July. Actual observations
are also superimposed. The colour scheme is different for different maps.
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Figure 7.15: Forecast maps of the average daily ozone levels using the CMAQ
model for 7 days for 14 July. Actual observations are also superimposed.
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7.6 Summary

In this chapter we perform forecasting for next day’s daily 8-hour maximum

ozone concentration levels. We use different forecast methods in this context,

namely the CMAQ, GP, DLM, AR, and the GPP based approximation models.

Specifically, these methods have been illustrated and compared for a relatively

small set of fitting data from four states in the eastern US. The results indicate

a better forecasting performance for the GPP approximation model than the

others. Unlike the GP, DLM and the AR models, the GPP based model is suitable

for analysing large volumes of ozone concentration data. The GPP approximate

model is also compared with the CMAQ output values in the eastern US, where

we see that the proposed GPP based model performs much better than the

CMAQ forecasts.



Chapter 8

spTimer: Spatio-Temporal

Bayesian Modelling Using R

8.1 Introduction

This chapter illustrates the implementation of the previously introduced Bayesian

spatio-temporal models in R using the package spTimer developed as a part of

this thesis. The models included in this package are the Gaussian process (GP)

models (Cressie, 1993; Stein, 1999; Banerjee et al., 2004), the autoregressive

(AR) models as introduced in Sahu et al. (2007), and the Gaussian predictive

processes (GPP) based model for analysing large dimensional data as introduced

in Chapter 6.

There are several R packages are available for model based analysis of spa-

tial data under the Bayesian setup, for example, spBayes (Finley et al., 2007),

geoR (Ribeiro Jr and Diggle, 2001), geoRglm (Christensen and Ribeiro Jr, 2002).

However these packages are not able to analyse spatio-temporal data, although

the spBayes package can model some space-time data by using some multivari-

ate spatial models, yet this is not feasible even for moderately sized data sets.

Moreover, time series models such as the AR models cannot be implemented in

spBayes.

The package spTimer is developed using the C-language, that enables much

faster computation than the high level R language.

The main objective of this chapter is to verify the code of spTimer using

simulation. We simulate data sets from each of the three implemented models

147



8.2 The Main Functions in spTimer 148

and then estimate the parameters using spTimer that enables us to verify the

model fitting routines. We also verify the spatial interpolation and temporal

forecasting routines using cross-validation. The code for this chapter is provided

in the accompanying compact disk (CD).

The Gibbs sampler is implemented for all the models. Convergence of the

Gibbs sampler has been assessed by using the Gelman and Rubin statistics (Gel-

man and Rubin, 1992) calculated from several parallel runs. We also have ex-

amined the time-series and auto-correlation plots of the MCMC samples and the

chains converged rapidly for all models.

The rest of this chapter is organised as follows: Section 8.2 discusses the

main functions and routines developed in the package spTimer. The details

for simulating data from the GP, AR and GPP based models are provided in

Section 8.3. Sections 8.4, 8.5, and 8.6 fit and analyse the simulated data sets from

the GP, AR, and GPP based models respectively. These sections also provide

prediction and forecast results for the models using spTimer. Finally, we conclude

with a brief discussion in Section 8.7.

8.2 The Main Functions in spTimer

There are three main functions in spTimer package, namely, spT.Gibbs for model

fitting, spT.prediction to obtain predictions based on the fitted models and

spT.forecast to obtain forecast in future time points.

8.2.1 spT.Gibbs

The function spT.Gibbs is used to fit all three models using Gibbs sampling

approach. Here is the list of arguments that can be sent to spT.Gibbs.

• The required argument formula is used to specify the linear part of the

model. Its documentation is same as that for the formula argument of the

R function lm used to fit linear regression models.

• The argument data provides the data set used for model fitting. The data

set must be ordered by the location index and under each location data

must be ordered by time. Time-series data with more than one segments,

for example, T daily observations in each of r years, must be ordered first
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by year and then by days in each year. The length of the segments must be

same in each year and also for each location. Currently the package cannot

handle any irregular time-series. Missing data should have the standard

NA identifier. For each missing data point, standard Bayesian technique

of treating it as an unknown and sampling this unknown parameter at

each Gibbs iteration is employed. For the covariates no missing values are

allowed.

• The argument time.data defines the time-series, and we use another func-

tion spT.time to specify this. See documentation in Section 8.2.4 for de-

tails.

• The required argument model specifies the intended model to be fitted and

this can be one of the three, GP, AR, and GPP. The default is GP.

• The argument coords is used for providing the spatial locations, e.g., lon-

gitude and latitude, or easting and northing. This must be supplied as an

n× 2 matrix, where n is the number of locations in the data.

• The optional input knots.coords is only used for the models based on

GPP approximations, i.e., when model="GPP". This input must be an

m × 2 matrix as coords, where m is the number of knot locations and

m < n.

• The prior distributions in spT.Gibbs are provided using argument priors.

If we choose priors=NULL then the routine spT.Gibbs automatically takes

proper prior distributions for the model parameters. Prior configuration

can also be defined using the output of the function spT.priors. See

Section 8.2.4 for details.

• Initial values for the model parameters are defined in spT.Gibbs using the

function spT.initials. Details of this argument is given in Section 8.2.4.

In addition, writing initials=NULL yields default choices of input values

for the model parameters. The default values for spatial variance is 0.1

and for nugget effect, it is 0.01. For spatial decay, default is calculated

using (− log(0.05)/dmax), where dmax is the maximum distance calculated
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from the coordinates. The initial parameters for the covariates including

the auto-regressive term are calculated using a simple linear model.

• The argument its specifies the number of iterations in the Gibbs sampler.

• The argument burnin is the number of initial iterations to be discarded

before making inference.

• The argument report is the number of reports printed on screen to monitor

the progress of the Gibbs sampler. The default is report equals to one for

printing information only once after finishing all iterations.

• The argument distance.method specifies the method to calculate the dis-

tance between any two locations. This argument can take any if the values

"geodetic:km" for distance in kilometres, "geodetic:mile" for distance

in miles, "euclidean" for Euclidean. See Section 2.6.1 for details regarding

geodetic distances.

• To ensure the non-singularity of the covariance matrices, we can also define

the minimum allowed distance between two locations out of those specified

by the coordinates. For example, tol.dist=2 implies the allowed distance

as 2 units of measurement. The default unit is 0.005. The programme will

exit if the minimum distance is less than the non-zero specified values.

• The choice of the spatial covariance function is provided by the required ar-

gument cov.fnc. This argument can take one of the values: "exponential",

"gaussian", "spherical", and "matern". See Section 2.4.4 for more de-

tails regarding the covariance functions.

• There are three options for handling the spatial decay parameter φ using

the argument spatial.decay in spT.Gibbs. The function spT.decay sets

up the options for this. See details in Section 8.2.4.

• A particular scale transform of the response can be provided using the

optional argument scale.transform. Currently, it can take one of the

values "NONE", "LOG" or "SQRT". The default is "NONE". Note that all the

predictions and forecast will be made on the original scale. Further, this

transformation does not apply to any of the covariates.
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The function spT.Gibbs will both fit and predict if two further optional ar-

guments, pred.coords and pred.data are provided. These are described as

follows:

• pred.coords is a q×2 matrix of prediction locations similar to the coords

argument, where q is the number of prediction locations.

• pred.data should be a data frame with the same space-time structure as

the fitted data frame.

In this combined approach there is an option to obtain summary statistics by

aggregating different time segments. For example, if data set has 30 days ob-

servations for 5 years, then use of annual.aggregation="ave" yields annual

average, and "an4th" yields annual 4th highest value. Currently we have the op-

tions "ave", "an4th" and "NONE", where "NONE" represents no annual summary

statistics. Obviously this input is only meaningful if spT.time has input more

than one segment and when fit and predict are done together.

Output of the Function spT.Gibbs

The output of spT.Gibbs is a list containing various information. Some of the

members of this list themselves are list or matrices. These are described as

follows:

• All MCMC samples of the model parameters.

• The spT.Gibbs also provides the PMCC that is the predictive model choice

criteria discussed in Section 3.3. Both penalty and goodness of fit values

are obtained from the output.

• In the output-list, object X and Y represents the design matrix and the

independent variables that have been used in the model fitting.

• call provides the formula that has been used for model fitting.

• The spT.Gibbs also provides output that can identify the distance method

(distance.method), the name of the covariance function (cov.fnc), the

type of scale transformation (scale), and the approach used for sampling

the spatial decay parameter (sampling.sp.decay).
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• There are also output lists of the prior distributions (priors) and initial

values (initials) used in the fitted model.

• The MCMC control parameters, i.e., number of iterations (its), burn-in

from the output (burnin) can be obtained from the output.

• In addition, we can also recall the computational time elapsed (computation.time)

in the model fitting using Gibbs algorithm.

Text Output of the Function spT.Gibbs

We have already mentioned that model fitting and prediction can be done to-

gether using function spT.Gibbs. In this case, the spT.Gibbs also writes out

some output values in text files in the current working directory.

• MCMC values of the model parameters are given in a text file whose name

is specified according to the model.

• We also get MCMC samples for prediction by the file name "OutMODEL-

Values-Prediction.txt" and the file name changes in different models as

described in the previous paragraph.

• Mean and standard deviations of the predicted values are also written in

the text file as "OutMODEL-Stats-PredValue.txt". This text file is useful

when the data set is very large.

• Similarly we get the text output of the fitted summary statistics by "OutMODEL-

Stats-FittedValue.txt" and so on.

• Particularly, for the AR models we obtain one more text file that is for the

summary statistics of true (Ol(si, t), see equation 3.10) underlying values

as "OutAR-Stats-TrueValue.txt"

• If annual.aggregation is equal to "ave", then we get another text file

that is the MCMC values for the annual averages and the name of the file is

"OutMODEL-Annual-Average-Prediction.txt". annual.aggregation="an4th"

yields the text file of the MCMC values for the annual 4th highest values

and is written on the file "OutMODEL-Annual-4th-Highest-Prediction.txt".

Similarly, the first part of the file name changes for different models.
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8.2.2 spT.prediction

The function spT.prediction is used to obtain predictions at unmonitored lo-

cations based on the results obtained from the routine spT.Gibbs. This function

will not work if fit and predict has already been done in the spT.Gibbs.

Arguments for the Function spT.prediction

• pred.coords and pred.data are same as defined in Section 8.2.1.

• The required argument posterior in spT.prediction must be the output

of the model fitting routine spT.Gibbs.

• The minimum separation distance between the fitted and prediction sites

is defined by tol.dist and discussed in Section 8.2.1. The default is 0.005.

The programme will exit if the minimum distance is less than the specified

values.

• A logical expression is used to get summary statistics by writing Summary=TRUE.

Default is TRUE.

• There is also an option to include further burn-in if necessary using burnin

argument. For example, if burnin is 5000 and burn-in in spT.Gibbs is 1000

then it will remove 6000 iterations altogether, and if the total number of

iterations are less than 6000 then it will stop the programme and provide

related warning messages.

Output of the Function spT.prediction

• The MCMC prediction samples are also available through predicted.samples.

• If Summary=TRUE in the routine spT.prediction, then the output includes

Mean, Median, SD (i.e., standard deviations), and 95% lower and upper

prediction intervals of the prediction samples.

• Some other output, e.g., distance.method, cov.fnc, and computation.time

are also obtained from the function spT.prediction.
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8.2.3 spT.forecast

To obtain forecast using package spTimer, we use the function spT.forecast.

This function can calculate K-step ahead forecasts.

Input for the Function spT.forecast

• In spT.forecast there is option to get K-step ahead forecast using K.

• burnin option is also available in this forecast function.

• There is option to include the forecast covariate values by fore.data, and

the forecast coordinates using fore.coords as discussed in the previous

sections.

• Similar to prediction, the output of the spT.Gibbs are used as input in

posteriors.

• The forecast summary can be obtained writing Summary=TRUE.

Output of the Function spT.forecast

• forecast.samples are for the forecast MCMC output.

• Similar to prediction, if Summary=TRUE, we get the summary statistics for

the forecasts that includes Mean, Median, SD (i.e., standard deviations), and

95% lower and upper forecast intervals.

• distance.method, cov.fnc, and computation.time are also obtained sim-

ilar to prediction output.

8.2.4 Some Other Functions

In this package some other utility functions are also provided that are often

needed to get summary. Some of these are discussed below:

• The number of years and the length of the segments in the time-series are

provided by argument spT.time. For example, if we have 30(= T ) days of

observations in 5(= r) years, then we define the spT.time function as:

> t.data <- spT.time(t.series = 30, segments = 5)



8.2 The Main Functions in spTimer 155

The function spT.time can also be used to define hourly time-series data.

For example, we can define 24 hours as t.series=24 and 5 days as segments=5.

There is no default given for t.series and for segments the default is 1.

• spT.priors routine has inputs to define the hyper-parameter values of the

prior distribution. For example, for model variances and spatial decay pa-

rameters we consider Gamma prior distribution with the hyper-parameters

a = 2 and b = 1; for regression coefficient β and auto-regressive parameter

ρ we consider Normal prior distribution with mean zero and variance 104.

We write the input for spT.priors for model AR as:

> prior <- spT.priors(model="AR", var.prior=Gam(a=2,b=1),

beta.prior=Nor(0,10^4), rho.prior=Nor(0,10^4),

phi.prior=Gam(a=2,b=1))

For other models we need to change the name in the argument model as

described in Section 8.2.1. If any argument in spT.priors is not given

then for that option by default a proper prior specification will be made.

• We can provide the initial values of the model parameters through the

spT.initials argument. For example, we input the initial values of σ2
ǫ =

0.01, σ2
η = 0.5, ρ = 0.2, β = (1.8, 0.3)′ and φ = 0.01 for the model AR as:

> initials <- spT.initials(model="AR", sig2ep=0.01,

sig2eta=0.5,rho=0.2,beta=c(1.8,0.3),

phi=0.01)

Similar to the spT.priors we can choose the models and any input defined

as NULL will take the initial values described in Section 8.2.1.

• spT.decay is used to handling the sampling method of the φ parameter.

The function select one of the three options described below:

1. Fixed: The first choice is to fix φ at a particular value. This is

achieved by writing type="FIXED" in the argument. For example, for

fixing φ at 0.01 we write:

> spatial.decay <- spT.decay(type="FIXED", value=0.01)
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2. Discrete: This option corresponds to assuming a discrete uniform

prior for φ in a specified interval. Then the full conditional distri-

bution of φ will be discrete and Gibbs sampler will sample from this

distribution. A typical specification is provided below:

> spatial.decay <- spT.decay(type="DISCRETE",

limit=c(.01,.02), segments=10)

where, the segments argument specifies the number of support points

in the prior distribution under this option. The prior for φ in spT.priors

will be ignored.

3. Metropolis-Hastings: this is the most general method for sampling

φ. A random-walk-Metropolis sampling algorithm (see Section 3.2) is

used to sample φ. The tuning parameter of normal distribution (the

standard deviation of the proposal) is also needed for this approach.

This algorithm must be specified as follows:

> spatial.decay <- spT.decay(type="MH", tuning=0.08)

where, the desired tuning parameter (see Section 3.2.5) is supplied by

the tuning argument.

Currently, no default choice is available for the routine spT.decay.

• spT.MCMC.stat is used to obtain the MCMC summary statistics of the

model parameters. For example, we write:

> spT.MCMC.stat(posteriors, burnin=1000)

where, posterior argument is the output of the routine spT.Gibbs. This

will produce the summary statistics for the model parameter with 1000

burn-in.

• Similarly, we obtain the MCMC trace plots with density and auto-correlation

and partial auto-correlation plots of the model parameters using function

spT.MCMC.plot. Typically we write:

> spT.MCMC.plot(posteriors, burnin=1000, ACF=TRUE,

PARTIAL.acf=TRUE)
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• The function spT.geodist is used to calculate the geodetic distance be-

tween two locations using the formula stated in Section 2.6.1.

• The validation criteria defined in Section 3.3.4 are calculated using the

routine spT.validation. The output of this function includes VMSE,

RMSE, MAE, rBIAS, and rMSEP.

• The nominal coverages are calculated using the function spT.pCOVER.

For details see the spTimer documentation provided in the attached CD.

8.3 Simulation Study

We perform a simulation study to validate the spTimer code. Data sets are

simulated from each of the three models, and then the package spTimer is used

to estimate the model parameters. Prediction at the unmonitored locations and

forecasts at future time points are also performed in this simulation study for

GP, AR, and GPP based approximation models.

Sensitivity analysis for the prior distributions of the model parameters are also

considered in the simulation study. We use only Metropolis-Hastings method for

sampling the spatial decay parameter φ.

8.3.1 Simulation Design

We simulate data sets from each of the three spatio-temporal models. A regular

spatial grid size of 5 × 5 in the unit square (0, 1) × (0, 1) is used for simulating

data. We simulate data for 31 days in each for 2 years, thus for each data set we

have total 25 × 31 × 2 = 1550 observations. Figure 8.1(a) shows the grid location

points that are used in this section. We use only exponential covariance function

to simulate data sets and also for model fitting.

For prediction validation, we set aside data from 5 randomly chosen locations

see for example, Figure 8.1(a). Similarly, for forecast validation we consider 30

days observation in each year for model fitting and obtain forecast for day 31 of

each year for the hold-out locations.
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Figure 8.1: A representation of the 25 regular grid locations for the replicated
data. (a) Five locations A-E are chosen randomly and set aside for validation.
(b) Locations in solid circle are 16 knot points used for GPP based approximation
models.

8.3.2 True Parameter Values for the GP Models

Data set for the GP models are simulated with a true value of the intercept

β = 5.0. The variance parameters, i.e., the nugget effect and the spatial error

variance of the models are set at: σ2
ǫ = 0.001 and σ2

η = 0.1 respectively. Spatial-

decay parameter (φ) is taken as 0.01, and we use the Euclidean distance to obtain

the spatial correlation.

8.3.3 True Parameter Values for the AR Models

For the AR model we use the same intercept and variance components as for the

GP models. In addition, the auto-regressive parameter for the AR model is set

at ρ = 0.2. The initial mean and variance for Ol(si, 0) are taken to be µl = 5.0

and σ2
l = 0.5, that are same for each year l, where l = 1, 2.

8.3.4 True Parameter Values for the GPP based Models

In GPP based approximation models we simulate data set using same location

points that have been used for the GP and AR models. In addition, we definem =

16 knot points that is smaller to the actual locations n = 25, see Figure 8.1(b).

The temporal auto-correlation for the spatial random effect term is considered
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Parameters β0 σ2
ǫ σ2

η φ

True values 5.0000 0.0010 0.1000 0.0100

Hyper-prior Estimates

(a=2,b=1)
Low 4.9649 0.0008 0.0440 0.0011
Mean 5.0951 0.0012 0.2405 0.0077
Up 5.2288 0.0017 0.9103 0.0224

(a=1,b=1)
Low 4.9586 0.0009 0.0468 0.0011
Mean 5.0957 0.0014 0.2587 0.0073
Up 5.2292 0.0019 0.9204 0.0202

(a=10,b=10)
Low 4.9504 0.0010 0.0990 0.0012
Mean 5.0961 0.0198 0.3232 0.0044
Up 5.2451 0.0292 0.7644 0.0102

Table 8.1: Posterior mean and 95% credible interval of the GP model parameters
for different hyper-prior values for the simulated data set obtained from the GP
model.

as ρ = 0.2. We also assume that the initial mean µl = 0 and σ2
l = 0.5 for the

spatial random effect. Other parameters of the GPP based model are assumed

to be as above for the GP and AR models.

8.4 Simulation Example: GP Models

8.4.1 Sensitivity of Prior Distribution

Table 8.1 provides estimated values of the GP model parameters with 95% credi-

ble interval. We perform the sensitivity study for the Gamma prior distributions

changing its hyper-parameter values. It is observed that all the parameters are

close to the true simulation values and all the 95% credible intervals contain these

true values.

8.4.2 Predictions and Forecasts

In this section we discuss predictions and forecasts using GP models. As men-

tioned in Section 8.3, we randomly select 5 locations out of 25 locations from one

of the simulated data set and set aside for validation purpose, see Figure 8.1(a).

We obtain forecast at the prediction locations at day 31 analysing the 30 days

observations for both years, (i.e., l = 1, 2). Table 8.2 provides the root mean

squared error (RMSE) and mean absolute error (MAE) (see details in Section 3.3)

for prediction and forecast validations for the 5 hold-out sites. In Figure 8.2 we



8.5 Simulation Example: AR Models 160

represent the 30 days prediction and next day forecast estimates with 95% in-

tervals for one hold-out site. As expected the 95% prediction interval is smaller

compared to the 95% forecast interval.

Prediction Forecast

Location RMSE MAE RMSE MAE

A 0.0300 0.0229 0.4022 0.3306
B 0.0223 0.0166 0.3786 0.2925
C 0.0300 0.0239 0.3813 0.3074
D 0.0346 0.0292 0.3994 0.3369
E 0.0374 0.0299 0.3876 0.3154

All 0.0300 0.0245 0.3900 0.3166

Table 8.2: Prediction validations for the GP model for simulated data set ob-
tained from the GP model.

Days

Va
lu

es

1 3 5 7 9 11 14 17 20 23 26 29

4.
0

4.
5

5.
0

5.
5

6.
0

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

* *

*

*

*

*

*

*

*

*

*

* *

Actual observations
Predictions
Forecast
95% Interval

Figure 8.2: Prediction and forecast results for first 31 days in a hold-out site for
the GP models. 95% prediction and forecast intervals are also superimposed.

8.5 Simulation Example: AR Models

To reconstruct the true parameters of the auto-regressive models we model the

simulated data set obtained from the AR models (see Section 8.3.1).
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8.5.1 Sensitivity of Prior Distribution

Table 8.3 provides estimated values of the AR model parameters with 95% credi-

ble interval for different hyper-parameter values of the Gamma prior distribution.

These estimates here are more sensitive to the larger hyper parameter values

than the same under GP models. The initial parameters (µl, σ
2
l ) for the true

values (Ol0) are also estimated and presented in Table 8.4 for different hyper-

parameters.

Parameters β0 ρ σ2
ǫ σ2

η φ

True values 5.0000 0.2000 0.0010 0.1000 0.0100

Hyper-prior Estimates

(a=2,b=1)
Low 4.8900 0.1013 0.0009 0.0802 0.0060
Mean 5.2599 0.1601 0.0012 0.1195 0.0092
Up 5.6344 0.2173 0.0016 0.1747 0.0133

(a=1,b=1)
Low 4.9270 0.0961 0.0010 0.0871 0.0053
Mean 5.2969 0.1543 0.0015 0.1274 0.0086
Up 5.6720 0.2121 0.0019 0.1968 0.0122

(a=10,b=10)
Low 4.8773 0.0965 0.0152 0.2087 0.0028
Mean 5.2753 0.1578 0.0164 0.2748 0.0040
Up 5.6839 0.2169 0.0178 0.3733 0.0052

Table 8.3: Posterior mean and 95% credible interval of the AR model parameters
for different hyper-parameter values for the simulated data set obtained from the
AR model.

Parameters µ1 µ2 σ2
1 σ2

2

True values 5.0000 5.0000 0.5000 0.5000

Hyper-prior Estimates

(a=2,b=1)
Low 1.2089 0.9713 0.1693 0.2136
Mean 6.0585 4.2187 0.7238 1.3025
Up 10.8059 9.2562 2.3946 4.7667

(a=1,b=1)
Low 0.4329 0.1726 0.2409 0.3420
Mean 5.9849 4.0058 1.3284 2.8524
Up 11.1200 9.8612 4.6837 11.1200

(a=10,b=10)
Low -1.1072 -3.8097 0.5734 0.6094
Mean 6.2430 3.9120 1.0874 1.1874
Up 13.9117 11.2282 2.0201 2.2974

Table 8.4: Posterior mean and 95% credible interval of the AR model parameters
µl and σ2

l for different hyper-parameter values for the simulated data set obtained
from the AR model.
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8.5.2 Predictions and Forecasts

The RMSE and MAE validation results are given in Table 8.5. Figure 8.3 rep-

resents the prediction and forecast estimates with 95% intervals for a hold-out

site for the AR models. Similar to GP models and for simplicity we represent 30

days prediction and next day forecast. As expected the 95% prediction interval

is smaller compared to the 95% forecast interval.

Prediction Forecast

Location RMSE MAE RMSE MAE

A 1.1612 1.0271 1.0957 1.0448
B 1.2641 1.1637 1.1172 1.0577
C 1.2661 1.1662 1.0981 1.0459
D 1.2704 1.1670 1.0632 1.0004
E 1.2653 1.1635 1.0497 0.9964

All 1.2669 1.1660 1.0851 1.0290

Table 8.5: Prediction validations for the GP model for simulated data set ob-
tained from the AR model.

Days

Va
lu

es

1 3 5 7 9 11 14 17 20 23 26 29

5.
0

5.
5

6.
0

6.
5

7.
0

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *

*

*

* *
*

*

*

*

*

*

Actual observations
Predictions
Forecast
95% Interval

Figure 8.3: Prediction and forecast results for first 31 days in a hold-out site for
the AR models. 95% prediction and forecast intervals are also superimposed.

8.6 Simulation Example: GPP based Models

In this section, similar to GP and AR models we first conduct sensitivity analysis

and then obtain results on prediction and forecasts using package spTimer.
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8.6.1 Sensitivity of Prior Distribution

Similar to GP and AR models we conduct sensitivity study for the prior distri-

butions of the GPP based model. Table 8.6 represents the parameter estimated.

We observe parameter estimates are sensitive for large hyper-parameter values.

Parameters β0 ρ σ2
ǫ σ2

η φ σ2
1 σ2

2

True values 5.0000 0.2000 0.0010 0.1000 0.0100 0.5000 0.5000

Hyper-prior Estimates

(a=2,b=1)
Low 4.7800 0.0652 0.0025 0.0998 0.0046 0.0595 0.0602
Mean 4.8566 0.1564 0.0027 0.1529 0.0074 0.1061 0.1059
Up 5.0215 0.2445 0.0030 0.2155 0.0117 0.1840 0.1814

(a=1,b=1)
Low 4.8075 0.0659 0.0025 0.1102 0.0043 0.0623 0.0618
Mean 4.8604 0.1555 0.0027 0.1590 0.0071 0.1127 0.1124
Up 4.9232 0.2442 0.0030 0.2230 0.0110 0.1957 0.1936

(a=10,b=10)
Low 4.7955 -0.0624 0.0176 0.2218 0.0019 0.2912 0.2915
Mean 4.8923 0.0295 0.0191 0.2948 0.0045 0.4329 0.4324
Up 5.0122 0.1239 0.0207 0.3959 0.0079 0.6475 0.6323

Table 8.6: Posterior mean and 95% credible interval of the GPP based model
parameters for different hyper-parameters.

8.6.2 Predictions and Forecasts

Similar to the GP and AR models, prediction and forecast results are also ob-

tained. Table 8.7 represents the validation results for the simulated data set for

both prediction and forecasts. In Figure 8.4 we see that the prediction and pre-

diction intervals are well suited to the actual values, in addition the 95% forecast

interval is much larger compared to the 95% prediction intervals.

Prediction Forecast

Location RMSE MAE RMSE MAE

A 0.4930 0.4310 0.1845 0.1341
B 0.0307 0.0257 0.1951 0.1385
C 0.0265 0.0206 0.1696 0.1455
D 0.0643 0.0526 0.2043 0.1699
E 0.0590 0.0475 0.1497 0.1352

All 0.0438 0.0323 0.1817 0.1446

Table 8.7: Prediction validations for the GP model for simulated data set ob-
tained from the GPP based model.
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Figure 8.4: Prediction and forecast results for first 31 days in a hold-out site for
the GPP based models. 95% prediction and forecast intervals are also superim-
posed.

8.7 Summary

In this chapter we discuss the spTimer package in R that is developed using the

C language. Currently this package is suitable for analysing data using three

different types of spatio-temporal models, i.e., the GP, AR and GPP based ap-

proximation models. We provide several simulation examples to validate the code

developed for the package spTimer for all three models. It has been observed

that the estimated model parameters are close to the true simulation values. In

addition, the 95% credible intervals of the estimated parameters always include

the true values of the simulated data sets. We also provide different sensitiv-

ity analysis that includes the sensitivity of the prior distributions. Prediction

at unmonitored locations and forecasts in future time points are also discussed

using the package spTimer for the three spatio-temporal models. The simula-

tion examples, presented in this chapter, validate the spTimer code by correctly

re-estimating the simulation parameters. These example also validate the code

for spatial interpolation and temporal forecasting.



Chapter 9

Conclusion and Future Work

This last chapter contains the summary of the thesis and outlines some future

work that can be extended based on the approaches adopted here. The results

are summarised in Section 9.1 In addition, we discuss some limitations of the

analysis in Section 9.1.1.

9.1 Thesis Summary

This thesis is motivated by the need to analyse and obtain long term trends in

ozone concentration levels using Bayesian hierarchical spatio-temporal models.

In this context, we use data obtained from a vast region of the eastern US for

10 years. As a part of this analysis we have done editing and cleaning of the

raw ozone concentration data that have been obtained from the USEPA (see

Chapter 4). This thesis addresses several challenges related to ozone modelling.

We model ozone levels using hierarchical structure and also provide predictions

at unmonitored locations. In addition, we forecast at future time points at those

unmonitored locations. There are also issues of choosing appropriate modelling

strategies for analysing ozone levels (see Chapter 5) and challenges to handle large

dimensional spatio-temporal data (see Chapter 6) that have also been discussed

in this thesis. Some of these major issues are as follows:

• Comparison of Rich Hierarchical Spatio-Temporal Models:

In this thesis we compare two well-known Bayesian hierarchical spatio-

temporal modelling strategies, the DLM and the AR models (see Chap-

ter 5). Theoretical model comparison of these approaches are adopted
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based on their correlation and covariance structure. We observe that the

AR model theoretically gives better result compared to the DLM. Model

comparison has also been completed using simulation studies and a real life

example of the ozone concentration levels obtained from the state of NY.

• Spatio-Temporal Models for the big-n Problem:

A major problem in analysing large dimensional space-time data comes

from the need to invert high dimensional variance-covariance matrices, that

is also known as the big-n problem. In Bayesian hierarchical context, re-

peated inversion of this matrix is almost infeasible. In this thesis, we adopt

the concept of predictive processes approximation and propose a rich hier-

archical spatio-temporal model (see Chapter 6) to analyse ozone levels in

the vast eastern US study region. We provide spatial interpolation as well

as temporal forecasting (see Chapter 7) using the proposed model based on

the GPP approximation. Long term meteorology adjusted and unadjusted

trends in ozone levels are also obtained from 1997 to 2006 in the eastern

US region that has never been done before.

• Adoption of Data Assimilation Techniques:

The deterministic computer simulation model output are also used in this

thesis to model the observed ozone levels. We use grid output of the CMAQ

model in the NY data example (see Chapter 5) and also in the forecast

models (see Chapter 7) to analyse the eastern US data set. This type of

data assimilation leads us to adopt the downscaler models, when grid-level

deterministic model output is used as a covariate in the statistical models

(see Section 1.4.3). This type of covariate information enriches the models

we developed in this thesis.

• Software for the Models:

As a part of this thesis we have developed a software package spTimer in

R. Currently there is no package available to analyse data using Bayesian

hierarchical spatio-temporal models. This package is written in low-level

C language that facilitates fast model fitting. Currently, three Bayesian

hierarchical models can be fit using spTimer. These are the GP spatio-

temporal linear regression models, the AR models and the GPP based

approximation models. Details of code validation have been presented in
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Chapter 8.

9.1.1 Limitations

Some limitations related to this thesis are discussed below:

• The models used in this thesis particularly dealt with the Gaussian process

approaches for analysing ground level ozone concentrations. In addition

these models are not suitable for irregularly observed time-series.

• The spTimer package is currently able to fit only three Gaussian process

models. In addition, input data for the package should have a particu-

lar structure, where time points are ordered and regular for each spatial

locations.

9.2 Future Work

• Challenges with Irregular Time-Series Data:

In this thesis we consider only the regular time-series data. For example, in

each year we have observations for 153 days in each of the spatial locations

in the eastern US study region. There is scope for extending the methods

and the software for irregular observed data. For example at each time

point a different location may be sampled, see e.g., Sahu and Challenor

(2008). In addition, the length of the segments may be different at each

location and irregularly sampled in time.

• Increase in the Number of Lags in the AR Models:

The AR models we used in this thesis have auto-regressive patterns with

just lag one. It is possible to increase the number of lags used in the model.

• Other Approaches to Solve the big-n Problem:

To tackle the big-n problem, we use predictive process approximation. In

addition, we can also use the fixed rank kriging method proposed by Cressie

and Johannesson (2008) with usual basis functions, details are discussed in

Section 1.6.

• Multivariate Extension of the Spatio-Temporal Models:

The models adopted in this thesis are for univariate spatio-temporal data.
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These models can be extended to the multivariate settings, where at each

spatial location we have temporal observations of two or more response

variables. The multivariate space-time random effect can be specified us-

ing a linear model of coregionalisation, see e.g., Gelfand et al. (2004);

Reich and Fuentes (2007). An alternative of this method is to specify the

multivariate response conditionally, see e.g., Daniels et al. (2006) where

ozone concentration levels and particulate matter data have been modelled

jointly.

Currently, spTimer cannot fit multivariate space-time models. So, it is pos-

sible to extend our spatio-temporal package spTimer to model multivariate

space-time data.

• Extend Models for Spatial Misalignment:

In this thesis, spatial misalignments between predictor and predictand are

handled using independent kriging (see Section 6.6.4). However, new mod-

els can be proposed that can take care of the misalignment through sam-

pling from the joint posterior distribution of the parameters of the joint

spatio-temporal model (Sahu et al., 2007; Sahu and Nicolis, 2009; Lopiano

et al., 2011).

• Non-Gaussian Models:

In this thesis, we only discuss the Gaussian process modelling methodology

for analysing ozone concentration data. However, it is possible to extend

the models for non-Gaussian distributions (e.g., generalised linear models)

at the first stage of modelling hierarchy. Following Salway et al. (2010)

we can also model the latent process using AR and moving average (MA)

techniques.

Simple regression type non-Gaussian models are available in the package

spBayes for modelling spatial data sets. Henceforth, our package spTimer

can be improved by including the non-Gaussian models in the first-stage of

modelling for the space-time data.

• Modelling the Extreme Observations:

The ozone data set used in this thesis is positively skewed for the high vari-

ability in the data. We use square root transformation of the original data
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to make the Gaussian assumption appropriate (see Section 1.5.3). How-

ever, it is possible to use models based on extreme value theory to analyse

the extremes in ozone levels. For example, Ghosh and Mallick (2011) used

hierarchical spatio-temporal model to incorporate spatial correlation in the

likelihood and used temporal component at the second level of hierarchy to

analyse monthly rainfall data.

• Extend Space-Time Models for Stream Networks:

In modelling observations obtained from a river network, the Euclidean and

geodetic distances may not be valid because of the pattern of the water

flow. Hoef and Peterson (2010) developed spatial moving average approach

to model stream networks using spatial covariance function that is based

on stream distances. Henceforth, we can extend our models in this context

and also improve our package spTimer.

• Other Application Areas:

The spatio-temporal models developed in this thesis have been applied to

analyse ozone concentration levels. These models and their modifications,

however, can be applied to model data for other air pollutants such as

particulate matter. Other types of spatio-temporal data such as many me-

teorological and climate observations, such as rainfall, can also be modelled

and analysed using these models.
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Appendix A

Proofs for Chapter 5

A.1 Results Related to the Correlation Function

For the autoregressive (AR) models, the correlation between the data points

Z(si, t) and Z(sj , t) can be written as:

Cor(Z(si, t), Z(sj , t)) =
Cov(Z(si, t), Z(sj , t))√

Var(Z(si, t)) × Var(Z(sj , t))

=
ρ2tσ2

o exp[−φ0dij ] +
[

1−ρ2t

1−ρ2

]
σ2

η exp[−φηdij ]

ρ2tσ2
0 +

[
1−ρ2t

1−ρ2

]
σ2

η + σ2
ǫ

,

where, i 6= j, and t=1,2,...T.

• For increase in time t, the correlation between the observations Z(si, t) and

Z(sj , t) is written by simple calculation as;

lim
t→∞

Cor(Z(si, t), Z(sj , t)) =
σ2

η exp(−φηdij)

σ2
ǫ (1 − ρ2) + σ2

η

.

• For the AR models, the correlation between the observations Z(si, t) and

Z(sj , t) tends to one, for the decrease in the distance dij to zero, where dij

is the distance between the observations of sites si and sj , i 6= j i.e.,

lim
dij→0

Cor(Z(si, t), Z(sj , t)) = 1.

• When dij increases to infinity, the correlation between the observations

184
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Z(si, t) and Z(sj , t) tends to zero, i.e.,

lim
dij→∞

Cor(Z(si, t), Z(sj , t)) = 0, i 6= j.

A.2 Expression for the Conditional Variances

We can write the predictive conditional variance of Z(s0, 1) given observations

Z(s1, 1), Z(s1, 2) as:

Var(Z(s0, 1)|z(s1, 1), z(s1, 2)) =
M1

∆2
, (A.1)

and the predictive conditional variance of Z(s0, 2) given observations Z(s1, 1),

Z(s1, 2) can be written as:

Var(Z(s0, 2)|z(s1, 1), z(s1, 2)) =
M2

∆2
, (A.2)

where,

M1 = (1 − ζ2)σ6
η + (3 + ρ2 − ζ2(1 + ρ2))σ4

ησ
2
ǫ + (3 + ρ2)σ2

ησ
4
ǫ + σ6

ǫ +

(1 − ζ2)σ4
0ρ

4(σ2
η + σ2

ǫ + ρ2σ2
ǫ ) +

ρ2σ2
0(2(1 − ζ2)σ4

η − 2(ζ2(1 + ρ2) − 2 − ρ2)σ2
ησ

2
ǫ ) + (2 + ρ2)σ4

ǫ .

M2 = (1 − ζ2)(1 + ρ2)σ6
η + (3 + 3ρ2 + ρ4 − ζ2(1 + 3ρ2 + ρ4))σ4

ησ
2
ǫ + (3 + 2ρ2)σ2

ησ
4
ǫ +

σ6
ǫ + (1 − ζ2)σ4

0ρ
6(σ2

η + σ2
ǫ + ρ2σ2

ǫ ) + ρ2σ2
0(2(1 − ζ2)(1 + 2ρ2)σ4

η +

2(1 + 2(1 − ζ2)ρ2 + (1 − ζ2)ρ4)σ2
ησ

2
ǫ + (1 + 2ρ2)σ4

ǫ ).

∆2 = σ4
η + (2 + ρ2)σ2

ησ
2
ǫ + σ4

ǫ + ρ2σ2
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ ).

where, ζ = exp(−φd01) and φ = φ0 = φη.
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A.3 Proof of Inequalities

A.3.1 Inequalities Related to Predictions

(i) For the AR models, conditioned on the same amount of data, the predictive

variance of Z(s0, 1) would be no greater than that of Z(s0, 2), that is,

Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2)) ≤ Var(Z(s0, 2)|Z(s1, 1), Z(s1, 2)).

if the following condition holds:

σ2
η

σ2
0

≥ 1 − ρ2.

Proof. The difference between the terms of the equations (A.1) and (A.2) are:

Var(Z(s0, 2)|z(s1, 1), z(s1, 2))−Var(Z(s0, 1)|z(s1, 1), z(s1, 2)) =
(σ2

0(−1 + ρ2) + σ2
η) × A

∆2

where, ∆2 is defined above and

A = ρ2((1 − ζ2)σ4
η + (1 − ζ2)(2 + ρ2)σ2

ησ
2
ǫ − σ4

ǫ + (1 − ζ2)ρ2σ2
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ ))

The terms A and ∆2 are always positive for all values of σ2
0 ≥ 0, σ2

η ≥ 0, σ2
ǫ ≥ 0,

0 < ρ < 1 and 0 < ζ < 1. So, the predictive variance differences

Var(Z(s0, 2)|z(s1, 1), z(s1, 2)) − Var(Z(s0, 1)|z(s1, 1), z(s1, 2)) ≥ 0

iff the following condition holds:

σ2
η

σ2
0

≥ 1 − ρ2.

(ii) For the AR models, following the equation 5.9, we can write,

Dif = Var(Z(s0, 1)|Z(s1, 1)) − Var(Z(s0, 2)|Z(s1, 1), Z(s1, 2)) > 0.

(a) Dif < 0, as σ2
0 → 0.
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(b) Dif > 0, as ζ → 1, iff σ2
ǫ

σ2

0

< κ+ρ2

κ−(1−ρ2)
.

(c) Dif < 0, as ζ → 0, and σ2
0 = (1 − ρ2)σ2

η.

(d) Dif > 0, as ζ → 1, and σ2
0 = (1 − ρ2)σ2

η iff σ2
ǫ

σ2
η
< 1−2ρ4+ρ6

ρ2(2−ρ2)
.

Proof. Proofs of (a) to (d) are given below:

(a) For σ2
0 → 0, we obtain the term Dif as:

lim
σ2

0
→0

Dif =
ρ2σ2

η((ζ2 − 1)σ2
η(1 + (3 + ρ2)σ2

ǫ (σ2
η + σ2

ǫ )) − σ6
ǫ )

(σ2
η + σ2

ǫ )(σ4
η + (2 + ρ2)σ2

ησ
2
ǫ + σ4

ǫ )

Clearly, the numerator of the above equation is negative as 0 < ζ < 1, and the

denominator is positive for all values of σ2
η > 0, σ2

ǫ > 0, and 0 < ρ < 1. So, we

can write, Dif < 0 as σ2
0 → 0.

(b) For ζ → 1, the Dif is:

lim
ζ→1

Dif =
ρ2σ2

ǫ (ρ2σ4
0 − σ2

ησ
2
ǫ + σ2

0(σ2
η + σ2

ǫ − ρ2σ2
ǫ ))

(ρ2σ2
0 + σ2

η + σ2
ǫ )(σ4

η + (2 + ρ2)σ2
ησ

2
ǫ + σ4

ǫ + ρ2σ2
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ ))

The denominator of the above equation is positive and the numerator will be

positive iff:

ρ2σ2
ǫ (ρ2σ4

0 − σ2
ησ

2
ǫ + σ2

0(σ2
η + σ2

ǫ − ρ2σ2
ǫ )) > 0

A simple calculation yields the above term is positive iff

σ2
ǫ

σ2
0

<
κ+ ρ2

κ− (1 − ρ2)

where, κ =
σ2

η

σ2

0

.

(c) Considering σ2
0 to be the equilibrium variance (1 − ρ2)σ2

η, and spatial correlation

ζ → 0 as zero, we get:

lim
ζ→0

Dif = −ρ4(2 − ρ2)σ2
η, when σ2

0 = (1 − ρ2)σ2
η

Which is always negative.

(d) Again, for σ2
0 = (1 − ρ2)σ2

η, and large spatial correlation ζ → 1, we get:

lim
ζ→0

Dif =
ρ2σ2

ησ
4
ǫ ((ρ6 − 2ρ4 + 1)σ2

η + ρ2σ2
ǫ (ρ2 − 2))

((ρ4 − ρ2 − 1)σ2
η − σ2

ǫ )((ρ4 − ρ2 − 1)σ4
η + (ρ6 − 2ρ2 − 2)σ2

ησ
2
ǫ − σ4

ǫ )
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It can be easily calculate that the denominator of the above equation is positive

for values of 0 < ρ < 1, σ2
η and σ2

ǫ . Hence the inequality Dif > 0, iff the numerator

of the above equation is positive. Simple calculation leads, it is positive iff:

σ2
ǫ

σ2
η

<
1 − 2ρ4 + ρ6

ρ2(2 − ρ2)
.

Hence, all propositions are proved.

A.3.2 Inequalities Related to Forecasts

(i) We obtain the following inequalities for both the DLM and the AR models.

Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)) ≤ Var(Z(s0, 3)|Z(s1, 2))

Var(Z(s0, 3)|Z(s1, 2), Z(s2, 2)) ≤ Var(Z(s0, 3)|Z(s1, 2)).

Proof. DLM

For the DLM we can write:

Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)) =
σ2

ν + 6σ4
νσ

2
ω + 5σ2

νσ
4
ω + σ6

ω + σ2
θ(3σ4

ν + 4σ2
νσ

2
ω + σ4

ω)

σ2
ν + 3σ2

νσ
2
ω + σ4

ω + σ2
θ(2σ2

ν + σ2
ω)

Var(Z(s0, 3)|Z(s1, 2), Z(s2, 2)) =
(1 + ζ0)σ4

ν + (7 + 3ζ0)σ2
νσ

2
ω + 4σ4

ω + σ2
θ((3 + ζ0)σ2

ν + 2σ2
ω)

2σ2
θ + σ2

ν + ζ0σ2
ν + 4σ2

ω

So, the difference between Var(Z(s0, 3)|Z(s1, 2)) and Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2))

and Var(Z(s0, 3)|Z(s1, 2)) and Var(Z(s0, 3)|Z(s1, 2), Z(s2, 2)) can be written as:

Var(Z(s0, 3)|Z(s1, 2)) − Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)) =

σ4
ν(σ4

ω + σ2
θ)2

(σ2
θ + σ2

ν + 2σ2
ω)(σ4

ν + 3σ2
νσ

2
ω + σ4

ω + σ2
θ(2σ2

ν + σ2
ω))

.

Var(Z(s0, 3)|Z(s1, 2)) − Var(Z(s0, 3)|Z(s2, 1), Z(s2, 2)) =

σ2
ν(1 − ζ0)(σ2

θ + 2σ2
ω)2

(σ2
θ + σ2

ν + 2σ2
ω)(2σ2

θ + σ2
ν + ζ0σ2

ν + 4σ2
θ)

where, ζ0 = exp(−φd12) is the spatial correlation between the observations at

sites s1 and s2. These two equations are always positive for 0 < ζ0 < 1, σ2
θ > 0,

σ2
ν > 0 and σ2

ω > 0. Hence this proofs the inequality.
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Proof. AR models

Similarly for the AR models we can write the variance differences as:

Var(Z(s0, 3)|Z(s1, 2)) − Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)) =

ζ2ρ4σ4
ǫ (ρ2σ2

0 + σ2
η)2

(ρ4σ2
0 + σ2

η + ρ2σ2
η + σ2

ǫ )(σ4
η + (2 + ρ2)σ2

ησ
2
ǫ + σ4

ǫ + ρ2σ2
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ ))
.

Var(Z(s0, 3)|Z(s1, 2)) − Var(Z(s0, 3)|Z(s1, 2), Z(s2, 2)) =

ρ2(ρ4σ2
0 + σ2

η + ρ2σ2
η)2(ζζ0(ρ4σ2

0 + σ2
η + ρ2σ2

η) − ζ1(ρ4σ2
0 + σ2

η + ρ2σ2
η + σ2

ǫ ))2

D

where,

D = (ρ4σ2
0 + σ2

η + ρ2σ2
η + σ2

ǫ )((1 − ζ2
0 )ρ8σ4

0 + (1 − ζ2
0 )(1 + ρ2)2σ2

η +

2ρ4σ2
0((1 − ζ2

0 )(1 + ρ2)σ2
η − σ2

ǫ ) + 2(1 + ρ2)σ2
ησ

2
ǫ + σ4

ǫ ),

and ζ1 = exp(−φd02). So, this term is also positive for values 0 < ρ < 1, σ2
0 > 0,

σ2
η > 0, σ2

ǫ > 0, 0 < ζ < 1, 0 < ζ0 < 1, and 0 < ζ1 < 1. Hence, this proofs the

inequality.

(ii) For forecasts of the AR models, following the equation 5.11, we can write,

Dif = Var(Z(s0, 2)|Z(s1, 1)) − Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)) > 0

(a) Dif > 0, as σ2
0 → ∞.

(b) Dif > 0, as ζ → 1, iff σ2
ǫ

σ2

0

< κ+ρ2

κ−(1−ρ2)
.

(c) Dif < 0, as ζ → 0, and σ2
0 = (1 − ρ2)σ2

η.

Proof. Proofs of (a) to (c) are given below:

(a) For σ2
0 → ∞, the straight forward calculation of difference of the conditional

variances for forecasts leads it to limσ2

0
→∞ Dif = ∞.

(b) Similar to the proof of the conditional variance for prediction in Appendix A.3.1,

we obtain

lim
ζ→1

Dif =
ρ2σ4

ǫ (ρ2σ4
0 − σ2

ησ
2
ǫ + σ2

0(σ2
η + σ2

ǫ − ρ2σ2
ǫ ))

(ρ2σ2
0 + σ2

η + σ2
ǫ )(σ4

η + (2 + ρ2)σ2
ησ

2
ǫ + σ4

ǫ + ρ2σ2
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ ))
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A simple calculation yields the above term is positive iff

σ2
ǫ

σ2
0

<
κ+ ρ2

κ− (1 − ρ2)

where, κ =
σ2

η

σ2

0

.

(c) For σ2
0 = (1 − ρ2)σ2

η, and spatial correlation ζ → 0, we get:

lim
ζ→0

Dif = −ρ6(2 − ρ2)σ2
η, when σ2

0 = (1 − ρ2)σ2
η

Which is always negative.

A.4 Monotone Functions of the Conditional Variances

A.4.1 For Predictions

The first partial derivative of the predictive conditional variance of Z(s0, 1) given

observation Z(s1, 1), with respect to ζ can be written as:

δ

δζ
[Var(Z(s0, 1)|Z(s1, 1))] = −

2ζ(ρ2σ2
0 + σ2

η)2

ρ2σ2
0 + σ2

η + σ2
ǫ

The first partial derivative of the predictive conditional variance of Z(s0, 1) given

observations Z(s1, 1) and Z(s1, 2), with respect to ζ can be written as:

δ

δζ
[Var(Z(s0, 1)|Z(s1, 1), Z(s1, 2))] = −

2ζ(ρ2σ2
0 + σ2

η)2(σ2
η + σ2

ǫ + ρ2σ2
ǫ )

σ4
η + (2 + ρ2)σ2

ησ
2
ǫ + σ4

ǫ + ρ2σ2
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ )

First partial derivatives of both conditional variances with respect to ζ are neg-

ative. This implies that the variance functions are monotonically decreasing

function of the spatial correlation ζ, or in terms we can say the variances are

monotonically decreasing function of the distance between sites s0 and s1.



A.4 Monotone Functions of the Conditional Variances 191

A.4.2 For Forecasts

For the forecast, the partial derivative of the conditional variance of Z(s0, 3)

given data point Z(s1, 2) with respect to ζ is:

δ

δζ
[Var(Z(s0, 3)|Z(s1, 2))] = −

2ζρ2(ρ3σ2
0 + σ2

η + ρ2σ2
η)2

ρ4σ2
0 + σ2

η + ρ2σ2
η + σ2

ǫ

The for the conditional variance of forecast Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2)), we

get the partial derivative with respect to ζ as:

δ

δζ
[Var(Z(s0, 3)|Z(s1, 1), Z(s1, 2))] =

−U
σ4

η + (2 + ρ2)σ2
ησ

2
ǫ + σ4

ǫ + ρ2σ2
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ )
,

where,

U = 2ζρ2(ρ6σ4
0(σ2

η + σ2
ǫ + ρ2σ2

ǫ ) + σ4
η(σ2

η + ρ2σ2
η + σ2

ǫ + 3ρ2σ2
ǫ + ρ4σ2

ǫ )

+ρ2σ2
ησ

2
0(σ2

η + 2ρ2σ2
η + 2ρ2(2 + ρ2)σ2

ǫ ))

The both partial derivatives for the conditional variances of forecasts are negative

for the values σ2
0 > 0, σ2

η > 0, σ2
ǫ and 0 < ρ < 1, so they are monotonic decreasing

function of the spatial correlation ζ.


