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This thesis consists of five studies on the applications of the molecular field theory to model

systems of biaxial molecules which form biaxial and uniaxial nematic and smectic A phases.

The first study extends the original theory for biaxial nematic phases ofD2h symmetry to allow

the phase symmetry to beC2h. In the second study, a dipolar interaction is introduced tothe

original model of biaxial nematic phases formed from V-shaped molecules to explain a disagree-

ment between theory and experiment. This leads to the stabilisation of the novel polar biaxial

nematic phase. In the third study, we introduce molecular flexibility at a simplified level into

an existing model of V-shaped molecules to investigate its effects on the stability of the biaxial

nematic phases. The fourth study aims to explain and predictvarious effects of magnetic field

on the uniaxial nematic to isotropic phase transition for a system of rigid V-shaped molecules.

In the fifth study, we develop a model for biaxial smectic A phases. The theory is simplified by

using several approximations which facilitates the calculations.
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Chapter 1

Introduction

In this chapter we introduce the liquid crystal phases of matter. Then we concentrate on the
discussion of biaxial low molar mass thermotropic nematic and smectic A liquid crystals. We
also give a plan for subsequent chapters.

1.1 Liquid Crystals

Liquid crystal phases are intermediate between the liquid and the solid phases in that they pos-
sess orientational order, like a solid, but have little or nopositional order, like a liquid. Therefore,
a common behaviour of liquid crystals is a combination of liquid-like fluidity and crystal-like
properties. Hence they are sometimes known asmesomorphicphases. Similarly the compounds
out of which they are constructed are often calledmesogens[1]. Liquid crystal phases can
be broadly classified intolyotropic andthermotropicsystems according to whether their phase
structure is changed by adding solvent. The difference is athigh enough concentration, the ly-
otropic mesogenic molecules begin to arrange themselves inmicellar structures, which causes
their phase behaviour with solvent different from thermotropic liquid crystals. In micellar struc-
ture, the molecules arrange themselves into spheres, with the mesogenic groups on the outside
and the hydrocarbon end chains towards the centre. The rigidcore is also calledmesogenic
group.

Thermotropic liquid crystals are often made of elongated molecules which can be classified into
three types:nematic, smecticandcholestericphases. Nematic liquid crystals are those that pos-
sess only orientational long-range order and no positionallong-range order. In a nematic phase,
the molecules have a preferred direction which is unique throughout a uniform domain and of-
ten called the director. In contrast, in a cholesteric phase, the director forms a twisted structure.
While nematic and cholesteric liquid crystals do not have long-range positional orders, smectic
phases are formed of two dimensional layers which confine molecular position. The type of liq-
uid crystals that may be observed depends strongly on the structure of the constituent molecules
or groups of molecules. For example, if the constituent molecules are disc-like instead of elon-
gated then they can formcolumnarphases instead of smectic phases. In a columnar phase,
the molecules stack face to face to form columns. Depending upon the nature of the building
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blocks and upon the external parameters (temperature, pressure, concentration, solvents, fields,
etc.), we can observe a wide variety of phenomena and transitions amongst liquid crystals [2].
The system may pass through one or more mesophases before it goes into the isotropic liquid.
The crucial input for their building blocks is almost alwaysa central core of some benzene or
cyclohexane rings, connected to a flexible chain having a number of carbon atoms and other sub-
stituent groups [1]. While the rigid cores help the molecules to achieve ordering, their flexible
chains allow them to move around in the fluid.

FIGURE 1.1: Schematic repre-

sentations of the isotropic, ne-

matic and smectic phases formed

from elongated molecules. Re-

produced from [6].

Thermotropic nematic liquid crystals are ubiquitous
materials inliquid crystal display devices. The con-
stituent molecules are often elongated (calamitic or
rod-like). In a conventional nematic phase, the molec-
ular long axis is parallel to the director on average
while they can rotate freely around that averaged di-
rection. Because of this orientational order of the
molecules, nematic physical properties are anisotropic
and cylindrically symmetric. An example is their opti-
cal behaviour. For example, a plane polarised light can
propagate along the director without its state of polar-
isation being modified [3]. This director is also called
the optical axisand since the material has one opti-
cal axis, it is called auniaxial nematic, a nomencla-
ture adopted from the field ofoptics. In addition, the
anisotropic properties of nematic liquid crystals cause
light polarized along the director to propagate at a dif-
ferent velocity than light polarised perpendicular to the
director. In other words, an incoming light beam is
split into two orthogonal components, called theordi-
nary ray and theextraordinary ray, which propagate
with different wave vector, which leads to double im-
ages [4]. Nematic liquid crystals are, therefore,bire-
fringent [5]. The degree of orientational order in ne-
matic liquid crystals depends on the alignment of the
constituent molecules with respect to one another. This order is characterised by a set of orien-
tational order parameters.

Another main subdivision of thermotropic liquid crystals which is formed from rod-like molecules
is smecticmesophases [7]. In addition to orientational order, like nematic phases, smectic phases
have a positional order in at least one dimension. There exists many types of smectic phases.
They differ in: (i) the orientation of the preferred direction of the molecules with respect to the
layer normal and (ii) the organisation of the centres of the molecules within the layers [7]. We
are only concerned with the smectic A phase. In this phase, the molecular density oscillates in a
direction parallel to the director which forms a density wave in that direction. At large density,
the molecules are essentially confined into layers [1]. Hence, the centres of the molecules are,
on average, arranged in equidistant planes and smectic phases are often approximated as having
a layered structure. The molecules are arranged in layers with a thickness about equal to the
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length of the molecules [7]. In addition, smectic A phases have long-range orientational order
with the director of molecules in one layer is parallel to thelayer normal. Inside each layer,
the centres of gravity show no long-range positional order [2]. In figure 1.1, we show schematic
representations of the isotropic, nematic and smectic A phases which are formed from elongated
molecules. Because of the orientational order of the molecules, like nematics, many physical
properties of smectic A liquid crystals are also anisotropic. In smectic A liquid crystals, an in-
coming light beam is also split into theordinary rayand theextraordinary ray, which propagate
with different wave vector. Therefore, smectic A liquid crystals are also birefringent. However,
there is a difference between the nematic and the smectic A phases in their interaction with
light. [5]. In nematic liquid crystals, light is scattered by fluctuation in the director. In contrast,
in smectic liquid crystals, light is scattered by fluctuations in both the director and the layer
structure [5].

1.2 Uniaxial Nematics

FIGURE 1.2: The molecular or-

ganisation in a uniaxial nematic

phase composed of ellipsoids of

revolution. Reproduced from

[3].

Classical studies of uniaxial nematics often assume
that the constituent mesogenic molecules have cylin-
drical symmetry in keeping with their collective be-
haviour which often yields a uniaxial nematic phase.
In figure 1.2 we show a snapshot of a Monte Carlo
simulation which yields a uniaxial nematic phase con-
sisting of cylindrical molecules with theZ axis being
the director. The orientation of a molecule in a uni-
axial nematic environment can be defined by an angle
β between the molecular axis of symmetry and that of
the phase which is shown in figure 1.3. The degree
of orientational order of the phase should be measured
by an average of a function of the angleβ. Due to
the molecular head-tail symmetry, the order parameter
was defined by Tsvetskov [8] as the average of the second-rankLegendre polynomial

S = 〈P2(cos β)〉 = 〈3 cos
2 β − 1

2
〉. (1.2.1)

FIGURE 1.3: A cylindrical

molecule and its orientation with

respect to the laboratory axis.

Here, the angular brackets denote the thermodynamic
ensemble. This choice for the order parameter also has
convenient limiting values. In the isotropic phase since
all orientations have equal probability, the molecules
are disordered and the value ofS is zero. At perfect
order, for example, in the crystalline solid, all the sym-
metry axes of the molecules point in the same direc-
tion and so the value ofS is 1. In the nematic phase,
S depends on the temperature and takes intermediate
values between 0 and 1. For typical nematic this order
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parameter jumps from 0 to about 0.3 at the isotropic-to-nematic phase transition and contin-
ues to increase in the isotropic phase to about 0.8 before crystalised. The discontinuity in the
transitional order parameter signifies that the nematic-to-isotropic phase transition is first order.

Theoretical methods for studying thermodynamic phase transition of uniaxial nematic liquid
crystals can be broadly divided into two classes: Landau-deGennes theory and molecular statis-
tical theories [7]. In the Landau-de Gennes theory, the freeenergy per molecule is postulated to
be an expansion of the order parameter with the expansion coefficients that depend on material
properties and the temperature, and is usually truncated after fourth or sixth order. By min-
imising the free energy, the order parameter at a given temperature can be found and hence the
transition temperature can be located. Molecular statistical theories clearly have the advantage
that molecular shape and symmetry can be taken into account since they are governing factors
that determine the phase stability. It seems that the most successful molecular statistical theory
is the molecular field theory. This theory was formulated by Maier and Saupe to study a nematic
system in which orientational ordering essentially originates from the anisotropic attractive in-
teraction [9, 10]. This approximation is not required in a later reformulation by de Gennes in
a variational approach [2]. At the centre of the molecular field theory is the molecular field
approximation. The approximation states that each molecule in the system only interacts with
a long-range molecular field and ignoring any short-range correlation. The Maier-Saupe theory
has successfully described uniaxial nematic-to-isotropic phase transition as well as pretransi-
tional effects and phase behaviour from a qualitative [7] and even semi-quantitative [11] point
of view.

Another class of molecular statistical theory for nematic liquid crystal is based on the Onsager
theory [2, 7, 10]. In this theory, the hard core short-range repulsive force between rigid rod-
like molecules is the only molecular interaction which determines molecular ordering in the
nematic phase. The repulsion does not allow the molecule to penetrate each other. The only
contribution to the free energy is from the entropy whereas there is no energy contribution [12].
The molecules arrange themselves in order to maximise the entropy, hence minimise the free
energy. At low concentration, the elongated molecules tendto pack in a way that their long axes
align to form the nematic phase. The Maier-Saupe, reformulated by de Gennes, clearly has an
advantage that no assumption need to be made about the natureof the interaction.

1.3 Biaxial Nematics

FIGURE 1.4: A D2h molecule with

shape of a rectangular parallelepiped.

A weakness of the Maier-Saupe theory is the as-
sumption that constituent molecules are cylin-
drically symmetric although most nematogenic
molecules are intrinsically biaxial as well as
flexible. In other words, they are not symmetric
around a single axis of rotation. Usually, they
give rise to uniaxial phases as a consequence of
the rotational disorder around the long molecu-
lar axis [13].
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In 1970, Freiser [14] predicted that a nematic phase which deviates from cylindrical symmetry
might be able to form from non-cylindrical molecules. Firsthe considered two identical inter-
acting molecules which are not cylindrical. Their relativeorientation is described by three Euler
angles. These two molecules then interact via a second-rankeffective pair interaction potential
which depends on their relative orientation. Freiser then showed that the ground state of this po-
tential corresponds to identical orientation of interacting molecules. He therefore concluded that
the ground state of a system of non cylindrical molecules is not uniaxial. In addition, by consid-
ering the free energy of the system, he demonstrated that thephase transition from the uniaxial
state to the ground state corresponds to the vanishing of thesecond derivative of the free energy
at the minimum. Therefore, the phase transition from the uniaxial state to the ground state is
second order. Freiser called this new phase abiaxial stateto indicate that there are now two
axes along which plane polarised light can travel without a change in the state of polarisation.
In addition there is a Landau point, that is a second order transition directly from the biaxial
nematic phase to the isotropic liquid. Freiser’s demonstration of the biaxial nematic phase was
further illustrated in his second paper [15].

FIGURE 1.5: The molecular organisa-

tion in a biaxial nematic phase formed

from board-like molecules. Reproduced

from [3].

The simplest example of a biaxial molecule
is one whose shape is a rectangular paral-
lelepiped which hasD2h symmetry according
to Schönflies’ notation [16]. In figure 1.4 we
show an example of aD2h molecule. TheD2h

symmetry group has five basic symmetry oper-
ations: an identity, a two-fold (principal) axis,
two two-fold axes of rotation perpendicular to
the principal axis and a horizontal reflection
plane perpendicular to the principal axis [16].
If the length is much larger than the breadth and
width, then the molecule is calamitic. In the
uniaxial phase the longest molecular axis tends
to align first. As the system becomes biaxial,
the minor axes (width and breadth) tend to align
accordingly, giving a phase with physical prop-
erties ofD2h symmetry. An organisation of a
biaxial nematic phase is shown in figure 1.5. A
rectangular parallelepiped molecule is discotic
if the value of its length is close to one of the
minor axis whereas the other minor axis is much smaller. In the uniaxial nematic formed by
discotic molecules, the shortest axis tends to align. In thebiaxial nematic phase, since all three
molecular symmetry axes align, the phase behaviour of calamitic and discotic molecules are
the same. This system of parrallelepiped molecules was studied by Straley [17] as an exten-
sion of the original Maier-Saupe model. By fixing the molecular length and width and varying
its breadth, Straley derived a phase map relating the transition temperature with the molecular
breadth which is shown in figure 1.6. In this phase map, a stabilised region of biaxial nematic
phase was found. Above this biaxial region is the uniaxial nematic phase which is calamitic (or
rod-like) for small values of the molecular breadth and discotic for large values of it. The uni-
axial nematic-to-isotropic phase transition is first order, in agreement with experiment whereas
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the biaxial nematic-to-uniaxial nematic phase transitionis second order, in accord with Freiser’s
prediction. Moreover, there is a single point of direct second order biaxial nematic-to-isotropic
phase transition. This point is called the Landau point and marks the boundary between calamitic
and discotic molecules.

FIGURE 1.6: The phase map for molecules with rectangular parallellepiped shapes as calcu-
lated by Straley. Here,B, L andW denote the breadth, length and width of the molecules,
respectively whilet is the absolute temperature measured in energy units. Reproduced from
[17].

Another extension of the Maier-Saupe theory for biaxial nematics was by Boccara, Mejdani and
de Seze [18]. They considered a system of asymmetric ellipsoids. An ellipsoid interacts with
the molecular field via a potential of mean torque. The deviation of an ellipsoid from cylindrical
symmetry is measured by a parameterǫ. The author then derived a phase map relating the tran-
sition temperature with the parameterǫ. The phase map agreed qualitatively with that by Straley
[17]. In their later analogous formulation of the theory, Remler and Haymet [19] also derived
another phase map with the same qualitative behaviour. The phase behaviour predicted by Stra-
ley [17] was also reproduced using computer simulations [20] and Landau-de Gennes theory
[2]. In addition, in an Onsager theory for V-shaped molecules interacting via excluded volume
[21], a phase map with the same behaviour was found. In this case the interarm angle represents
the molecular biaxiality and the phase behaviour depends ondensity rather than temperature.

However this behaviour is not unique as demonstrated by recent molecular field calculations
and Monte Carlo simulations. These calculations explored different sets of interaction param-
eters as before [13, 22, 23, 24, 25, 26] and found that the biaxial nematic-to-uniaxial nematic
phase transition can be either first or second order. In addition, the Landau point is replaced
by a line of either first or second order transition between the biaxial nematic and the isotropic
phase. Therefore along both these phase transition lines inthe phase map there can betricritical
points. A tricritical point is one which marks the boundary betweenthe first and second order
transitions. This behaviour was also found in recent Landau-de Gennes calculations [27].

After Freiser’s prediction, there has been considerable interests in the creation of compounds,
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which might exhibit the biaxial nematic phase. The biaxial nematic phase were later observed
in lyotropic [28] and thermotropic polymer liquid crystals[29]. Thermotropic biaxial nemat-
ics have also been discovered in a class of supermolecules called tetrapodes. A tetrapodal
molecule consists of four mesogenic groups connected to a central core through four hydro-
carbon chains. The experimental techniques which support the latter discovery are infrared ab-
sorbance measurements, together with optical conoscopiesand optical textures [30], deuterium
nuclear magnetic resonance [31] and dynamic light scattering [32]. However, the low molar
mass thermotropic biaxial nematic liquid crystal is much more elusive. One strategy is to design
molecules with shape biaxiality. Before 2003, some mesogenic molecules with shape biaxial-
ity such as spoon-like, cross-shaped and bone-shaped [33] were first thought to form biaxial
nematic from optical observations but later were proved to be uniaxial nematic by deuterium
neulear magnetic resonant experiments [3]. Another strategy was to form mixtures of rod and
disc molecules which was also failed since such mixtures areunstable to a phase separation into
two regions, one rich in rods and the other rich in discs [34].To avoid this problem, a rod and a
disc units were linked together covalently to form a single molecule. However, systems of such
molecules also failed to form a stable biaxial nematic phase[34]. Only in much more recent
years does it appear that there is strong evidence of low molar mass thermotropic biaxial ne-
matic. Several systems of V-shaped molecules were claimed to show biaxial nematic phases in
which the experimental evidence includes a number of techniques such as X-ray diffraction [35],
optical conoscopy, optical textures and deuterium neuclear magnetic resonance [36] as well as
Raman scattering [37].

The hunt for thermotropic biaxial nematics is interesting not only because it is an elusive phase
of matter that should exist, but also for its potential application in display devices. This is be-
cause rotation of the minor directors might be faster than for the major director. This hypothesis
has been demonstrated in both electro-optical experiments[38] and molecular dynamic simula-
tions [39] which both show faster response time of the minor directors with respect to the major
one. This could produce a display with a fast response and based on in-plane switching [3].

In addition to anisotropy, liquid crystals have other interesting properties when a magnetic field
is applied. First, the magnetic field induces some order in the system. Therefore, the isotropic
phase becomes theparanematicphase with small orientational order. Secondly, recent exper-
imental results by Ostapenko, Wiant, Sprunt, Jákli and Gleeson [40] showed that by applying
a magnetic field to a system of biaxial molecules, the transition temperature between the high
ordered (nematic) and the low ordered phases (paranematic or isotropic) was increased by one
Kelvin. This experimental success is partly attributed to the high magnetic field used in their
experiment. The other important factor is the biaxiality ofthe V-shaped molecules used in their
experiment. This latter factor was not explained in detailsin their paper. In this thesis, we also
study the effects of molecular biaxiality on magnetic field induced nematics.

1.4 Biaxial and Uniaxial Smectic A phases

In the last two sections we have discussed nematic liquid crystal phases which have orienta-
tional order but no long-range translational order. In contrast, smectic liquid crystals have some
long-range translational order. In these phases, the constituent molecules are restricted in two
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dimensional layers which are separated with a periodic layer spacing. We are concerned with
smectic A phases, in which the long molecular axis is parallel to the normal of the layer on av-
erage. In addition, the molecular centres of mass are uniformly distributed in the centres of the
layers. In other words, smectic A phases have translationalorder, together with the orientational
order.

In a uniaxial smectic A phase, the symmetry axes of the molecules are ordered parallel to the
layer normal. In addition, the molecules rotate freely around the symmetry axis of the phase.
The possibility of biaxial ordering in smectic A phases has also been suggested by de Gennes in
1972 [41]. In biaxialbiaxial smectic Aphases, all molecular axes tend to line up. For example,
in a biaxial smectic A formed form molecules withD2h symmetry, one symmetry axis of the
molecules tends to align along the layer normal whereas the other two symmetry axes align par-
allel to the layer. Another example is a biaxial smectic A system formed from molecules with
C2v symmetry. In this case the molecules are polar along one direction, whereas the other two
molecular axes are non-polar. If the polar axes of the molecules point randomly to either side,
then the biaxial smectic A phase still hasD2h symmetry. If all the polar axis of the molecules
tend to point in the same direction, they form a ferroelectric biaxial smectic A phase. If they
point to the same direction in one layer but opposite in adjacent layers, then the phase is anti-
ferroelectric. The biaxial smectic A phase, including those with antiferroelectric property has
been found in several systems. We review the evidence in chapter 7. In addition, we also review
some theoretical models for the biaxial smectic A phase.

1.5 Thesis Plan

Our study concerns with the use of the molecular field approximation for nematogenic and
smectogenic systems. One objective is to explain the phenomena observed in experiments and
computer simulations of systems made of biaxial molecules.Another is to make numerical pre-
dictions about real systems of biaxial molecules. A common problem which occurs throughout
chapter 3, 4 and 5 is to locate regions of molecular parameters which can stabilise the biaxial
nematic phase. This is with a hope to assist the experimentaldesign of molecules which might
be able to form biaxial nematic liquid crystals. In addition, as we already discussed, one chapter
is devoted to the study of the magnetic field effects on the uniaxial nematic formed from biaxial
molecules. We also extend the molecular field theory to include translational ordering in order
to model biaxial and uniaxial smectic A phases.

In Chapter 2 we formaly introduce the molecular field theory according to existing literature.
The methods which help to solve the equations from the molecular field theory are also pre-
sented. In addition, we give some examples of existing models that are relevant to our discussion
in subsequent chapters.

Molecular field theories for biaxial nematics often assume the symmetry of the phase to beD2h.
However, in a recent paper by Karahaliou, Vanakaras and Photinos [42], the authors argued
that the symmetry of biaxial nematics found in several systems might beC2h instead ofD2h.
The C2h symmetry group has lower symmetry thanD2h. It has only three basic symmetry
operations: an identity, a two-fold rotation axis togetherwith a reflection plane perpendicular
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to the symmetry axis. In Chapter 3, we develop a molecular field theory for biaxial nematics
formed from molecules withC2h symmetry group. The ground state which this system can form
is a biaxial nematic phase withC2h point group symmetry, in agreement with the argument in
reference [42].

Chapter 4 follows to study a model of V-shaped molecules. Themotivation for this work is from
experimental evidence. Although there is strong evidence which suggests V-shaped molecules
might stabilise biaxial nematic, this evidence seem to disagree with theoretical predictions. One
suggestion is that it might be due to a strong tranverse dipole interaction. If this is the case
then it would result in a nematic with polarity [43]. By including a tranverse dipolar interaction
into the existing molecular field model, we are able to explain this discrepancy between theory
and experiment. In addition, we also find that the dipolar interaction indeed stabilises the polar
biaxial and polar uniaxial nematic phase.

In Chapter 5 we study nematic liquid crystals formed from liquid crystal dimers. They are
mesogenic molecules with two rigid arms conneted by a flexible chain. Due to the flexible chain,
a molecule can adopt many conformations, some of which are non cylindrically symmetric.
Therefore, we should expect a system of flexible liquid crystal dimers to stabilise a biaxial
nematic phase. In addition, the flexibility usually reduce melting temperatue (when a system
changes from liquid crystal into solid crystal), thus may increase the chance of forming a biaxial
nematic phase. Our model is based on the work by Ferrarini et al. [44] which is a molecular
field theory for uniaxial nematic formed from liquid crystaldimers. We extend their model to
allow biaxial nematic phase to be formed.

Next, in Chapter 6, we develop a molecular field model which describes a system of biaxial
molecules in a uniaxial nematic in the presence of a magneticfield. We discuss three main effects
of the applied magnetic field on that system. They have been studied for uniaxial molecules
by Wojtowicz and Sheng [45]. We show that the extent of these three effects is different for
molecules of different biaxiality in a way that it would be easier to observe these effects for
molecules with higher biaxiality. In addition, we make comparisons between our results and
those found in the experiments by Ostapenkoet al. [40].

After that, in chapter 7 we study a model for biaxial smectic Aliquid crystals. The existing cal-
culation results for this problem of modelling the biaxial smectic A phase in the literature is still
incomplete. One reason is because it involves a large numberof order parameters which makes
the calculation formidable. An approximation which involves decoupling the order parameters
is used in order to reduce this large number of order parameters to make the calculation feasible.
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Chapter 2

Background

In this chapter, we aim to explain the mathematical and physical background that is common
prerequisite to subsequent chapters. In our work the molecular field theory is used throughout
to describe and make predictions about the phase behaviour of nematogenic molecules which
can form thermotropic nematic liquid crystals, especiallythe biaxial phases. In this chapter, we
only discuss the molecular field theory for nematic liquid crystals. The molecular field theory
in this chapter is extended in chapter 7 to model biaxial smectic A phases. The molecular
field theory for nematic liquid crystals is a theory of statistical mechanics which focuses on
the difference between isotropic and anisotropic liquids,that is the broken rotational symmetry.
This difference is defined byorientational order parameterswhich describe the symmetry of
anisotropic phases and molecular ordering. A molecule in the theory is assumed to interact with
a mean field generated by all other molecules. There are two major steps in formulating the
molecular field theory. The first step is to determine the internal energy of the system. It can be
constructed by considering firstly the pair interaction potential which describes the interactions
between two neighbouring molecules. This is discussed in section 2.1. To form the internal
energy we also need to determine the order parameters of the system which is done using the
methods discussed in section 2.2. The second step in formulating the molecular field theory is
the application of the molecular field approximation in section 2.3. After introducing the theory
for a system with the constituent molecules and the phase of general symmetry, we present some
specific examples where the theory has been used to make predictions about nematic behaviour
in section 2.4. In section 2.5, we explain the difference between the free energy of a system at
equilibrium and a non-equilibrium free energy and a method to determine the non-equilibrium
free energy. This method helps us to explain the failure of the classical method of minimising
the equilibrium free energy with respect to the order parameters.

2.1 Intermolecular Interactions

The first assumption of the molecular field theory for nematicliquid crystals is about the form
of the total internal energy per molecule. The form for this energy may be related to the pair
potential which describes the intermolecular interactions between two neighbouring molecules.
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The pair potential which we adopt is one which depends on the orientations and symmetries of
the two interacting molecules. It seems sensible since nematic phase behaviour is dependent on
the rotational ordering of constituent molecules. Consider a general moleculei in three dimen-
sional space which can be asigned a coordinate system(x, y, z) fixed in it. It is a convenient
practice to choose these axes to be molecular symmetry axes whenever possible. For a molecule
with cylindrical orD∞h symmetry, thez axis is often taken as the symmetry axis. ThisD∞h

symmetry point group consists of three basic symmetry operations: an identity, a symmetry axis
of infinite rotation and a horizontal reflection plane perpendicular to the symmetry axis [16].
On the other hand, for a molecule with symmetry of a rectangular parallelepiped orD2h sym-
metry, the(x, y, z) axes are taken along the symmetry axes of the molecule (see figure 1.4) for
an example. The molecular orientation with respect to a fixedlaboratory axes(X,Y,Z) can
be described by three Euler anglesΩ = (α, β, γ). They are three successive rotations which
transform a laboratory into a molecular axis frame. There are several conventions for the Euler
angles, of which we use thezyz-convention. In order to transform one coordinate axis system
into the other one, there are three successive rotations in the following order. First, a rotation
around thez axis by an angleα is taken which gives us the second coordinate system. Then, a
rotation by an angleβ around they axis of the second coordinate system is carried out to give
the third coordinate system. Finally we need to rotate around thez axis of the third coordinate
system by an angleγ to get the new coordinate axis system that we want. In figure 2.1 we

FIGURE 2.1: General definition of angular variables for two molecules which are non-
cylindrically symmetric. Reproduced from Stone [46]. For simplicity, the molecules are drawn
as lines. Note that here both(X1, Y1, Z1) and(X2, Y2, Z2) denote the laboratory axes. The
intermolecular vector connects the centre of molecule 1, with orientation(α1, β1, γ1), to the
centre of molecule 2, with orientation(α2, β2, γ2). The orientation of the intermolecular vector
is defined by two polar angles(θ, φ) with respect to the laboratory axes.

give an example of the Euler angles to relate the orientations of the two interacting molecules
with a laboratory axis systemsΩ1 = (α1, β1, γ1) andΩ2 = (α2, β2, γ2). Now since the pair
potential should be a function of molecular orientation, weexpand it in a complete set of or-
thogonal functions spanning the space of the Euler angles. One such set is the Wigner rotation
matricesDL

pm(Ω). A comprehensive account of these functions can be found in reference [47].
The Wigner rotation matrices can also be realised as transformation tensors which are used to
transform spherical tensors under the rotation of coordinate axes. A spherical tensor of rankL
in a coordinate systemTLn is transformed under the rotation of coordinate axes by the three
Euler anglesΩ = (α, β, γ) into a spherical tensor of the same rankT ′

Lm in the new coordinate
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system according to
T ′
Lm = DL

mn(Ω)TLn. (2.1.1)

Now we see that the indicesm andn represent component indices ofLth-rank tensorsTLm, TLn

and also indices of the transformation matricesDL
mn(Ω). ThereforeL ≥ 0, −L ≤ m,n ≤ L

and bothL,m, n are integers. We give an example of a vector, or first-rank tensorT1n which
has three independent componentsT1−1, T10 andT11. This vector is transformed under rotation
according to

T ′
1m = D1

mn(Ω)T1n. (2.1.2)

In general, the expressions for the Wigner rotation matrices are given by

DL
mn(Ω) = e−imαdLmn(β)e

−inγ , (2.1.3)

wheredLmn(β) are the small Wigner rotation matrices. We give some explicit expressions in
Appendix A. They can be calculated according to [48]

dLmn(β) =
∑

χ

CLmn
qp cosq (β/2) sinp (β/2). (2.1.4)

Here

q = 2L+m− n− 2χ,

p = n−m+ 2χ,

CLmn
qp = (−1)χ

{(L+m)!(L−m)!(L+ n)!(L− n)!}1/2
(L− n− χ)!(L+m− χ)!(χ+ n−m)!χ!

, (2.1.5)

where the sum overχ is taken over such values that the factorials are nonnegative. In addition to
the molecular orientation, the pair potential also dependson the intermolecular vector, see figure
2.1. This vector is a two dimensional object and we only need apair of anglesωr = (θφ) to
describe it. The intermolecular vectorr joins the centre of the coordinate system(x1, y1, z1) of
the first molecule with that of the second one(x2, y2, z2). The angleθ is made up between the
intermolecular vector and the laboratoryZ axis whereasφ is the angle between the projection
of the intermolecular vector on the(X,Y ) plane and the laboratoryX axis. Now the expansion
also includes a complete set of orthogonal functions of the anglesωr. This set can also be
formed from the set of Wigner rotation matrices. However, since the intermolecular vector only
depends on two Euler angles, the set of orthogonal functionsof the anglesωr can be formed from
a subset of Wigner rotation matrices with one index being zero, namelyDJ

t0(ωr). In addition,
the pair potential also depends on the separation between interacting molecules. This can be
taken into account by multiplying the orientational dependence with the separation dependence
termsumm′nn′t

LL′J (r). Here the separation is denoted byr and the subscripts as well as superscripts
are there to cancel that in the Wigner functions in order for the pair potential to be a scalar. Now
we start writing down the form for the pair potential as the product

U(Ω1,Ω2, ωr, r) = −
∑

umm′nn′t
LL′J (r)DL

mm′(Ω1)D
L′

nn′(Ω2)D
J
t0(ωr). (2.1.6)
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However we must take into account the fact that the pair potential must be invariant under ar-
bitrary rotation oflaboratory axes. This can be illustrated as follows. The Wigner rotation
matrices of a molecule with an orientation(Ω1) change under rotation byΩ into another orien-
tation(Ω′

1) according to
DL

mn(Ω
′
1) = DL

mp(Ω)D
L
pn(Ω1) (2.1.7)

Thus the pair potential is changed under rotation by(Ω) to

U(Ω′
1,Ω

′
2, ωr, r) = −∑umm′nn′t

LL′J (r)
[

DL
m′p(Ω)D

L′

n′p′(Ω)D
J
tP (Ω)

]

×DL
pm(Ω1)D

L′

p′n(Ω2)D
J
P0(ωr), (2.1.8)

which is different from the original pair potential in general. A correction can be made to allow
for the orientational invariance of the pair potential by taking the integrations with respect to the
Euler rotation anglesΩ over a period of each angle. They are from−π to π for β and from 0 to
2π for bothα andγ [49].

U(Ω1,Ω2, ωr, r) = −
∑

umm′nn′t
LL′J (r)

[

(1/8π2)

∫

DL
m′p(Ω)D

L′

n′p′(Ω)D
J
tP (Ω)dΩ

]

×DL
pm(Ω1)D

L′

p′n(Ω2)D
J
P0(ωr). (2.1.9)

Here the integral element isdΩ = sinβdαdβdγ. The invariance can be verified as follows.
An arbitrary rotation only changes the angles inside the integration. In addition, the Wigner
functions are periodic over the integration intervals. Therefore, the pair potential is invariant
under the rotation of the laboratory axes. The integral inside the square brackets can be evaluated
analytically by the relation

∫

DL
m′p(Ω)D

L′

n′p′(Ω)D
J
−t−P

∗
(Ω)dΩ =

8π2

(−1)t−P

(

LL′J

m′n′t

)(

LL′J

pp′P

)

. (2.1.10)

where the conjugate of the Wigner rotation matrices is defined by

DJ
−t−P

∗
(Ω) = (−1)P−tDJ

tP (Ω), (2.1.11)

and
(LL′J
m′n′t

)

is the 3j-symbol [47]. These 3j-symbols and the Clebsch-Gordan coefficients which
we see later are constants which appear when we multiply Wigner functions and can be used
alternatively since they are related [48]. Due to their complex explicit forms we do not include
them here but they can be found in the books in reference [47] for the 3j-symbol and reference
[50] for the Clebsch-Gordan coefficients. Hence we can rewrite the pair potential in a more
compact form

U(Ω1,Ω2, ωr, r) = −
∑

umn
LL′J(r)S

mn
LL′J(Ω1,Ω2, ωr). (2.1.12)

Now each term in the exansion series of the pair potential is aproduct of a separation dependence
coefficient and an orientational dependence coefficient. Here the separation dependence terms
are

umn
LL′J(r) =

(

LL′J

m′n′t

)

umm′nn′t
LL′J (r). (2.1.13)
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The orientation dependenceS-functions are defined by

Smn
LL′J(Ω1,Ω2, ωr) = (i)L−L′−J

∑

(

LL′J

pp′P

)

DL
pm(Ω1)D

L′

p′n(Ω2)D
J
P0(ωr). (2.1.14)

Here the phase factor(i)L−L′−J is added to makeSLL′J
mn invariant under exchange of the roles

of the two molecules [46].

Since the intermolecular vector orientation or a function of it does not occur explicitly in the
molecular field theory [51] we take the average over all orientations of the intermolecular vector
to get the reduced form of theS functions,

Smn
LL0(Ω1,Ω2) =

∑

(

LL0

p− p0

)

DL
pm(Ω1)D

L
−pn(Ω2). (2.1.15)

The pair potential can now be written as

U(Ω1,Ω2, r) = −
∑

(−1)L−puLmn(r)D
L
pm(Ω1)D

L
−pn(Ω2). (2.1.16)

Here the magnitude of the 3j-symbol,
( LL0
p−p0

)

, of 1/(2L+1)1/2 is used to scale the intermolecular

coefficients,uLmn(r) = 1/(2L + 1)1/2umn
LL0(r).

Now we also want the pair potential in (2.1.16) to be invariant under arbitrary rotations of molec-
ular axes. This property of the pair potential defines the structure of the supertensoruLmn. The
Wigner rotation matrices are transformed under the rotation of molecular axes by an angle(Ω)
according to

DL
pq(Ω

′
1) =

∑

m

DL
pm(Ω1)D

L
mq(Ω), (2.1.17)

DL
−pq′(Ω

′
2) =

∑

n

DL
−pn(Ω2)D

L
nq′(Ω).

Hence the pair potential is transformed according to

U(Ω′
1,Ω

′
2) = −

∑

(−1)L−pu′Lqq′D
L
pq(Ω

′
1)D

L
−pq′(Ω

′
2). (2.1.18)

HereuLmn is transformed intou′Lqq′ . We also omit the separation dependence for simplicity.
Now, the original pair potential (2.1.16) can be rewritten as

U(Ω1,Ω2) = −
∑

(−1)L−puLmnδmm′δnn′DL
pm′(Ω1)D

L
−pn′(Ω2). (2.1.19)

We can expand the Kronecker deltasδmm′ andδnn′ by using theunitary property of the Wigner
functions

∑

q

DL
mq(Ω)

∗
DL

m′q(Ω) = δmm′ ,

∑

q′

DL
nq′(Ω)

∗
DL

n′q′(Ω) = δnn′ . (2.1.20)
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Therefore,

U(Ω1,Ω2) = −
∑

(−1)L−p







∑

qq′

DL
mq(Ω)

∗
DL

nq′(Ω)
∗
uLmn







DL
pq(Ω

′
1)D

L
−pq′(Ω

′
2).(2.1.21)

Since the pair potential is invariant under rotations of themolecular axes, the right hand side of
equations (2.1.16) and (2.1.21) must be equal. This gives usthe expressions of the intermolecu-
lar coefficients under the rotation of molecular axes

u′Lqq′ =
∑

mn

DL
mq(Ω)

∗
DL

nq′(Ω)
∗
uLmn. (2.1.22)

Finally, we need to consider how individual molecular symmetry affect the pair potential. It
is because a symmetry transformation of the molecule shouldalso leave the value of the pair
potential invariant. This is reflected in the intermolecular coefficientsuLmn. A coefficientuLmn

transforms as a tensor ofLth-rank for molecules 1 (with orientationΩ1) with respect to the first
subscript and as a tensor of the same rank for molecules 2 (with orientationΩ2) with respect to
the second subscript. The effect of molecular symmetry on the intermolecular coefficientsuLmn

for some symmetry operations is given in table 2.1.

Symmetry Property Consequence
A. Of the system as a whole
1. Molecules identical uLmn = uLnm
2. Both molecules linear L even
3. Both molecules have inversion centreL even
B. Of molecule 1
(similar rules hold for molecule 2)
1. Inversion centre I L even

2. C(z)
2 axis m even

3. σh reflection m+ L even
4. OtherC2 rotation

(a)C(x)
2 uLmn = (−1)LuL−mn

(b) C(y)
2 uLmn = (−1)L+muL−mn

5. σv reflection
(a)σxz

v uLmn = (−1)muL−mn

(b) σyz
v uLmn = uL−mn

TABLE 2.1: Effect of molecular symmetry operations on the the energy expansion (2.1.16) by
Stone [46]. The notation is as follows.I stands for the inversion.σxy

v for a symmetry plane

perpendicular toz; C(z)
2 for api rotation aboutz.

We note that the quantiyuLmn is tensorial in the sense that its components transform under
rotation with respect to molecular axes. In general, there are three types of rotations. In the first
type, the molecular axes are kept fixed with respect to the laboratory axes whereas the molecule
is rotated byΩ with respect to the molecular axes, the intermolecular tensor uLmn transforms
according to equation (2.1.22). In the second type of rotation, the molecule is kept fixed but
the molecular axes are rotated byΩ with respect to the laboratory axes, the intermolecular
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supertensoruLmn transforms according to

u′Lqq′ =
∑

mn

DL
mq(Ω)D

L
nq′(Ω)uLmn. (2.1.23)

In the third type of rotation, both the molecule and the molecular axes are rotated with respect
to the laboratory axes but the relative orientation betweenthem stay fixed. In this case the
intermolecular tensoruLmn does not transform and and its components are constant. The last
type of rotation corresponds to the calculation when we takethe ensemble average of an angular-
dependent quantity, such as an order parameter which we willsee later. In this case, the relative
orientation between a molecule and its molecular axes is fixed, the constant components of the
intermolecular supertensors,uLmn, can be considered as coefficients which scale the interaction
strength.

2.2 Orientational Distribution Functions and Order Parameters

Nematic liquid crystals are characterised by their long-range orientational order and their lack
of a long-range translational order. Hence they are described by orientational order parameters.
For nematic liquid crystals, we only refer to order parameters as being orientational. Many es-
sential results regarding order parameters have been discussed in details by Zannoni [48] and
are repeated in this section. First we consider a molecule with the orientation(Ω) with respect
to laboratory frame. The ordering of the molecules in the phase is reflected in the probability
to find a molecule in a small orientational volumef(Ω)dΩ. The functionf(Ω) is called the
single particle orientational distribution function. This function belongs to the totally symmetric
representation of the symmetry group of the phase. In other words, the symmetry of this func-
tion represents the symmetry of the phase. Therefore, an ensemble average of a single particle
orientational functionA(Ω) can be written in terms off(Ω) as

〈A〉 =
∫

V
f(Ω)A(Ω)dΩ. (2.2.1)

Since the only information we know about the orientational distribution function is that its vari-
ables are the Euler angles(Ω) = (α, β, γ), we expand it in a basis of Wigner rotation matrices,
a set of complete orthogonal functions spanning the space ofthe Euler angles

f(Ω) =
∑

fLmnD
L
mn(Ω). (2.2.2)

Now multiplying both sides byDL
mn

∗
(Ω) and integrating over the angles we find

fLmn =
2L+ 1

8π2
〈DL

mn〉∗. (2.2.3)

Here, the scalar comes from the orthogonality property of the Wigner functions

∫

DL∗
mn(Ω)D

L′

m′n′(Ω)dΩ =
8π2

2L+ 1
δmm′δnn′δLL′ , (2.2.4)
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whereδmm′ , δnn′ andδLL′ are the Kronecker delta functions. In addition, the quantities

〈DL
mn〉 =

∫

DL
mn(Ω)f(Ω)dΩ (2.2.5)

are the ensemble averages of the Wigner rotation functions.The phase transition of liquid crys-
tals should be described in terms of modifications in the orientational distribution functions.
Clearly the parameters which modify this function are the ensemble averages〈DL

mn〉. Hence
it is natural to define these functions as the order parameters. This choice is also a convenient
choice since in our definition for the Euler angles, the Wigner functionsDL

mn(Ω) transform
in the laboratory axes as tensors of theLth-rank with respect to the first subscript and in the
molecular axes as tensors of the same rank with respect to thesecond subscript. Moreover, the
orientational distribution function reflects the symmetryof the phase and the molecules. In con-
sequence, we can impose constraints on the order parametersaccording to molecular and phase
symmetry. The effects of molecular and phase symmetry operations on the Wigner rotation
matrices are given in Tables 2.2 and 2.3, respectively.

OperatorOM OM 〈DL
mn〉

I = S2 (−1)LDL
mn

σ(xy) (−1)L+nDL
mn

σ(xz) (−1)nDL
m−n

σ(yz) DL
m−n

C2(z) (−1)nDL
mn

C2(x) (−1)LDL
m−n

C2(y) (−1)L−nDL
m−n

TABLE 2.2: Effect of molecular symmetry operationsOM on the Wigner rotation matrices.
The notation is as follows.I stands for the inversion.σ(xy) for a symmetry plane perpendicular
to z; C2(z) for a π rotation aboutz; S2 for a π roto-reflection wherez is the main symmetry
axis of the molecule.

OperatorOL OL〈DL
mn〉

I = S2 (−1)LDL
mn

σ(XY ) (−1)L+mDL
mn

σ(XZ) (−1)mDL
−mn

σ(Y Z) DL
−mn

C2(Z) (−1)mDL
mn

C2(X) (−1)LDL
−mn

C2(Y ) (−1)L−mDL
−mn

TABLE 2.3: Effect of phase symmetry operationsOL on the Wigner rotation matrices. The
notation is as follows.I stands for the inversion.σ(XY ) for a symmetry plane perpendicular
toZ; C2(Z) for aπ rotation aboutZ; S2 for aπ roto-reflection whereZ is the main symmetry
axis of the phase.
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2.3 Molecular Field Theory

In this section, we derive a thermodynamic theory for nematic liquid crystals with the aim to
describe the transitions between the nematic and the isotropic phase and also between differ-
ent nematic phases. Hence the theory only focuses on the orientational order of the system. A
convincing way to derive the theory without making any assumption about the type of molecu-
lar interactions is the variational approach by de Gennes inhis classic book [2] for cylindrical
molecules in uniaxial nematics. This approach can be extended in order to account for biaxial
nematics formed from identical constituent molecules of any symmetry. The general procedure
has been described in reference [51] and is discussed in details in this section. In the variational
approach, the first ingredient we need to construct is the total internal energy per molecule. We
recall from section 2.1 that the pair potential describing the interactions between two neighbour-
ing molecules has the form

U(Ω1,Ω2, r) = −
∑

(−1)L−puLmn(r)D
L
pm(Ω1)D

L
−pn(Ω2). (2.3.1)

The first assumption we need to make is that the interacting molecules are rigid. This is reason-
able for molecules that consist of a single mesogenic group since in this case the flexible chain
does not contribute to the ordering in the nematic phase. In the molecular field, a molecule is
assumed to interact only with a long-range internal field generated by all other molecules and
is independent of any short-range correlations. Quantitative improvement of the theory can be
achieved by including short-range correlation effects by using the density functional theory [10]
or the two-site cluster theory [52]. Nevertheless, we ignore short-range correlations in this the-
sis in order to ease computation. In addition, ignoring short-range correlation effects usually
still leads to qualitative agreements between theory and Monte Carlo simulation. Therefore we
assume the internal energy per molecule to have a form that isanalogous to the pair potential

〈U〉 = −(1/2)
∑

(−1)L−puLmn〈DL
pm〉〈DL

−pn〉. (2.3.2)

This is a quadratic function of the order parameters in equation (2.2.5). The next step is to find
the entropy per molecule. This can be derived by consideringthe total entropy ofN molecules
[11]

S∑ = −kB

∫

FN (Ω1,Ω2, ...,ΩN ) lnFN (Ω1,Ω2, ...,ΩN )dΩ1dΩ2...dΩN , (2.3.3)

whereFN (Ω1,Ω2, ...,ΩN ) is theN body distribution function andkB denotes the Boltzmann
constant. In the molecular field approximation we assume that the behaviour of a molecule
depends on the long-range orientational ordering which dominates short-range correlation. In
consequence, there is no correlation between individual molecule. Hence we may write theN
particle distribution functionFN (Ω1,Ω2, ...,ΩN ) as the product of single particle distribution
functions [11]

FN (Ω1,Ω2, ...,ΩN ) =
N
∏

n=1

f(Ωn). (2.3.4)
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Therefore, the total entropy can be written as the sum of the single particle orientational en-
tropies

S∑ =
∑

n

Sn, (2.3.5)

where

Sn = −kB

∫

Ωn

f(Ωn) ln f(Ωn)dΩn.
∏

m6=n

∫

Ωm

f(Ωm)dΩm. (2.3.6)

Since the integrations of the distribution functions are equal to unity, all identical molecules
have the same single particle orientational distribution which is independent of the behaviour of
any other molecule. Therefore, the total entropy per molecule is

S = −kB

∫

f(Ω) ln f(Ω)dΩ. (2.3.7)

Now we need to find an explicit form for the orientational distribution function in equilibrium.
When a thermodynamic system is in the equilibrium state, theavailability functionF has to be
minimised [53]. This function is defined such as any change inF depends on changes in the
thermodynamic variables

dF = dU + p0dV − T0dS, (2.3.8)

whereU , V andS are the internal energy, volume and entropy of our system;p0 andT0 denote
the pressure and temperature of the surroundings which are in contact with our system. In many
experiments, the thermodynamic variables which are easierto fix are temperatureT and pressure
P . In that case the availability functionF is equal to the Gibbs free energyG such that

dG = dU + p0dV − T0dS. (2.3.9)

Actually, experiments of some liquid crystal systems revealed that the volume change at the
phase transition is small, about 0.5 per cent [8]. When this volume change is taken into ac-
count to calculate the order parameter at the phase transition using the Gibbs free energy, the
order parameter only differs by 1-2 per cent in comparison with the assumption that the volume
is constant at the phase transition [8]. Therefore it is often assumed that the thermodynamic
variables which are constant at the phase transition are temperature and volume. In this case
the availabilityF is equal to the Helmholtz free energy whose explicit form is simpler than the
Gibbs free energy. In effect the Helmholtz free energy is adequate to be used as the thermody-
namic potential of the system. This is defined as

A = 〈U〉 − TS, (2.3.10)

whereT is the absolute temperature. The single particle orientational distribution function at
equilibrium can be found by minimising the free energy difference between the nematic and the
isotropic phases, subject to two constraints. The first one is that the order parameters are the
averages of the Wigner rotation matrices given in equation (2.2.5) and the second one is that the
orientational distribution function is normalised

∫

f(Ω)dΩ = 1. (2.3.11)
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Minimisation of the free energy in equation (2.3.10) with those constraints gives

δA+ η

∫

δf(Ω)dΩ = 0. (2.3.12)

whereη denotes the Lagrange multiplier. Taking the variation of the internal energy and the
entropy in (2.3.10) with respect tof(Ω) we get

∫

(

−
∑

(−1)L−puLmn〈DL
pm〉DL

−pn(Ω) + kBT + kBT ln f(Ω) + η
)

δfdΩ = 0, (2.3.13)

which is satisfied for allδf if and only if the integrand vanishes. The orientational distribution
function can then be written as

f(Ω) =
exp

(

1
kBT

∑

uLmn(−1)L−p〈DL
pm〉DL

−pn(Ω)
)

exp(1 + η
kBT )

. (2.3.14)

In order forf(Ω) to be normalised the denominator has to be the orientationalpartition function

Q =

∫

Ω
exp

(

1

kBT

∑

(−1)L−puLmn〈DL
pm〉DL

−pn(Ω)

)

dΩ. (2.3.15)

Here, the integral element isdΩ = sin βdαdβdγ and the integrations are taken from−π to π

for β and from 0 to 2π for α andγ. From the orientational distribution function, we can find the
potential of mean torqueU(Ω), a function which describe the interactions of a molecule atan
orientationΩ with the molecular field. From thermal physics, their relation is

f(Ω) = Q−1exp (U(Ω)/kBT ) . (2.3.16)

Therefore the potential of mean torque is

U(Ω) = −
∑

L,m,n,p

(−1)L−puLmn〈DL
pm〉DL

−pn(Ω). (2.3.17)

The equations of the form as equation (2.2.5) with the potential of mean torque defined as equa-
tion (2.3.17) are called theself-consistencyequations. Now we have derived the thermodynamic
equations for nematic states which seem to be adequate to describe any nematic system. How-
ever, the free energy defined in (2.3.10) is not very useful todo calculations due to the complex
form of the entropy. This can be simplified by substituting the distribution function with the
potential of mean torque defined in equation (2.3.17) into equation (2.3.7). This gives

S = −kB lnQ+
1

T

∑

L,m,n,p

(−1)L−puLmn〈DL
pm〉〈DL

−pn〉. (2.3.18)

Thus, the free energy can be written in a more convenient form

A∗ = − lnQ+
1

2kBT

∑

L,m,n,p

(−1)L−puLmn〈DL
pm〉〈DL

−pn〉. (2.3.19)

43



whereA∗ is the scaled free energyA∗ = A/kBT . This form can also be realised in another way,
by noticing that the first term is the standard formula which relates the Helmholtz free energy to
the partition function and the second term is the molecular field correction since the number of
molecules is counted twice in the partition function.

2.4 Examples of Uniaxial and Biaxial Nematic Liquid Crystals

2.4.1 Cylindrical Molecules in Uniaxial Nematics

Here we consider some simple examples of nematic liquid crystals before embarking on study-
ing more complex models in subsequent subsections. Not onlythis is the simplest example, it
is also of historical interests since long before a first prediction of biaxial nematic was made,
nematic liquid crystals have been known to be uniaxial with cylindrically symmetric physical
properties. This is why early theories assumed constituentmolecules to be cylindrically sym-
metric, even though they are not. In order to describe their phase behaviour we need to write
down the molecular field theory and then carry out numerical calculations. Both the phase and
its constituent molecules haveD∞h symmetry. The non-zero interaction coefficients and order
parameters can be found from Tables 2.1, 2.2 and 2.3. By convention, we take the molecularz
axis to be the molecular symmetry axis and we take the phaseZ axis to be the phase symmetry
axis. The only non-zero interaction coefficients areuL00 and the non zero order parameters are
〈DL

00〉. Therefore the potential of mean torque is

U(Ω) = −uL00〈DL
00〉DL

00(Ω). (2.4.1)

Now the Wigner rotation matricesDL
00(Ω) are the same as the Legendre polynomialsPL(β), a

complete set of orthogonal functions spanning the basis of the angleβ. Thus, the potential of
mean torque and hence the distribution functions are functions ofβ

U(β) = −uL〈PL〉PL(β). (2.4.2)

This can be verified physically as follows. Since both the phase and the molecules are cylindri-
cally symmetric, only one angle is required to describe molecular orientation. The the potential
of mean torque can be simplified further by noting that experimental evidence revealed that the
second-rank order parameter in the system is dominant [51].Quantitative improvement of the
numerical preditions compared to experimental results canbe made by including fourth-rank
interactions into the potential of mean torque [11]. However, for simplicity we takeL = 2. The
potential of mean toque is then

U(β) = −u2〈P2〉P2(β). (2.4.3)

The system now has only one second-rank order parameter

S = 〈P2〉 =
∫

(

(3 cos2 β − 1)/2
)

f(β)d cos β. (2.4.4)
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Here we note thatS is used to denote the uniaxial order parameter in order to conform with
the literature. In this section, since we do not discuss the entropy, the notationS should not be
confused with the entropy. In consequence, the scaled free energy only depends on the order
parameterS

A∗ = − lnQ+ (T ∗)−1S2, (2.4.5)

whereT ∗ = kBT/u200. The behaviour of this system can be found by solving the equation for
the order parameterS in equation (2.4.4) graphically. The results are shown as the temperature
dependence of the order paramterS and the corresponding scaled free energy difference between
the nematic and the isotropic phase in figure 2.2. First we note that the order parameter starts to
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FIGURE 2.2: The dependence of (a) the uniaxial order parameters and(b) the scaled free
energy on the scaled temperature for uniaxial molecules in uniaxial nematics.

increase continuously from zero at the scaled temperature of about 0.2. This point is called the
bifurcation pointwhich can also be found analytically. SinceS is small, we can expand the order
parameter as a Taylor series upto and including the first order term which does indeed givesT ∗ =

0.2. However, this point is not where the actual phase transition takes place. This is because
the part of the order parameter curve from the bifurcation point to the pointB corresponds to
the positive part of the free energy difference. This means for these parts of the curves, the
isotropic phase is more stable than the uniaxial nematic phase. In fact the uniaxial nematic-to-
isotropic phase transition happens at pointA in the order parameter plot. At this point, the order
parameter of the system jumps to about 0.4 at pointB and then keep on going to increase. The
temperature of the system at pointsA andB corresponds to that of the free energy at pointC.
This is where the free energy difference starts to decrease and becomes negative and now the
uniaxial nematic phase is more stable than the isotropic phase. The discontinuity in the order
parameter and the gradient of the free energy indicates thatthe transition is first order.

2.4.2 Uniaxial and Biaxial Nematics formed from OrthogonalParallelepiped Molecules

Uniaxial nematic liquid crystals are formed by the tendencyof the alignment of one axis of
constituent molecules. If the other axes also have the tendency to align, the rotational symme-
try of the cylindrically symmetric phase may be broken and wehave a biaxial nematic phase.
The lowest symmetry to be broken from cylindrical one which can be described by second-rank
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order parameters is theD2h point group symmetry. In this section, we assume that the lowest or-
dered phase and the constituent molecules haveD2h point group symmetry. In order to develop
the molecular field theory for this system, first we need to write down the potential of mean
torque. Given the success of formulating the molecular fieldtheory for cylindrical molecules
in uniaxial nematic by considering only second-rank interactions, we assume that second-rank
interactions also make dominant contributions towards thephase behaviour of molecules with
D2h symmetry. The number of second-rank order parameters can berestricted to only four due
to the molecular and phase symmetry using Tables 2.2 and 2.3

〈D2
00〉,

〈D2
02〉 = 〈D2

0−2〉,
〈D2

20〉 = 〈D2
−20〉,

〈D2
22〉 = 〈D2

2−2〉 = 〈D2
−22〉 = 〈D2

−2−2〉. (2.4.6)

Actually the Wigner functions used to define the order parameters occur in the potential of mean
torque as composite functions

R00(Ω) = D2
00(Ω),

R02(Ω) =
(

D2
02(Ω) +D2

0−2(Ω)
)

/2,

R20(Ω) =
(

D2
20(Ω) +D2

−20(Ω)
)

/2,

R22(Ω) =
(

D2
22(Ω) +D2

−22(Ω) +D2
2−2(Ω) +D2

−2−2(Ω)
)

/2. (2.4.7)

These functions are also called symmetry adapted basis functions [54]. It is because they are the
only combinations whose thermodynamic averages do not vanish. Their explicit forms are

R00(Ω) =
(

3cos2β − 1
)

/2,

R02(Ω) =
√

3/8sin2βcos2γ,

R20(Ω) =
√

3/8sin2βcos2α,

R22(Ω) = (1/2)
(

1 + cos2β
)

cos2γcos2α − cos βsin2γsin2α. (2.4.8)

The order parameters are then defined in terms of these composite functions, they are

S = 〈R00〉,D = 〈R02〉, P = 〈R20〉, C = 〈R22〉. (2.4.9)

It can be seen from their explicit forms that the values of theorder parameters are constrained
[55]

− (1/2) ≤ 〈R00〉 ≤ 1,

−
(

1/
√
6
)

(1− 〈R00〉) ≤ 〈R02〉 ≤
(

1/
√
6
)

(1− 〈R00〉) ,

−
(

1/
√
6
)

(1− 〈R00〉) ≤ 〈R20〉 ≤
(

1/
√
6
)

(1− 〈R00〉) ,

− 1 ≤ 〈R22〉 ≤ 1. (2.4.10)
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It often assists our understanding to express the order parameters as Cartesian rather than spher-
ical tensors. This can be achieved by defining the ordering supertensor

SAB
ab = 〈3lAalBb − δABδab〉/2, (2.4.11)

where the superscriptsA andB can be any of the principal axesX, Y orZ of the phase and the
subscriptsa andb can be any principal axisx, y or z of the molecules;lAa denotes the cosine
of the angle between axesA anda while δAB denotes the Kronecker delta. The four order
parameters, expressed in Cartesian form are [26]

S = 〈R00〉 = SZZ
zz ,

D = 〈R02〉 =
SZZ
xx − SZZ

yy√
6

,

P = 〈R20〉 =
SXX
zz − SY Y

zz√
6

,

C = 〈R22〉 =
(SXX

xx − SXX
yy )− (SY Y

xx − SY Y
yy )

3
. (2.4.12)

The first order parameterS is that introduced by Tsvetkov. The role of the order parameters can
be seen from their relations to the Saupe ordering matrix elements.S andD measure the order-
ing of the major and minor molecular axes with respect to the major phase axis whereasP and
C measure the ordering of the major and minor molecular axes with respect to the minor axes of
the phase. Therefore, a uniaxial phase formed from cylindrical molecules can only have one non
zero order parameterS. If the uniaxial phase is formed from non-cylindrical molecules there
are two order parametersS andD. If the biaxial phase is formed from cylindrical molecules
there are also two order parametersS andP . All four order parameters are non-zero in a biaxial
nematic phase formed from non-cylindrical molecules.

We have constructed the molecular field theory using the spherical tensor notation. It is be-
cause of our familiarity with this notation. In addtion, spherical tensors are easier to transform
and manipulate. However, other authors have constructed the theory using Cartesian tensors
[13]. Here, we give a method of constructing the order parameters using Cartesian tensors. Let
(x, y, z) be three symmetry axes of a molecule ofD2h symmetry. The interaction of a molecule
with another can be represented by two second-rank, symmetric, tracless tensors

q = z⊗ z− (1/3)I, (2.4.13)

and
b = x⊗ x− y ⊗ y. (2.4.14)

The tensorsq andb form an orthogonal basis of a vector space. In addition, we take(X,Y,Z) to
be three symmetry axes of the phase which hasD2h symmetry. A phase can also be represented
by two second-rank, symmetric, tracless tensors

eq = Z⊗ Z− (1/3)I, (2.4.15)
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and
eb = X⊗X−Y ⊗Y. (2.4.16)

The representations of the tensorsq andb in the phase axes are given by

qp = (q : eq)eq + (q : eb)eb, (2.4.17)

and
bp = (b : eq)eq + (b : eb)eb. (2.4.18)

The phase symmetry can be represented by two macroscopic tensors. They are thermodynamic
averages of the molecular tensors

Q = 〈q〉, (2.4.19)

and
B = 〈b〉. (2.4.20)

The tensorsQ andB are order parameter tensors. Their representations in the phase axes are
given by

Q = Seq + Peb, (2.4.21)

and
B = Deq + Ceb. (2.4.22)

Hence, the order parameter tensorsQ andB depend on four scalar order parameters

(2/3)S = 〈q : eq〉, (2.4.23)

√

8/3D = 〈b : eq〉, (2.4.24)
√

8/3P = 〈q : eb〉, (2.4.25)

2C = 〈b : eb〉. (2.4.26)

Using the identity(u ⊗ v) : (w ⊗ x) = (u · x).(v ·w) we see that they agree with equations
(2.4.12).

In addition to the restriction of the number of order parameters, the molecular symmetry restricts
the number of interaction coefficients according to Table 2.1 from section 2.1 to only three

u200,

u202 = u220 = u20−2 = u2−20,

u222 = u2−22 = u22−2 = u2−2−2. (2.4.27)

It is then covenient to scale the interaction coefficients with the anisotropy coefficientu200 in
order to reduce the number of coefficients in the system from three to two.

γ = u202/u200, λ = u222/u200. (2.4.28)

Now not all values of the biaxiality parameters correspond to stabilised biaxial nematic phases
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at the ground state. Hence, the values ofγ andλ can be constrained by carrying out a stabil-
ity analysis of the pair potential using the method discussed in references [13, 55]. First, we
consider a pair potential with the interaction coefficientsγ andλ without any relation. Next,
we consider the ground state of the pair potential which is when two axis sytems of interacting
molecules are parallel. Any small perturbation from this ground state should cause the value of
the pair potential to increase in order for the biaxial phaseto be stabilised. In order for the pair
potential to obey this fact, the interaction coefficients must be inside a fanned shapedstability
region

1.5− |γ
√
6|+ λ > 0 and λ > 0. (2.4.29)

In addition, if the molecules are calamitic, or rod-like, any small rotation away from the ma-
jor axis should cost more energy than one from any minor axes.In this case the interaction
coefficients can be restricted to a smaller area called theessential triangle

1.5− |γ
√
6| − 3λ < 0. (2.4.30)

In fact, we only needγ > 0 sinceγ < 0 simply corresponds to a coordinate transformation by
exchanging thex andy axes of the molecules. We show both the fanned shaped stability region
and the essential triangle in figure 2.3. In fact, any point inside the stability region and outside
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FIGURE 2.3: Constraints for the interaction coefficientsγ andλ. The fanned shaped stability
region is on the left of the solid line and the essential triangle is shaded. The broken line is
the geometric mean parabola. The parabola cuts the triangleboundary atγ = 1/

√
6 and is

tangential to the boundary of the stability area atγ =
√

3/2.

the triangle can be mapped to a point inside the essential triangle by exchanging the molecular
axes [55]. The number of parameters can be reduced further from two to only one by using
either one of the two approximations discussed in the following subsection. In addition, both
approximations help to reduce the number of order parameters from four to only two.
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2.4.3 Geometric Mean Approximation

The geometric mean approximation is equivalent to decoupling an intermolecular supertensor
into single molecular tensorsu2mn = u2mu2n. In the essential triangle 2.3, the parameters in
this approximation follow the parabolaλ = γ2. Our system now depends on one parameter

γ = u202/u200 = u222/u202. (2.4.31)

Now, the potential of mean torque forD2h molecules in nematic phases is consistent with the
assumption that dispersion interactions are responsible for the ordering in the system [56]. In
addition, the fact that the supertensor can be decoupled into u2mn = u2mu2n is in analogy with
the Berthelot combining rule [56]. The Berthelot combiningrule is often used to approximate the
interaction strength of two different spherical moleculesA and B. The intermolecular interaction
strength can be written as a product of two single-molecularquantitiesǫAB = ǫAǫB . In our case,
if we denote the single molecular tensors of two different anisotropic molecules A and B asuA2m
anduB2n, then the interaction tensor isuAB

2mn = uA2muB2n. If the two molecules are identical, we
simply ignore the superscripts. It is also interesting thatin this approximation, the number of
order parameters is reduced from four to only two

〈FU 〉 = 〈R00〉+ 2γ〈R02〉,
〈FB〉 = 〈R20〉+ γ〈R22〉. (2.4.32)

These two composite order parameters are adequate to describe the phase behaviour of the sys-
tem. In the uniaxial nematic phase, only〈FU 〉 is non-zero whereas in the biaxial nematic phase,
both order parameters are non-zero. In fact, for convenient, we also define the composite angular
functions

FU (Ω) = R00(Ω) + 2γR02(Ω),

FB(Ω) = R20(Ω) + γR22(Ω). (2.4.33)

Hence, the potential of mean torque can be written as

U(Ω) = −u200 (〈FU 〉FU (Ω) + 2〈FB〉FB(Ω)) . (2.4.34)

The parabola of geometric mean approximationλ = γ2 is always inside the stability region and
is tangential to the fanned shaped boundary in figure 2.3 atγ =

√

3/2. In addition, the parabola
cuts the essential triangle’s boundary atγ = 1/

√
6. Furthermore, the analysis in reference [55]

shows that the values ofγ from 1/
√
6 to

√

3/2 or those greater than
√

3/2 can be mapped
to those inside the essential triangle by exchanging the molecular axes. This mapping provides
interchangable results between calamitic and discotic uniaxial nematic phase behaviour since the
following reason. The definition of the order parameters assumes the molecules are calamitic
where their major axisz align to form the phase axisZ in the uniaxial nematics. However,
discotic molecules tend to align one of their short axes to form the phase axis. In this case,
the direction of the major molecular axisz is orthogonal to the major phase axisZ on average.
Hence, in the uniaxial nematic phase,S takes negative values and there is a false biaxiality with
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non-zero values ofP . This can be corrected simply by transforming the molecularcoordinate
axes by exchangingz andy. In the calculations, we choose the values ofγ from 0 to

√

3/2 in
order to show phase behaviour of both calamitic (rod-like) and discotic (disc-like) molecules.

The graphical method which we have used to find the uniaxial nematic-to-isotropic phase tran-
sition temperature is not applicable here. This is because the strength of the two contributions to
the molecular field in the biaxial nematic phase depend on different combinations of the order
parameters and so varies differently with temperature. Oneof the more effective methods which
we often use is to minimise the free energy with respect to thetwo order parameters in equation
(2.4.35) using a sequential quadratic programming method which is discussed in appendix B.
In essence, we need to give the computer program a starting point. The program then uses the
algorithm to find an estimate of the solution to desired accuracy using the given starting point.
The free energy needs to be minimised is

A∗ = − lnQ+
1

2T ∗

(

〈FU 〉2 + 2〈FB〉2
)

. (2.4.35)

The efficiency of the minimisation depends heavily on the approximation algorithm for the
integration of the partition function. One method is to evaluate it using between 25 and 30
points Gauss-Legendre integration overβ and 16 and 25 points trapezoidal rule for the periodic
interval ofγ andα as suggested by Bisi, Romano and Virga [57]. Direct minimisation of the
free energy functional presents several advantages as suggested by Biscarini, Chiccoli, Pasini
and Zannoni [52]. First the free energy as a function of the orientational order parameters is
concave, with an absolute minimum corresponding to the equilibrium solution. On the contrary,
solution of the self-consistency equations (equations which show the order parameters as the
orientational averages of Wigner rotation matrices, see equation (2.2.5) for an example) can give
unstable or plainly non-physical solutions as well as the stable ones. In Appendix E, we discuss a
numerical method to solve the self-consistency equations which will be used in chapter 7. Direct
minimisation also requires a smaller number of integrals tobe evaluated. The calculation of this
set of integrals has to be repeated at every step of an iterative procedure and saving in computer
time can be substantial, especially for problems dependingon more than one variable. The
uniaxial phase is found when the global minimum of the free energy corresponds to non-zero
〈FU 〉 and the biaxial phase is found when the global minimum of the free energy corresponds
non-zero values of〈FU 〉 and〈FB〉. In addition, since the values ofγ from 1/

√
6 to

√

3/2 can
be mapped to the region from 0 to1/

√
6 by exchanging thez and they axes, the values ofγ and

the transition temperatureT ∗ = kBT/u200 for the latter region can be mapped to the former
region according to(γ′, T ∗′) = ([(3 − γ

√
6)/(

√
6 + 6γ)], 24T ∗/(6γ +

√
6)2) [20]. Therefore

in the calculations for the geometric mean model, the range of γ from 0 to1/
√
6 is essential to

carry out the calculations and can be mapped to the range from1/
√
6 to

√

3/2.

To obtain the order of the phase transition from a lower symmetry phase to a phase of higher
symmetry, we have determined the order parameters and the scaled temperature both to four
decimal places. The phase transition is taken as second order if the order parameters corre-
sponding to the lower symmetry phase changes continuously at the phase transition. In other
words, the minimum of the free energy corresponding to the lower symmetry phase is always the
global minimum. On the other hand, the order parameters corresponding to the lower symmetry
phase changes discontinuously at the first order phase transition. In our methodology it means
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that just slightly above the transition temperature we would find a region where there are two
minima of the free energy. One minimum corresponding to the lower symmetry phase is the
local minimum whereas the other free energy minimum corresponding to the higher symmetry
phase is the global minimum.

The phase map in figure 2.4 shows the scaled transition temperature for systems of molecules
with different molecular biaxialityγ. The notation is as follows.I, NU andNB denote the
isotropic, uniaxial nematic and biaxial nematic phase, respectively. This phase map was first
revealed by Boccara, Mejdani and Seze [18] and later by Remler and Haymet [19]. The uniax-
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FIGURE 2.4: The phase map for the geometric mean model of biaxial nematics. First order
transitions are shown as continuous lines whereas second order transitions are shown as broken
lines.

ial nematic-to-isotropic phase transition is first order, indicated by the dicontinuity in the order
parameter〈FU 〉 at the phase transition. This discontinuity decreases as the biaxiality param-
eter increases away from 0 and decreases from

√

3/2. In contrast to the first order uniaxial
nematic-to-isotropic phase transition, the biaxial nematic-to-uniaxial nematic phase transition
is second order and the biaxial order parameter〈FB〉 increases continuously at the phase tran-
sition. We notice that, the uniaxial nematic-to-isotropicphase transition temperature increases
on increasingγ. The two uniaxial nematic phases which correspond to two ranges ofγ are
denoted byN+

U andN−
U for calamitic and discotic uniaxial nematic phases, respectively. In

calamitic uniaxial nematic the symmetry axis of the phase isformed as the average direction
of the major molecular axis. In contrast, in discotic uniaxial nematic, the symmetry axis of the
phase is formed by aligning a minor axis of the molecules. Whether a molecular axis is minor
or major is determined in the following way. First, a second rank molecular physical property
tensor is measured and then diagonalised. The direction corresponds to the largest eigenvalue
is the major axis of the molecules whereas the other two axes are minor. Another interesting
feature of the phase map is that the biaxial nematic-to-uniaxial nematic phase transition temper-
ature increases for0 < γ < 1/

√
6 and decreases forγ > 1/

√
6 on increasingγ. The biaxial

nematic-to-uniaxial nematic transition lines for two regions ofγ meet at a point. This point is
where three phases coexist which is called thetriple point. Furthermore, it is also where the
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biaxial nematic phase undergoes a second order phase transition directly to the isotropic phase.
This point is called the Landau point. These results show that although molecular anisotropy
increases withγ, molecular biaxiality attains its optimum value atγ = 1/

√
6, which is also the

boundary between calamitic and discotic molecules.

In order to obtain a better understanding, we expand the order parameters as a Taylor series. First
we consider the uniaxial nematic-to-isotropic phase transition where the biaxial order parameter
vanishes. At the bifurcation point, the uniaxial order parameter〈FU 〉 is small. Therefore we can
expand the exponentials in the expression of〈FU 〉 up to the first order of the Taylor series. The
low order limit for the partition function is

Q =

∫
(

1 +
u200
kBT

〈FU 〉(R2
00(Ω) + 2γR2

02(Ω))

)

dΩ = 8π2, (2.4.36)

since the integration of both Wigner functions vanish due totheir property. The expansion for
〈FU 〉 then gives

〈FU 〉 = (8π2)−1

∫

(R2
00(Ω) + 2γR2

02(Ω))

×
(

1 +
u200
kBT

〈FU 〉(R2
00(Ω) + 2γR2

02(Ω))

)

dΩ

=
u200
kBT

〈FU 〉
1 + 2γ2

5
, (2.4.37)

hence the scaled bifurcation temperature depends linearlyon the square of the relative biaxiality
parameterγ2

T ∗ =
1 + 2γ2

5
. (2.4.38)

Therefore, the bifurcation temperature for the uniaxial nematic-to-isotropic phase transition in-
creases on increasingγ. Thus we also expect the actual transition temperature to goup with
increasingγ since as we have seen for uniaxial molecules in the uniaxial nematic phase that
the difference between the bifurcation temperature and thetransition temperature is small. This
Taylor expansion can also be applied to the biaxial nematic-to-uniaxial nematic phase transition.
Because the biaxial nematic-to-uniaxial nematic phase transition is second order, at the phase
transition the order parameter corresponding to the biaxial phase is small whereas that of the
uniaxial phase can be sufficiently big. Therefore, it is onlynecessary to expand the exponen-
tial for the biaxial component in the expression of the partition function and the biaxial order
parameter〈FB〉. This gives

Q = QU =

∫

exp

(

−UU (Ω)

kBT

)

dΩ, (2.4.39)

〈FB〉 = Q−1

∫

FB(Ω)

{

1 +
u200
kBT

2〈FB〉FB(Ω)

}

× exp

(

−UU(Ω)

kBT

)

dΩ. (2.4.40)
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whereUU (Ω) = −u200〈FU 〉FU (Ω). Thus the transition temperature can be found by solving

kBT

u200
= 2Q−1

∫

(FB(Ω))
2 exp

(

−UU (Ω)

kBT

)

dΩ. (2.4.41)

Here,(FB(Ω))
2 can be expressed as a series of the quadratic products of the Wigner rotation

matrices, which can be evaluated by

D2
mn(Ω)D

2
m′n′(Ω) =

∑

L

C(22L;mm′)C(22L;nn′)DL
m+m′,n+n′(Ω), (2.4.42)

where C(22L;mm′) denote the Clebsch-Gordan coefficients. Therefore we have the relation
between the biaxial nematic-to-uniaxial nematic phase transition temperature and the order pa-
rameters in the isotropic phase (the detailed calculation is given in Appendix C)

kBT

u200
=

1 + 2γ2

5
+

(−2 + 4γ2

7

)

〈R2
00〉+

8

7
γ〈R2

02〉

+

(

3 + γ2

35

)

〈R4
00〉+

2

7

√

3

5
γ〈R4

02〉+
√

2

35
γ2〈R4

04〉. (2.4.43)

This expression means that the biaxial nematic-to-uniaxial nematic phase transition occurs when
the scaled temperature is equal to a combination of the biaxiality parameterγ and the uniaxial
second and fouth rank order parameters. In the uniaxial nematic phase, as the temperature
is reduced, the order parameters continue to increase untilthe equality in equation (2.4.43) is
satisfied. This is when the biaxial nematic-to-uniaxial nematic phase transition occurs.

The phase map in Figure 2.4 also agrees with a series of Monte Carlo simulations of an anal-
ogous pair potential which showed that there exists a secondorder phase transition from the
uniaxial nematic phase to the biaxial nematic phase [58]. These calculations were extended
to give a phase map of the dependence of transition temperature on molecular biaxiality [20].
Their phase map shows many qualitative agreements with the molecular field calculations. Thus
it validates the molecular field approximation to a certain degree.

2.4.4 Sonnet-Virga-Durand Model

The model adopted by Sonnet, Virga and Durand (SVD model) [13] is an approximate model
of biaxial nematics. In this approximation, the biaxialityparameterγ is set equal to zero andλ
(see equations (2.4.28)) is varied along the edge of the essential triangle in figure 2.3. Hence,
the range forλ is from 0 to 0.5. In this model there are only two order parameters,S andC (see
equations (2.4.9)).

The phase map for this model is shown in figure 2.5. Like the geometric mean model, in this
case we also find a first orderNU − I transition. Note that in this case, the biaxiality parameter
λ does not contribute to the ordering in the uniaxial nematic phase. Therefore, theNU − I

transition temperature is independent ofλ. This transition is followed by aNB −NU transition
at a lower temperature. TheNB − NU transition is second order for a large range ofλ. The
NB − NU transition temperature increases on increasingλ. In general, this phase transition is
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FIGURE 2.5: The phase map for the Sonnet-Virga-Durand model of biaxial nematics. First
order transitions are shown as continuous lines whereas second order transitions are shown as
a broken line. A tricritical point is shown as a circle.

second order. Whenλ is big enough (0.3), theNB−NU phase transition becomes first order. For
λ greater than 0.33, there is a first order phase transition from the biaxial nematic phase directly
to the isotropic phase. The stability of the biaxial nematicphase also increase on increasingλ.
In the phase map in figure 2.5, we show a tricritical point atλ = 0.3. In fact, by studying the
model forλ greater than 0.5, the authors also found another tricritical point. Above this point,
theNB−I phase transition becomes second order [23]. These results for the approximate model
have also been supported by Monte Carlo computer simulations [23]. Analytical methods for
locating these tricritical points were also presented in latter publications [22, 24].

2.4.5 Other Model Calculations

Straley was the first to develop a molecular model for biaxialnematics [17]. Others were later
developed by Boccaraet al. [18] and Remler and Haymet [19]. Straley considered some fixed
relative orientations of two molecules where the molecularaxes are orthogonal. By moving one
molecule around the other, the excluded volume of the pair can be found. Then, he calculated
the three interaction coefficients in equation (2.4.27) by mapping the pair potential in equation
(2.3.1) to the excluded volume between a pair of parallelepiped molecules. Finally, Straley
derived a phase map relating the transition temperature with the molecular breadth while fixing
the length and width. His phase map showed the same behaviouras those given by Boccaraet
al. [18] and Remler and Haymet [19].

Zheng and Palffy-Muhoray [59] derived a molecular field model analogous to the model of
decoupling interaction coefficients (whereu2mn = u2mu2n). Their coefficients are the three
eigenvalues of the molecular polarisability tensors. A phase map relating the scaled temperature
with two eigenvalues was presented on a three dimensional diagram. The behaviour of the
new phase map is also similar to those by Straley [17], Boccara [18], Remler and Haymet [19]
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with the first order uniaxial nematic-to-isotropic phase transition, followed by the second order
biaxial nematic-to-uniaxial nematic phase transition. The difference now is that the two regions
of rod-like and disc-like uniaxial nematics are separated by a Landau line of second order direct
biaxial nematic-to-isotropic phase transitions.

Recent studies showed that the interaction coefficients calculated using the excluded volume
model of parallelepipeds by Straley [17] can be mapped to thewhole region below the geometric-
mean parabola and inside the triangle [60] in figure 2.3. These results are also true for the ex-
cluded volume of a more general shape of spherocuboid [60]. Aspherocuboid is an object which
consists of the volume of a parallelepiped and the volume generated by moving a sphere around
it.

The two-parameter model characterised by the essential triangle and described on page 49 has
been studied more thoroughly in recent years. In a study, where the molecular field calculations
were supported by Monte Carlo simulations [61], the authorsinvestigated the case where both
u200 andu222 are negative andu202 vanishes. The same phase sequences were found as in the
previous calculations with the biaxial nematic phase stabilised at low temperature for the range
of molecular biaxiality studied. However, in this case all phase transitions were second order. In
addition, they also calculated a phase map along the lineλ = 0 in the essential triangle in figure
2.3 and found that the biaxial nematic phase cannot be stabilised at low temperature. The latter
calculation results agreed with the computer simulations by Luckhurst and Romano [58]. These
results mean that in the molecular field theory, the biaxial nematic phase cannot be stabilised by
uniaxial molecules. In another set of calculations, Romano[62] setu200 to zero and scaled the
temperature withu222 where the latter is positive. In his molecular field calculations, supported
by Monte Carlo simulations, there was a direct second order biaxial nematic-to-isotropic phase
transition. These results suggest a dominant contributionof the parameterλ towards the stability
of the biaxial nematic phase. Indeed, the calculations by Bisi, Luckhurst and Virga [26] showed
that the ratio of the biaxial nematic-to-uniaxial nematic and uniaxial nematic-to-isotropic transi-
tion temperatures is almost independent ofγ, thus indicating the other as dominant. In addition,
bifurcation analysis [24] and detailed calculations [25] of the whole parameter space in the es-
sential triangle revealed that in the region above the geometric mean parabola, there is a line of
tricritical points and another line of triple points which meet at the point along the right edge
of the triangle. The fact that there is no tricritical point along and below the parabola is in
agreement with the previous calculations by Straley [17], Boccara [18], Remler and Haymet
[19].

2.5 KKLS Derivation of the Non-equilibrium Free Energy

In section 2.4.3 we discussed the advantages of minimising the equilibrium free energy obtained
by de Gennes’ variational approach. However, this method has failed in some cases of biaxial
nematic phase withD2h symmetry composed of biaxial molecules also with the same symmetry.
It was found that, for some combinations of the parametersγ andλ below the geometric mean
parabola, the free energy does not have a minimum [25]. Instead, the points which correspond
to the solution of the self-consistency equations are saddle points.
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To deal with this problem, a group of authors developed a different strategy based on Bogol-
ubov’s minimax principle[25]. In their method, the molecular field free energy at equilibrium
for biaxial molecules withD2h symmetry,A0, is considered as an approximation to the free
energy of the two-particles system,A. The two particles interact via a pair potential which is
a function of the molecular tensors in equations (2.4.13) and (2.4.14). The upper and lower
bounds for the difference between the molecular field and thetwo particle free energies are
given by theBogolubov’s inequality. They found that the pair potential can be considered as a
superposition of two molecular interactions, which comes from two independent oscillators in
the molecules, represented by two tensors,q+ andq−. One interaction is always positive for all
values of molecular parameters inside the essential triangle in figure 2.3. The other interaction is
positive above the geometric mean parabola whereas negative below the parabola in the essen-
tial triangle in figure 2.3. In the molecular field theory, thetwo oscillators of one molecule are
averaged to give the order parameters tensors,Q+ andQ−, which are combinations of the two
order parameters in equations (2.4.19) and (2.4.20). UsingBogolubov’s inequality, the authors
demonstrated that the strategy to minimiseA0 for the molecular model below the geometric
mean parabola may fail to makeA0 as close as possible toA. Thus aminimaxstrategy was em-
ployed for the model below the geometric mean parabola. In this strategy, firstA0 is maximised
in Q− for fixedQ+, then the minimum over allQ+ of the maxima obtained previously is taken.
The solution to this method gives the best approximation ofA, the two particle free energy. In
addition, this method also avoids the problem of the free energy A0 having saddle points instead
of minima.

In this section, we describe a different approach which may be able to explain this contradiction.
This approach is a more general view of the molecular field theory given by Katriel, Kventsel,
Luckhurst and Sluckin [63], which we call the KKLS theory. Wedo not reexamine the model of
biaxial nematics described in [25] because we only use the two approximations, the geometric
mean and the SVD, whose interaction parameters lie on or above the geometric mean parabola.
In essence, the KKLS method gives us the dependence of the free energy on the order parameters
away from the equilibrium point. In contrast, de Gennes’ free energy only gives us the value of
the free energy at the equilibrium point and so cannot tell whether the phase is stable or not. In
general, we may find the order parameters of a molecular field system by either minimising the
equilibrium free energy or solving the self-consistency equations. When the former method does
not work, we may use the latter method instead. In contrast tominimising the equilibrium free
energy, the method of solving the self-consistency equations always have solutions. In order to
know whether the order parameters we get from either method correspond to the minima of the
free energy instead of maxima or saddle points, we need to usethe KKLS method to derive the
non-equilibrium free energy. The KKLS method gives us the more physical free energy surface
around the vicinity of the extrema than the equilibrium freeenergy, thus we can see the nature
of the extrema.

2.5.1 Generalised Derivation

This generalised derivation has been used to relate the molecular field theory with Landau-de
Gennes theory for biaxial nematic liquid crystals [64]. Here we apply part of their methodology
to derive the molecular field theory for a biaxial nematic phase of a general symmetry away
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from the equilibrium of the free energy.

The first step in constructing the theory, as for de Gennes’ variational method, is to identify the
order parameters. They are given in equation (2.2.5). In addition, the internal energy is given in
equation (2.3.2). We note that in de Gennes’ variational method, we minimise the free energy
with respect to the distribution function. In that method, we allow the order parameters to vary
with respect to the distribution functionf(Ω) as

δ〈DL
mn〉 =

∫

DL
mn(Ω)δfdΩ. (2.5.1)

Therefore the result gives us an expression of the free energy which is valid at the extrema with
respect to both the distribution function and the order parameters. Now we want to find the free
energy surface which is also valid away from equilibrium points. To do that we need to consider
our system with fixed order parameters. Hence the internal energy is constant for given values
of the order parameters. Thus we need to maximise the entropyfor given order parameters to
find the equilibrium state. We note that a system with maximalentropy is in equilibrium only
if the order parameters are kept fixed. When the order parameters are allowed to vary, the order
parameters tend to values which minimise the free energy. Therefore, at a given temperature
there is only one set of order parameters at equilibrium. Maximising the entropy in equation
(2.3.7) with respect to the distribution functionf(Ω) with the constraint given in equations
(2.3.11) and keeping the order parameters fixed

δ〈DL
mn〉 =

∫

DL
mn(Ω)δfdΩ = 0, (2.5.2)

we get the distribution function of the form (2.3.16), wherethe potential of mean torque is

U(Ω) = −kBT
∑

ηLpmDL
pm(Ω). (2.5.3)

Here, the Lagrangian multipliersηLpm are introduced to satisfy the constraint (2.2.5). The
entropy can now be rewritten as

S = −kB

(

∑

ηLpm〈DL
pm〉 − logQ

)

. (2.5.4)

Hence, we can construct the non-equilibrium free energy from equation (2.3.10) from the en-
tropy with the internal energy given in equation (2.3.2). This non-equilibrium free energy gives
us physical values of the free energy at any values of the order parameters, unlike de Gennes’
free energy. In addition, the value of the order parameters at equilibrium minimises the free
energy.

2.5.2 Uniaxial Nematics formed from Uniaxial Molecules

We give a comparison of the free energies in the de Gennes and KKLS theories by looking at the
simplest case for a uniaxial nematic phase formed from uniaxial molecules. First, we construct
the KKLS theory for this case. In keeping with the classical notation, in this case we call the
order parameter asS, which should not be confused with the entropy. The distribution function
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can be found by maximising the entropy in equation (2.3.7) with the constraint in equation
(2.5.2)

f(β) = Q−1 exp (ηP2(cos β)), (2.5.5)

where the partition function is

Q(η) =

∫

exp (ηP2(cos β))d cos β. (2.5.6)

Hence, the order parameter introduced by Tvetskov is

S(η) = Q−1

∫

P2(cos β) exp (ηP2(cos β))d cos β. (2.5.7)

In addition, the internal energy is taken to be

U = −(1/2)u200S
2, (2.5.8)

and so the free energy is

A = −(1/2)u200S
2 + kBT (ηS − logQ). (2.5.9)

The free energy can be thought of as a function ofη since both the order parameterS and the
partition functionQ are functions ofη,

A(η) = −(1/2)u200S(η)
2 + kBT (ηS(η) − logQ(η)). (2.5.10)

In order to find the order parameter at equilibrium, we need tominimise the free energy in
equation (2.5.10) with respect toη whereS(η) is given in (2.5.7) in order to getη at equilib-
rium. Then, we substitute this value ofη into (2.5.7) to get the value of the order parameter at
equilibrium. To ilustrate the difference between the two free energies, we give the plots of the
two free energies at the scaled temperatureT ∗ = 0.2 in figure 2.6. In order to construct the
plot for the KKLS free energy, first we pick a range of values for η according to the following
consideration. The range of values forS is from 0 to 1 whereas the range of values forT ∗ which
we are interested in is from 0.01 to about 0.2. In addition, atthe equilibrium point, we know
thatη = S/T ∗. Thus the range of values which we can choose forη is from 0 to 100. Then,
we calculate the KKLS free energy according to equation (2.5.10) and the order parameterS
according to equation (2.5.7). The dependence of de Gennes’free energy on the order param-
eter was computed using equation (2.4.5). Finally, we plot the values of the KKLS free energy
against the corresponding order parameter. We see that bothfree energies in figure 2.6 have the
same minimum atS = 0.6148 and the same local maximum atS = 0. However, their values
for the sameS are different away from the extrema. In this case, the KKLS free energy surface
has physical significance since it corresponds to maximum entropy. In the comparison we just
see, both free energies have the same minimum. In section 7.3.1, we give an example that the
two theories give different results in a molecular field theory for uniaxial smectic A phase.
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FIGURE 2.6: The dependence of the free energy for uniaxial molecules in uniaxial nematics
on the order parameterS at the scaled temperatureT ∗ = 0.2. The continuous line shows the
numerical results using KKLS formulation whereas the broken line is done using the de-Gennes
formulation, equation (2.4.5).

2.6 Conclusions

In this chapter we have reviewed a derivation for the molecular field theory for nematic liquid
crystals at equilibrium based on de Gennes’ variational method. In essence, we assume that a
molecule only interact with a mean field of all other molecules in the system and we ignore any
short-range correlation. This mean field is generated by pair-wise intermolecular interactions.
In addition, we ignore volume change at the phase transitionand we use the Helmholtz free
energy instead of the Gibbs free energy. Then we discussed some examples when the molecular
field theory is used to describe the uniaxial nematic and biaxial nematic phases ofD2h symme-
try. In general, we can minimise the Helmholtz free energy todetermine the order parameters
at equilibrium. This allows us to find the transition temperature as a function of the molec-
ular parameters. We also note that the method of minimising the equilibrium Helmholtz free
energy sometimes fails. It is because the equilibrium Helmholtz free energy as a function of
the order parameters only holds at equilibrium and gives a physically wrong surface around the
equilibrium. Away from equilibrium, the physical value of the Helmholtz free energy should be
described by the KKLS method.

60



Chapter 3

Biaxial Nematics formed from

Molecules withCh Symmetry

This chapter consists of a collaborative project with Prof.S. Naemura and Dr. S. Turzi. The
theory was developed jointly. I carried out the calculationand provided the solutions. Prof.
Naemura suggested the possibility of an axial first-rank order parameter. This was demonstrated
by Dr. Turzi using Cartesian tensor notation which confirmedmy calculation.

Most theoretical studies on biaxial nematic liquid crystals have assumed that the constituent
molecules and the phase have orthorombicD2h symmetry. Straley [17], in his paper stated
this explicitly. In other papers, it is implied implicitly.An example is the seminal paper by
Freiser [15]. In his paper, Freiser separated each intermolecular tensor into a product of single
molecular tensors. As we will see later, this is equivalent to having a model of molecules with
D2h symmetry. A recent analysis of experimental results by Karahaliou, Vanakaras and Photinos
[42] showed that the symmetry of the biaxial nematics might be C2h instead of the usually
assumedD2h. In fact, the notion of biaxial nematics which have lower symmetry thanD2h has
been suggested for a long time before this analysis. In this chapter, we develop a molecular field
theory for biaxial nematics ofC2h symmetry formed from molecules of the same symmetry.
The theory is a contribution towards our study of biaxial nematic liquid crystals. In section 3.1
we review some related works which have discussed the possibility of low symmetry biaxial
nematics. After that, we produce a molecular field theory forbiaxial nematics composed of
molecules withC2h symmetry in section 3.2. In order to facilitate the calculations, we use an
approximate model. This is discussed in section 3.3. Our approximate model is an extension of
that for biaxial nematics composed ofD2h symmetry which we reviewed in section 2.4.4. The
numerical predictions for the approximate model are presented in section 3.4.
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3.1 Related Works

3.1.1 Experimental Studies

In this section, we summarise the paper by Karahaliou, Vanakaras and Photinos [42]. In this
paper, the authors discussed recent experimental evidencefor biaxial nematics and concluded
that the phase symmetry for these systems is more likely to beC2h rather thanD2h.

Recent experimental evidence showed that V-shaped molecules [35, 36, 37] and tetrapodes [30,
31, 32] are the most likely candidates for biaxial nematics.An analysis of this experimental
evidence by Karahaliouet al. [42] showed that the symmetry of the biaxial nematics might be
C2h instead of the usually assumedD2h. In contrast, it was claimed by Karahaliouet al. [42]
that experimental evidence for lyotropic [28] and polymeric systems [29] shows that indeed
they haveD2h symmetry. In the study by Karahaliouet al. [42], phase symmetries are restricted
to achiral, apolar that can be characterised by second-rankordering tensors; they are: triclinic
Ci, monoclinicC2h and orthorhombicD2h point groups. The major difference between the
three phases is the number of common principal axis for all second-rank macroscopic physical
properties.

In a phase withCi point group symmetry, there is no principal axis dictated bysymmetry.
Therefore, there is no common principal axes for all second-rank macroscopic physical prop-
erty tensors. In constrast, the number of principal axes dictated by symmetry in theC2h and
D2h phase are one and three, respectively. They correspond to the numbers of principal axes
common to all second-rank macroscopic physical property tensors. In their paper, Karahaliou
et al. discussed the two methods that can be used to determine second-rank orientational or-
der parameters characterising the ordered phase: namely deuterium nuclear magnetic resonance
(NMR) and polarised infrared spectroscopy (IR).

In their discussion of NMR experiments, first the authors introduced a second-rank symmet-
ric and traceless tensor (G

(i)
AB) which describes the orientational averaging of the field gradient

associated with the molecular sitei. This tensor relates the principal axes of the electric field
gradient tensor with a space fixed frame (A andB). The tensorG(i)

AB can be split into two inde-
pendent components, a primary order componentS(i) and the biaxiality parameterη(i). Since
theG(i)

AB tensor is related to the quadrupolar splittings, which are measurable, the primary com-
ponent and the biaxiality parameter can be calculated from the two extrema of the quadrupolar
splittings. These two extrema correspond to different orientations of the magnetic field along
the principal axes of theG(i)

AB tensor.

In a real NMR experiment, one of the axes of the liquid crystalsample is aligned with the mag-
netic field of the NMR spectrometer. In addition, the other two axes are aligned using an electric
field. Therefore, the space fixed frame can be chosen to be the magnetic susceptibility frame of
the phase (χm

AB). This allows us to measure the components of the quadrupolar splittings par-

allel and perpendicular to the magnetic field. TheG
(i)
AMBM

tensor, expressed in this frame, can

also be split into two independent components,S
(i)
M andη(i)M , which are measurable quantities. It

is because they can be related to the quadrupolar splittingscomponents along and perpendicular
to the magnetic field which are measurable. The authors called these components theapparent
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parameters.

The final step in an NMR study is to calculate the primary ordercomponentS(i) and the bi-
axiality parameterη(i) from the apparent parametersS(i)

M andη(i)M . Their relations are different
for nematics with different symmetry. For a nematic phase with D2h symmetry, the electric
field gradient tensor and the magnetic susceptibility tensor have the same principal axis frames.
As a consequence, the three principal axes of the apparent parameters align with those of the
principal component and the biaxiality parameter. Therefore their relations only involve diag-
onal components ofG(i)

AMBM
. In contrast, in the monoclinicC2h and triclinicCi phases, their

principal axis frame are different and therefore the relations between the apparent and the true
parameters also depend on the off-diagonal elements ofG

(i)
AMBM

.

In analysing recent NMR experiments, the authors are concerned with monoclinic liquid crystals
in which the maximum magnetic energy axis coincides with thesymmetry axis of the phase and
its effect on the evaluation of the true parametersS

(i)
M and η

(i)
M . For nematics with triclinic

symmetry or monoclinic liquid crystals in which the maximummagnetic energy axis does not
coincide with a symmetry axis of the phase, different NMR techniques would be required. For
liquid crystals with monoclinic symmetry, the authors derived relations between the apparent
and the true parameters and draw the following conclusions.First, a large apparent biaxiality
can be obtained even if the proper biaxiality is negligible and a negligible apparent biaxiality
can be measured even if the proper biaxiality is large. Secondly, since the angle between the
non-principal axis of the electric field gradient tensor andthat of the magnetic susceptibility
tensor vary with temperature, the values of the apparent parameters may exhibit an anomalous
temperature dependence.

The discussion of the IR method is analogous to that of NMR experiments. The difference
is now the absorption of the IR beam is measured which gives information on the absorbance
tensor instead of the electric field gradient tensor. In addition, the order parameters are measured
by the positions of the peaks in NMR experiments whereas theyare measured by the intensities
of the peaks in IR experiments.

After setting up the theory, the authors discussed recent experimental results. They argued that
the order parameters obtained for tetrapodes using NMR and IR methods violate the relation
between the principal component and the biaxiality parameter. Hence the order parameters ob-
tained were only apparent and did not represent true order parameters. On the other hand, the
NMR experimental results for V-shaped molecules was too limited to do any analysis. The au-
thors pointed out that, in the results for V-shaped molecules using polarised Raman scattering,
the second-rank order parameters also violate the relationbetween the principal component and
the biaxiality parameter. This discrepancy can also be removed on relaxing the assumption of
D2h symmetry. Finally, the authors remarked that, it is more accurate to assign these experimen-
tal systems with the monoclinic symmetry over the triclinicsymmetry since the nematic phases
in the experiments have at least one plane of symmetry.
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3.1.2 Molecular Field Theories

The first prediction of a biaxial nematic phase was by Freiser[14] in 1970. By considering a
molecular field theory for rigid non-cylindrically symmetric mesogenic molecules, the author
demonstrated that the ground state of such system is a biaxial nematic phase. However the
symmetry of this biaxial nematic phase was not stated explicitly although implicitly it may be
understood that this phase possessD2h symmetry.

Straley [17] in 1974 provided a molecular field model for nematic liquid crystals composed of
D2h molecules. By fixing the molecular length and width and varying its breath, a range of
molecular biaxialities was investigated. The lowest nematic state can be formed in this case
is the biaxial nematic phase withD2h symmetry. In the conclusion, Straley pointed out the
possibility that generalisation of nematic liquid crystals formed from less symmetric particles
might be necessary in order to describe biaxial phases of lower and special symmetry.

Gorkunov, Osipov, Kocot and Vij [65] developed a molecular model for tetrapodes in 2010.
A tetrapodal molecule was modelled as composed of four uniaxial mesogenic groups. All the
symmetry axes of the mesogenic groups are parallel. The lines joining the centres of mass form
a rectangle. In addition, they are coplanar with the symmetry axes of the mesogenic groups.
The symmetry axes are not parallel with the lines joining thecentres of the mesogenic groups.
The resulting molecules haveC2h symmetry and the angleα between a mesogenic group’s
symmetry axis and a line joining two mesogenic groups’ centres characterises the degree of
deviation fromD2h symmetry. The intermolecular potential was expanded in powers of three
molecular tensors. Six intermolecular coefficients were needed in the expansion. These six
coefficients were calculated by mapping the potential with the Gay-Berne interaction of two
molecules. It was found that the three coefficients which characterse the deviation fromD2h to
C2h symmetry are small and thus have been ignored in the molecular field calculation. In the
full model, the three molecular tensors give rise to six order parameters. However, when the
small intermolecular coefficients are ignored, only four order parameters were retained. Thus
their molecular field calculations were essentially forD2h biaxial nematics formed fromD2h

molecules. By increasing the elongation of the mesogenic groups andα, the stability of the
biaxial nematic phase increases. This suggests an increasein the effective molecular biaxiality.

Another molecular field theory was developed by Osipov and Gorkunov [66] in 2010 to model
ferroelectricity in low-symmetry biaxial nematic liquid crystals. A molecule was first mod-
elled as havingC2h symmetry. A molecule thus have three molecular tensors instead of two
for molecules withD2h symmetry. These three tensors are averaged to give eight order pa-
rameters in a phase withC2h symmetry. They are seven second-rank order parameters and one
first-rank pseudo order parameter. Three of seven second-rank order parameters characterise the
low-symmetry biaxial nematic phase withC2h symmetry. When the molecules become chiral,
which is characterised by a pseudoscalar, the system can have a spontaneous polarisation. A
pseudoscalar is a constant with respect to rotations of molecular axes but changes sign on in-
version of molecular axes, which describe the handedness ofa molecule. This polarisation is a
coupling between the pseudoscalar, the pseudovector orderparameter and a second-rank order
parameter which characterise theC2h phase. Hence this polarisation is not directly determined
by a dipolar interaction. Instead it is induced by the rotation of the axes of the tensor order
parameter characterising theC2h phase with respect to the primary nematic director.
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3.1.3 Topological Theories of Defects

Mermin in 1979 [67], while reviewing a topological theory ofdefects, which includes defects
in nematic liquid crystals, remarked that there is no particular reason why the point groupD2h

should be singled out for special attention for biaxial nematics. The author demonstrated that
uniaxial nematics can have topologically stable point defects with strengths of±1 and±1/2 and
topologically stable line defects with strengths of only±1/2. In contrast, biaxial nematics do not
have a topologically stable point defect since they have discrete rotational point group symmetry.
Moreover, line defects for biaxial nematics of different symmetry may be different. The author
only discussed the case of biaxial nematics withD2h point group symmetry. In this case, we
can have topologically stable line defects with strengths of both ±1 and±1/2, as opposed
to uniaxial nematics. These results are in agreement with a review of experimental methods to
characterise thermotropic biaxial nematic phases by Galerne [68]. Thus disclinations of strength
1 are topologically stable in the biaxial nematic phase which is contrary to the uniaxial nematic
phase where they excape to the third dimension. In principle, these defects can be observed
experimentally by looking at nematic textures through an optical microscope.

3.1.4 Theories of Hydrodynamics

Symmetries of biaxial nematic liquid crystals were also considered from a point of view of a
nonlinear hydrodynamic theory of static and dynamic behaviour in biaxial nematic liquid crys-
tals by Liu in 1981 [69]. The author regarded a biaxial nematic as a liquid crystal system that
breaks all three rotational symmetries but none of the translational ones. This is in contrast with
uniaxial nematics where only two rotational symmetries arebroken. This description allows a
rich variety of biaxial nematics. In addition to the classical orthorhombicD2h system, biaxial
nematics can have other different symmetries such as triclinic (C1, Ci), hexagonal (D6h, C6v,
C6h, C6, D6, D3h, C3h), cubic (T , Th, O, Td,Oh) and even those that are forbidden in the lattice
such as icosahedral symmetry. These systems obey hydrodynamic equations of identical struc-
ture since they break the same continuous symmetries. Thus they have the same variables and
are characterised by equal number of propagating and diffusive modes. On the other hand, their
discrete symmetries determine the number of independent elastic and transport coefficients. This
decides whether certain modes are coupled or not. In general, there is no one-to-one correspon-
dence between the symmetry groups and the sets of hydrodynamic equations. This is because
the tensors that appear in the equations are of finite rank which cannot distinguish phases with
symmetries that allow non-vanishing higher rank tensors. Thus some biaxial nematics (such
as icosahedral and hexagonal) may be called “quasi-isotropic nematics” since their elastic and
transport tensors mimic isotropic behaviour. The equations were solved for two special cases:
orthorhombic and quasi-isotropic nematics. It was found that in both cases, there is always a
purely diffusive mode, in addition to sound and heat diffusions. In quasi-isotropic nematics, it
is the longitudinal rotation angle that diffuse whereas in orthorhombic nematics, this diffusive
mode involves a linear combination of both longitudinal andtransverse angles. In contrast, in
uniaxial nematics, the only pure diffusion is the longitudinal rotation when the wavevector is
perpendicular to the director.

In another hydrodynamic theory of biaxial nematic, Kini in 1984 [70] derived the expressions
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for the elastic free energy density, viscous stress and flexoelectric polarisation for monoclinic
(C2,C2h, Cs) and triclinic (C1,Ci) symmetry classes of biaxial nematics. This was an extension
of the work by Saupe for orthorhombic nematics (D2, D2h, C2v). These three different biaxial
nematics are represented by different number of elastic constants, viscosity coefficients, surface
terms and flexoelectric coefficients and so their explicit expressions for the free energy density,
viscous stress and surface terms are dissimilar.

3.1.5 Phenomenological Theories

The first notion of nematic phases with different symmetriesseems to have been given by Boc-
cara [71] in 1973. The author predicted a list of the possible“anisotropic liquid phases which
can appear as a result of the violation of the rotational invariance of the isotropic liquid”. In
other words, he considered possible nematic phases with different rotational symmetries as well
as inversion symmetry. The list of nematic symmetries considered hasCn, Cnv, Dn, Cnh, Dnh,
S2n andDnd for integer numbern. Therefore, a tensor which represents a physical property
of a nematic phase needs to transform according to an irreducible representation of the orthog-
onal groupO(3). The groupO(3) is the direct product ofSO(3) andCi since the inversion
commutes with any rotation. To each irreducible representation DL of SO(3) corresponds two
irreducible representationsDL

+ andDL
− of O(3), whereL is an integer. Tensors which transform

like DL
+ do not change sign on inversion whereas those transforming like DL

− do change sign
on inversion. Tensors of odd rank are proper if they transform according toDL

− and improper if
they transform according toDL

+. In contrast, tensors of even rank are proper if they transform
according toDL

+ and improper if they transform according toDL
−. Using character theory, the

author calculated the number of independent components of an irreducible proper tensor of rank
L for given symmetry groups of nematic phases. As an example consider a second-rank tensor,
there are two independent components for the groupsD2 andD2h and three independent com-
ponents forC2h group. The difference is because a nematic phase withC2h symmetry has only
one principal axis defined by symmetry whereas the other two axes are not defined and so it still
has one off diagonal element.

Goshen et al. [72] in 1975 discussed liquid crystals with rotational and also translational sym-
metries. The translational symmetries are considered in order to describe liquid crystal phases
with tranlational order such that smectic phases. In addition to those given by Boccara, he also
added other possible phase symmetries such as tetrahedralT and octahedralO nematic liquid
crystals.

Lubensky and Radzihovsky [73] proposed a Landau theory of the nematic phases and the tran-
sitions between them. When formulating the orientational order parameters the V-shaped or
bent-core molecules were taken to haveC2v point group symmetry. Thus for the uniaxial ne-
matic withD∞h symmetry just a single quadratic order parameter is needed.However, for this
phase to undergo a transition to a uniaxial polar nematic with C∞v symmetry a polar or vector
order parameter is required together with a third-rank tensor. This third-rank tensor is introduced
because it is essential for the description of the spontaneously ordered chiral phases with point
group symmetriesD2 andC2. A chiral liquid crystal phase is a liquid crystal phase withthe
director forming a twisted structure. The set of three orderparameters, first, second and third
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rank, is able to describe a host of nematic phases which also includes those with point group
symmetriesD3h,C3v, D2d andC1h. Also of relevance are the tensor order parameters which are
needed to create these order parameters from phases with higher symmetry. Of particular inter-
est for the bent-core mesogens is the transition from a biaxial nematic withD2h symmetry to an
achiral nematic with symmetryD2 where the mesophase is expected to separate into domains of
opposite handedness separated by domain walls that will coarsen over time. The extensive and
detailed analysis presented by Lubensky and Rodzihovsky [73] is aided by the use of pictorial
representations to show the idealised organisation in the different phases and their change at the
phase transitions.

Recent results on the symmetries of nematic liquid crystalswere presented in two publications
by Mettout [74, 75]. In the first paper [74] the author formulated a phenomenological theory
for nematic liquid crystals formed from bent-core molecules. The theory revolves around the
expansion of the orientational distribution function in a basis of Wigner rotation matrices. The
coefficients of the expansion are components of order parameter tensors. It was argued that two
second-rank order parameter tensor are required to describe the phase behaviour of bent-core
molecules. They are〈D2

p0〉 and〈D2
p2〉+ 〈D2

p−2〉. In contrast, we only need one order parameter
tensor for uniaxial molecules which is〈D2

p0〉. In the uniaxial phase, the two tensors required
for bent-core molecules are〈D2

00〉 and〈D2
02〉+ 〈D2

0−2〉. They are cylindrically symmetric with
respect to the director and they have the same principal axis. In the biaxialD2h phase, the two
second-rank tensors have the same eigenframe. However, in theC2h phase only one direction of
the two eigenframes are the same whilst inCi phase none of the directions of the eigenframes
coincides.

In his later paper, Mettout [75] studied the effect of molecular symmetry on macroscopic prop-
erties of nematic phases. His paper concerned the relation between three types of symmetries:
molecular symmetry,Gmol, macroscopic phase symmetry,Gnem, and theeffective symmetryof
the molecules in the ordered phases,Geff . At frequencies smaller than the molecular rotation
frequency, the behaviour of the system is determined only byGnem andGeff . The effective
symmetry of a molecule is determined by the behaviour of thatmolecule in the phase. As an
example consider a system whoseGmol is characterised by a major rotation axis of order greater
than 2. All these molecules yield the same effective cylindrical symmetry in both the uniaxial
and the biaxial phase withD2h symmetry. It is because these phases only permit order parameter
tensors of second-rank whereas higher rank tensors are needed to describeGmol. The discussion
on the relation between macroscopic and molecular symmetries allows the author to determine
stable nematic phases which can be stabilised by given molecular symmetries, with given rank
and parity of order parameter tensors. Of relevant to our work is the results which show the
number of independent tensors needed to characterise nematic systems based on molecular and
phase symmetries. These results are different from Boccara[71] in that there are two types of
tensors. The first is defined by the symmetry of the phase whichis called anexternaltensor.
The second is determined by the symmetry of the molecules which is called aninternal tensor.
Since internal and external transformations commute, the number of order parameters required
for a given rank is a product of the number of internal and external tensors for that rank. An
example of this can be found in a biaxial nematic phase ofD2h symmetry formed from identical
molecules also haveD2h symmetry. In this case, there are two internal and two external tensors.
Thus the total number of order parameters is four. They areS, D, P andC, as we have seen in

67



equations (2.4.12).

3.2 Molecular Field Theory

In this section, we develop a molecular field theory for biaxial nematics composed of molecules
with C2h symmetry. It might be expected that a system of such molecules is able to form biaxial
nematics with eitherD2h or C2h symmetry. In figure 3.1 we show the idealised organisation of

FIGURE 3.1: A sketch of the idealised organisation of elongated molecules withC2h point
group symmetry in a biaxial nematic phase with (a)C2h symmetry and (b)D2h symmetry. The
coordinate systems are whose for the phase (XYZ) and for the molecule (xyz). (c) The cross-
sections of the average molecular structure formed by combining two molecular orientations.

molecules withC2h point group symmetry in theC2h andD2h biaxial nematic phases. The key
feature in these sketches is the orientation of the constituent molecules and not their translational
distribution. Following the ideas of Lubensky and Radzihovsky [73] we consider an average
structure for the molecules in the different phases. Thus intheD2h biaxial nematic phase there
are two types of molecule related by a180o rotation about the molecularx-axis, which is called
internal rotation by Mettout [74]. The addition of these twogives a structure withD2h point
group symmetry having an H-shaped cross section in the (xy) plane (see figure 3.1(c)).

Our notation for the biaxial nematic phases in this section is different from the classical notation.
Instead of writingNB with a superscript which denotes the phase symmetry, we write the biaxial
phases asND2h andNC2h. It is because the symmetry characterises the biaxiality ofthe phases
and thus the subscriptB is redundant.

3.2.1 Interaction Coefficients

A molecule withC2h symmetry is less symmetric than one withD2h symmetry. In other words,
it has a smaller number of basic symmetry operations which can reduce the number of interaction
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coefficients. Therefore, we expect that there are more interaction coefficients to describe the
interactions of molecules withC2h symmetry than those withD2h symmetry. In fact, the same
argument can be applied to the order parameters. In our system of biaxial nematics formed from
molecules withC2h symmetry, there are more order parameters than one from molecules with
D2h symmetry. The coefficients required to describe the interactions of identical molecules with
C2h symmetry can be found according to Table 2.1. There are six ofthem in total:

(1) u200,

(2) u202 = u220,

(3) u20−2 = u2−20,

} These components are related

by u∗202 = u20−2 and

u∗220 = u2−20.

(4) u222,

(5) u2−2−2,

}

These components are related

by u∗222 = u2−2−2.

(6) u22−2 = u2−22.

As the molecular symmetry becomesD2h, all the components become real and so the compo-
nents (2) and (3) are equal and the components (4) and (5) are also equal. We may define system
parameters as combinations of those coefficients in a way that can distinguish between the two
biaxial molecules with two different symmetriesC2h andD2h as follows

γs = (u220 + u2−20)/2u200,

γa = (u220 − u2−20)/2iu200,

λs = (Reu222 + u2−22)/2u200,

λa = (Reu222 − u2−22)/2u200,

λ0 = (u222 − u2−2−2)/2iu200, (3.2.1)

Thus, a molecule withC2h symmetry differs from one withD2h symmetry by the non vanishing
values of the coefficientsγa, λa andλ0.

It should be noted that not all parameterisation methods formolecules withD2h symmetry
can be used for those withC2h symmetry. One example is the separability approximation
u2mn = u2mu2n which decomposes an intermolecular supertensoru2mn into single molecular
tensorsu2m. This is because we can always find a principal axis system which makesu2±1 = 0,
so that the interaction would behave like that forD2h molecules. Therefore we conclude that
all molecular models which require the separability approximation, such as the surface tensor
[76, 77] or the additive tensor [44, 78] models cannot be usedin this case. We review both
models in chapter 4 when we calculate the interaction tensors for V-shaped molecules. A pos-
sibility for parameterising the intermolecular coefficients for C2h molecules is by calculating
the excluded volume of molecules which are made up of touching spheres to form the desired
symmetry [79, 80]. Another model for calculating the intermolecular coefficients for molecules
with C2h symmetry was carried out by Gorkunov, Osipov, Kocot and Vij [65] in an attempt to
model tetrapodal molecules. The pair potential was fitted tothe values of the Gay-Berne inter-
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action potential between a pair of molecules at every relative orientation in order to calculate the
intermolecular coefficients. The Gay-Berne interaction potential is a more realistic pair potential
since it takes into account both attractive and repulsive forces explicitly. The excluded volume
and Gay-Berne interaction fiitting are possible for our future research.

3.2.2 Order Parameters

The number of second-rank order parameters for molecules with C2h symmetry in the three
nematic phases can be found according to tables 2.2 and 2.3. Thus in the uniaxial phase with
D∞h symmetry, there are three order parameters:〈D2

00〉, 〈D2
02〉 and 〈D2

0−2〉. The last two
order parameters are complex conjugates of one another. As the system goes into the biaxial
phase withC2h symmetry, there are six more second-rank order parameters〈D2

20〉, 〈D2
−20〉,

〈D2
22〉, 〈D2

−2−2〉, 〈D2
−22〉 and 〈D2

2−2〉. These order parametes are related by the conjugate
relations〈D2

−m−n〉 = 〈D2
mn〉∗. In theD2h phase some of the order parameters become equal,

namely, 〈D2
−mn〉 = 〈D2

mn〉. It is therefore more convenient to define the order parameters
as linear combinations of those averages of the Wigner rotation matrices such as some vanish
at theNC2h-to-ND2h phase transition. Therefore in the uniaxial phase, there are three order
parameters

〈R00〉 = 〈D2
00〉, (3.2.2)

〈R02〉 =
(

〈D2
02〉+ 〈D2

0−2〉
)

/2, (3.2.3)

〈I02〉 =
(

〈D2
02〉 − 〈D2

0−2〉
)

/2i. (3.2.4)

As the system becomes more ordered, it may take a transition into the nematic phase withD2h

symmetry, there are now three more order parameters

〈R20〉 =
(

〈D2
20〉+ 〈D2

−20〉
)

/2, (3.2.5)

〈Rs
22〉 =

[(

〈D2
22〉+ 〈D2

−2−2〉
)

+
(

〈D2
−22〉+ 〈D2

2−2〉
)]

/2, (3.2.6)

〈Is22〉 =
[(

〈D2
22〉 − 〈D2

−2−2〉
)

+
(

〈D2
−22〉 − 〈D2

2−2〉
)]

/2i. (3.2.7)

And for the biaxial nematic withC2h symmetry, there are nine second-rank order parameters.
Three of them characterise this new phase and join the existing six

〈I20〉 =
(

〈D2
20〉 − 〈D2

−20〉
)

/2i, (3.2.8)

〈Ra
22〉 =

[(

〈D2
22〉+ 〈D2

−2−2〉
)

−
(

〈D2
−22〉+ 〈D2

2−2〉
)]

/2, (3.2.9)
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〈Ia22〉 =
[(

〈D2
22〉 − 〈D2

−2−2〉
)

−
(

〈D2
−22〉 − 〈D2

2−2〉
)]

/2i. (3.2.10)

As usual, the Cartesian representation of the order parameters gives us the direct information on
the ordering of molecular axes. The nine order parameters can be related to the Saupe ordering
matrices (see equation (2.4.11)) by

〈R00〉 = SZZ
zz , (3.2.11)

〈R02〉 =
1√
6

(

SZZ
xx − SZZ

yy

)

, (3.2.12)

〈I02〉 =
√

2

3
SZZ
xy , (3.2.13)

and
〈R20〉 =

1√
6

(

SXX
zz − SY Y

zz

)

, (3.2.14)

〈Rs
22〉 =

1

3

[(

SXX
xx − SY Y

xx

)

−
(

SXX
yy − SY Y

yy

)]

, (3.2.15)

〈Is22〉 =
2

3

(

SXX
xy − SY Y

xy

)

, (3.2.16)

and

〈I20〉 = −
√

2

3
SXY
zz , (3.2.17)

〈Ra
22〉 =

2

3

(

SXY
xy + SY X

xy

)

, (3.2.18)

〈Ia22〉 = −2

3

(

SXY
xx − SXY

yy

)

. (3.2.19)

Hence, theC2h ordering in the molecules and the phase are represented by the Cartesian super
matricesSAB

xy andSXY
ab , respectively, where{A,B} can be any of{X,Y,Z} and{a, b} any of

{x, y, z}. In addition to the nine second-rank order parameters, there is another rank one order
parameter with pseudo character. It is in keeping with the calculations by Mettout [75] about
the number of order parameter tensors using character theory. This first-rank order parameter
can be seen clearly by considering the Cartesian ordering tensors (2.4.11). If we definez to be
theC2 rotation axis in the molecule andZ that in the phase then the ordering supermatrix has
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the form

S =













































































SXX
xx SXY

xx 0 SXX
xy SXY

xy 0 0 0 0

SY X
xx SY Y

xx 0 SY X
xy SY Y

xy 0 0 0 0

0 0 SZZ
xx 0 0 SZZ

xy 0 0 0

SXX
yx SXY

yx 0 SXX
yy SXY

yy 0 0 0 0

SY X
yx SY Y

yx 0 SY X
yy SY Y

yy 0 0 0 0

0 0 SZZ
yx 0 0 SZZ

yy 0 0 0

0 0 0 0 0 0 SXX
zz SXY

zz 0

0 0 0 0 0 0 SY X
zz SY Y

zz 0

0 0 0 0 0 0 0 0 SZZ
zz













































































. (3.2.20)

By using the Cartesian tensor notation to describe the ordering of the phase, we can see more
easily the effects of the molecular and phase symmetries. Ifthe constituent molecules have
D2h symmetry, the molecular axes are defined which are the three molecular symmetry axes.
Thus we would not have the off-diagonal tensorSAB

xy . ForC2h molecules, only one molecular
axis is defined by symmetry, which in this case is taken to bez. Since the other axes are not
defined, although each tensor of the formSAB

ab can be diagonalised with respect to the molecular
axes, their principal axis frames only have one common axis,z. Similarly, in a phase withD2h

symmetry, the phase symmetry axes are defined and there is no off-diagonal tensorSXY
ab . For

theC2h phase, only theZ axis is defined. Therefore, when we diagonalise the tensorsSAB
ab with

respect to the phase axes, their principal axis frames only have one common axis,Z.

It is clear that the diagonal submatricesSAB
aa are symmetric about their diagonals. In marked

contrast, the two off-diagonal submatricesSAB
xy andSAB

yx are not symmetric about their diag-
onals. We can write the non-symmetric matrix as the sum of an anti-symmetric matrix and a
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symmetric one

















SXX
xy SXY

xy 0

SY X
xy SY Y

xy 0

0 0 SZZ
xy

















≡

















0 (SXY
xy − SY X

xy )/2 0

−(SXY
xy − SY X

xy )/2 0 0

0 0 0

















(3.2.21)

+

















SXX
xy (SXY

xy + SY X
xy )/2 0

(SXY
xy + SY X

xy )/2 SY Y
xy 0

0 0 SZZ
xy

















.

Now the anti-symmetric supermatrix contains just a single element

SXY
xy − SY X

xy = (3/2)〈(x ·X)(y ·Y)− (x ·Y)(y ·X)〉, (3.2.22)

and use of the Binet-Cauchy identity [81] allows this to be written as

SXY
xy − SY X

xy = (3/2)〈(x ∧ y) · (X ∧Y)〉. (3.2.23)

The two cross products define, in a sense, the axesz andZ in the molecular and phase frames,
respectively. There is, however, a fundamental differencebetween these and the conventional
axes,z andZ, which are polar vectors, that is they change sign under inversion through the
centre of symmetry of the respective coordinate system. In contrast the vectors defined by the
cross products are axial or pseudovectors, that is they do not change sign under inversion. To
distinguish between these two classes of vector we add a tilde to the pseudovectors so that the
independent element of the anti-symmetric supermatrix is given by

SXY
xy − SY X

xy = (3/2)〈z̃ · Z̃〉. (3.2.24)

Since neither̃z nor Z̃ changes sign when inverted through the centre of symmetry oftheir re-
spective frames this means that the order parameter(SXY

xy − SY X
xy ) is invariant under inversion

and does not vanish for a molecule withC2h point group symmetry in a phase having the same
symmetry. This contrasts with the behaviour of the analogous order parameter〈z · Z〉 defined
in terms of the axes in the molecular and phase frames. These are conventional vectors and so
change sign when the respective system, molecule or phase, is inverted through the centre of
symmetry. In consequence, the polar order parameter〈z · Z〉 changes sign and so must vanish
in theC2h phase, unlike the pseudovector order parameter,〈z̃ · Z̃〉.

We have introduced these order parameters using the Cartesian language since this leads logi-
cally to the definition of the pseudovector order parameter.However, this and the polar order
parameter can also be written in terms of Wigner functions. Thus

〈z · Z〉 = 〈D1
00〉, (3.2.25)
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and
〈z̃ · Z̃〉 = 〈D̃1

00〉, (3.2.26)

where the tilde again indicates the definition in terms of pseudovectors for the molecule and for
the phase. The consequence of this is that〈D1

00〉 changes sign on inverting through the centre of
symmetry in theC2h phase and so this polar order parameter vanishes. This contrasts with the
behaviour of the pseudovector order parameter〈D̃1

00〉 which does not change sign on inversion
and so does not vanish in aC2h phase composed of molecules with the same symmetry.

3.2.3 Potential of Mean Torque

The potential of mean torque is constructed according to equation (2.3.2). For theNC2h phase
composed of molecules withC2h symmetry, it can be written in terms of the combined interac-
tion coefficients and order parameters. Given a large numberof intermolecular coefficients and
order parameters, the potential of mean torque has a complexform which can be conveniently
split into three parts

U(Ω) = UU (Ω) + UD2h
(Ω) + UC2h

(Ω), (3.2.27)

where the individual terms responsible for driving the appearance of the three nematic phases,
NU , ND2h andNC2h are

UU (Ω) = − [(〈R00〉+ 2γs〈R02〉 − 2γa〈I02〉)R00(Ω)

+ (2γs〈R00〉+ 4λs〈R02〉 − 2λ0〈I02〉)R02(Ω)

+ (−2γa〈R00〉 − 2λ0〈R02〉 − 4λa〈I02〉) I02(Ω)] , (3.2.28)

UD2h
(Ω) = −2 [(〈R20〉+ γs〈Rs

22〉 − γa〈Is22〉)R20(Ω)

+ (γs〈R20〉+ λs〈Rs
22〉 − (1/2)λ0〈Is22〉)Rs

22(Ω)

+ (−γa〈R20〉 − (1/2)λ0〈Rs
22〉 − λa〈Is22〉) Is22(Ω)] , (3.2.29)

UC2h
(Ω) = −2 [(〈I20〉+ γs〈Ia22〉+ γa〈Ra

22〉) I20(Ω)
+ (γa〈I20〉+ (1/2)λ0〈Ia22〉 − λa〈Ra

22〉)Ra
22(Ω)

+ (γs〈I20〉+ λs〈Ia22〉+ (1/2)λ0〈Ra
22〉) Ia22(Ω)] . (3.2.30)

Here, some explicit formulae for the angular dependent terms are given in equation (2.4.8) with
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Rs
22(Ω) = R22(Ω). In addition, the explicit formulae for the new angular dependent terms are

I02(Ω) = −
√

3

2
sin2 β sin 2γ,

I20(Ω) = −
√

3

2
sin2 β sin 2α,

Rs
22(Ω) =

1

2

(

1 + cos2 β
)

cos 2γ cos 2α− cos β sin 2γ sin 2α,

Is22(Ω) = −1

2

(

1 + cos2 β
)

sin 2γ cos 2α− cos β cos 2γ sin 2α,

Ra
22(Ω) = −1

2

(

1 + cos2 β
)

sin 2γ sin 2α+ cos β cos 2γ cos 2α,

Ia22(Ω) = −1

2

(

1 + cos2 β
)

cos 2γ sin 2α− cos β sin 2γ cos 2α.

(3.2.31)

We note that our definitions of the order parameters and angular functions are different from
Osipov et al. [65] and Gorkunovet al. [66]. In Osipovet al. [65], where they considered
D2h phase formed fromC2h molecules, the major molecular axisz is not the symmetry axis,
instead, the symmetry axis is a minor axis. In Gorkunovet al.’s theory forC2h phase formed
from C2h molecules [66], both the major molecular axisz and the major phase axisZ are not
the symmetry axes of the molecule and the phase, respectively. In contrast, in our model, both
the major axes are also the symmetry axes.

3.3 Approximate Model

Now we see that our system depends on six interaction coefficients and nine order parameters.
These large numbers present a challenging problem. First ofall, it is a challenge in choosing the
values for these interaction coefficients. Secondly, minimising the free energy with respect to
nine order parameters is a formidable task. In order to simplify the problem, we use an approxi-
mate model which is analogous to that used in the calculationfor biaxial nematics formed from
molecules withD2h symmetry by Sonnetet al. [13]. We note from the Cartesian representations
of the order parameters forD2h molecules inD2h phase in equations (2.4.12). At ground state,
the order parametersS andC are non zero whereas the other order parameters,D andP vanish.
Thus, in their model, Sonnetet al. [13] set the order parametersD andP to zero. In addition,
they set the coefficientγ which scale these order parameters in the potential of mean torque to
zero. Thus, we see from the order parameters forC2h molecules in equations (2.4.12) and from
(3.2.11) to (3.2.19), the order parameters which tend to zero at perfect order are〈R02〉, 〈R20〉,
〈I02〉, 〈I20〉, 〈Is22〉 and〈Ia22〉. In our approximate model, we set these order parameters together
with the interaction coefficientsγs, γa andλ0 to zero. Now our model depends on three order
parameters〈R00〉, 〈Rs

22〉, 〈Ra
22〉 and two interaction coefficientsλs andλa. We will see later that

this dramatic approximation can still retain some essential physics. It is because it is still able
to stabilise the three nematic phases: uniaxial, biaxial phase withD2h symmetry and another
biaxial nematic phase withC2h symmetry. In the next section we use the stability analysis to
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find the range of values for the parametersλs andλa which can stabilise the biaxial nematic
phase withC2h symmetry at the ground state.

3.3.1 Stability Analysis

The pair potential for the truncated model can be written in terms of the products of the molec-
ular vectors as

Uij(x1,y1, z1,x2,y2, z2) = −u200
{

(3(z1.z2)
2 − 1)/2

+ λs

[

(x1.x2)
2 + (y1.y2)

2 − (x1.y2)
2 − (y1.x2)

2
]

+ 2λa [(x1.x2).(y1.y2) + (x1.y2).(y1.x2)]} . (3.3.1)

We consider a rotationR around an arbitrary axisa = (a1, a2, a3)
T about an angleθ that takes

the first molecule into the second [55] (see Appendix D)

R = eθA, (3.3.2)

whereA is the skew-symmetric tensor associated witha

A =







0 −a3 a2

a3 0 −a1

−a2 a1 0







Consider the case that these two molecules are so nearly parallel to one another that the terms
O(θ3) are negligible in the rotation that takes the first molecule into the second. Thus

R = I+ θA+ (1/2)θ2A2. (3.3.3)

Expanding the pair potential in terms ofθ up to second order we find that the energy difference
between the pair potential and the ground state (the state ofcomplete alignment of the two
molecules whereθ = 0) is

δU(Ω) = −u200θ
2
[

(1.5 + λs + λa) a
2
1 + (1.5 + λs + λa) a

2
2 + 4 (λs + λa) a

2
3

]

. (3.3.4)

Any small rotation away from the state of complete alignmentof two molecules should be
unstable and the pair energy is increased. Therefore the incremental energy should be positive
which gives us the followingstability region

λs + λa > 0. (3.3.5)

3.3.2 Equilibrium Free Energy

The approximate potential of mean torque can be written as

Utrun(Ω)/u200 = − [〈R00〉R00(Ω) + 2λs〈Rs
22〉Rs

22(Ω) + 2λa〈Ra
22〉Ra

22(Ω)] . (3.3.6)

76



The Helmholtz free energy associated with this takes the form

A∗ = (1/2)T ∗−1 (〈R00〉2 + 2λs〈Rs
22〉2 + 2λa〈Ra

22〉2
)

− lnQ, (3.3.7)

where the partition function is given by

Q =

∫

exp (−U∗
trun(Ω)/T

∗) dΩ, (3.3.8)

It should be noted that, in this approximation, there are strictly only three order parameters,
namely 〈R00〉, 〈Rs

22〉 and 〈Ra
22〉. This is because there are special symmetry operations of

this model which make the other order parameters vanish while leving the distribution function
invariant. The order parameters〈R02〉, 〈I02〉, 〈R20〉 and 〈I20〉 vanish due to the symmetry
operationC4(z)C4(Z). In addition, the order parameters〈Is22〉 and 〈Ia22〉 vanish due to the
symmetry operationC2(x)C2(X).

3.4 Calculations and Results

3.4.1 Phase Behaviour

In keeping with the calculations by Sonnet, Virga and Durand[13], we choose the parameterλs

to be within their investigated range which is from 0 to 0.5. Hence we fixλs to 0.2, 0.3 and 0.4
and varyλa to calculate three phase maps describing the phase behaviour of our system. The
three phase maps are shown in figures 3.2.

In figure 3.2(a) we show a phase map forλs = 0.2. We see that the transition temperatures
for ND2h − NU andNU − I are both independent of the parameterλa. This is because in
the truncated approximate modelλa does not contribute to the ordering of the phasesND2h

andNU . In contrast, theNC2h phase becomes more stable upon increasingλa. At λa equals
0.2, theND2h phase region disappears and now there is a directNC2h − NU transition. It is
interesting that asλa is greater than 0.2, there is a new phase. This new phase, firstseparates
NC2h from NU and later from the isotropic phase. This new phase is characterised by the non
zero values of the order parameters〈R00〉 and〈Ra

22〉 whereas〈Rs
22〉 vanishes. What we have

found is not expected since it does not fit in with our previousunderstanding of the three nematic
phasesNU , ND2h andNC2h. That is, theND2h phase should be characterised by the order
parameters〈R00〉 and〈Rs

22〉 whereas theNC2h phase should be characterised by all three order
parameters. In figure 3.2 we denote this new phase asND2h(⊥) and the convensional nematic
phase withD2h symmetry asND2h(||) due to subsequent identification of the new nematic
phase. For now as the phase has not been identified, we refer toit as theNB− phase. We come
back to the identification of this phase later in this section. In analogy with the results by Sonnet
et al. [13], theND2h − NU transition is second order and theNU − I transition is first order
and the order of the phase transitions are also independent of the parameterλa. In addition,
both theNC2h − ND2h andNC2h − NB− transitions are second order. For small values of
λa, theNB− − NU phase transition is second order. Atλa = 0.3, there is a tricritical point.
Forλa greater than that, theNB− − NU is first order. Finally, theNB− − I phase transition is
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FIGURE 3.2: The phase map predicted by the truncated model potential (see equation (3.3.6))
for a nematogen composed of biaxial molecules withC2h symmetry; the phase behaviour is
shown as a function of the relative biaxiality coefficientλa, with λs of (a) 0.2, (b) 0.3 and (c)
0.4. The phase labelled in the text asNB− is here indicated byND2h(⊥) given its subsequent
identification. The dashed line indicates second order phase transitions and solid lines denote
first order phase transitions; a circle shows a tricritical point. The vertical crosses indicate the
temperature over which the order parameters shown in figure 3.3 were calculated.

first order. This is in analogy with the approximate model by Sonnetet al. [13] that the biaxial
nematic-to-isotropic phase transition is first order for a long range of temperature.

Next, we show the phase map forλs = 0.3 in figure 3.2(b). We see now that the extent of the
NU phase is much narrower. It is because the strength of the biaxial interaction is higher which
pushes the biaxial nematic boundary up. Moreover, the biaxial interaction does not contribute
to the uniaxial ordering and so it does not influence the uniaxial nematic-to-isotropic phase
transition temperature. In addition, theND2h − NU phase transition is first order, in contrast
with that forλs = 0.2, which is second order. This indicates a tricritical behaviour. Here we
do not find theNB− phase. The reason might be that the larger value forλs of 0.3 drives the
appearance of〈Rs

22〉, thus inhibiting the formation of theNB− phase. We find a tricritical point
along theNC2h − ND2h phase boundary atλa = 0.22, separating a second order transition
from a first order one along theNC2h − ND2h transition line. In this case we find that the
biaxial nematicNC2h-to-isotropic phase transition is first order.

We have also explored another region of the phase map by setting λs = 0.4. According to the
calculations of Sonnetet al. [13] with λa = 0, the system exhibits a first order transition directly
from the isotropic phase to theND2h phase. Asλa increases from zero theND2h−I transition
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temperature does not change. On the other hand, first theNC2h − ND2h then theNC2h − I

phase transitions grow withλa. Again, we do not find theNB− phase for this value ofλs which
we have found forλs of 0.2. A tricritical point is found in this case along theNC2h − ND2h

transition line atλa = 0.24. Moreover, theNC2h − I phase transition is also first order, in
similarity with what we have found for a smaller value forλs of 0.3.

3.4.2 Identifying TheNB− Nematic Phase

In order to identify theNB− biaxial nematic phase, we plot the dependence of the order pa-
rameter on the scaled temperature forλs = 0.2 in figure 3.3. In figure 3.3(a) we show temper-
ature dependence of the order parameters forλa = 0.15 where we expect the phase sequence
NC2h −ND2h −NU − I. As we lower the temperature, first there appears a jump in theorder
parameter〈R00〉, indicating a first orderNU − I transition, as expected. Next, the order param-
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FIGURE 3.3: The dependence of the three order parameters〈R00〉, 〈Rs
22〉 and〈Ra

22〉 calculated
with λs = 0.2 and (a)λa = 0.15 and (b)λa = 0.31 on the scaled temperatureT ∗. In
addition the temperature variation of the pseudovector based order parameter,〈D̃1

00〉, is shown
in comparison with (a)〈Ra

22〉 and (b)〈Rs
22〉.

eter〈Rs
22〉 increases gradually from zero, indicating a second orderND2h −NU transition. We

also note a slight increase in the rate of change of〈R00〉 at the phase transition. As the tem-
perature is lowered further, the order parameter〈Ra

22〉 increases steeply but continuously from
zero, indicating also a second orderNC2h −ND2h transition. The order parameters〈R00〉 and
〈Rs

22〉 also increase continuously at the phase transition. In addition to the second-rank order
parameters, we also calculate the pseudovector order parameter〈D̃1

00〉. As we expect, this order
parameter vanishes in theNU andND2h phases and gradually increases in theNC2h phase.
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FIGURE 3.4: Distribution function of theND2h(||) phase as a function of the Euler anglesβ
andγ whenα is set equal to zero atλs = 0.4, λa = 0.2 and the scaled temperatureT ∗ = 0.22.

Now we move to figure 3.3(b) where we find the new, unidentified phase atλa = 0.31. First,
we find that the order parameter〈R00〉 jumps at theNU − I. As we lower the temperature, both
〈R00〉 and〈Ra

22〉 increase discontinuously, indicating a first order transition to the new phase.
At the transition to theNC2h phase, the order parameter〈Rs

22〉 increases continuously and joins
with the other two, indicating a second order transition. What is important here is the pseu-
dovector order parameter only becomes non-zero in theNC2h phase where the other three order
parameters are non-zero. Thus the phase with only〈R00〉 and〈Ra

22〉 non-zero is notNC2h.

In order to determine the symmetry of theNB− phase, we plot the singlet distribution function
for the nematic phases:ND2h(||), NB−, NC2h. In figure 3.4 we show the distribution function
of the nematic phase withD2h symmetry. The distribution function is shown as a function of
the Euler anglesγ andβ when the angleα is set equal to zero. Here we see that the distribution
function is maximised when the anglesβ andγ are multiples ofπ. It is when the molecular axes
(x, y, z) are parallel or antiparallel with those of the phase axes(X,Y,Z).

Now we look at the distribution function for theC2h phase in figure 3.5. The distribution func-
tion is maximised atβ = 0 and whenγ is a multiple ofπ, indicating that thex andy axes are
parallel and antiparallel with theX andY axes of the phase. This is becauseZ is a two-fold
rotation axis of the phase. However now we do not see the same maxima whenβ = π since in
this case theX andY axes are not two-fold rotation axes.

In figure 3.6 we plot the distribution function for theNB− phase. This phase still has the maxima
at β = 0 andγ is a multiple ofπ. However, at the maxima withβ = π, γ is shifted byπ/2
in comparison with that forβ = 0. To investigate this further, we plot the distribution function
as a function of the anglesβ andγ whenα is set equal toπ/4 in figure 3.7. We see now that
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FIGURE 3.5: Distribution function of theNC2h phase as a function of the Euler anglesβ and
γ whenα is set equal to zero atλs = 0.2, λa = 0.2 and the scaled temperatureT ∗ = 0.165.
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FIGURE 3.6: Distribution function of theND2h(⊥) (NB−) phase as a function of the Euler
anglesβ andγ whenα is set equal to zero atλs = 0.2, λa = 0.4 and the scaled temperature
T ∗ = 0.23.
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FIGURE 3.7: Distribution function of theND2h(⊥) (NB−) phase as a function of the Euler
anglesβ andγ whenα is set equal toπ/4 at λs = 0.2, λa = 0.4 and the scaled temperature
T ∗ = 0.23.

the values ofγ at the maxima forβ = π are the same as those forβ = 0. However, the values
of γ at the maxima are now at multiples ofπ minusπ/4. This suggests to us that a coordinate
transformation ofα+π/4 andγ−π/4 would make the distribution of theNB− phase the same
as theND2h phase. In fact these transformations lead to a remarkable change in the functions
defining the two order parameters. Thus

Ra
22(α, β, γ)

π/4−−−−−→
rotations

Rs
22(α

′, β, γ′) (3.4.1)

Rs
22(α, β, γ)

π/4−−−−−→
rotations

Ra
22(α

′, β, γ′) (3.4.2)

where the two rotations take place about thez andZ axes. The results of the transformation
to the new molecular and phase frames interchanges the orderparameters〈Rs

22〉 and〈Ra
22〉 so

that in the new frames〈Rs
22〉 is non-zero and now it is〈Ra

22〉 that vanishes. This is what we
expect for a biaxial nematic phase withD2h point group symmetry. To distinguish between the
two ND2h phases we have added the symbols (‖) and (⊥) to indicate whether the molecular
minor axes are parallel or perpendicular in the biaxial nematic phase. In fact we should find the
effect of the coordinate transformation on the interactionparametersλs andλa. Using equation
(2.1.22), the coefficientsuLmn transform under±π/4 rotation of molecular axes according to

u′Lmn = e±(m+n)π/4uLmn. (3.4.3)

Therefore the coefficientλs is mapped to−λa andλa is mapped to−λs. Our study of the
distribution function shows that an idealised picture of this phase at perfect order should look
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like that in figure 3.8.

FIGURE 3.8: A sketch of the idealised organisation of molecules with C2h point group sym-
metry in the biaxial nematic phase,ND2h(⊥), in which the minor axes of half the molecules
tend to be perpendicular to those of the other half. The axis systems, (x′ y′ z) and (X ′ Y ′

Z), show the symmetry axes for this idealisedND2h phase and the molecules forming it. The
cross-section of the average structure obtained by mergingmolecules in which thex axes are
orthogonal is also shown.

3.5 Conclusions

In this chapter, we have developed a molecular field theory toinvestigate biaxial nematics
formed from molecules withC2h symmetry. Thus the ground state of our system also has the
same symmetry with the constituent molecules. This theory has a significantly larger number of
order parameters and interaction coefficients in comparison with that for molecules and phases
with D2h symmetry. There are nine second-rank order parameters and six interaction coeffi-
cients in total. In addition, we also have a first-rank order parameter. In order to facilitate the
calculations, we use an approximate model. In this model, the number of interaction coefficients
is reduced to only two and the number of order parameters to three. This dramatic approxima-
tion still retains the essential physics and is able to describe a rich phase behaviour. In addition
to the isotropic and uniaxial nematic phase, there are two biaxial nematic phase withD2h sym-
metry. These two biaxial nematic phases are characterised by the alignment of the molecular
axes. In theD2h(||) phase, the molecular axes tend to be parallel. This is in constrast with the
D2h(⊥) where the molecular axes tend to be perpendicular. Moreover, we have found a biaxial
nematic phase withC2h symmetry at the ground state. This has the same symmetry withthat of
the constituent molecules.

The approximate model, even though takes a dramatic approximation, still retain much of the
essential physics. It is expected that our calculation results for this model would help the inter-
pretation of experimental studies of mesogens thought to form the biaxial nematic phase with
C2h symmetry. It seems that there are many facets of this model which merit further investiga-
tion.
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Chapter 4

Polar Nematic Liquid Crystals formed

from V-shaped molecules

Recent experimental evidence suggests that a class of V-shaped molecules might be a promis-
ing candidate for low molar thermotropic biaxial nematic liquid crystals [35, 36, 37]. Those
molecules are made by linking two rod-like mesogenic groupsthrough a central unit, which
results in a rigid V-shaped core, with flexible hydrocarbon chains at both ends. They are also
known as bent-core, banana-like, or boomerang-like [43]. Various experiments on those V-
shaped molecules with the interarm angle of140o using different techniques, namely polarised
microscopy, conoscopy,2H NMR spectroscopy [36], X-ray diffraction [35] and Raman scat-
tering [37] have revealed the existence of a rich biaxial nematic phase with a first order direct
transition to the isotropic phase. On the other hand, the molecular field theory and Monte Carlo
simulations have shown that the biaxial nematic phase can only be formed at very low tem-
perature for V-shaped molecules with that value of the interarm angle [3, 82]. Our interest in
studying the dipolar interactions of V-shaped molecules stems from this disagreement between
the theoretical and the experimental results.

An explanation to the disagreement between the theoreticalpredictions and the experimental
results that has been proposed is that the molecular field theory and Monte Carlo simulations
neglect a large molecular electrostatic dipolar interaction which may be present in the emprirical
systems. In consequence, this could stabilise the formation of the biaxial nematic phase for large
bend angles [36]. In addition to stabilising the biaxial nematic phase, we expect the dipolar
interactions to stabilise the novel nematic phases with polar character [33].

In section 4.1 we discuss some related works which include dipolar interactions in the study of
nematic liquid crystals. We review the classical molecularfield theory for V-shaped molecules
without dipolar interactions in 4.2. Then, in section 4.3 weextend the molecular field theory
to include dipolar interactions. Next, in section 4.4 we describe our calculation results for the
latter case. Two new major effects have been found by adding dipolar interactions into the the-
ory. First, the biaxial nematic phase can be formed at high temperature for molecules with large
interarm angle. These results agree with the Monte Carlo simulations and partly explain the
disagreement between theoretical predictions and experimental results. Secondly, the polar uni-
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axial and biaxial nematic phases can be stabilised which have not been confirmed in experiment.
Finally, we conclude this chapter in section 4.5.

4.1 Related Works

The hypothesis of a large transverse dipolar interaction ofV-shaped molecules has been exam-
ined by Bates [83] in a series of Monte Carlo simulations. In these simulations, two neighbour-
ing molecules interact via a pair potential which depends ontheir relative orientation. The model
pair potential consists of the normal second-rank interactions for V-shaped molecules [82] plus
a (first-rank) dipolar interactions. Each molecular dipolepoints along they axis in Figure 4.1.

FIGURE 4.1: The coordinate axes

labeled for a V-shaped molecules.

The nature of this dipolar interaction is not purely
electrostatic but may include other types of inter-
molecular forces such assteric interaction. The
steric interaction happens when two molecules
are brought too close, the electron clouds over-
lap. Since more than one electrons cannot oc-
cupy the same quantum state due toPauli’s ex-
clusion principle, there are repulsive forces be-
tween two molecules. The steric dipolar interac-
tion is expected since interacting molecules have
polar shapes. The temperature and hence the dipole
strength are scaled with the second-rank tensor
component along thezs axis of an arm (analogous
to u200). The scaled dipole strength is calledκ. The simulation results were given in four phase
maps reproduced in figure 4.6. These show the dependence of the scaled transition temperature
on the interarm angle from100o to 130o. These figures correspond to four values ofκ, namely
0, 0.2, 0.5 and 1.0. The first diagram in figure 4.6(a) shows a classical behaviour for systems
without dipolar interaction as we have discussed in Chapter2 with a Landau point joining the
phase boundaries. As the dipole strength is increased to 0.2, with the corresponding phase map
shown in figure 4.6(b), the biaxial nematic-to-uniaxial nematic transition temperature forθ near
the tetrahedral angle as well as the biaxial nematic-to-isotropic phase transition at the Landau
point are unchanged. However for values of the interarm angle that are not close to the Landau
point, the biaxial nematic-to-uniaxial nematic transition temperature is increased. The phase
map forκ = 0.5 is shown in figure 4.6(c). In this case, we still see a Landau point but now
most of theNB − NU phase boundary is raised in comparison with the classical case where
dipolar interactions are not included. The last diagram in figure 4.6(d) shows the results for
κ = 1.0. Now it is interesting that the Landau point is replaced by a line of first order direct
biaxial nematic-to-isotropic phase transitions over a large range of the interarm angle from107o

to 122o. Below 107o there is a narrow stripe of uniaxial nematic phase between the isotropic
phase and the biaxial nematic phase. In conclusion, the simulations show that the biaxial ne-
matic phase is more stabilised with stronger transverse dipolar interaction. In addition, there
is a direct first order biaxial nematic-to-isotropic phase transition at high temperature for large
interarm angles. The last result is somehow in agreement with the experimental evidences.
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FIGURE 4.2: Idealised visualisations of (a) non-polar and (b) polar biaxial nematic phase
formed from V-shaped molecules.

In comparison to the results by Bates [83] was the more recentcalculations by Grzybowski
and Longa [84]. Their calculations were of a low density approximation of the local density
functional theory based on the Gay-Berne pair potential. This is a more realistic interaction
potential compared to that used by Bates [83]. This is because the Gay-Berne model takes into
account both attractive and repulsive interactions and is dependent on the intermolecular vector.
Without the dipolar interaction, the model showed a similarphase map with the Landau point
at 107o interarm angle. On increasing the dipole strength, the Landau point is shifted towards
lower value of interarm angle. In contrast to this, as we havediscussed, the model by Bates [83]
predicts that the Landau point is broadened into a Landau line. Moreover, in the calculations by
Grzybowskiet al. [84], the biaxial nematic-to-uniaxial nematic transitiontemperature increases
on increasing dipolar interaction strength for sufficiently large interarm angle (θ > 110o). This
result supports the existence of the dipolar interaction inthe system such that for large interarm
angle the biaxial nematic phase is stabilised by dipolar interactions.

The existence of polar nematic phases has not been reported in the Monte Carlo simulations
by Bates [83] and the density functional theory by Grzybowski and Longa [84]. A sketch of a
polar and a non-polar phase is shown in figure 4.2. Phase polarity has been found in many liquid
crystals, including nematics made of lyotropic system and thermotropic nematic polymer liquid
crystals [85, 86, 87]. Even polar thermotropic biaxial nematic polymer liquid crystals have been
found [87]. However, there has not been any hard evidence which suggests the existence of a po-
lar low-molar thermotropic nematic liquid crystals although recent electro-optical experimental
results have suggested that it might be possible [38]. The usefulness of polar low-molar ther-
motropic nematic liquid crystals has been discussed in reference [88]: “these materials might
have useful technological applications due to their envisaged easy and fast response to an exter-
nal electric field, coupled to fluidity and self-healing ability typical of nematics that is crucial to
their use in electro-optical devices”.

Despite the fact that polar biaxial nematic phases have not been found in real low-molar ther-
motropic systems, theoretical studies and computer simulations have shown that it should be
possible for them to exist: “there is no fundamental reason that these ferroelectric phases should
not exist” [89]. The possibility of a polar uniaxial nematicphase have been studied by sev-
eral authors using a standard molecular field theory [89, 90], a two side cluster molecular field
theory and Monte Carlo simulations [52] for dipolar anisotropic molecules and molecular dy-
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namic simulations for dipolar spheres [91]. Their results suggest that the polar uniaxial nematic
phase can be stabilised for a range of dipolar interaction strength. The polar uniaxial nematic
phase can take a transition to the non-polar uniaxial nematic phase, followed by the uniax-
ial nematic-to-isotropic phase transition. Alternatively, there might be a direct polar uniaxial
nematic-to-isotropic phase transition. In one case where the coupling between first and second
rank interactions was allowed, the author found a tricritical point along the polar nematic-to-
uniaxial nematic phase transition line [89]. In another model of polar uniaxial nematics us-
ing the two side cluster molecular field theory, two tricritical points were detected, one along
the polar uniaxial nematic-to-non-polar uniaxial nematicand the other along the polar uniaxial
nematic-to-isotropic phase boundaries [52].

The first theory which described the coesistence of biaxiality and polarity in thermotropic ne-
matic liquid crystals seems to have been a Landau-de Gennes theory for a system of polymeric
molecules of symmetryCs by Mettout, Toledano, Takezoe and Watanabe [92]. TheCs group
is a symmetry group with only an identity and a reflection plane. This work was stimulated
by experimental evidence which found a polar biaxial nematic phase exhibiting in thermotropic
polymer liquid crystals [87] although the mathematical structure is indistinguishable between
polymeric and low molar mass systems. First, the authors only allowed for first-rank interaction
while ignoring second and higher rank interactions. They found two nematic phases by varying
the coefficients in the Landau-de Gennes free energy expansion: the isotropic phase, the polar
uniaxial nematic phase (withC∞v symmetry) and the polar biaxial nematic phase (withCs sym-
metry). Here, theC∞v symmetry group consists of an infinite rotation axis and a reflection plane
with the axis of rotation lies in it, together with an identity. These results mean that the biaxial
nematic phase can be stabilised only by one symmetry breaking mechanism which is molecular
polarity. When the authors include second-rank interactions, they found a phase map with richer
phase behaviour, including nematic phases with different symmetries as before, namelyD∞h,
C∞h, D2h, C2v , Cs andC1. Since these symmetry groups are not relevant to our model wedo
not discuss them in detail. Their definition can be found in the book in reference [16]. Hence it
seems that a biaxial nematic phase with symmetry other thanCs requires contributions from ei-
ther only second-rank interaction or a combination of both first and second rank interactions. In
the simulations by Bates the constituent molecules haveC2v symmetry and so by including both
first and second rank interactions, we expect the system would be able to form polar nematics.

It is worth noting that in some calculations for the excludedvolume of V-shaped molecules
consisting of touching spheres [93, 80], the configuration where the dipoles are antiparallel is
more favoured than when they are parallel. It is because in the former the excluded volume
is smaller and the molecules tend to arrange in this way to minimise their excluded volume.
These results also agreed with the calculations for an orientation-dependent second virial coef-
ficient [80]. The authors found that, for a variety of shapes,this coefficient is smaller when the
dipoles are parallel than when they are antiparallel. This also suggests that antiparallel config-
uration is favoured by steric interactions. Therefore it seems that, in order for the polar phase
to be stabilised, electrostatic dipolar interactions needto be dominant. Another important re-
sults is from the electro-optical experiments for the two single systems of V-shaped molecules
made up of ODBP-Ph-C7 and ODBP-Ph-O-C12. It was found that, the response time for short
axis switching of ODBP-Ph-C7 is linear with respect to the applied electric field whereas for
ODBP-Ph-O-C12 it is quadratic [38]. According to the authors it is indicative that the system
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of ODBP-Ph-C7 has a macroscopic dipole, hence might be a polar biaxial nematic. In contrast,
atomistic simulations of ODBP-Ph-C7 by Peláez and Wilson [94] showed the formation of small
ferroelectric ordered domains in the biaxial nematic phaseat the same temperature range as in
the experiments. We note that, the biaxial nematic formed from ODBP-Ph-O-C12 still exists at
high temperature without a macroscopic dipole may be stabilised by local ordering of molecular
dipoles. Nevertheless, we treat the dipolar interaction ina general way and neglect the nature of
the interaction. In addition, we ignore short-range correlations for simplicity.

4.2 V-shaped Molecules in Non-polar Nematics

In addition to molecules withD2h symmetry, those withC2v symmetry can also form biaxial
nematics where the phase behaviour can be described by second rank order parameters. One type
of molecules with this symmetry is V-shaped molecules or often known as bent-core molecules.
Some V-shaped molecules are promising candidates which canstabilise biaxial nematics since
there are empirical evidence which strongly supported thatthey may form such phase [35, 36,
37]. Before discussing the molecular field model for polar biaxial nematics, here we review
a model for biaxial nematics withD2h symmetry, formed from V-shaped molecules without
dipolar interactions. The equations of the molecular field theory for nematic phases withD2h

symmetry formed from V shaped molecules arising from second-rank interactions are exactly
the same as that forD2h molecules in section 2.4.2. Moreover, in this case, we can relate
the intermolecular interaction coefficients,u2mn, to the geometry of the constituent V-shaped
molecules. We should note that since the constituent V-shaped molecules have polar shape, the
nematic phase may also be polar due to the dipolar interactions between the molecules. However
in this section we only consider second-rank interactions,we assume that only non-polar phases
are formed. In fact, the phase polarity only manifests in oddrank order parameters. In modelling
the interactions of V-shaped molecules, we use the the geometric mean approximation. If we
assume the arms are cylindrically symmetric, then the biaxiality γ only depends on the interarm
angle. This relation has been worked out by Ferrarini, Luckhurst, Nordio and Roskilly [78]
using a model called the additive tensor model. This is because a molecular tensor is the sum of
the tensors of the segments which make up of the molecule. In our case, the segments are the
mesogenic arms.

It should be noted that there are other molecular interaction models which we can use. One
example is the surface tensor model, also presented by the same group of authors [76, 77]. In
this model, a molecule is depicted as overlapping spheres and the single molecular tensor com-
ponents are equated to the integrations of the relevant spherical harmonics over the molecular
surface. Using this more elaborate model, the authors also predicted transitional behaviour as
found for the additive tensor model [44]. Another possibility is to model a V-shaped molecule as
consists touching spheres and the intermolecular interaction coefficients can be calculated from
the excluded volume of two molecules [80]. Both the surface tensor and the excluded volume
models are much more computationally demanding than the additive tensor model.

The decoupling approximation allows us to calculate the combined intermolecular tensoru2mn

asu2mn = u2mu2n. The single molecular tensoru2m can be related to the molecular geometry.
In a V-shaped molecule, the two arms are identical and cylindrically symmetric and hence their
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interaction tensors are uniaxial with only one componentus20. Here, we use the superscripts

to denote that it is a tensor component of an arm instead of themolecule. This segmental arm
tensor takes a value in the molecular axis representation bya spherical transformation

us2m =
∑

m

C2m(ωs)u
′s
20. (4.2.1)

Here,C2m(ωs) are the modified spherical harmonics. In addition,ωs = (αsβs) denotes the
relative orientation of the arm with respect to the molecular axis frame. Here, the spherical
harmonics coincide with the Wigner rotation matrices whereone of the indices is zero.

CLm(ωs) = dL0m(βs)e
−imαs . (4.2.2)

Now, the molecular second-rank tensor is the addition of thesegmental tensors in the molecular
axis representation

u2m =
∑

s

C2m(ωs)u
′s
20. (4.2.3)

The spherical harmonics can be expressed in terms of the interarm angles as follows. If we let
O be the point where the arms are connected, thenOzs points along the symmetrical axis of one
of the rods. The molecular axes are defined in the way as shown in figure 4.3, namelyOx is the
bisector of the interarm angles andOz is in the same plane as the arms. Thus,β = ∠zOzs and
α = 0. Therefore, the spherical harmonics become

C20(ωs) =
1− 3 cos θ

4
,

C22(ωs) =
1

4

√

3

2
(1 + cos θ), (4.2.4)

FIGURE 4.3: The coordinate axes

labeled for a V-shaped molecule.

Therefore the second-rank molecular interaction
tensor components are

u20 = us20

(

1− 3 cos θ

2

)

,

u22 = us20
√

(3/8)(1 + cos θ). (4.2.5)

The biaxiality parameterγ is simply u22/u20.
In addition, we scale the temperature with the
anisotropy of an arm,uss200. The phase map for this
system can be found easily simply by converting
values ofγ in the phase map in figure 2.4 toθ ac-
cording to equation (4.2.5). The results are shown
in figure 4.4. These results were revealed by Luck-
hurst [3] for a smaller range of the interarm angleθ from 90o to 180o which shows that the
most biaxial molecule is the one with the tetrahedral interarm angle (θ = 109.5o). The phase
map in figure 4.4 also shows another point which corresponds to the optimum biaxiality at the
complement of the tetrahedral angle. Thus, there are now twoLandau Triple points in the phase
map. Molecules with the interarm angles of0o, 90o and180o are uniaxial. In addition, the
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FIGURE 4.4: The dependence of the scaled transition temperature onthe interarm angle of
V-shaped molecules.

molecule with90o interarm angle is discotic whereas the other two are calamitic. The results
for 90o ≤ θ ≤ 180o agree qualitatively with the Monte Carlo simulations of analogous pair
potential [82].

4.3 V-shaped Molecules in Polar Nematics

In the last section, we discussed the molecular field theory for non-polar uniaxial and biaxial
nematic phase formed from V-shaped molecules. In this section we add a first-rank or dipolar
interaction with a transverse dipole in the direction of thebisector of two segmental arms. In this
case, the results we obtain for calamitic and discotic molecules cannot be exchanged as before.

First, we consider a calamitic system which is for109.5o < θ < 180o. We takex to be the
axis perpendicular to the molecular plane,y to be the bisector of the arms andz to be in the
direction perpendicular toy and in the molecular plane. In this notation, we expect the major
molecular axisz to align in the nematic phase to form the main director whereas the other
axes align in the biaxial nematic phase to form the minor directors. In addition, the transverse
dipole points along the minor axisy. Now the molecules haveC2v symmetry and we expect
that the lowest symmetry of the phase is alsoC2v, with Z being the major axis of the phase. In
addition, the dipole of the phase points along the minor director Y . The molecular symmetry
operations are a two-fold rotation abouty and two reflection planes,(xy) and(yz). Likewise, the
phase symmetry operations of theC2v phase are a two-fold rotation aboutY and two reflection
planes,(XY ) and(Y Z). Therefore, from table 2.1, there is a first-rank interaction coefficient
in addition to the second-rank ones

u111 = u1−11 = u1−1−1 = u11−1. (4.3.1)

91



In addition, from tables 2.2 and 2.3 in section 2.2, there is also a first-rank order parameter

〈D1
11〉 = 〈D1

−11〉 = 〈D1
−1−1〉 = 〈D1

1−1〉. (4.3.2)

Hence, the potential of mean torque can be constructed according to equation (2.3.17)

U(Ω) = −u200 (κ〈FP 〉FP (Ω) + 〈FU 〉FU (Ω) + 2〈FB〉FB(Ω)) , (4.3.3)

Here,κ = u111/u200. The definitions of the composite order parameters and angular functions
are given in equations (2.4.32) and (2.4.33). In addition,

FP (Ω) = (1/2)
(

D1
11(Ω) +D1

−11(Ω) +D1
−1−1(Ω) +D1

1−1(Ω)
)

, (4.3.4)

and
〈FP 〉 = 〈y.Y〉 = 〈cos γ cosα− cos β sin γ sinα〉. (4.3.5)

In this formulation, the dependence of the magnitude of the biaxiality parameterγ on the inter-
arm angle is still the same as that for non-polar molecules which we have discussed in section
4.2. However, the axis labels forx andy in this case are exchanged with respect to those in
section 4.2. Thus the sign ofγ is reversed. The reason for this exchange is to facilitate the
calculations. The functiony.Y is periodic over the interval 0 toπ for α andγ whereas the
equivalent period forx.X is from 0 to 2π. The scaled Helmholtz free energy is

A∗ = − lnQ+
1

2T ∗

(

κ〈FP 〉2 + 〈FU 〉2 + 2〈FB〉2
)

. (4.3.6)

We note that the value ofκB used by Bates [83] is scaled withuss200 of an arm whereas we scale
κ with the intermolecular coefficientu200. Hence in order to compare these two sets of results,
we need to make a transformation according to

κ =
4κB

(1− 3 cos θ)2
, (4.3.7)

while the comparison for the interaction strength is

u200 = uss200

(

1− 3 cos θ

2

)2

. (4.3.8)

FIGURE 4.5: The coordinate axes

labeled for a discotic V-shaped

molecules.

Moreover, in the simulations, a molecule interacts
with six nearest neighbours. This number of neigh-
bours is often calledcoordination number. The
molecular field results for the transition temper-
ature need to be multiplied by this coordination
number in order to compare to those obtained from
the simulations.

Now we consider a discotic molecule with the in-
terarm angle in the range90o < θ < 109.5o. We
take the molecular axes as follows. We takez to be
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perpendicular to the molecular plane,y to be the bisector of the arms andx to be perpendicular
to bothz andy and in the molecular plane. In this notation, we expect the molecules to align
theirz axis to form the directorZ in uniaxial discotic nematic phases. The transverse dipolestill
points along they axis. In this case, the interaction coefficients for the molecules are given by

u20 = −us20,

u22 = −us20
√

(3/2) cos θ. (4.3.9)

In addition, the value ofκ in comparison with that used by Bates is

κ = κB . (4.3.10)

4.4 Calculations and Results

Since the potential of mean torque in our theoretical model is analogous to the pair potential
used by Bates, we perform analogous calculations for the same values ofκB , namely 0, 0.2,
0.5 and 1.0. For each value ofκB the dependence of the transition temperature on the interarm
angle is calculated by minimising the equilibrium free energy with respect to the three order
parameters using the methods described in Chapter 2. The results are given in figure 4.7. The
results which show the phase behaviour of V-shaped molecules without dipolar interaction (for
κB = 0) are discussed in detail in section 4.2 and are reproduced inFigure 4.7(a). We see that
the results are good qualitative agreement with the simulation. We recall that there is a unique
Landau point at which the isotropic phase undergoes a secondorder transition directly to the
biaxial nematic. In addition, as the angle deviates from thetetrahedral value, the biaxial nematic
rapidly becomes less stable.

If we include a small dipolar interaction (κB = 0.2, figure 4.7(b)) we see that the biaxial
nematic-to-uniaxial nematic transition temperature is increased for a sufficient deviation of the
interarm angle from the optimum value. In addition, as mightbe expected, we have found a
region of polar biaxial nematic,NP

B . Above this region, the non-polar uniaxial and biaxial
nematic phases and the Landau point at the tetrahedral anglestill remain. For the interarm
angleθ from about106o to about116o excluding the Landau point, we see a rich behaviour
NP

B −NB −NU − I whereas for the interarm angle outside that region we do not see the non-
polar biaxial nematic phase. These results are in good agreement with the simulations by Bates.
However in our calculations, the reason for the biaxial nematic phase to be stabilised is because
of the formation of the polar biaxial nematic phase. In addition, the first order uniaxial nematic-
to-isotropic phase transition is unaffected. It is becausethe polar biaxial phase is formed at a
lower transition temperature. Hence the dipolar interaction strength which depends explicitly
on the ordering of the molecular dipoles does not make any contribution to the transition at
higher temperature. We also see that for106o < θ < 116o, the polar biaxial nematic phase is
formed at lower temperature than the non-polar biaxial nematic phase. Therefore, it does not
affect the second order non-polar biaxial nematic-to-uniaxial nematic phase transition and the
Landau point for the same reason. In general, theNP

B − NB phase transition is second order.
For101o < θ < 107o and114o < θ < 127o, both theNP

B −NB andNP
B −NU transitions are
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FIGURE 4.6: The phase maps as a function of the scaled temperature and bend angle for bent-
core molecules with transverse dipoles (a)κ = 0.0, (b) 0.2, (c) 0.5 and (d) 1.0 as predicted by
the Monte Carlo simulations by Bates. Reproduced from [82].
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FIGURE 4.7: Phase maps for polar V-shaped molecules with dipole strength (a)κB = 0, (b)
κB = 0.2, (c) κB = 0.5 and (d)κB = 1.0 which are predicted by our molecular field theory.
First order transitions are shown as continuous lines whereas second order transitions are shown
as broken lines. Tricritical points are shown as circles.
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first order. Forθ smaller than101o or larger than127o, theNP
B − NU is second order. Hence

there are four tricritical points.

As the value ofκB is increased to 0.5 in figure 4.7(c), the polar biaxial nematic phase becomes
more stable. Further, the uniaxial nematics remain non-polar but less extensive in the phase
map. Likewise, the extent of the non-polar biaxial nematic is also small. Regardless of phase
polarity then our results are in good agreement with the simulations in which the region of
discotic uniaxial nematic liquid crystal is narrow. Moreover, the biaxial-to-uniaxial nematic
phase transition only changes slightly with the scaled temperature for large values of the interarm
angles. We found that, for105o < θ < 118o, both theNP

B −NB andNP
B −NU transitions are

first order. Forθ outside that region, theNP
B −NU transition is second order.

Finally we show the calculation results forκB = 1 in figure 4.7(d). Again we see some good
qualitative agreements with the Monte Carlo simulations. We find two narrow regions of uni-
axial nematics. They are connected by a line of first order polar biaxial nematic-to-isotropic
phase transitions forθ from 116o to 122o. One difference between our results and the simula-
tions is that one of the uniaxial phases is polar. We denote this polar uniaxial nematic phase by
NP

U . Another difference is the extent of the polar uniaxial nematic phase in our calculations is
larger than the simulation. Below the uniaxial nematic phases, there exists a very large region
of biaxial nematics. In our calculations, this region of biaxial nematics is polar, in contrast with
the simulation. Forθ > 122o, theNP

B − NU phase transition is second order and is below the
first orderNU − I transition. The latter transition is unaffected by the strength of the dipolar
interaction. Forθ < 116o, theNP

B −NP
U transition is first order. This is followed by a second

order polar uniaxial nematic-to-isotropic phase transition.

In the case where the uniaxial nematic phase is polar, the dipolar interaction is strong enough
that the ordering axis is along the bisector of the arms. In this case the major order parameter
is measured along the bisector. Therefore in order to facilitate the calculations, we need to
exchange the molecular axesy andz. It is then more convenient to locate the first order phase
transitionNP

B −NP
I . In this case the molecular tensor components are

u20 = us20

(

1 + 3 cos θ

2

)

,

u22 = us20
√

(3/8)(cos θ − 1). (4.4.1)

We also calculate the order parameters for the arms in order to make comparison with the results
by Bates. These results by Bates are shown in figure 4.8. Theseorder paramters are defined in
the coordinate axes of an arm. The arm order parameters can befound simply by transforming
the molecular order parameters from the representation in the molecular coordinate axes to their
representation in the axes of an arm according to the transformation rule

SAA
aa =

∑

b

(lAA
ab )2SAA

bb , (4.4.2)

wherea andb can bex, y andz andA can beX,Y,Z. For the case wherez is the long axis,
this gives us

SAA
aa = cos2(θ/2)SAA

yy + sin2(θ/2)SAA
zz . (4.4.3)
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Whenz is along the dipole, we get a different expression

SAA
aa = cos2(θ/2)SAA

zz + sin2(θ/2)SAA
yy . (4.4.4)

The results for the arm order parameters are given in figure 4.9. In figure 4.9(a) we show the
results for the system without dipolar interaction. In the isotropic phase, all components of the
order parameter tensor for the arms are zero. As the temperature is lowered, the order parameters
increase discontinuously to a non zero values withSXX

aa = SY Y
aa = (−1/2)SZZ

aa , indicating the
uniaxial phase withz being the ordering axis. As we lower the temperature the components
SXX
aa andSY Y

aa gradually become different although they remain negative and smaller thanSZZ
aa ,

indicating a biaxial phase. Next we introduce a small dipolar interactionκB = 0.2 which is
shown in figure 4.9(b): we can still see theNU − I andNB −NU phase transitions at the same
temperatures as before. In addition, now we find that at lowertemperatures, the components
SXX
aa andSY Y

aa changes discontinuously. At the same temperature, the polar order parameter
also becomes non zero, indicating a first orderNP

B − NB phase transition. Now we increase
the dipolar interaction slightly toκB = 0.5 in figure 4.9(c), theNU − I phase transition is still
the same as before withz being the major axis. Here the non-polar biaxial nematic is not found
and instead the order parametersSXX

aa andSY Y
aa change with a slight jump at theNP

B − NU

phase transition. This is also accompanied by a jump in the polar order parameter. We note that
the discontinuities in the order parameters at both phase transitions are more pronounced than
in the simulation. The final values ofκB = 1.0 is shown in figure 4.9(d). As the temperature
is decreased in the isotropic phase, we see a vanishingly small region where both the polar and
the second rank order parameters are non zero, indicating a second order phase transition to
the polar uniaxial nematic phase. As the temperature is lowered, all order parameters increase
discontinuously. In addition, the order parameters of the arms do not follow the relationSXX

aa =

SY Y
aa = (−1/2)SZZ

aa . This indicates a polar biaxial nematic phase.

Now our molecular field theory for V-shaped molecules is verified by its agreements with the
Monte Carlo simulations by Bates [83]. Here we use the molecular field theory to make com-
parisons with experimental results for V-shaped moleculeswith interarm angle of140◦. Hence,
we fix the interarm angle to140◦ in the calculations and we vary the dipolar interaction strength
κB . In choosing the range of value forκB , we note from figures 4.7 that, forκB = 1, we do not
see the biaxial nematic-to-isotropic phase transition atθ = 130◦. Hence, forθ = 140◦ we ex-
pect that the dipole strengthκB = 1 is not enough to cause a direct biaxial nematic-to-isotropic
phase transition. Therefore, we choose the value ofκB greater than one to do the calculations.
Figure 4.10 shows the phase map forθ = 140◦ and we varyκB from 1 to 2. We see that, as
κB increases, theN+

U − I transition temperature does not change. It is simply because in our
model, the polar interaction only influences the ordering inthe polar phase. Indeed, we see that
the stability of the biaxial and uniaxial nematic phases increase withκB . It is important to note
that, between the non-polar uniaxial nematic and the polar uniaxial nematic regions, there is a
region of first order direct biaxial nematic-to-isotropic phase transitions. This region exists for
κB from 1.53 to 1.77. Therefore we conclude that, the dipolar interaction strength for the com-
pounds ODBP-Ph-C7 and ODBP-Ph-O-C12 used in the experimentwould be from1.53u200 to
1.77u200 whereu200 is the anisotropic interaction of an arm.
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FIGURE 4.8: The dependence of the Cartesian tensor components of the order parameter tensor
for the mesogenic arms forθ = 115o and (a)κB = 0, (b) κB = 0.5 and (c)κB = 1.0 as
predicted by the Monte Carlo simulations by Bates. Reproduced from [82].
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FIGURE 4.9: The continuous lines show the temperature dependence of the Cartesian tensor
components of the second-rank order parameter tensor for the mesogenic arms forθ = 115o

and (a)κB = 0, (b) κB = 0.2, (c) κB = 0.5 and (d)κB = 1.0. The dotted lines show the
temperature dependence of the polar order parameter.
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FIGURE 4.10: The dependence of the scaled transition temperatureT ∗ on the dipolar interac-
tion strengthκB when the interarm angle is fixed at140◦.

4.5 Conclusions

Our work in this chapter sets out to provide a possible explanation to the disagreement between
theoretical predictions and recent experimental evidenceregarding the biaxial nematic phase
formed from V-shaped molecules [35, 36, 37]. A possible explanation is that there is a trans-
verse dipolar interaction which is often ignored in the molecular field theory and Monte Carlo
simulations which usually are only concerned with second-rank interactions. Bates supported
this hypothesis by performing Monte Carlo simulations of V-shaped molecules with dipolar
interaction [83] as well as the classical second-rank interactions. His results agree with experi-
mental evidence. In addition to explaining the disagreement, the existence of dipolar interaction
also suggest that the biaxial nematic phase formed from V-shaped molecules might be a polar
phase.

We have modified the classical molecular field theory to include dipolar interaction and the for-
mation of the novel polar uniaxial and biaxial nematic liquid crystal phases. The choice of the
dipolar interaction strength as well as the interarm angle of V-shaped molecules in our calcula-
tions is the same as the Monte Carlo simulations by Bates [83]. Our calculation results are shown
in four phase maps analogous to that found by Bates [83] whichshows remarkable agreements.
However, there is a significant difference between our results and Bates [83]: in Bates’ calcu-
lations the polar phase is not observed. This may be due to local ordering of the dipoles in the
simulation which destroy macroscopic long-range polar order. On the other hand, the molecular
field theory does not take into account local ordering, so that it may stabilise an unstable polar
phase. In essence, our results strengthen the hypothesis that the disagreement between theo-
retical predictions and experimental results is due to the existence of a large transverse dipolar
interaction. In addition, we find that the transverse dipolar interactions helps to stabilise the
novel polar biaxial nematic and polar uniaxial nematic phases which to our knowledge have not
been experimentally confirmed in any small molar mass system.
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Chapter 5

Uniaxial and Biaxial Nematics formed

from Flexible Molecules

Flexible molecules are those which can change their shapes.An example of flexible molecules is
liquid crystal dimers. These molecules are made by linking two mesogenic groups together with
an alkyl chain which is called a spacer. They are one of the candidates for stabilising biaxial
nematic phases. Due to their flexible hydrocarbon link, the molecules are flexible which can
take many geometric shapes, or conformations. Some conformations have biaxial shapes and
their presence can drive the formation of biaxial nematics.In addition, modelling liquid crystal
dimers would be a first step towards modelling more complex molecules which have been found
to form biaxial nematics.

In section 5.1 we describe some related works on modelling liquid crystal dimers. A molecular
field theory for biaxial nematics formed from flexible molecules for a general system has been
developed by Luckhurst [51]. We take a few steps in reintroducing the theory and applying
it to model a two-conformers system in order to explore the mutual influences of molecular
flexibility and phase biaxiality. In section 5.2 we apply thetheory to model a non-exchanging
binary mixture of linear and bent conformers. We also calculate a phase map to investigate the
dependence of the phase behaviour on the mole fractions of the conformers. In section 5.3, we
include the molecular flexibility in the theory and hence allow the conformers to interconvert. In
that section, first we keep the approximation used by Ferrarini, Luckhurst, Nordio and Roskilly
[44] that the mole fractions are independent of the temperature in order to make comparisons
with their results. After that, we allow the mole fractions to change with the temperature in order
to study a more physical system. Indeed, we find that the biaxial nematic phase is stabilised in
both systems when the conformational or internal energy of the bent conformer is sufficiently
lower than that of the linear conformer.

5.1 Related Works

Liquid crystal dimers often exhibit the interesting even-odd effect at the uniaxial nematic-to-
isotropic phase transition [44]. First, the uniaxial nematic-to-isotropic transition temperature is
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higher for even dimers (dimers with an even number of carbon atoms in the spacer) than for odd
dimers (dimers with an odd number of carbon atoms in the spacer) and this difference decreases
on increasing spacer length. Secondly, the entropy of transition for odd dimers is significantly
lower than for even dimers and is independent of the spacer length for those with less than
twelve methylene groups.

An early molecular field theory for liquid crystal dimers hasbeen developed to understand this
effect by Ferrariniet al. [44]. It is known that the bonds between the carbon atoms in the hydro-
carbon chain and those between the first carbon atom in the link and the mesogenic groups can
rotate around. Consequently, a molecule can take many different conformations with different
angles between the mesogenic groups. We call molecules which adopt the same conforma-
tion conformers. In the theory by Ferrariniet al. [44], a dimer consists of two connecting
identical cylindrically symmetric mesogenic arms and the interaction of the hydrocarbon chain
is ignored. A conformation is defined by the angle between thearms of the molecules. The
many conformations of a molecule is replaced by only two, oneis linear with one arm form
180o with the other, the other is bent with the tetrahedral interarm angle (109.45o). These
two conformations may be regarded as the most stable forms since they have the lowest con-
formational energies. In addition, the all-trans conformation has the lowest energy of all and
so it gives the most stable conformation of all. In this conformation, all the carbon-carbon
bonds in the spacer are coplanar and every pair of adjacent bonds makes up a tetrahedral angle.

FIGURE 5.1: A sketch of Liquid

Crystals witha) odd-spacer andb )

even-spacer. Reproduced from [44].

From figure 5.1 we see that the all-trans conforma-
tion for an odd dimer is bent whereas it is linear for
an even dimer. Hence, for even dimers, the linear
conformer have a lower internal energy and so is
more stable than the bent conformer. In contrast,
for odd dimers the situation is reversed. In the the-
ory by Ferrariniet al. [44], the difference in the
mole fractions of the linear and the bent conformer
was attributed to the difference in their internal en-
ergy and the order of the phase. In order to facil-
itate their calculations, the internal energy differ-
ence was assumed to be independent of the temper-
ature. In other words, the mole fractions are con-
stant in the isotropic phase and only change in the
ordered phase. It was found that, due to the pres-
ence of a greater number of the lower anisotropy
bent conformer in odd dimers than even dimers, the
transition temperature for odd dimers is less than that for even dimers. In addition, at the transi-
tion to the nematic phase the onset of orientational order increases the concentration of the linear
conformer. For odd dimers, this increse is continuous. In contrast, for even dimers, most bent
molecules are converted to linear which causes a discontinous change in the conformational en-
tropy. This leads to a much larger increase in the transitional entropy for even dimers compared
to odd dimers.

These qualitative features of the model have also been confirmed by Monte Carlo simulations
of analogous pair potential for even [95] and odd dimers [96].
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In the calculations by Ferrariniet al. [44], the additive tensor model was used in order to
calculate a single molecular interaction tensor. The intermolecular coefficients are calculated
as the products of the components of the single molecular tensor of two interacting molecules.
It is worth mentioning that this model has also been used to investigate the dependence of the
transitional properties of liquid crystal dimers on the geometry of bent conformer. Depending on
the link between the mesogenic units and the flexible chain, the angle of the bent conformer may
be different. Thus the transitional order parameter and entropy changes can differ depending on
the interarm angle of the bent conformer [78].

The motivation for us to study liquid crystal dimers is to investigate how the molecular flexi-
bility and different conformations affect the stability ofthermotropic biaxial nematics and how
the onset of the nematic phases influence the stability of theconformers. The presence of the
bent conformer leads to the expectation that liquid crystaldimers might be able to form biaxial
nematics: biaxial conformers have biaxial shapes and previous studies have related their phase
behaviour with their interarm angles. Moreover, among recent evidence for biaxial nematics
include systems which are formed from flexible molecules. They are liquid crystal polymers
and tetrapodes [30, 31, 32]. The molecular flexibility may bea contribution towards forming the
biaxial nematics. In addition, modelling such system for a biaxial nematic phase is a challenging
task due to the biaxial nature of board-like units and flexibility of hydrocarbon chains. This has
been done for a simpler system of uniaxial nematic formed from tetrapodes [97]. Our work on
liquid crystal dimers to investigate the effect of flexibility on nematic stability would be a first
step towards modelling the more complex systems. Since the two-conformers model has been
used to successfully explain the even-odd effect by Ferrarini et al. [44], we use the same model,
extending it to allow a biaxial nematic phase to be formed.

The additive tensor model can be improved by allowing the interarm angle to adopt a continu-
ous range of values rather than just two. This addition of conformations produced quantitatively
different results and it gives a more realistic conformational distribution [95, 96]. When a con-
tinuous range of conformations is allowed, the molecular shape, and hence, its anisotropy and
biaxiality follow a statistical distribution. A molecularfield study by Longa, Pajak and Wydro
[98] related the stability of the biaxial nematic phase withthe first two moments of the molecular
shape Gaussian distribution in the isotropic phase. They found that, generally, the transition be-
tween the isotropic and the nematic phase occurs at higher temperatures when the change in the
molecular shape is allowed. In addition, in their phase map,a Landau point is split into two triple
points connected by a line of first-order transitions between the isotropic and the biaxial nematic
phases. On the other hand, in one case which corresponds to a particular set of values for the
moments of the molecular shape distribution, the biaxial nematic phase is destabilised. Bates
[99] carried out a series of Monte Carlo simulations on how flexibility influences the stability of
biaxial nematic phases of V-shaped molecules. In his simulations, the contituent molecules are
allowed to change their orientations as well as their interarm angles. In addition to the Lewohl-
Lasher potential, Bates added a bending potential which thesquare of the difference between
the bend angle and a preferred angle, multiplied by a bendingforce constant. The resulting
conformational distribution is then Gaussian with the meanvalue at the tetrahedral angle. It was
found that the molecular flexibility has interesting effects on the original phase map of V-shaped
molecules without the bending potential [82]. In general, the biaxial nematic phase becomes
less stable compared to non-flexible molecules. Moreover, the author also derived phase maps
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relating the scaled temperature with the scaled force constant.

In our first attempt to model molecular flexibility in biaxialnematic systems, we use the additive
tensor model for its simplicity and adequacy for describingthe essential physics of real systems
of liquid crystal dimers.

5.2 Binary Mixture of Non-exchanging Linear and Bent Molecules

The first step in extending the molecular field theory for biaxial nematics to include molecu-
lar flexibility with two conformers is to study a binary mixture of non exchanging molecules.
This binary mixture has only two components. The molecules are made by joining two iden-
tical cylindrically symmetric arms. In the linear molecule, the arms are antiparallel which
make an interarm angle of180o whereas the interarm angle of the bent molecule is tetrahedral
(cos−1(−1/3) or 109.45o).

We ignore the possibility of the formation of biphasing regions since this section is only an
intermediate step towards studying the exchanging systems. The exchanging systems clearly do
not form biphasing regions. This can be verified by theGibbs phase rulewhich can be used
to determine whether it is possible to have regions of coexisting phases in equilibrium. Under
constant pressure, the Gibbs phase rule isF = C − P + 1, whereF is the degree of freedom
of the system,C is the number of components in the system andP is the number of coexisting
phases in equilibrium. In this binary mixture there are two components soC = 2. For example
consider a region of single phase orP = 1, thusF = 2 and so there are two degrees of freedom:
the temperature and the composition in the isotropic phase.Now we consider if the biphasing
region exists in this binary system, in this case we still haveC = 2 but nowP = 2 soF = 1.
This can be verified that, the system only depends on the temperature since the composition
is now determined by thelever rule. Therefore, the system has only one degree of freedom.
Therefore a region of two phases in coexistence in equilibrium can be formed. Now we consider
a single system of exchanging conformers with only one component,C = 1. In the single phase
region,P = 1 and soF = 1 and that single degree of freedom is the temperature. Suppose now
two phases can coexist in equilibrium thenP = 2 but we still haveC = 1 and thereforeF must
be zero. This means that we have to fix both the temperature andthe composition in order to
have two phases in coexistence. Therefore the a biphasing region cannot be formed.

5.2.1 Multicomponent Mixture

In this subsection, we discuss a molecular field theory for a nematic mixture with an arbitrary
number of components. Liquid crystal mixtures are interesting in their own rights and the molec-
ular field theory have been used to study several systems. Oneexample is the binary mixture
of symmetric, rod-like molecules [100]. In another example, a molecular field theory has been
used to study binary mixture of linear and bent V-shaped molecules in the uniaxial nematic
phase [44]. The latter example was studied as a first step towards modelling flexible molecules.
We discuss the molecular field theory for flexible molecules in the next section.

102



The total internal energy per molecule of a multicomponent mixture is analogous to that for a
system of identical molecules where only pairwise interactions between molecules is allowed

〈U〉 = −(1/2)
∑

xjxku
kj
Lmn〈DL

pm〉k〈DL
−pn〉j . (5.2.1)

wherexj and 〈DL
−pn〉j denote the mole fraction and the order parameters of component j,

respectively. In addition,ukjLmn denotes the interaction supertensors between moleculesj and
k. The entropy per particle has linear contributions from thecomponents for an ideal mixture in
the molecular field approximation

Sj = −kB
∑

xj

∫

fj(Ω) ln fj(Ω)dΩ. (5.2.2)

Here,kB is the Boltzmann constant andfj(Ω) denotes the orientational distribution function
of componentj. The sum of all the entropy per particle gives the total entropy of the multi-
component system. From the internal energy and the entropy we can form the Helmholtz free
energy for the system using equation (2.3.10). The variation of the free energy in terms of the
orientational distribution functions for all components is taken subject to two constraints. The
first one is that these orientational distribution functions are normalised and the second one is
that they are averages of the Wigner rotation matrices. Therefore,

∫







−xj
∑

j

(

xk
∑

ukjLmn〈DL
pm〉kDL

−pn(Ω) + kBT + kBT ln fj(Ω)
)

+ ηj/xj







dΩ = 0.

(5.2.3)
The solution of this equation gives the orientational distribution function of thej component

fj(Ω) =
exp

(

1
kBT

∑

xku
kj
Lmn〈DL

pm〉kDL
−pn(Ω)

)

exp(1 +
ηj

xjkBT )
. (5.2.4)

For normalisation of the distribution function, the denominator must be the partition function of
the j conponent. Therefore, the potential of mean torque is

Uj(Ω) = −
∑

xku
kj
Lmn〈DL

pm〉kDL
−pn(Ω). (5.2.5)

Now we can derive the more explicit free energy at equilibrium. Taking the average ofln fj(Ω)
for componentj we find

xjkBT

∫

fj(Ω) ln fj(Ω)dΩ + xj〈Uj〉 = −xj〈Uj〉 − xjkBT lnQj (5.2.6)

Hence, the free energy can be written as

A

kBT
= − 〈U〉

kBT
−
∑

j

xj lnQj. (5.2.7)
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5.2.2 Binary Mixture

In the last subsection, we have developed a molecular field theory for a general multicomponent
system. In this subsection, we apply this theory to study a binary mixture of linear and bent
molecules. The potential of mean torque responsible for theordering of componentj is

Uj(Ω) = −
∑

m,n,p

(

xju
jj
2mn〈D2

pm〉j + xku
kj
2mn〈D2

pm〉k
)

D2
−pn(Ω), (5.2.8)

wherej andk can either be linear,l, or bent component,b. We assume the gound state biaxial
nematic phase hasD2h symmetry. In order to reduce the number of parameters we use the
decoupling approximationujk2mn = uj2muk2n. In addition, we define the biaxiality parametersγj
of moleculej and the relative anisotropyǫkj of moleculesk andj as

γj = uj22/u
j
20 ǫkj = uk20/u

j
20. (5.2.9)

The biaxiality parameters and relative anisotropy of the linear and bent molecules can be found
using a method introduced for modeling V-shaped molecules without dipolar interactions which
we have discussed in section 4.2

γl = 0 γb = 1/
√
6 ǫlb = 2. (5.2.10)

These results mean the anisotropy of a linear molecule is double that of a bent molecule. In
addition, while linear molecules are uniaxial, bent molecules have optimal biaxiality. That is
γb = 1/

√
6 corresponds to the largest biaxial region in figure 2.4. The explicit expressions of

the potentials of mean torque for linear and bent molecules are

Ul(Ω) = −4u200 [〈FU 〉R00(Ω) + 2〈FB〉R20(Ω)] , (5.2.11)

Ub(Ω) = −2u200

[

〈FU 〉
(

R00(Ω) + 2/
√
6R02(Ω)

)

+ 2〈FB〉
(

R20(Ω) + 1/
√
6R22(Ω)

)]

. (5.2.12)

The molar Helmholtz free energy for the mixture at equilibrium is

A∗ = −(xl lnQl + xb lnQb) +
1

T ∗
2
(

〈FU 〉2 + 2〈FB〉2
)

. (5.2.13)

Here, the temperature is scaled with the interaction coefficient of an armT ∗ = kBT/u200, where
u200 = ubb200; 〈FU 〉 and〈FB〉 are the averages of the composite order parameters of the linear
and bent molecules

〈FU 〉 = xl〈FU 〉l + (1/2)xb〈FU 〉b,
〈FB〉 = xl〈FB〉l + (1/2)xb〈FB〉b. (5.2.14)
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Here, the composite order parameters for each component aredefined as

〈FU 〉l = 〈R2
00〉l, 〈FU 〉b = 〈R2

00〉b + 2/
√
6〈R2

02〉b,
〈FB〉l = 〈R2

20〉l, 〈FB〉b = 〈R2
20〉b + 1/

√
6〈R2

22〉b. (5.2.15)

The model turns out to be simple within the geometric mean approximation since it only de-
pends on two composite order parameters,〈FU 〉 and〈FB〉 which characterise the ordering of
the phase. This is clearly the advantage of the geometric mean approximation which facilitates
the calculations. The order parameters are determined by minimising the free energy by the
method discussed in chapter 2.

5.2.3 Calculations and Results

The calculation results are presented in a phase map in figure5.2 which shows the dependence
of the transition temperature on the mole fraction of bent molecules. The biaxial nematic phase
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FIGURE 5.2: The phase map for binary mixture of non-flexible linear and bent molecules. First
order transitions are shown as continuous lines whereas second order transitions are shown as
broken lines.

NB is found when both the order parameters,〈FU 〉 and 〈FB〉, are non zero. At the biaxial
nematic-to-uniaxial nematic phase transition, the biaxial order parameter,〈FB〉, vanishes but
the uniaxial order parameter,〈FU 〉, still remains non-zero. When the system goes into the
isotropic phase, the global minimum of the free energy is where both order parameters vanish.
From the phase map we see that the uniaxial nematic-to-isotropic phase transition temperature
decreases almost linearly on increasing the mole fraction of bent moleculesxb. In contrast, the
biaxial nematic-to-uniaxial nematic phase transition temperature increases on increasingxb. In
addition, the biaxial nematic-to-uniaxial nematic transitions is almost linear in composition at
first but then bends upward to form the Landau point of continuous direct transition between the
biaxial nematic and the isotropic phase. This behaviour is clearly due to the presence of more
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biaxial (bent) molecules which increases the biaxial nematic-to-uniaxial nematic transition tem-
perature. The uniaxial nematic-to-isotropic phase transition is first order, with the discontinuity
in the transitional order parameter decreasing on increasing mole fraction of bent molecules. On
the other hand, the biaxial nematic-to-isotropic phase transition is continuous, or second order.

The linear dependence of the uniaxial nematic-to-isotropic transition temperature on the mole
fraction can be understood if we first expand the uniaxial order parameters of the linear and
bent molecules as a Taylor series in terms of the uniaxial order parameter〈FU 〉. The rotational
partition functions are both8π2. The order parameters are given by

〈FU 〉l = (8π2)−14(T ∗)−1〈FU 〉
∫

(C20(ω))
2 dΩ,

〈FU 〉b = (8π2)−12(T ∗)−1〈FU 〉
∫

(

C20(ω) + 2/
√
6C22(ω)

)2
dΩ. (5.2.16)

The integrations can be evaluated from

∫

(C20(ω))
2 dΩ = (8π2)/5,

∫

(C22(ω))
2 dΩ = (8π2)/10. (5.2.17)

Therefore, the bifurcation temperature is

T ∗
mixt = (6− 4x0b)/15 +O(〈FU 〉). (5.2.18)

This bifurcation temperature is a good approximation of thetemperature at which the order pa-
rameters start to bifurcate. It is not the transition temperature since there is a first order phase
transition at higher temperature and so the bifurcation temperature already corresponds to an or-
dered phase (see chapter 2). However, the difference between the transition temperature and the
bifurcation temperature is small compared to the transition temperature. In consequence, since
the bifurcation point depends linearly on the mole fractionwe may expect the uniaxial nematic-
to-isotropic transition line to be close to linearity. The linear dependence might be analogous to
a binary mixture of uniaxial molecules of different anisotropy [101]. In this system, the interac-
tion strength between two different molecules,ǫAB, is the geometric mean of that between two
identical molecules,ǫAA andǫBB . Actually, this system does exhibit a negligible deviationfrom
linearity, about one per cent of the transition temperature. In addition, this deviation is magni-
fied when the interaction coefficients do not follow the geometric mean rule [100]. Another
result worth noting in our case is that the uniaxial nematic-to-isotropic transition temperature
decreases on increasing mole fraction of bent molecules. This is not surprising: bent molecules
are less anisotropic and their presence in the system depresses the transition temperature.

Since the biaxial nematic-to-uniaxial nematic phase transition is second order, the biaxial order
parameter〈FB〉 increases continuously at the phase transition. Therefore, we can obtain a better
understanding of the system by expanding the expressions for the biaxial order parameters of
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the two components as a Taylor series

Ql = Ql
U =

∫

exp
(

4T ∗−1〈FU 〉R00(Ω)
)

dΩ,

Qb = Qb
U =

∫

exp
[

2T ∗−1〈FU 〉
(

R00(Ω) +
(

2/
√
6
)

R02(Ω)
)]

dΩ,

〈FB〉l =
(

8/T ∗−1
)

〈FB〉Ql
U
−1
∫

(R20(Ω))
2 exp

(

4T ∗−1〈FU 〉R00(Ω)
)

dΩ,

〈FB〉b =
(

4/T ∗−1
)

〈FB〉Qb
U
−1
∫

(

R20(Ω) +
(

1/
√
6
)

R22(Ω)
)2

× exp
[

2T ∗−1〈FU 〉
(

R00(Ω) +
(

2/
√
6
)

R02(Ω)
)]

dΩ.

(5.2.19)

Therefore the biaxial nematic-to-uniaxial nematic transition temperature is given by (see Ap-
pendix C)

T ∗
mixt = 4(1 − xb)τl + xbτb +O(〈FB〉). (5.2.20)

where

τj =
1 + 2γ2j

5
+

(

−2 + 4γ2j
7

)

〈R2
00〉j +

8

7
γj〈R2

02〉j

+

(

3 + γ2j
35

)

〈R4
00〉j +

2

7

√

3

5
γj〈R4

02〉j +
√

2

35
γ2j 〈R4

04〉j . (5.2.21)

It can be seen thatτl andτb would be the transition temperatures of single systems madeup
of either molecules in the absence of the other component. Itis interesting to notice that in
figure 5.2 the uniaxial nematic-to-isotropic phase transition temperature is linearly dependent
on the composition of the system whereas that of the biaxial nematic-to-uniaxial nematic phase
transition is bent and asymmetric towards high mole fraction of bent molecules. We see that if
the order parameters in equation (5.2.21) of moleculel are independent of the order parameters
of moleculeb and vice versa then in place ofτl andτb would be the scaled transition temperature
of moleculesl andb in the absence of the other component, respectively. These values ofτl and
τb would be independent of the mole fraction and hence the transition temperature of the mixture
would be linear with respect to the mole fraction. However, the presence of the bent molecules
in the system reduces the order parameters for the linear molecules, henceτl is lower than the
transition temperature for the single system of linear molecules. In contrast the presence of the
linear molecules increases the order parameters for the bent molecules, thereforeτb is higher
than the transition temperature for the single system of bent molecules. In addition, from the
expression for the transition temperature we see that the contribution fromτl is four times that of
τb. Consequently, a decrease inτl dominates an increase inτb which causes a negative deviation
from linearity in the biaxial nematic-to-uniaxial nematictransition temperature. In addition,
the asymmetry in the curve is more gradual towards the linearmolecule, the more anisotropic
nematogen. The smaller perturbation of the behaviour of thelinear component by the bent
component may be understood in terms of the smaller order of the bent component due to its
smaller anisotropy and its biaxiality.
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5.3 System of Exchanging Linear and Bent Conformers

In the last section we saw that the uniaxial nematic-to-isotropic phase transition temperature of
a binary mixture of linear and bent molecules decreases continuously on increasing the mole
fraction of bent molecules. These results can partly explain the even-odd effect: liquid crys-
tals formed from odd dimers have more bent molecules than those formed from even dimers.
However, the agreement between this model and the experiments is not desirable because in
the experiments the transitional entropy change at the phase transition is significantly larger for
even dimers than for odd dimers. On the other hand, the transitional entropy change for the
non-exchanging mixture model decreases continuously on increasing the mole fraction of the
bent conformer [44]. Thus, the non-exchanging mixture doesnot capture the essential physics
of the empirical systems. An improvement of the existing non-exchanging mixture model can
be made by including the coupling between the conformational distribution and the long range
orientational order [44]. The coupling results in the more elongated conformers being favoured
over the bent ones within the uniaxial nematic liquid crystal phase. Hence, in this section we
allow the conformers to interconvert. We consider a simple model of V-shaped liquid crystal in
which the constituent molecules can adopt one of two conformations, linear and bent.

5.3.1 Multiple Conformer System

In the last section, we have discussed an application of the molecular field theory in studying
multicomponent mixtures. In these mixtures, the components are non-exchanging and their
mole fractions are fixed. In this thesis, studying mixtures is an intermediate step towards study-
ing flexible molecules. Real liquid crystals are usually flexible. That is, a molecule may adopt
many different shapes or conformations. Each conformer canbe considered as a component
in the system. However, in this case, one conformer may convert to another depending on the
thermodynamic properies and the ordering of the system. Thus there are two main differences
between a system of flexible molecules and a multicomponent mixture. First, the mole fractions
of all conformers in the system of flexible molecules can change according to thermodynamic
variables and the molecular ordering. Secondly, in a systemof flexible molecules, the confor-
mational energy also contributes towards the total energy,in addition to the anisotropic energy.
The molecular field theory for flexible molecules has been developed by Luckhurst [51]. In this
subsection we reintroduce this theory for an arbitrary number of conformers.

The thermodynamic anisotropic internal energy of a system with many conformers is identical
to that for a mixture of non-exchanging components

〈Uanis〉 = −(1/2)
∑

xkxju
kj
Lmn〈DL

pm〉k〈DL
−pn〉j , (5.3.1)

wherexj is the mole fraction of conformerj andujkLmn denote the tensorial interaction co-
efficients between two conformers,j and k. The difference between this case and the non-
exchanging system is that the mole fraction in this case is a function of the temperature and
the ordering of the system. In addition to this orientational internal energy there is a contri-
bution from the conformational energyujconf and the additional scalar interaction,ukj0 between
two non-identical molecules. Hence we need to take into account the combined conformational
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energy which can be assumed to take the form [51]

ũjconf = ujconf + ujk0 . (5.3.2)

The additional internal energy is then

〈Uconf〉 =
∑

xj ũ
j
conf . (5.3.3)

Hence the total internal energy per particle is

〈U〉 = 〈Uanis〉+ 〈Uconf 〉. (5.3.4)

The total entropy has a contribution from the orientationalentropy. The orientational entropy
has the same form as the non-exchanging mixture. In addition, there is an entropy of mixing
since the mole fractionsxj change with the orientational order of the nematic phase. Thus the
total entropy is

S = −kB
∑

{

xj

∫

fj(Ω) ln fj(Ω)dΩ+ xj lnxj

}

. (5.3.5)

In order to find the orientational and conformational distributions, we take the variation of the
free energy with respect to both distribution functions, subject to the order parameters are equal
to the averages of the Wigner functions and that the distributions are normalised

∫

f(Ω)dΩ = 1, (5.3.6)

〈DL
pm〉j =

∫

DL
pm(Ω)fj(Ω)dΩ,

∑

xj = 1. (5.3.7)

The variation of the free energy gives

δA =
∑

j

∫

{

−
∑

xkxju
kj
Lmn〈DL

pm〉kDL
−pn(Ω) (5.3.8)

+ kBTxj (1 + ln fj(Ω)) + ηj} δfj(Ω)dΩ

+
∑

j

{

−
∑

xku
kj
Lmn〈DL

pm〉k〈DL
−pn〉j + ũjconf

+ kBT
∑

j

∫

fj(Ω) ln fj(Ω)dΩ+ kBT (lnxj + 1) + βj







δxj = 0.

whereγi andβi are the undetermined Lagrange multipliers. ForδA to be zero, the expressions
inside the curly brackets must vanish simultaneously. Solving for the first expression to vanish,
we get

fj(Ω) =
exp

(

1
kBT

∑

xku
kj
Lmn〈DL

pm〉kDL
−pn(Ω)

)

exp(1 +
ηj

xjkBT )
. (5.3.9)

And so the denominator must be the partition function for theorientational distribution to nor-
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malise. Thus, the potential of mean torque for moleculej is

Uj(Ω) = −
∑

xku
kj
Lmn〈DL

pm〉kDL
−pn(Ω). (5.3.10)

In order to find the conformational distribution, first we notice that by taking the average of
ln fj(Ω) for conformerj, we have

−
∑

xku
kj
Lmn〈DL

pm〉k〈DL
−pn〉j + kBT

∫

fj(Ω) ln fj(Ω)dΩ = −kBT lnQj . (5.3.11)

Substitute this into the free energy in equation (5.3.8) we have

− kBT lnQj + ũjconf + kBT (lnxj + 1) + βj = 0. (5.3.12)

Therefore, the conformational distribution is

xj =
Qjexp(−(1/kBT )ũ

j
conf)

exp(1 + βj/kBT )
. (5.3.13)

In order to normalise the conformational distribution function, the denominator must be the
conformational-orientational partition function

Z =
∑

k

exp
(

−ũkconf/kBT
)

Qk, (5.3.14)

Hence, the conformational distribution is

xj = Z−1Qjexp(−ũjconf/kBT ). (5.3.15)

Now we find the more explicit form for the free energy at equilibrium. Taking the logarithm of
fj(Ω) and then take the orientational average, we get

kBT

∫

fj(Ω) ln fj(Ω)dΩ = −2〈Uanis〉 − kBT lnQj (5.3.16)

Now we take the logarithm forxj

kBT lnxj = −ũjconf + kBT lnQj − kBT lnZ. (5.3.17)

Adding these two expressions we get the simple form for the free energy

A = −〈Uanis〉 − kBT lnZ. (5.3.18)

5.3.2 Two Conformer System

We see that the expressions for the potential of mean torque for the exchanging system is the
same as that for the non-exchanging mixture. However the mole fractions of the two conformers
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are related to their internal energy difference∆E = ũlconf − ũbconf between them by

x0b = exp (∆E/kBT )/ [1 + exp (∆E/kBT )] . (5.3.19)

Here, the superscript zero is used to denote the value in the isotropic phase. In the nematic
phase, the mole fraction of the bent conformer is given by

xb = exp (∆E/kBT )Qb/ [Qb + exp (∆E/kBT )Ql] . (5.3.20)

We note that,xl + xb = 1. This expression for the mole fraction is valid provided theinternal
energy difference∆E is independent of the orientation of the molecules with respect to the
director. The mole fraction or conformational distribution of the bent conformer can change in
the mesophase according to

xb = x0bQb

[

x0bQb + x0lQl

]−1
. (5.3.21)

Moreover the scaled free energy in this case is different from the non-exchanging mixture since
in our system the conformers can interexchange

A∗ = − ln
(

Ql + (x0b/x
0
l )Qb

)

+
1

T ∗
2
(

〈FU 〉2 + 2〈FB〉2
)

. (5.3.22)

5.3.3 Calculations and Results

Most of the findings for the uniaxial nematic-to-isotropic transition for exchanging linear and
bent molecules have been presented by Ferrariniet al. [44] for several mole fractions of the bent
conformer in the isotropic phase. We extend their calculations to produce a phase map shown in
figure 5.3 of the scaled transition temperature versus the mole fraction of the bent conformer in
the isotropic phase. In their calculations, it was assumed that∆E and hence the istropic com-
position and the Boltzmann factorexp(−∆E/kBT ) are held constant which ignores the small
temperature dependence resulting from1/kBT , but facilitates the calculations. The exchanging
system agrees with the non-exchanging mixture and the experiments (as reviewed by Ferrarini
et al. [44]) that the uniaxial nematic-to-isotropic transition temperature decreases on increasing
the mole fraction of the bent conformer. In addition, the transitional order parameters and en-
tropy also increases continuously on increasing the mole fraction of the bent conformer. When
the mole fraction of the bent conformer is sufficiently largeat 0.97, there is a discontinuity in the
dependence of the transitional order parameter on the mole fractions. This happens since, the
nematic phase consists of many bent molecules has a very low order. Thus the ordering is not
enough to convert a significant amount of bent molecules intolinear. These results can explain
the even-odd effect which we have discussed in the Introduction of this chapter. In this model,
the mole fractions the bent conformer of even dimers are lessthan 0.97 whereas those of odd
dimers are greater than 0.97. Moreover, odd dimer, there aretwo phase transitions as we show in
figure 5.4(a). As we lower the temperature from the isotropicphase, first the system undergoes a
second order phase transition into the uniaxial nematic phase. The bent conformer also convert
into linear continuously. This is because the system is mostly bent. The uniaxial nematic phase
composed of most bent molecules is weakly ordered. Therefore, the energy difference between
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FIGURE 5.3: The dependence of the scaled transition temperature onthe mole fraction of the
bent molecules in the isotropic phase in exchanging system.First order transitions are shown
as continuous lines whereas second order transitions are shown as broken lines.

the isotropic and the uniaxial nematic phase is not enough tocause a large change in the com-
position. As we lower the temperature, the system undergoesa first order transition into another
uniaxial nematic phase. This new uniaxial nematic phase consists of mostly linear conformer
since the majority of bent conformer convert into linear. Inthe phase map we useN+

U andN−
U

to denote nematic phase rich in linear and bent conformers, which respectively are analogous to
nematic phases formed from calamitic and discotic molecules.

We also see from the phase map in figure 5.3 that forx0b < 0.97, there is a positive deviation
from linearity in the uniaxial nematic-to-isotropic phasetransition temperature. In addition, this
transition temperature is higher than that for the non-exchanging binary mixture. We may un-
derstand this difference by considering the two contributions to the total free energy from the
anisotropic free energy and the conformational free energy. At the uniaxial nematic-to-isotropic
phase transition, forx0b < 0.97, the anisotropic free energy of the uniaxial nematic phase is
positive. Therefore, in the non-exchanging mixture, the transition takes place at a lower temper-
ature when it becomes zero. However, the conformational free energy of the nematic phase is
less than in the isotropic phase due to large changes in the mole fractions at the phase transition.
In addition, the difference in the conformational free energy is greater than the anisotropic free
energy. Therefore, the total free energy of the uniaxial nematic phase is less than the isotropic
phase which causes the phase transition at a higher scaled temperature than the non-exchanging
mixture. When the mole fraction of the bent conformer is equal to 0.97, at the phase transition,
both the anisotropic free energy and the conformational free energy differences are zero and
so the transition temperature for this exchanging system isequal to that for the corresponding
non-exchanging system. In addition, the conformational free energy difference is just enough
to cause large changes in the mole fractions at the phase transition. Clearly for a system with a
small amount of the linear conformer (x0l < 0.97), just below the uniaxial nematic-to-isotropic
phase transition temperature, the conformational free energy of the nematic system rich in linear
conformer is greater than that for the system rich in bent conformer. As we lower the temper-
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FIGURE 5.4: The dependence of the order parameters on the scaled temperature for the ex-
changing system.

ature, the system becomes more and more ordered. The anisotropic free energy gets smaller.
Until it compensates for the conformational free energy difference then most bent conformer
convert to linear conformer and we see a first order jump in theuniaxial order parameter. This is
an illustration that the uniaxial nematic phase favours themore anisotropic (linear) conformer.
It is also important to note that in the regime of the uniaxialnematic formed mostly of bent
molecules, the presence of a large amount of bent molecules leads us to believe that it might
be possible for a biaxial nematic phase to form. In addition,since the uniaxial nematic phase
favours the more uniaxial (linear) conformers, we may expect that the biaxial nematic phase
would favour the more biaxial (bent) conformers.

Indeed we find a small island of biaxial nematic phase in the regime rich in bent conformer. It is
shown in the magnification of the phase map in figure 5.5. In contrast to the first order uniaxial
nematic composed of mostly linear molecules (N+

U ) to biaxial nematic (NB) phase transition,
the transition from biaxial nematic to uniaxial nematic phase consists of mostly bent conformer
(N−

U ) is continuous, the changes in the mole fraction is also continuous. Generally, this second
order transition temperature increases on increasing the mole fraction of the bent conformer
x0b in the isotropic phase. This behaviour is analogous to the non-exchanging mixture since
adding more biaxial (bent) molecules into our system increases the biaxial nematic-to-uniaxial
nematic transition temperature. The difference between this exchanging system with the non-
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FIGURE 5.5: The dependence of the scaled transition temperature onthe mole fraction of the
bent molecules in the isotropic phase in the exchanging system. First order transitions are
shown as continuous lines whereas second order transitionsare shown as broken lines.

exchanging one is that firstly theN−
U −NB transition temperature of the exchanging system is

lower for the same mole fraction of bent molecules compared to the non-exchanging system.
It is simply because in the uniaxial nematic phase, more bentconformer convert into linear,
which depresses the transition temperature. Secondly, fora vanishingly small interval ofx0b
we find that the biaxial nematic phase undergoes a second order reentrant transition back into
the uniaxial nematic phase which consists mostly of bent conformer (N−

U ) before a first order
N+

U −N−
U transition. This behaviour is shown in figure 5.4(c) which gives the order parameters

for x0b = 0.9978. In order to understand this behaviour, we need to see how themole fractions
change in the biaxial nematic phase. In figure 5.6 we show an example of how the mole fractions
change with temperature forx0l = 0.001. It is clear that even in the biaxial nematic phase, the
bent molecules still convert into the linear one, although the rate of conversion would be faster
if we do not allow the biaxial phase to form. This has a negative impact on the biaxial order
parameter and causes the biaxial order to decrease gradually and the system reenters the uniaxial
nematic. In contrast, for larger values ofx0b , the biaxial nematic phase reenters directly to the
uniaxial nematic phase which consists mostly of linear conformer. This is shown in figures
5.4(b) and 5.4(d). It is because when most of bent molecules convert to linear, the ordering
in the system is governed by the uniaxial linear conformer. The system simply does not have
enough bent molecules to order biaxially.

So far in the calculations we make the assumption that the mole fractions of linear and bent
molecules in our exchanging system is invariant in the isotropic phase. In other words, the ratio
of the conformational energy difference and the temperature ∆E/kBT is constant. This as-
sumption clearly allow us to extend the previous calculations by Ferrariniet al. [44], allowing
the biaxial nematic phase to form. In addition, we can now understand that the biaxial ordering
of the system still favours the less biaxial component. Whenwe include the explicit tempera-
ture dependence of the mole fraction, the two effects intervene and it is not easy to make that
conclusion. The other advantage of this assumption is that the mole fractions only range from
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FIGURE 5.6: The dependence of the mole fraction of the bent conformer on the scaled temper-
ature forx0

l = 0.001. The continuous line shows the value when we allow the biaxial nematic
to form. The broken line shows the value when we do not allow the biaxial nematic to form.

0 to 1 whereas the conformational energy different∆E can take any real value. Hence, it is
much more difficult to find an essential range for∆E to perform the calculations. This assump-
tion, however, is clearly unphysical since the conformational energy difference is a molecular
property and should be constant with respect to the temperature and the order of the system.

It is then essential to remove this assumption and calculatea phase map of temperature and
the conformational energy difference. For convenience we scale the conformational energy
difference with the anisotropy of an arm∆E∗ = ∆E/u200. In order to find an essential interval
for ∆E∗, we convert the phase map of the dependence of the transitiontemperature on the mole
fraction in the isotropic phase into a phase map of the dependence of the transition temperature
on the ratio∆E/kBT = ∆E∗/T ∗ which is shown in figure 5.7. Clearly in order to see the
biaxial nematic phase∆E∗ must be positive. In addition, at∆E∗/T ∗ = 7 andT ∗ = 0.2

the system is biaxial. Hence it seems that the essential interval for ∆E∗ is from 0 to about
1.4. Based on this premise, we have constructed a phase map ofthe transition temperature
with ∆E∗ in figure 5.8. This new phase map still retains some features of the old phase map.
Here the negative value of the conformational energy difference∆E∗ means that the linear
conformer is more stable in the isotropic phase, hence it is analogous to the calculations where
the isotropic mole fraction of the bent conformerx0b < 0.5 and is fixed. In contrast, the positive
value of∆E∗ corresponds tox0b > 0.5 and the bent conformer is more stable. The even-
odd effect can then be explained in the same way as that suggested by Ferrariniet al. [44].
Thus, the values of∆E∗ for odd dimers are greater than 0.96 whereas for even dimers they
are less than 0.96. We also see that theN−

U − I transition temperature decreases whereas the
NB −N−

U transition temperature increases as the value of∆E∗ goes up. This is because there
are more bent conformer at the phase transition for larger values of∆E∗ and that the bent
conformer is less anisotropic and more biaxial compared to the linear one. However, there are
differences between this representation of the results andthat when we fix the value of the ratio
∆E∗/T ∗. First of all, the biaxial nematic phase does not undergo a reentrant transition into
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the discotic uniaxial nematic phase composes of mostly bentconformer as we have seen when
we fix x0b = 0.9978. This might be because, in the ordered phase, the effect of increasing the
mole fraction of the linear conformer by ordering the phase is countered by the bent conformer
being more favoured with decreasing temperature. Therefore the mole fraction of the linear
conformer does not increase to a value large enough to cause the reentrant transition. Secondly,
for sufficiently large conformational energy difference∆E∗, greater than about 1.4, the biaxial
nematic phase is stable and the system does not undergo a transition into the calamitic uniaxial
nematic consists of mostly linear molecules. This can also be explained due to the increase in
mole fraction of the bent conformer on decreasing the temperature. In contrast, it is decreased
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by the ordering of the system. It may be that for large values of ∆E∗, the overall effect is that
the ordering of the system is not enough in order to force the bent conformer to convert into
linear in order for the biaxial nematic phase to undergo a transition into the calamitic uniaxial
nematic phase.

FIGURE 5.9: The dependence of the scaled transition temperature onthe bending force con-
stant in Bates’s calculations. Reproduced from [99].

It is of interest to make comparisons between our molecular field calculations and the Monte
Carlo simulations by Bates [99] which is shown in figure 5.9. Although our theory was devel-
oped originally for uniaxial nematics by Ferrariniet al. [44] to explain the even-odd effect found
in liquid crystal dimers, it can be thought of as a model two extreme conformers of V-shaped
molecules. In this case, contacts can be between our theory and Bates’ Monte Carlo simulation.
We should note a fundamental difference between our model and Bates’ model. The conforma-
tional distribution is discrete in our model whereas it is continous in Bates’ model. In addition,
the difference between the parameters should be noted. In our case,∆E∗ is the scaled energy
difference between the two extreme conformers. In comparison, ǫK in the simulations is the
bending force constant. It multiplies the square of the difference between the interarm angle and
the preferred angle, which in this case takes the tetrahedral value. Therefore direct comparisons
of the two models cannot be made. However, we can still see theeffects of making the model
continuous on our model. There are several similarities between the two phase maps. First,
we see that the nematic-to-isotropic phase transition temperature decreases on increasing∆E∗

in our model andǫK in Bates’ model. Secondly, the biaxial nematic phase is destabilised as
∆E∗ andǫK decrease. It can be understood that the smaller value of the energy difference in
our model and the bending force constant in Bates’ model means that the tetrahedral molecules
are easier to bend. Therefore a system with smaller∆E∗ or ǫK has a larger mole fraction of
molecules which deviate from the tetrahedral value. This leads to the system becomes more
anisotropic and less biaxial. Thirdly, the uniaxial nematic-to-isotropic and biaxial nematic-to-
uniaxial nematic transition lines approach each other asymptotically. It is because as the energy
difference or the bending force constant becomes large, themolecules become more and more
rigid and the mole fractions of those conformers whose interarm angles deviate from the tetra-
hedral value become small. Therefore, the phase behaviour is more independent of the energy

117



difference. As∆E∗ andǫK tend to infinity, there should be a direct biaxial nematic to isotropic
phase transition, in keeping with molecular field calculations and Monte Carlo simulation re-
sults for rigid tetrahedral V-shaped molecules. Moreover,there is a major difference between
our calculations and Bates’ simulation results. We notice that in our calculations, there is a first
order transition from a uniaxial nematic composed mostly oflinear molecules to a uniaxial ne-
matic composed mostly of bent molecules which was not observed in the simulation. It may be
explained that in the simulation, there was a continuous range of conformation, thus allowing
the conformers to convert continuously, favouring a secondorder phase transition.

5.4 Conclusions

The exchanging system of linear and bent molecules studied in this chapter is an idealised model
for a liquid crystal dimer. In our model, the many conformations that can be adopted by a liquid
crystal dimer is replaced by just two, one is linear and the other is bent. This model has been
used by Ferrariniet al. [44] to explain various properties of the characteristic even-odd effect
exhibited by liquid crystal dimers in uniaxial nematics. Our theory is an extension of that to
allow biaxial nematics based on the work by Luckhurst [51]. Indeed we find a stabilised biaxial
nematic region for sufficiently large conformational energy difference between the linear and the
bent conformer. Therefore in order to see the biaxial nematic phase in the experiment we need
odd spacer liquid crystal dimers whose conformational energy difference between the linear
and the bent conformers is sufficiently large. In addition, we find that the ordering of both
the uniaxial and the biaxial nematic phases stabilise the more anisotropic, less biaxial linear
conformer. This is in contrast to our expectation that biaxial ordering would stabilise the more
biaxial conformer.
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Chapter 6

Magnetic Field Induced Uniaxial

Nematic Liquid Crystals for Biaxial

Molecules

In this chapter, we formulate a molecular field theory for magnetic field induced uniaxial ne-
matic liquid crystals formed from biaxial molecules. Sincewe only consider uniaxial nematics,
we refer to it as the nematic phase in this chapter. Our work isinspired by recent experimen-
tal results on magnetic field induced nematic phase for a system of V-shaped molecules by
Ostapenko, Wiant, Sprunt, Jákli and Gleeson [40]. In section 6.1, we discuss some theoretical
and experimental works on the effect of a magnetic field on thephase behaviour of nematogen.
Next, in section 6.2, we discuss the molecular field theory and the Landau-KKLS theory for
biaxial molecules in the presence of a magnetic field. The calculation results are presented in
sections 6.3 and 6.4.

Under non-zero magnetic field strength, both the Landau-de Gennes and the molecular field
theory for uniaxial nematics predict that there are three effects. First, for temperature greater
than the clearing point, aparanematicphase with small nematic ordering is induced. The second
effect is that the first order phase transition temperature from the more ordered phase to the less
ordered phase is shifted towards higher temperature. This is called theCotton-Mouton effect
if the field is magnetic and theKerr effect if the field is electric. Finally, there is acritical
field strength, above which there is no clear transition between the paranematic and the nematic
phases.

6.1 Related Works

All the three field induced effects have been observed experimentally for a system of rod-like
molecules in electric field [102] . In contrast, early experimental studies for rod-like molecules
using magnetic field only discovered the Cotton-Mouton effect [103] and an increase in the
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transition temperature of only a few milli-Kelvin [104]. Only in recent years, both the Cotton-
Mouton effect [105] and significant increases in the transition temperature [40] due to magnetic
field have been observed for V-shaped molecules. In their experimental studies, Ostapenko et al.
[40] discovered two of the three effects predicted by theory. First, the magnetic field induces a
small nematic ordering in the isotropic phase, which forms the paranematic phase. Secondly, the
paranematic-to-nematic phase transition was measured using several experimental techniques.
By varying the magnetic field from 0 to 31 Tesla, the authors observed a magnetic field induced
first order phase transition in a thermotropic liquid crystals. The transition temperature increases
on increasing the field strength. The success of this experiment was attributed to two factors.
The first was that a strong magnetic field was available. The second factor was that the system
under study was formed from V-shaped molecules. The second factor was explained by the
authors within the framework of the Landau-de Gennes theory. In this theory, the coefficientB
in the Landau expansion multiplies the cubic of the order parameter. This coefficient controls
the strength of the first order transition.The authors argued that, in their system of V-shaped
molecules, the coefficientB is small. Therefore, the magnetic field required to observe the field
dependence of the transition temperature for bent-core nematics should be significantly smaller
than for calamitic nematics. In this chapter, we demonstrate that the coefficientB can be related
to molecular biaxiality. Since V-shaped molecules are highly biaxial, the coefficientB for this
case is significantly smaller than for calamitic molecules.This becomes apparent when we
relate the parameters in the molecular field theory to the coefficients in the Landau-de Gennes
expansion using the method in reference [64].

The mathematical structure for electric field and magnetic field induced nematic phase are anal-
ogous. A molecular field theory which described the effects of electric field on the nematic-to-
isotropic phase transition was developed by Hanus [106]. This was an extension of the Maier-
Saupe theory for uniaxial nematics to include a strong external electric field. Three effects
analogous to magnetic field induced nematics were observed.The first of those was the optical
Kerr effect. In this effect, the electric field induces a small nematic order in the isotropic phase.
This small order causes a small birefringence, which depends on the square of the applied elec-
tric field. In addition, analogous to the magnetic field induced nematics, the coefficient which
multiplies the square of the electric field is(T −Tbf )

−1. Here,T is the temperature at which the
birefringence is measured andTbf is the bifurcation temperature. The other two effects are also
analogous to those predicted for magnetic field: the first order transition temperature between
the high and low order phases increases on increasing the applied magnetic field strength and
the existence of the critical field strength.

Wojtowicz and Sheng [45] extended the Maier-Saupe theory toinvestigate the magnetic field
effects on nematic liquid crystals. In addition to the threemain effects which we discussed
before, there are three other interesting results associated with the transitional and critical order
parameter and temperature. They are, the parabolic coexistence curve, the law of rectilinear
diameter and the cubic power law. We discuss them when we repeat this calculations in the next
section. In addition, we extend their calculations to deal with biaxial molecules.

These results for magentic field induced effects using the molecular field theory have also been
confirmed by other methods. Luckhurst and Simpson [107] carried out a series of Monte Carlo
simulations for a system of magnetic field induced nematics with the magnetic field strength
greater than the critical field strength. In these calculations, the molecules were confined in a
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simple cubic lattice and neighbouring molecules interact via an orientational dependence pair
potential in addition to the interaction of the molecules with the field. These calculations showed
a qualitative agreement with the molecular field theory, presented in the same paper. Since their
calculations is done above the critical field, the system didnot exhibit a phase transition. A
more recent series of simulations was by Warsono, Abraha, Yusuf and Nurwantoro [108]. In
these simulations, the molecules are also confined in a cubiclattice. In addition, each molecule
is modelled as a three dimensional spin which can only point along six directions on the lattice
axes. In these simple calculations, the authors were able toproduce two of the three effects,
namely the magnetic field induced nematic-to-isotropic phase transition and the critical field.
Palffy-Muhoray and Dunmur [109] studied the effect of field induced nematic liquid crystals for
uniaxial molecules using both the molecular field theory andthe Landau-de Gennes theory. The
molecular field free energy was expanded upto fourth order ofthe order parameter invariants. It
was found that, in general, the free energy expansions in twotheories differ. It was because the
coefficients in the molecular field free energy expansion depends on the field strength, in contrast
with those in the Landau-de Gennes theory. This causes the bifurcation temperatureT ∗ in the
molecular field theory to depend on the field strength. The authors removed this dependence and
studied the common free energy. The direction of the field vector in the principle axis system
which minimises the free energy is along one of the principleaxes. The effects of the applied
magnetic field on the phase behaviour were studied for materials with positive and negative
diamagnetic anisotropy. For positive materials, the solution with the director parallel to the field
is always energetically favourable. In contrast, for negative materials, the director tends to align
perpendicular to the field in the nematic phase and parallel to the field in the paranematic phase.

6.2 Molecular Field Theory and Landau-KKLS Theory

6.2.1 Molecular Field Theory

As usual, the first step in formulating the molecular field theory is to construct the internal
energy. In this case, it consists of two parts

U = UU + UH . (6.2.1)

The first part,UU , is generated by the pairwise intermolecular interactionsin the uniaxial ne-
matic phase formed from biaxial molecules. It can be constructed by considering the internal
energy (2.3.2) for a general system of biaxial molecules in biaxial nematic. In this case, the
nematic phase is uniaxial, the indexp which represents the phase symmetry should be set equal
to zero. The remaining Wigner functionsD2

0m(Ω), where(Ω) = (α, β, γ), are identical to the
spherical harmonicsC2m(ω), where(ω) = (β, γ). Hence,

UU = −(1/2)
∑

u2mn〈C2m〉〈C2n〉. (6.2.2)

The second part,UH , is generated by the interaction of the molecules with the applied magnetic
field. In order to construct this energy, we assume that the director is parallel to the field. This
is in agreement with the calculations by Palffy-Muhoray andDunmur which showed that in this
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orientation of the director, the free energy is minimised [109] . Hence,UH can be written as

UH = −(3/2)B2χp
20, (6.2.3)

whereB is the magnetic flux density andχp
20 is the material susceptibility tensor per molecule.

The magnetic interaction has this form because if we defineB2m as a second-rank tensor such
thatUH = −B20χ

p
20, then

B20 = (1/2) (2BZZ − (BXX +BY Y )) = (3/2)BZZ = (3/2)B2. (6.2.4)

Here, we use the fact that the second-rank tensorB is tracelessBXX + BY Y + BZZ = 0. In
addition,χp

20 can be related to the molecular susceptibility tensor,χ2n, by

χp
20 = χ2n〈C2n〉. (6.2.5)

Hence,
UH = −

∑

(3/2)B2χ2n〈C2n〉. (6.2.6)

Now we can construct the Helmholtz free energy according to equation (2.3.10) subject to two
constraints in order to find the distribution function at equilibrium. The first one is that the distri-
bution function is normalised. The second one is that the order parameters are the convolutions
of the modified spherical harmonics with the distribution function

〈C2m〉 =
∫

C2m(ω)f(ω)dω. (6.2.7)

The minimisation gives

∫

(

−
∑

u2mn〈C2m〉C2n(ω)− (3/2)B2χ2nC2n(ω) + kBT (ln f(ω) + 1) + η
)

dω = 0.

(6.2.8)
Solving this equation gives us the functional form of the distribution function at equilibrium.
From that we can find the potential of mean torque

U(ω) = −
(

∑

u2mn〈C2m〉C2n(ω) + (3/2)B2χ2nC2n(ω)
)

(6.2.9)

In order to reduce the number of parameters, we use the geometric mean approximation. Hence,
the molecular interaction part only depends on one biaxiality parameter. For the field interaction
part, we see that there could be two parameters. They are related to the two components of
the molecular magnetic susceptibility tensor,χ2n. However, in order to simplify the problem,
we assume thatχ22 = γχ20. The field interaction part now only depends onγ and one more
parameter, namelyδ20 = (3/2)B2χ20/u200. The potential of mean torque now becomes

U(Ω) = −u200 (〈FU 〉+ δ20) (C20(Ω) + 2γReC22(Ω)) . (6.2.10)

In order to simplify the numerical calculations, we can write the partition function in terms of
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the zeroth order Bessel function of the first kind

Q = 2π

∫ π

0
exp[(1/T ∗) (〈FU 〉+ δ20) d

2
20(β)]I0

(

γ (1/T ∗) (〈FU 〉+ δ20) 2d
2
22(β)

)

sin βdβ.

(6.2.11)
Here,

In(a) =
1

π

∫ π

0
cos (nθ) exp (a cos θ)dθ. (6.2.12)

Finally, the equilibrium orientational Helmholtz free energy is

A/kBT = − lnQ+ (1/2T ∗) 〈FU 〉2. (6.2.13)

6.2.2 Landau-KKLS Theory

The Landau-de Gennes theory has also beeen used to explain the effects of magnetic and electric
fields on nematogens. This theory has the advantage over the molecular field theory of its
simplicity. As we can see in Appendix F.1 that for the Landau-de Gennes expansion up to the
fourth order of the order parameter, all results are analytical. However, the classical Landau-
de Gennes theory does not relate the coefficients in the free energy expansion to the molecular
biaxiality. One method which was employed to do that is to derive the Landau expansion from
the non-equilibrium free energy in the molecular field theory [63, 64]. We discuss the non-
equilibrium free energy in section 2.5. This method was at first employed for uniaxial molecules
in uniaxial nematic phase [63]. Later, it was extended for various other systems, including
biaxial molecule in uniaxial nematics in zero field [64]. Here we extend this method to derive
the Landau-de Gennes expansion from the molecular field theory for uniaxial nematics in the
presence of a magnetic field.

Here, we argue that in the Landau-KKLS theory, the contribution of the field interaction to
the free energy expansion only comes from the internal energy and does not come from the
expansion of the partition function. First of all, maximising the entropy using the method which
we have discussed in section 2.5.1 gives us the partition function of the form

Z(η) =

∫

exp(ηFU (ω))dω. (6.2.14)

Now the non-equilibrium order parameter can be written as

〈FU 〉 = Z(η)−1

∫

FU (ω)exp(ηFU (ω))dω. (6.2.15)

The next step in the Landau-KKLS theory is to invert this function to getη as a function of
〈FU 〉. Then, the partition function becomes a function of the order parameter〈FU 〉. We can
see that this procedure does not involve the dependence on the field. We note that if the field
is electric instead of magnetic then the entropy in the non-equilibrium free energy may still
have contribution from the external field. For example, in a similar system the electric field
does induce a macroscopic polarisation. As a result the entropy should be maximised with two
constraints which correspond to the polar first-rank and non-polar second-rank order parameters.
In this case the entropy does depend on the field [110]. On the other hand, magnetic field
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does not induce polar order and the interaction between magnetic dipoles is negligibly small.
Therefore in our calculation, the only contribution of the field to the non-equilibrium free energy
is from the internal energy. Consequently, we do not need to redo the whole procedure in order
to derive the Landau-KKLS theory. We only need to add the fieldcontribution in the internal
energy to the free energy in zero field in reference [64] in order to get the following Landau-
KKLS expansion

A/u200 = (3/4)a(T ∗ − T ∗
bf)〈FU 〉2 + (1/4)bT ∗〈FU 〉3 + (9/16)C〈FU 〉4 − δ20〈FU 〉. (6.2.16)

Here,

T ∗
bf =

(

1 + 2γ2
)

/5,

a =
10

3(1 + 2γ2)
,

b = −
(

100

21

)

(

1− 6γ2
)

(1 + 2γ2)3
,

C =

(

400

1764

)

(

56γ6 + 444γ4 − 78γ2 + 17
)

θC

(1 + 2γ2)5
, (6.2.17)

Here, we note that the Landau-KKLS expansion differs from the original Landau-de Gennes
expansion in that the coefficient which multiply the cubic term is temperature dependent. We call
the latter thepure Landautheory, as opposed to theLandau-KKLStheory. A direct contact can
be made between the Landau-KKLS and the pure Landau theoriesby replacing the temperature
dependent of the coefficient which multiplies the cubic termwith a constant which we shall call
θB. In other words, we replacebT ∗ byB = bθB. Solving this system is the same as solving the
Landau-de Gennes theory for uniaxial nematics which has been reviewed in reference [111] and
which is rediscussed in Appendix F.1.

6.3 Field Induced Phase Transition

6.3.1 Molecular Field Theory

First, we discuss the pretransitional behaviour of the system. The application of a magnetic field
induces a small order in the isotropic phase. This new phase is called the paranematic phase.
As the temperature is lowered, the order parameter increases and there might be a transition
between the nematic and the paranematic phase. We can get theinduced order parameter in the
paranematic phase by expanding the exponential in the partition function in terms of the order
parameter〈FU 〉 upto first order. The dependence of the order parameter on thefield strength in
the paranematic phase is

〈FU 〉 =
(2γ2 + 1)δ20
5(T ∗ − T ∗

bf)
. (6.3.1)

Hence, we see that at a fixed temperature in the paranematic phase, the induced order parameter
increases quadratically with the magnetic flux density,B.
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The second effect due to the field is the induced transition temperature. We find the nematic-to-
paranematic phase transition temperature by studying the dependence of the order parameter on
the scaled temperature for a fixed value of the scaled magnetic flux densityδ20 and molecular
biaxiality, γ. The nematic-to-paranematic transition temperature is located when there is a jump
in the order parameter. In figures 6.1, we show the dependenceof the order parameter〈FU 〉 on
the scaled temperature for different values ofδ20 andγ. The value ofγ is kept fixed in each
figure. We see that, when the field strength is zero,δ20 is zero, the first order transition is essen-
tially between the uniaxial nematic and the isotropic phase. This phase transition temperature
increases as we increaseγ, in agreement with figure 2.4. Asδ20 increases, the jump in the order
parameter gets smaller. When this gap just starts to be zero then we reached a critical point. For
the field strength higher than the critical value, the nematic phase and the paranematic phase
are no longer distinguishable. For each value ofγ, the values which we use forδ20 are equally
spaced. In addition, the transition temperatures found forthose values ofδ20 are also equally
spaced, as can be seen from the vertical lines connecting thetwo curves in the two phases.
Therefore, the scaled transition temperature increases linearly withB2 for a fixed value ofγ.
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FIGURE 6.1: The dependence of the combined order parameter〈FU 〉 on the scaled temperature
as the field strength is varied for different values of the biaxiality parameterγ. The order
parameters at the phase transition follows parabolic coexistent curves of the form(〈FU 〉N −
〈FU 〉c)2 = α(T ∗−T ∗

c )whereα is a constant. The values ofα in these case are: (a) 4.295, (b) 5,
(c)6.065, (d) 6.763. The values ofδ20 used in these case are: (a) [0:0.002:0.008 0.01046 0.012],
(b) [0:0.001:0.0040.00490 0.006], (c) [0 .0005 .00108 .0015] and (d) [0 .000111 .00025]. Here,
we use0 : a : b to denote an array of parameters from 0 tob with regular spacinga.
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In their calculations for the field induced uniaxial nematic-to-isotropic phase transition, Wojtow-
icz and Sheng [45] reported that at the transition, the coexistent values for〈FU 〉 in the nematic
and the paranematic phases follow a quadratic curve. Let us call the value of〈FU 〉 at the nematic
phase〈FU 〉N and that at the paranematic phase〈FU 〉P . In order to find a coexistent parabola
for a value ofγ, first we fit a parabola through the data points, which are〈FU 〉N and〈FU 〉P for
different values ofδ20. The parabolae are plotted as red curves in figures 6.1. Then we take the
value of the critical order parameter and scaled temperature at the base of the parabola. After
that we fit a line through the data(〈FU 〉N − 〈FU 〉c)2 against(T ∗ − T ∗

c ). Here, we use〈FU 〉c to
denote the value of the order parameter at the phase transition at the critical field. The gradient
of the line gives us the relation between the two quantities(〈FU 〉N − 〈FU 〉c)2 = α(T ∗ − T ∗

c ).
Forγ = 0 we foundα = 4.295. This implies the relation(SN − SP )

2 = 17.18.(T ∗ − T ∗
c ). We

note that the previous calculations by Wojtowicz and Sheng [45] gave the constant in the latter
relation equals to 16.45. As we explain later in this chapter, the estimation ofT ∗

c has some limi-
tations which prevents us from achieving more accuracy. Ourresults forδc20 andT ∗

c are slightly
different from Wojtowicz and Sheng [45]. Our estimated values forδc20 andT ∗

c in zero field are
0.01046 and 0.23094, respectively. In comparison, the estimated values for by Wojtowicz and
Sheng [45] is 0.01044 and 0.23092, respectively. The differences between the two calculations
may not seem very large. However, they may introduce a largerrelative difference when we
estimate the constantα, as we have seen.

We see that asγ increases, the difference between the zero field transitiontemperature and the
critical transition temperature (at the critical field) gets smaller. There are two reasons for that
as we can conclude from figures 6.1. The first reason is the value of 〈FU 〉 at the phase transition
in zero field gets smaller asγ increases due to an increase in molecular biaxiality. The second
reason is that the parabola is less curved asγ increases. The cause for this second reason is
unknown. Consequently, the point from the transition temperature in zero field to the bottom of
the parabola, which is the critical point, gets smaller asγ increases.

In figure 6.2 we show the dependence of the scaled transition temperature on the scaled magnetic
flux densityδ20 for different values of the biaxiality parameterγ. The curve for each value of
γ is linear, in keeping with the results we showed in figure 6.1.The bottom line in figure 6.2
depicts the dependence ofT ∗

NP on δ20 for uniaxial molecules. As the value ofγ goes up,T ∗
NI

increases, as expected for the nematic to paranematic transition for biaxial molecules. This is in
accord with the phase map in figure 2.4 and the order parameterplots in figure 6.1.

We can see that the critical temperature and the slopes of thelines in figure 6.2 also increases
on increasingγ. The latter implies that for the same applied field, the difference between the
field induced transition temperature and the nematic-to-isotropic transition temperature in zero
field for biaxial molecules is larger than that for uniaxial molecules. This is as expected since
experimental results [40] have shown that a significant increase of the field induced transition
temperature has only been observed in V-shaped molecules rather than rod-like molecules. In
other words, while an increase in the transition temperature due to applied field for rod like
molecules may be insignificant, it can be significant for biaxial molecules. One interesting
feature we also need to mention is that the critical field strength gets smaller asγ increases.
This is because the gap between the zero field transition temperature and the critical temperature
gets smaller asγ increases, hence a smaller field strength is required to induce the transition
temperature up to the critical point. Consequently, for a system of highly biaxial molecules,

126



it only requires a much smaller applied field to observe the critical point than for a system of
rod-like molecules.
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FIGURE 6.2: The dependence of the transition temperature on the scaled magnetic flux density
δ20 as the biaxialityγ increases. The values ofγ, from bottom to top, are: 0, 0.1, 0.14, 0.18,
0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.31, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36.

Here, we can to make a contact to the experimental results by Ostapenko et al. [40]. In their
experimental result, the ratio

TNP − Tbf

Tcp − Tbf
(6.3.2)

approaches 2.4 at the highest field strength. Here,Tcp denotes the nematic-to-isotropic phase
transition in zero field,TNP denotes the field induced transition andTbf denotes the bifurcation
temperature. However, the magnetic field used in their experiment has not reached the critical
value. Therefore, we would expect the ratio

Tc − Tbf

Tcp − Tbf
, (6.3.3)

whereTc denotes the critical temperature, to be greater than 2.4 fortheir compound. In contrast,
in our calculations this ratio is almost constant as we vary the biaxiality parameterγ and roughly
equals to 1.5, in agreement with their prediction using the Landau-de Gennes theory. This dis-
agreement may be due to the poor estimation ofTbf in the molecular field theory. The estimated
value ofTbf can be improved by using the two-site cluster theory [112]. Therefore, in making
comparisons with their results, we do not use the ratio(Tc − Tbf )/(Tcp − Tbf ). Instead, we rely
on the ratios of the three scaled temperatureT ∗

c , T ∗
cp andT ∗

bf . We note that this comparison is
imperfect since the experiment has not reached the criticalfield. We assumeTNP (Hmax) which
is the induced transition temperature at the highest value of the magnetic field strengthH used
in the experiment to be the critical temperature. In addition, the values for the temperature in
the calculations are in scaled unit, in contrast with those in the experiment which are in degree
Kelvin. The latter difference can be removed by taking the ratiosT ∗

bf/T
∗
cp, T ∗

c /T
∗
cp andT ∗

bf/T
∗
c

and compare them with the associated experimental values. In the experiment,Tcp = 363.1K.
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We take the lower bound forTc atTN−P (Hmax) to be363.77K. This gives usTbf = 362.82. In
figure 6.3, we show the calculated values for these three ratios from the molecular field theory.
As γ decreases, the gaps between the ratios also decrease. In addition, the three ratios tend to
one asγ gets larger. This is as we expect since forγ = 1/

√
6, the uniaxial nematic-to-isotropic

phase transition is second order and therefore the three temperatures should be equal. In the
figure, we also show the value for the three ratios from the experiment atγ = 0.37. Here we see
that, according to the plot,γ = 0.37 is the best approximated value for the V-shaped molecules
used in the experiment by Ostapenko et al. [40]. From equation (4.2.5), we can calculate the
interarm angle of their V-shaped molecules which is101.59◦.
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FIGURE 6.3: The data in blue are the dependence of the temperature ratios on the biaxiality
parameterγ as predicted by the molecular field theory,◦ T ∗
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cp and⋄ T ∗
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c .
The data in red are the associated experimental results, plotted atγ = 0.37.

6.3.2 Landau-KKLS Theory

In addition to the molecular field theory, we can also use the Landau theory to predict the pre-
transitional behaviour. In the paranematic phase, we assume that the order parameter〈FU 〉 is
small. Hence, the free energy only depends on the quadratic of 〈FU 〉 (see equation (6.2.16)). In
this case, the pure Landau theory and the Landau-KKLS theoryare the same. It is because the
two theories are the same up to second order. The value of〈FU 〉 in the paranematic phase is
given by

〈FU 〉 =
(2γ2 + 1)δ20
5(T ∗ − T ∗

bf )
. (6.3.4)

We see that this result agrees with the molecular field theory.

First, we discuss the solutions for the pure Landau theory because it is more analytical. We
discuss the details of the calculations in Appendix F.1. Thetransition temperature for each
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value of the magnetic flux density is given by

T ∗(δ20) = T ∗
bf +

B2

27aC

(

1 +
δ20
2δc20

)

. (6.3.5)

In this case, it is clear that the transition temperature increases linearly withδ20. Here, the
critical field is

δc20 = − B3

324C2
. (6.3.6)

Due to the complex forms ofB andC (see equations (6.2.17)), it is not obvious thatδ20 gets
smaller asγ increases. However, it is clear that, atγ = 1/

√
6, B vanishes whereasC does

not. Henceδc20 vanishes atγ = 1/
√
6. This is in keeping with the fact that atγ = 1/

√
6, the

nematic-to-isotropic phase transition is the second order, hence the critical temperature is the
same as the nematic-to-isotropic transition temperature.Therefore the critical field is zero in
this case.

In addition, the coexistent values of order parameter at thephase transition is

QN,P = Qc

(

1±
√

1− δ20
δc20

)

. (6.3.7)

Clearly, they follow the parabola

(QN,P −Qc)
2 = Q2

c

(

1− δ20
δc20

)

. (6.3.8)

This is a qualitative agreement with the molecular field theory in figures 6.1.

For the Landau-KKLS theory, simple analytical solutions for the transition temperature and the
transitional order parameter for non-zero field cannot be obtained. However, we can still find the
expressions for the critical field and critical transition temperature. We discussed these solutions
in Appendix F.2. The critical temperature is given by

T ∗
c =

1

2





18aC

b2
−

√

(

18aC

b2

)2

− 4T ∗
bf

18aC

b2



 . (6.3.9)

The critical field is dependent on the critical temperature

δc20 = − 1

324

b3T ∗3
c

C2
. (6.3.10)

First we setθC to 0.45 as this value gives phase maps which are in good agreement with the
molecular field theory in the geometric mean and Sonnet-Virga-Durand limits [64]. Our pre-
liminary calculations has shown that the transition temperature also increases linearly with the
applied field. Hence, in representing the phase maps, we onlycalculate the transition tempera-
ture at zero and critical field and connect them to get the phase maps. In figure 6.4(a), we show
the phase map for the Landau-KKLS theory with the regularisation parameterθC = 0.45. We
see that these results disagree dramatically with the molecular field calculations in figure 6.2.
The critical field is only ten per cent of the molecular field results. One reason is because when

129



0 0.002 0.004 0.006 0.008 0.01 0.012
0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

δ20

T ∗

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012
0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

δ20

T ∗

(b)

0 0.002 0.004 0.006 0.008 0.01 0.012
0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

δ20

T ∗

(c)

0 0.002 0.004 0.006 0.008 0.01 0.012
0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

δ20

T ∗

(d)

FIGURE 6.4: The dependence of the scaled transition temperature onthe scaled magnetic flux
densityδ20 for different values of the biaxiality parameterγ for (a) the Landau-KKLS theory
with θC = 0.45 and for the pure Landau theory with (b)θB = θC = 0.45, (c) θB = 0.225 and
θC = 0.45 and (d)θB = θC = 0.225. The values ofγ, from bottom to top lines: 0, 0.1, 0.14,
0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.31, 0.32, 0.33, 0.34 0.35 and 0.36.

we setθC = 0.45, the order parameter at the phase transition is much smallercompared to the
molecular field theory [64]. In marked contrast, when we set both θB andθC to 0.45 for the
pure Landau theory as in figure 6.4(b), the predicted critical field is in better agreement with
the molecular field theory. Now we note that the value of the critical field in the Landau-KKLS
theory depends on the cube of the critical temperatureT ∗

c whereas that value in the pure Landau
theory depends on the cube ofθB. The value ofT ∗

c is about 0.22 and does not change very much
with γ, this is only half the value which we have set forθB in the pure Landau theory (0.45).
Hence the pure Landau theory should produce similar resultsto the Landau-KKLS theory in
figure 6.4(a) if we setθB = 0.225 and keepingθC = 0.45. Indeed it is true and the results are
shown in figure 6.4(c). In fact, in order to compare the pure Landau theory with the Landau-
KKLS theory, it might be best to keepθB = 0.225 in the pure Landau theory since it is close
to the range ofT ∗

c in the Landau-de Gennes theory. In this case, a better approximation might
be achieved by setting bothθB andθC to 0.225 in the pure Landau theory since that value is
close to the temperature range which the transition takes place. We show these results in figure
6.4(d). Now, compared to the molecular field theory, we get a good agreement on the nematic-
to-isotropic transition temperature and the agreement on the critical field is much better than in
figure 6.4(c).

In order to make further decision about which values of the parameters(θB , θC) in the pure
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Landau theory would be in better agreement with the molecular field theory, we compare the
phase maps and the dependence of the transitional order parameter onγ. The plots are shown in
figures 6.5. It is clear that if we use the transitional order parameter as a deciding factor then we
may use one of the two setsθB = θC since they give better agreements with the molecular field
theory. Furthermore, the shape of the phase map forθB = θC = 0.225 gives a better agreement
with the molecular field theory thanθB = θC = 0.45. Therefore it is a better parameter set. Note
that this is also what we have decided based on figures 6.4.

In keeping with the parameter set which we have chosen for thepure Landau theory, we take
θC = 0.225 in the Landau-KKLS theory. We know that the small temperature range ofT ∗

c for
the Landau-KKLS theory is similar to fixingθB at 0.225 in the pure Landau theory. We plot the
dependence of the transitional order parameter and transition temperature for the Landau-KKLS
theory withθC is set equal to 0.225 in figure 6.6. As we expect, the agreementwith the pure
Landau theory withθB = θC = 0.225 is very good. In addition, we show the phase map for
the Landau-KKLS theory withθC = 0.225 in figure 6.7. Again, the similarity between this and
figure 6.4(d) is remarkable.

6.4 Critical-point Exponent

In their paper, Wojtowicz and Sheng [45] looked for the critical-point exponentβ, such that at
δ20 = δc20,

β = lim
T ∗→T ∗

c

log (T ∗
c − T ∗)

log (〈FU 〉 − 〈FU 〉c)
. (6.4.1)

They claimed that the critical-point exponent isβ = 3 for the two cases,T ∗ < T ∗
c andT ∗ > T ∗

c .
However, the authors did not explain the details of their calculations. Here, we present our
method to estimateβ for different values of the biaxiality parameterγ. The first step to calculate
the critical exponent is to estimateT ∗

c and〈FU 〉c as accurately as possible. We estimateT ∗
c by

plotting 〈FU 〉 againstδ20. When we see an interval ofδ20 where the transition changes from
first to second order, we perform more calculations in that interval, with a smaller range ofT ∗

aroundT ∗
c . This process is repeated until we reach a desired accuracy.Note that in practice

we can only be certain aboutT ∗
c up to four decimal places, because as we get closer toδc20, the

phase transition becomes less noticeable. The second step is to find〈FU 〉c. We can estimate it
as〈FU 〉NI/2 where〈FU 〉NI is the nematic-to-isotropic phase transition in zero field.This is
in keeping with the quadratic behaviour in figures 6.1. In thethird step, we produce the plot of
log (T ∗ − T ∗

c ) againstlog (〈FU 〉 − 〈FU 〉c). We takeT ∗ as close as possible toT ∗
c in order for

the plot of the data is visibly straight. Then we fit a line through the data points. The slope of
the line gives us the exponent.

We note that there is a limitation in these calculations for the molecular field theory. The method
we use to estimate the critical temperature only accurate upto four decimal places. Hence, if we
get too close to the critical temperature (between 0.00005 and 0.0001 near the estimated value
for Tc), the relative error of the difference between a temperature and the critical temperature
would be larger. Consequently, the log-log plot does not produce a straight line for such data.
However as we will see, with the Landau theory, the convergence of the critical exponent can be
slow and we may need to get closer toTc to estimate it more accurately. In table 6.1, we show
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our estimated values for the critical-point exponentβ for the two theories whereT ∗ is greater
or less thanT ∗

c , for the molecular field theory. We also show the estimated values forT ∗
c and

δc20. In addition, the intervals ofT ∗ which we use in the calculations are also shown. We see
that, forT ∗ < T ∗

c , the estimated exponent is less than 3. In contrast, forT ∗ > T ∗
c , it is greater

than 3. An common feature is that asγ increases, the estimated values ofβ gets further away
from 3. Forγ = 0.36 andT ∗ > T ∗

c , we see that the deviation ofβ is quite dramatic. Its value
of 3.886 is now closer to 4 than 3. The reason for those deviation might be because of the slow
convergence of the series expansion ofT ∗

c −T ∗ in terms of〈FU 〉− 〈FU 〉c. However, we cannot
get any closer to the critical temperature without introducing a significant error and we do not
have an analytical value forβ for the molecular field theory.

T ∗ < T ∗
c T ∗ > T ∗

c

γ T ∗
c δc20 ∆T ∗ β ∆T ∗ β

0 0.23094 0.01046 [0.2307, 0.2309] 2.739 [0.231, 0.2312] 3.252
0.2 0.234265 0.0049 [0.232, 0.2342] 2.718 [0.2343, 0.235] 3.372
0.3 0.24261 0.00109 [0.242, 0.2425] 2.657 [0.24265, 0.243] 3.369
0.36 .2533 0.000111 [.2534, .2535] 2.533 [0.25335, 0.2534] 3.886

TABLE 6.1: Table for the critical exponentβ at the critical fieldδc20 for the molecular field
theory. T ∗

c denotes the critical temperature.∆T ∗ denotes the temperature range which we
use to estimateβ. For T ∗ < T ∗

c , β = log (T ∗

c − T ∗)/ log (〈FU 〉c − 〈FU 〉). For T ∗ > T ∗

c ,
β = log (T ∗ − T ∗

c )/ log (〈FU 〉 − 〈FU 〉c).

One way to understand this problem better is to use the pure Landau theory. In this theory, we
have analytical results for both〈FU 〉c andT ∗

c . Hence, in the calculations we can get as close to
T ∗
c as we want. In addition, the pure Landau theory has an advantage over the Landau-KKLS

theory in this case because we now have an analytical value for β. For the pure Landau theory,
we proved in Appendix F.1 that the critical-point exponent is cubic. In addition, at the critical
field, the order parameter is the solution of the cubic equation

3

2
C(〈FU 〉 − 〈FU 〉c)3 = a〈FU 〉(T ∗

c − T ∗). (6.4.2)

In table 6.2, we give the estimated values forβ. In this case, asT ∗
c is known exactly, we can

use its value in the calculations. We use 100 points in each case within [T ∗
c − 0.001, T ∗

c ] and
[T ∗

c , T
∗
c +0.001]. Here, we observe the same behaviour as we saw for the molecular field theory

that the critical exponent gets further away from 3 as we increaseγ. In general, the values ofβ
is closer to 3 than the molecular field theory. However, the error between the estimated values
for β reported in the table and the analytical value is still large. In order to test if the source
of error really comes from the convergence, we do the same calculations. This time we use a
smaller interval around the critical point asT ∗

c ± 0.0001. The results are shown in table 6.3.
We see that the improvement in the estimated values forβ is remarkable. Hence, we conclude
that the error in the estimated values forβ comes from the slow convergence of the polynomial
expansion. As the smaller interval aroundT ∗

c is used in the calculations, the estimated values for
the critical-point exponentβ gets closer to the true value, which is 3. This is in agreementwith
the value of the critical-point exponent reported in the calculations by Wojtowicz and Sheng
[45].
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T ∗ < T ∗
c T ∗ > T ∗

c

γ T ∗
c δc20 ∆T ∗ β ∆T ∗ β

0 0.222059 0.0050461 [T ∗
c − 0.001, T ∗

c ] 2.819 [T ∗
c , T

∗
c + 0.001] 3.24

0.2 0.230842 0.0032462 [T ∗
c − 0.001, T ∗

c ] 2.797 [T ∗
c , T

∗
c + 0.001] 3.28

0.3 0.241827 0.0009033 [T ∗
c − 0.001, T ∗

c ] 2.7 [T ∗
c , T

∗
c + 0.001] 3.407

0.36 0.253122 0.00009647 [T ∗
c − 0.001, T ∗

c ] 2.617 [T ∗
c , T

∗
c + 0.001] 3.484

TABLE 6.2: Table for the critical exponentβ at the critical fieldδc20 for the pure Landau
theory. T ∗

c denotes the critical temperature.∆T ∗ denotes the temperature range which we
use to estimateβ. For T ∗ < T ∗

c , β = log (T ∗

c − T ∗)/ log (〈FU 〉c − 〈FU 〉). For T ∗ > T ∗

c ,
β = log (T ∗ − T ∗

c )/ log (〈FU 〉 − 〈FU 〉c).

T ∗ < T ∗
c T ∗ > T ∗

c

γ T ∗
c δc20 ∆T ∗ β ∆T ∗ β

0 0.222059 0.0050461 [T ∗
c − 0.0001, T ∗

c ] 2.937 [T ∗
c , T

∗
c + 0.0001] 3.071

0.2 0.230842 0.0032462 [T ∗
c − 0.0001, T ∗

c ] 2.93 [T ∗
c , T

∗
c + 0.0001] 3.092

0.3 0.241827 0.0009033 [T ∗
c − 0.0001, T ∗

c ] 2.906 [T ∗
c , T

∗
c + 0.0001] 3.118

0.36 0.253122 0.00009647 [T ∗
c − 0.0001, T ∗

c ] 2.856 [T ∗
c , T

∗
c + 0.0001] 3.242

TABLE 6.3: Table for the critical exponentβ at the critical fieldδc20 for the pure Landau
theory. T ∗

c denotes the critical temperature.∆T ∗ denotes the temperature range which we
use to estimateβ. For T ∗ < T ∗

c , β = log (T ∗

c − T ∗)/ log (〈FU 〉c − 〈FU 〉). For T ∗ > T ∗

c ,
β = log (T ∗ − T ∗

c )/ log (〈FU 〉 − 〈FU 〉c).

6.5 Conclusions

In this chapter, we applied the molecular field theory to study the effects of magnetic field on
a system of biaxial molecules in uniaxial nematic. We are motivated by recent experimental
success in observing a significant increase in the uniaxial nematic-to-isotropic phase transition
temperature due to the magnetic field. Their experimental success was attributed to a high
magnetic field strength used in the experiment. Using the molecular field theory, we have shown
that for the same applied magnetic field strength, the gap between the field induced transition
temperature and the transition temperature at zero field increases on increasing the biaxiality
parameter. Hence we conclude that the experimental successes can also be attributed to the high
molecular biaxiality of the V-shaped molecules. Our theoryalso predicts that the transitional
order parameter follows a quadratic curve, in analogy with previous calculations for uniaxial
molecules. In addition, we have calculated the critical field strength, above which the nematic
and paranematic phases are indistinguishable. We have alsostudied the Landau theory and
the Landau-KKLS theory which make the same qualitative predictions with the molecular field
theory.
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FIGURE 6.5: The dependence of the transitional order parameter andtransition temperature
for various models: (a) and (b) are the results for the molecular field theory, the rest of the plots
are for the pure Landau theory, with different values for theregularisation parameters: (c) and
(d) are forθB = θC = 0.45, (e) and (f) are forθB = 0.225 andθC = 0.45, (g) and (h) are for
θB = θC = 0.225.
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FIGURE 6.6: The dependence of the transitional order parameter andtransition temperature
for the Landau-KKLS theory withθC is set equal to 0.225.
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FIGURE 6.7: The dependence of the transition temperature on the scaled magnetic flux density
δ20 for the Landau-KKLS theory withθC as the biaxialityγ increases. The values ofγ, from
bottom to top, are: 0, 0.1, 0.14, 0.18, 0.2, 0.22, 0.24, 0.26,0.28, 0.3, 0.31, 0.31, 0.32, 0.33,
0.34, 0.35, 0.36.
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Chapter 7

Biaxial Smectic A Phases

In this chapter, we study a molecular field theory for biaxialsmectic A phases ofD2h symmetry
which are formed from molecules also ofD2h symmetry. After reviewing some related works
in section 7.1, we discuss the molecular field theory in section 7.2. The calculation results for
the molecular field theory are presented in sections 7.3 and 7.4.

7.1 Related Works

The first prediction of biaxial smectic A phases seems to havebeen by de Gennes [41]. The
structure of biaxial smectic A phases were later analysed byBrand, Cladis and Pleiner [113,
114]. A biaxial smectic A phase formed from board-like molecules hasD2h symmetry whereas
one formed from V-shaped molecules can haveC2v symmetry [113]. An idealisation of the
structure of the former phase is shown in figure 7.1 (a). The latter is a ferroelectric phase without
chiral molecules and its idealised structure is shown in figure 7.1 (b). The authors also mentioned
the possibility of a biaxial smectic A phase withC2v symmetry, but with antiferroelectric order.
In addition, they discussed the possibility that the biaxial smectic A-to-biaxial nematic phase
transition can be continuous. The symmetry of biaxial smectic A phases were discussed further
in a later publication by the same group of authors [114]. Theauthors started with a biaxial
smectic A phase withD2h symmetry. By adding a polar direction in the planes of smectic layers,
a biaxial smectic A phase withC2v symmetry is formed. When a second polar direction is added
in the planes of smectic layers, a biaxial smectic A phase with a very low symmetry (C1h) is
formed. The symmetry groupC1h consists of two basic symmetry operations: a reflection plane
and an identity. The next and final step is to add a third polar direction perpendicular to the
layers and we have a phase with no symmetry (C1).

Biaxial smectic A phases have been found in several low-molar mass system over 20 years
since its first theoretical prediction by de Gennes. The common experimental techniques which
support the identification of biaxial smectic A phases are optical textures, conoscopic studies and
X-ray diffraction measurements. In 2001, Hegmann, Kain, Diele, Pelzl and Tschierske [115]
studied a mixture of a board-like mesogen and a board like non-mesogenic molecule. Their
experimental evidence by texture observations and X-ray diffraction studies strongly supported
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FIGURE 7.1: Sketches of the idealised structures of the biaxial smectic A phases: (a) Non-
polar biaxial smectic A phase formed from board-like molecules and (b) Polar biaxial smectic
A phase formed from V-shaped molecules. Reproduced from [41].

that the biaxial smectic A phase was stabilised. This evidence was further supported by scanning
transmission X-ray microscopy in 2007 by Kaznacheev and Hegmann [116]. A study of rigid,
symmetric V-shaped molecules in 2001, using the same techniques as Hegmannet al. [115] also
found a stabilised biaxial smectic A phase [117]. In this case the V-shaped molecules exhibit a
phase sequenceSmAB − SmAU − I. In addition, electro-optical measurement showed that the
biaxial smectic A phase is ani-ferroelectric. The same experimental methods were applied to
show that liquid crystal dimers also can form biaxial smectic A. In one case, a dimer is made up
of a rod-like and a V-shaped mesogenic units [118] and linkedby a flexible spacer. In another
case, a dimer is made up of two different rod-like mesogenic groups with a flexible spacer
linking them [119]. In the former case, the dimers exhibit the phase sequenceSmAB −NB − I.
In contrast, the phase sequence in the latter case isSmAB − SmAU − I. Biaxial smectic
A phase has also been found in a system of rigid, asymmetric V-shaped molecules using the
aforementioned experimental techniques, together with differential scanning calorimetry, with
the phase sequenceSmAB−SmAU −I [120]. In a later publication [121], using electro-optical
experiment, the authors showed that this biaxial smectic A phase is antiferroelectric.

The molecular field theory have also been used to describe biaxial smectic A phases. One ex-
ample is a theory developed by Matsushita in 1981 [122]. Thiswas an extension of a two
order parameters theory for biaxial nematic to include smectic ordering. In this model, there
are two interaction parameters, one is the molecular biaxiality and the other controls the smec-
tic interaction strength. Additionally, there are four order parameters. Two of them are pure
orientational order parameters and are non-zero in both thenematic and the smectic A phases.
The other two order parameters are mixed orientational-translational order parameters and are
non-zero only in the smectic A phases. With these four order parameters, the author was able
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to produce a rich phase behaviour. In principle, there are five phases: isotropic, uniaxial and
biaxial nematics, uniaxial and biaxial smectics A. Moreover, there are three phase sequences:
SmAU −NU −I, SmAB−SmAU −NU −I andSmAB−NU −I. Over the range of molecular
biaxiality under their study, the biaxial nematic phase wasnot found. Thus it may suggest that
the biaxial smectic A phase is easier to form than the biaxialnematic phase. Another molecular
field theory for biaxial smectic A phases was by Teixeira, Osipov and Luckhurst in 2006 [41].
This theory is more general than that by Matsushita [122] in that they include all four orienta-
tional order parameters in the nematic phase. In the biaxialsmectic A phase, they are joined
by four mixed orientational-translational order parameters and one pure translational order pa-
rameter. The authors then studied a model in perfect uniaxial order, which left only three order
parameters: one orientational biaxial, one mixed biaxial and one pure translational. Bifurcation
analyses were performed to investigate the stability of theuniaxial nematic phase with respect
to the other phases: biaxial nematic, uniaxial smectic A andbiaxial smectic A. Depending on
the combinations of the interaction parameters, the uniaxial nematic phase can go through a
phase transition into one of these three phases. Furthermore, the authors studied a model of
parallelepiped molecules. The interaction parameters were related to the molecular dimensions.
Hence the stability of the uniaxial nematic phase with respect to the other three aforementioned
phases were also related to the molecular dimensions.

Monte Carlo simulations also predicted the existence of thebiaxial smectic A phases. In one
series of simulations, an off-lattice system of identical molecules interacting via the Gay-Berne
potential was studied by Berardi and Zannoni [123]. In this model, the molecular biaxiality
has contributions from both the molecular shape and interaction. Both the biaxial nematic and
biaxial smectic A phases were stabilised. In addition, their stability depends on the combina-
tion of the molecular shaped and interaction. In these simulations, only the transition from the
uniaxial and biaxial nematic phases to the biaxial smectic Aphase was found. In another set
of simulations, supported by Onsager’s molecular theory, Vanakaras, Bates and Photinos [124]
studied a hard particle model. In this model, the major molecular axis were assumed to line
up. Therefore they only investigated the stability of the uniaxial nematic phase against the other
liquid crystal phases, namely biaxial nematic and biaxial and uniaxial smectics. In their phase
map of transitional density against the aspect ratio of molecular breadth and width, all these
four phases were found. The authors also performed simulations for binary mixtures of rod-like
molecules with the same biaxiality but different anisotropy. They found that the biaxial smectic
A phase was destabilised and hence the biaxial nematic phasewas stabilised.

There are theoretical grounds to expect the existence of these phases. First, it is for the same
reason that we expect the biaxial nematic phase to exist. Theconstituent molecules are biaxial.
Their biaxiality has been demonstrated in a molecular field theory by Averyanov and Primak
[125]. It is an extention of the molecular field theory for uniaxial molecules: in uniaxial smectic
A by McMillan [126] to include molecular biaxiality, although the phase was still uniaxial. In
this case, the molecular biaxiality was important in explaining the weakness of the first order
nematic-isotropic transition for real mesogenic compounds. We expect that the molecular biaxi-
ality also help to stabilise the biaxial smectic A phase at ground state. Secondly, it was suggested
by Texeiraet al. [41] that biaxial smectic A phases should be easier to form than biaxial nematic
phases. The reason is there are two ways to stabilise a biaxial phase. One of them is to design
molecules with high biaxiality. However, we see from the phase map in figure 2.4 that this
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strategy is difficult to achieve since the molecular biaxiality needs to be in a very narrow range
around the optimum biaxiality. The second strategy is to have a large value of the order param-
eterS that describe the ordering of the major molecular axis in order to allow a more effective
anisotropic interaction between the minor axes [41]. However, for nematic phases this can be
achieved only for low molecular biaxiality where the biaxial nematic phases are formed at very
low temperature. At low temperature, the smectic or even crystal phase can be more stable than
the biaxial nematic phase, which is why it is difficult to observe the latter phase. In contrast,
the influence of the molecular biaxiality on the major order parameter on the smectic A-nematic
phase transition may not be so large. It is because the major order parameter is coupled to the
translational order of the smectic A phase. Therefore it canincrease significantly in the smectic
A-nematic phase transition, especially if the phase transition is first order. This effect can be
even more favourable if the system undergoes a transition directly from the isotropic phase to
the smectic A phase.

Due to the success of the molecular field theory in modelling the uniaxial and biaxial nematic
phases, we extend this theory to model the biaxial smectic A phases. In our model, we use
the strategy suggested by Teixeiraet al. in their paper’s Appendix [41]. That is, we use the
approximation by Kventsel, Luckhurst and Zewdie [127]. This approximation was developed as
an alternative to the McMillan theory [6, 126] in modelling the uniaxial smectic A phase. We
also use the geometric mean and SVD approximation for the orientational interaction parameters
together with the KLZ approximation. When we use these approximations for biaxial smectic
A systems, the number of order parameters is reduced significantly, thus our calculations are
facilitated. Thus, the complex system of biaxial smectic A phase can be described by an elegant
model with only three order parameters: one orientational uniaxial, one orientational biaxial and
one pure translational.

7.2 Molecular Field Theories

7.2.1 Classical Molecular Field Model

In this subsection, we discussed the molecular field theory for a biaxial smectic A phase of gen-
eral symmetry which is formed from molecules of general symmetry. This theory was developed
by Teixeiraet al. [41]. The first step in constructing the molecular field theory for biaxial smec-
tic A phases is to identify the order parameters which describe the ordering of the system. The
smectic A phases can be described by three types of order parameters. The first type consists of
the pure orientational order parameters

〈DL
mn〉 =

∫ ∫

DL
mn(Ω)f(Z,Ω)dZdΩ. (7.2.1)

The other two types of order parameters incorporate translational ordering in the system. Sup-
pose that the molecular centres of mass sit on planes parallel to theX − Y plane of the phase
and intersecting theZ axis of the phase atnd wheren is an integer. We calld the smectic layer
spacing. Regarding translational ordering, the system is mostly ordered when the molecules
are with their centres of mass lying in one of the planes and least ordered when the molecular
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centres of mass lying in the middle of any two adjacent planes. In addition, the molecules prefer
to sit as near the planes as possible. Thus, there is a molecular density wave in theZ direction.
The function which has these properties iscos (2πZ/d). The second type of order parameters is
the average of that function. This forms a pure translational order parameter.

τ =

∫ ∫

cos (2πZ/d)f(Z,Ω)dZdΩ, (7.2.2)

The third type of order parameters are the averages of the products of the density wave with the
Wigner rotation matrices. They form the mixed orientational-translational order parameters,

σL
mn =

∫ ∫

cos (2πZ/d)DL
mn(Ω)f(Z,Ω)dZdΩ. (7.2.3)

The next step in constructing our theory is to form the internal energy of the system from the
invariant combinations of the order parameters

〈U〉 = −(1/2)
(

u0τ
2 +

∑

uLmn〈DL
pm〉〈DL

−pn〉+
∑

u′LmnσLpmσL−pn

)

. (7.2.4)

The singlet distribution functionf(Z,Ω) is a function of both the Euler anglesΩ and the position
of the centre of mass of the molecule with respect to the phaseaxisZ. Hence, the integrations
in the entropy has to be taken over both the orientation and the position of the molecule.

S = −kB

∫ ∫

f(Z,Ω) ln f(Z,Ω)dZdΩ. (7.2.5)

The free energy can be formed from equation (2.3.10). In order to find the distribution function,
we minimise the free energy, subject to the constraints of the order parameters in equations
(7.2.1), (7.2.2) and (7.2.3), together with the nomalisation condition

∫ ∫

f(Z,Ω)dZdΩ = 1. (7.2.6)

The resulting distribution function is given by

f(Z,Ω) = Q−1 exp (U(Z,Ω)/kBT ) , (7.2.7)

where the potential of mean torque can be written as

U(Z,Ω) = −
(

u0τ cos (2πZ/d) +
∑

uLmn〈DL
pm〉DL

−pn(Ω)

+
∑

u′LmnσLpm cos (2πZ/d)DL
−pn(Ω)

)

. (7.2.8)

Hence, the free energy at equilibrium can be written as

A = −kBT logQ+ (1/2)
(

u0τ
2 +

∑

uLmn〈DL
pm〉〈DL

−pn〉+
∑

u′LmnσLpmσL−pn

)

.

(7.2.9)
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7.2.2 Kventsel-Luckhurst-Zewdie Decoupling Approximation

The Kventsel-Luckhurst-Zewdie (KLZ) approximation [127]can be used to reduce the number
of order parameters. This is especially essential in biaxial smectic A phases. For example, we
consider the biaxial smectic A phase withD2h symmetry which is formed from molecules also
have the same symmetry. The classical model discussed in thelast subsection gives us one
pure translational, four orientational and four mixed order parameters, giving totally nine order
parameters. On the other hand, using the KLZ approximation,each mixed order parameter can
be written as a product of an orientational order parameter and the translational one. Hence
there are only five order parameters when we use the KLZ decoupling approximation. This is
certainly of great help in doing the calculations. In general, the KLZ approximation can be
written as [41]

σLpm = τ〈DL
pm〉. (7.2.10)

This approximation has to be used before we construct the internal energy. The reason was
discussed when the KLZ approximation was first introduced [127] for uniaxial molecules: in
uniaxial smectic A phases “the distribution function cannot be factorised if the decoupling ap-
proximation is introduced at a later stage in the McMillan theory”. We will see that, the factori-
sation of the partition function makes the calculations a lot simpler since one partition function
is simply the Bessel function of the second kind of zeroth order. The new internal energy in the
KLZ approximation is

〈U〉 = −(1/2)
(

u0τ
2 +

∑

uLmn〈DL
pm〉〈DL

−pn〉+
∑

u′Lmnτ
2〈DL

pm〉〈DL
−pn〉

)

. (7.2.11)

The distribution function for this approximation can be found by minimising the new free energy
with respect to the same constraints in subsection 7.2.1. Weget the potential of mean torque

U(Z,Ω) = −
{(

u0 +
∑

u′2mn〈DL
pm〉〈DL

−pn〉
)

τ cos (2πZ/d)

+
∑

(

uLmn + u′Lmnτ
2
)

〈DL
pm〉DL

−pn(Ω)
}

. (7.2.12)

Hence, the free energy at equilibrium is

A = −kBT logQ+ (1/2)
(

u0τ
2 +

∑

uLmn〈DL
pm〉〈DL

−pn〉+ 3
∑

u′Lmnτ
2〈DL

pm〉〈DL
−pn〉

)

.

(7.2.13)
We can further facilitate the calculations by factorising the partition function as a function of the
translational and the orientational partition functions

Q = QZQΩ. (7.2.14)

Where the orientational partition function is

QΩ =

∫

exp

(

1

kBT

∑

(uLmn + u′Lmnτ
2)〈DL

pm〉DL
−pn(Ω)

)

dΩ. (7.2.15)
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And the translational partition function is

QZ = dI0

(

1

kBT
(u0 +

∑

u′Lmn〈DL
pm〉〈DL

−pn〉)τ
)

. (7.2.16)

Here,In(a) is the Bessel function of the first kind which is shown in equation (6.2.12).

We will see later that, within the KLZ decoupling approximation and for some interaction
parameters, the equilibrium free energy does not have minima which correspond to the so-
lutions of the self-consistency equations. Therefore, we resort to the method of solving the
self-consistency equations. In order to make comparisons between the equilibrium and non-
equilibrium free energy surfaces, here we introduce the KKLS free energy for biaxial smectic
A phases. This is analogous to the derivation for biaxial nematics which we have discussed in
section 2.5. We note that in this case the integration is taken over both the orientation and the
position in theZ direction. The non-equilibrium potential of mean torque is

U(Z,Ω) = −kBT
(

η0 cos (2πZ/d) +
∑

ηLpmDL
pm(Ω)

)

. (7.2.17)

In addition, the entropy can be written as

S = −kB

(

η0τ +
∑

ηLpm〈DL
pm〉 − logQ

)

. (7.2.18)

Hence, we can construct the non-equilibrium free energy from equation (2.3.10).

In order to simplify the problem, we use the approximationu′Lmn = αuLmn. We note that, this
approximation preserves the rotational invariance of the total internal energy. We also setδ as
δ = u0/(u200α). The stability analysis in Appendix G can give us a rough estimate of when
the method of minimising the equilibrium free energy fails to work. We examine three models:
uniaxial smectic A formed from uniaxial molecules, biaxialsmectic A with KLZ-GM (KLZ and
geometric mean) approximation and biaxial smectic A with KLZ-SVD (KLZ and Sonnet-Virga-
Durand) approximation. In all three cases, we have keptδ = 0 and have found that forα > 1/3

the classical method of minimising the equilibrium free energy fails, regardless of the biaxiality
parameters.

7.3 Uniaxial Smectic A Phases formed from Uniaxial Molecules

7.3.1 McMillan and KLZ Theories

Here, we briefly discuss the two theories for uniaxial smectic A formed from uniaxial molecules
as an example before discussing the more complicated systemof biaxial smectic A. First, we
consider the McMillan theory. The internal energy is given by

U = −(1/2)
(

u0τ
2 + u200S

2 + u′200σ
2
200

)

. (7.3.1)
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In addition, the potential of mean torque is

U(Z,Ω) = −
(

u0τ cos (2πZ/d) + u200SP2(cos β) + u′200σ200P2(cos β) cos (2πZ/d)
)

.

(7.3.2)
And the equilibrium free energy is given by

A = −kBT logQ+ (1/2)(u0τ
2 + u200S

2 + u′200σ
2
200). (7.3.3)

It was mentioned by McMillan that [6, 126] a model for uniaxial smectic A phases by Kobayashi
had been developed earlier. In this model, only the pure translational interaction term was
added to the Maier-Saupe theory. In contrast, in McMillan’sfirst paper on modelling these
phases [6], he only added the mixed interaction term to the Maier-Saupe theory. In his later
paper, he included both the pure translational and the mixedinteraction term to the Maier-
Saupe theory. Hence the pure order parameterτ is the density wave amplitude, and the mixed
order parameterσ is required to model the coupling between the translationaland orientational
order. The addition of the pure translational interaction term was needed to reduce the values
of the order parameter, entropy and heat capacity at the phase transition in order to reach better
quantitative agreements with experimental results. The theory in the later paper by McMillan
which includes both the pure-translational and the mixed interaction terms are also referred to as
the McMillan-Kobayashi theory by some authors [7, 10]. In addition, as mentioned by Osipov
[10], a limitation of this theory is that it does not allow thedetermination of the smectic period
in a self-consistent way.

In the McMillan theory, the order parameters only involve the first order term in the Fourier
series,cos (n2πZ/d), wheren is zero or±1. However, the symmetry of smectic A phases
permits other higher order terms in the Fourier series, namely for |n| > 1 [128]. The effects of
these higher order terms has been investigated, for exampleby Marguta, Martı́n del Rı́o and de
Miguel [128]. In their calculations, the Fourier series of up ton = 5 was included. They found
that, although there are some quantitative differences to the McMillan theory, the inclusion
of these higher order Fourier terms does not solve the inconsistencies between the McMillan
theory and experiments in the values of the order parameter,entropy and heat capacity at the
phase transition. Therefore using the first order Fourier term to construct the order parameters
is sufficient within the molecular field approximation.

In order to apply the KLZ theory, the decoupling approximation need to be introduced when we
formulate the internal energy. The decoupling approximation isσ200 = Sτ . Hence the internal
energy is given by

〈U〉 = −(1/2)
(

u0τ
2 + u200S

2 + u′200τ
2S2
)

. (7.3.4)

In addition, the potential of mean torque is

U(Z, β) = −
(

(u0 + u′200S
2)τ cos (2πZ/d) + (u200 + u′200τ

2)SP2(cos β)
)

. (7.3.5)

The free energy at equilibrium can be written as

A = −kBT logQ+ (1/2)(u0τ
2 + u200S

2 + 3u′200τ
2S2). (7.3.6)

The partition function can also be decoupled into an orientational and a translational part in the
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form (7.2.14). The orientational part is

Qβ =

∫

exp

(

1

kBT
(u200 + u′200τ

2)SP2(cos β)

)

d cos β, (7.3.7)

and the translational part is

QZ = I0

(

1

kBT
(u0 + u′200S

2)τ

)

. (7.3.8)

The detailed comparisons of the two theories have been performed when the KLZ approximation
was first introduced in reference [127].

In order to reduce the number of parameters in the model, we scale the temperature with the
anisotropy of the molecules,T ∗ = kBT/u200. We keep the original notation by McMillan [126]
to scale the mixed interaction parameter,u′200 = αu200, and the pure one,u0 = δαu200. The
parameterα can be thought of as dependent on a factor which governs the stability of the smectic
A phase, such as the chain length of the molecules. The constant δ is only a proportionality
constant. This is to make sure that when the chain length varies, both the pure translational and
the mixed interactions also changes accordingly. Since setting the value ofδ to non zero does
not change the qualitative behaviour of the McMillan model [126] according to a calculation by
the author, we keepδ = 0 in the following calculations.

7.3.2 Failures of Minimising the Equilibrium Free Energy

The method which we usually used to solve the molecular field theories which is to minimise the
equilibrium free energy obtained by the variational derivation by de Gennes fails to work here.
While this method work for small values of the parameterα, for large value ofα and at some
low temperature, the free energy behaves unexpectedly. As an example, we take the parameter
setδ = 0, α = 0.5 at the scaled temperatureT ∗ = 0.08. The minimisation of the equilibrium
free energy gives a solutionS = 0.9828 andτ = 0.8165, which is shown as a red cross in figure
7.2(a). At a lower temperatureT ∗ = 0.05, the solution which corresponds to the minimum of
the equilibrium free energy is invalid withS = 1.0438 andτ = 0.8165. Now we need to check
whether this anomalous behaviour also occurs in the self-consistency equations

S = Q−1
β

∫

P2(cos β) exp
(

T ∗−1(1 + ατ2)SP2(cos β)
)

d cos β, (7.3.9)

τ = Q−1
Z I1

(

T ∗−1(δ + αS2)τ
)

. (7.3.10)

Solving these self-consistency equations gives us a different solutionS = 0.9375 and τ =

0.8909 atT ∗ = 0.08. This solution of the self-consistency equations can be seen, as a red dot,
in the contour plot for the free energy in figure 7.2(a) as a saddle point rather than a minimum.
In this case, minimising the non-equilibrium free energy gives us the same solution as solving
the self-consistency equations, in marked contrast with the classical approach of minimising the
equilibrium free energy. The contour plot for the KKLS free energy is shown in figure 7.2(b).
The minimum of this free energy is also shown as a red dot whichis well-behaved and at the
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same location as the solution of the self-consistency equations. The suscess of the KKLS theory
in this case can be considered as an explanation for the failure of the old method of minimising
the equilibrium free energy. For completeness, we show the equations of the KKLS theory
below. In the calculations, we solve the self-consistency equations instead of minimising the
KKLS free energy. It is because near a first order phase transition, we may have more than
one local minima and we need to compare the corresponding values of the free energy to find
the global minimum. In minimising the KKLS free energy, we cannot guess the values of the
Lagrangians which correspond to different minima in order to start the minimisation algorithm.
The self-consistency equations are solved using the MATLABfunction fsolve. This function
implements the Trust-Region dogleg algorithm, which is an improvement of Newton’s method
in solving non-linear equations. We discuss the function fsolve in Appendix E. In essence, we
give the computer program a starting point. The computer program then looks for an estimate
of a solution to a desired accuracy using the given starting point for the search. After solving
the self-consistency equations, we check the solutions against the KKLS free energy at selected
values of the parameterα and scaled temperature to make sure it does give a minimum of the
free energy. This method of calculations is also employed tosolve the self-consistency equations
of biaxial smectic A phases.
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(a) Equilibrium free energy.
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FIGURE 7.2: The contour plots for the equilibrium and non-equilibrium KKLS free energies
as functions of two order parameters,S andτ , for δ = 0 andα = 0.5 at the scaled temperature
T ∗ = 0.08.

The KKLS theory is given as follows. First, we maximise the entropy, subject to the order
parameters and the normalisation to get the distribution function

f(Z, β) = Q−1 exp (ηz cos (2πZ/d) + ηβP2(cos β)). (7.3.11)

Here,

Q(ηz , ηβ) =

∫ ∫

exp (ηz cos (2πZ/d) + ηβP2(cos β))dZd cos β. (7.3.12)

Therefore, the order parameters are given by

S(ηz, ηβ) = Q−1

∫ ∫

P2(cos β) exp (ηz cos (2πZ/d) + ηβP2(cos β))dZd cos β, (7.3.13)
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τ(ηz, ηβ) = Q−1

∫ ∫

cos (2πZ/d) exp (ηz cos (2πZ/d) + ηβP2(cos β))dZd cos β. (7.3.14)

In addition, the internal energy is given by

U = −(1/2)
(

u0τ
2 + u200S

2 + u′200τ
2S2
)

. (7.3.15)

Finally, we can construct the non-equilibrium KKLS free energy from equation (2.3.10) to give

A∗ =− (1/2)T−1
(

u0τ
2 + u200S

2 + u′200τ
2S2
)

+ (ηzτ

+ ηβS)− log(Q(ηz , ηβ))) . (7.3.16)

7.3.3 Calculations and Results

In figure 7.3, we show the phase map for the KLZ theory, whereδ is set equal to zero. The KLZ
approximation produces the same qualitative features as the original McMillan theory [6]. All
the three phases are shown in the phase map: isotropic, uniaxial nematic and uniaxial smectic
A. The stability of the three phases is changed by varying thesmectic interaction strength,α. As
α increases, first the nematic-to-isotropic transition temperature is constant. It is because in the
KLZ theory and also in the McMillan theory, the smectic interaction strength does not affect the
molecular ordering in the nematic phase. In contrast, the stability of the uniaxial smectic A phase
increases as we increaseα. First theSmAU − NU , then theSmAU − I transition temperature
goes up on increasingα. We see that, for small value ofα, theSmAU −NU transition is second
order. This behaviour changes atα = 0.52 where it becomes first order. In comparison, both the
NU − I and theSmAU − I transition are first order for all the investigated range ofα. Finally,
all three phases coexist at a triple point. There is a major quantitative disagreement between
the KLZ theory and the McMillan theory when we setδ to zero: the location of the tricritical
point is lower in the KLZ theory compared to the McMillan theory. The tricritical temperature
of the KLZ theory is0.71TNI whereas in the McMillan theory it is0.85TNI . This value for
the tricritical point predicted by the KLZ theory accordingto our calculations is in agreement
with the original calculations by Kventsel, Luckhurst and Zewdie (KLZ) [127]. They also found
that, asλ increases whereα is kept fixed, the value of the tricritical temperature tendscloser to
TNI . Nevertheless, both the KLZ and the McMillan theories describe correctly the qualitative
behaviour of a system forming the uniaxial smectic A phase and can be used interchangeably.
The KLZ theory has an advantage that we now also have the information on the pure translational
order parameter. In contrast, in order to have this order parameter in the McMillan theory we
need to setδ to a non-zero value and the theory would become more complex with three order
parameters.

7.4 Biaxial Smectics A Phases

In this section we study the molecular field theory for biaxial smectic A phases. We take the
assumption that both the phase and the molecular symmetriesareD2h.
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FIGURE 7.3: The dependence of the scaled transition temperature onthe smectic interaction
parameter,α, for the KLZ theory withδ = 0. Continous lines denote first order phase transi-
tions whereas broken lines denote second order transitions. The tricritical point is marked by a
circle.

7.4.1 Approximations for The Interaction Parameters

In addition to the KLZ approximation for the order parameters, we can either use the geometric
mean approximation as in section 2.4.3 or the SVD approximation as in section 2.4.4 for the ori-
entational interaction parameters. These latter approximations for the orientational interaction
parameters can help to reduce the number of orientational order parameters from four to only
two. If we use the SVD approximation, the potential of mean torque is given by

U(Z,Ω) = −u200
{(

α(〈R2
00〉2 + 2λ〈R2

22〉2)
)

τ cos (2πZ/d)

+ (1 + ατ2)
(

〈R2
00〉R2

00(Ω) + 2λ〈R2
22〉R2

22(Ω)
)}

. (7.4.1)

In addition, the equilibrium free energy can be written as

A∗ = − logQ+ (1/(2T ∗))
{

(〈R2
00〉2 + 2λ〈R2

22〉2)(1 + 3ατ2)
}

. (7.4.2)

In order to find the stable state of the system at a given scaledtemperature, we solve the follow-
ing self-consistency equations

〈R2
00〉 = Q−1

Ω

∫

R2
00(Ω) exp

(

T ∗−1(1 + ατ2)
(

〈R2
00〉R2

00(Ω) + 2λ〈R2
22〉R2

22(Ω)
)

)

dΩ,

(7.4.3)

〈R2
22〉 = Q−1

Ω

∫

R2
22(Ω) exp

(

T ∗−1(1 + ατ2)
(

〈R2
00〉R2

00(Ω) + 2λ〈R2
22〉R2

22(Ω)
)

)

dΩ,

(7.4.4)
τ = Q−1

Z I1

(

T ∗−1 (α(〈R2
00〉2 + 2λ〈R2

22〉2)
)

τ
)

. (7.4.5)
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Here, the orientational and translational partition functions are given by

QΩ =

∫

exp
(

T ∗−1(1 + ατ2)
(

〈R2
00〉R2

00(Ω) + 2λ〈R2
22〉R2

22(Ω)
)

)

dΩ, (7.4.6)

QZ = I0

(

T ∗−1 (α(〈R2
00〉2 + 2λ〈R2

22〉2)
)

τ
)

. (7.4.7)

If we use the geometric mean approximation, the potential ofmean torque is given by

U(Z,Ω) = −u200
{(

α(〈FU 〉2 + 2〈FB〉2)
)

τ cos (2πZ/d)

+ (1 + ατ2) (〈FU 〉FU (Ω) + 2〈FB〉FB(Ω))
}

. (7.4.8)

In addition, the free energy is given by

A∗ = − logQ+ (1/(2T ∗))
{

(〈FU 〉2 + 2〈FB〉2)(1 + 3ατ2)
}

. (7.4.9)

The self-consistency equations for this case are

〈FU 〉 = Q−1
Ω

∫

FU (Ω) exp
(

T ∗−1(1 + ατ2) (〈FU 〉FU (Ω) + 2〈FB〉FB(Ω))
)

dΩ, (7.4.10)

〈FB〉 = Q−1
Ω

∫

FB(Ω) exp
(

T ∗−1(1 + ατ2) (〈FU 〉FU (Ω) + 2〈FB〉FB(Ω))
)

dΩ, (7.4.11)

τ = Q−1
Z I1

(

T ∗−1 (α(〈FU 〉2 + 2〈FB〉2)
)

τ
)

, (7.4.12)

where the orientational and translational partition functions are

QΩ =

∫

exp
(

T ∗−1(1 + ατ2) (〈FU 〉FU (Ω) + 2〈FB〉FB(Ω))
)

dΩ, (7.4.13)

QZ = I0

(

T ∗−1 (α(〈FU 〉2 + 2〈FB〉2)
)

τ
)

, (7.4.14)

7.4.2 Calculations and Results

Figure 7.4 shows four phase maps for the KLZ-SVD approximation in which we fix the value
of α in each phase map and vary the biaxialityλ. In figure 7.4(a) we show the phase map for
α = 0. This is in fact the same phase map presented by Sonnetet al. [13] which we have
described in section 2.4.4. We recall that as the biaxialityλ increases, theNB −NU transition
temperature also goes up. In addition, for large values ofλ, there is a line of first orderNB − I

transitions. Next, in figure 7.4(b), the value ofα is set equal to 0.3. Now the upper boundaries
of the nematic phases, the order of the phase transitions andthe location of the tricritical point
at high temperature are not affected by increasingα from 0 to 0.3. It is because the smectic A
phases are formed at low temperature and in our theory, the smectic interaction strengthα does
not affect nematic ordering. In addition, the ground statesof the system at low temperature are
the smectic A phases instead of the nematic phases as we have seen in figure 7.4(a). We also
see that theSmAU − NU transition temperature is independent ofλ, in comparison with the
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NU − I transition. It is because, in the SVD approximation, the potentials of mean torque in
the uniaxial nematic and uniaxial smectic A phases do not depend onλ, therefore the ordering
in these phases is independent ofλ. In contrast, the biaxiality parameterλ does appear in the
potentials of mean torque for the biaxial nematic and smectic A phases and hence they are more
stable on increasingλ. For smallλ, theSmAB phase exists at lower temperature than theSmAU

phase. For large value ofλ, theSmAU region vanishes and there is a direct transition, first from
SmAB to NU , and then fromSmAB to NB . All phase transitions to the smectic A phases
are second order. The phase map forα = 0.9 is shown in figure 7.4(c). TheSmAU − NU

andNU − I transition temperatures are also independent of the biaxiality λ. We see that, the
NU region now becomes much narrower and theSmAU − NU transition is now first order,
in agreement with the KLZ theory in figure 7.3. In addition, wesee that now theNB region
vanishes and is replaced by theSmAB region. TheSmAB − SmAU transition is mainly second
order, with only a small region of it being first order, indicating a tricritical point in between
the two regions. Asλ increases, the stability of theSmAB phase also goes up, as we would
expect. Moreover, the phase sequence changes fromSmAB − SmAU to SmAB −NU and then
SmAB − I. We calculate a phase map forα = 1.2 which we show in figure 7.4(d). Now there
exists only three phases: isotropic, uniaxial smectic A andbiaxial smectic A. The vanishing of
the uniaxial nematic phase is in agreement with figure 7.3. The stability of theSmAB phase
also increases withλ and the phase sequence changes fromSmAB − SmAU − I to directly
from SmAB to the isotropic phase. While theSmAB − SmAU transition is second order, the
SmAB − I transition is first order. It is curious that in this case we donot find a tricritical point
along theSmAB − SmAU transition line. It may be explained that, as the transitionis directly
from the isotropic to the uniaxial smectic A phase, the ordering of the major axis is already
high at the phase transition. It would then be easier for the minor axes to align and the biaxial
ordering is formed at a high temperature, thus blocking a first order transition from uniaxial to
biaxial phase at a lower temperature. Hence a first orderSmAB − SmAU transition does not
exist in this case.

Figures 7.5 show five phase maps for the KLZ-GM approximationin which we fixα in each
phase map and vary the biaxialityγ. The phase map forα = 0 is essentially the phase map for
the geometric mean approximation for biaxial nematics which we have described in section 2.4.4
and is reproduced in figure 7.5(a). We recall that the stability of both the uniaxial and biaxial
nematic phases increase on increasingγ until they reach the Landau triple point atγ = 1/

√
6.

The phase map repeats itself for larger values ofγ and is not shown here. Asα is set equal to
0.3, the behaviour of the nematic phases at high temperatureis not affected, as shown in figure
7.5(b). The explanation is analogous to the KLZ-SVD approximation. At low temperature, the
smectic A phases are stabilised. It is curious that, even though the biaxialityγ does appear in
the potentials of mean torque for the uniaxial nematic and smectic A phases, theSmAU − NU

transition temperature decreases very slightly asγ increases. In contrast, the stability of the
SmAB phase goes up significantly asγ increases. In addition, the phase transition changes
from SmAB − SmAU to SmAB −NU and then toSmAB −NB , in comparison with the KLZ-
SVD model in figure 7.4(b). Moreover, all phase transitions,except for theNU − I transition,
are second order. Next, we show the phase map forα = 0.9 in figure 7.5(c). Now the extent
of the nematic phases are much smaller. In addition, theSmAU − NU transition is first order,
in agreement with the KLZ theory in figure 7.3 forγ = 0. The stability of theSmAB phase
increases asγ goes up. TheSmAB − SmAU transition is still second order. In contrast, the
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FIGURE 7.4: The dependence of the scaled transition temperature onthe biaxialityλ for the
KLZ-SVD approximation whenα is fixed. Continous lines denote first order phase transitions
whereas broken lines denote second order transitions. The tricritical point is marked by a red
circle.

SmAB − NB andSmAB − NU are first order. Forα = 1.2, the phase map is shown in figure
7.5(d), the phase behaviour does not change in a significant way. The nematic phase regions
now become much narrower, whereas the smectic A phase regions become larger. In addtion,
there is a line of direct transitions from theSmAU to the isotropic phase, in agreement with the
KLZ theory in figure 7.3 forγ = 0. It is also curious that the stability of the biaxial smectic
A phase does not change in a significant way as we increaseα, especially for small values of
γ. Now in the KLZ-GM approximation, we have not seen a direct transition from the isotropic
phase to the biaxial smectic A phase forα as large as 1.2. Since we find that the stability of the
smectic A phases increase asα increases, we would expect that the directSmAB − I can be
found for larger values ofα. Thus we increaseα to 1.5 and the phase map is shown in figure
7.5(e). Indeed we find a directSmAB − I phase transition. Additionally, the qualitative phase
behaviour we find for this case is analogous to the KLZ-SVD approximation for a smallerα of
1.2 in figure 7.5(d).

In order to illustrate the significance of the smectic interaction on the stability of the biaxial
phases, we fix the biaxiality parameters and plot the dependence of the scaled transition temper-
atureT ∗ on the smectic parameterα. In figures 7.6(a) and 7.6(b), we show these phase maps for
the KLZ-SVD and KLZ-GM approximation, respectively. The values of the biaxiality parame-
ters are chosen so that the biaxial nematic-to-uniaxial nematic transition temperature is not too
high. Thus we chooseλ = 0.1 andγ = 0.3 for the KLZ-SVD and KLZ-GM approximations,
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FIGURE 7.5: The dependence of the scaled transition temperature onthe biaxialityγ for the
KLZ-GM approximation whenα is fixed. Continous lines denote first order phase transitions
whereas broken lines denote second order transitions. The tricritical point is marked by a red
circle.

respectively. We see that, the qualitative behaviour of thetwo cases is the same. For small
values ofα, theNU − I andNB − NU transition temperatures are independent ofα. This is
simply because in our theory,α does not influence the ordering in the nematic phases. As the
temperature is lowered, there is a second order phase transition from the biaxial nematic to the
biaxial smectic A phase. Asα increases, theSmAB −NB transition temperature increases. For
large values ofα, the biaxial nematic phase disapears. Instead, the uniaxial nematic phase goes
directly into the uniaxial smectic A phase. It is followed bya second order transition into the
biaxial smectic A phase at a lower temperature. In addition,we find a tricritical point along the
SmAU −NU transition line at 0.52 for both approximations. It is also interesting to observe that
theSmAB − SmAU transition temperature increases almost linearly withα.
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FIGURE 7.6: Figures (a) and (b) depict the dependence of the scaled transition temperature
on the smectic interaction parameterα for the KLZ-SVD approximation withλ = 0.1 and
the KLZ-GM approximations forγ = 0.3. Figure (c) plots the dependence of the transition
temperature on the number of carbon atoms in the flexible chain of a V-shaped molecules in an
experiment reported in reference [121]. The smectic A phases in figure (c) are antiferroelectric;
SmAd is uniaxial whereasSmAdPA is biaxial,Cr stands for the crystal phase.

The parameterα in the molecular field theory can be related to the chain length of the com-
pounds used in the experiments of biaxial smectic A phases for rigid V-shaped molecules
[120, 121]. We can take a simple assumption thatα is proportional to the chain length. In
this case the molecular field and the experimental results agree qualitatively. We can make
this comparison by looking at the two phase maps from the molecular field theory in figures
7.6(a) and 7.6(b) and the phase map from an experiment of V-shaped molecules [121] in figure
7.6(c). Both the biaxial smectic A-to-uniaxial smectic A and uniaxial smectic A-to-isotropic
phase transition temperatures increase with the number of carbon atoms in the flexible chain. In
agreement, both these phase transition temperatures go up with the parameterα in the molecular
field theory.

We see from figures 7.6(a) and 7.6(b) that, for a small biaxiality, the biaxial nematic phase is
formed at a low temperature. At that low temperature, a real system may already form a smectic
or crystal phase. However, for large smectic interactions,the biaxial smectic A phase can form
at high temperature, even for those small biaxiality that westudied. Therefore, the phase maps in
figure 7.6 demonstrate that the biaxial smectic A phase is easier to form than the biaxial nematic
phase.
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7.5 Conclusions

In this chapter, we have developed a molecular field theory for biaxial smectic A phases. Our
theory is an extension of the molecular field theory for uniaxial smectic A phases by Kventsel,
Luckhurst and Zewdie, or KLZ theory. The KLZ theory is an alternative of a classical molec-
ular field theory for uniaxial smectic A phases by McMillan. These two theories are in good
qualitative agreement. One important approximation in theKLZ theory which we adopt is the
decoupling approximation which allows us to write each mixed orientational-translational order
parameters as a product of an orientational order parameterand the translational order parame-
ter. In addition, we can use either the approximation proposed by Sonnet, Virga and Durand or
the geometric mean approximation to reduce the number of orientational order parameters and
interaction coefficients. Using these approximations, we can reduce the total number of order
parameters from nine to only three. Thus the calculations are facilitated considerably. The cal-
culation results for this model reveal that the method of minimising the equilibrium free energy
sometimes fails to produce a desired solution. This can be explained by considering the non-
equilibrium free energy in the KKLS theory. We check that minimising the non-equilibrium
free energy does indeed give a desired solution. Using a combination of the two methods and
by solving the self-consistency equations, we find that the stability of the biaxial and uniaxial
smectic A phases increase as we increase the smectic interaction. Even for a small molecular
biaxiality, a system with high smectic interaction strength can still form a biaxial smectic A
phase at high temperature. In contrast, for the same biaxiality, a system with no smectic inter-
action needs to go to a very low temperature to form a biaxial nematic phase. Additionally, our
results can be made contact with experimental results by other groups by assumming that the
smectic interaction parameter is proportional to the chainlength of the constituent molecules.
These experimental results also shows that the stability ofthe biaxial and uniaxial smectic A
phases increases with the chain length. Therefore, we conclude that, with the same molecular
biaxiality, it is easier to form macroscopic biaxial ordering in the smectic A phases than in the
nematic phases.
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Chapter 8

Summary and Future Directions

8.1 Summary

In this thesis we have used the molecular field theory for nematic and smectic A liquid crystals
to study five problems arising from experimental work on biaxial molecules by other groups. A
main theme, with the exception of chapter 6 is to stabilise thermotropic biaxial nematic or smec-
tic A phases formed from low molar mass molecules. An overview of the classical molecular
field theory for nematic phases is presented in chapter 2. We have left a review of this theory for
smectic A phases to chapter 7 since this is the only chapter inthis thesis which involves these
phases. The essence of the molecular field theory is an assumption that a molecule only inter-
acts with a long-range molecular field generated by other molecules through a potential of mean
torque and short-range correlations are ignored. This molecular field approximation can often be
tested and verified using lattice Monte Carlo simulations ofintermolecular pair potentials analo-
gous to the molecular field potential. Additionally, there are other drastic assumptions about the
isotropic distribution of the intermolecular vector and the dominance of the second-rank inter-
action. These assumptions affect both the molecular field potential and the pair potential. Either
assumption can be relaxed in order to explain relevant effects. The molecular field theory also
assumes pairwise intermolecular interaction as dominant,hence ignoringN -body interaction,
whereN is greater than two. Moreover, we assume volume changes at phase transitions as
constant, thus we can use the Helmholtz free energy to determine the equilibrium of a system.
This is clearly in comparison with the lattice Monte Carlo simulation since in this simulation
the molecular positions are confined and so the volume of the system does not change.

After all these assumptions are made, we identify a system tostudy by making assumptions
about symmetry of the phase and the constituent molecules. Usually, in constructing a theory
we assume that the lowest symmetry of the system is the same asthe molecular symmetry. This
result can be tested in the Monte Carlo simulation, where no symmetry of the phase is assumed.
Often we also assume that the constituent molecules are rigid. The resulting system then depend
on a set of order parameters, temperature and intermolecular interaction coefficients. Each liquid
crystal phase is determined by some non-vanishing order parameters. By scaling the tempera-
ture with an interaction coefficient, which is often the second-rank uniaxial anisotropic term,
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we can treat the system as general and not dependent on any specific molecular model. In ad-
dition, the other interaction coefficients can be scaled with the second-rank uniaxial anisotropic
term to give interaction parameters. In the calculations, we fix the temperature and the inter-
action parameters and minimise the free energy in order to find the order parameters at a given
temperature, hence determining the stable phase at that temperature. After that, we vary the
temperature to determine the phase transition temperature. Finally, the interaction parameters
are varied to determine the phase maps relating the transition temperature with them.

A recent analysis on experimental results for biaxial nematics suggested that the classically
assumed symmetry of these phases should beC2h instead ofD2h. In chapter 3, we fixed the
assumptions about the symmetry of the constituent molecules and the phase by assuming that
they are bothC2h instead ofD2h. We get a theory with nine order parameters and five interaction
parameters. The theory can be simplified further by keeping only the dominant interaction terms
in the potential of mean torque. Thus, our system is reduced to a more manageable set of only
three second-rank order parameters and two interaction parameters. Even with this simplified
model, we still found that the biaxial nematic phase withC2h symmetry is stabilised at the
ground state of the system. It is all the more stable the more the constituent molecules deviate
fromD2h symmetry. We also found that the nematic phase withC2h symmetry also has an axial
first-rank order parameter, in addition to the three second-rank ones. In going from the nematic
phase withC2h symmetry to the isotropic phase, the system may go through the uniaxial nematic
phase or the biaxial nematic phase withD2h symmetry. In fact we found two biaxial nematic
phases withD2h symmetry but with different molecular organisation. In onephase, the assigned
molecular minor axes tend to be parallel whereas in the otherthey tend to be perpendicular. Thus
this model produces a rich phase behaviour of biaxial nematics.

In chapter 4, we aimed to explain a disagreement between the molecular field theory and the ex-
periments of biaxial nematic phases formed from V-shaped molecules. While for this particular
V-shaped molecule, the theory predicts that biaxial nematics cannot be formed in real system,
they are stabilised at high temperature in the experiment. To explain this disagreement, we add
a first-rank interaction term to the potential of mean torqueto describe dipolar interaction. This
first-rank interaction is expected theoretically since themolecules have polar shape and pos-
sess a large electrostatic dipole. The first-rank interaction strength is governed by a first-rank
order parameter and a first-rank interaction parameter. Ourcalculations show that the dipolar
interaction stabilises the biaxial nematic phase at high temperature for the V-shaped molecule
analogous to that used in the experiments. Thus this model explains the disagreement between
theory and experiment. In addition, we show that the dipolarinteraction stabilises the polar
biaxial nematic phase. This is another nematic phase of symmetry lower thanD2h, namelyC2v.

The assumption on molecular rigidity is relaxed when we study the effect of molecular flex-
ibility on the stability of biaxial nematic phases in chapter 5. We study a simple system of
liquid crystal dimers whose constituent molecules can adopt a large number of shapes, or con-
formation. Our model is simplified in that there are only two conformers: linear and bent with
tetrahedral interarm angle. Hence one is uniaxial whereas the other has maximal biaxiality. We
find that, when we assume the Boltzmann factor in the conformational distribution to be in-
dependent of temperature, the linear conformer is more favoured by both biaxial and uniaxial
nematic systems. However, this effect is less important when we allow the Boltzmann factor in
the conformational distribution to be temperature dependent. Importantly, we find that in order
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for the biaxial nematic phase to stabilise, the conformational energy of the bent conformer needs
to be lower than the linear one and the difference between theconformational energies should
be sufficiently large.

The motivation for chapter 6 is a recent success in observinga significant increase in the
magnetic-field induced uniaxial nematic to isotropic transition temperature in experiments. This
success is partially attributed to a high magnetic field strength of 31 Tesla used in the experiment.
We have proposed that this success is also due to high molecular biaxiality of the constituent
molecules. Hence, we extended the classical model for uniaxial nematic formed from biaxial
molecules to include an interaction with the magnetic field.We found that, for systems with
high molecular biaxiality, the effect of the magnetic field on the transition temperature is more
pronounced than for those with low molecular biaxiality. Inaddition, the magnetic critical point
for systems with high molecular biaxiality is closer to the clearing point than for those with low
molecular biaxiality, thus might require a smaller critical field strength to observe. Moreover,
the critical exponent is cubic. We also related our theory with the Landau-KKLS theory to build
up molecular structure into the Landau expansion. Hence, the results which we obtained by
solving the molecular field theory are analytical in the Landau-KKLS theory and they agree
qualitatively with the molecular field theory.

Finally, we developed a molecular field theory for biaxial smectic A phases in chapter 7. To keep
the problem simple, we assume that the phase and the constituent molecules haveD2h symme-
try. We use the KLZ approximation which assume that a mixed orientational-translational order
parameter can be written as a product of an orientational order parameter and the translational
order parameter. In addition, we considered two cases wherewe used either the SVD approxi-
mation or the geometric mean approximation for the orientational interaction parameters. Thus
our theory for the biaxial smectic A phases is greatly simplified to only three order parame-
ters and three interaction parameters. We set the interaction parameter which scales the pure
translational interaction to zero, hence we are left with only two interaction parameters. The
calculations show that, for high smectic interaction, the biaxial smectic A phases are easier to
form than the biaxial nematic phase. In addition, using thissimplified model, we can produce
results that are in qualitative agreement with experiments.

8.2 Future Directions

There are several research directions which can be taken to extend the works in this thesis. One
thing could be done is to build in more complexities within each chapter in order to study more
realistic systems. Another direction is to combine the theories in some chapters into one model.
This allows us to include many effects into a molecular field model and to see how they influence
each other to stabilise or destabilise the biaxial phases.

For the model of biaxial nematics withC2h symmetry in chapter 3, we may include more terms
in the potential of mean torque, thus we can see the effect of the minor interaction parameters
and order parameters. In addition, we can explore the molecular organisation with respect to
the phase axes. We may be able to see if the molecular orderingtensorsSAA

xx , SAA
yy , SAA

xy and
SAA
zz have the same eigenframes or not which we have not been able toanswer in the simplified
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model. In order to relate all five interaction parameters to the molecular structure, we may use
the excluded volume method. However, the resulting theory with nine order parameters is still
challenging to solve. Hence ingenious computer algorithmsand coding should be exploited to
resolve this issues.

The calculation results on rigid V-shaped molecules which we have presented in chapters 4
and 6 are aimed to explain some experimental results. More work can also be done in these
directions to explore the theory further. One may add more dipolar interactions in the directions
perpendicular to the existing dipole, in order to see if the biaxial nematic phase is stabilised
or not. The question about how local ordering influences the stability of the biaxial nematic
phase also permits further exploration. This would involveadding more complication into the
molecular field theory to a different level. Thus instead of one molecule interacting with the
molecular field, we may have two or more molecules interacting with the field. Moreover, we
could use the lattice Monte Carlo simulation in which the intermolecular vector distribution is
anisotropic. Again, this would require ingenious methods to solve. For the magnetic interaction
case, it is still unclear why the ratios in the experiment aremuch larger than the molecular field
theory. One possible explanation is that the theory has a poor prediction of the supercooling
temperature. This can also be tested by using the many-site molecular field theory or lattice
Monte Carlo simulation.

In chapters 3 and 4 we study biaxial nematic phases of lower symmetry than usually assumed.
However, assuming that second-rank interaction in liquid crystals is dominant, biaxial nematic
phases with symmetries even lower thanC2h andC2v are allowed to exist. They areCi andCs

symmetries. Thus we may develop molecular field theories forthese phases. They would be
a combination of the extension of the models in chapters 3 and4. Such systems would have a
very rich phase behaviour with several nematic phases of different symmetries.

The model which we have used in chapter 5 is a very basic model of how molecular flexibility
influences the stability of the biaxial nematic phases. It isthen significant to extend this model
to allow us to study real systems of nematic liquid crystals.This could be achieved through
several steps. Ideally, we may start with flexible molecules, generate its many conformations
which may have different symmetries. Then we solve the molecular field theory for these many
conformations. This appears to be a formidable challenge inmodelling and solving the theory.

In chapter 7, we have developed a model for biaxial smectic A phases withD2h symmetry. Thus
a valid question would be whether the biaxial smectic A phases can adopt lower symmetries as
the biaxial nematic phases. This can simply be done by introducing the order parameters and
interaction parameters which are responsible for smectic ordering into the theories of biaxial
nematic with symmetries lower thanD2h. Assuming the second-rank interaction is also dom-
inant in the smectic A phases, the symmetry of biaxial smectic A phases can beC2h, Ci and
Cs. In addition, if first-rank interactions are also allowed, we may have a polar biaxial smectic
A phases with ferroelectric character. Moreover, biaxial smectic A phases have been found to
stabilise by some liquid crystal dimers. These molecules are highly flexible. Therefore, in order
to have a realistic model of these systems, we need to allow the molecules in the molecular field
theory to change their shape. This would be a joined project with the extension of chapter 5.
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Appendix A

Explicit Expressions for some

Clebsch-Gordan Coefficients and

Small Wigner Rotation Matrices

The explicit expressions for some of the Clebsch-Gordan coefficients C(22L;mm′) that are
used in this thesis are:

C(220; 00) = C(220; 2 − 2) = C(220;−22) = 1/
√
5,

C(222; 00) = C(220; 02) = C(220; 0 − 2) = C(220; 2 − 2) = C(220;−22) =
√

2/7,

C(224; 00) = 3
√

2/35,

C(224; 02) = C(224; 0 − 2) = (1/2)
√

6/7,

C(224; 22) = C(224;−2 − 2) = 1,

C(224;−22) = C(224; 2 − 2) = 1/
√
70. (A.0.1)

The explicit expressions for the small Wigner rotation matricesdLmn(β) used in this thesis are

d000(β) = 1,

d100(β) = cos β,

d111(β) = d1−1−1(β) = cos2 β/2,

d11−1(β) = d11−1(β) = sin2 β/2,

d200(β) = (3 cos β2 − 1)/2,

d202(β) = d20−2(β) = d220(β) = d2−20(β) =
√

3/8sin2(β),

d222(β) = d2−2−2(β) = cos4(β/2),

d22−2(β) = d2−22(β) = sin4(β/2),

d400(β) = (35/8)cos4(β)− (15/4)cos2(β) + (3/8),

d402(β) = d40−2(β) = d420(β) = d4−20(β) = (
√
10/8)sin2(β)

[

7cos2(β)− 1
]

d404(β) = d40−4(β) = d440(β) = d4−40(β) =
(

√

(70)/16
)

sin4(β). (A.0.2)
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Appendix B

Minimisation Methods

In order to minimise the free energy, we use the MATLAB function fmincon. An example of a
free energy function is in equation (2.4.35) for a system formed from identical molecules with
D2h symmetry using the geometric mean approximation. This appendix describes the specific
algorithms which we choose to minimise the free energy. Suppose we want to minimise a
general functionf(x) of a vector variablesx with a vector functionGi(x) containing the values
of the equality and inequality constraints evaluated atx. We take a few steps in developing the
complexity in our algorithm. First of all we show how Newton’s method can be used to solve
a nonlinear non-constrained minimisation problem in appendix B.1. Next, in appendix B.2, we
apply Newton’s method to show that the solutions to a generalequality constraint nonlinear
minimisation problem are the same as a Sequential QuadraticProgramming problem. After
that, in appendix B.3, we show how to use the Sequential Quadratic Programming to solve
minimisation problem with inequality constraints which isanalogous to minimisation problems
with equality constraints. This last case has been used in the functionfminconin order to find the
global minimum of the free energy of our system. In order to deal with inequality constraints,
an algorithm called null-space active set method is employed which is discussed in B.4. Finally,
in appendix B.5 we discuss an algorithm to find a step length ateach iteration in our algorithm.

B.1 Application of Newton’s Method for Non-constrained Nonlin-

ear Minimisation Problems

Newton’s method is a method for solving a system of nonlinearequations of general form
f(x) = 0 wheref is a vector function of a vector variablesx. Suppose at iterationk in the
algorithm the estimate of the solutionx∗ is x(k). Newton’s method computes the improved es-
timatex(k+1) at stepk + 1 by setting the local linear approximation to the functionf atx(k) to
zero and then solve to getx(k+1). The estimate at stepk + 1 is given by

x(k+1) = x(k) − J−1f(x(k)), k = 0, 1, 2, ..., (B.1.1)
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provided that the Jacobian matrixJ of f is non-singular. Newton’s method has been proved to
converge quadratically to a solution.

Newton’s method can be applied to a non-constrained nonlinear minimisation problem to find
the direction in the variables to go to the next iteration

min f(x), (B.1.2)

by setting the first derivative to zero and solve the corresponding nonlinear system∇f(x) = 0.
The solution then gives us the direction to the minimum, provided sufficient conditions of the
first and second derivatives off are satisfied. The Newton’s direction is then

x(k+1) = x(k) −
(

Hf(x(k))
)T

∇f(x(k)), k = 0, 1, 2, ..., (B.1.3)

whereHf(x(k)) denotes the estimate of the Hessian matrix of the functionf(x) at stepk in the
iteration.

B.2 Sequential Quadratic Programming for Solving EqualityCon-

strained Nonlinear Minimisation Problems

Before deriving the Sequential Quadratic Programming method, we present the theorem which
gives the first order necessary conditions for a general nonlinear minimisation problem. Given
the following minimisation problem

min f(x) (B.2.1)

subject to

g(x) = 0,

h(x) ≥ 0. (B.2.2)

We define the Lagrangian to beL(x, γ, θ) = f(x) − γg(x) + θh(x) with arbitraryγ andθ.
Then there are Lagrange multiplier vectorsγ∗ andθ∗, with componentsγ∗i andθ∗i , such that the
following conditions are satisfied at the minimum(x∗, γ∗, θ∗)

∇xL(x
∗, γ∗, θ∗) = 0,

g(x∗) = 0,

h(x∗) ≥ 0,

θ∗ ≥ 0,

γ∗g(x∗) = 0,

θ∗h(x∗) = 0. (B.2.3)

The conditions in this theorem are often known as the Karush-Kuhn-Tucker conditions. The
proof of this theorem is complex so we do not include here, forinterested reader see in Nocedal
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and Wright [129].

Now we come back to our minimisation problem which only include equality constraints

min
x

f(x), (B.2.4)

subject to
g(x) = 0. (B.2.5)

If x∗ andγ∗ are the solution and the corresponding Lagrange multipliervectors, respectively,
then the followings are satisfied according to the first orderoptimality conditions

∇f(x∗)−∇g(x∗)Tγ∗ = 0,

−g(x∗) = 0. (B.2.6)

Hence the minimum can be found by applying Newton’s method tothe following system to
solve forx andγ

∇f(x)−∇g(x)T γ = 0,

−g(x) = 0. (B.2.7)

An iterative step in Newton’s method applying to this systemof nonlinear equations is

(

HL(x(k), γ(k)) −∇g(x(k))

−∇g(x(k))T 0

)

.

(

p(k)

γ∗(k)

)

= −
(

∇L(x(k), γ(k))

−g(x(k)).

)

(B.2.8)

Here,p is the desired step from the estimatex to the minimumx∗, p = x∗ − x In fact these
conditions above also satisfy the first-order necessary conditions for the following quadratic
program

min
1

2
pT .HL(x(k), γ(k))p+∇L(x(k), γ(k))Tp+ L(x(k), γ(k)) = 0, (B.2.9)

subject to
∇g(x(k))Tp+ g(x(k)) = 0. (B.2.10)

Hence the Sequential Quadratic Programming method is equivalent to Newton’s method applied
to the first order necessary conditions, solving the quadratic program generates the quasi-Newton
steps. Because of the constraints, the quadratic program isequivalent to

min
1

2
pT .HL(x(k), γ(k))p+∇f(x(k), γ(k))Tp+ f(x(k), γ(k)), (B.2.11)

subject to
∇g(x(k))Tp+ g(x(k)) = 0. (B.2.12)

Finally, we can drop the last termf(x(k), γ(k)) since it is irrelevant in determiningp(k). There-
fore the quadratic program is

min
1

2
pT .HL(x(k), γ(k))p+∇f(x(k), γ(k))Tp, (B.2.13)
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subject to
∇g(x(k))Tp+ g(x(k)) = 0. (B.2.14)

B.3 Sequential Quadratic Programming for Solving General non-

linear Minimisation Problems

A general nonlinear minimisation problem has both equalityand inequality constraints

min
x

f(x), (B.3.1)

subject to

g(x) = 0,

h(x) ≤ 0. (B.3.2)

Following the analysis for equality constrained minimisation, the Sequential Quadratic Program-
ming can be extended to a general nonlinear programming problem. This is the method used
in fminconto locate minima of a general nonlinear smooth constrained problem. The quadratic
program is now replaced by

min
1

2
pT .HL(x(k), γ(k))p+∇f(x(k), γ(k))T .p, (B.3.3)

subject to

∇g(x(k))T .p+ g(x(k)) = 0,

∇h(x(k))T .p+ h(x(k)) ≤ 0. (B.3.4)

In fact this quadratic program also generates Newton steps.

In practice, quasi-Newton methods are often used instead ofNewton’s method. Quasi-Newton
methods are like Newton’s method except the Hessian of the Lagrangian is approximated instead
of calculated directly as in Newton’s method. The most popular quasi-Newton algorithm is
the BFGS method, named after its discoverers Broyden, Fletcher, Goldfarb and Shanno. The
method converges superlinearly, which is slower than Newton’s method which is quadratic but
faster than linear convergence. However Newton’s method requires the calculations of second
derivatives at each step which is more expensive and so the BFGS method is more favourable.
The derivation of the approximation formulae for the Hessian matrix is rather complex and we
only give the formular here for completeness

H(k+1) = H(k) +
∇L(k).∇L(k)T

∇L(k)T .p(k)
−
(

H(k)p(k)
) (

H(k)p(k)
)T

p(k)T .H(k)p(k)
, (B.3.5)

whereH(k) is the approximation of the Hessian matrix at stepk, Hk.
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B.4 Null-space Active Set Method for Solving Quadratic Programs

At each step, a general quadratic program has the form

min
1

2
pT .HL(x(k), γ(k))p+∇f(x(k), γ(k))Tp = 0, (B.4.1)

subject to
∇h(x(k))Tp+ h(x(k)) ≤ 0, (B.4.2)

here we do not include equality constraints since it is irrelevant to our problem anyway. For
simplicity we rewrite the quadratic program as

min
1

2
pTHp+ cTp. (B.4.3)

subject to
Ap ≤ b. (B.4.4)

The active set method involves two phases. In the first phase afeasible starting point is cal-
culated. In the second phase the method generates an iterative sequence of feasible points that
converge to the solution. Now we define an active setĀ which is the set that keeps informa-
tion about the active constraints (those that are on the constraint boundaries). The number of
columns of the active set is equal to the dimension ofp and is always fixed, we call itm. The
number of rows of the active set at each step is the number of the active constraints at that step
and we call itl. At each iteration, the active constraint is updated, and isused to form a basis for
a search direction. The search direction is then calculatedand minimises the objective quadratic
function while remaining on any active constraint boundary.

The first phase involves the computation of a feasible starting pointp(0) is not discussed in
details in the documentation [130] so we obmit here. Howeversome strategies can be found in
Nocedal and Wright [129].

After the feasible starting point is found, the quadratic programming starts. At each step the
quadratic programming is solved for the search directiond(j) with the intention of settingd(j) =

p(j) − p(j−1). The problem now has the form

min
1

2
dTHd+ c(j)Td. (B.4.5)

subject to
Ā(j)d = 0, (B.4.6)

where

d = p− p(j),

c(j) = Hp(j) + c. (B.4.7)

Now it is clear from the constraints that the search direction d(k) must be in the null space of
the active set̄A (the space formed of vectors whose products withĀ give the zero vector).
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Therefore the search direction can be formed from a basisZ(j) whose columns are orthogonal
to the active set such that̄A(j)TZ(j) = 0. This null space matrix can be formed from the last
m− l columns of the QR decomposition of the matrixĀ. Now since the search direction is in
the null space of the active constraints, it is a linear combination of the columns ofZ(j), in other
wordsd(j) = Z(j)s(j), for some vectors(j). Then the quadratic program is now in terms ofs(j)

instead ofd(j)

min
1

2
sTZ(j)THZ(j)s+ cTZ(j)s. (B.4.8)

The search directions(j) can be found by setting the gradient of this function to zero and solve
the corresponding linear equations. After thatd(j) can be found. If we can takep(j+1) =

p(j) + d(j) without violation of any inactive constraints then that step is accepted. Otherwise
we move to the nearest boundary by takingp(j+1) = p(j) + δd(j) where

δ = min
i

−(Aip
(j) − bi)

Aip(j)
(B.4.9)

Then the active set is updated. The quadratic subprogram is terminated whend(j) = 0 and the
corresponding Lagrange multipliers are non-negative. TheLagrange multipliers are found by
solving the first order optimality conditions

Ā(j)Tγ(j) = c. (B.4.10)

If any Lagrange multiplier is negative then the columns of the active set corresponding to that
Lagrange multiplier does not correspond to an equality constraint and is removed from the active
set and a new iterate is sought.

B.5 Line Search Method for the Determination of Step Length

Now we have solved the quadratic subprogram to find the searchdirectionp(k) to move along.
The new point in the next iterate has the formx(k+1) = x(k) + α(k)p(k) where the step length
α(k) can be found by line search method. In line search method there are two phases. The first
phase is thebracketing phasewhich finds an interval[a, b] containing acceptable step lengths
[a, b]. The second phase is called theselection phasethat iteratively reduce the interval of
acceptable step lengths by interpolating some of the function and derivative information gathered
on earlier steps to guess the location of the minimiser. There are several methods that can be used
in these phases and we are not sure which one is employed infmincon. Some of the methods
are listed in chapter 3 of Nocedal and Wright [129]. During the selection phase, the optimal
solution is found when it satisfies the Wolfe conditions

Ψ(x(k) + α(k)p(k)) ≤ x(k) + c1α
(k)∇Ψ(k)Tp(k), (B.5.1)

∇Ψ(x(k) + α(k)p(k))Tp(k) ≥ c2∇Ψ(k)Tp(k), (B.5.2)

wherec1 andc2 are constants with0 < c1 < c2 < 1. Ψ is called merit function which is the
same as the objective functionf in non-constrained minimisation. In constrained minimisation,
the merit function is an addtion of the objective function and terms which takes into account
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the constraints to ensure that the next iterate does not go tofar from the feasible region. The
discussion of the merit function in this case, especially the one used infminconis rather complex
and we refer reader to references in the documentation [130]and the book by Nocedal and
Wright [129]. The first condition ensures that the step length α(k) give sufficient decrease in
the merit functionΨ. We see that the reduction inΨ should be proportional to both the step
length and the directional derivative∇Ψ(k)Tp(k). The second condition is called the curvature
condition which ensures the the algorithm makes reasonableprogress by ruling out unacceptably
short steps. This second condition means that, if the slope is two small then we cannot expect
much more decrease in the merit function in this direction sowe should stop the algorithm. In
practice the values ofc1 and c2 are about10−4 and0.9, respectively for Newton and quasi-
Newton methods [129].
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Appendix C

Analytical Results for the Biaxial

Nematic-to-Uniaxial Nematic Phase

Transition

We consider the relation at the second-rank biaxial nematic-to-uniaxial nematic phase transition

kBT

u200
= 2Q−1

∫

(FB(Ω))
2 exp

(

−UU(Ω)

kBT

)

d(Ω). (C.0.1)

The function inside the exponential function is the potential of mean torque in the uniaxial phase
and so it is independent of the angleα. Hence we can write this as

kBT

u200
= 2Q−1

U

∫
{[
∫

(FB(Ω))
2 dα

]

exp

(−UU (ω)

kBT

)}

d(ω), (C.0.2)

where
FB(Ω) = (R2

20(Ω))
2 + 2γR2

20(Ω)R
2
22(Ω) + (R2

22(Ω))
2. (C.0.3)

This can be expressed in terms of the quadratic products of the Wigner rotation matrices by writ-
ting theR functions in terms of them. The quadratic products of the Wigner rotation matrices
are given by

D2
mn(Ω)D

2
m′n′(Ω) =

∑

L

C(22L;mm′)C(22L;nn′)DL
m+m′,n+n′(Ω), (C.0.4)

Bearing in mind that the Wigner rotation matricesD4
±4,n(Ω) vanish under the integration with

respect toα, the results of the quadratic products which are non-zero under the integration over
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α are

D2
20(Ω)×D2

−20(Ω) = (1/5) − (2/7)D2
00(Ω) + (3/35)D4

00(Ω),

D2
20(Ω)×D2

−22(Ω) = (2/7)D2
02(Ω) + (1/2)

√

2/35(1/2)
√

6/7D4
02(Ω),

D2
20(Ω)×D2

−2−2(Ω) = (2/7)D2
0−2(Ω) + (1/2)

√

2/35(1/2)
√

6/7D4
02(Ω),

D2
20(Ω)×D2

−2−2(Ω) = (2/7)D2
02(Ω) + (1/2)

√

2/35(1/2)
√

6/7D4
0−2(Ω),

D2
−20(Ω)×D2

2−2(Ω) = (2/7)D2
0−2(Ω) + (1/2)

√

2/35(1/2)
√

6/7D4
0−2(Ω),

D2
22(Ω)×D2

−2−2(Ω) = (2/7)D2
00(Ω) + (1/70)D4

00(Ω),

D2
22(Ω)×D2

−22(Ω) = 1/
√
70D4

04(Ω),

D2
2−2(Ω)×D2

−22(Ω) = 1/5 + (2/7)D2
00(Ω) + (1/70)D4

00(Ω),

D2
2−2(Ω)×D2

−2−2(Ω) = 1/
√
70D4

0−4(Ω).

(C.0.5)

Averaging these order parameters over the orientational distribution function for the uniaxial
phase we get the relation of the biaxial nematic-to-uniaxial nematic phase transition temperature
and the uniaxial order parameters

kBT
u200

= 1+2γ2

5 +
(

−2+4γ2

7

)

〈R2
00〉+ 8

7γ〈R2
02〉

+
(

3+γ2

35

)

〈R4
00〉+ 2

7

√

3
5γ〈R4

02〉+
√

2
35γ

2〈R4
04〉. (C.0.6)
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Appendix D

A Proof of The Rotation Tensor

Let R be a rotation tensor which rotate a vectorv around a unit vectora = (a1, a2, a3)
T over

an angleθ and send it to a new vectorv′. We want to prove that

R = eAθ, (D.0.1)

whereA is a skew symmetric tensor associated with the unit vectora

A =







0 −a3 a2

a3 0 −a1

−a2 a1 0






(D.0.2)

The proof is as follows. First we note that the new vectorv′ is related to the original vectorv
via the Rodriguez rotation formula

v′ = v cos θ + a(a.v)(1 − cos θ) + (a× v) sin θ. (D.0.3)

Suppose nowθ = ∆θ is very small, such that

cos∆θ ⋍ 1, sin∆θ ⋍ ∆θ. (D.0.4)

so that
v′

⋍ v +∆θ(a× v). (D.0.5)

Now we letA be a skew symmetric tensor associated with the unit vectora, such thatAv =

a× v, clearlyA is given by equation (D.0.2). Hence to first order, the rotation tensor is

R = I+∆θA. (D.0.6)

Now the rotation arounda over an arbitrary angleθ consists ofN small rotations, whereN is a
large number, each takesv arounda over an angleθ/N with the rotation matrix

RN = I+
θ

N
A, (D.0.7)
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and so the rotation tensor overθ is

R =

(

I+
θ

N
A

)N

. (D.0.8)

LettingN goes to infinity we then have equation (D.0.1)R = eAθ.

172



Appendix E

Numerical Method for Solving the

Self-consistency Equations

In this appendix, we discuss the trust-region dogleg algorithm which is implemented in the
MATLAB function fsolve. We have used this function to solve the self-consistency equations in
chapter 7. The contents of this appendix are taken from the documentation for the MATLAB
Optimization Toolbox [130].

We recall from appendix B.1 Newton’s method can be applied tosolve a system of nonlinear
equationsf(x) = 0 by improving the estimatex(k) of the solution at each step to give the new,
better estimatex(k+1) = x(k) + d(k). Here,d(k) is the solution of the equation

J(x(k))d(k) = −f(x(k)), (E.0.1)

whereJ(x(k)) is the Jacobian matrix.

There are cases where this Newton’s method can run into difficulties, as pointed out in the
documentation for the MATLAB Optimization Toolbox [130]. For example,J(x(k)) may be
singular, and so the Newton stepd(k) is not even defined. In addition, the exact Newton step
d(k) may be expensive to compute. In addition, Newton’s method may not converge if the
starting point is far from the solution.

In order to improve robustness when the starting pointx(0) is far from the solution and also to
handle the case when the Jacobian matrix is singular, theTrust-Region Methodsis used in the
MATLAB function fsolve. To use this method, a merit functionis needed to decide if the new
estimate is better or worse than the old estimate. Instead ofsolving the equation (E.0.1), the
problem becomes a minimisation

min
d

{

(1/2)f(x(k))T f(x(k)) + dTJ(x(k))T f(x(k)) + (1/2)dTJ(x(k))J(x(k))Td
}

, (E.0.2)

subject to
‖Dd‖ ≤ ∆. (E.0.3)

Here,D is a diagonal scaling matrix and∆ is a positive scalar which can be set in the algorithm.
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In addition,‖.‖ denotes the 2-norm. In the algorithm, the stepd(k) is a convex combination of a
Cauchy step (a step along the steepest descent direction) and a Gauss-Newton step forf(x(k)).
The Cauchy step is given by

d
(k)
C = −aJ(x(k))T f(x(k)), (E.0.4)

wherea is chosen such that the expression in equation (E.0.2) is minimised. In other words, the
expression liked(k)

C is substituted into equation (E.0.2) and the minimisation is solved fora. In
addition, the Gauss-Newton step is calculated by solving the equation (E.0.1) using a method
discussed in the documentation [130] which gived

(k)
GN . The stepd(k) is chosen so that

d(k) = d
(k)
C + λ

(

d
(k)
GN − d

(k)
C

)

, (E.0.5)

whereλ is the largest value in the interval [0, 1] such that‖d(k)‖ < ∆. If J(x(k)) is nearly
singular,λ is set to zero.
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Appendix F

Solutions of the Landau-de Gennes

Theory of Field Induced Uniaxial

Nematics

F.1 Pure Landau-de Gennes theory

The Landau-de Gennes free energy expansion for uniaxial nematics in the absence of magnetic
field is

A = (3/4)a(T − Tbf)Q
2 + (1/4)BQ3 + (9/16)CQ4. (F.1.1)

The temperature and order parameter at the uniaxial nematic-to-isotropic phase transition can
be found by solving the system

A(Q0
NI) = A(0),

∂A

∂Q
(Q0

NI) =
∂A

∂Q
(0) = 0, (F.1.2)

for non zeroQ0
NI . The transition temperature is given by

T 0
NI = Tbf +

1

27

B2

aC
. (F.1.3)

And the order parameter at the phase transition is

Q0
NI = −2

9

B

C
. (F.1.4)

The Landau-de Gennes free energy expansion for uniaxial nematics under the interactions with
the magnetic field is

A = (3/4)a(T − Tbf)Q
2 + (1/4)BQ3 + (9/16)CQ4 − hQ. (F.1.5)
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At the critical point, the free energy satisfies

∂A

∂Q
=

∂2A

∂Q2
=

∂3A

∂Q3
= 0. (F.1.6)

All three derivatives need to be equal to zero. The first two conditions ensure that the critical
point is a stationary point of the free energy [102]. The third condition ensures that it is a
minimum or maximum. In order for it to be a minimum, we also need the fourth derivative to
be positive.

Solving the third derivative of the free energy equal to zero, we get the order parameter at the
critical point

Qc =
−B

9C
= (1/2)Q0

NI . (F.1.7)

In addition, the fourth derivative only depends onC. Therefore, we requireC > 0. In order to
simplify the problem, we change the variable to

x = Q+
B

9C
. (F.1.8)

The free energy can be rewritten as

A =
9

16
Cx4 +

(

3

4
a(T − Tbf)−

1

24

B2

C

)

x2

+

(

−1

6
a(T − Tbf)

B

C
− h+

1

162

B3

C2

)

x+
1

108
a(T − Tbf)

B2

C2
. (F.1.9)

In order for the first two derivatives to vanish, we need

3

4
a(T − Tbf)−

1

24

B2

C
= 0, (F.1.10)

and,

− 1

6
a(T − Tbf)

B

C
− h+

1

162

B3

C2
= 0. (F.1.11)

These two equations give us the critical temperature

Tc = Tbf +
1

18

B2

aC
, (F.1.12)

which can be related to the applied field

T = Tbf +
1

27

B2

aC

(

1 +
h

2hc

)

. (F.1.13)

This can also be written as
Tc − T 0

NI =
1

2
(T 0

NI − Tbf). (F.1.14)

We can eliminatea(T − Tbf) in both equations (F.1.10) and (F.1.11) in order to get the critical
field

hc = − 1

324

B3

C2
. (F.1.15)
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The transition temperature and transitional order parameter for a given field strength can be
found by solving the system

A(Q1) = A(Q2),

∂A

∂Q
(Q1) =

∂A

∂Q
(Q2) = 0. (F.1.16)

This can be simplified into a set of four equations

9

4
Cx31,2 +

(

3

2
a(T − Tbf)−

1

12

B2

C

)

x1,2 +

(

−1

6
a(T − Tbf)

B

C
− h+

1

162

B3

C2

)

= 0,

(F.1.17)
9

4
C(x21 + x22 + x1x2) +

(

3

2
a(T − Tbf)−

1

12

B2

C

)

= 0, (F.1.18)

9

16
C(x31 + x32 + x21x2 + x1x

2
2) +

(

3

4
a(T − Tbf)−

1

24

B2

C

)

(x1 + x2)

+

(

−1

6
a(T − Tbf)

B

C
− h+

1

162

B3

C2

)

= 0. (F.1.19)

Using equation (F.1.17) we can eliminate the last term in equation (F.1.19) which gives

9

16
C(−3x31 − 3x32 + x21x2 + x1x

2
2)−

(

3

4
a(T − Tbf)−

1

24

B2

C

)

(x1 + x2) = 0. (F.1.20)

This satisfies when eitherx1 + x2 = 0, or

− 9

16
C
(

2(x21 + x22) + (x1 − x2)
2
)

− 3

4

(

a(T − Tbf)−
1

18

B2

C

)

= 0. (F.1.21)

However this expression is always less than zero forT less thanTc. Therefore our solution
satisfiesx1 = −x2. Now adding the two equations in (F.1.17) gives

− 1

6
a(T − Tbf)

B

C
− h+

1

162

B3

C2
= 0. (F.1.22)

This can be solved to give the field induced transition temperature

TN−pN − Tbf = −6C

aB
h+

1

27

B2

aC
. (F.1.23)

We can also write this as

TN−pN − TNI = −4

3

h

aQ0
NI

. (F.1.24)

Now equation (F.1.18) can be solved withx1 = −x2 to give

x21,2 =
B2

81C2

(

3− 54
aC

B2
(TN−pN − Tbf)

)

. (F.1.25)
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From equation (F.1.23) we can write this as

x21,2 =
B2

81C2

(

1− h

hc

)

. (F.1.26)

Therefore the order parameter at the phase transition is

Q1,2 = Qc

(

1±
√

1− h

hc

)

. (F.1.27)

In order to find a relation between the order parameter and thetemperature at the critical field,
we substituteh = hc and equation (F.1.12) into equation (F.1.9) and differentiate with respect
to x.

∂A

∂x
(h = hc) = −26244Cx3 + 17496aC3x(Tc − T )− 1944BaC2(Tc − T ). (F.1.28)

Hence at the critical field, we have

3

2
C(Q−Qc)

3 = aQ(Tc − T ). (F.1.29)

This equation can be used to find the critical exponentβ. In the limit asT tends toTc, (T − Tc)

is a power of(Q−Qc). We sett = Tc − T , the equation becomes

3

2
Cx3 = a(x+Qc)t. (F.1.30)

In order to find the asymptotic behaviour oft againstx, we expandt as a polynomial ofx

t = t0 + t1x+ t2x
2 + t3x

3. (F.1.31)

Therefore, we get

(3/2)Cx3 = aQct0

+ a(t0 +Qct1)x

+ a(t1 +Qct2)x
2

+ a(t2 +Qct3)x
3. (F.1.32)

Equate the two sides, we get
t0 = t1 = t2 = 0. (F.1.33)

And

t3 =
3C

2aQc
. (F.1.34)

Hence(T − Tc) behaves asymptotically as(Q−Qc)
3

T − Tc =
3C

2aQc
(Q−Qc)

3. (F.1.35)
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F.2 Landau-KKLS theory

Here we setB = bT so this coefficient is linear in temperature. The Landau-KKLS free energy
expansion for uniaxial nematics without interaction with the magnetic field is

A = (3/4)a(T − Tbf)Q
2 + (1/4)bTQ3 + (9/16)CQ4, (F.2.1)

where the coefficients are given in equation (6.2.17). The temperature and order parameter at
the uniaxial nematic-to-isotropic phase transition can befound by solving the system

A(Q0
NI) = A(0),

∂A

∂Q
(Q0

NI) =
∂A

∂Q
(0) = 0, (F.2.2)

for non zeroQ0
NI . Thus, the transition temperature is the positive solutionof the quadratic

equation

T 2 − 27
aC

b2
T + 27

aC

b2
Tbf = 0. (F.2.3)

Hence,

T 0
NI =

1

2





27aC

b2
±

√

(

27aC

b2

)2

− 4Tbf
27aC

b2



 . (F.2.4)

And the order parameter at the phase transition is

Q0
NI = −2

9

bT 0
NI

C
. (F.2.5)

At this stage we cannot choose between the plus and minus signs for the transition temperature.
It is clear when we use the Landau-KKLS theory that taking theminus sign gives us a result
closer to the transition temperature predicted by the molecular field theory. In addition, taking
the plus sign gives us the order parameter at the phase transition greater than one which is not
valid. Hence, within the Landau-KKLS theory the transitiontemperature is

T 0
NI =

1

2





27aC

b2
−

√

(

27aC

b2

)2

− 4Tbf
27aC

b2



 . (F.2.6)

The Landau-KKLS free energy expansion for magnetic field induced nematics is

A = (3/4)a(T − Tbf)Q
2 + (1/4)bTQ3 + (9/16)CQ4 − hQ. (F.2.7)

At the critical point, both the first, second and third derivatives of the free energy must be zero
whereas the fouth derivative is strictly positive. In orderfor the third derivative to vanish, the
order parameter at the phase transition must be

Qc = −bTc

9C
. (F.2.8)

179



We change the variable to

x = Q+
bT

9C
. (F.2.9)

Now we can rewrite the free energy as

A =
9

16
Cx4 +

(

3

4
a(T − Tbf)−

1

24

b2T 2

C

)

x2

+

(

−1

6
a(T − Tbf)

bT

C
− h+

1

162

b3T 3

C2

)

x+
1

108
a(T − Tbf)

b2T 2

C2
. (F.2.10)

The critical temperature and critical magnetic field are thesolutions of the system

3

4
a(T − Tbf)−

1

24

b2T 2

C
= 0,

− 1

6
a(T − Tbf)

bT

C
− h+

1

162

b3T 3

C2
= 0. (F.2.11)

Now the critical temperature is the solution of the first equation

Tc =
1

2





18aC

b2
±

√

(

18aC

b2

)2

− 4Tbf
18aC

b2



 . (F.2.12)

The critical field can be found by eliminating the terma(T − Tbf) in the two equations which
gives

hc = − 1

324

b3T 3
c

C2
. (F.2.13)

The equation relating the order parameter and temperatue atthe critical field can be found by
substituting forhc to equation (F.2.10) and solve for the first derivative equalto zero, we get

9

4
C

(

Q− bT

9C

)3

= −
(

3

2
a(T − Tbf)−

1

12

b2T 2

C

)

Q. (F.2.14)

Note in this case we cannot find the critical exponent analytically since we cannot write the
critical equation in terms oft = Tc − T due to the appearance of the quadratic term inT . Thus,
the transitional order parameter cannot be put into a simpleformular. Hence we have to rely on
numerical results for this.
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Appendix G

Stability of The Equilibrium Free

Energy for KLZ Approximation

In this appendix, we analyse the stability conditions for the equilibrium free energy in three
cases: uniaxial smectic A fomed from uniaxial molecules with KLZ approximation, biaxial
smectic A formed from molecules withD2h symmetry with KLZ-GM and KLZ-SVD approxi-
mations. The stability conditions can only be obtained analytically at perfect order. The method-
ology and results for the first case were introduced to me through a private communication with
Mr Hock Seng Nguan.

G.1 KLZ Theory

For convenience, we define the following functions

J(z, β) = (1 + ατ2)P2(cos β) + 2αητ cos 2πz/d. (G.1.1)

K(z, β) = 2αητP2cos β + α(δ + η2) cos 2πz/d. (G.1.2)

The second derivatives of the scaled free energyA∗ in equation (7.3.6) with respect to the two
order parameters are

∂2A∗

∂τ2
=

1

T ∗2

(

K
2 −K2

)

+
1

T ∗

(

δα + 3αS2 − 2αSP2

)

. (G.1.3)

∂2A∗

∂S2
=

1

T ∗2

(

J
2 − J2

)

+
1

T ∗

(

1 + 3ατ2 − 2ατcos (2πz/d)
)

. (G.1.4)

∂2A∗

∂τ∂S
=

1

T ∗2

(

J ×K − JK
)

+
1

T ∗

(

6ατS − 2ατP2 − 2αScos (2πz/d)
)

. (G.1.5)
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Here, we make a clear distinction betweenS andP2, and betweenτ andcos 2πz/d. The overline
represents the integration

A =

∫ ∫

A(z, β)f(z, β)dzdβ. (G.1.6)

They come from the derivative of the partition function. Thevalues ofP2 andcos 2πz/d are
only equalS andτ at the solutions of the self-consistency equations. The first terms in the three
derivatives are thermodynamic fluctuations and vanish at perfect order. In addition, at perfect
order we haveS = P2 = 1 andτ = cos (2πz/d) = 1. Hence the values of the determinant of
the Hessian matrix at the self consistency solutions at perfect order are

detH =
1

T ∗2

(

(1 + α)δα + α− 3α2
)

. (G.1.7)

For simplicity, we letδ = 0. It is then easy to see that the second derivatives of the form
∂2A/∂a2 are possitive. Hence, from multivariate analysis, the condition for stability isdetH >

0, or 0 < α < 1/3. In the next two sections, we also setδ to 0 for the GM-KLS approximation
and for the SVD-KLS approximation.

G.2 Geometric Mean Approximation with KLZ Theory

For convenience, we define the following three functions as

J1(z,Ω) =
(

δα + α(〈FU 〉2 + 2〈FB〉2)
)

cos (2πz/d) + 2ατ (〈FU 〉FU (Ω) + 2〈FB〉FB(Ω)) .

(G.2.1)
J2(z,Ω) = 2α〈FU 〉τ cos (2πz/d) +

(

1 + ατ2
)

FU (Ω). (G.2.2)

J3(z,Ω) = 4α〈FB〉τ cos (2πz/d) + 2
(

1 + ατ2
)

FB(Ω). (G.2.3)

The second derivatives of the KKLS free energy in equation (7.4.9) can be written in terms of
these three functions

∂2A∗

∂τ2
=

1

T ∗2

(

J1
2 − J1

2
)

+
1

T ∗

{

δα+ 3α
(

〈FU 〉2 + 2〈FB〉2
)

−2α
(

〈FU 〉FU + 2〈FB〉FB

)}

. (G.2.4)

∂2A∗

∂〈FU 〉2
=

1

T ∗2

(

J2
2 − J2

2
)

+
1

T ∗

(

1 + 3ατ2 − 2ατcos (2πz/d)
)

. (G.2.5)

∂2A∗

∂〈FB〉2
=

1

T ∗2

(

J3
2 − J3

2
)

+
1

T ∗

(

2 + 6ατ2 − 4ατcos 2πz/d
)

. (G.2.6)

∂2A∗

∂τ∂〈FU 〉
=

1

T ∗2

(

J1 × J2 − J1J2
)

+
1

T ∗

(

6ατ〈FU 〉 − 2α〈FU 〉cos (2πz/d) − 2ατFU

)

.

(G.2.7)
∂2A∗

∂τ∂〈FB〉
=

1

T ∗2

(

J1 × J3 − J1J3
)

+
1

T ∗

(

12ατ〈FB〉 − 4α〈FB〉cos (2πz/d) − 4ατFB

)

.

(G.2.8)
∂2A∗

∂〈FU 〉∂〈FB〉
=

1

T ∗2

(

J2 × J3 − J2J3
)

. (G.2.9)
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Here, we make a clear distinction between〈FU 〉 andFU , 〈FB〉 andFB , and betweenτ and
cos (2πz/d). They only equal each other at the solution of the self-consistency equations. The
overline represents the integration

A =

∫ ∫

A(z, β)f(z,Ω)dzdΩ. (G.2.10)

Again, at perfect order, the fluctuation terms vanish. Setting the limit for rod-like molecules,
〈FU 〉 = FU = 1, 〈FB〉 = FB = γ andτ = 1, the determinant of the Hessian matrix is

detH = 2α(1 + 2γ2)(1 + α)(1 − 3α). (G.2.11)

In addition, it is easy to see that the second derivatives of the form∂2A/∂a2 are possitive. Here,
the condition for the de Gennes’ free energy to be well-behaved is the same as for the uniaxial
smectic A phase formed from uniaxial molecules.

G.3 SVD Approximation

Again, for convenience, we define the following three functions

K1(z,Ω) =
(

δα + α(〈R00〉2 + 2λ〈R22〉2)
)

cos (2πz/d)

+2ατ (〈R00〉R00(Ω) + 2λ〈R22〉R22(Ω)) . (G.3.1)

K2(z,Ω) = 2α〈R00〉τ cos (2πz/d) +
(

1 + ατ2
)

R00(Ω). (G.3.2)

K3(z,Ω) = 4αλ〈R22〉τ cos (2πz/d) + 2
(

1 + ατ2
)

λR22(Ω). (G.3.3)

The KKLS free energy in equation (7.4.2) can be written in terms of these three functions

∂2A∗

∂τ2
=

1

T ∗2

(

K1
2 −K1

2
)

+
1

T ∗

{

δα+ 3α
(

〈R00〉2 + 2λ〈R22〉2
)

−2α
(

〈R00〉R00 + 2λ〈R22〉R22

)}

. (G.3.4)

∂2A∗

∂〈R00〉2
=

1

T ∗2

(

K2
2 −K2

2
)

+
1

T ∗

(

1 + 3ατ2 − 2ατcos (2πz/d)
)

. (G.3.5)

∂2A∗

∂〈R22〉2
=

1

T ∗2

(

K3
2 −K3

2
)

+
1

T ∗

(

2λ+ 6λατ2 − 4λατcos 2πz/d
)

. (G.3.6)

∂2A∗

∂τ∂〈R00〉
=

1

T ∗2

(

K1 ×K2 −K1K2

)

+
1

T ∗

(

6ατ〈R00〉 − 2α〈R00〉cos (2πz/d) − 2ατR00

)

. (G.3.7)
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∂2A∗

∂τ∂〈R22〉
=

1

T ∗2

(

K1 ×K3 −K1K3

)

+
1

T ∗

(

12λατ〈R22〉 − 4λα〈R22〉cos (2πz/d) − 4λατ〈R22〉
)

. (G.3.8)

∂2A∗

∂〈R00〉∂〈R22〉
=

1

T ∗2

(

K2 ×K3 −K2K3

)

. (G.3.9)

Here, we make a clear distinction between〈R00〉 andR00, 〈R22〉 andR22, and betweenτ
andcos (2πz/d). They only equal each other at the solution of the self-consistency equations.
We note that, at perfect order, the fluctuation terms vanish.Setting the limit at perfect order
〈R00〉 = R00 = 1, 〈R22〉 = R22 = 1 andτ = cos (2πz/d) = 1, the determinant of the Hessian
matrix is

detH = 2λα(1 + λ)(1 + α)(1 − 3α). (G.3.10)

In this case, we can also see that the second derivatives of the form ∂2A/∂a2 are positive.
Hence, we conclude that in all three cases, the condition forthe solution of the self-consistency
equations to coincide with the minimum of the KKLS free energy is 0 < α < 1/3.
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