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MOLECULAR FIELD THEORIES FOR BIAXIAL LIQUID CRYSTALS

by Tung B. T. To

This thesis consists of five studies on the applications efntiolecular field theory to model
systems of biaxial molecules which form biaxial and unibri@matic and smectic A phases.
The first study extends the original theory for biaxial na@mphases ofD,;, symmetry to allow
the phase symmetry to #&,,,. In the second study, a dipolar interaction is introduceth®
original model of biaxial nematic phases formed from V-gftamolecules to explain a disagree-
ment between theory and experiment. This leads to the istaimin of the novel polar biaxial
nematic phase. In the third study, we introduce moleculaibilgy at a simplified level into
an existing model of V-shaped molecules to investigatefiects on the stability of the biaxial
nematic phases. The fourth study aims to explain and preditdus effects of magnetic field
on the uniaxial nematic to isotropic phase transition foystesm of rigid V-shaped molecules.
In the fifth study, we develop a model for biaxial smectic Agdm The theory is simplified by
using several approximations which facilitates the caltonhs.
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Chapter 1

Introduction

In this chapter we introduce the liquid crystal phases oftenatThen we concentrate on the
discussion of biaxial low molar mass thermotropic nematid smectic A liquid crystals. We
also give a plan for subsequent chapters.

1.1 Liquid Crystals

Liquid crystal phases are intermediate between the ligndithe solid phases in that they pos-
sess orientational order, like a solid, but have little opositional order, like a liquid. Therefore,
a common behaviour of liquid crystals is a combination otiliglike fluidity and crystal-like
properties. Hence they are sometimes knowmasomorphiphases. Similarly the compounds
out of which they are constructed are often calmdsogenﬂ]. Liquid crystal phases can
be broadly classified inttyotropic andthermotropicsystems according to whether their phase
structure is changed by adding solvent. The difference lisgt enough concentration, the ly-
otropic mesogenic molecules begin to arrange themselvescellar structures, which causes
their phase behaviour with solvent different from therrapic liquid crystals. In micellar struc-
ture, the molecules arrange themselves into spheres, dtmesogenic groups on the outside
and the hydrocarbon end chains towards the centre. The ¢agil is also callednesogenic

group.

Thermotropic liquid crystals are often made of elongatetemdes which can be classified into
three typesnematic smecticandcholestericphases. Nematic liquid crystals are those that pos-
sess only orientational long-range order and no posititomay-range order. In a nematic phase,
the molecules have a preferred direction which is uniqueutdinout a uniform domain and of-
ten called the director. In contrast, in a cholesteric phteedirector forms a twisted structure.
While nematic and cholesteric liquid crystals do not havegloange positional orders, smectic
phases are formed of two dimensional layers which confineoutdr position. The type of lig-
uid crystals that may be observed depends strongly on thetsite of the constituent molecules
or groups of molecules. For example, if the constituent mdés are disc-like instead of elon-
gated then they can forrmolumnar phases instead of smectic phases. In a columnar phase,
the molecules stack face to face to form columns. Dependiog the nature of the building
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blocks and upon the external parameters (temperaturesysegoncentration, solvents, fields,
etc.), we can observe a wide variety of phenomena and ti@msiamongst liquid crystalg [2].
The system may pass through one or more mesophases befoes itngo the isotropic liquid.
The crucial input for their building blocks is almost alwegsentral core of some benzene or
cyclohexane rings, connected to a flexible chain having ebeurmof carbon atoms and other sub-
stituent groups.[1]. While the rigid cores help the molesule achieve ordering, their flexible
chains allow them to move around in the fluid.

Thermotropic nematic liquid crystals are ubiquitous

materials inliquid crystal display devicesThe con- \ \ /

stituent molecules are often elongatezhléamitic or e T

rod-like). In a conventional nematic phase, the moleg- l N ISOTROPIC
ular long axis is parallel to the director on average — “\_

while they can rotate freely around that averaged qi- \ / - \

rection. Because of this orientational order of th
molecules, nematic physical properties are anisotropic ‘ ‘ l I
and cylindrically symmetric. An example is their opti l

cal behaviour. For example, a plane polarised light c nl
propagate along the director without its state of pol I
isation being modifiecﬂB]. This director is also called

the optical axisand since the material has one optif

cal axis, it is called ainiaxial nematic, a nomencla- H I I H l l H H
ture adopted from the field adptics In addition, the J | l ” I | || ‘ l ‘ H
anisotropic properties of nematic liquid crystals caug

light polarized along the director to propagate atadif-l H | | l | H l “ I |
ferent velocity than light polarised perpendicular to the

director. In other words, an incoming light beam is
split into two orthogonal components, called tveli-
nary ray and theextraordinary ray which propagate
with different wave vector, which leads to double im-
ages mﬁl]. Nematic liquid crystals are, therefobae-
fringent [S]. The degree of orientational order in ne-
matic liquid crystals depends on the alignment of the
constituent molecules with respect to one another. Thisraedcharacterised by a set of orien-
tational order parameters.

| NEMATIC

SMECTIC A

FIGURE 1.1: Schematic repre-

sentations of the isotropic, ne-
matic and smectic phases formed
from elongated molecules. Re-
produced from|__[16].

Another main subdivision of thermotropic liquid crystalkiah is formed from rod-like molecules
is smecticmesophasea[ﬂ. In addition to orientational order, likenagc phases, smectic phases
have a positional order in at least one dimension. Therdsemiany types of smectic phases.
They differ in: (i) the orientation of the preferred direwiiof the molecules with respect to the
layer normal and (ii) the organisation of the centres of tlsdecules within the Iayer£|[7]. We

are only concerned with the smectic A phase. In this phasentiiecular density oscillates in a
direction parallel to the director which forms a density waw that direction. At large density,

the molecules are essentially confined into IayBrs [1]. Ketie centres of the molecules are,
on average, arranged in equidistant planes and smectiephas often approximated as having
a layered structure. The molecules are arranged in layaisanthickness about equal to the
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length of the molecule£|[7] In addition, smectic A phasegHhang-range orientational order
with the director of molecules in one layer is parallel to thger normal. Inside each layer,
the centres of gravity show no long-range positional orla]erlh figure[1.1, we show schematic
representations of the isotropic, nematic and smectic Agheahich are formed from elongated
molecules. Because of the orientational order of the méscilike nematics, many physical
properties of smectic A liquid crystals are also anisottopn smectic A liquid crystals, an in-
coming light beam is also split into tledinary rayand theextraordinary ray which propagate
with different wave vector. Therefore, smectic A liquid stgls are also birefringent. However,
there is a difference between the nematic and the smectica&gshin their interaction with
light. [E]. In nematic liquid crystals, light is scattereg fhuctuation in the director. In contrast,
in smectic liquid crystals, light is scattered by fluctuasan both the director and the layer
structure |ﬂ5].

1.2 Uniaxial Nematics

Classical studies of uniaxial nematics often assumeggf{in R i

_ | 2 -g\w/"ﬂf i Nq
that the constituent mesogenic molecules have cylin- _!4 ' N ﬁ'\u ’ﬂ '
drical symmetry in keeping with their collective be- -. (}'Q’ , ﬁh%

) . : o : |. fl
haviour which often yields a uniaxial nematic phase. !
In figure[1.2 we show a snapshot of a Monte Carlo ’
simulation which yields a uniaxial nematic phase con- , /
sisting of cylindrical molecules with th& axis being -‘ ﬂﬁ}f i {
{ g

the director. The orientation of a molecule in a uni- -"""“u{ﬁ”}““'%' t“"ﬁ’"‘““
axial nematic environment can be defined by an angle
3 between the molecular axis of symmetry and that of F/GURE 1.2: The molecular or-
the phase which is shown in figuiell.3. The degree 92nisation in a uniaxial nematic
of orientational order of the phase should be measured phase Fomposed of ellipsoids of
by an average of a function of the angle Due to revolution. Reproduced from
the molecular head-tail Sﬁmmetry, the order parameter
was defined by Tsvetskov [8] as the average of the secondiregdndre polynomial

3cos?fB —1

S = (Pafeos 7)) = (-

). (1.2.1)

Here, the angular brackets denote the thermodynamic
ensemble. This choice for the order parameter also has
convenient limiting values. In the isotropic phase since
all orientations have equal probability, the molecules
are disordered and the value $fis zero. At perfect
order, for example, in the crystalline solid, all the sym-
metry axes of the molecules point in the same direc-
tion and so the value of is 1. In the nematic phase,
S depends on the temperature and takes intermediate
values between 0 and 1. For typical nematic this order FIGURE 1.3: A cylindrical
molecule and its orientation with
respect to the laboratory axis.
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parameter jumps from O to about 0.3 at the isotropic-to-rien@hase transition and contin-
ues to increase in the isotropic phase to about 0.8 befostatised. The discontinuity in the
transitional order parameter signifies that the nematisdtropic phase transition is first order.

Theoretical methods for studying thermodynamic phasesitian of uniaxial nematic liquid
crystals can be broadly divided into two classes: LandaGeienes theory and molecular statis-
tical theoriesﬁ|7]. In the Landau-de Gennes theory, thedresrgy per molecule is postulated to
be an expansion of the order parameter with the expansidficieets that depend on material
properties and the temperature, and is usually truncated fafurth or sixth order. By min-
imising the free energy, the order parameter at a given teatyre can be found and hence the
transition temperature can be located. Molecular stedistheories clearly have the advantage
that molecular shape and symmetry can be taken into accmaat they are governing factors
that determine the phase stability. It seems that the masessaful molecular statistical theory
is the molecular field theory. This theory was formulated gidd and Saupe to study a nematic
system in which orientational ordering essentially oragés from the anisotropic attractive in-
teraction Eb]_—lb] This approximation is not required in efaeformulation by de Gennes in
a variational approach|[2]. At the centre of the moleculaldfibeory is the molecular field
approximation. The approximation states that each madeicuthe system only interacts with
a long-range molecular field and ignoring any short-rangeetattion. The Maier-Saupe theory
has successfully described uniaxial nematic-to-isotrgghiase transition as well as pretransi-
tional effects and phase behaviour from a qualitaﬂ/e [d even semi-quantitativéf[lll] point
of view.

Another class of molecular statistical theory for nematjaitl crystal is based on the Onsager
theory BZEV] In this theory, the hard core short-ranggufsive force between rigid rod-

like molecules is the only molecular interaction which deties molecular ordering in the

nematic phase. The repulsion does not allow the moleculenetpate each other. The only
contribution to the free energy is from the entropy wheréase is no energy contributioﬂlZ].

The molecules arrange themselves in order to maximise ttnepsn hence minimise the free

energy. At low concentration, the elongated molecules teméck in a way that their long axes
align to form the nematic phase. The Maier-Saupe, reforradlhy de Gennes, clearly has an
advantage that no assumption need to be made about the obthesinteraction.

1.3 Biaxial Nematics

A weakness of the Maier-Saupe theory is the as-
sumption that constituent molecules are cylin- Y
drically symmetric although most nematogenic
molecules are intrinsically biaxial as well as rd
flexible. In other words, they are not symmetric X

around a single axis of rotation. Usually, they
give rise to uniaxial phases as a consequence of
the rotational disorder around the long molecu-
lar axis ms].

FIGURE 1.4: A D5, molecule with
shape of a rectangular parallelepiped.
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In 1970, Freiseﬂﬂ4] predicted that a nematic phase whiefatks from cylindrical symmetry
might be able to form from non-cylindrical molecules. Finst considered two identical inter-
acting molecules which are not cylindrical. Their relatoréentation is described by three Euler
angles. These two molecules then interact via a secondefé@itive pair interaction potential
which depends on their relative orientation. Freiser thewsd that the ground state of this po-
tential corresponds to identical orientation of intenagtmolecules. He therefore concluded that
the ground state of a system of non cylindrical molecule®isuniaxial. In addition, by consid-
ering the free energy of the system, he demonstrated thahthse transition from the uniaxial
state to the ground state corresponds to the vanishing stttend derivative of the free energy
at the minimum. Therefore, the phase transition from thexial state to the ground state is
second order. Freiser called this new phadeaaial stateto indicate that there are now two
axes along which plane polarised light can travel withouhange in the state of polarisation.
In addition there is a Landau point, that is a second ordasitian directly from the biaxial
nematic phase to the isotropic liquid. Freiser's demotistieof the biaxial nematic phase was
further illustrated in his second paper/[15].

The simplest example of a biaxial molecule
is one whose shape is a rectangular paral-
lelepiped which had),;, symmetry according
to Schonflies’ notationm.G]. In figure1.4 we
show an example of &, molecule. TheDy,
symmetry group has five basic symmetry oper-
ations: an identity, a two-fold (principal) axis,
two two-fold axes of rotation perpendicular to
the principal axis and a horizontal reflection
plane perpendicular to the principal a@[m].
If the length is much larger than the breadth and
width, then the molecule is calamitic. In the
uniaxial phase the longest molecular axis tends
to align first. As the system becomes biaxial,
the minor axes (width and breadth) tend to align
accordingly, giving a phase with physical prop- FIGURE 1.5: The molecular organisa-
erties of Dy, symmetry. An organisation of a  tion in a biaxial nematic phase formed
biaxial nematic phase is shown in figlre]1.5. A from board-like molecules. Reproduced
rectangular parallelepiped molecule is discotic from E]-

if the value of its length is close to one of the

minor axis whereas the other minor axis is much smaller. énuhiaxial nematic formed by
discotic molecules, the shortest axis tends to align. Irbtagial nematic phase, since all three
molecular symmetry axes align, the phase behaviour of ¢ataend discotic molecules are
the same. This system of parrallelepiped molecules wasestuny Straley@?] as an exten-
sion of the original Maier-Saupe model. By fixing the moleecuength and width and varying
its breadth, Straley derived a phase map relating the tramsemperature with the molecular
breadth which is shown in figute_1.6. In this phase map, alstabliregion of biaxial nematic
phase was found. Above this biaxial region is the uniaxiahac phase which is calamitic (or
rod-like) for small values of the molecular breadth and aligcfor large values of it. The uni-
axial nematic-to-isotropic phase transition is first ordlelagreement with experiment whereas
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the biaxial nematic-to-uniaxial nematic phase transitsssecond order, in accord with Freiser’s
prediction. Moreover, there is a single point of direct setorder biaxial nematic-to-isotropic
phase transition. This pointis called the Landau point aacksithe boundary between calamitic
and discotic molecules.

5¢ \ 1
\\ UNIAXIAL (PLATES)
4t \
\\
® 5[0 BIAXIAL ===
////
// ISOTROPIC
2[ " UNIAXIAL 1
(RODS) W=l
L=10 ]
o0 20 80 1

FIGURE 1.6: The phase map for molecules with rectangular parefigied shapes as calcu-
lated by Straley. Here3, L andWW denote the breadth, length and width of the molecules,
respectively whilet is the absolute temperature measured in energy units. Beped from

[17].

Another extension of the Maier-Saupe theory for biaxial agos was by Boccara, Mejdani and
de Seze|E8]. They considered a system of asymmetric alips@d\n ellipsoid interacts with
the molecular field via a potential of mean torque. The deiabf an ellipsoid from cylindrical
symmetry is measured by a parametefrhe author then derived a phase map relating the tran-
sition temperature with the parameteiThe phase map agreed qualitatively with that by Straley
[Iﬂ]. In their later analogous formulation of the theory,niter and Haymemg] also derived
another phase map with the same qualitative behaviour. fiiggpbehaviour predicted by Stra-
le ] was also reproduced using computer simulati&ﬁ; 2@ Landau-de Gennes theory

. In addition, in an Onsager theory for V-shaped molesulgeracting via excluded volume

], a phase map with the same behaviour was found. In tes tee interarm angle represents
the molecular biaxiality and the phase behaviour dependiensity rather than temperature.

However this behaviour is not unique as demonstrated byntenelecular field calculations
and Monte Carlo simulations. These calculations exploifdrent sets of interaction param-
eters as beforﬁhazaﬂ EL 26] and found that thadbiagmatic-to-uniaxial nematic
phase transition can be either first or second order. Iniaddithe Landau point is replaced
by a line of either first or second order transition betweentiaxial nematic and the isotropic
phase. Therefore along both these phase transition lirbs jphase map there cantbieritical
points A tricritical point is one which marks the boundary betwébkea first and second order
transitions. This behaviour was also found in recent LargiaGennes calculatiorEtZ?].

After Freiser’s prediction, there has been consideralikrests in the creation of compounds,
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which might exhibit the biaxial nematic phase. The biaxiaimatic phase were later observed
in lyotropic @] and thermotropic polymer liquid crysta{@]. Thermotropic biaxial nemat-
ics have also been discovered in a class of supermoleculesl tetrapodes A tetrapodal
molecule consists of four mesogenic groups connected tomi@ateore through four hydro-
carbon chains. The experimental techniques which supperatter discovery are infrared ab-
sorbance measurements, together with optical conoscapiesptical texturei_[_éO], deuterium
nuclear magnetic resonance|[31] and dynamic light scagd2]. However, the low molar
mass thermotropic biaxial nematic liquid crystal is muchrenglusive. One strategy is to design
molecules with shape biaxiality. Before 2003, some mesogeplecules with shape biaxial-
ity such as spoon-like, cross-shaped and bone-sh@led B8] fivst thought to form biaxial
nematic from optical observations but later were proveddaibiaxial nematic by deuterium
neulear magnetic resonant experimeEks [3]. Another glyatas to form mixtures of rod and
disc molecules which was also failed since such mixturesiaséable to a phase separation into
two regions, one rich in rods and the other rich in digls [3d]avoid this problem, arod and a
disc units were linked together covalently to form a singl@enule. However, systems of such
molecules also failed to form a stable biaxial nematic pf@@ Only in much more recent
years does it appear that there is strong evidence of lowrmmdas thermotropic biaxial ne-
matic. Several systems of V-shaped molecules were claimelddw biaxial nematic phases in
which the experimental evidence includes a number of teclas such as X-ray diffractioﬂ35],
optical conoscopy, optical textures and deuterium neuctemnetic resonanca%] as well as
Raman scattering [37].

The hunt for thermotropic biaxial nematics is interestimg only because it is an elusive phase
of matter that should exist, but also for its potential aggtion in display devices. This is be-
cause rotation of the minor directors might be faster thathi® major director. This hypothesis
has been demonstrated in both electro-optical experin@}and molecular dynamic simula-
tions @] which both show faster response time of the mim@uatiors with respect to the major
one. This could produce a display with a fast response aretli@sin-plane switchin£[3].

In addition to anisotropy, liquid crystals have other ietting properties when a magnetic field
is applied. First, the magnetic field induces some orderersifstem. Therefore, the isotropic
phase becomes tlparanematicphase with small orientational order. Secondly, receneexp

imental results by Ostapenko, Wiant, SprurtklJand Gleeson@O] showed that by applying
a magnetic field to a system of biaxial molecules, the tremmstemperature between the high
ordered (nematic) and the low ordered phases (paranemasiotmopic) was increased by one
Kelvin. This experimental success is partly attributedhe high magnetic field used in their

experiment. The other important factor is the biaxialitytteé V-shaped molecules used in their
experiment. This latter factor was not explained in detailtheir paper. In this thesis, we also
study the effects of molecular biaxiality on magnetic figldiced nematics.

1.4 Biaxial and Uniaxial Smectic A phases

In the last two sections we have discussed nematic liquidtayphases which have orienta-
tional order but no long-range translational order. In castt smectic liquid crystals have some
long-range translational order. In these phases, theituerst molecules are restricted in two
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dimensional layers which are separated with a periodicrlagacing. We are concerned with
smectic A phases, in which the long molecular axis is pdradléhe normal of the layer on av-
erage. In addition, the molecular centres of mass are unijodistributed in the centres of the
layers. In other words, smectic A phases have translatmnalalr, together with the orientational
order.

In a uniaxial smectic A phase, the symmetry axes of the mtdscare ordered parallel to the
layer normal. In addition, the molecules rotate freely athe symmetry axis of the phase.
The possibility of biaxial ordering in smectic A phases hias heen suggested by de Gennes in
1972 m.]. In biaxialbiaxial smectic Aohases, all molecular axes tend to line up. For example,
in a biaxial smectic A formed form molecules wifby;, symmetry, one symmetry axis of the
molecules tends to align along the layer normal whereasttiex btwvo symmetry axes align par-
allel to the layer. Another example is a biaxial smectic Ategsformed from molecules with
Cs, symmetry. In this case the molecules are polar along onetitire whereas the other two
molecular axes are non-polar. If the polar axes of the mé#dsgooint randomly to either side,
then the biaxial smectic A phase still h&s; symmetry. If all the polar axis of the molecules
tend to point in the same direction, they form a ferroeledbiaxial smectic A phase. If they
point to the same direction in one layer but opposite in ajatayers, then the phase is anti-
ferroelectric. The biaxial smectic A phase, including thegth antiferroelectric property has
been found in several systems. We review the evidence inteti@pln addition, we also review
some theoretical models for the biaxial smectic A phase.

1.5 Thesis Plan

Our study concerns with the use of the molecular field appratbn for nematogenic and
smectogenic systems. One objective is to explain the phenaraobserved in experiments and
computer simulations of systems made of biaxial molecudesther is to make numerical pre-
dictions about real systems of biaxial molecules. A commmablem which occurs throughout
chapter 3, 4 and 5 is to locate regions of molecular parasi@thich can stabilise the biaxial
nematic phase. This is with a hope to assist the experimdasigin of molecules which might
be able to form biaxial nematic liquid crystals. In additias we already discussed, one chapter
is devoted to the study of the magnetic field effects on thexial nematic formed from biaxial
molecules. We also extend the molecular field theory to teluanslational ordering in order
to model biaxial and uniaxial smectic A phases.

In Chapte 2 we formaly introduce the molecular field theargarding to existing literature.
The methods which help to solve the equations from the mizedield theory are also pre-
sented. In addition, we give some examples of existing nsatiak are relevant to our discussion
in subsequent chapters.

Molecular field theories for biaxial nematics often assuhgesymmetry of the phase to b&,.
However, in a recent paper by Karahaliou, Vanakaras andiritiso{42], the authors argued
that the symmetry of biaxial nematics found in several systenight beCs;, instead ofDsy,.
The Cy;, symmetry group has lower symmetry thén,. It has only three basic symmetry
operations: an identity, a two-fold rotation axis togetheth a reflection plane perpendicular
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to the symmetry axis. In Chapter 3, we develop a moleculad fletory for biaxial nematics
formed from molecules with's;, symmetry group. The ground state which this system can form
is a biaxial nematic phase wittiy;, point group symmetry, in agreement with the argument in
reference|_[_A|2].

Chaptef# follows to study a model of V-shaped molecules. mbgvation for this work is from
experimental evidence. Although there is strong evidenciglwsuggests V-shaped molecules
might stabilise biaxial nematic, this evidence seem togitesawith theoretical predictions. One
suggestion is that it might be due to a strong tranverse @ipaeraction. If this is the case
then it would result in a nematic with polaring43]. By incling a tranverse dipolar interaction
into the existing molecular field model, we are able to expthis discrepancy between theory
and experiment. In addition, we also find that the dipolagriattion indeed stabilises the polar
biaxial and polar uniaxial nematic phase.

In Chapter b we study nematic liquid crystals formed fromuilitjcrystal dimers. They are
mesogenic molecules with two rigid arms conneted by a flexsbkin. Due to the flexible chain,
a molecule can adopt many conformations, some of which anecgtindrically symmetric.
Therefore, we should expect a system of flexible liquid @lydimers to stabilise a biaxial
nematic phase. In addition, the flexibility usually reduceltmg temperatue (when a system
changes from liquid crystal into solid crystal), thus magrease the chance of forming a biaxial
nematic phase. Our model is based on the work by Ferrarirli Q@] which is a molecular
field theory for uniaxial nematic formed from liquid crys@imers. We extend their model to
allow biaxial nematic phase to be formed.

Next, in Chaptef]6, we develop a molecular field model whicbcdbes a system of biaxial
molecules in a uniaxial nematic in the presence of a magfiekit We discuss three main effects
of the applied magnetic field on that system. They have baetiest for uniaxial molecules
by Wojtowicz and Shend__[_hS]. We show that the extent of théseet effects is different for
molecules of different biaxiality in a way that it would beséa to observe these effects for
molecules with higher biaxiality. In addition, we make caripons between our results and
those found in the experiments by Ostapeekal. [@].

After that, in chaptelr]7 we study a model for biaxial smectitiqiid crystals. The existing cal-
culation results for this problem of modelling the biaxialectic A phase in the literature is still
incomplete. One reason is because it involves a large nuafleeder parameters which makes
the calculation formidable. An approximation which inve$vdecoupling the order parameters
is used in order to reduce this large number of order param&tenake the calculation feasible.
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Chapter 2

Background

In this chapter, we aim to explain the mathematical and play$iackground that is common
prerequisite to subsequent chapters. In our work the mialeield theory is used throughout
to describe and make predictions about the phase behaviom@nmatogenic molecules which
can form thermotropic nematic liquid crystals, especitiily biaxial phases. In this chapter, we
only discuss the molecular field theory for nematic liquigistals. The molecular field theory
in this chapter is extended in chaplér 7 to model biaxial $imek phases. The molecular
field theory for nematic liquid crystals is a theory of statial mechanics which focuses on
the difference between isotropic and anisotropic liquidat is the broken rotational symmetry.
This difference is defined bgrientational order parameterghich describe the symmetry of
anisotropic phases and molecular ordering. A moleculedritirory is assumed to interact with
a mean field generated by all other molecules. There are twor rsi@ps in formulating the
molecular field theory. The first step is to determine therivabenergy of the system. It can be
constructed by considering firstly the pair interactiongmtial which describes the interactions
between two neighbouring molecules. This is discusseddticsdZ2.1. To form the internal
energy we also need to determine the order parameters oystens which is done using the
methods discussed in section]2.2. The second step in fainyiae molecular field theory is
the application of the molecular field approximation in g&t@.3. After introducing the theory
for a system with the constituent molecules and the phaser@rgl symmetry, we present some
specific examples where the theory has been used to maketwesiabout nematic behaviour
in sectio Z.#. In sectiodn 2.5, we explain the differencevieen the free energy of a system at
equilibrium and a non-equilibrium free energy and a mettwodetermine the non-equilibrium
free energy. This method helps us to explain the failure efdlassical method of minimising
the equilibrium free energy with respect to the order patamse

2.1 Intermolecular Interactions

The first assumption of the molecular field theory for nemidjgid crystals is about the form
of the total internal energy per molecule. The form for thiergy may be related to the pair
potential which describes the intermolecular interacibatween two neighbouring molecules.
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The pair potential which we adopt is one which depends on tieatations and symmetries of
the two interacting molecules. It seems sensible since tiept@ase behaviour is dependent on
the rotational ordering of constituent molecules. Consadgeneral moleculgin three dimen-
sional space which can be asigned a coordinate sygtem z) fixed in it. It is a convenient
practice to choose these axes to be molecular symmetry desewer possible. For a molecule
with cylindrical or D.;, sSymmetry, the: axis is often taken as the symmetry axis. This,,
symmetry point group consists of three basic symmetry djpgist an identity, a symmetry axis
of infinite rotation and a horizontal reflection plane pewgtienlar to the symmetry axis [16].
On the other hand, for a molecule with symmetry of a rectaargpérallelepiped oD,;, sym-
metry, the(z, y, z) axes are taken along the symmetry axes of the molecule (see[figh) for

an example. The molecular orientation with respect to a flabdratory axeg.X,Y, Z) can

be described by three Euler angles= («, 3,v). They are three successive rotations which
transform a laboratory into a molecular axis frame. Theeesaveral conventions for the Euler
angles, of which we use thg,z-convention. In order to transform one coordinate axisesyst
into the other one, there are three successive rotatiorteeifotlowing order. First, a rotation
around thez axis by an anglev is taken which gives us the second coordinate system. Then, a
rotation by an anglg around they axis of the second coordinate system is carried out to give
the third coordinate system. Finally we need to rotate atdbez axis of the third coordinate
system by an angle to get the new coordinate axis system that we want. In figulen2

Z4 : 5

FIGURE 2.1: General definition of angular variables for two molesulvhich are non-
cylindrically symmetric. Reproduced from Stohel[46]. Fionglicity, the molecules are drawn
as lines. Note that here botlX;, Y7, Z;) and (X», Y2, Z>) denote the laboratory axes. The
intermolecular vector connects the centre of molecule 1h wiientation(aq, 51,v1), to the
centre of molecule 2, with orientatidns, 52, v2). The orientation of the intermolecular vector
is defined by two polar angl€8, ¢) with respect to the laboratory axes.

give an example of the Euler angles to relate the orientatadrthe two interacting molecules
with a laboratory axis systems; = (a1, 81,71) andQs = (a2, f2,72). Now since the pair
potential should be a function of molecular orientation, ex@and it in a complete set of or-
thogonal functions spanning the space of the Euler anglas.90ch set is the Wigner rotation
matricesDﬁm(Q). A comprehensive account of these functions can be founelfdmefnceL[_Al?].
The Wigner rotation matrices can also be realised as tranaton tensors which are used to
transform spherical tensors under the rotation of cootdiaaes. A spherical tensor of ramk
in a coordinate systerii;,, is transformed under the rotation of coordinate axes by hheet
Euler angle? = (o, 8,7) into a spherical tensor of the same rafk = in the new coordinate
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system according to
T}, = DL ()T, (2.1.1)

Now we see that the indices andn represent component indicesiah-rank tensorg7,,,,, Tr..
and also indices of the transformation matridéﬁm((l). ThereforeL > 0, —L < m,n < L
and bothL,m,n are integers. We give an example of a vector, or first-rankaen;,, which
has three independent componenhis, 1o andTi;. This vector is transformed under rotation
according to

T{,, = D} (Q)Ty,. (2.1.2)

In general, the expressions for the Wigner rotation madrare given by
D}, (Q) = e d)  (B)e™ ™, (2.1.3)

whered” (3) are the small Wigner rotation matrices. We give some exptirpressions in

AppendixA. They can be calculated according [48]
dyn(B) =) Co™ cos? (8/2) sin? (8/2). (2.1.4)
X

Here

q=2L+m—n—2x,
p=n—m+2x,

{(L+m)(L—-m)(L+n)(L-— n)!}l/Q
(L =n =)L +m =) (x+n—m)x!’

CLmm = (—1)X (2.1.5)
where the sum ovey is taken over such values that the factorials are nonnegdtiaddition to
the molecular orientation, the pair potential also dep@mde intermolecular vector, see figure
2. This vector is a two dimensional object and we only neediaof anglesu, = (0¢) to
describe it. The intermolecular vectojoins the centre of the coordinate systém, y1, z1) of

the first molecule with that of the second one, ¥, z2). The angle) is made up between the
intermolecular vector and the laborataryaxis whereas is the angle between the projection
of the intermolecular vector on theX, Y) plane and the laboratody axis. Now the expansion
also includes a complete set of orthogonal functions of thgles w,.. This set can also be
formed from the set of Wigner rotation matrices. Howevaergcsithe intermolecular vector only
depends on two Euler angles, the set of orthogonal functibtie anglesu,. can be formed from

a subset of Wigner rotation matrices with one index being,zeamelyD;{ (w,). In addition,
the pair potential also depends on the separation betwéermdting molecules. This can be
taken into account by multiplying the orientational depemzk with the separation dependence
termSufE?z,"”'t(r). Here the separation is denotedsbgnd the subscripts as well as superscripts
are there to cancel that in the Wigner functions in orderHergair potential to be a scalar. Now
we start writing down the form for the pair potential as thedurct

U(Q, Qo wp,r) = — > afB ™ (DL (Q1)DE (Q9) D (w). (2.1.6)
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However we must take into account the fact that the pair peiemust be invariant under ar-
bitrary rotation oflaboratory axes. This can be illustrated as follows. The Wigner rotatio
matrices of a molecule with an orientati¢f?; ) change under rotation by into another orien-
tation (2} ) according to

Dy (Q)) = DfL, () D), () (2.1.7)

Thus the pair potential is changed under rotatior{®yto

U4, O, wr7) == S uppiy™ (r) | DE, (DL, ()D}p(2)
x Dk (1) DL (Q2) Dy (wr), (2.1.8)

which is different from the original pair potential in geaérA correction can be made to allow
for the orientational invariance of the pair potential bing the integrations with respect to the
Euler rotation angle§) over a period of each angle. They are frem to = for 8 and from 0 to
27 for botha and~y [@].

U(Q, Qo,wp,r) = — Y ullfirmtr) [(1/87T2)/Dﬁl/p(Q)Dﬁ/lp/(Q)Dtjp(Q)dQ
x DL (91) D5, (Q2) Dy (wy). (2.1.9)

Here the integral element 2 = sin SdadfSdy. The invariance can be verified as follows.
An arbitrary rotation only changes the angles inside thegirgtion. In addition, the Wigner
functions are periodic over the integration intervals. rEfigre, the pair potential is invariant
under the rotation of the laboratory axes. The integratimgiie square brackets can be evaluated
analytically by the relation

/ * 82 LL'J\ (LL'J
L L J
/Dm’p(Q)Dn’p’(Q)D—t—P (Q)dQ — m <m/n/t> <pp/P> . (2110)
where the conjugate of the Wigner rotation matrices is ddfine
D’y p(Q) = ()" Dip(%), (2.1.11)

and (5E'7Y is the 3j-symbol[[47]. These 3j-symbols and the Clebsche@orcoefficients which
we see later are constants which appear when we multiply &/ifymctions and can be used
alternatively since they are reIatéE[48]. Due to their ctaxexplicit forms we do not include

them here but they can be found in the books in refere ptahe 3j-symbol and reference
[@] for the Clebsch-Gordan coefficients. Hence we can tewihie pair potential in a more
compact form

U, Q2,wp,7) = — Z uy'rs y (r)STE (1, Q2, wr). (2.1.12)

Now each term in the exansion series of the pair potentigbisduct of a separation dependence
coefficient and an orientational dependence coefficiente lthee separation dependence terms
are

mn LL'J mm/’nn’
ULL/J(T') = <m’n’t> uLL’J t('f'). (2113)
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The orientation dependenéefunctions are defined by

, LL'J '
ST (9, Qo w,) = (1)L JZ(pqu) (1) DY (Q2) D (wy). (2.1.14)

Here the phase factgi)“~~'~/ is added to makeé&~L'/ invariant under exchange of the roles
of the two molecules [46].

Since the intermolecular vector orientation or a functidrit does not occur explicitly in the
molecular field theorﬂl] we take the average over all dagons of the intermolecular vector
to get the reduced form of the functions,

LLO
STE(21,9) = <p - p0> DL (Q1)DE (). (2.1.15)

The pair potential can now be written as

U, Q2.7) = = > (=) Pupp(r) DL, (21)DE,, (). (2.1.16)

Here the magnitude of the 3j-symbgf,"), of 1/(2L+1)!/? is used to scale the intermolecular
coefficients s, (r) = 1/(2L + 1)1/2uLL0(r).

Now we also want the pair potential [D2.7].16) to be invariamer arbitrary rotations of molec-
ular axes. This property of the pair potential defines thecstire of the supertensat,,,,. The
Wigner rotation matrices are transformed under the ratasfomolecular axes by an ang(€)
according to

DL (o)) Z L), (2.1.17)
DE ZD_pn (Q2)DE ().
Hence the pair potential is transformed according to
U(Q), Q) = =Y (=)  Pul,, DL (Q)DE (). (2.1.18)

Hereur,,, is transformed intm’qu/. We also omit the separation dependence for simplicity.
Now, the original pair potential (2.1.]16) can be rewritten a

U(21,9) = = > (=1 PtLmnOmm Onn D (1) DL (). (2.1.19)

We can expand the Kronecker deltgs,,, andJ,,,,» by using theunitary property of the Wigner
functions

> DL Q) DE,(Q) = b,
q

> DL ()DL (Q) = bup. (2.1.20)
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Therefore,
U1, Q) =—=> (-1 7> DL ()DL (Q) upmn p DL (Q))DE,,(95).(2.1.21)
qq’

Since the pair potential is invariant under rotations oftti@ecular axes, the right hand side of
equations[(Z.1.16) and{2.1]121) must be equal. This givéiseusxpressions of the intermolecu-
lar coefficients under the rotation of molecular axes

Upgq = Z Dyy(€2)

*

DE () urmn. (2.1.22)

Finally, we need to consider how individual molecular synmaffect the pair potential. It
is because a symmetry transformation of the molecule shalstulleave the value of the pair
potential invariant. This is reflected in the intermolecwaefficientsur,,,. A coefficientu .,
transforms as a tensor éth-rank for molecules 1 (with orientatidn;) with respect to the first
subscript and as a tensor of the same rank for molecules & ¢néntation(2,) with respect to
the second subscript. The effect of molecular symmetry ermmttermolecular coefficientsy, .,
for some symmetry operations is given in tablg 2.1.

Symmetry Property Consequence
A. Of the system as a whole

1. Molecules identical ULmn = ULnm
2. Both molecules linear L even

3. Both molecules have inversion centrd. even
B. Of molecule 1
(similar rules hold for molecule 2)

1. Inversion centre | L even

2. ) axis m even

3. oy, reflection m + L even

4. Other(C,, rotation

(a) 02(90) ULmn = (—I)LuL_mn
(b) Céy) ULmn = (_1)L+muL—mn
5. o, reflection

(@) or* ULmn = (—1)™ UL —mn
(b) J%’Z ULmn = UL—mn

TABLE 2.1: Effect of molecular symmetry operations on the the gnekpansion(2.1.16) by
Stone ]. The notation is as follows. stands for the inversions2¥ for a symmetry plane

perpendicular ta; Oéz) for api rotation about.

We note that the quantiy ..., is tensorial in the sense that its components transformrunde
rotation with respect to molecular axes. In general, thezdhaee types of rotations. In the first
type, the molecular axes are kept fixed with respect to tharédbry axes whereas the molecule
is rotated by<) with respect to the molecular axes, the intermolecularaensg,,,, transforms
according to equatior (Z.122). In the second type of matthe molecule is kept fixed but
the molecular axes are rotated bywith respect to the laboratory axes, the intermolecular
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supertensot.y,,,, transforms according to

Ugg = O Dha( Q)DL (Q)ttLmn- (2.1.23)

In the third type of rotation, both the molecule and the molacaxes are rotated with respect
to the laboratory axes but the relative orientation betwiem stay fixed. In this case the

intermolecular tensot,,,,, does not transform and and its components are constant.ashe |
type of rotation corresponds to the calculation when we t&@nsemble average of an angular-
dependent quantity, such as an order parameter which weeillater. In this case, the relative
orientation between a molecule and its molecular axes id fitke constant components of the
intermolecular supertensors;,..,, can be considered as coefficients which scale the interacti

strength.

2.2 Orientational Distribution Functions and Order Parameters

Nematic liquid crystals are characterised by their longgeaorientational order and their lack
of a long-range translational order. Hence they are destiily orientational order parameters.
For nematic liquid crystals, we only refer to order paramseses being orientational. Many es-
sential results regarding order parameters have beensdstun details by Zannorﬂ48] and
are repeated in this section. First we consider a molecute tive orientation(€2) with respect
to laboratory frame. The ordering of the molecules in thespha reflected in the probability
to find a molecule in a small orientational volunié)d2. The functionf(Q2) is called the
single particle orientational distribution function. EHunction belongs to the totally symmetric
representation of the symmetry group of the phase. In otloedsy the symmetry of this func-
tion represents the symmetry of the phase. Therefore, amndiis average of a single particle
orientational functionA(Q2) can be written in terms of (€2) as

(A) = /V FIQ)A(Q)dA. (2.2.1)

Since the only information we know about the orientationatrtbution function is that its vari-
ables are the Euler anglé®) = («, 5, v), we expand it in a basis of Wigner rotation matrices,
a set of complete orthogonal functions spanning the spattedtuler angles

FO) =" frmnDh, (). (2.2.2)

Now multiplying both sides b)Dﬁm*(Q) and integrating over the angles we find

2L+1

o3 (DL yx, (2.2.3)

fLmn = m

Here, the scalar comes from the orthogonality property @Mligner functions

872

e— mm/ nn/ /’ 2.2.4
2L+16 Onn'OLL (2.2.4)

m/n’

| phu@DE, (@0 -
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whered, .../, oy anddy . are the Kronecker delta functions. In addition, the quistit

(DL} = / DL, (9)£(9)d (2.2.5)

are the ensemble averages of the Wigner rotation functibims phase transition of liquid crys-
tals should be described in terms of modifications in thentaiggonal distribution functions.
Clearly the parameters which modify this function are theeenble average&D?Z ). Hence

it is natural to define these functions as the order parameldris choice is also a convenient
choice since in our definition for the Euler angles, the Wigiuactions DX (Q) transform

in the laboratory axes as tensors of théa-rank with respect to the first subscript and in the
molecular axes as tensors of the same rank with respect getimnd subscript. Moreover, the
orientational distribution function reflects the symmaifyhe phase and the molecules. In con-
sequence, we can impose constraints on the order pararaetersling to molecular and phase
symmetry. The effects of molecular and phase symmetry Gpasaon the Wigner rotation
matrices are given in Tables 2.2 dnd| 2.3, respectively.

OperatorOy; Oy (DE )

mn

I'=25; (_1)LD7[7/m
o(xy) (=) Dy,
o(xz) (—=1)"Df_,
a(yz) Dy, .,

Ca(2) (—=1)"D,
Co(x) (-1)*Df_,
Ca(y) (-)""Dy

TABLE 2.2: Effect of molecular symmetry operatiofs,; on the Wigner rotation matrices.
The notation is as followd stands for the inversiom.(zy) for a symmetry plane perpendicular
to z; Cs(z) for aw rotation about; S, for a roto-reflection where is the main symmetry
axis of the molecule.

OperatorO;, O (DE

=25, (-1)"Dr,
o(XY) (=)™ DL,
o(YZ) Dt .

CQ(Z) (_1)mD7I;m
CQ(X) (_1)LDEmn
CQ(Y) (_1)L_mDEmn

TABLE 2.3: Effect of phase symmetry operatiofg on the Wigner rotation matrices. The
notation is as follows! stands for the inversionz(XY') for a symmetry plane perpendicular
to Z; Cy(Z) for ax rotation aboutZ; S, for ar roto-reflection wher¢’ is the main symmetry
axis of the phase.
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2.3 Molecular Field Theory

In this section, we derive a thermodynamic theory for necnli&juid crystals with the aim to
describe the transitions between the nematic and the Botphase and also between differ-
ent nematic phases. Hence the theory only focuses on theati@al order of the system. A
convincing way to derive the theory without making any asstiom about the type of molecu-
lar interactions is the variational approach by de Genndssirtlassic booIaZ] for cylindrical
molecules in uniaxial nematics. This approach can be egtkidorder to account for biaxial
nematics formed from identical constituent molecules gf symmetry. The general procedure
has been described in referen@ [51] and is discussed ifsdatthis section. In the variational
approach, the first ingredient we need to construct is tla itternal energy per molecule. We
recall from section 2]1 that the pair potential describimginteractions between two neighbour-
ing molecules has the form

U(Q1,922,7) = = > (=1 PtLmn(r) Dy (1) DL, (22). (2.3.2)

The first assumption we need to make is that the interactingaules are rigid. This is reason-
able for molecules that consist of a single mesogenic growge sn this case the flexible chain
does not contribute to the ordering in the nematic phasehdmtolecular field, a molecule is
assumed to interact only with a long-range internal fieldegated by all other molecules and
is independent of any short-range correlations. Quangtainprovement of the theory can be
achieved by including short-range correlation effects §ipgithe density functional theorlﬂlO]
or the two-site cluster theorﬂbZ]. Nevertheless, we igrsltort-range correlations in this the-
sis in order to ease computation. In addition, ignoring shemmge correlation effects usually
still leads to qualitative agreements between theory andt®Garlo simulation. Therefore we
assume the internal energy per molecule to have a form thagi®gous to the pair potential

(U) = =(1/2) Y (~1)* Purmn(Dyn)(DE,,). (2.3.2)

This is a quadratic function of the order parameters in egud2.2.%). The next step is to find
th[.e entropy per molecule. This can be derived by considehiadgotal entropy ofV molecules
11]

Sy = —kB/FN(Ql,Qg,...,QN)lnFN(Ql,QQ,...,QN)dfllng...dQN, (2.3.3)

where F (21, Qo, ..., Q) is the N body distribution function anéz denotes the Boltzmann
constant. In the molecular field approximation we assume ttieabehaviour of a molecule
depends on the long-range orientational ordering whichidates short-range correlation. In
consequence, there is no correlation between individudéente. Hence we may write th¥
particle distribution functionf'y (21, Q9, ..., Q) as the product of single particle distribution
functions EL]

Fy(Q1,9,..,08) = [ £(0). (2.3.4)



Therefore, the total entropy can be written as the sum of itigdes particle orientational en-
tropies

Sy =Y Sn, (2.3.5)

where

S =kn [ FO) 0 F@ T] [ ()i, (2.3.6)
On m#n Om
Since the integrations of the distribution functions areado unity, all identical molecules
have the same single particle orientational distributidmclv is independent of the behaviour of
any other molecule. Therefore, the total entropy per mddeisu

S = —k:B/f(Q) In £(€)dS. (2.3.7)

Now we need to find an explicit form for the orientational diaition function in equilibrium.
When a thermodynamic system is in the equilibrium stateattalability function I has to be
minimised Eis]. This function is defined such as any changg idepends on changes in the
thermodynamic variables

dF = dU + podV — TpdS, (2.3.8)

whereU, V andS are the internal energy, volume and entropy of our sysignand7;, denote
the pressure and temperature of the surroundings whicl amniact with our system. In many
experiments, the thermodynamic variables which are etasierare temperaturé and pressure
P. In that case the availability functiof is equal to the Gibbs free energysuch that

dG = dU + podV — ThdS. (2.3.9)

Actually, experiments of some liquid crystal systems réaedhat the volume change at the
phase transition is small, about 0.5 per cent [8]. When thisrae change is taken into ac-
count to calculate the order parameter at the phase t@msising the Gibbs free energy, the
order parameter only differs by 1-2 per cent in comparisah tie assumption that the volume
is constant at the phase transiti& [8]. Therefore it isrofiesumed that the thermodynamic
variables which are constant at the phase transition arpeisture and volume. In this case
the availability /" is equal to the Helmholtz free energy whose explicit forminsger than the
Gibbs free energy. In effect the Helmholtz free energy iqadée to be used as the thermody-
namic potential of the system. This is defined as

A= (U)-TS, (2.3.10)

whereT is the absolute temperature. The single particle orieatidistribution function at
equilibrium can be found by minimising the free energy d#fece between the nematic and the
isotropic phases, subject to two constraints. The first ertbat the order parameters are the
averages of the Wigner rotation matrices given in equallcA%) and the second one is that the
orientational distribution function is normalised

/f(ﬂ)dQ =1 (2.3.11)
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Minimisation of the free energy in equatidn (2.3.10) withgk constraints gives
SA+ n/af(Q)dQ = 0. (2.3.12)

wheren denotes the Lagrange multiplier. Taking the variation @ ifiternal energy and the
entropy in [2.3.710) with respect 6(Q2) we get

/ (— > (=D Pupmn (DL, ) DY (Q) + kpT + kpTIn f(Q) + n) SfdQ1=0, (2.3.13)

which is satisfied for alb f if and only if the integrand vanishes. The orientationatribistion
function can then be written as

exp (27 3 tutmn(=1)FP(DE, ) DL, ()

)
f() = e (2.3.14)

In order for f(Q2) to be normalised the denominator has to be the orientatjarétion function

1 )
Q- /Q exp (kB—T S (1)t PuLm<D§m>D£m(Q)> d. (2.3.15)

Here, the integral element i&) = sin Sdadfdy and the integrations are taken froar to 7
for 5 and from O to z for o and~y. From the orientational distribution function, we can fihd t
potential of mean torqué&(€2), a function which describe the interactions of a molecularat
orientation(2 with the molecular field. From thermal physics, their relatis

f(Q) =Q lexp (U(Q)/kpT) . (2.3.16)
Therefore the potential of mean torque is

UQ)=— > (-1 Pupmn (D}, ) D", (). (2.3.17)

Lym,n,p

The equations of the form as equatibn (2.2.5) with the piteot mean torque defined as equa-
tion (Z.3.17) are called theelf-consistencgquations. Now we have derived the thermodynamic
equations for nematic states which seem to be adequatednolmeany nematic system. How-
ever, the free energy defined [N {2.3.10) is not very usefdbtoalculations due to the complex
form of the entropy. This can be simplified by substituting thstribution function with the
potential of mean torque defined in equation (2.8.17) inteaéign [2.3.77). This gives

1 _
S=—kpnQ+ > (D" Pupmn (DL, (DY), (2.3.18)
Lmmn,p
Thus, the free energy can be written in a more convenient form

1
2kpT

A*=—InQ+ > (D  PuLmn(Dy ) (DE,). (2.3.19)

Lym,n,p
43



whereA* is the scaled free energy* = A/kpT'. This form can also be realised in another way,
by noticing that the first term is the standard formula wheelates the Helmholtz free energy to

the partition function and the second term is the molecuédd ttorrection since the number of

molecules is counted twice in the partition function.

2.4 Examples of Uniaxial and Biaxial Nematic Liquid Crystak

2.4.1 Cylindrical Molecules in Uniaxial Nematics

Here we consider some simple examples of nematic liquidas/before embarking on study-
ing more complex models in subsequent subsections. Notthiglys the simplest example, it
is also of historical interests since long before a first wtemh of biaxial nematic was made,
nematic liquid crystals have been known to be uniaxial witlindrically symmetric physical
properties. This is why early theories assumed constitmeiécules to be cylindrically sym-
metric, even though they are not. In order to describe thedisp behaviour we need to write
down the molecular field theory and then carry out numeriafdudations. Both the phase and
its constituent molecules have..; symmetry. The non-zero interaction coefficients and order
parameters can be found from Takles P.1] 2.2[and 2.3. By ntiawe we take the molecular
axis to be the molecular symmetry axis and we take the pAeasds to be the phase symmetry
axis. The only non-zero interaction coefficients afg, and the non zero order parameters are
(D§). Therefore the potential of mean torque is

U(Q) = —uroo(Dg) D (). (2.4.1)

Now the Wigner rotation matriceB,((2) are the same as the Legendre polynomial$s3), a
complete set of orthogonal functions spanning the basibefhgle5. Thus, the potential of
mean torque and hence the distribution functions are fonstof3

U(B) = —ur{Pr)PL(B). (2.4.2)

This can be verified physically as follows. Since both thesghand the molecules are cylindri-
cally symmetric, only one angle is required to describe dba orientation. The the potential
of mean torque can be simplified further by noting that experital evidence revealed that the
second-rank order parameter in the system is dominant [Baéntitative improvement of the
numerical preditions compared to experimental resultsbmamade by including fourth-rank
interactions into the potential of mean torqE [11]. Howef@ simplicity we takel. = 2. The
potential of mean toque is then

U(B) = —uz(P2) P2(B). (2.4.3)

The system now has only one second-rank order parameter

S =(P) = / ((3cos® B —1)/2) f(B)dcos B. (2.4.4)
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Here we note thabt is used to denote the uniaxial order parameter in order téooonwith
the literature. In this section, since we do not discuss thpy, the notatiort should not be
confused with the entropy. In consequence, the scaled fregy only depends on the order
parametelS

A* = —InQ+ (T*)'S?, (2.4.5)

whereT™ = kpT /uagy. The behaviour of this system can be found by solving the tamuéor

the order paramete¥ in equation[(2.4]4) graphically. The results are shown esémperature
dependence of the order paramteand the corresponding scaled free energy difference batwee
the nematic and the isotropic phase in figuré 2.2. First we i@t the order parameter starts to

0.6

051

0.4r

o P N W N 0

031

0.2r

0.23 0.24 0.2 0.205 0.21 0.215 0.22 0.225 0.23
T*

@ (b)

FIGURE 2.2: The dependence of (a) the uniaxial order parametergi@nithe scaled free
energy on the scaled temperature for uniaxial moleculesigxial nematics.

increase continuously from zero at the scaled temperafiabaut 0.2. This point is called the
bifurcation pointwhich can also be found analytically. Singes small, we can expand the order
parameter as a Taylor series upto and including the first ¢ed® which does indeed givés =
0.2. However, this point is not where the actual phase tramsiti&kes place. This is because
the part of the order parameter curve from the bifurcatiomtpo the pointB corresponds to
the positive part of the free energy difference. This meandHese parts of the curves, the
isotropic phase is more stable than the uniaxial nematisghim fact the uniaxial nematic-to-
isotropic phase transition happens at polrih the order parameter plot. At this point, the order
parameter of the system jumps to about 0.4 at pBi@ind then keep on going to increase. The
temperature of the system at pointsand B corresponds to that of the free energy at pdint
This is where the free energy difference starts to decreaddacomes negative and now the
uniaxial nematic phase is more stable than the isotropiseah@he discontinuity in the order
parameter and the gradient of the free energy indicateshibatansition is first order.

2.4.2 Uniaxial and Biaxial Nematics formed from OrthogonalParallelepiped Molecules

Uniaxial nematic liquid crystals are formed by the tendentyhe alignment of one axis of
constituent molecules. If the other axes also have the t@yd® align, the rotational symme-
try of the cylindrically symmetric phase may be broken andhaee a biaxial nematic phase.
The lowest symmetry to be broken from cylindrical one whiah be described by second-rank
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order parameters is they;, point group symmetry. In this section, we assume that the$bwr-
dered phase and the constituent molecules R&yepoint group symmetry. In order to develop
the molecular field theory for this system, first we need taevdown the potential of mean
torque. Given the success of formulating the molecular fieébry for cylindrical molecules
in uniaxial nematic by considering only second-rank intéoms, we assume that second-rank
interactions also make dominant contributions towardsptiese behaviour of molecules with
Do, symmetry. The number of second-rank order parameters cesstreted to only four due
to the molecular and phase symmetry using Tdblgs 2.2-ahd 2.3

(Do),

(Dgs) = (Dj_a),

(D30) = (D240),

(D35) = (D3_5) = (D2 35) = (D?5_5). (2.4.6)

Actually the Wigner functions used to define the order patamseoccur in the potential of mean
torque as composite functions

Q)
Ra(Q) = (Dga(Q) + D§_5(9)) /2,
Ryo(Q2) = (D35(2) + D?450(2)) /2,
R(9) = (D55(Q) + D2 55(Q) + D35 _5(Q) + D?5_5(Q)) /2. (2.4.7)

These functions are also called symmetry adapted basiﬁdnec@l]. Itis because they are the
only combinations whose thermodynamic averages do noskaiiheir explicit forms are

Rop(€) = (3cos®8 — 1) /2,

Rp2(2) = +/3/8sin*Beos2y,

Rao(Q) = 1/3/8sin’Beos2a,

Ras(€) = (1/2) (1 + cos?B) cos2ycos2a — cos Bsin2ysin2av. (2.4.8)

The order parameters are then defined in terms of these campogctions, they are
S = (Roo), D = (Roz2), P = (Ra),C = (Ra2). (2.4.9)

It can be seen from their explicit forms that the values ofdah#er parameters are constrained

[55]

- (1/\/6) (1= (Roo)) < (Roz2) < (1/\/6) (1 = (Roo))
- <1/\/6) (1= (Roo)) < (Ra0) < (1/\/6) (1 = (Roo)) »
1< (Ra) < 1. (2.4.10)
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It often assists our understanding to express the ordemedieas as Cartesian rather than spher-
ical tensors. This can be achieved by defining the orderipgrsensor

S = (3laalpy — 64B0w) /2, (2.4.11)

where the superscripté and B can be any of the principal axes, Y or Z of the phase and the
subscriptsz andb can be any principal axis, y or z of the moleculesi 4, denotes the cosine
of the angle between axe$ and a while § 45 denotes the Kronecker delta. The four order
parameters, expressed in Cartesian formErle [26]

S = (Ry) = S%Z,

SZZ—SZZ
D= <RO2> __x Yy

YC
SXX _ SYY
P=(R _ Pz 2z ’
(Ra0) 7
SXX o SXX o SYY o SYY
C = (Ra2) :( o w) = S v ). (2.4.12)

3

The first order parametéy is that introduced by Tsvetkov. The role of the order paransatan
be seen from their relations to the Saupe ordering matrinefts.S and D measure the order-
ing of the major and minor molecular axes with respect to tagonphase axis whered3and

C measure the ordering of the major and minor molecular axgsraspect to the minor axes of
the phase. Therefore, a uniaxial phase formed from cyliatimolecules can only have one non
zero order paramete¥. If the uniaxial phase is formed from non-cylindrical malés there
are two order parameters and D. If the biaxial phase is formed from cylindrical molecules
there are also two order paramet8rand P. All four order parameters are non-zero in a biaxial
nematic phase formed from non-cylindrical molecules.

We have constructed the molecular field theory using therg@théensor notation. It is be-
cause of our familiarity with this notation. In addtion, spical tensors are easier to transform
and manipulate. However, other authors have construcedhéory using Cartesian tensors
]. Here, we give a method of constructing the order patarsaising Cartesian tensors. Let
(z,y, z) be three symmetry axes of a moleculelsf, symmetry. The interaction of a molecule
with another can be represented by two second-rank, synetescless tensors

q=z®z— (1/3)I, (2.4.13)
and
b=x®x-yQYy. (2.4.14)

The tensorg; andb form an orthogonal basis of a vector space. In addition, ke(&,Y, Z) to
be three symmetry axes of the phase whichbgssymmetry. A phase can also be represented
by two second-rank, symmetric, tracless tensors
e, =2Z®7Z—-(1/3)I, (2.4.15)
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and
=XX-Y®Y. (2.4.16)

The representations of the tensgrandb in the phase axes are given by

gy = (q:eg)e, + (q: ep)ey, (2.4.17)

and
b, = (b:ey)e, + (b:ep)ep. (2.4.18)

The phase symmetry can be represented by two macroscoparse hey are thermodynamic
averages of the molecular tensors

Q= (a), (2.4.19)

and
B = (b). (2.4.20)

The tensord) andB are order parameter tensors. Their representations inhiwgepaxes are
given by
Q = Se; + Pey, (2.4.21)

and
B = De, + Cey,. (2.4.22)

Hence, the order parameter tens@sndB depend on four scalar order parameters

(2/3)S = (a: ey), (2.4.23)
V8/3D = (b:e,), (2.4.24)
V8/3P = (a:ey), (2.4.25)
2C = (b : e). (2.4.26)

Using the identity(u ® v) : (w ® x) = (u - x).(v - w) we see that they agree with equations

(2.412).

In addition to the restriction of the number of order parargtthe molecular symmetry restricts
the number of interaction coefficients according to Tableféam sectior 21 to only three

U200,
U202 = U220 = U20-2 = U2—20,

U222 = U222 = U222 = U2-2-2- (2427)

It is then covenient to scale the interaction coefficienthwhe anisotropy coefficientygg in
order to reduce the number of coefficients in the system fiosetto two.

v = ug02/U200, A = 222 /u200- (2.4.28)

Now not all values of the biaxiality parameters correspandtabilised biaxial nematic phases
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at the ground state. Hence, the valuesy@nd A can be constrained by carrying out a stabil-
ity analysis of the pair potential using the method discdsisereferenceﬁ 5]. First, we
consider a pair potential with the interaction coefficiemtand A without any relation. Next,
we consider the ground state of the pair potential which ismtiwo axis sytems of interacting
molecules are parallel. Any small perturbation from thisugrd state should cause the value of
the pair potential to increase in order for the biaxial pttadee stabilised. In order for the pair
potential to obey this fact, the interaction coefficientssirue inside a fanned shapstbility
region

15— y6|+A>0 and A>0. (2.4.29)

In addition, if the molecules are calamitic, or rod-like yamall rotation away from the ma-
jor axis should cost more energy than one from any minor akeghis case the interaction
coefficients can be restricted to a smaller area calleéskential triangle

1.5 — [yv6| — 31 < 0. (2.4.30)

In fact, we only needy > 0 sincey < 0 simply corresponds to a coordinate transformation by
exchanging the andy axes of the molecules. We show both the fanned shaped stabdion
and the essential triangle in figurel2.3. In fact, any poiside the stability region and outside

25

15F

0.5

18

FIGURE 2.3: Constraints for the interaction coefficientand\. The fanned shaped stability
region is on the left of the solid line and the essential fylaris shaded. The broken line is
the geometric mean parabola. The parabola cuts the tridmagledary aty = 1//6 and is
tangential to the boundary of the stability area at /3/2.

the triangle can be mapped to a point inside the essentalgie by exchanging the molecular
axes [@5]. The number of parameters can be reduced furtber tivo to only one by using
either one of the two approximations discussed in the faligwsubsection. In addition, both
approximations help to reduce the number of order parasétam four to only two.
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2.4.3 Geometric Mean Approximation

The geometric mean approximation is equivalent to decogmin intermolecular supertensor
into single molecular tensors,,,,,, = usmus2,. IN the essential triangle 2.3, the parameters in
this approximation follow the parabola= ~2. Our system now depends on one parameter

Y = ug02/U200 = U222/ U202 (2.4.31)

Now, the potential of mean torque f@»,;, molecules in nematic phases is consistent with the
assumption that dispersion interactions are responsibléhé ordering in the systerﬂ56]. In
addition, the fact that the supertensor can be decoupledint,, = us,us, IS in analogy with
the Berthelot combining rule [56]. The Berthelot combiniate is often used to approximate the
interaction strength of two different spherical molecwesnd B. The intermolecular interaction
strength can be written as a product of two single-moleayantitiess 4.5 = € 4¢. In our case,

if we denote the single molecular tensors of two differerisamopic molecules A and B as, ,
anduZ , then the interaction tensorig'? = usl 2 . If the two molecules are identical, we
simply ignore the superscripts. It is also interesting thahis approximation, the number of
order parameters is reduced from four to only two

(Fu) = (Roo) + 27(Ro2),
(Fp) = (Rao) +v(Ra2)- (2.4.32)

These two composite order parameters are adequate toleswei phase behaviour of the sys-
tem. In the uniaxial nematic phase, ol is non-zero whereas in the biaxial nematic phase,
both order parameters are non-zero. In fact, for conveniemalso define the composite angular
functions

Fy(2) = Roo(£2) + 27Ro2(£2),
Fp(Q2) = Rao(Q2) + vR22(0). (2.4.33)

Hence, the potential of mean torque can be written as

U(§2) = —ugo0 ((Fu) Fu () + 2(Fp) Fp(Q2)) . (2.4.34)

The parabola of geometric mean approximatlos 2 is always inside the stability region and
is tangential to the fanned shaped boundary in fifue 2y3-at,/3/2. In addition, the parabola
cuts the essential triangle’s boundaryyat 1/1/6. Furthermore, the analysis in referen@ [55]
shows that the values of from 1/1/6 to \/3/2 or those greater thag/3/2 can be mapped
to those inside the essential triangle by exchanging thecotdr axes. This mapping provides
interchangable results between calamitic and discot@ximlinematic phase behaviour since the
following reason. The definition of the order parametersiaes the molecules are calamitic
where their major axig align to form the phase axi& in the uniaxial nematics. However,
discotic molecules tend to align one of their short axes tamfthe phase axis. In this case,
the direction of the major molecular axiss orthogonal to the major phase aX¥ison average.
Hence, in the uniaxial nematic phasétakes negative values and there is a false biaxiality with
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non-zero values oP. This can be corrected simply by transforming the molecatardinate
axes by exchanging andy. In the calculations, we choose the valuesydfom 0 to/3/2 in
order to show phase behaviour of both calamitic (rod-like] discotic (disc-like) molecules.

The graphical method which we have used to find the uniaxiaatie-to-isotropic phase tran-
sition temperature is not applicable here. This is becawssttength of the two contributions to
the molecular field in the biaxial nematic phase depend derdifit combinations of the order
parameters and so varies differently with temperature. @il more effective methods which
we often use is to minimise the free energy with respect tdviloeorder parameters in equation
(2.4.3%) using a sequential quadratic programming methiaidtwis discussed in appendiX B.
In essence, we need to give the computer program a starting @de program then uses the
algorithm to find an estimate of the solution to desired aacyusing the given starting point.
The free energy needs to be minimised is

A*=—InQ+ ((Fu)? + 2(Fg)?). (2.4.35)

2T+
The efficiency of the minimisation depends heavily on therapimation algorithm for the
integration of the partition function. One method is to eed it using between 25 and 30
points Gauss-Legendre integration oyesind 16 and 25 points trapezoidal rule for the periodic
interval ofy anda as suggested by Bisi, Romano and Vi@ [57]. Direct minitiogaof the
free energy functional presents several advantages asstedgby Biscarini, Chiccoli, Pasini
and Zannoni|E2]. First the free energy as a function of thentational order parameters is
concave, with an absolute minimum corresponding to thdieguim solution. On the contrary,
solution of the self-consistency equations (equationskvishow the order parameters as the
orientational averages of Wigner rotation matrices, setan [2.2.5) for an example) can give
unstable or plainly non-physical solutions as well as thblstones. In AppendXIE, we discuss a
numerical method to solve the self-consistency equatidnshawill be used in chaptél 7. Direct
minimisation also requires a smaller number of integralset@evaluated. The calculation of this
set of integrals has to be repeated at every step of aneatbcedure and saving in computer
time can be substantial, especially for problems dependmgnore than one variable. The
uniaxial phase is found when the global minimum of the freergy corresponds to non-zero
(Fy) and the biaxial phase is found when the global minimum of the &nergy corresponds
non-zero values ofFy;) and(F). In addition, since the values offrom 1/4/6 to \/3/2 can

be mapped to the region from 01¢+/6 by exchanging the and they axes, the values of and
the transition temperature* = kg7 /uggo for the latter region can be mapped to the former
region according t¢y', 7*') = ([(3 — vv/6)/(v/6 + 67)],24T* /(6 + /6)?) [20]. Therefore

in the calculations for the geometric mean model, the rafigefom 0 to1/+/6 is essential to
carry out the calculations and can be mapped to the rangelffa/ to m

To obtain the order of the phase transition from a lower sytryrghase to a phase of higher
symmetry, we have determined the order parameters and dlexlsiemperature both to four
decimal places. The phase transition is taken as second ibrthe order parameters corre-
sponding to the lower symmetry phase changes continuotisheghase transition. In other
words, the minimum of the free energy corresponding to thefeymmetry phase is always the
global minimum. On the other hand, the order parametergsponding to the lower symmetry
phase changes discontinuously at the first order phasetimandn our methodology it means
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that just slightly above the transition temperature we wdiuld a region where there are two
minima of the free energy. One minimum corresponding to tlneet symmetry phase is the
local minimum whereas the other free energy minimum comedjmg to the higher symmetry
phase is the global minimum.

The phase map in figute 2.4 shows the scaled transition tetuperfor systems of molecules
with different molecular biaxialityy. The notation is as follows., Ny and Np denote the
isotropic, uniaxial nematic and biaxial nematic phasepeetvely. This phase map was first
revealed by Boccara, Mejdani and Se{g [18] and later by Reaniz Haymetﬂg]. The uniax-

FIGURE 2.4: The phase map for the geometric mean model of biaxiakties First order
transitions are shown as continuous lines whereas secdedtoansitions are shown as broken
lines.

ial nematic-to-isotropic phase transition is first ordaedicated by the dicontinuity in the order
parameter Fy;) at the phase transition. This discontinuity decreasesabitxiality param-
eter increases away from 0 and decreases figdy2. In contrast to the first order uniaxial
nematic-to-isotropic phase transition, the biaxial necai-uniaxial nematic phase transition
is second order and the biaxial order paraméf@s) increases continuously at the phase tran-
sition. We notice that, the uniaxial nematic-to-isotropltase transition temperature increases
on increasingy. The two uniaxial nematic phases which correspond to twgesrof~ are
denoted byN;; and N, for calamitic and discotic uniaxial nematic phases, repsy. In
calamitic uniaxial nematic the symmetry axis of the phaseisied as the average direction
of the major molecular axis. In contrast, in discotic unéuxiematic, the symmetry axis of the
phase is formed by aligning a minor axis of the molecules. Mérea molecular axis is minor
or major is determined in the following way. First, a secoadkr molecular physical property
tensor is measured and then diagonalised. The directiorsponds to the largest eigenvalue
is the major axis of the molecules whereas the other two aveemaor. Another interesting
feature of the phase map is that the biaxial nematic-toxialiaematic phase transition temper-
ature increases fdr < v < 1/4/6 and decreases for > 1/1/6 on increasingy. The biaxial
nematic-to-uniaxial nematic transition lines for two i@ws ofy meet at a point. This point is
where three phases coexist which is calledttide point Furthermore, it is also where the
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biaxial nematic phase undergoes a second order phasditnamsiectly to the isotropic phase.
This point is called the Landau point. These results showatiaough molecular anisotropy
increases withy, molecular biaxiality attains its optimum valuesat= 1/1/6, which is also the
boundary between calamitic and discotic molecules.

In order to obtain a better understanding, we expand the petameters as a Taylor series. First
we consider the uniaxial nematic-to-isotropic phase ttamswhere the biaxial order parameter
vanishes. At the bifurcation point, the uniaxial order paeter(Fy;) is small. Therefore we can
expand the exponentials in the expressioriff) up to the first order of the Taylor series. The
low order limit for the partition function is

Q= / (1 - @ (Fy)(R2%,(Q) + 27332(9))> dQ = 87°, (2.4.36)

since the integration of both Wigner functions vanish duéh&r property. The expansion for
(Fy) then gives

(Fyr) = (372)! / (R2(Q) + 29R2,(Q))

(1 720 (50 (R (9) + 21y (0) )

U200

1+ 292
kT ’

5

(Fy) (2.4.37)

hence the scaled bifurcation temperature depends lineartlye square of the relative biaxiality
parametery?

1+ 22

.
Therefore, the bifurcation temperature for the uniaxiahagc-to-isotropic phase transition in-
creases on increasing Thus we also expect the actual transition temperature topgwith
increasingy since as we have seen for uniaxial molecules in the uniaxalatic phase that
the difference between the bifurcation temperature andrémsition temperature is small. This
Taylor expansion can also be applied to the biaxial nentaticriaxial nematic phase transition.
Because the biaxial nematic-to-uniaxial nematic phagsesitian is second order, at the phase
transition the order parameter corresponding to the Higkiase is small whereas that of the
uniaxial phase can be sufficiently big. Therefore, it is omgcessary to expand the exponen-
tial for the biaxial component in the expression of the parti function and the biaxial order
parametef Fp). This gives

Q=Qu= / exp (— Vy (Q)>dQ, (2.4.39)

T = (2.4.38)

kT

(5 =@ [ Fale) {1+ 20 Fm o)}

B
X exp <— U;{:UB(?) > ds. (2.4.40)
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whereUy (2) = —ua00(Fur) Fiy (€2). Thus the transition temperature can be found by solving

Bl _ g0 / (Fp())? exp (— Uy (Q)>dQ. (2.4.41)

U200 kT

Here, (F3(£2))? can be expressed as a series of the quadratic products ofigfmeMotation
matrices, which can be evaluated by

D}, (D%, (Q) =Y~ C(22L;mm!)C(22L; nn) DS, 4 s 1y (), (2.4.42)
L
where G22L; mm’) denote the Clebsch-Gordan coefficients. Therefore we Heveelation

between the biaxial nematic-to-uniaxial nematic phagesttimsn temperature and the order pa-
rameters in the isotropic phase (the detailed calculataivien in Appendix C)

kpT 1+ [(=24492\ , o 8
w5 + ( 7 (Rgo) + 7’Y<Roz>

2
- <—3 ;57 > (Rgo) + %\/%(R@ + \/%72<Ré4>' (2.4.43)

This expression means that the biaxial nematic-to-unisematic phase transition occurs when
the scaled temperature is equal to a combination of thedigxparametery and the uniaxial
second and fouth rank order parameters. In the uniaxial tierphase, as the temperature
is reduced, the order parameters continue to increasethatéquality in equatiorl (2.4.43) is
satisfied. This is when the biaxial nematic-to-uniaxial aémphase transition occurs.

The phase map in Figute 2.4 also agrees with a series of Marie €imulations of an anal-
ogous pair potential which showed that there exists a seootel phase transition from the
uniaxial nematic phase to the biaxial nematic phgb [58lesé&hcalculations were extended
to give a phase map of the dependence of transition temperatumolecular biaxiality@O].
Their phase map shows many qualitative agreements with ¢hecuordar field calculations. Thus
it validates the molecular field approximation to a certagree.

2.4.4 Sonnet-Virga-Durand Model

The model adopted by Sonnet, Virga and Durand (SVD mo@])i{slan approximate model
of biaxial nematics. In this approximation, the biaxialggrametery is set equal to zero and
(see equation$ (2.4.28)) is varied along the edge of thenmisriangle in figurd 2J3. Hence,
the range for\ is from 0O to 0.5. In this model there are only two order parargt andC (see

equations[(Z.4]9)).

The phase map for this model is shown in figurd 2.5. Like therg#nc mean model, in this
case we also find a first ordéf; — I transition. Note that in this case, the biaxiality paramete
A does not contribute to the ordering in the uniaxial nemaliase. Therefore, th&y — 1
transition temperature is independent\ofThis transition is followed by & 5 — Ny transition

at a lower temperature. Th¥p — Ny transition is second order for a large range\ofThe
Np — Ny transition temperature increases on increasingn general, this phase transition is
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FIGURE 2.5: The phase map for the Sonnet-Virga-Durand model ofiliasematics. First
order transitions are shown as continuous lines whereamdewrder transitions are shown as
a broken line. A tricritical point is shown as a circle.

second order. Whehis big enough (0.3), th& 3 — Ny phase transition becomes first order. For
) greater than 0.33, there is a first order phase transition the biaxial nematic phase directly
to the isotropic phase. The stability of the biaxial nemahase also increase on increasig

In the phase map in figute 2.5, we show a tricritical poinhat 0.3. In fact, by studying the
model for A greater than 0.5, the authors also found another tricripioant. Above this point,
the Np — I phase transition becomes second oﬂd_ﬁlr [23]. These resuttefapproximate model
have also been supported by Monte Carlo computer simug{@]. Analytical methods for
locating these tricritical points were also presented ﬁlreta)ublications@ 4].

2.4.5 Other Model Calculations

Straley was the first to develop a molecular model for biam'sahatics@?]. Others were later
developed by Boccaret al. [IE] and Remler and Haymeﬂl9]. Straley considered some fixe
relative orientations of two molecules where the molecaless are orthogonal. By moving one
molecule around the other, the excluded volume of the pairbeafound. Then, he calculated
the three interaction coefficients in equatibn (2.4.27) lapping the pair potential in equation
(2.31) to the excluded volume between a pair of parallpkghimolecules. Finally, Straley
derived a phase map relating the transition temperatutethw molecular breadth while fixing
the length and width. His phase map showed the same behasdhose given by Boccast

al. [IE] and Remler and Hayméﬂm].

Zheng and Palffy—Muhora;)(__[_iSQ] derived a molecular field moaealogous to the model of
decoupling interaction coefficients (whetg,., = w2, u92,). Their coefficients are the three
eigenvalues of the molecular polarisability tensors. Aggh@ap relating the scaled temperature
with two eigenvalues was presented on a three dimensioagrain. The behaviour of the
new phase map is also similar to those by Strzil__ei,/ [17], Bec|E], Remler and HaymeﬁhQ]
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with the first order uniaxial nematic-to-isotropic phassensition, followed by the second order
biaxial nematic-to-uniaxial nematic phase transitione Tifference now is that the two regions
of rod-like and disc-like uniaxial nematics are separated handau line of second order direct
biaxial nematic-to-isotropic phase transitions.

Recent studies showed that the interaction coefficientutzdbd using the excluded volume
model of parallelepipeds by Stral&tl?] can be mapped tati@e region below the geometric-
mean parabola and inside the trian@ [60] in fiduré 2.3. &mesults are also true for the ex-
cluded volume of a more general shape of spherocuid [66ph&rocuboid is an object which
consists of the volume of a parallelepiped and the volumeigéad by moving a sphere around
it.

The two-parameter model characterised by the essen@agte and described on pdgég 49 has
been studied more thoroughly in recent years. In a studyrenthe molecular field calculations
were supported by Monte Carlo simulatio@ [61], the autlhmrsstigated the case where both
usg00 andusgo are negative andsypo vanishes. The same phase sequences were found as in the
previous calculations with the biaxial nematic phase 8&sdl at low temperature for the range
of molecular biaxiality studied. However, in this case &lape transitions were second order. In
addition, they also calculated a phase map along the\liae) in the essential triangle in figure
[2.3 and found that the biaxial nematic phase cannot be isediat low temperature. The latter
calculation results agreed with the computer simulationsuzkhurst and RomanElSS]. These
results mean that in the molecular field theory, the biax@ahatic phase cannot be stabilised by
uniaxial molecules. In another set of calculations, Ron{@ﬂ)setugoo to zero and scaled the
temperature withusoo Where the latter is positive. In his molecular field calcolas, supported
by Monte Carlo simulations, there was a direct second orideidd nematic-to-isotropic phase
transition. These results suggest a dominant contribatitime parametek towards the stability

of the biaxial nematic phase. Indeed, the calculations Isy, Buckhurst and Virgzm6] showed
that the ratio of the biaxial nematic-to-uniaxial nematid ainiaxial nematic-to-isotropic transi-
tion temperatures is almost independent othus indicating the other as dominant. In addition,
bifurcation analysislﬂ4] and detailed calculatioE [2Bfe whole parameter space in the es-
sential triangle revealed that in the region above the ga@maean parabola, there is a line of
tricritical points and another line of triple points whicheet at the point along the right edge
of the triangle. The fact that there is no tricritical poiribrag and below the parabola is in
Elféeement with the previous calculations by Str [17:]c®ra|L—1|8], Remler and Haymet

.

2.5 KKLS Derivation of the Non-equilibrium Free Energy

In sectiof 2,413 we discussed the advantages of minimikmegdquilibrium free energy obtained
by de Gennes’ variational approach. However, this methadféiged in some cases of biaxial
nematic phase witlh,;, symmetry composed of biaxial molecules also with the sammesstry.

It was found that, for some combinations of the parameteaad A below the geometric mean
parabola, the free energy does not have a minin@n [25]. ddstle points which correspond
to the solution of the self-consistency equations are sgoloints.
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To deal with this problem, a group of authors developed awifit strategy based on Bogol-
ubov’s minimax principle[25]. In their method, the molecular field free energy at Blojgum

for biaxial molecules withDy;, symmetry, Ag, is considered as an approximation to the free
energy of the two-particles syste, The two particles interact via a pair potential which is
a function of the molecular tensors in equations (2]4.13) @4.14). The upper and lower
bounds for the difference between the molecular field andwleparticle free energies are
given by theBogolubov’s inequality They found that the pair potential can be considered as a
superposition of two molecular interactions, which conresnftwo independent oscillators in
the molecules, represented by two tensqrsandq—. One interaction is always positive for all
values of molecular parameters inside the essential taandgigure[2.8. The other interaction is
positive above the geometric mean parabola whereas nedmegiow the parabola in the essen-
tial triangle in figurd Z.B. In the molecular field theory, tiwe oscillators of one molecule are
averaged to give the order parameters ten€rsandQ—, which are combinations of the two
order parameters in equations (2.4.19) and (214.20). WBagplubov’s inequality, the authors
demonstrated that the strategy to minimi4g for the molecular model below the geometric
mean parabola may fail to malk, as close as possible #. Thus aminimaxstrategy was em-
ployed for the model below the geometric mean parabola.igrsthategy, firstd, is maximised

in Q~ for fixed Q*, then the minimum over al ™ of the maxima obtained previously is taken.
The solution to this method gives the best approximatiod ahe two particle free energy. In
addition, this method also avoids the problem of the freeggnd, having saddle points instead
of minima.

In this section, we describe a different approach which neagtide to explain this contradiction.
This approach is a more general view of the molecular fieldrihgiven by Katriel, Kventsel,
Luckhurst and Sluckir@3], which we call the KKLS theory. \de not reexamine the model of
biaxial nematics described iEZS] because we only use tleapproximations, the geometric
mean and the SVD, whose interaction parameters lie on orgaib@/geometric mean parabola.
In essence, the KKLS method gives us the dependence of theriergy on the order parameters
away from the equilibrium point. In contrast, de Genneszfemergy only gives us the value of
the free energy at the equilibrium point and so cannot tetttiver the phase is stable or not. In
general, we may find the order parameters of a molecular fyskgis by either minimising the
equilibrium free energy or solving the self-consistencyapns. When the former method does
not work, we may use the latter method instead. In contrastimémising the equilibrium free
energy, the method of solving the self-consistency egunataiways have solutions. In order to
know whether the order parameters we get from either metbméspond to the minima of the
free energy instead of maxima or saddle points, we need tthes€¢KLS method to derive the
non-equilibrium free energy. The KKLS method gives us theamghysical free energy surface
around the vicinity of the extrema than the equilibrium fezergy, thus we can see the nature
of the extrema.

2.5.1 Generalised Derivation

This generalised derivation has been used to relate thecniatefield theory with Landau-de
Gennes theory for biaxial nematic liquid cryst@ [64]. &lare apply part of their methodology
to derive the molecular field theory for a biaxial nematic gghaf a general symmetry away
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from the equilibrium of the free energy.

The first step in constructing the theory, as for de Gennegatanal method, is to identify the
order parameters. They are given in equation (2.2.5). litiaddthe internal energy is given in
equation[(2.3]2). We note that in de Gennes’ variationahowtwe minimise the free energy
with respect to the distribution function. In that method allow the order parameters to vary
with respect to the distribution functiofi2) as

§(DE ) = / DL ()5 fd. (2.5.1)

Therefore the result gives us an expression of the free gndngh is valid at the extrema with
respect to both the distribution function and the order ip&tars. Now we want to find the free
energy surface which is also valid away from equilibriumrgei To do that we need to consider
our system with fixed order parameters. Hence the interrexggris constant for given values
of the order parameters. Thus we need to maximise the entooiven order parameters to
find the equilibrium state. We note that a system with maxiemafopy is in equilibrium only
if the order parameters are kept fixed. When the order pasamete allowed to vary, the order
parameters tend to values which minimise the free energgrefbre, at a given temperature
there is only one set of order parameters at equilibrium. iMesing the entropy in equation
(2.31) with respect to the distribution functiof{2) with the constraint given in equations
(2.3:11) and keeping the order parameters fixed

§(DE ) = / DL ()5 fdQ = 0, (2.5.2)
we get the distribution function of the fori (2.3116), whére potential of mean torque is

U(Q) = kT > _ 1ipmDhn (). (2.5.3)

Here, the Lagrangian multipliers;,,, are introduced to satisfy the constraini (2.2.5). The
entropy can now be rewritten as

S = —kp (Z Nipm (D) — log Q) . (2.5.4)

Hence, we can construct the non-equilibrium free energy feguation[(2.3.10) from the en-
tropy with the internal energy given in equatién (2] 3.2)isTion-equilibrium free energy gives
us physical values of the free energy at any values of ther galmmeters, unlike de Gennes’
free energy. In addition, the value of the order parameteejailibrium minimises the free

energy.

2.5.2 Uniaxial Nematics formed from Uniaxial Molecules

We give a comparison of the free energies in the de Gennes&h8 Keories by looking at the
simplest case for a uniaxial nematic phase formed from iadiaxolecules. First, we construct
the KKLS theory for this case. In keeping with the classiaatiation, in this case we call the
order parameter as, which should not be confused with the entropy. The distidioufunction
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can be found by maximising the entropy in equatibn (2.3.#hhe constraint in equation

252)
f(B) = Q" exp (nPs(cos B)), (2.5.5)

where the partition function is

Qn) = /exp (nPy(cos f3))d cos 5. (2.5.6)

Hence, the order parameter introduced by Tvetskov is

S = Q" [ Paleos 3)exp (nPa(cos 8))dcos . (25.7)
In addition, the internal energy is taken to be
U = —(1/2)us005%, (2.5.8)
and so the free energy is
A= —(1/2)u2005% + kT (nS —log Q). (2.5.9)

The free energy can be thought of as a functiom sfnce both the order parametgrand the
partition function( are functions of,

A(n) = —(1/2)uz005(n)? + kT (nS(n) — log Q(n)). (2.5.10)

In order to find the order parameter at equilibrium, we neethioimise the free energy in
equation [[(2.5.710) with respect tpwhereS(n) is given in [25.) in order to get at equilib-
rium. Then, we substitute this value gfinto (2.5.7) to get the value of the order parameter at
equilibrium. To ilustrate the difference between the tweefenergies, we give the plots of the
two free energies at the scaled temperaflite= 0.2 in figure[2.6. In order to construct the
plot for the KKLS free energy, first we pick a range of valuessfaccording to the following
consideration. The range of values fors from 0 to 1 whereas the range of valuesidrwhich
we are interested in is from 0.01 to about 0.2. In additiorthatequilibrium point, we know
thatn = S/T*. Thus the range of values which we can choose;fer from 0 to 100. Then,
we calculate the KKLS free energy according to equation.I®)sand the order paramet&r
according to equatio (2.5.7). The dependence of de Gefmeestnergy on the order param-
eter was computed using equatign (2.4.5). Finally, we pletvalues of the KKLS free energy
against the corresponding order parameter. We see thafrketknergies in figule 2.6 have the
same minimum at = 0.6148 and the same local maximum &t= 0. However, their values
for the sameS are different away from the extrema. In this case, the KKlg® fenergy surface
has physical significance since it corresponds to maximunogy In the comparison we just
see, both free energies have the same minimum. In sédciich, W8 give an example that the
two theories give different results in a molecular field tlyefor uniaxial smectic A phase.
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FIGURE 2.6: The dependence of the free energy for uniaxial molsanl@niaxial nematics
on the order parametéf at the scaled temperatuf& = 0.2. The continuous line shows the
numerical results using KKLS formulation whereas the brokee is done using the de-Gennes
formulation, equatiori(2.415).

2.6 Conclusions

In this chapter we have reviewed a derivation for the mokacfiéld theory for nematic liquid
crystals at equilibrium based on de Gennes’ variationahott In essence, we assume that a
molecule only interact with a mean field of all other molesulethe system and we ignore any
short-range correlation. This mean field is generated bywiae intermolecular interactions.
In addition, we ignore volume change at the phase transéimh we use the Helmholtz free
energy instead of the Gibbs free energy. Then we discussed sgamples when the molecular
field theory is used to describe the uniaxial nematic andidgizvematic phases db,;, symme-
try. In general, we can minimise the Helmholtz free energgdtermine the order parameters
at equilibrium. This allows us to find the transition tempera as a function of the molec-
ular parameters. We also note that the method of minimidiegeguilibrium Helmholtz free
energy sometimes fails. It is because the equilibrium Heltahfree energy as a function of
the order parameters only holds at equilibrium and givesyaipally wrong surface around the
equilibrium. Away from equilibrium, the physical value ¢fed Helmholtz free energy should be
described by the KKLS method.
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Chapter 3

Biaxial Nematics formed from
Molecules with C,;, Symmetry

This chapter consists of a collaborative project with Pi®f.Naemura and Dr. S. Turzi. The
theory was developed jointly. | carried out the calculatéord provided the solutions. Prof.
Naemura suggested the possibility of an axial first-rankeopdrameter. This was demonstrated
by Dr. Turzi using Cartesian tensor notation which confirnmgdcalculation.

Most theoretical studies on biaxial nematic liquid crysthlve assumed that the constituent
molecules and the phase have orthorombig, symmetry. Straleylﬂ?], in his paper stated
this explicitly. In other papers, it is implied implicittyAn example is the seminal paper by
Freiser]. In his paper, Freiser separated each integutr tensor into a product of single
molecular tensors. As we will see later, this is equivalerttaving a model of molecules with
Doj, symmetry. Arecent analysis of experimental results by Kaliau, Vanakaras and Photinos

] showed that the symmetry of the biaxial nematics mighth,, instead of the usually
assumed),y,. In fact, the notion of biaxial nematics which have lower syetry thanDs;, has
been suggested for a long time before this analysis. In ti@pter, we develop a molecular field
theory for biaxial nematics of'y;, symmetry formed from molecules of the same symmetry.
The theory is a contribution towards our study of biaxial aéimliquid crystals. In section 3.1
we review some related works which have discussed the pligsdd low symmetry biaxial
nematics. After that, we produce a molecular field theoryhiaxial nematics composed of
molecules withCy;, symmetry in section 3]2. In order to facilitate the caldolas, we use an
approximate model. This is discussed in sedfioh 3.3. Oumag@pate model is an extension of
that for biaxial nematics composed bf,;, symmetry which we reviewed in sectibn 2}4.4. The
numerical predictions for the approximate model are prteseim section 34.
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3.1 Related Works

3.1.1 Experimental Studies

In this section, we summarise the paper by Karahaliou, \@areakand PhotinoEl42]. In this
paper, the authors discussed recent experimental evidenb@éxial nematics and concluded
that the phase symmetry for these systems is more likely tG,peather thanDs,.

Recent experimental evidence showed that V-shaped meEﬁE&SG?] and tetrapon[SO,

] are the most likely candidates for biaxial nematiés. analysis of this experimental
evidence by Karahaliost al. [@] showed that the symmetry of the biaxial nematics might b
Csy, instead of the usually assuméd;,. In contrast, it was claimed by Karahaliet al. d]h
that experimental evidence for IyotropBZS] and polyroesystems|[29] shows that indeed
they haveD,;, symmetry. In the study by Karahaliai al. [42], phase symmetries are restricted
to achiral, apolar that can be characterised by secondarigcing tensors; they are: triclinic
C;, monoclinic Cy, and orthorhombicD,y;, point groups. The major difference between the
three phases is the number of common principal axis for athrs#-rank macroscopic physical
properties.

In a phase withC’; point group symmetry, there is no principal axis dictatedsgynmetry.
Therefore, there is no common principal axes for all seaam#- macroscopic physical prop-
erty tensors. In constrast, the number of principal axesmtid by symmetry in th€’;;, and
Dy, phase are one and three, respectively. They correspone touthbers of principal axes
common to all second-rank macroscopic physical propertgdes. In their paper, Karahaliou
et al. discussed the two methods that can be used to determinedsesndn orientational or-
der parameters characterising the ordered phase: namébriden nuclear magnetic resonance
(NMR) and polarised infrared spectroscopy (IR).

In their discussion of NMR experiments, first the authorsoditiced a second-rank symmet-
ric and traceless tenso@ﬁg) which describes the orientational averaging of the fielbgmt
associated with the molecular site This tensor relates the principal axes of the electric field
gradient tensor with a space fixed fran®e §ndB). The tensoG%B can be split into two inde-
pendent components, a primary order comporffitand the biaxiality parametef”). Since
therﬂB tensor is related to the quadrupolar splittings, which aeasarable, the primary com-
ponent and the biaxiality parameter can be calculated flewo extrema of the quadrupolar
splittings. These two extrema correspond to differentrdgigons of the magnetic field along

the principal axes of thé?% tensor.

In a real NMR experiment, one of the axes of the liquid crystahple is aligned with the mag-
netic field of the NMR spectrometer. In addition, the othes txes are aligned using an electric
field. Therefore, the space fixed frame can be chosen to beabgetic susceptibility frame of
the phaseX’y;). This allows us to measure the components of the quadnupplitings par-
allel and perpendicular to the magnetic field. Yﬁ%) B,, ENSO, expressed in this frame, can

also be split into two independent componeﬁt}é, anan), which are measurable quantities. It
is because they can be related to the quadrupolar splitmg@onents along and perpendicular
to the magnetic field which are measurable. The authorsdctilkese components tlagparent
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parameters

The final step in an NMR study is to calculate the primary otEmponentS(® and the bi-
axiality parameten(”) from the apparent paramete‘j’éf,) andng\?. Their relations are different
for nematics with different symmetry. For a nematic phasth iy, symmetry, the electric
field gradient tensor and the magnetic susceptibility tehawe the same principal axis frames.
As a consequence, the three principal axes of the apparesnrhpters align with those of the
principal component and the biaxiality parameter. Theeetbeir relations only involve diag-
onal components dﬂ(j)MBM. In contrast, in the monoclini€sy;, and triclinic C; phases, their
principal axis frame are different and therefore the retatibetween the apparent and the true
parameters also depend on the off-diagonal eIemer(’rgjge)‘BM.

In analysing recent NMR experiments, the authors are cardewrith monoclinic liquid crystals
in which the maximum magnetic energy axis coincides withsgrametry axis of the phase and
its effect on the evaluation of the true paramet&k% and 775\?. For nematics with triclinic
symmetry or monoclinic liquid crystals in which the maximunagnetic energy axis does not
coincide with a symmetry axis of the phase, different NMRhteques would be required. For
liquid crystals with monoclinic symmetry, the authors ded relations between the apparent
and the true parameters and draw the following conclusiémst, a large apparent biaxiality
can be obtained even if the proper biaxiality is negligibtel @ negligible apparent biaxiality
can be measured even if the proper biaxiality is large. S#gosince the angle between the
non-principal axis of the electric field gradient tensor anat of the magnetic susceptibility
tensor vary with temperature, the values of the appareminpeters may exhibit an anomalous
temperature dependence.

The discussion of the IR method is analogous to that of NMReerpents. The difference
is now the absorption of the IR beam is measured which giviesnration on the absorbance
tensor instead of the electric field gradient tensor. Intawidithe order parameters are measured
by the positions of the peaks in NMR experiments whereasdheyneasured by the intensities
of the peaks in IR experiments.

After setting up the theory, the authors discussed recepgrgrental results. They argued that
the order parameters obtained for tetrapodes using NMR Rnddthods violate the relation
between the principal component and the biaxiality paramétence the order parameters ob-
tained were only apparent and did not represent true ordaners. On the other hand, the
NMR experimental results for V-shaped molecules was todédithnto do any analysis. The au-
thors pointed out that, in the results for V-shaped molecuk&ng polarised Raman scattering,
the second-rank order parameters also violate the relagbmeen the principal component and
the biaxiality parameter. This discrepancy can also be vexhon relaxing the assumption of
Ds;, symmetry. Finally, the authors remarked that, it is moreseaite to assign these experimen-
tal systems with the monoclinic symmetry over the triclisjenmetry since the nematic phases
in the experiments have at least one plane of symmetry.
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3.1.2 Molecular Field Theories

The first prediction of a biaxial nematic phase was by Fre[@}in 1970. By considering a
molecular field theory for rigid non-cylindrically symmitimesogenic molecules, the author
demonstrated that the ground state of such system is a bisdiaatic phase. However the
symmetry of this biaxial nematic phase was not stated algliglithough implicitly it may be
understood that this phase possBsg symmetry.

Straley ] in 1974 provided a molecular field model for némbquid crystals composed of
D5, molecules. By fixing the molecular length and width and vagyits breath, a range of
molecular biaxialities was investigated. The lowest nétnstiate can be formed in this case
is the biaxial nematic phase withy;, symmetry. In the conclusion, Straley pointed out the
possibility that generalisation of nematic liquid crystérmed from less symmetric particles
might be necessary in order to describe biaxial phases @rlawd special symmetry.

Gorkunov, Osipov, Kocot and VimS] developed a moleculavdal for tetrapodes in 2010.
A tetrapodal molecule was modelled as composed of four wiaxesogenic groups. All the
symmetry axes of the mesogenic groups are parallel. The jomeing the centres of mass form
a rectangle. In addition, they are coplanar with the synynaxes of the mesogenic groups.
The symmetry axes are not parallel with the lines joiningdéstres of the mesogenic groups.
The resulting molecules haw@y;, symmetry and the angle between a mesogenic group’s
symmetry axis and a line joining two mesogenic groups’ @ntharacterises the degree of
deviation fromD,;, symmetry. The intermolecular potential was expanded ingoevef three
molecular tensors. Six intermolecular coefficients wereded in the expansion. These six
coefficients were calculated by mapping the potential whilh Gay-Berne interaction of two
molecules. It was found that the three coefficients whichattarse the deviation from;, to
Cy, symmetry are small and thus have been ignored in the motlefield calculation. In the
full model, the three molecular tensors give rise to six oqrameters. However, when the
small intermolecular coefficients are ignored, only foudesrparameters were retained. Thus
their molecular field calculations were essentially foy, biaxial nematics formed fronbsy,
molecules. By increasing the elongation of the mesogeroamy anda, the stability of the
biaxial nematic phase increases. This suggests an indretiseeffective molecular biaxiality.

Another molecular field theory was developed by Osipov antk@wv @5] in 2010 to model
ferroelectricity in low-symmetry biaxial nematic liquidystals. A molecule was first mod-
elled as having’s;, symmetry. A molecule thus have three molecular tensorganisof two

for molecules withD,;, symmetry. These three tensors are averaged to give eigét ped
rameters in a phase withy;, symmetry. They are seven second-rank order parametersnand o
first-rank pseudo order parameter. Three of seven secokdorder parameters characterise the
low-symmetry biaxial nematic phase wify;, symmetry. When the molecules become chiral,
which is characterised by a pseudoscalar, the system canahagontaneous polarisation. A
pseudoscalar is a constant with respect to rotations ofculale axes but changes sign on in-
version of molecular axes, which describe the handedneasraflecule. This polarisation is a
coupling between the pseudoscalar, the pseudovector padameter and a second-rank order
parameter which characterise thg, phase. Hence this polarisation is not directly determined
by a dipolar interaction. Instead it is induced by the rotatof the axes of the tensor order
parameter characterising thg;, phase with respect to the primary nematic director.
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3.1.3 Topological Theories of Defects

Mermin in 1979 @7], while reviewing a topological theory défects, which includes defects
in nematic liquid crystals, remarked that there is no paldicreason why the point group,,
should be singled out for special attention for biaxial nBosa The author demonstrated that
uniaxial nematics can have topologically stable point dsfevith strengths o1 and+1/2 and
topologically stable line defects with strengths of ofly/2. In contrast, biaxial nematics do not
have a topologically stable point defect since they haverelis rotational point group symmetry.
Moreover, line defects for biaxial nematics of differentrsypetry may be different. The author
only discussed the case of biaxial nematics wit), point group symmetry. In this case, we
can have topologically stable line defects with strengthbath +1 and +1/2, as opposed
to uniaxial nematics. These results are in agreement wigviaw of experimental methods to
characterise thermotropic biaxial nematic phases by @al@&8]. Thus disclinations of strength
1 are topologically stable in the biaxial nematic phase wisacontrary to the uniaxial nematic
phase where they excape to the third dimension. In principlese defects can be observed
experimentally by looking at nematic textures through aticapmicroscope.

3.1.4 Theories of Hydrodynamics

Symmetries of biaxial nematic liquid crystals were alsosidared from a point of view of a
nonlinear hydrodynamic theory of static and dynamic betavin biaxial nematic liquid crys-
tals by Liu in 1981|{E|9]. The author regarded a biaxial nemas a liquid crystal system that
breaks all three rotational symmetries but none of the a#ineal ones. This is in contrast with
uniaxial nematics where only two rotational symmetrieskaken. This description allows a
rich variety of biaxial nematics. In addition to the clasdiorthorhombicD,;, system, biaxial
nematics can have other different symmetries such asniddi’;, C;), hexagonal D¢y, Csy,
Cen, Cs, Dg, D3p, C3p), cubic (T, Ty, O, T,, Op,) and even those that are forbidden in the lattice
such as icosahedral symmetry. These systems obey hydmiyeguations of identical struc-
ture since they break the same continuous symmetries. Tieyshave the same variables and
are characterised by equal number of propagating and géfusodes. On the other hand, their
discrete symmetries determine the number of independastieand transport coefficients. This
decides whether certain modes are coupled or not. In gerieea¢ is no one-to-one correspon-
dence between the symmetry groups and the sets of hydrodtyegumations. This is because
the tensors that appear in the equations are of finite rang&hng¢annot distinguish phases with
symmetries that allow non-vanishing higher rank tensorBusTsome biaxial nematics (such
as icosahedral and hexagonal) may be called “quasi-isotragmatics” since their elastic and
transport tensors mimic isotropic behaviour. The equatiware solved for two special cases:
orthorhombic and quasi-isotropic nematics. It was fourat th both cases, there is always a
purely diffusive mode, in addition to sound and heat diffnsi. In quasi-isotropic nematics, it
is the longitudinal rotation angle that diffuse whereasrimarhombic nematics, this diffusive
mode involves a linear combination of both longitudinal @rahsverse angles. In contrast, in
uniaxial nematics, the only pure diffusion is the longinali rotation when the wavevector is
perpendicular to the director.

In another hydrodynamic theory of biaxial nematic, Kini i&é8% E‘)] derived the expressions
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for the elastic free energy density, viscous stress anddlegtric polarisation for monoclinic
(Cy, Cop, C) and triclinic (C1, C;) symmetry classes of biaxial nematics. This was an extansio
of the work by Saupe for orthorhombic nematié,( Dy, Cs,,). These three different biaxial
nematics are represented by different number of elastistaats, viscosity coefficients, surface
terms and flexoelectric coefficients and so their explicfiregsions for the free energy density,
viscous stress and surface terms are dissimilar.

3.1.5 Phenomenological Theories

The first notion of nematic phases with different symmetsiesms to have been given by Boc-
cara Eh] in 1973. The author predicted a list of the possiatesotropic liquid phases which
can appear as a result of the violation of the rotationalriamae of the isotropic liquid”. In
other words, he considered possible nematic phases wighetit rotational symmetries as well
as inversion symmetry. The list of nematic symmetries awrsid has’,,, Cy,, Dy, Cuny Din,
So, and D,,4 for integer numbern. Therefore, a tensor which represents a physical property
of a nematic phase needs to transform according to an irtdduepresentation of the orthog-
onal groupO(3). The groupO(3) is the direct product o50(3) and C; since the inversion
commutes with any rotation. To each irreducible represiemaD’ of SO(3) corresponds two
irreducible representation3% and D% of O(3), whereL is an integer. Tensors which transform
like D% do not change sign on inversion whereas those transforrikiegi” do change sign
on inversion. Tensors of odd rank are proper if they tramsfaccording taD” and improper if
they transform according tﬁ&. In contrast, tensors of even rank are proper if they transfo
according toD_LF and improper if they transform according . Using character theory, the
author calculated the number of independent componentsiafegucible proper tensor of rank
L for given symmetry groups of nematic phases. As an exampisider a second-rank tensor,
there are two independent components for the grdupand D-;, and three independent com-
ponents foiCs;, group. The difference is because a nematic phase@itrsymmetry has only
one principal axis defined by symmetry whereas the other k&e are not defined and so it still
has one off diagonal element.

Goshen et aI.|ﬂ2] in 1975 discussed liquid crystals witlatiohal and also translational sym-
metries. The translational symmetries are considereddardop describe liquid crystal phases
with tranlational order such that smectic phases. In adiib those given by Boccara, he also
added other possible phase symmetries such as tetrafiédral octahedra) nematic liquid
crystals.

Lubensky and Radzihovskﬂ73] proposed a Landau theoryeoh#dmatic phases and the tran-
sitions between them. When formulating the orientationdep parameters the V-shaped or
bent-core molecules were taken to havg point group symmetry. Thus for the uniaxial ne-
matic with D, Symmetry just a single quadratic order parameter is neddedever, for this
phase to undergo a transition to a uniaxial polar nematik @Vit,, symmetry a polar or vector
order parameter is required together with a third-rankdenghis third-rank tensor is introduced
because it is essential for the description of the spontaste@rdered chiral phases with point
group symmetriedd, andCs. A chiral liquid crystal phase is a liquid crystal phase wiitle
director forming a twisted structure. The set of three omameters, first, second and third
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rank, is able to describe a host of nematic phases which atdades those with point group
symmetriesDsy,, Cs,,, Doy andChy,. Also of relevance are the tensor order parameters which are
needed to create these order parameters from phases widr lsignmetry. Of particular inter-

est for the bent-core mesogens is the transition from addiagmatic withD,;, symmetry to an
achiral nematic with symmetrgp, where the mesophase is expected to separate into domains of
opposite handedness separated by domain walls that witeoaver time. The extensive and
detailed analysis presented by Lubensky and Rodziho@(}yisﬁ?aided by the use of pictorial
representations to show the idealised organisation iniffezeht phases and their change at the
phase transitions.

Recent results on the symmetries of nematic liquid crystaise presented in two publications
by Mettout ﬂﬁb] In the first papeﬂ74] the author forntath a phenomenological theory
for nematic liquid crystals formed from bent-core molesul&he theory revolves around the
expansion of the orientational distribution function inasts of Wigner rotation matrices. The
coefficients of the expansion are components of order pdexrtensors. It was argued that two
second-rank order parameter tensor are required to destmwbphase behaviour of bent-core
molecules. They areD§0> and<D§2> + (Df,_z). In contrast, we only need one order parameter
tensor for uniaxial molecules which (ngO>. In the uniaxial phase, the two tensors required
for bent-core molecules af®3,) and(DZ,) + (DZ_,). They are cylindrically symmetric with
respect to the director and they have the same principal bxibe biaxial Dy, phase, the two
second-rank tensors have the same eigenframe. Howevee (it phase only one direction of
the two eigenframes are the same whilsCinphase none of the directions of the eigenframes
coincides.

In his later paper, Mettoumw] studied the effect of molacisymmetry on macroscopic prop-
erties of nematic phases. His paper concerned the relagibtvebn three types of symmetries:
molecular symmetny,,,1, macroscopic phase symmeté,..,, and theeffective symmetrgf
the molecules in the ordered phasé%g. At frequencies smaller than the molecular rotation
frequency, the behaviour of the system is determined onlygzhy, and G.¢. The effective
symmetry of a molecule is determined by the behaviour of thalecule in the phase. As an
example consider a system whdasg,,; is characterised by a major rotation axis of order greater
than 2. All these molecules yield the same effective cylsadrsymmetry in both the uniaxial
and the biaxial phase with,;, symmetry. Itis because these phases only permit order pteam
tensors of second-rank whereas higher rank tensors aredheeedescribé&r,,,.;. The discussion
on the relation between macroscopic and molecular symeseditiows the author to determine
stable nematic phases which can be stabilised by given miatesymmetries, with given rank
and parity of order parameter tensors. Of relevant to oukvisthe results which show the
number of independent tensors needed to characterisein ms based on molecular and
phase symmetries. These results are different from Bocﬁ?: that there are two types of
tensors. The first is defined by the symmetry of the phase whichlled anexternaltensor.
The second is determined by the symmetry of the moleculeshaibicalled arinternal tensor.
Since internal and external transformations commute, timeber of order parameters required
for a given rank is a product of the number of internal and rexdietensors for that rank. An
example of this can be found in a biaxial nematic phasBgfsymmetry formed from identical
molecules also havB,;, symmetry. In this case, there are two internal and two eatéemsors.
Thus the total number of order parameters is four. Theysam®, P andC', as we have seen in
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equations[(2.4.12).

3.2 Molecular Field Theory

In this section, we develop a molecular field theory for adriematics composed of molecules
with Cy;, symmetry. It might be expected that a system of such molsésiigble to form biaxial
nematics with eitheDs;, or Cy;, symmetry. In figuré_3]1 we show the idealised organisation of

FIGURE 3.1: A sketch of the idealised organisation of elongatedemdkes withCs;, point

group symmetry in a biaxial nematic phase with@a), symmetry and (b5, symmetry. The
coordinate systems are whose for the phaS¥ £) and for the moleculexfyz). (c) The cross-
sections of the average molecular structure formed by caimdpiwo molecular orientations.

molecules with(C'y;, point group symmetry in thé'y;, and Do), biaxial nematic phases. The key
feature in these sketches is the orientation of the coesititonolecules and not their translational
distribution. Following the ideas of Lubensky and Radz'ftkyv] we consider an average
structure for the molecules in the different phases. ThikerD-;, biaxial nematic phase there
are two types of molecule related byt 80° rotation about the molecularaxis, which is called
internal rotation by Mettoum4]. The addition of these tgiwes a structure wittD,;, point
group symmetry having an H-shaped cross section initheflane (see figue—3.1(c)).

Our notation for the biaxial nematic phases in this secsatifferent from the classical notation.
Instead of writing/Vp with a superscript which denotes the phase symmetry, we wnét biaxial
phases ad’ Dy, and N Cy,. Itis because the symmetry characterises the biaxialitiyeophases
and thus the subscrig is redundant.

3.2.1 Interaction Coefficients

A molecule withCy;, symmetry is less symmetric than one with;, symmetry. In other words,
it has a smaller number of basic symmetry operations whinhe@uce the number of interaction
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coefficients. Therefore, we expect that there are moreaaten coefficients to describe the
interactions of molecules with'y;, symmetry than those withy;, symmetry. In fact, the same
argument can be applied to the order parameters. In oumsgystbiaxial nematics formed from
molecules withC'y, symmetry, there are more order parameters than one froncoiesewith
Ds;, symmetry. The coefficients required to describe the intemas of identical molecules with
Cy, symmetry can be found according to Tablg 2.1. There are stxeof in total:

(1) u200,

(2) u202 = u220,

(3) u20—2 = ua—20,

These components are related
} by ’u,§02 = u99—o and

* —
Ug20 = U2-20-

(4) ug22, These components are related
(5) ua—2-2,

(6) uga—2 = uz—29.

by u§22 = U2—-92-92.

As the molecular symmetry becomgs,,, all the components become real and so the compo-
nents (2) and (3) are equal and the components (4) and (S)sarequal. We may define system
parameters as combinations of those coefficients in a way#madistinguish between the two
biaxial molecules with two different symmetri€%;, and Dy, as follows

¥s = (u220 + u2—20)/2u200,
Ya = (220 — U2-20)/21U200,
As = (Reugan + uz—22)/2us200,
Ao = (Reugza — uz-22)/2uz00,

Ao = (ug22 — u2-2-2)/2ius0o0, (3.2.1)

Thus, a molecule witldy;, symmetry differs from one witlb,;, symmetry by the non vanishing
values of the coefficients,, A, and ).

It should be noted that not all parameterisation methodsrfolecules withDs;, symmetry
can be used for those withy;, symmetry. One example is the separability approximation
Uomn = U2mUsz, Which decomposes an intermolecular supertensgy, into single molecular
tensorsus,,. This is because we can always find a principal axis systerohwhiakesis; = 0,

so that the interaction would behave like that 1@, molecules. Therefore we conclude that
all molecular models which require the separability appration, such as the surface tensor
[@,] or the additive tenso E?B] models cannot be usdtiis case. We review both
models in chaptdr]4 when we calculate the interaction tenfeor\V-shaped molecules. A pos-
sibility for parameterising the intermolecular coeffidtior C'y;, molecules is by calculating
the excluded volume of molecules which are made up of togchpheres to form the desired
symmetry 0]. Another model for calculating the intetecular coefficients for molecules
with Cy;, symmetry was carried out by Gorkunov, Osipov, Kocot and ][in an attempt to
model tetrapodal molecules. The pair potential was fittetthéovalues of the Gay-Berne inter-
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action potential between a pair of molecules at every r@airientation in order to calculate the
intermolecular coefficients. The Gay-Berne interactioteptial is a more realistic pair potential
since it takes into account both attractive and repulsiveef® explicitly. The excluded volume
and Gay-Berne interaction fiitting are possible for our fattesearch.

3.2.2 Order Parameters

The number of second-rank order parameters for moleculés (%}, symmetry in the three
nematic phases can be found according to tdblds 2.2-ahd Bi& ifi the uniaxial phase with
Do, Symmetry, there are three order parametei?,), (DZ,) and (D3_,). The last two
order parameters are complex conjugates of one anothemheAsystem goes into the biaxial
phase withCy;, symmetry, there are six more second-rank order paramés, (D?,,),
(D3%,), (D?, ,), (D?,,) and (D3 ,). These order parametes are related by the conjugate
relations(D?,,_.) = (D2,)*. In the Dy, phase some of the order parameters become equal,
namely, (D? ) = (D2 ). Itis therefore more convenient to define the order parammete
as linear combinations of those averages of the Wigneriootaatrices such as some vanish
at the NCy,-to-N Do, phase transition. Therefore in the uniaxial phase, thexghaee order
parameters

(Roo) = (Dg), (3.2.2)
(Ro2) = ((D(2)2> + (D(2)—2>) /2, (3.2.3)
(Io2) = ((Dp2) — (D§_5)) /2i. (3.2.4)

As the system becomes more ordered, it may take a trangitiorifie nematic phase withy,
symmetry, there are now three more order parameters

(Rao) = ((D3p) + (D)) /2, (3.2.5)

(R3g) = [(<D§2> + <D32—2>)
+ (D) + (D3_9))] /2, (3.2.6)

(I5y) = [((D3y) — (D?5_5))
+ ((D2,,) — (D3_,))] /2i. (3.2.7)

And for the biaxial nematic witlt’s;, symmetry, there are nine second-rank order parameters.
Three of them characterise this new phase and join the mgistk

<I20> = (<D§0> - <D320>) /2@', (3.2.8)

= [((D3,) +(D?,5))
(<D2 o) + (D5 2>)] /2, (3.2.9)
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<I§2> = [(<D§2> - <D%2—2>)

— ((D2g) = (D3_5))] /2.

(3.2.10)

As usual, the Cartesian representation of the order paeasngitves us the direct information on
the ordering of molecular axes. The nine order parameterbeaelated to the Saupe ordering

matrices (see equation (2.4.11)) by

and

and

<R§2> =

(Roo) = SZ7,
1
(Boz) = % (877 = 577)

2
(To2) = \/;Sfyz>

1
R _ SXX _ SYY
< 20> \/6 ( 2z 2z ) ’

[(S2a™ =Sz ) = (S = Sy )]

W =

(2" =82y )

Wil

<152> =

2
(I20) = _\/;Sz)gyv

(R32) =

2
() = —= (S2Y =537,

(2" +Sa")

[SSRI )

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

Hence, the’y, ordering in the molecules and the phase are representect liyatttesian super

matricesS;.” and

XY
Sab !

respectively, wher¢ A, B} can be any of X, Y, Z} and{a, b} any of

{z,y, z}. In addition to the nine second-rank order parameterse tiseinother rank one order
parameter with pseudo character. It is in keeping with theutaions by MettoutﬂS] about
the number of order parameter tensors using characteryth@bis first-rank order parameter
can be seen clearly by considering the Cartesian orderimepie[[2.4.71). If we define to be

the (5 rotation axis in the molecule and that in the phase then the ordering supermatrix has
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the form

SXX XYy g gXX gXY 0 0 0

Tz Tx Ty Ty

SYX g¥y g gYX oYy 0 0 0

Tz Tz Ty Ty

SXX XY g gXX gXY 0 0 0

yx yx vy vy
S=|[ sy sy o sX sy o0 0o o0 0 |. (3220

0 0 0 0 0 0 0 0 S%%

By using the Cartesian tensor notation to describe the ionglef the phase, we can see more
easily the effects of the molecular and phase symmetrieshelfconstituent molecules have
D5, symmetry, the molecular axes are defined which are the thodecolar symmetry axes.
Thus we would not have the off-diagonal tenéljt/B. For Cy, molecules, only one molecular
axis is defined by symmetry, which in this case is taken ta.b&ince the other axes are not
defined, although each tensor of the fasify” can be diagonalised with respect to the molecular
axes, their principal axis frames only have one common axiSjmilarly, in a phase wittDs,
symmetry, the phase symmetry axes are defined and there i§-diagonal tensorSggY. For
theCsyy, phase, only the” axis is defined. Therefore, when we diagonalise the terﬁgﬁswith
respect to the phase axes, their principal axis frames @vg bne common axig;.

It is clear that the diagonal submatricég” are symmetric about their diagonals. In marked
contrast, the two off-diagonal submatricéﬁf and S;‘IB are not symmetric about their diag-
onals. We can write the non-symmetric matrix as the sum ofréirsgmmetric matrix and a
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symmetric one

Sy~ oSNy 0 0 Sy —5x5)/2 0
Syt Syy 0 | = —(SKY —85N)/2 0 0
0 0 SZ7 0 0 0
(3.2.21)
XX XY YX
Sy (Sgy +547)/2 0
+ | (SXY 4 5YX) 2 SYY 0
0 0 SEZ
Now the anti-symmetric supermatrix contains just a singgenent
XY YX
and use of the Binet-Cauchy identimm] allows this to bétem as
XY YX
Sy — Sz = @/2)(xAYy) - (XAY)). (3.2.23)

The two cross products define, in a sense, the ax@xlZ in the molecular and phase frames,
respectively. There is, however, a fundamental differdmetsveen these and the conventional
axes,z andZ, which are polar vectors, that is they change sign undersive through the
centre of symmetry of the respective coordinate systemoihtrast the vectors defined by the
cross products are axial or pseudovectors, that is they tlohamge sign under inversion. To
distinguish between these two classes of vector we addeatblthe pseudovectors so that the
independent element of the anti-symmetric supermatrixvisngoy

SxY = 5yX =(3/2)(z - Z). (3.2.24)

Since neithe nor Z changes sign when inverted through the centre of symmetiyeif re-
spective frames this means that the order paraniétgl’ — S X) is invariant under inversion
and does not vanish for a molecule wiih;, point group symmetry in a phase having the same
symmetry. This contrasts with the behaviour of the analegmder parametelz - Z) defined

in terms of the axes in the molecular and phase frames. Thesmaventional vectors and so
change sign when the respective system, molecule or pleas®erted through the centre of
symmetry. In consequence, the polar order parameteZ) changes sign and so must vanish
in the C»;, phase, unlike the pseudovector order paraméierZ).

We have introduced these order parameters using the Gertlesiguage since this leads logi-
cally to the definition of the pseudovector order parametwmwever, this and the polar order
parameter can also be written in terms of Wigner functiorigisT
(z-Z) = (D), (3.2.25)
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and ] )
(z- Z) = (Dygy), (3.2.26)

where the tilde again indicates the definition in terms otigs®ectors for the molecule and for
the phase. The consequence of this is {i&},) changes sign on inverting through the centre of
symmetry in the’'y;, phase and so this polar order parameter vanishes. Thisastmtrith the
behaviour of the pseudovector order paramefqm which does not change sign on inversion
and so does not vanish in(&;, phase composed of molecules with the same symmetry.

3.2.3 Potential of Mean Torque

The potential of mean torque is constructed according tatmu (2.3.2). For theV (5, phase
composed of molecules wittiy;, symmetry, it can be written in terms of the combined interac-
tion coefficients and order parameters. Given a large nuwiiatermolecular coefficients and
order parameters, the potential of mean torque has a corfiexwhich can be conveniently
split into three parts

UQ) =Uu(Q)+ Up,, () +Uc,, (), (3.2.27)

where the individual terms responsible for driving the apace of the three nematic phases,
Ny, NDoy, andNCy, are

Uy () = = [({(Roo) + 27s{Ro2) — 27a(loz2)) Roo(Q2)
+ (275(Roo) + 4As(Ro2) — 2X0{lo2)) Ro2(£2)
+ (=274 (Roo) — 2X0(Ro2) — 4Xa(L02)) 1o2(92)] (3.2.28)

Uby, (2) = =2[((R20) + 7s(R32) — Ya(l32)) R20(€2)
+ (s (Ra0) + As(R22) — (1/2)A0(I32)) R22(2)
+ (=7a(R20) — (1/2)A0(R32) — Aall32)) I5o(1)], (3.2.29)

Ucy, (1) = =2[((120) +7s(I32) + Ya(R3)) T20(?)
+ (val20) + (1/2)Ao(I35) — Aa(R32)) R55(€2)
+ (Vs {T20) + As(I32) + (1/2) Ao (R55)) 132(2)] - (3.2.30)

Here, some explicit formulae for the angular dependentgeara given in equation (2.4.8) with
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R5,(2) = R22(€2). In addition, the explicit formulae for the new angular degent terms are

I2(02) = —\/gsin2 B sin 27,

3
I () = —\/;sin2 B sin 2a,

R3, () == (1+ cos? 8) cos 27 cos 2a — cos B sin 27 sin 2a,

N —

1
15,(92) = —3 (1+ cos? $3) sin 27 cos 2 — cos 3 cos 27 sin 2,
1
59(Q) = ~3 (1 + cos? ﬁ) sin 2 sin 2« 4 cos 3 cos 2y cos 2a,
1
I5,(Q) = D) (1+ cos? /3) cos 2 sin 2cc — cos B sin 2 cos 2.
(3.2.31)

We note that our definitions of the order parameters and anduihctions are different from
Osipovet al. [@] and Gorkunowet al. [@]. In Osipovet al. E], where they considered
Dy, phase formed frond'y;, molecules, the major molecular axigs not the symmetry axis,
instead, the symmetry axis is a minor axis. In Gorkuebwal.s theory forCsy;, phase formed
from Cy;, molecules|[66], both the major molecular axignd the major phase axi$ are not
the symmetry axes of the molecule and the phase, respgctinetontrast, in our model, both
the major axes are also the symmetry axes.

3.3 Approximate Model

Now we see that our system depends on six interaction ceftecand nine order parameters.
These large numbers present a challenging problem. Figdl, dfis a challenge in choosing the
values for these interaction coefficients. Secondly, migimy the free energy with respect to
nine order parameters is a formidable task. In order to siyngble problem, we use an approxi-
mate model which is analogous to that used in the calculdtiohiaxial nematics formed from
molecules withDs;, symmetry by Sonnett al. ]. We note from the Cartesian representations
of the order parameters f@p,;, molecules inDy;, phase in equations(2.4]12). At ground state,
the order parameterfsandC are non zero whereas the other order parametees)d P vanish.
Thus, in their model, Sonnet al. ] set the order parametef$ and P to zero. In addition,
they set the coefficieni which scale these order parameters in the potential of nogoe to
zero. Thus, we see from the order parameter€fgrmolecules in equations (2.4]112) and from
(3:Z11) to[(3.2.19), the order parameters which tend to aeperfect order aréR.), (Rao),
(I02), (I20), (I55) and(Ig,). In our approximate model, we set these order parameteeshieg
with the interaction coefficients,, v, and Ay to zero. Now our model depends on three order
parametersRy), (R3,), (RS,) and two interaction coefficients; and)\,. We will see later that
this dramatic approximation can still retain some esskeptigsics. It is because it is still able
to stabilise the three nematic phases: uniaxial, biaxiasptwith Dy, symmetry and another
biaxial nematic phase with'y;, symmetry. In the next section we use the stability analysis t

75



find the range of values for the parametagsand \, which can stabilise the biaxial nematic
phase withC'y;, symmetry at the ground state.

3.3.1 Stability Analysis

The pair potential for the truncated model can be writtereimss of the products of the molec-
ular vectors as

Usj(X1,¥1,21,X2,y2,22) = —usoo { (3(z1.22)* — 1)/2
+ s [(x1:%2)* + (y1.¥2)" = (x1.¥2)% = (y1.%2)°]
+ 2Xq [(x1.%2).(y1.¥2) + (x1.y2).(y1.X2)]} - (3.3.1)

We consider a rotatioR around an arbitrary axis = (a1, as,a3)” about an anglé that takes
the first molecule into the secorEtSS] (see Appeiidix D)

R = e, (3.3.2)

whereA is the skew-symmetric tensor associated with

0 —as a9
A= as 0 —a
—an al 0

Consider the case that these two molecules are so nearljeptwaone another that the terms
O(63) are negligible in the rotation that takes the first molecote the second. Thus

R=T1+0A+(1/2)6*A% (3.3.3)

Expanding the pair potential in terms &tp to second order we find that the energy difference
between the pair potential and the ground state (the stat®roplete alignment of the two
molecules wheré = 0) is

SU(Q) = —ugp00? [(15 + As + Aa) @l + (L5 + As + Aa) a3 +4(As + A\o) a3] . (3.3.49)

Any small rotation away from the state of complete alignmehtwo molecules should be
unstable and the pair energy is increased. Therefore thenmental energy should be positive
which gives us the followingtability region

As + Mg > 0. (3.3.5)

3.3.2 Equilibrium Free Energy

The approximate potential of mean torque can be written as

Usrun (2) /u200 = — [(Roo) Roo (2) + 25 (R32) R35(2) + 2Xa(R32) R5()] . (3.3.6)
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The Helmholtz free energy associated with this takes thma for
A" = (1/2)T" 7 ((Roo)? + 274 (R35)* + 2Xq(R%5)%) — InQ, (3.3.7)

where the partition function is given by

Q= / exp (~Ufoun(Q)/T*) dS2, (3.3.8)

It should be noted that, in this approximation, there ariettronly three order parameters,
namely (Roo), (R5,) and (R3,). This is because there are special symmetry operations of
this model which make the other order parameters vanistevaiing the distribution function
invariant. The order paramete($o2), (lo2), (R20) and (Iz) vanish due to the symmetry
operationCy4(z)Cy4(Z). In addition, the order paramete($s,) and (I3,) vanish due to the
symmetry operatio’s (z)Ca(X).

3.4 Calculations and Results

3.4.1 Phase Behaviour

In keeping with the calculations by Sonnet, Virga and Dur@j, we choose the parametiy
to be within their investigated range which is from 0 to 0.&nlde we fix\; t0 0.2, 0.3 and 0.4
and vary), to calculate three phase maps describing the phase beha¥iour system. The
three phase maps are shown in figlre$ 3.2.

In figure[3.2(a) we show a phase map fqr = 0.2. We see that the transition temperatures
for NDy, — Ny and Ny — I are both independent of the paramelgr This is because in
the truncated approximate modg] does not contribute to the ordering of the phadeb,,,

and Ny. In contrast, theV(Csy;, phase becomes more stable upon increasingAt A\, equals
0.2, the N D5, phase region disappears and now there is a di¥gct;, — Ny transition. Itis
interesting that as,, is greater than 0.2, there is a new phase. This new phasesdpatates
NCyy, from Ny and later from the isotropic phase. This new phase is clarset by the non
zero values of the order parametéf®,,) and(Rj,) whereas(R;,) vanishes. What we have
found is not expected since it does not fit in with our previonderstanding of the three nematic
phasesVy, N Dy, and NCyy,. That is, theN Do, phase should be characterised by the order
parametersRoo) and(R3,) whereas théVCy;, phase should be characterised by all three order
parameters. In figufe 3.2 we denote this new phas¥ Bs, (L) and the convensional nematic
phase withD,;, symmetry asN D, (]|) due to subsequent identification of the new nematic
phase. For now as the phase has not been identified, we refastthe Np_ phase. We come
back to the identification of this phase later in this sectioranalogy with the results by Sonnet
et al. [IE], the N D,;, — Ny transition is second order and th&;, — I transition is first order
and the order of the phase transitions are also independené parameten\,. In addition,
both the NCy;, — N Do, and NCy, — Np_ transitions are second order. For small values of
Ao, the N — Ny phase transition is second order. At = 0.3, there is a tricritical point.
For A\, greater than that, th&z_ — Ny is first order. Finally, theVp_ — I phase transition is
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FIGURE 3.2: The phase map predicted by the truncated model potésemequatiori (3.3.6))
for a nematogen composed of biaxial molecules Withh symmetry; the phase behaviour is
shown as a function of the relative biaxiality coefficiant with A\, of (a) 0.2, (b) 0.3 and (c)
0.4. The phase labelled in the textidgs _ is here indicated bW D5, (L) given its subsequent
identification. The dashed line indicates second orderetrassitions and solid lines denote
first order phase transitions; a circle shows a tricritic@ihp The vertical crosses indicate the
temperature over which the order parameters shown in fig@re/€re calculated.

first order. This is in analogy with the approximate model lonsetet al. ] that the biaxial
nematic-to-isotropic phase transition is first order fooreg range of temperature.

Next, we show the phase map fay = 0.3 in figure[3.:2(b). We see now that the extent of the
Ny phase is much narrower. It is because the strength of th@biateraction is higher which
pushes the biaxial nematic boundary up. Moreover, the dlidxieraction does not contribute
to the uniaxial ordering and so it does not influence the ualiaaematic-to-isotropic phase
transition temperature. In addition, tiéD,;, — Ny phase transition is first order, in contrast
with that for A\; = 0.2, which is second order. This indicates a tricritical bebawvi Here we
do not find theNp_ phase. The reason might be that the larger value\fasf 0.3 drives the
appearance ofR3,), thus inhibiting the formation of th&/z_ phase. We find a tricritical point
along theNCy;, — N Doy, phase boundary at, = 0.22, separating a second order transition
from a first order one along th& Cs;, — N Dy, transition line. In this case we find that the
biaxial nematicV Cy,-to-isotropic phase transition is first order.

We have also explored another region of the phase map bygatti= 0.4. According to the
calculations of Sonnet al. ] with \, = 0, the system exhibits a first order transition directly
from the isotropic phase to th€ D,;, phase. As\, increases from zero th&¥ Do, — I transition
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temperature does not change. On the other hand, firs¥thg, — N D, then theNCy, — 1
phase transitions grow with,. Again, we do not find théVz_ phase for this value of; which
we have found for\ of 0.2. A tricritical point is found in this case along théCs, — N Dy,
transition line at\, = 0.24. Moreover, theNC5;, — I phase transition is also first order, in
similarity with what we have found for a smaller value farof 0.3.

3.4.2 ldentifying The Nz_ Nematic Phase

In order to identify theNp_ biaxial nematic phase, we plot the dependence of the order pa
rameter on the scaled temperature Xgr= 0.2 in figure[3.3. In figuré_313(a) we show temper-
ature dependence of the order parameters\fo= 0.15 where we expect the phase sequence
NCs, — NDyp, — Ny — 1. As we lower the temperature, first there appears a jump iorither
parametex Ry), indicating a first orde/Ny; — I transition, as expected. Next, the order param-

0.8 0.8

06 00) 06 (Roo)
(R32) \

0.4 0.4
(R3,) (R3,) (R%,)
0.2 02

0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
* *

Dl
0.8 00>

(R32)
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0.2 0.25 0.05 0.1 0.15 0.2 0.25
*

FIGURE 3.3: The dependence of the three order paraméigys, (RS,) and(RS,) calculated
with A\; = 0.2 and (a)\, = 0.15 and (b)\, = 0.31 on the scaled temperatuffe*. In
addition the temperature variation of the pseudovectazdbasder paramete{rﬁé()), is shown
in comparison with (ajRS,) and (b)(R3,).

eter(R3,) increases gradually from zero, indicating a second olNiBx;, — Ny transition. We
also note a slight increase in the rate of changém)) at the phase transition. As the tem-
perature is lowered further, the order paraméfey,) increases steeply but continuously from
zero, indicating also a second ord€(’y;, — N Doy, transition. The order parameteiB,,) and
(R54) also increase continuously at the phase transition. Intiaddio the second-rank order
parameters, we also calculate the pseudovector order pwe(lﬁ(l)o>. As we expect, this order
parameter vanishes in th€; and N D, phases and gradually increases in #€; phase.
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FIGURE 3.4: Distribution function of theéV Dy (]|) phase as a function of the Euler angtes
andy whena is set equal to zero at; = 0.4, A\, = 0.2 and the scaled temperatufé = 0.22.

Now we move to figur€_313(b) where we find the new, unidentifiedse at\, = 0.31. First,
we find that the order paramet@Ryo) jumps at theVy; — 1. As we lower the temperature, both
(Roo) and (R$,) increase discontinuously, indicating a first order tramsito the new phase.
At the transition to theVCy, phase, the order parametgts,) increases continuously and joins
with the other two, indicating a second order transition. afVis important here is the pseu-
dovector order parameter only becomes non-zero ilMbg;, phase where the other three order
parameters are non-zero. Thus the phase with QRjy) and(R3,) non-zero is notV Cy;,.

In order to determine the symmetry of th&;_ phase, we plot the singlet distribution function
for the nematic phasesV Doy, (||), Ng—, NCy. In figurel3.4 we show the distribution function
of the nematic phase withy;, symmetry. The distribution function is shown as a functién o
the Euler angles and3 when the anglev is set equal to zero. Here we see that the distribution
function is maximised when the anglésind~ are multiples ofr. Itis when the molecular axes
(z,y, z) are parallel or antiparallel with those of the phase gXesY, 7).

Now we look at the distribution function for thé,,, phase in figur€3]5. The distribution func-
tion is maximised aff = 0 and wheny is a multiple ofr, indicating that ther andy axes are
parallel and antiparallel with th& andY axes of the phase. This is becausés a two-fold
rotation axis of the phase. However now we do not see the saamama whens = « since in
this case theX andY axes are not two-fold rotation axes.

In figure[3.6 we plot the distribution function for tiéz_ phase. This phase still has the maxima
ats = 0 and~ is a multiple ofr. However, at the maxima with = ,  is shifted byr /2

in comparison with that fos = 0. To investigate this further, we plot the distribution ftioo

as a function of the angle$ and~ whena is set equal ter /4 in figure[3.T. We see now that
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FIGURE 3.5: Distribution function of théVCs5;,, phase as a function of the Euler angieand
~vwhena is set equal to zero &, = 0.2, A, = 0.2 and the scaled temperaturé = 0.165.

FIGURE 3.6: Distribution function of theV Dy, (L) (INg_) phase as a function of the Euler
angless andy whena is set equal to zero at, = 0.2, A\, = 0.4 and the scaled temperature
T =0.23.
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FIGURE 3.7: Distribution function of theV Dy, (L) (Np_) phase as a function of the Euler
anglesg and~y whena is set equal ter/4 at A\, = 0.2, A, = 0.4 and the scaled temperature
T =0.23.

the values ofy at the maxima fo3 = 7 are the same as those fér= 0. However, the values
of v at the maxima are now at multiples ofminus=/4. This suggests to us that a coordinate
transformation ofv + /4 andy — = /4 would make the distribution of th& z_ phase the same
as theN Dy, phase. In fact these transformations lead to a remarkablegehin the functions
defining the two order parameters. Thus

a 7T/4 s

RQZ(av Bv '7) rotation; R22 (a/> 67 ’7/) (3.4.1)
s /4 a

R22(a7/87’}/) / 22(0/757/}/) (342)

rotations

where the two rotations take place about thend Z axes. The results of the transformation
to the new molecular and phase frames interchanges the pademeters R5,) and (RJ,) SO
that in the new frames$Rj3,) is non-zero and now it i$R9,) that vanishes. This is what we
expect for a biaxial nematic phase with,;, point group symmetry. To distinguish between the
two N Do, phases we have added the symbdjlsand (L) to indicate whether the molecular
minor axes are parallel or perpendicular in the biaxial rneaphase. In fact we should find the
effect of the coordinate transformation on the interacparameters\; and\,. Using equation
(2.1.22), the coefficients,,,, transform undet-7 /4 rotation of molecular axes according to

/ _ +(m+n)w/4
U’Lmn_e( I/

UL (3.4.3)

Therefore the coefficienk, is mapped to—\, and )\, is mapped to—\;. Our study of the
distribution function shows that an idealised picture o$ fbhase at perfect order should look
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like that in figure_3.B.

FIGURE 3.8: A sketch of the idealised organisation of molecule§ wi;, point group sym-
metry in the biaxial nematic phas&,Ds, (L), in which the minor axes of half the molecules
tend to be perpendicular to those of the other half. The aystems, ¢’ v’ 2) and X’ Y’
7), show the symmetry axes for this idealis®d,;, phase and the molecules forming it. The
cross-section of the average structure obtained by mergoigcules in which the axes are
orthogonal is also shown.

3.5 Conclusions

In this chapter, we have developed a molecular field theorintestigate biaxial nematics
formed from molecules witlt’s;, symmetry. Thus the ground state of our system also has the
same symmetry with the constituent molecules. This theasyehsignificantly larger number of
order parameters and interaction coefficients in compangth that for molecules and phases
with Dy, symmetry. There are nine second-rank order parametersiamtesaction coeffi-
cients in total. In addition, we also have a first-rank ordmrameter. In order to facilitate the
calculations, we use an approximate model. In this modelntimber of interaction coefficients
is reduced to only two and the number of order parametergé¢e thThis dramatic approxima-
tion still retains the essential physics and is able to dlesa rich phase behaviour. In addition
to the isotropic and uniaxial nematic phase, there are taxiddinematic phase withy;, sym-
metry. These two biaxial nematic phases are characterigedebalignment of the molecular
axes. In theDy,(||) phase, the molecular axes tend to be parallel. This is int@stsvith the
Dy (L) where the molecular axes tend to be perpendicular. Moreasxeehave found a biaxial
nematic phase with's;, symmetry at the ground state. This has the same symmetrtivaittof
the constituent molecules.

The approximate model, even though takes a dramatic appatixin, still retain much of the
essential physics. It is expected that our calculationlt®or this model would help the inter-
pretation of experimental studies of mesogens thoughtro tbe biaxial nematic phase with
Cy, symmetry. It seems that there are many facets of this modehwherit further investiga-

tion.
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Chapter 4

Polar Nematic Liquid Crystals formed
from V-shaped molecules

Recent experimental evidence suggests that a class ofpédhmaolecules might be a promis-
ing candidate for low molar thermotropic biaxial nematiguiid crystals ES@@?]. Those
molecules are made by linking two rod-like mesogenic graimpsugh a central unit, which
results in a rigid V-shaped core, with flexible hydrocarbdiains at both ends. They are also
known as bent-core, banana-like, or boomerang- [43riods experiments on those V-
shaped molecules with the interarm angle 4° using different techniques, namely polarised
microscopy, conoscopyH NMR spectroscopy@B], X-ray diffraction_[35] and Ramaratsc
tering [37] have revealed the existence of a rich biaxial a@mphase with a first order direct
transition to the isotropic phase. On the other hand, theoutdr field theory and Monte Carlo
simulations have shown that the biaxial nematic phase cnbenformed at very low tem-
perature for V-shaped molecules with that value of the artarangle EZ]. Our interest in
studying the dipolar interactions of V-shaped moleculesistfrom this disagreement between
the theoretical and the experimental results.

An explanation to the disagreement between the theorgiredlictions and the experimental
results that has been proposed is that the molecular fietyttend Monte Carlo simulations
neglect a large molecular electrostatic dipolar inteacacivhich may be present in the empirirical
systems. In consequence, this could stabilise the formafithe biaxial nematic phase for large
bend angleslBG]. In addition to stabilising the biaxial m@in phase, we expect the dipolar
interactions to stabilise the novel nematic phases WitbrpﬂiaracteI{BS].

In sectio 4.1l we discuss some related works which inclugeldali interactions in the study of
nematic liquid crystals. We review the classical molectikld theory for V-shaped molecules
without dipolar interactions in'4.2. Then, in sectlon]4.3 extend the molecular field theory
to include dipolar interactions. Next, in sectionl4.4 weatid® our calculation results for the
latter case. Two new major effects have been found by addpajad interactions into the the-
ory. First, the biaxial nematic phase can be formed at higiperature for molecules with large
interarm angle. These results agree with the Monte Carlalaiions and partly explain the
disagreement between theoretical predictions and expatahresults. Secondly, the polar uni-
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axial and biaxial nematic phases can be stabilised whicé havbeen confirmed in experiment.
Finally, we conclude this chapter in sectlonl4.5.

4.1 Related Works

The hypothesis of a large transverse dipolar interactiovtstiaped molecules has been exam-
ined by Bates [83] in a series of Monte Carlo simulations.hiese simulations, two neighbour-
ing molecules interact via a pair potential which dependthein relative orientation. The model
pair potential consists of the normal second-rank intezastfor V-shaped moIecuIe@SZ] plus
a (first-rank) dipolar interactions. Each molecular digodénts along they axis in Figurd 4.11.

The nature of this dipolar interaction is not purely
electrostatic but may include other types of inter-
molecular forces such asteric interaction. The o ! o
steric interaction happens when two molecules | o B
are brought too close, the electron clouds over: o il 2
lap. Since more than one electrons cannot oc-
cupy the same quantum state duePRauli's ex- H
clusion principle there are repulsive forces be-
tween two molecules. The steric dipolar interac- i z®

tion is expected since interacting molecules have 3

polar shapes. The temperature and hence the dipoleé £, yre 4.1: The coordinate axes
strength are scaled with the second-rank tensor |apeled for a V-shaped molecules.
component along the® axis of an arm (analogous

to usgp). The scaled dipole strength is calledThe simulation results were given in four phase
maps reproduced in figure 4.6. These show the dependence sfdled transition temperature
on the interarm angle from00° to 130°. These figures correspond to four values:phamely

0, 0.2, 0.5 and 1.0. The first diagram in figlrel 4.6(a) showsssttal behaviour for systems
without dipolar interaction as we have discussed in Ch@tsith a Landau point joining the
phase boundaries. As the dipole strength is increased tavlitPthe corresponding phase map
shown in figuré"4J6(b), the biaxial nematic-to-uniaxial rgimtransition temperature férnear
the tetrahedral angle as well as the biaxial nematic-tsép@ phase transition at the Landau
point are unchanged. However for values of the interarmeatiglt are not close to the Landau
point, the biaxial nematic-to-uniaxial nematic trangiti,emperature is increased. The phase
map forx = 0.5 is shown in figuré_416(c). In this case, we still see a Landantgmt now
most of theNp — Ny phase boundary is raised in comparison with the classica wdnere
dipolar interactions are not included. The last diagram gour&[4.6(d) shows the results for
x = 1.0. Now it is interesting that the Landau point is replaced bina bf first order direct
biaxial nematic-to-isotropic phase transitions over gdarange of the interarm angle fror7°

to 122°. Below 107° there is a narrow stripe of uniaxial nematic phase betweenstbtropic
phase and the biaxial nematic phase. In conclusion, thelaions show that the biaxial ne-
matic phase is more stabilised with stronger transverselatipnteraction. In addition, there
is a direct first order biaxial nematic-to-isotropic phasesition at high temperature for large
interarm angles. The last result is somehow in agreemehttthét experimental evidences.
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FIGURE 4.2: ldealised visualisations of (a) non-polar and (b) pbiaxial nematic phase
formed from V-shaped molecules.

In comparison to the results by BatQ [83] was the more recaloulations by Grzybowski
and Longa@]. Their calculations were of a low density appnation of the local density
functional theory based on the Gay-Berne pair potentialis Ta more realistic interaction
potential compared to that used by BaB [83]. This is becthes Gay-Berne model takes into
account both attractive and repulsive interactions anéeddent on the intermolecular vector.
Without the dipolar interaction, the model showed a simihase map with the Landau point
at 107° interarm angle. On increasing the dipole strength, the aarmbint is shifted towards
lower value of interarm angle. In contrast to this, as we lthseussed, the model by Bat@ [83]
predicts that the Landau point is broadened into a Land&u Moreover, in the calculations by
Grzybowskiet al. [@], the biaxial nematic-to-uniaxial nematic transiti@mperature increases
on increasing dipolar interaction strength for sufficigriéirge interarm angled(> 110°). This
result supports the existence of the dipolar interacticiménsystem such that for large interarm
angle the biaxial nematic phase is stabilised by dipolaradtions.

The existence of polar nematic phases has not been repartbé Monte Carlo simulations
by Bates @b] and the density functional theory by Grzybdvesid Longa@d]. A sketch of a
polar and a non-polar phase is shown in figuré 4.2. Phaseatgdias been found in many liquid
crystals, including nematics made of lyotropic system &edrmotropic nematic polymer liquid
crystal%b@ 7]. Even polar thermotropic biaxial némpolymer liquid crystals have been
found [87]. However, there has not been any hard evidencehaghiggests the existence of a po-
lar low-molar thermotropic nematic liquid crystals altlyburecent electro-optical experimental
results have suggested that it might be posslglle [38]. Tkh&ulmess of polar low-molar ther-
motropic nematic liquid crystals has been discussed imeete [88]. “these materials might
have useful technological applications due to their egegaeasy and fast response to an exter-
nal electric field, coupled to fluidity and self-healing #lgitypical of nematics that is crucial to
their use in electro-optical devices”.

Despite the fact that polar biaxial nematic phases have @en oound in real low-molar ther-
motropic systems, theoretical studies and computer strookhave shown that it should be
possible for them to exist: “there is no fundamental reabanhthese ferroelectric phases should
not exist” @]. The possibility of a polar uniaxial nemapbase have been studied by sev-
eral authors using a standard molecular field theErL/Q,thwo side cluster molecular field
theory and Monte Carlo simulatiorBSZ] for dipolar anispic molecules and molecular dy-
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namic simulations for dipolar spherQ[gl]. Their resuliggest that the polar uniaxial nematic
phase can be stabilised for a range of dipolar interactiength. The polar uniaxial nematic

phase can take a transition to the non-polar uniaxial nenpditase, followed by the uniax-

ial nematic-to-isotropic phase transition. Alternativehere might be a direct polar uniaxial

nematic-to-isotropic phase transition. In one case whereoupling between first and second
rank interactions was allowed, the author found a trialtigoint along the polar nematic-to-

uniaxial nematic phase transition IirB[89]. In another eloof polar uniaxial nematics us-

ing the two side cluster molecular field theory, two tricadti points were detected, one along
the polar uniaxial nematic-to-non-polar uniaxial nemaiid the other along the polar uniaxial
nematic-to-isotropic phase boundari@ [52].

The first theory which described the coesistence of bidyialnd polarity in thermotropic ne-
matic liquid crystals seems to have been a Landau-de Geheesytfor a system of polymeric
molecules of symmetr¢’s by Mettout, Toledano, Takezoe and Watanelﬁé [92]. Theroup

is a symmetry group with only an identity and a reflection plahis work was stimulated
by experimental evidence which found a polar biaxial neoatiiase exhibiting in thermotropic
polymer liquid crystals@?] although the mathematicabisture is indistinguishable between
polymeric and low molar mass systems. First, the authossaltdwed for first-rank interaction
while ignoring second and higher rank interactions. Themntbtwo nematic phases by varying
the coefficients in the Landau-de Gennes free energy expansie isotropic phase, the polar
uniaxial nematic phase (with..,, Symmetry) and the polar biaxial nematic phase (wittsym-
metry). Here, th€',,, symmetry group consists of an infinite rotation axis and @c#ftin plane
with the axis of rotation lies in it, together with an idewtilThese results mean that the biaxial
nematic phase can be stabilised only by one symmetry brgakecthanism which is molecular
polarity. When the authors include second-rank interastithey found a phase map with richer
phase behaviour, including nematic phases with differgmirsetries as before, namely..,
Coohy Doy, Co,, Cs andCy. Since these symmetry groups are not relevant to our modebwe
not discuss them in detail. Their definition can be found atibok in referenc@m]. Hence it
seems that a biaxial nematic phase with symmetry other@haequires contributions from ei-
ther only second-rank interaction or a combination of bast ind second rank interactions. In
the simulations by Bates the constituent molecules kigyesymmetry and so by including both
first and second rank interactions, we expect the systemdasmifible to form polar nematics.

It is worth noting that in some calculations for the excludedume of V-shaped molecules
consisting of touching spher&@ 80], the configuratidrere the dipoles are antiparallel is
more favoured than when they are parallel. It is becauseerfdimer the excluded volume
is smaller and the molecules tend to arrange in this way tdannise their excluded volume.
These results also agreed with the calculations for antatien-dependent second virial coef-
ficient @]. The authors found that, for a variety of shapkss, coefficient is smaller when the
dipoles are parallel than when they are antiparallel. Tlsis auggests that antiparallel config-
uration is favoured by steric interactions. Therefore @rae that, in order for the polar phase
to be stabilised, electrostatic dipolar interactions nieelde dominant. Another important re-
sults is from the electro-optical experiments for the twagke systems of V-shaped molecules
made up of ODBP-Ph-C7 and ODBP-Ph-O-C12. It was found thatrésponse time for short
axis switching of ODBP-Ph-C7 is linear with respect to thelegal electric field whereas for
ODBP-Ph-O-C121itis quadratiab8]. According to the aughiris indicative that the system

88



of ODBP-Ph-C7 has a macroscopic dipole, hence might be & pialgial nematic. In contrast,
atomistic simulations of ODBP-Ph-C7 by Ret and Wilson4] showed the formation of small
ferroelectric ordered domains in the biaxial nematic pleidbe same temperature range as in
the experiments. We note that, the biaxial nematic formechfODBP-Ph-O-C12 still exists at
high temperature without a macroscopic dipole may be ssabliby local ordering of molecular
dipoles. Nevertheless, we treat the dipolar interacticamgeneral way and neglect the nature of
the interaction. In addition, we ignore short-range caitiehs for simplicity.

4.2 V-shaped Molecules in Non-polar Nematics

In addition to molecules witlDsy;, symmetry, those witlC’y, symmetry can also form biaxial
nematics where the phase behaviour can be described bydseedorder parameters. One type
of molecules with this symmetry is V-shaped molecules agroknown as bent-core molecules.
Some V-shaped molecules are promising candidates whicbktaailise biaxial nematics since
there are empirical evidence which strongly supported ttiet may form such phasEHa 36,
@]. Before discussing the molecular field model for polaxial nematics, here we review
a model for biaxial nematics withy;, symmetry, formed from V-shaped molecules without
dipolar interactions. The equations of the molecular fiakebty for nematic phases with,,,
symmetry formed from V shaped molecules arising from segané interactions are exactly
the same as that fab,;, molecules in sectioh 2.4.2. Moreover, in this case, we chatere
the intermolecular interaction coefficients,,,,,, to the geometry of the constituent V-shaped
molecules. We should note that since the constituent Veshapolecules have polar shape, the
nematic phase may also be polar due to the dipolar interechietween the molecules. However
in this section we only consider second-rank interactisressassume that only non-polar phases
are formed. In fact, the phase polarity only manifests in@aftk order parameters. In modelling
the interactions of V-shaped molecules, we use the the geicmeean approximation. If we
assume the arms are cylindrically symmetric, then the &léxiy only depends on the interarm
angle. This relation has been worked out by Ferrarini, Lucgty Nordio and Roskilly|ﬂ8]
using a model called the additive tensor model. This is szaunolecular tensor is the sum of
the tensors of the segments which make up of the moleculeurlcase, the segments are the
mesogenic arms.

It should be noted that there are other molecular intenaati@dels which we can use. One
example is the surface tensor model, also presented by e geoup of author@@?]. In

this model, a molecule is depicted as overlapping sphermshansingle molecular tensor com-
ponents are equated to the integrations of the relevantisphbarmonics over the molecular
surface. Using this more elaborate model, the authors atstigted transitional behaviour as
found for the additive tensor modm44]. Another possipiis to model a V-shaped molecule as
consists touching spheres and the intermolecular inferacbefficients can be calculated from
the excluded volume of two moIecuI&[80]. Both the surfasesor and the excluded volume
models are much more computationally demanding than thigadtensor model.

The decoupling approximation allows us to calculate theldosd intermolecular tensais,,,,
aSuomn = Uamusoy. The single molecular tensap,,, can be related to the molecular geometry.
In a V-shaped molecule, the two arms are identical and aytiatly symmetric and hence their
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interaction tensors are uniaxial with only one componegjjt Here, we use the superscript
to denote that it is a tensor component of an arm instead ahtilecule. This segmental arm
tensor takes a value in the molecular axis representati@gpnerical transformation

Uy = Y Com(ws) by, (4.2.1)

Here, Cs,,, (ws) are the modified spherical harmonics. In addition, = (asfs) denotes the
relative orientation of the arm with respect to the molecalais frame. Here, the spherical
harmonics coincide with the Wigner rotation matrices wlaare of the indices is zero.

Crm(ws) = db, (Bs)e™ M. (4.2.2)

Now, the molecular second-rank tensor is the addition os#ggnental tensors in the molecular
axis representation

Ugm = Y _ Com(ws)uby. (4.2.3)

The spherical harmonics can be expressed in terms of thaiinteangles as follows. If we let
O be the point where the arms are connected, thehpoints along the symmetrical axis of one
of the rods. The molecular axes are defined in the way as shofigure[4.8, namelyz is the
bisector of the interarm angles att is in the same plane as the arms. Thiis;s £202° and

« = 0. Therefore, the spherical harmonics become

1—3cosf
020(003) = ?7
1 /3
022(0)3) = Z 5(1 -+ cos 9), (424)
Therefore the second-rank molecular interaction
tensor components are = oae '-‘t. A
e £ I
s [1—3cos0 A 2 0 % ;l‘_;!.._n
U220 = U2O 72 s i . 2
uge = u394/ (3/8)(1 + cos9). (4.2.5) 0
The biaxiality parametery is simply wuog/ugg. 25

In addition, we scale the temperature with the X

anisotropy of an armysg,. The phase map for this

system can be found easily simply by converting F/GURE 4.3: The coordinate axes
values ofy in the phase map in figufe 2.4 foac- labeled for a V-shaped molecule.
cording to equatio (4.2.5). The results are shown

in figure[4.4. These results were revealed by Luck-

hurst &] for a smaller range of the interarm anglérom 90° to 180° which shows that the
most biaxial molecule is the one with the tetrahedral intarangle ¢ = 109.5°). The phase
map in figurd-4} also shows another point which correspomdset optimum biaxiality at the
complement of the tetrahedral angle. Thus, there are noviLamdau Triple points in the phase
map. Molecules with the interarm angles @f 90° and 180° are uniaxial. In addition, the
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FIGURE 4.4: The dependence of the scaled transition temperatutheoimterarm angle of
V-shaped molecules.

molecule with90° interarm angle is discotic whereas the other two are calamithe results
for 90° < 6§ < 180° agree qualitatively with the Monte Carlo simulations of lagaus pair

potential @Z].

4.3 V-shaped Molecules in Polar Nematics

In the last section, we discussed the molecular field themrynén-polar uniaxial and biaxial
nematic phase formed from V-shaped molecules. In this@eete add a first-rank or dipolar
interaction with a transverse dipole in the direction oftlieector of two segmental arms. In this
case, the results we obtain for calamitic and discotic mudesccannot be exchanged as before.

First, we consider a calamitic system which is 109.5° < 6 < 180°. We takex to be the
axis perpendicular to the molecular plageto be the bisector of the arms ando be in the
direction perpendicular tg and in the molecular plane. In this notation, we expect thma
molecular axisz to align in the nematic phase to form the main director whetba other
axes align in the biaxial nematic phase to form the minoratines. In addition, the transverse
dipole points along the minor axizg Now the molecules havé€’,, symmetry and we expect
that the lowest symmetry of the phase is a$g, with Z being the major axis of the phase. In
addition, the dipole of the phase points along the minorcttreY”. The molecular symmetry
operations are a two-fold rotation abauand two reflection plane$zy) and(yz). Likewise, the
phase symmetry operations of ttg, phase are a two-fold rotation abdxitand two reflection
planes,(XY) and(Y Z). Therefore, from table2.1, there is a first-rank interactoefficient
in addition to the second-rank ones

U1l = U1—11 = U1—1-1 = U11-1- (4.3.1)
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In addition, from tableB 212 aid 2.3 in sectfonl| 2.2, therdsis a first-rank order parameter
(D%1> = <D1—11> = <D1—1—1> = <D%—1>- (4.3.2)
Hence, the potential of mean torque can be constructeddingao equation{2.3.17)
U(Q) = —ug00 (k(Fp)Fp(Q) + (Fu)Fu () + 2(Fp)Fp(Q?)), (4.3.3)

Here,x = w111 /ug00. The definitions of the composite order parameters and anfuhctions
are given in equation§ (2.4]32) and (2.4.33). In addition,

Fp(Q) = (1/2) (D]ﬁ(Q) +DL(Q)+ DL, () + D%—I(Q)) ) (4.3.4)

and
(Fp) = (y.Y) = (cosvy cos a — cos B sinysin ). (4.3.5)

In this formulation, the dependence of the magnitude of tagi@lity parametery on the inter-
arm angle is still the same as that for non-polar moleculesiwive have discussed in section
[4.2. However, the axis labels farandy in this case are exchanged with respect to those in
section[4.2. Thus the sign ofis reversed. The reason for this exchange is to facilitage th
calculations. The functioy.Y is periodic over the interval O ta for a and~ whereas the
equivalent period fok.X is from O to 2r. The scaled Helmholtz free energy is

A*=—-InQ+ (K(Ep)* + (Fy)? + 2(Fp)?). (4.3.6)

2T*
We note that the value afg used by Batems] is scaled witljj, of an arm whereas we scale
 with the intermolecular coefficientsyg. Hence in order to compare these two sets of results,
we need to make a transformation according to

4k p

S L R— 437
" (1 —3cosh)? ( )

while the comparison for the interaction strength is

1— 0\?
3 cos ) . (4.3.8)

58
U200 = U200 <f

Moreover, in the simulations, a molecule interacts
with six nearest neighbours. This number of neigh- O
bours is often calleccoordination number The

molecular field results for the transition temper-

ature need to be multiplied by this coordination H
number in order to compare to those obtained from z3
the simulations. v

Now we consider a discotic molecule with the in-
terarm angle in the rang#° < 6 < 109.5°. We
take the molecular axes as follows. We take be

FIGURE 4.5: The coordinate axes
labeled for a discotic V-shaped

molecules.
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perpendicular to the molecular plangto be the bisector of the arms amdo be perpendicular
to bothz andy and in the molecular plane. In this notation, we expect théeoutes to align
their z axis to form the directo# in uniaxial discotic nematic phases. The transverse digdle
points along they axis. In this case, the interaction coefficients for the mualles are given by

_ s
U20 = —Ugp;

uge = —us9y/(3/2) cos 6. (4.3.9)

In addition, the value of in comparison with that used by Bates is

K = KB. (4.3.10)

4.4 Calculations and Results

Since the potential of mean torque in our theoretical magleinalogous to the pair potential
used by Bates, we perform analogous calculations for thee satues of«x, namely 0, 0.2,
0.5 and 1.0. For each value ef; the dependence of the transition temperature on the imerar
angle is calculated by minimising the equilibrium free gyewith respect to the three order
parameters using the methods described in Chhpter 2. Thksrase given in figure 4l7. The
results which show the phase behaviour of V-shaped molgeeuthout dipolar interaction (for
kp = 0) are discussed in detail in section]4.2 and are reproducEdyure[4.7(a). We see that
the results are good qualitative agreement with the sinomlaiVe recall that there is a unique
Landau point at which the isotropic phase undergoes a semaial transition directly to the
biaxial nematic. In addition, as the angle deviates froméh@hedral value, the biaxial nematic
rapidly becomes less stable.

If we include a small dipolar interactionsf = 0.2, figure[4.7(b)) we see that the biaxial
nematic-to-uniaxial nematic transition temperature géased for a sufficient deviation of the
interarm angle from the optimum value. In addition, as mightexpected, we have found a
region of polar biaxial nematicNg. Above this region, the non-polar uniaxial and biaxial
nematic phases and the Landau point at the tetrahedral atijleemain. For the interarm
anglef from about106° to about116° excluding the Landau point, we see a rich behaviour
Ng — Np — Ny — I whereas for the interarm angle outside that region we doa®tlie non-
polar biaxial nematic phase. These results are in good mgmatewith the simulations by Bates.
However in our calculations, the reason for the biaxial nirEhase to be stabilised is because
of the formation of the polar biaxial nematic phase. In ddditthe first order uniaxial nematic-
to-isotropic phase transition is unaffected. It is becdtsepolar biaxial phase is formed at a
lower transition temperature. Hence the dipolar intecacgtrength which depends explicitly
on the ordering of the molecular dipoles does not make anyribation to the transition at
higher temperature. We also see thatfo6° < ¢ < 116°, the polar biaxial nematic phase is
formed at lower temperature than the non-polar biaxial rienpdnase. Therefore, it does not
affect the second order non-polar biaxial nematic-toxialanematic phase transition and the
Landau point for the same reason. In general, ¢ — Ny phase transition is second order.
For101° < 6 < 107° and114° < 6§ < 127°, both theN} — Np andNE — Ny transitions are
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FIGURE 4.6: The phase maps as a function of the scaled temperatitzean angle for bent-
core molecules with transverse dipoles£a¥ 0.0, (b) 0.2, (c) 0.5 and (d) 1.0 as predicted by
the Monte Carlo simulations by Bates. Reproduced florh [82].
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FIGURE 4.7: Phase maps for polar V-shaped molecules with dipadmgth (a)xz = 0, (b)

kp = 0.2, (c)kp = 0.5 and (d)xp = 1.0 which are predicted by our molecular field theory.
First order transitions are shown as continuous lines vasssecond order transitions are shown
as broken lines. Tricritical points are shown as circles.
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first order. Forg smaller thanl01° or larger thani27°, the N5 — Ny is second order. Hence
there are four tricritical points.

As the value ofs 5 is increased to 0.5 in figute4.7(c), the polar biaxial neajliase becomes
more stable. Further, the uniaxial nematics remain noarpalit less extensive in the phase
map. Likewise, the extent of the non-polar biaxial nematialso small. Regardless of phase
polarity then our results are in good agreement with the kitimns in which the region of
discotic uniaxial nematic liquid crystal is narrow. Moreoythe biaxial-to-uniaxial nematic
phase transition only changes slightly with the scaled tatpre for large values of the interarm
angles. We found that, fa05° < ¢ < 118°, both theN% — Np and NL — Ny, transitions are
first order. Fom outside that region, th&Z — Ny, transition is second order.

Finally we show the calculation results fe = 1 in figure[4.7(d). Again we see some good
gualitative agreements with the Monte Carlo simulations fid two narrow regions of uni-
axial nematics. They are connected by a line of first ordearpbiaxial nematic-to-isotropic
phase transitions faf from 116° to 122°. One difference between our results and the simula-
tions is that one of the uniaxial phases is polar. We dendegothlar uniaxial nematic phase by
N{JD. Another difference is the extent of the polar uniaxial neémjphase in our calculations is
larger than the simulation. Below the uniaxial nematic plsashere exists a very large region
of biaxial nematics. In our calculations, this region of{ié nematics is polar, in contrast with
the simulation. Fof > 122°, the N§ — Ny phase transition is second order and is below the
first order Ny — [ transition. The latter transition is unaffected by therggte of the dipolar
interaction. Fo < 116°, the N}, — N/} transition is first order. This is followed by a second
order polar uniaxial nematic-to-isotropic phase traoaiti

In the case where the uniaxial nematic phase is polar, tr@atimteraction is strong enough
that the ordering axis is along the bisector of the arms. isi¢ase the major order parameter
is measured along the bisector. Therefore in order to fatglithe calculations, we need to
exchange the molecular axgs@ndz. It is then more convenient to locate the first order phase
transition N5 — N7, In this case the molecular tensor components are

s (1 —|—3cos€>
U20 = Ugq 9
uge = uspy/ (3/8)(cos b — 1). (4.4.1)

We also calculate the order parameters for the arms in asdeake comparison with the results
by Bates. These results by Bates are shown in figuie 4.8. Tdrdee paramters are defined in
the coordinate axes of an arm. The arm order parameters dauiie simply by transforming
the molecular order parameters from the representatidmeimblecular coordinate axes to their
representation in the axes of an arm according to the tramstn rule

Salt = (S, (4.4.2)
b

wherea andb can ber,y andz and A can beX Y, Z. For the case whergis the long axis,
this gives us
Sat = cos?(0/2)S)" + sin®(6/2) S (4.4.3)
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Whenz is along the dipole, we get a different expression

St = cos®(0/2)S2" +sin?(0/2) S, (4.4.9)

The results for the arm order parameters are given in figde l4. figure[4.9(a) we show the
results for the system without dipolar interaction. In thetiopic phase, all components of the
order parameter tensor for the arms are zero. As the temipeiaiowered, the order parameters
increase discontinuously to a non zero values With* = SYY = (—1/2)S%7, indicating the
uniaxial phase with: being the ordering axis. As we lower the temperature the corepis
SXX andSYY gradually become different although they remain negatidesmaller tharsZZ,
indicating a biaxial phase. Next we introduce a small dipatéeractionxp = 0.2 which is
shown in figuré 49(b): we can still see thg; — I and Nz — Ny phase transitions at the same
temperatures as before. In addition, now we find that at laemperatures, the components
SXX and SYY changes discontinuously. At the same temperature, the padar parameter
also becomes non zero, indicating a first orﬁ% — Np phase transition. Now we increase
the dipolar interaction slightly tez = 0.5 in figure[4.9(c), theVy, — I phase transition is still
the same as before withbeing the major axis. Here the non-polar biaxial nematioifound
and instead the order parameté&$* and SYY change with a slight jump at th&'y — Ny
phase transition. This is also accompanied by a jump in the poder parameter. We note that
the discontinuities in the order parameters at both phassitions are more pronounced than
in the simulation. The final values afs = 1.0 is shown in figuré 419(d). As the temperature
is decreased in the isotropic phase, we see a vanishingly egimn where both the polar and
the second rank order parameters are non zero, indicatiegand order phase transition to
the polar uniaxial nematic phase. As the temperature isrieaveall order parameters increase
discontinuously. In addition, the order parameters of thesado not follow the relatioX X =
SYY — (—1/2)S%%. This indicates a polar biaxial nematic phase.

Now our molecular field theory for V-shaped molecules isfiedli by its agreements with the
Monte Carlo simulations by BateEtSS]. Here we use the mddedield theory to make com-
parisons with experimental results for V-shaped molecwi#is interarm angle o140°. Hence,
we fix the interarm angle t640° in the calculations and we vary the dipolar interactionrgith
xp. In choosing the range of value feg, we note from figures4l7 that, farz = 1, we do not
see the biaxial nematic-to-isotropic phase transitiof at 130°. Hence, ford = 140° we ex-
pect that the dipole strengity; = 1 is not enough to cause a direct biaxial nematic-to-isotropi
phase transition. Therefore, we choose the valuezofjreater than one to do the calculations.
Figure[4.1D shows the phase map fior= 140° and we varyxp from 1 to 2. We see that, as
kp increases, théJ;} — [ transition temperature does not change. It is simply becausur
model, the polar interaction only influences the orderinthanpolar phase. Indeed, we see that
the stability of the biaxial and uniaxial nematic phasesease withx 5. It is important to note
that, between the non-polar uniaxial nematic and the palaxiel nematic regions, there is a
region of first order direct biaxial nematic-to-isotropikbgse transitions. This region exists for
rkp from 1.53 to 1.77. Therefore we conclude that, the dipolteraction strength for the com-
pounds ODBP-Ph-C7 and ODBP-Ph-O-C12 used in the experiwauit be from1.53uoq t0
1.77Tus00 Whereusqg is the anisotropic interaction of an arm.
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FIGURE 4.8: The dependence of the Cartesian tensor componentsafdbr parameter tensor
for the mesogenic arms fér = 115° and (a)kp = 0, (b) kg = 0.5 and (c)kp = 1.0 as

predicted by the Monte Carlo simulations by Bates. Repredtimm
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FIGURE 4.9: The continuous lines show the temperature dependédribe €artesian tensor
components of the second-rank order parameter tensordanésogenic arms far = 115°
and (@)kp = 0, (b) kp = 0.2, (c) kg = 0.5 and (d)xp = 1.0. The dotted lines show the
temperature dependence of the polar order parameter.
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FIGURE 4.10: The dependence of the scaled transition temperatuom the dipolar interac-
tion strength< 5 when the interarm angle is fixed B£0°.

4.5 Conclusions

Our work in this chapter sets out to provide a possible exgtian to the disagreement between
theoretical predictions and recent experimental evideegarding the biaxial nematic phase
formed from V-shaped moleculelaig_[])@ 37]. A possible axation is that there is a trans-
verse dipolar interaction which is often ignored in the noaler field theory and Monte Carlo

simulations which usually are only concerned with secantkrinteractions. Bates supported
this hypothesis by performing Monte Carlo simulations o§haped molecules with dipolar

interaction [[Eb] as well as the classical second-rank autons. His results agree with experi-
mental evidence. In addition to explaining the disagredniba existence of dipolar interaction

also suggest that the biaxial nematic phase formed fromayesth molecules might be a polar
phase.

We have modified the classical molecular field theory to ideldipolar interaction and the for-
mation of the novel polar uniaxial and biaxial nematic ldjerystal phases. The choice of the
dipolar interaction strength as well as the interarm an§Mshaped molecules in our calcula-
tions is the same as the Monte Carlo simulations by Bates {83 calculation results are shown
in four phase maps analogous to that found by Bates [83] wdtickvs remarkable agreements.
However, there is a significant difference between our tesand Bateslﬁ?)]: in Bates’ calcu-
lations the polar phase is not observed. This may be due &b dodering of the dipoles in the
simulation which destroy macroscopic long-range polaeor®n the other hand, the molecular
field theory does not take into account local ordering, soitlraay stabilise an unstable polar
phase. In essence, our results strengthen the hypothasithéhdisagreement between theo-
retical predictions and experimental results is due to ¥igtence of a large transverse dipolar
interaction. In addition, we find that the transverse dipaheractions helps to stabilise the
novel polar biaxial nematic and polar uniaxial nematic gisashich to our knowledge have not
been experimentally confirmed in any small molar mass system
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Chapter 5

Uniaxial and Biaxial Nematics formed
from Flexible Molecules

Flexible molecules are those which can change their sh&pesxample of flexible molecules is
liquid crystal dimers. These molecules are made by linkimgrnesogenic groups together with
an alkyl chain which is called a spacer. They are one of thelidates for stabilising biaxial
nematic phases. Due to their flexible hydrocarbon link, ttidecules are flexible which can
take many geometric shapes, or conformations. Some coafams have biaxial shapes and
their presence can drive the formation of biaxial nematicgddition, modelling liquid crystal
dimers would be a first step towards modelling more complebeoutes which have been found
to form biaxial nematics.

In sectior{ 5.1l we describe some related works on modelligdicrystal dimers. A molecular
field theory for biaxial nematics formed from flexible molésifor a general system has been
developed by Luckhursﬁkl]. We take a few steps in reintcoty the theory and applying
it to model a two-conformers system in order to explore theualuinfluences of molecular
flexibility and phase biaxiality. In sectidn .2 we apply theory to model a non-exchanging
binary mixture of linear and bent conformers. We also caleuh phase map to investigate the
dependence of the phase behaviour on the mole fraction® afoififormers. In sectidn 5.3, we
include the molecular flexibility in the theory and hencewalthe conformers to interconvert. In
that section, first we keep the approximation used by Fairdriickhurst, Nordio and Roskilly
[@] that the mole fractions are independent of the tempesgah order to make comparisons
with their results. After that, we allow the mole fractiomschange with the temperature in order
to study a more physical system. Indeed, we find that the ddimematic phase is stabilised in
both systems when the conformational or internal energh@foent conformer is sufficiently
lower than that of the linear conformer.

5.1 Related Works

Liquid crystal dimers often exhibit the interesting evatdaeffect at the uniaxial nematic-to-
isotropic phase transitioﬂ44]. First, the uniaxial neicyd-isotropic transition temperature is
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higher for even dimers (dimers with an even number of carlboms in the spacer) than for odd
dimers (dimers with an odd number of carbon atoms in the spaod this difference decreases
on increasing spacer length. Secondly, the entropy ofitrangor odd dimers is significantly
lower than for even dimers and is independent of the spacgpthefor those with less than
twelve methylene groups.

An early molecular field theory for liquid crystal dimers Ha=en developed to understand this
effect by Ferrarinet al. [@]. It is known that the bonds between the carbon atomsatnyturo-
carbon chain and those between the first carbon atom in tkatid the mesogenic groups can
rotate around. Consequently, a molecule can take manyetitfeonformations with different
angles between the mesogenic groups. We call moleculeshvaliopt the same conforma-
tion conformers In the theory by Ferrarinet al. [@], a dimer consists of two connecting
identical cylindrically symmetric mesogenic arms and thteriaction of the hydrocarbon chain
is ignored. A conformation is defined by the angle betweenatines of the molecules. The
many conformations of a molecule is replaced by only two, isneear with one arm form
180° with the other, the other is bent with the tetrahedral intarangle {09.45°). These
two conformations may be regarded as the most stable formse #hey have the lowest con-
formational energies. In addition, the all-trans confdiiorahas the lowest energy of all and
so it gives the most stable conformation of all. In this confation, all the carbon-carbon
bonds in the spacer are coplanar and every pair of adjacedsbuakes up a tetrahedral angle.
From figurd 5.1l we see that the all-trans conforma-

tion for an odd dimer is bent whereas it is linear for

an even dimer. Hence, for even dimers, the linear \
conformer have a lower internal energy and so is

more stable than the bent conformer. In contrast, El}

for odd dimers the situation is reversed. In the the-

ory by Ferrariniet al. [@], the difference in the

mole fractions of the linear and the bent conformer

was attributed to the difference in their internal en-
ergy and the order of the phase. In order to facil-
itate their calculations, the internal energy differ-
ence was assumed to be independent of the temper-
ature. In other words, the mole fractions are con-
stant in the isotropic phase and only change in the FIGURE 5.1: A sketch of Liquid
ordered phase. It was found that, due to the pres- Crystals witha) odd-spacer and )

ence of a greater number of the lower anisotropy €ven-spacer. Reproduced froml[44].
bent conformer in odd dimers than even dimers, the

transition temperature for odd dimers is less than thatfen&limers. In addition, at the transi-
tion to the nematic phase the onset of orientational orageases the concentration of the linear
conformer. For odd dimers, this increse is continuous. Imrest, for even dimers, most bent
molecules are converted to linear which causes a discargtiolbange in the conformational en-
tropy. This leads to a much larger increase in the trangitientropy for even dimers compared
to odd dimers.

b)

These qualitative features of the model have also been peediby Monte Carlo simulations
of analogous pair potential for evéﬂ%] and odd dim@s.[%]
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In the calculations by Ferrariret al. [@], the additive tensor model was used in order to
calculate a single molecular interaction tensor. The imtdecular coefficients are calculated
as the products of the components of the single moleculaptesf two interacting molecules.
It is worth mentioning that this model has also been usedvesiigate the dependence of the
transitional properties of liquid crystal dimers on the getry of bent conformer. Depending on
the link between the mesogenic units and the flexible cha@angle of the bent conformer may
be different. Thus the transitional order parameter anpytchanges can differ depending on
the interarm angle of the bent conformer|[78].

The motivation for us to study liquid crystal dimers is toéstigate how the molecular flexi-
bility and different conformations affect the stability thiermotropic biaxial nematics and how
the onset of the nematic phases influence the stability o€diméormers. The presence of the
bent conformer leads to the expectation that liquid cryditalers might be able to form biaxial
nematics: biaxial conformers have biaxial shapes and guevstudies have related their phase
behaviour with their interarm angles. Moreover, among mee¥idence for biaxial nematics
include systems which are formed from flexible moleculeseyrare liquid crystal polymers
and tetrapode&h32]. The molecular flexibility maylm®ntribution towards forming the
biaxial nematics. In addition, modelling such system foreial nematic phase is a challenging
task due to the biaxial nature of board-like units and fleityoof hydrocarbon chains. This has
been done for a simpler system of uniaxial nematic formeunhfretrapodes [97]. Our work on
liquid crystal dimers to investigate the effect of flexityilon nematic stability would be a first
step towards modelling the more complex systems. Sinceatbxeonformers model has been
used to successfully explain the even-odd effect by Fairatial. [@], we use the same model,
extending it to allow a biaxial nematic phase to be formed.

The additive tensor model can be improved by allowing therarim angle to adopt a continu-
ous range of values rather than just two. This addition of@omations produced quantitatively
different results and it gives a more realistic confornmragiodistribution [@56]. When a con-
tinuous range of conformations is allowed, the moleculapsh and hence, its anisotropy and
biaxiality follow a statistical distribution. A moleculdield study by Longa, Pajak and Wydro
[@] related the stability of the biaxial nematic phase \thité first two moments of the molecular
shape Gaussian distribution in the isotropic phase. Thaeydahat, generally, the transition be-
tween the isotropic and the nematic phase occurs at higgretiatures when the change in the
molecular shape is allowed. In addition, in their phase raa@ndau point is split into two triple
points connected by a line of first-order transitions betw&e isotropic and the biaxial nematic
phases. On the other hand, in one case which correspondsarticular set of values for the
moments of the molecular shape distribution, the biaxiahaiec phase is destabilised. Bates
| carried out a series of Monte Carlo simulations on howilfiéity influences the stability of

biaxial nematic phases of V-shaped molecules. In his sitiouls, the contituent molecules are
allowed to change their orientations as well as their imtarangles. In addition to the Lewohl-
Lasher potential, Bates added a bending potential whiclsdare of the difference between
the bend angle and a preferred angle, multiplied by a benfdircg constant. The resulting
conformational distribution is then Gaussian with the megne at the tetrahedral angle. It was
found that the molecular flexibility has interesting effeoh the original phase map of V-shaped
molecules without the bending potenti@[SZ]. In generiag biaxial nematic phase becomes
less stable compared to non-flexible molecules. Moreokieratithor also derived phase maps
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relating the scaled temperature with the scaled force antst

In our first attempt to model molecular flexibility in biaxiaématic systems, we use the additive
tensor model for its simplicity and adequacy for descriliimgessential physics of real systems
of liquid crystal dimers.

5.2 Binary Mixture of Non-exchanging Linear and Bent Molecues

The first step in extending the molecular field theory for lEhrematics to include molecu-
lar flexibility with two conformers is to study a binary mix&iof non exchanging molecules.
This binary mixture has only two components. The molecutesnaade by joining two iden-
tical cylindrically symmetric arms. In the linear moleculdae arms are antiparallel which
make an interarm angle @B0° whereas the interarm angle of the bent molecule is tetrahedr
(cos~1(—1/3) or 109.45°).

We ignore the possibility of the formation of biphasing g since this section is only an
intermediate step towards studying the exchanging systéhesexchanging systems clearly do
not form biphasing regions. This can be verified by @ibbs phase rulevhich can be used
to determine whether it is possible to have regions of ctiegigphases in equilibrium. Under
constant pressure, the Gibbs phase rule iss C' — P + 1, whereF is the degree of freedom
of the system( is the number of components in the system Brid the number of coexisting
phases in equilibrium. In this binary mixture there are twmponents s6' = 2. For example
consider a region of single phasePr= 1, thusF' = 2 and so there are two degrees of freedom:
the temperature and the composition in the isotropic philesv we consider if the biphasing
region exists in this binary system, in this case we stilleh@v= 2 but nowP = 2so F = 1.
This can be verified that, the system only depends on the tatype since the composition
is now determined by thiever rule Therefore, the system has only one degree of freedom.
Therefore a region of two phases in coexistence in equilibbrcan be formed. Now we consider
a single system of exchanging conformers with only one carapgC' = 1. In the single phase
region,P = 1 and soF’ = 1 and that single degree of freedom is the temperature. Sapypms
two phases can coexist in equilibrium th2n= 2 but we still haveC' = 1 and therefore” must

be zero. This means that we have to fix both the temperatur¢hencbmposition in order to
have two phases in coexistence. Therefore the a biphagimnreannot be formed.

5.2.1 Multicomponent Mixture

In this subsection, we discuss a molecular field theory foeraatic mixture with an arbitrary

number of components. Liquid crystal mixtures are intémgsh their own rights and the molec-
ular field theory have been used to study several systems.egamaple is the binary mixture

of symmetric, rod-like moleculeﬂOO]. In another examplenolecular field theory has been
used to study binary mixture of linear and bent V-shaped oubds in the uniaxial nematic

phase|1_AI4]. The latter example was studied as a first stepdswaodelling flexible molecules.

We discuss the molecular field theory for flexible molecutethie next section.
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The total internal energy per molecule of a multicomponentume is analogous to that for a
system of identical molecules where only pairwise intéoaist between molecules is allowed

(U) = —(1/2) > wjapul? (D5 Vi (DE,) ;. (5.2.1)

wherez; and (Dfpn> denote the mole fraction and the order parameters of conmpgne
respectively. In addltlonulzjmn denotes the interaction supertensors between molegdad
k. The entropy per particle has linear contributions fromdbmponents for an ideal mixture in

the molecular field approximation

Sj:—kBij/fj(Q)lnfj(Q)dQ. (5.2.2)

Here, kg is the Boltzmann constant anfj(€2) denotes the orientational distribution function
of componentj. The sum of all the entropy per particle gives the total gutrof the multi-
component system. From the internal energy and the entrepyaw form the Helmholtz free
energy for the system using equatién (2.8.10). The variaticthe free energy in terms of the
orientational distribution functions for all componengstaken subject to two constraints. The
first one is that these orientational distribution funcéiare normalised and the second one is
that they are averages of the Wigner rotation matrices. €fbie,

/ Y Z (xk ZuLmn Epn(Q) + kT + kBTlnf](Q)) + 77j/.1'j dQ = 0.

(5.2.3)
The solution of this equation gives the orientational dsition function of thg component

exp (b el (D kD ()
fi(Q) = p—— xjkBT) . (5.2.4)

For normalisation of the distribution function, the denoator must be the partition function of
thej conponent. Therefore, the potential of mean torque is

= = T (Dp )k DL (). (5.2.5)

Now we can derive the more explicit free energy at equiliitfaking the average of f;(2)
for componenj we find

:zjkBT/fj(Q) In f;()dQY + x;(U;) = —2;(U;) — kT InQ; (5.2.6)
Hence, the free energy can be written as

A
R o2
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5.2.2 Binary Mixture

In the last subsection, we have developed a molecular fietarytfor a general multicomponent
system. In this subsection, we apply this theory to studynaryi mixture of linear and bent
molecules. The potential of mean torque responsible foottlering of component is

UJ(Q) = - Z (x]u2mn<D2 > +$k’u2mn<D§m> )szn(Q) (528)

/rrL7/rL’p

wherej andk can either be lineat, or bent component,. We assume the gound state biaxial
nematic phase habsy, symmetry In order to reduce the number of parameters wehsgse t
decoupling approxmaﬂonmn = u2mu2n In addition, we define the biaxiality parametets

of molecule;j and the relative anisotropy,; of moleculesk and; as

Vi = why/udy €rj = Uhy/uby. (5.2.9)

The biaxiality parameters and relative anisotropy of thedr and bent molecules can be found
using a method introduced for modeling V-shaped molecultésowt dipolar interactions which
we have discussed in sectionl4.2

=0 p=1/V6 =2 (5.2.10)

These results mean the anisotropy of a linear molecule iblddbat of a bent molecule. In
addition, while linear molecules are uniaxial, bent molesthave optimal biaxiality. That is
v, = 1/4/6 corresponds to the largest biaxial region in figuré 2.4. Tpict expressions of
the potentials of mean torque for linear and bent molecutes a

Ui(€2) = —4uzoo [(Fu) Roo(§2) + 2(Fp) R20(2)] (5.2.11)

Up() = —2us00 [(FU> (ROO(Q) + 2/\/6302(9))
2(F) (Rao() +1/V6Rz(2) )| (5.2.12)

The molar Helmholtz free energy for the mixture at equiliomiis

A" =—(lnQ+ 2, In Q) + %2 (Fu)* +2(Fp)?). (5.2.13)

Here, the temperature is scaled with the interaction coeffiof an armii™ = kg1 /usg, Wwhere
ug00 = u8)y; (Fy) and (Fg) are the averages of the composite order parameters of e lin
and bent molecules

(Fp) = xi(Fp)i + (1/2)zp(F)p. (5.2.14)



Here, the composite order parameters for each componedetined as

(Fu)i = (Rgo), (Fu)e = (Robe + 2/V6(RGy)s,
(Fp)i = (R3)1, (FBYo = (R30)s + 1/V6(R5)s- (5.2.15)

The model turns out to be simple within the geometric meanagmation since it only de-

pends on two composite order parametérs;) and (Fz) which characterise the ordering of
the phase. This is clearly the advantage of the geometrio @mggroximation which facilitates

the calculations. The order parameters are determined biymising the free energy by the
method discussed in chapiér 2.

5.2.3 Calculations and Results

The calculation results are presented in a phase map in figlnehich shows the dependence
of the transition temperature on the mole fraction of bentetwdes. The biaxial nematic phase

0.1} - b

0 0.2 0.4 0.6 0.8 1
Ty

FIGURE 5.2: The phase map for binary mixture of non-flexible lineaat bent molecules. First
order transitions are shown as continuous lines whereasidarder transitions are shown as
broken lines.

Np is found when both the order paramete{8y,) and (Fz), are non zero. At the biaxial
nematic-to-uniaxial nematic phase transition, the blagider parameter{Fz), vanishes but
the uniaxial order paramete{fy;), still remains non-zero. When the system goes into the
isotropic phase, the global minimum of the free energy isrelith order parameters vanish.
From the phase map we see that the uniaxial nematic-t@gotphase transition temperature
decreases almost linearly on increasing the mole fractidoeot molecules:,,. In contrast, the
biaxial nematic-to-uniaxial nematic phase transitiongerature increases on increasing In
addition, the biaxial nematic-to-uniaxial nematic traiosis is almost linear in composition at
first but then bends upward to form the Landau point of comtirsudirect transition between the
biaxial nematic and the isotropic phase. This behaviouteiarty due to the presence of more
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biaxial (bent) molecules which increases the biaxial n@viatuniaxial nematic transition tem-
perature. The uniaxial nematic-to-isotropic phase ttamsis first order, with the discontinuity
in the transitional order parameter decreasing on inangasple fraction of bent molecules. On
the other hand, the biaxial nematic-to-isotropic phagestti@n is continuous, or second order.

The linear dependence of the uniaxial nematic-to-isotrég@nsition temperature on the mole
fraction can be understood if we first expand the uniaxiakpghrameters of the linear and
bent molecules as a Taylor series in terms of the uniaxiargpdrametetF7,). The rotational
partition functions are botRr2. The order parameters are given by

(Fuy = (579 14(T") B} [ (O o
(Fu)y = (87T2)_12(T*)_1<FU>/ (Czo(w) +2/\/5022(w))2d§2. (5.2.16)

The integrations can be evaluated from

/(Cgo(w))QdQ = (87%)/5, /(ng(w))QdQ = (872)/10. (5.2.17)
Therefore, the bifurcation temperature is
mixe = (6 — 423)/15 + O((Fy)). (5.2.18)

This bifurcation temperature is a good approximation oftémeperature at which the order pa-
rameters start to bifurcate. It is not the transition terapee since there is a first order phase
transition at higher temperature and so the bifurcatiorpeature already corresponds to an or-
dered phase (see chafiér 2). However, the difference betivedransition temperature and the
bifurcation temperature is small compared to the transit@amperature. In consequence, since
the bifurcation point depends linearly on the mole fraciigmay expect the uniaxial nematic-
to-isotropic transition line to be close to linearity. Theelar dependence might be analogous to
a binary mixture of uniaxial molecules of different anisqty ]. In this system, the interac-
tion strength between two different moleculegg, is the geometric mean of that between two
identical molecules; 4 4 ande . Actually, this system does exhibit a negligible deviatim
linearity, about one per cent of the transition temperattmeaddition, this deviation is magni-
fied when the interaction coefficients do not follow the getsimanean ruIe@O]. Another
result worth noting in our case is that the uniaxial nematigsotropic transition temperature
decreases on increasing mole fraction of bent molecules.i3hot surprising: bent molecules
are less anisotropic and their presence in the system degrédse transition temperature.

Since the biaxial nematic-to-uniaxial nematic phase ttimnsis second order, the biaxial order
parametel F'p) increases continuously at the phase transition. Therefi@ean obtain a better
understanding of the system by expanding the expressiortbddiaxial order parameters of
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the two components as a Taylor series

Q =Q = /exp (47 (Fu) Roo(©) ) a2,

Qv =Ql = / exp 2777 (Fy) (Boo(2) + (2/V5) Bon()) |2,

(o) = (3/7°7) (Fu) Q™" [ (Raa(0) exp (4T () Roo ) ) a2
Fay = (47 ) (@ [ (Raol@) + (1V6) Ral@))

X exp [2T*—1<FU> (ROO(Q) n (2/\/6) Rm(m)}da.
(5.2.19)

Therefore the biaxial nematic-to-uniaxial nematic tréasitemperature is given by (see Ap-
pendix( Q)
Tixt = 4(1 — @)1 + 257 + O((FB)). (5.2.20)

where

14 242 <—2+47j2.
Tj: +

8
5 - ) <R(2)0>j + =i (R(2)2>j

3+192 2 /3 B)
N ( 35 ]> (Roo); + ?\/;WR&M +1/ 357 (Bow);- (5.2.21)

It can be seen that and 7, would be the transition temperatures of single systems ropde
of either molecules in the absence of the other componernis ifiteresting to notice that in
figure[5.2 the uniaxial nematic-to-isotropic phase tramsitemperature is linearly dependent
on the composition of the system whereas that of the biaxeiadatic-to-uniaxial nematic phase
transition is bent and asymmetric towards high mole fracgbbent molecules. We see that if
the order parameters in equatién (5.2.21) of moletale independent of the order parameters
of moleculeb and vice versa then in place gfandr, would be the scaled transition temperature
of moleculed andb in the absence of the other component, respectively. Treses/ofr; and

7, would be independent of the mole fraction and hence theitramsemperature of the mixture
would be linear with respect to the mole fraction. Howevee, presence of the bent molecules
in the system reduces the order parameters for the linearaulels, hence, is lower than the
transition temperature for the single system of linear mdks. In contrast the presence of the
linear molecules increases the order parameters for thienbelecules, therefore, is higher
than the transition temperature for the single system of beslecules. In addition, from the
expression for the transition temperature we see that thigilsotion fromr; is four times that of
7p. Consequently, a decreaserjrdominates an increase ipwhich causes a negative deviation
from linearity in the biaxial nematic-to-uniaxial nematm@nsition temperature. In addition,
the asymmetry in the curve is more gradual towards the linezecule, the more anisotropic
nematogen. The smaller perturbation of the behaviour oflittear component by the bent
component may be understood in terms of the smaller orddreobént component due to its
smaller anisotropy and its biaxiality.
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5.3 System of Exchanging Linear and Bent Conformers

In the last section we saw that the uniaxial nematic-torigit phase transition temperature of
a binary mixture of linear and bent molecules decreasesmanisly on increasing the mole
fraction of bent molecules. These results can partly erpiae even-odd effect: liquid crys-
tals formed from odd dimers have more bent molecules thasetfmrmed from even dimers.
However, the agreement between this model and the expesngenot desirable because in
the experiments the transitional entropy change at thegpinassition is significantly larger for
even dimers than for odd dimers. On the other hand, the tramsi entropy change for the
non-exchanging mixture model decreases continuously aeasing the mole fraction of the
bent conformeri [44]. Thus, the non-exchanging mixture dugscapture the essential physics
of the empirical systems. An improvement of the existing-egohanging mixture model can
be made by including the coupling between the conformatidis&ribution and the long range
orientational orderlﬂ4]. The coupling results in the mdmngated conformers being favoured
over the bent ones within the uniaxial nematic liquid criyptaase. Hence, in this section we
allow the conformers to interconvert. We consider a simpbelah of V-shaped liquid crystal in
which the constituent molecules can adopt one of two corditions, linear and bent.

5.3.1 Multiple Conformer System

In the last section, we have discussed an application of tleaular field theory in studying
multicomponent mixtures. In these mixtures, the compaané non-exchanging and their
mole fractions are fixed. In this thesis, studying mixtusean intermediate step towards study-
ing flexible molecules. Real liquid crystals are usually iftdéx That is, a molecule may adopt
many different shapes or conformations. Each conformerbeaoonsidered as a component
in the system. However, in this case, one conformer may ebtwvenother depending on the
thermodynamic properies and the ordering of the systems Ttere are two main differences
between a system of flexible molecules and a multicomponettre. First, the mole fractions
of all conformers in the system of flexible molecules can geaaccording to thermodynamic
variables and the molecular ordering. Secondly, in a systefiexible molecules, the confor-
mational energy also contributes towards the total enémggeldition to the anisotropic energy.
The molecular field theory for flexible molecules has beeretiped by LuckhursEgl]. In this
subsection we reintroduce this theory for an arbitrary nemnab conformers.

The thermodynamic anisotropic internal energy of a systetin many conformers is identical
to that for a mixture of non-exchanging components

(Uanis) = —(1/2) kam]uLmn DL VK <D£pn> (5.3.1)

wherez; is the mole fraction of conformgrand uLmn denote the tensorial interaction co-
efficients between two conformergandk. The difference between this case and the non-
exchanging system is that the mole fraction in this case isnation of the temperature and
the ordering of the system. In addition to this orientatlangernal energy there is a contri-
bution from the conformational energy, . and the additional scalar interactiarf’ between
two non-identical molecules. Hence we need to take intowdcie combined conformational
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energy which can be assumed to take the f@l [51]

W=l 4l (5.3.2)

Ueonf =

The additional internal energy is then
<Uconf> = ijagonf' (533)
Hence the total internal energy per particle is
(U) = (Uanis) + (Ucont)- (5.3.4)

The total entropy has a contribution from the orientatiosatropy. The orientational entropy
has the same form as the non-exchanging mixture. In addith@me is an entropy of mixing
since the mole fractions; change with the orientational order of the nematic phaseisThe
total entropy is

S=-kp)y_ {xj / £()1In £;(2)dQ + z;1In xj} : (5.3.5)

In order to find the orientational and conformational disitions, we take the variation of the
free energy with respect to both distribution functiongyjsat to the order parameters are equal
to the averages of the Wigner functions and that the digtabs are normalised

/f(ﬂ)dQ =1, (5.3.6)
(Dk)s = [ D@10,
» ay=1 (5.3.7)

The variation of the free energy gives

A=) / {— > wpjuy,, (Dh e DE,, () (5.3.8)
J

+ kpTzj (14 1n f;(Q)) +n;} 0£;(2)dQ

+ Z {_ Z xkulzjrnn<D£m>k<D£pn>J + aionf
J
+ kBTZ/fj(Q) In f;(Q)dQ + kT (Inz; + 1) + ﬁj} dxj = 0.
J

where~; andg; are the undetermined Lagrange multipliers. &drto be zero, the expressions
inside the curly brackets must vanish simultaneously. iBglfor the first expression to vanish,
we get
i
exp (kBLT Z xkuijn<D;zI;m>kD£pn(Q))

() = . . 5.3.9
£ ey (539

And so the denominator must be the partition function fordahentational distribution to nor-
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malise. Thus, the potential of mean torque for moleguke

= = apt (D )k D (). (5.3.10)

In order to find the conformational distribution, first we icetthat by taking the average of
In f;(§2) for conformerj, we have

= wpu)  (DE (DR, + kBT/fj(Q) In f;(Q)dQ = —kpTnQ;.  (5.3.11)
Substitute this into the free energy in equation (5.3.8) aeeh

—kpTInQ; + @, + kpT(Inz; + 1) + B; = 0. (5.3.12)

con

Therefore, the conformational distribution is

o Q]exp( (l/kBT) COIlf)'

= (L + B kT) (5319

In order to normalise the conformational distribution ftioe, the denominator must be the
conformational-orientational partition function

Z=3 exp (—a’gonf/kBT) Or, (5.3.14)
k

Hence, the conformational distribution is
x; = Z7'Q exp(—al . /kpT). (5.3.15)

Now we find the more explicit form for the free energy at eduilim. Taking the logarithm of
£;(©2) and then take the orientational average, we get

kBT/f](Q) In fJ(Q)dQ = _2<Uanis> - k?BTlIl Qj (5316)
Now we take the logarithm far;

kpTInz; = +kpTInQ; — kpTn Z. (5.3.17)

Conf

Adding these two expressions we get the simple form for the énergy

A= —(Upis) — kgTIn Z. (5.3.18)

5.3.2 Two Conformer System

We see that the expressions for the potential of mean toiguiné exchanging system is the
same as that for the non-exchanging mixture. However the fnattions of the two conformers
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are related to their internal energy different& = ' ab . between them by

conf ~ “conf
29 = exp (AE/kpT)/ [1 + exp (AE/kpT)]. (5.3.19)

Here, the superscript zero is used to denote the value instdiepic phase. In the nematic
phase, the mole fraction of the bent conformer is given by

2y = exp (AE/kpT)Qs/ Qs + exp (AE/kpT)Q) (5.3.20)

We note thaty; + =, = 1. This expression for the mole fraction is valid provided ithternal
energy differenceAE is independent of the orientation of the molecules with eespo the
director. The mole fraction or conformational distributtiof the bent conformer can change in
the mesophase according to

= 2)Qy [#)Q0 + 20Q1] . (5.3.21)

Moreover the scaled free energy in this case is differemhfitee non-exchanging mixture since
in our system the conformers can interexchange

A* = —In (Q; + (z§/2))Qs) + %2 ((Fu)? + 2(Fg)?). (5.3.22)

5.3.3 Calculations and Results

Most of the findings for the uniaxial nematic-to-isotropiarisition for exchanging linear and
bent molecules have been presented by Ferrariai. [@] for several mole fractions of the bent
conformer in the isotropic phase. We extend their calcufatito produce a phase map shown in
figure[5.3 of the scaled transition temperature versus tHe fraction of the bent conformer in
the isotropic phase. In their calculations, it was assurhatiA £ and hence the istropic com-
position and the Boltzmann factexp(—AE/kgT) are held constant which ignores the small
temperature dependence resulting fromkp T, but facilitates the calculations. The exchanging
system agrees with the non-exchanging mixture and the iexgets (as reviewed by Ferrarini
etal. [@]) that the uniaxial nematic-to-isotropic transiti@mtperature decreases on increasing
the mole fraction of the bent conformer. In addition, thengidonal order parameters and en-
tropy also increases continuously on increasing the malgién of the bent conformer. When
the mole fraction of the bent conformer is sufficiently laeg®.97, there is a discontinuity in the
dependence of the transitional order parameter on the medédns. This happens since, the
nematic phase consists of many bent molecules has a veryrtisv. ol hus the ordering is not
enough to convert a significant amount of bent moleculeslinéar. These results can explain
the even-odd effect which we have discussed in the Intramtuci this chapter. In this model,
the mole fractions the bent conformer of even dimers arethesms 0.97 whereas those of odd
dimers are greater than 0.97. Moreover, odd dimer, therevarphase transitions as we show in
figure[5.4(a). As we lower the temperature from the isotrphiase, first the system undergoes a
second order phase transition into the uniaxial nematisgah@he bent conformer also convert
into linear continuously. This is because the system is imbsit. The uniaxial nematic phase
composed of most bent molecules is weakly ordered. Theretioe energy difference between
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FIGURE 5.3: The dependence of the scaled transition temperatutieeamole fraction of the
bent molecules in the isotropic phase in exchanging syskrst order transitions are shown
as continuous lines whereas second order transitions avensis broken lines.

the isotropic and the uniaxial nematic phase is not enougladse a large change in the com-
position. As we lower the temperature, the system undergdiest order transition into another
uniaxial nematic phase. This new uniaxial nematic phassistsnof mostly linear conformer
since the majority of bent conformer convert into lineartia phase map we uééf} and N,

to denote nematic phase rich in linear and bent conformérighwespectively are analogous to
nematic phases formed from calamitic and discotic molecule

We also see from the phase map in figurd 5.3 that:fox: 0.97, there is a positive deviation
from linearity in the uniaxial nematic-to-isotropic phasansition temperature. In addition, this
transition temperature is higher than that for the non-arging binary mixture. We may un-
derstand this difference by considering the two contrdngito the total free energy from the
anisotropic free energy and the conformational free enékgthe uniaxial nematic-to-isotropic
phase transition, forg < 0.97, the anisotropic free energy of the uniaxial nematic phase i
positive. Therefore, in the non-exchanging mixture, thasition takes place at a lower temper-
ature when it becomes zero. However, the conformational éreergy of the nematic phase is
less than in the isotropic phase due to large changes in thefractions at the phase transition.
In addition, the difference in the conformational free gyes greater than the anisotropic free
energy. Therefore, the total free energy of the uniaxial at&rphase is less than the isotropic
phase which causes the phase transition at a higher scalpérature than the non-exchanging
mixture. When the mole fraction of the bent conformer is ¢¢u8.97, at the phase transition,
both the anisotropic free energy and the conformationa éeergy differences are zero and
so the transition temperature for this exchanging systeegusl to that for the corresponding
non-exchanging system. In addition, the conformationed fenergy difference is just enough
to cause large changes in the mole fractions at the phasstiman Clearly for a system with a
small amount of the linear conformer( < 0.97), just below the uniaxial nematic-to-isotropic
phase transition temperature, the conformational freeggredf the nematic system rich in linear
conformer is greater than that for the system rich in benfaromer. As we lower the temper-
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FIGURE 5.4: The dependence of the order parameters on the scalpeéraire for the ex-
changing system.

ature, the system becomes more and more ordered. The apisdiee energy gets smaller.
Until it compensates for the conformational free energyedince then most bent conformer
convert to linear conformer and we see a first order jump inuthaxial order parameter. This is
an illustration that the uniaxial nematic phase favoursntiwee anisotropic (linear) conformer.

It is also important to note that in the regime of the uniaxiamatic formed mostly of bent

molecules, the presence of a large amount of bent molecedels lus to believe that it might
be possible for a biaxial nematic phase to form. In additeing¢e the uniaxial nematic phase
favours the more uniaxial (linear) conformers, we may ekpeat the biaxial nematic phase
would favour the more biaxial (bent) conformers.

Indeed we find a small island of biaxial nematic phase in themwe rich in bent conformer. Itis
shown in the magnification of the phase map in fiquré 5.5. Inrasnhto the first order uniaxial
nematic composed of mostly linear molecul@g’() to biaxial nematic 'z) phase transition,
the transition from biaxial nematic to uniaxial nematic phaonsists of mostly bent conformer
(Ny;) is continuous, the changes in the mole fraction is alsoicoatis. Generally, this second
order transition temperature increases on increasing tile fraction of the bent conformer
z¥ in the isotropic phase. This behaviour is analogous to theexzhanging mixture since
adding more biaxial (bent) molecules into our system irsgedhe biaxial nematic-to-uniaxial
nematic transition temperature. The difference betwemnetkchanging system with the non-
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FIGURE 5.5: The dependence of the scaled transition temperatutieeamole fraction of the
bent molecules in the isotropic phase in the exchangingsystFirst order transitions are
shown as continuous lines whereas second order transétrershown as broken lines.

exchanging one is that firstly th¥;, — Np transition temperature of the exchanging system is
lower for the same mole fraction of bent molecules compaoetthé non-exchanging system.
It is simply because in the uniaxial nematic phase, more benformer convert into linear,
which depresses the transition temperature. Secondiya f@mishingly small interval of:)

we find that the biaxial nematic phase undergoes a second r@elatrant transition back into
the uniaxial nematic phase which consists mostly of benfocorer (V) before a first order
Nf} — N, transition. This behaviour is shown in figure]5.4(c) whichegi the order parameters
for 2 = 0.9978. In order to understand this behaviour, we need to see homthe fractions
change in the biaxial nematic phase. In fiduré 5.6 we show ampbe of how the mole fractions
change with temperature fm? = 0.001. Itis clear that even in the biaxial nematic phase, the
bent molecules still convert into the linear one, although ate of conversion would be faster
if we do not allow the biaxial phase to form. This has a negaitmpact on the biaxial order
parameter and causes the biaxial order to decrease graduodlthe system reenters the uniaxial
nematic. In contrast, for larger valuesxﬁ, the biaxial nematic phase reenters directly to the
uniaxial nematic phase which consists mostly of linear eoner. This is shown in figures
B.4(b) and5l(d). It is because when most of bent molecudesert to linear, the ordering
in the system is governed by the uniaxial linear conformére $ystem simply does not have
enough bent molecules to order biaxially.

So far in the calculations we make the assumption that the ifinattions of linear and bent
molecules in our exchanging system is invariant in the éggotr phase. In other words, the ratio
of the conformational energy difference and the tempesaf\E /kpT is constant. This as-
sumption clearly allow us to extend the previous calcuregiby Ferrariniet al. [@], allowing
the biaxial nematic phase to form. In addition, we can noweusidnd that the biaxial ordering
of the system still favours the less biaxial component. Wiverinclude the explicit tempera-
ture dependence of the mole fraction, the two effects ietegvand it is not easy to make that
conclusion. The other advantage of this assumption is bigafriole fractions only range from
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FIGURE 5.6: The dependence of the mole fraction of the bent confooméhe scaled temper-
ature forzy = 0.001. The continuous line shows the value when we allow the biaeatic
to form. The broken line shows the value when we do not allehbtlaxial nematic to form.

0 to 1 whereas the conformational energy differénft can take any real value. Hence, it is
much more difficult to find an essential range foF to perform the calculations. This assump-
tion, however, is clearly unphysical since the conformaicenergy difference is a molecular
property and should be constant with respect to the temperand the order of the system.

It is then essential to remove this assumption and calcalgihase map of temperature and
the conformational energy difference. For convenience eatesthe conformational energy
difference with the anisotropy of an arfwE* = AE /ugg. In order to find an essential interval
for AE*, we convert the phase map of the dependence of the trantgtigperature on the mole
fraction in the isotropic phase into a phase map of the degresedof the transition temperature
on the ratioAE/kpT = AFE*/T* which is shown in figur€5l7. Clearly in order to see the
biaxial nematic phasé& E* must be positive. In addition, ahE*/T* = 7 andT™* = 0.2
the system is biaxial. Hence it seems that the essentiavaitéor AE* is from 0 to about
1.4. Based on this premise, we have constructed a phase nthp tfinsition temperature
with AE* in figure[5.8. This new phase map still retains some featuréseoold phase map.
Here the negative value of the conformational energy diffee A £* means that the linear
conformer is more stable in the isotropic phase, hence itasogous to the calculations where
the isotropic mole fraction of the bent conformef < 0.5 and is fixed. In contrast, the positive
value of AE* corresponds ta) > 0.5 and the bent conformer is more stable. The even-
odd effect can then be explained in the same way as that gedgeg Ferrariniet al. [@]
Thus, the values oA E* for odd dimers are greater than 0.96 whereas for even dirheys t
are less than 0.96. We also see thatMje — I transition temperature decreases whereas the
Np — Ny; transition temperature increases as the valua bf goes up. This is because there
are more bent conformer at the phase transition for largkeresaof AE* and that the bent
conformer is less anisotropic and more biaxial comparetiedihear one. However, there are
differences between this representation of the resultdtatdvhen we fix the value of the ratio
AFE*/T*. First of all, the biaxial nematic phase does not undergoeatrant transition into
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FIGURE 5.8: The dependence of the scaled transition temperatutteeoconformational en-
ergy differenceAE*. First order transitions are shown as continuous lines edsesecond
order transitions are shown as broken lines.

the discotic uniaxial nematic phase composes of mostly emiormer as we have seen when
we fix xg = 0.9978. This might be because, in the ordered phase, the effectasing the
mole fraction of the linear conformer by ordering the phaseountered by the bent conformer
being more favoured with decreasing temperature. Therdafoe mole fraction of the linear
conformer does not increase to a value large enough to daeisedntrant transition. Secondly,
for sufficiently large conformational energy differenég=*, greater than about 1.4, the biaxial
nematic phase is stable and the system does not undergas#ioraimto the calamitic uniaxial
nematic consists of mostly linear molecules. This can atsexplained due to the increase in
mole fraction of the bent conformer on decreasing the teatpes. In contrast, it is decreased
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by the ordering of the system. It may be that for large valded 6™, the overall effect is that
the ordering of the system is not enough in order to force #1@ bonformer to convert into
linear in order for the biaxial nematic phase to undergo siteon into the calamitic uniaxial
nematic phase.
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FIGURE 5.9: The dependence of the scaled transition temperatutieeopending force con-
stant in Bates's calculations. Reproduced frbni [99].

It is of interest to make comparisons between our molecutdd fialculations and the Monte
Carlo simulations by Bateang] which is shown in figlrel 5.9thAugh our theory was devel-
oped originally for uniaxial nematics by Ferraratial. [44] to explain the even-odd effect found
in liquid crystal dimers, it can be thought of as a model twresxe conformers of V-shaped
molecules. In this case, contacts can be between our thadrBaes’ Monte Carlo simulation.
We should note a fundamental difference between our modeBates’ model. The conforma-
tional distribution is discrete in our model whereas it igtiwous in Bates’ model. In addition,
the difference between the parameters should be noted.rlcase A E* is the scaled energy
difference between the two extreme conformers. In compayisg in the simulations is the
bending force constant. It multiplies the square of theedéffice between the interarm angle and
the preferred angle, which in this case takes the tetrahealtse. Therefore direct comparisons
of the two models cannot be made. However, we can still seeftaets of making the model
continuous on our model. There are several similaritiesvéen the two phase maps. First,
we see that the nematic-to-isotropic phase transition ¢eatpre decreases on increasihg@™

in our model andtx in Bates’ model. Secondly, the biaxial nematic phase isathiged as
AFE* andeg decrease. It can be understood that the smaller value ohtrg\edifference in
our model and the bending force constant in Bates’ model st the tetrahedral molecules
are easier to bend. Therefore a system with smal&r or ¢ has a larger mole fraction of
molecules which deviate from the tetrahedral value. Thisl$eto the system becomes more
anisotropic and less biaxial. Thirdly, the uniaxial nermdti-isotropic and biaxial nematic-to-
uniaxial nematic transition lines approach each other asygtically. It is because as the energy
difference or the bending force constant becomes largantiiecules become more and more
rigid and the mole fractions of those conformers whose amterangles deviate from the tetra-
hedral value become small. Therefore, the phase behawaounoiie independent of the energy
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difference. AsA E* andeg tend to infinity, there should be a direct biaxial nematicstatiopic
phase transition, in keeping with molecular field calcolasi and Monte Carlo simulation re-
sults for rigid tetrahedral V-shaped molecules. Moreotlegre is a major difference between
our calculations and Bates’ simulation results. We notia in our calculations, there is a first
order transition from a uniaxial nematic composed mostliiegfar molecules to a uniaxial ne-
matic composed mostly of bent molecules which was not okskirvthe simulation. It may be
explained that in the simulation, there was a continuougeas conformation, thus allowing
the conformers to convert continuously, favouring a secmndér phase transition.

5.4 Conclusions

The exchanging system of linear and bent molecules studigts chapter is an idealised model
for a liquid crystal dimer. In our model, the many conforras that can be adopted by a liquid
crystal dimer is replaced by just two, one is linear and tlieeois bent. This model has been
used by Ferrarinét al. [@] to explain various properties of the characteristiereedd effect
exhibited by liquid crystal dimers in uniaxial nematics. rQieory is an extension of that to
allow biaxial nematics based on the work by LuckhLB [Gthtided we find a stabilised biaxial
nematic region for sufficiently large conformational enedgference between the linear and the
bent conformer. Therefore in order to see the biaxial nenpdtase in the experiment we need
odd spacer liquid crystal dimers whose conformational ggnelifference between the linear
and the bent conformers is sufficiently large. In additiorg fimd that the ordering of both
the uniaxial and the biaxial nematic phases stabilise theeranisotropic, less biaxial linear
conformer. This is in contrast to our expectation that l@bgrdering would stabilise the more
biaxial conformer.
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Chapter 6

Magnetic Field Induced Uniaxial
Nematic Liquid Crystals for Biaxial
Molecules

In this chapter, we formulate a molecular field theory for metg field induced uniaxial ne-
matic liquid crystals formed from biaxial molecules. Simee only consider uniaxial nematics,
we refer to it as the nematic phase in this chapter. Our wornksigired by recent experimen-
tal results on magnetic field induced nematic phase for eesysf V-shaped molecules by
Ostapenko, Wiant, Spruntakli and GIeeson@O]. In sectidn 6.1, we discuss some thiealet
and experimental works on the effect of a magnetic field orptiese behaviour of nematogen.
Next, in sectior 6J2, we discuss the molecular field theony thie Landau-KKLS theory for
biaxial molecules in the presence of a magnetic field. Theutation results are presented in
section$ 6.3 and §.4.

Under non-zero magnetic field strength, both the Landau-elen€s and the molecular field
theory for uniaxial nematics predict that there are thréeces. First, for temperature greater
than the clearing point, aranematigphase with small nematic ordering is induced. The second
effect is that the first order phase transition temperatun® the more ordered phase to the less
ordered phase is shifted towards higher temperature. $hialied theCotton-Mouton effect

if the field is magnetic and thKerr effectif the field is electric. Finally, there is eritical

field strength, above which there is no clear transition betweemaranematic and the nematic
phases.

6.1 Related Works

All the three field induced effects have been observed exmatally for a system of rod-like
molecules in electric fieI2] . In contrast, early expezntal studies for rod-like molecules
using magnetic field only discovered the Cotton-Mouton ct ] and an increase in the
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transition temperature of only a few miIIi—Kerim04]. Onin recent years, both the Cotton-
Mouton effect ] and significant increases in the tramsitemperature [40] due to magnetic
field have been observed for V-shaped molecules. In thegréargntal studies, Ostapenko et al.
[@] discovered two of the three effects predicted by thebiyst, the magnetic field induces a
small nematic ordering in the isotropic phase, which forhesgaranematic phase. Secondly, the
paranematic-to-nematic phase transition was measurad ssveral experimental techniques.
By varying the magnetic field from 0 to 31 Tesla, the authorseobed a magnetic field induced
first order phase transition in a thermotropic liquid crisstd he transition temperature increases
on increasing the field strength. The success of this exeatimas attributed to two factors.
The first was that a strong magnetic field was available. Thergkfactor was that the system
under study was formed from V-shaped molecules. The sectdrfwas explained by the
authors within the framework of the Landau-de Gennes thdorthis theory, the coefficienB

in the Landau expansion multiplies the cubic of the ordeapeter. This coefficient controls
the strength of the first order transition.The authors atgiheat, in their system of V-shaped
molecules, the coefficier® is small. Therefore, the magnetic field required to obsdreditld
dependence of the transition temperature for bent-coreatiesrshould be significantly smaller
than for calamitic nematics. In this chapter, we demorstifzt the coefficienB can be related
to molecular biaxiality. Since V-shaped molecules are lyifgiaxial, the coefficientB for this
case is significantly smaller than for calamitic molecul@his becomes apparent when we
relate the parameters in the molecular field theory to théficmats in the Landau-de Gennes
expansion using the method in referer@ [64].

The mathematical structure for electric field and magnegid finduced nematic phase are anal-
ogous. A molecular field theory which described the effe€islectric field on the nematic-to-
isotropic phase transition was developed by Ha [106is Whas an extension of the Maier-
Saupe theory for uniaxial nematics to include a strong eateelectric field. Three effects
analogous to magnetic field induced nematics were obsefvsalfirst of those was the optical
Kerr effect. In this effect, the electric field induces a dmalmatic order in the isotropic phase.
This small order causes a small birefringence, which dependhe square of the applied elec-
tric field. In addition, analogous to the magnetic field ineldimematics, the coefficient which
multiplies the square of the electric field(i5 — be)—l. Here, T is the temperature at which the
birefringence is measured aifg; is the bifurcation temperature. The other two effects ase al
analogous to those predicted for magnetic field: the firseotchnsition temperature between
the high and low order phases increases on increasing thiedyppagnetic field strength and
the existence of the critical field strength.

Wojtowicz and ShendﬂS] extended the Maier-Saupe theoipvestigate the magnetic field
effects on nematic liquid crystals. In addition to the threain effects which we discussed
before, there are three other interesting results assdoiegth the transitional and critical order
parameter and temperature. They are, the parabolic ceegestcurve, the law of rectilinear
diameter and the cubic power law. We discuss them when weatépme calculations in the next
section. In addition, we extend their calculations to dei¢th Wwiaxial molecules.

These results for magentic field induced effects using thiecatar field theory have also been
confirmed by other methods. Luckhurst and Simp [107]exhout a series of Monte Carlo
simulations for a system of magnetic field induced nematiith the magnetic field strength
greater than the critical field strength. In these calcoitetj the molecules were confined in a
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simple cubic lattice and neighbouring molecules interaatan orientational dependence pair
potential in addition to the interaction of the moleculethwie field. These calculations showed
a qualitative agreement with the molecular field theorysergéed in the same paper. Since their
calculations is done above the critical field, the systemmditiexhibit a phase transition. A
more recent series of simulations was by Warsono, Abrahsyfyand NunNantorS]. In
these simulations, the molecules are also confined in a ¢atlice. In addition, each molecule
is modelled as a three dimensional spin which can only padmgasix directions on the lattice
axes. In these simple calculations, the authors were aljpeottuce two of the three effects,
namely the magnetic field induced nematic-to-isotropicsgh@ansition and the critical field.
Palffy-Muhoray and Dunmu9] studied the effect of fieldduced nematic liquid crystals for
uniaxial molecules using both the molecular field theory @ned_andau-de Gennes theory. The
molecular field free energy was expanded upto fourth ordéreobrder parameter invariants. It
was found that, in general, the free energy expansions irthtearies differ. It was because the
coefficients in the molecular field free energy expansioreddp on the field strength, in contrast
with those in the Landau-de Gennes theory. This causes finedtion temperatur&™ in the
molecular field theory to depend on the field strength. Thieastremoved this dependence and
studied the common free energy. The direction of the fieldorea the principle axis system
which minimises the free energy is along one of the principles. The effects of the applied
magnetic field on the phase behaviour were studied for nadgewith positive and negative
diamagnetic anisotropy. For positive materials, the smiulvith the director parallel to the field
is always energetically favourable. In contrast, for neganaterials, the director tends to align
perpendicular to the field in the nematic phase and parallkld field in the paranematic phase.

6.2 Molecular Field Theory and Landau-KKLS Theory

6.2.1 Molecular Field Theory

As usual, the first step in formulating the molecular fieldotlyeis to construct the internal
energy. In this case, it consists of two parts

U=Uy+Ug. (6.2.1)

The first part,Uy, is generated by the pairwise intermolecular interactionthe uniaxial ne-
matic phase formed from biaxial molecules. It can be contdiby considering the internal
energy [2.3R) for a general system of biaxial moleculesiaxibl nematic. In this case, the
nematic phase is uniaxial, the indexvhich represents the phase symmetry should be set equal
to zero. The remaining Wigner functiod3?,, (2), where(Q) = («, 3,7), are identical to the
spherical harmonic€’y,,, (w), where(w) = (5, v). Hence,

Uy = —(1/2) ) tizmn (Cam){Can)- (6.2.2)

The second part/y, is generated by the interaction of the molecules with th@ieg magnetic
field. In order to construct this energy, we assume that trexuir is parallel to the field. This
is in agreement with the calculations by Palffy-Muhoray &uwhmur which showed that in this
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orientation of the director, the free energy is minimi@]l HencelUy can be written as
Un = —(3/2)B*x5,, (6.2.3)

whereB is the magnetic flux density and,, is the material susceptibility tensor per molecule.
The magnetic interaction has this form because if we deBifg as a second-rank tensor such
thatUy = —Bgoxgo, then

Byo = (1/2) (2Bzz — (Bxx + Byy)) = (3/2)Bzz = (3/2)B>. (6.2.4)

Here, we use the fact that the second-rank teld tracelessBxx + Byy + Bzz = 0. In
addition, x5, can be related to the molecular susceptibility tenger, by

Xho = X2n(Con). (6.2.5)

Hence,
Un == _(3/2)B*xan(Can). (6.2.6)

Now we can construct the Helmholtz free energy accordingjt@mton [2.3.10) subject to two
constraints in order to find the distribution function atiérium. The first one is that the distri-
bution function is normalised. The second one is that thergpdrameters are the convolutions
of the modified spherical harmonics with the distributiondtion

(Com) = /C’gm(w)f(w)dw. (6.2.7)

The minimisation gives

/ (=3 2o (Com)Cn ) — (3/2) B2 Cin(w) + kipT (11 [ () +1) + 1) oo = 0.
(6.2.8)
Solving this equation gives us the functional form of therdisition function at equilibrium.
From that we can find the potential of mean torque

U(W) = - <Z U2mn<02m>c2n(w) + (3/2)B2X2n02n(w)) (629)

In order to reduce the number of parameters, we use the ggomeian approximation. Hence,
the molecular interaction part only depends on one bidyipkrameter. For the field interaction
part, we see that there could be two parameters. They aiteddia the two components of
the molecular magnetic susceptibility tensgs,,. However, in order to simplify the problem,
we assume thatse = vx20. The field interaction part now only depends pm@and one more
parameter, namelyay = (3/2) B%x20/u200. The potential of mean torque now becomes

U(Q) = —u200 ((Fu) + 020) (Co0(92) + 27ReC22(12)) - (6.2.10)

In order to simplify the numerical calculations, we can estiie partition function in terms of
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the zeroth order Bessel function of the first kind

Q=2 /0 " expl(1/T%) ((Fu) + 620) dBo (Ao (v (1/T*) ((Fu) + 620) 2d3,(8)) sin Bdp.

(6.2.11)
Here,
1 s
I,(a) = ;/ cos (nf) exp (acos 6)db. (6.2.12)
0
Finally, the equilibrium orientational Helmholtz free egg is
AJkpT = —InQ + (1/2T%) (Fy)2. (6.2.13)

6.2.2 Landau-KKLS Theory

The Landau-de Gennes theory has also beeen used to exglaiffietbts of magnetic and electric
fields on nematogens. This theory has the advantage over dlecutar field theory of its
simplicity. As we can see in AppendixF.1 that for the LandieuGennes expansion up to the
fourth order of the order parameter, all results are araaitiHowever, the classical Landau-
de Gennes theory does not relate the coefficients in the frege expansion to the molecular
biaxiality. One method which was employed to do that is tovdethe Landau expansion from
the non-equilibrium free energy in the molecular field tbe@,@l]. We discuss the non-
equilibrium free energy in sectign 2.5. This method was at éimployed for uniaxial molecules
in uniaxial nematic phase [63]. Later, it was extended faioues other systems, including
biaxial molecule in uniaxial nematics in zero fie@[64]. Heve extend this method to derive
the Landau-de Gennes expansion from the molecular fieldyttfeo uniaxial nematics in the
presence of a magnetic field.

Here, we argue that in the Landau-KKLS theory, the contidibubf the field interaction to
the free energy expansion only comes from the internal gnangl does not come from the
expansion of the partition function. First of all, maxinmgithe entropy using the method which
we have discussed in section 2]5.1 gives us the partitioctibmof the form

Z(n) = /exp(nFU(w))dw. (6.2.14)

Now the non-equilibrium order parameter can be written as

(Fy) = Z()"! / Fyy(w)exp(nFy (w))d. (6.2.15)

The next step in the Landau-KKLS theory is to invert this fimt to getn as a function of
(Fy). Then, the partition function becomes a function of the plrameter ;). We can
see that this procedure does not involve the dependencedieltt. We note that if the field
is electric instead of magnetic then the entropy in the rounlérium free energy may still
have contribution from the external field. For example, inrilar system the electric field
does induce a macroscopic polarisation. As a result thegnshould be maximised with two
constraints which correspond to the polar first-rank andpaar second-rank order parameters.
In this case the entropy does depend on the fiﬁl_dj [110]. On tier dvand, magnetic field
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does not induce polar order and the interaction between etiagdipoles is negligibly small.
Therefore in our calculation, the only contribution of theddito the non-equilibrium free energy
is from the internal energy. Consequently, we do not needdo the whole procedure in order
to derive the Landau-KKLS theory. We only need to add the foeldtribution in the internal
energy to the free energy in zero field in referelﬁ [64] ireotd get the following Landau-
KKLS expansion

Afugoo = (3/4)a(T™ = Tip) (Fu)? + (1/HbT*(Fy)® + (9/16)C(Fyy)* — b20(Fur). (6.2.16)
Here,

Tie = (1+29%) /5,

10
T 3(1+292)
b - () 00
21 ) (14292
o ( 400 > (5675 + 444~4* — 7842 + 17) 907 6.2.17)
1764 (14 272)°

Here, we note that the Landau-KKLS expansion differs from a@higinal Landau-de Gennes
expansion in that the coefficient which multiply the cubierias temperature dependent. We call
the latter thepure Landautheory, as opposed to thendau-KKLStheory. A direct contact can
be made between the Landau-KKLS and the pure Landau thdayrieplacing the temperature
dependent of the coefficient which multiplies the cubic tevitlh a constant which we shall call
fp. In other words, we repladd™ by B = bfz. Solving this system is the same as solving the
Landau-de Gennes theory for uniaxial nematics which has imgewed in referencl] and
which is rediscussed in AppendixF.1.

6.3 Field Induced Phase Transition

6.3.1 Molecular Field Theory

First, we discuss the pretransitional behaviour of theesystThe application of a magnetic field
induces a small order in the isotropic phase. This new plsaselled the paranematic phase.
As the temperature is lowered, the order parameter incsease there might be a transition
between the nematic and the paranematic phase. We can gedticed order parameter in the
paranematic phase by expanding the exponential in thdipartunction in terms of the order
parametex Fy;) upto first order. The dependence of the order parameter diettiestrength in

the paranematic phase is
(29% + 1)dzo
(FU) = o (6.3.1)
5(T* — 1)
Hence, we see that at a fixed temperature in the paranemase pine induced order parameter
increases quadratically with the magnetic flux dendity,
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The second effect due to the field is the induced transitiorpegature. We find the nematic-to-
paranematic phase transition temperature by studyingepertlence of the order parameter on
the scaled temperature for a fixed value of the scaled magiheti densitydoy and molecular
biaxiality, v. The nematic-to-paranematic transition temperaturecstém when there is a jump
in the order parameter. In figures16.1, we show the dependsribe order parametei;) on
the scaled temperature for different valuesigf and~. The value ofy is kept fixed in each
figure. We see that, when the field strength is z&s@js zero, the first order transition is essen-
tially between the uniaxial nematic and the isotropic phadas phase transition temperature
increases as we increasggin agreement with figufe2.4. A%, increases, the jump in the order
parameter gets smaller. When this gap just starts to be zenote reached a critical point. For
the field strength higher than the critical value, the netnpliase and the paranematic phase
are no longer distinguishable. For each value ahe values which we use fés, are equally
spaced. In addition, the transition temperatures foundhose values o#,, are also equally
spaced, as can be seen from the vertical lines connectingvtheurves in the two phases.
Therefore, the scaled transition temperature increasearly with B2 for a fixed value ofy.

g
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@~v=0 (b) v=10.2
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(c)y=0.3 (d) v =0.36

FIGURE 6.1: The dependence of the combined order paramgieron the scaled temperature
as the field strength is varied for different values of thexiaiity parametery. The order
parameters at the phase transition follows parabolic stexi curves of the forn{Fy )y —
(Fi)e)? = a(T*—T7) wherea is a constant. The values@fin these case are: (a) 4.295, (b) 5,
(c)6.065, (d) 6.763. The values&f, used in these case are: (a) [0:0.002:0.008 0.01046 0.012],
(b) [0:0.001:0.004 0.00490 0.006], (c) [0 .0005 .00108 F)@hd (d) [0.000111.00025]. Here,
we use) : a : bto denote an array of parameters from @ twith regular spacing.
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In their calculations for the field induced uniaxial nemdteisotropic phase transition, Wojtow-
icz and ShendﬂS] reported that at the transition, the atexi values fofFy;) in the nematic
and the paranematic phases follow a quadratic curve. LetllLihie value of Fy;) at the nematic
phase(Fyr) vy and that at the paranematic phdg¢;) . In order to find a coexistent parabola
for a value ofy, first we fit a parabola through the data points, which(@e) x and () p for
different values ofiyy. The parabolae are plotted as red curves in figurés 6.1. Theaake the
value of the critical order parameter and scaled temperatuthe base of the parabola. After
that we fit a line through the daféry )y — (Fi).)? against(T* — T¥). Here, we uséFy), to
denote the value of the order parameter at the phase tmanaitithe critical field. The gradient
of the line gives us the relation between the two quantitié$/ )y — (Fi/).)? = o(T* — T).
Fory = 0 we founda = 4.295. This implies the relatioSy — Sp)? = 17.18.(T* — T). We
note that the previous calculations by Wojtowicz and Sh @lave the constant in the latter
relation equals to 16.45. As we explain later in this chajpler estimation o has some limi-
tations which prevents us from achieving more accuracy.résults forés, andZ are slightly
different from Wojtowicz and Shenﬂ45]. Our estimated esldiors, and7;" in zero field are
0.01046 and 0.23094, respectively. In comparison, thenagtid values for by Wojtowicz and
Sheng ] is 0.01044 and 0.23092, respectively. The @iffees between the two calculations
may not seem very large. However, they may introduce a lawgjative difference when we
estimate the constant as we have seen.

We see that as increases, the difference between the zero field transiiomperature and the
critical transition temperature (at the critical field) gsmaller. There are two reasons for that
as we can conclude from figurles16.1. The first reason is the wdl{F};) at the phase transition

in zero field gets smaller agincreases due to an increase in molecular biaxiality. Thersg
reason is that the parabola is less curved, @&screases. The cause for this second reason is
unknown. Consequently, the point from the transition terajpee in zero field to the bottom of
the parabola, which is the critical point, gets smalletyascreases.

In figure[6.2 we show the dependence of the scaled transétiopérature on the scaled magnetic
flux densitydsq for different values of the biaxiality parameter The curve for each value of
~ is linear, in keeping with the results we showed in figuré & e bottom line in figur€ 6]2
depicts the dependence Bf; , on dyy for uniaxial molecules. As the value gfgoes up.I’y;;
increases, as expected for the nematic to paranematidtiwarfer biaxial molecules. This is in
accord with the phase map in figlirel2.4 and the order parampletsrin figurd 6.1L.

We can see that the critical temperature and the slopes dihtrein figure[ 6.2 also increases
on increasingy. The latter implies that for the same applied field, the déffee between the
field induced transition temperature and the nematicdtrépic transition temperature in zero
field for biaxial molecules is larger than that for uniaxiablecules. This is as expected since
experimental resultﬂhO] have shown that a significanteiase of the field induced transition
temperature has only been observed in V-shaped moleculex than rod-like molecules. In
other words, while an increase in the transition tempeeatiue to applied field for rod like
molecules may be insignificant, it can be significant for l@hxolecules. One interesting
feature we also need to mention is that the critical fieldngjile gets smaller as increases.
This is because the gap between the zero field transitionaiertyse and the critical temperature
gets smaller ag increases, hence a smaller field strength is required taethe transition
temperature up to the critical point. Consequently, for sty of highly biaxial molecules,
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it only requires a much smaller applied field to observe tlitical point than for a system of
rod-like molecules.
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FIGURE 6.2: The dependence of the transition temperature on thedscegnetic flux density
099 as the biaxialityy increases. The values ¢f from bottom to top, are: 0, 0.1, 0.14, 0.18,
0.2,0.22,0.24,0.26,0.28, 0.3, 0.31, 0.31, 0.32, 0.331,@35, 0.36.

Here, we can to make a contact to the experimental resultsstgp@nko et al.mm]. In their

experimental result, the ratio
Tnp — Ty

6.3.2
Ty =Ty (6.3.2)

approaches 2.4 at the highest field strength. HErgdenotes the nematic-to-isotropic phase
transition in zero field7y p denotes the field induced transition dfjg denotes the bifurcation
temperature. However, the magnetic field used in their éxgert has not reached the critical
value. Therefore, we would expect the ratio

Tc - be

= 6.3.3
Ty =Ty (6.3.3)

whereT, denotes the critical temperature, to be greater than 2#héarcompound. In contrast,
in our calculations this ratio is almost constant as we Viagybiaxiality parametey and roughly
equals to 1.5, in agreement with their prediction using taedau-de Gennes theory. This dis-
agreement may be due to the poor estimatiof,@fin the molecular field theory. The estimated
value ofT;, can be improved by using the two-site cluster the@[llﬂer‘éfore, in making
comparisons with their results, we do not use the rfio— T;¢) /(T., — Tp,¢). Instead, we rely
on the ratios of the three scaled temperatfjfe 7, and7;;. We note that this comparison is
imperfect since the experiment has not reached the critedl We assum&y p(H,,,. ) which

is the induced transition temperature at the highest vdltiseomagnetic field strengtll used

in the experiment to be the critical temperature. In adnjtihe values for the temperature in
the calculations are in scaled unit, in contrast with thosthé experiment which are in degree
Kelvin. The latter difference can be removed by taking thsal /77, 77 /17, and Ty, /T

and compare them with the associated experimental valoghelexperiment];,, = 363.1K.
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We take the lower bound faf. at7Tv_ p(H pa.) t0 be363.77K. This gives udy,; = 362.82. In
figure[6.3, we show the calculated values for these threesritbm the molecular field theory.
As v decreases, the gaps between the ratios also decrease.itioradde three ratios tend to
one asy gets larger. This is as we expect sincefor 1/4/6, the uniaxial nematic-to-isotropic
phase transition is second order and therefore the thregetatures should be equal. In the
figure, we also show the value for the three ratios from theexpent aty = 0.37. Here we see
that, according to the plot; = 0.37 is the best approximated value for the V-shaped molecules
used in the experiment by Ostapenko et @ [40]. From equdfi@.5), we can calculate the
interarm angle of their V-shaped molecules whicth($.59°.
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FIGURE 6.3: The data in blue are the dependence of the temperatioe oa the biaxiality
parametety as predicted by the molecular field theosy? /77, « Ty, /T, ando Ty /T7.
The data in red are the associated experimental resultseglaty = 0.37.

6.3.2 Landau-KKLS Theory

In addition to the molecular field theory, we can also use taedau theory to predict the pre-
transitional behaviour. In the paranematic phase, we asshat the order parametéfy;) is
small. Hence, the free energy only depends on the quadfatie; 0 (see equatior (6.2.116)). In
this case, the pure Landau theory and the Landau-KKLS tha@ryhe same. It is because the
two theories are the same up to second order. The valdéof in the paranematic phase is
given by

(27* + 1)do

U= STy

(6.3.4)
We see that this result agrees with the molecular field theory

First, we discuss the solutions for the pure Landau theocale it is more analytical. We
discuss the details of the calculations in ApperidiX F.1. frhasition temperature for each
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value of the magnetic flux density is given by

2
T*(620) = Ty + 257 (1 + 2‘5%00) . (6.3.5)
In this case, it is clear that the transition temperatureeiases linearly withdo. Here, the
critical field is 53

050 = 35402 (6.3.6)
Due to the complex forms aB andC' (see equation$ (6.2117)), it is not obvious that gets
smaller asy increases. However, it is clear that,qat= 1/4/6, B vanishes whereaS' does
not. Hencess, vanishes aty = 1/4/6. This is in keeping with the fact that at= 1/1/6, the
nematic-to-isotropic phase transition is the second otusmce the critical temperature is the
same as the nematic-to-isotropic transition temperattliteerefore the critical field is zero in

this case.

In addition, the coexistent values of order parameter apliase transition is

Qnp=Qc|1E4/1- 5? : (6.3.7)
520
Clearly, they follow the parabola
0
(Qnrp— Q) =Q: (1 - %) : (6.3.8)
20

This is a qualitative agreement with the molecular field theo figured6.1.

For the Landau-KKLS theory, simple analytical solutionstfee transition temperature and the
transitional order parameter for non-zero field cannot liainbd. However, we can still find the
expressions for the critical field and critical transitiemiperature. We discussed these solutions
in Appendix(E.2. The critical temperature is given by

. 1 (18aC 18aC\ 2 . 18aC
Ti=5 | \/<b—2> — ATy —— |- (6.3.9)

The critical field is dependent on the critical temperature

. 1 v
O = —337 (6.3.10)

First we setf- to 0.45 as this value gives phase maps which are in good agreemith the
molecular field theory in the geometric mean and Sonnetavidgrand limits Elgd]. Our pre-
liminary calculations has shown that the transition terapee also increases linearly with the
applied field. Hence, in representing the phase maps, wecaldylate the transition tempera-
ture at zero and critical field and connect them to get theeoheaps. In figurg 6.4(a), we show
the phase map for the Landau-KKLS theory with the regulidegparametef = 0.45. We
see that these results disagree dramatically with the mialetield calculations in figure_8.2.
The critical field is only ten per cent of the molecular fieldukts. One reason is because when
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FIGURE 6.4: The dependence of the scaled transition temperatutteecstaled magnetic flux
densitydoq for different values of the biaxiality parameterfor (a) the Landau-KKLS theory
with 8 = 0.45 and for the pure Landau theory with () = 0 = 0.45, (c) 5 = 0.225 and
6c = 0.45 and (d)dp = 6 = 0.225. The values ofy, from bottom to top lines: 0, 0.1, 0.14,
0.18,0.2,0.22,0.24, 0.26, 0.28, 0.3, 0.31, 0.32, 0.33, 0.35 and 0.36.

we setfo = 0.45, the order parameter at the phase transition is much sneallepared to the
molecular field theoryIE4]. In marked contrast, when we s#hldz andd- to 0.45 for the
pure Landau theory as in figufe 6.4(b), the predicted ctifiedd is in better agreement with
the molecular field theory. Now we note that the value of tligcef field in the Landau-KKLS
theory depends on the cube of the critical temperdi{ireshereas that value in the pure Landau
theory depends on the cubefyf. The value off} is about 0.22 and does not change very much
with ~, this is only half the value which we have set fgs in the pure Landau theory (0.45).
Hence the pure Landau theory should produce similar retultise Landau-KKLS theory in
figure[6.4(a) if we sefz = 0.225 and keepingc = 0.45. Indeed it is true and the results are
shown in figurd 6.4(¢). In fact, in order to compare the puradaa theory with the Landau-
KKLS theory, it might be best to keefys = 0.225 in the pure Landau theory since it is close
to the range of* in the Landau-de Gennes theory. In this case, a better appat®n might

be achieved by setting botly andf- to 0.225 in the pure Landau theory since that value is
close to the temperature range which the transition takesepMWe show these results in figure
[6-4(d). Now, compared to the molecular field theory, we get@dgagreement on the nematic-
to-isotropic transition temperature and the agreemenhetitical field is much better than in

figure[6.4(C).

In order to make further decision about which values of theupeters(6z, 6) in the pure
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Landau theory would be in better agreement with the moledig&l theory, we compare the
phase maps and the dependence of the transitional ordengt@reorny. The plots are shown in
figured6.5. Itis clear that if we use the transitional ordEameter as a deciding factor then we
may use one of the two seig = 0 since they give better agreements with the molecular field
theory. Furthermore, the shape of the phase maggor 6 = 0.225 gives a better agreement
with the molecular field theory thatys = - = 0.45. Therefore itis a better parameter set. Note
that this is also what we have decided based on figurés 6.4.

In keeping with the parameter set which we have chosen foptine Landau theory, we take
fc = 0.225 in the Landau-KKLS theory. We know that the small tempegtange ofl* for

the Landau-KKLS theory is similar to fixinfjz at 0.225 in the pure Landau theory. We plot the
dependence of the transitional order parameter and ti@ms#mperature for the Landau-KKLS
theory withf. is set equal to 0.225 in figufe 6.6. As we expect, the agreemiémtthe pure
Landau theory witthp = 6 = 0.225 is very good. In addition, we show the phase map for
the Landau-KKLS theory wit- = 0.225 in figure[6.T. Again, the similarity between this and
figure[6.4(d) is remarkable.

6.4 Critical-point Exponent

In their paper, Wojtowicz and Sher{g—_t45] looked for the catipoint exponent, such that at
d20 = 050,

5= lim log (T —T7)

=Tz log ((Fy) — (Fu)e) (6.4.1)

They claimed that the critical-point exponenpis= 3 for the two cases[™ < T} andT™ > T}.
However, the authors did not explain the details of theicwaalions. Here, we present our
method to estimatg for different values of the biaxiality parameter The first step to calculate
the critical exponent is to estimai& and (Fy;). as accurately as possible. We estinigteby
plotting (Fy/) againstdey. When we see an interval 6§, where the transition changes from
first to second order, we perform more calculations in thigriml, with a smaller range af*
aroundT}. This process is repeated until we reach a desired accuNwate that in practice
we can only be certain aboiif" up to four decimal places, because as we get clos&j,tdhe
phase transition becomes less noticeable. The secondsdtefind (Fy).. We can estimate it
as (Fy)nr/2 where(Fy ) ny is the nematic-to-isotropic phase transition in zero fieltis is

in keeping with the quadratic behaviour in figukes 6.1. Intthied step, we produce the plot of
log (T* — T}) againstlog ((Fir) — (Fur)c). We takeT™ as close as possible " in order for
the plot of the data is visibly straight. Then we fit a line tingb the data points. The slope of
the line gives us the exponent.

We note that there is a limitation in these calculationsfiermolecular field theory. The method
we use to estimate the critical temperature only accurate tqur decimal places. Hence, if we
get too close to the critical temperature (between 0.000@5020001 near the estimated value
for T.), the relative error of the difference between a tempegatund the critical temperature
would be larger. Consequently, the log-log plot does notlpce a straight line for such data.
However as we will see, with the Landau theory, the convarger the critical exponent can be
slow and we may need to get closerZoto estimate it more accurately. In table]6.1, we show
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our estimated values for the critical-point expongrfor the two theories wheré™ is greater

or less thariZ’¥, for the molecular field theory. We also show the estimatddegafor7,” and

95y~ In addition, the intervals of * which we use in the calculations are also shown. We see
that, forT™ < T, the estimated exponent is less than 3. In contrast/'for 77, it is greater
than 3. An common feature is that asncreases, the estimated valuesiadets further away
from 3. Fory = 0.36 andT™ > T, we see that the deviation @fis quite dramatic. Its value

of 3.886 is now closer to 4 than 3. The reason for those dewiatiight be because of the slow
convergence of the series expansiof’6f- 7" in terms of(Fy;) — (Fy).. However, we cannot
get any closer to the critical temperature without intradga significant error and we do not
have an analytical value fgt for the molecular field theory.

T <T} T > T}

v T %5 AT 3 AT B

0 | 0.23094 | 0.01046 | [0.2307, 0.2309] 2.739| [0.231, 0.2312] | 3.252
0.2 | 0.234265| 0.0049 | [0.232,0.2342]| 2.718| [0.2343, 0.235] | 3.372
0.3 | 0.24261 | 0.00109 | [0.242, 0.2425] | 2.657 | [0.24265, 0.243]| 3.369
0.36| .2533 | 0.000111| [.2534,.2535] | 2.533| [0.25335, 0.2534] 3.886

TABLE 6.1: Table for the critical exponent at the critical fieldds, for the molecular field
theory. T* denotes the critical temperaturd\7* denotes the temperature range which we
use to estimat®. ForT* < T, 8 = log(Tx —T*)/log ((Fu). — (Fu)). ForT* > T,

B =log(T" = T;)/log ((Fu) — (Fu)e)-

One way to understand this problem better is to use the purddiatheory. In this theory, we
have analytical results for bott¥;;). andT'. Hence, in the calculations we can get as close to
T* as we want. In addition, the pure Landau theory has an adyamtzer the Landau-KKLS
theory in this case because we now have an analytical vaiyg féor the pure Landau theory,
we proved in Appendik Fl1 that the critical-point exponentilbic. In addition, at the critical
field, the order parameter is the solution of the cubic equati

ZC(Fy) = (Fu)o)® = alFu)(T: = T°). 642)

In table[6.2, we give the estimated values forin this case, ag* is known exactly, we can
use its value in the calculations. We use 100 points in easé wéthin[Z)* — 0.001, 7] and
[T, TF+0.001]. Here, we observe the same behaviour as we saw for the maldi@idl theory
that the critical exponent gets further away from 3 as wesiasey. In general, the values ¢f

is closer to 3 than the molecular field theory. However, thierdsetween the estimated values
for g reported in the table and the analytical value is still largeorder to test if the source
of error really comes from the convergence, we do the sanwelletibns. This time we use a
smaller interval around the critical point &5 + 0.0001. The results are shown in talile 6.3.
We see that the improvement in the estimated valueg isrremarkable. Hence, we conclude
that the error in the estimated values fbcomes from the slow convergence of the polynomial
expansion. As the smaller interval aroufiflis used in the calculations, the estimated values for
the critical-point exponent gets closer to the true value, which is 3. This is in agreemsht
the value of the critical-point exponent reported in thecakdtions by Wojtowicz and Sheng

[45].
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T <T7 T >Tr
v s 550 AT B AT B
0 | 0.222059| 0.0050461 | [T} —0.001,T7] | 2.819| [T,T> +0.001] | 3.24
0.2 | 0.230842| 0.0032462 | [T —0.001,T7] | 2.797 | [T}, Tr +0.001] | 3.28
0.3 | 0.241827| 0.0009033| (7 —0.001,7}] | 2.7 | [TF,TF +0.001] | 3.407
0.36 | 0.253122| 0.00009647| [T — 0.001,T}] | 2.617 | [T}, T + 0.001] | 3.484

TABLE 6.2: Table for the critical exponert at the critical fieldds, for the pure Landau
theory. T)* denotes the critical temperaturéd\7* denotes the temperature range which we
use to estimat®. ForT* < T, 8 = log(Tx —T*)/log ((Fu). — (Fu)). ForT* > T,

B =log(T" = T)/log ((Fu) — (Fu)e)-

T <T} T >T7
0 T 9% AT™* B AT B
0 | 0.222059| 0.0050461 | [T} — 0.0001,T}] | 2.937| [TX,TF + 0.0001] | 3.071
0.2 | 0.230842| 0.0032462 | [T —0.0001,T*] | 2.93 | [T}, TF +0.0001] | 3.092
0.3 | 0.241827| 0.0009033 | [T — 0.0001,7}] | 2.906 | [T, T + 0.0001] | 3.118
0.36 | 0.253122| 0.00009647| [T} — 0.0001,T7] | 2.856| [I.5, T + 0.0001] | 3.242

TABLE 6.3: Table for the critical exponert at the critical fieldds, for the pure Landau
theory. T)* denotes the critical temperaturéd\7* denotes the temperature range which we
use to estimat@. ForT* < T, 8 = log (T} — T*)/log ((Fu). — (Fu)). ForT* > T¥,

B =log(T" = T)/log ((Fu) — (Fu)e)-

6.5 Conclusions

In this chapter, we applied the molecular field theory to wtte effects of magnetic field on
a system of biaxial molecules in uniaxial nematic. We areivatgd by recent experimental
success in observing a significant increase in the uniarialatic-to-isotropic phase transition
temperature due to the magnetic field. Their experimentetess was attributed to a high
magnetic field strength used in the experiment. Using theoutdr field theory, we have shown
that for the same applied magnetic field strength, the gapdsmat the field induced transition
temperature and the transition temperature at zero fielg¢ases on increasing the biaxiality
parameter. Hence we conclude that the experimental swscean also be attributed to the high
molecular biaxiality of the V-shaped molecules. Our thealso predicts that the transitional
order parameter follows a quadratic curve, in analogy wigvious calculations for uniaxial
molecules. In addition, we have calculated the criticablfiglength, above which the nematic
and paranematic phases are indistinguishable. We havestad®d the Landau theory and
the Landau-KKLS theory which make the same qualitative iptishs with the molecular field
theory.
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FIGURE 6.5: The dependence of the transitional order parametetrandition temperature
for various models: (a) and (b) are the results for the mdéedield theory, the rest of the plots
are for the pure Landau theory, with different values forrbgularisation parameters: (c) and
(d) are forfp = ¢ = 0.45, (e) and (f) are fodp = 0.225 andf- = 0.45, (g) and (h) are for
0 = 0c = 0.225.
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FIGURE 6.7: The dependence of the transition temperature on thedscegnetic flux density
099 for the Landau-KKLS theory witld~ as the biaxialityy increases. The values of from
bottom to top, are: 0, 0.1, 0.14, 0.18, 0.2, 0.22, 0.24, (02&3, 0.3, 0.31, 0.31, 0.32, 0.33,
0.34,0.35, 0.36.
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Chapter 7

Biaxial Smectic A Phases

In this chapter, we study a molecular field theory for biagialectic A phases ab,;, symmetry
which are formed from molecules also bf,;, symmetry. After reviewing some related works
in section_Z.1L, we discuss the molecular field theory in ea€fi2. The calculation results for
the molecular field theory are presented in sections 7.8 ahd 7

7.1 Related Works

The first prediction of biaxial smectic A phases seems to len by de Genne@41 . The
structure of biaxial smectic A phases were later analyse&rayd, Cladis and Plein13,
]. A biaxial smectic A phase formed from board-like molles hasD,;, symmetry whereas
one formed from V-shaped molecules can hég symmetry [Ll_lb]. An idealisation of the
structure of the former phase is shown in figuré 7.1 (a). Ttierlss a ferroelectric phase without
chiral molecules and its idealised structure is shown iréi@ll (b). The authors also mentioned
the possibility of a biaxial smectic A phase with, symmetry, but with antiferroelectric order.

In addition, they discussed the possibility that the bibgraectic A-to-biaxial nematic phase
transition can be continuous. The symmetry of biaxial sinécphases were discussed further
in a later publication by the same group of auth[114]. abthors started with a biaxial
smectic A phase witl,;, symmetry. By adding a polar direction in the planes of snedatiers,

a biaxial smectic A phase wiitiy, symmetry is formed. When a second polar direction is added
in the planes of smectic layers, a biaxial smectic A phash wivery low symmetry @) is
formed. The symmetry group;;, consists of two basic symmetry operations: a reflectioneplan
and an identity. The next and final step is to add a third palactdon perpendicular to the
layers and we have a phase with no symmaetty)(

Biaxial smectic A phases have been found in several low-molass system over 20 years
since its first theoretical prediction by de Gennes. The comaxperimental techniques which
support the identification of biaxial smectic A phases at&aptextures, conoscopic studies and
X-ray diffraction measurements. In 2001, Hegmann, Kairel®iPelzl and Tschiersk@lS]
studied a mixture of a board-like mesogen and a board likemesogenic molecule. Their
experimental evidence by texture observations and X-risadiion studies strongly supported
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FIGURE 7.1: Sketches of the idealised structures of the biaxialctimé phases: (a) Non-
polar biaxial smectic A phase formed from board-like moleswand (b) Polar biaxial smectic
A phase formed from V-shaped molecules. Reproduced ﬂr__th [41

that the biaxial smectic A phase was stabilised. This evidevas further supported by scanning
transmission X-ray microscopy in 2007 by Kaznacheev andéem [1 ] A study of rigid,
symmetric V-shaped molecules in 2001, using the same tggbsias Hegmaret al. ] also
found a stabilised biaxial smectic A pha@ll?] In thisecthe V-shaped molecules exhibit a
phase sequenéan Az — SmA; — I. In addition, electro-optical measurement showed that the
biaxial smectic A phase is ani-ferroelectric. The same gwxptal methods were applied to
show that liquid crystal dimers also can form biaxial smeéti In one case, a dimer is made up
of a rod-like and a V-shaped mesogenic ur@[llS] and lirtked flexible spacer. In another
case, a dimer is made up of two different rod-like mesogenaus with a flexible spacer
linking them -] In the former case, the dimers exhibé fihase sequenenAp — Np — 1.

In contrast, the phase sequence in the latter caSenisz — SmAy — I. Biaxial smectic
A phase has also been found in a system of rigid, asymmetshbayed molecules using the
aforementioned experimental techniques, together withrdntial scanning calorimetry, with
the phase sequenfenAp — SmAy — I]ﬂ] In alater publlcatlorll] using electro-optical
experiment, the authors showed that this biaxial smectib@sp is antiferroelectric.

The molecular field theory have also been used to describéabimectic A phases. One ex-
ample is a theory developed by Matsushita in 1[122]. Tas an extension of a two
order parameters theory for biaxial nematic to include gimexdering. In this model, there
are two interaction parameters, one is the molecular Higxend the other controls the smec-
tic interaction strength. Additionally, there are four ergparameters. Two of them are pure
orientational order parameters and are non-zero in botheheatic and the smectic A phases.
The other two order parameters are mixed orientationabktational order parameters and are
non-zero only in the smectic A phases. With these four ordearpeters, the author was able
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to produce a rich phase behaviour. In principle, there agghases: isotropic, uniaxial and
biaxial nematics, uniaxial and biaxial smectics A. Morap¥bere are three phase sequences:
SmAy — Ny —1I,SmAp —SmAy — Ny — I andSmA g — Ny — 1. Over the range of molecular
biaxiality under their study, the biaxial nematic phase waisfound. Thus it may suggest that
the biaxial smectic A phase is easier to form than the biax@ahatic phase. Another molecular
field theory for biaxial smectic A phases was by Teixeira,p0giand Luckhurst in 200@1].
This theory is more general than that by Matsusljuil_gi|[122hm they include all four orienta-
tional order parameters in the nematic phase. In the biaxmctic A phase, they are joined
by four mixed orientational-translational order paramge#nd one pure translational order pa-
rameter. The authors then studied a model in perfect uniasder, which left only three order
parameters: one orientational biaxial, one mixed biaxial @ne pure translational. Bifurcation
analyses were performed to investigate the stability ofutmexial nematic phase with respect
to the other phases: biaxial nematic, uniaxial smectic Alzsiagial smectic A. Depending on
the combinations of the interaction parameters, the uaiax@matic phase can go through a
phase transition into one of these three phases. Furtheyrtiee authors studied a model of
parallelepiped molecules. The interaction parameters vetated to the molecular dimensions.
Hence the stability of the uniaxial nematic phase with resfmethe other three aforementioned
phases were also related to the molecular dimensions.

Monte Carlo simulations also predicted the existence obibgial smectic A phases. In one
series of simulations, an off-lattice system of identicalecules interacting via the Gay-Berne
potential was studied by Berardi and Zann@l%]. In thisdel, the molecular biaxiality
has contributions from both the molecular shape and intieracBoth the biaxial nematic and
biaxial smectic A phases were stabilised. In addition,rtetbility depends on the combina-
tion of the molecular shaped and interaction. In these sitiauis, only the transition from the
uniaxial and biaxial nematic phases to the biaxial smectghAse was found. In another set
of simulations, supported by Onsager’s molecular theoapakaras, Bates and Photin@l%]
studied a hard particle model. In this model, the major mdbecaxis were assumed to line
up. Therefore they only investigated the stability of théaxial nematic phase against the other
liquid crystal phases, namely biaxial nematic and biaxml aniaxial smectics. In their phase
map of transitional density against the aspect ratio of oudée breadth and width, all these
four phases were found. The authors also performed sirookafor binary mixtures of rod-like
molecules with the same biaxiality but different anisoyrophey found that the biaxial smectic
A phase was destabilised and hence the biaxial nematic plessstabilised.

There are theoretical grounds to expect the existence séthbases. First, it is for the same
reason that we expect the biaxial nematic phase to existcaigituent molecules are biaxial.
Their biaxiality has been demonstrated in a molecular fieébty by Averyanov and Primak
]. Itis an extention of the molecular field theory for axial molecules: in uniaxial smectic
A by McMillan [] to include molecular biaxiality, alth@h the phase was still uniaxial. In
this case, the molecular biaxiality was important in exglay the weakness of the first order
nematic-isotropic transition for real mesogenic compaunle expect that the molecular biaxi-
ality also help to stabilise the biaxial smectic A phase atigd state. Secondly, it was suggested
by Texeiraet al. [@] that biaxial smectic A phases should be easier to foan thiaxial nematic
phases. The reason is there are two ways to stabilise a lbreae. One of them is to design
molecules with high biaxiality. However, we see from the sghanap in figuré 214 that this
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strategy is difficult to achieve since the molecular biakiateeds to be in a very narrow range
around the optimum biaxiality. The second strategy is telmiarge value of the order param-
eter S that describe the ordering of the major molecular axis ireotd allow a more effective
anisotropic interaction between the minor aB [41]. Hawelor nematic phases this can be
achieved only for low molecular biaxiality where the bidxiamatic phases are formed at very
low temperature. Atlow temperature, the smectic or evestatyphase can be more stable than
the biaxial nematic phase, which is why it is difficult to obsethe latter phase. In contrast,
the influence of the molecular biaxiality on the major ordargmeter on the smectic A-nematic
phase transition may not be so large. It is because the majer parameter is coupled to the
translational order of the smectic A phase. Therefore iticarease significantly in the smectic
A-nematic phase transition, especially if the phase ttamsis first order. This effect can be
even more favourable if the system undergoes a transiti@ctti from the isotropic phase to
the smectic A phase.

Due to the success of the molecular field theory in modellirgguniaxial and biaxial nematic
phases, we extend this theory to model the biaxial smectih@s@s. In our model, we use
the strategy suggested by Teixeghal. in their paper’s Appendiﬁl}. That is, we use the
approximation by Kventsel, Luckhurst and Zew 127].sTépproximation was developed as
an alternative to the McMillan theorﬂ [EJZG] in modellingetuniaxial smectic A phase. We
also use the geometric mean and SVD approximation for te@tational interaction parameters
together with the KLZ approximation. When we use these apprations for biaxial smectic
A systems, the number of order parameters is reduced sigmifyc thus our calculations are
facilitated. Thus, the complex system of biaxial smectichage can be described by an elegant
model with only three order parameters: one orientationaial, one orientational biaxial and
one pure translational.

7.2 Molecular Field Theories

7.2.1 Classical Molecular Field Model

In this subsection, we discussed the molecular field themrg biaxial smectic A phase of gen-
eral symmetry which is formed from molecules of general syimm This theory was developed
by Teixeiraet al. [@]. The first step in constructing the molecular field thyefor biaxial smec-
tic A phases is to identify the order parameters which dbsdtie ordering of the system. The
smectic A phases can be described by three types of ordenpteis. The first type consists of
the pure orientational order parameters

(DL ) = / / DL () f(Z,Q)dZd. (7.2.1)

The other two types of order parameters incorporate traosé ordering in the system. Sup-
pose that the molecular centres of mass sit on planes pamtlee X — Y plane of the phase
and intersecting th& axis of the phase aid wheren is an integer. We cal the smectic layer
spacing. Regarding translational ordering, the systemdstlyn ordered when the molecules
are with their centres of mass lying in one of the planes aast lerdered when the molecular
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centres of mass lying in the middle of any two adjacent plalreaddition, the molecules prefer
to sit as near the planes as possible. Thus, there is a maletnsity wave in theZ direction.
The function which has these propertiesds (2777 /d). The second type of order parameters is
the average of that function. This forms a pure translatiorder parameter.

T = / / cos (2nZ/d) f(Z,Q)dZdS, (7.2.2)

The third type of order parameters are the averages of tlteipi® of the density wave with the
Wigner rotation matrices. They form the mixed orientatlemnanslational order parameters,

ok = / / cos (2rZ/d)DE (Q)f(Z,Q)dZdQ. (7.2.3)

The next step in constructing our theory is to form the irekenergy of the system from the
invariant combinations of the order parameters

) = —(1/2) (uOT2 +3 wpma (D5 DY)+ u’LmnameaL_pn) . (7.2.9)
The singlet distribution functiori(Z, ) is a function of both the Euler angl€sand the position

of the centre of mass of the molecule with respect to the pagiseéZ. Hence, the integrations
in the entropy has to be taken over both the orientation amgaisition of the molecule.

S:—kB//f(Z,Q)lnf(Z,Q)dZdQ. (7.2.5)

The free energy can be formed from equatfon (2]3.10). Inrdaiind the distribution function,
we minimise the free energy, subject to the constraints efditder parameters in equations

(7.22), [7.2.2) and(7.2.3), together with the nomalsatondition

//f(Z, 0)dZdQ = 1. (7.2.6)
The resulting distribution function is given by
F(Z,9) =Q  exp(U(Z,9)/ksT), (7.2.7)

where the potential of mean torque can be written as

—pn

+ Z Uy O Lpm COS (27rZ/d)D£pn(Q)) . (7.2.8)

U(Z,Q) = — (um cos (27 Z/d) + > urmn (D) DX, (€2)

Hence, the free energy at equilibrium can be written as

A= _kBT IOgQ + (1/2) (u07—2 + Z ULmn <D£m><D£pn> + Zulenameo-L—Png .
7.2.9)
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7.2.2 Kventsel-Luckhurst-Zewdie Decoupling Approximaton

The Kventsel-Luckhurst-Zewdie (KLZ) approximati@mﬁn be used to reduce the number
of order parameters. This is especially essential in biaxrgectic A phases. For example, we
consider the biaxial smectic A phase with;, symmetry which is formed from molecules also
have the same symmetry. The classical model discussed ilaghsubsection gives us one
pure translational, four orientational and four mixed ond@ameters, giving totally nine order
parameters. On the other hand, using the KLZ approximagaaoh mixed order parameter can
be written as a product of an orientational order parametdrthe translational one. Hence
there are only five order parameters when we use the KLZ déogugpproximation. This is
certainly of great help in doing the calculations. In gehettse KLZ approximation can be
written as [4] ]

oLpm = T(D}). (7.2.10)

This approximation has to be used before we construct tleeniak energy. The reason was
discussed when the KLZ approximation was first mtrodu@lltor uniaxial molecules: in
uniaxial smectic A phases “the distribution function canipe factorised if the decoupling ap-
proximation is introduced at a later stage in the McMillaadty”. We will see that, the factori-
sation of the partition function makes the calculationstaimpler since one partition function
is simply the Bessel function of the second kind of zerotrear@he new internal energy in the
KLZ approximation is

U = —(1/2) (W + 3w (DL DL+ w7 (DE (DY, >). (7.2.11)

The distribution function for this approximation can beridiby minimising the new free energy
with respect to the same constraints in subseéfion]7.2.Jgéthe potential of mean torque

U(Z,Q) {(uo + Z Uy (D pm Dflm>) T cos (2rZ/d)
+ 5" (wrmn + W) (DL, >D£pn(fz)}. (7.2.12)

Hence, the free energy at equilibrium is

A= —kgTlogQ + (1/2) (UOT2 + 3 wpn (D5 (DY) + 33 <D£m>)

(7.2.13)
We can further facilitate the calculations by factorisihg partition function as a function of the
translational and the orientational partition functions

Q = QzQq. (7.2.14)

Where the orientational partition function is

Qa = / exp (}CBLT > (uLmn + Uy, m)DS, >D£pn(sz)> do. (7.2.15)
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And the translational partition function is

1
QZ — dI() <I€B—T(U0 + ZulLﬂLn<D;zI;nL><D£pTL>)T> . (7216)
Here,I,,(a) is the Bessel function of the first kind which is shown in equa{6.2.12).

We will see later that, within the KLZ decoupling approxinoat and for some interaction
parameters, the equilibrium free energy does not have nainifich correspond to the so-
lutions of the self-consistency equations. Therefore, @sont to the method of solving the
self-consistency equations. In order to make comparisetsden the equilibrium and non-
equilibrium free energy surfaces, here we introduce the 8HKilee energy for biaxial smectic
A phases. This is analogous to the derivation for biaxial atéra which we have discussed in
section 2.b. We note that in this case the integration isntaker both the orientation and the
position in theZ direction. The non-equilibrium potential of mean torque is

U(Z,Q) = —kpT (no cos (2 Z/d) + 3 anmpgm(Q)) . (7.2.17)
In addition, the entropy can be written as

§ = kg (07 + > tpm{Dfn) ~ 108 Q) . (7.2.18)

Hence, we can construct the non-equilibrium free energy feguation[{2.3.70).

In order to simplify the problem, we use the approximatign, . = ctrm,,. We note that, this
approximation preserves the rotational invariance of thial internal energy. We also séts

d = ug/(ugppr). The stability analysis in Appendix]G can give us a roughneste of when
the method of minimising the equilibrium free energy fadsastork. We examine three models:
uniaxial smectic A formed from uniaxial molecules, biaxgsatectic A with KLZ-GM (KLZ and
geometric mean) approximation and biaxial smectic A witiZK&VD (KLZ and Sonnet-Virga-
Durand) approximation. In all three cases, we have Bept0 and have found that fax > 1/3
the classical method of minimising the equilibrium free rgydails, regardless of the biaxiality
parameters.

7.3 Uniaxial Smectic A Phases formed from Uniaxial Moleculg

7.3.1 McMillan and KLZ Theories

Here, we briefly discuss the two theories for uniaxial sneestiormed from uniaxial molecules
as an example before discussing the more complicated systémaxial smectic A. First, we
consider the McMillan theory. The internal energy is given b

U= —(1/2) (UOT2 + U20052 + u/2000'%00) . (731)
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In addition, the potential of mean torque is

U(Z,9) = — (uot cos (21 Z/d) + u00 S Pa(cos B) + o200 Po(cos B) cos (2rZ/d)) .
(7.3.2)
And the equilibrium free energy is given by

A=—kpTlogQ@ + (1/2)(u07'2 + 90092 + uéooagoo). (7.3.3)

It was mentioned by McMillan tha]ﬂ[G] a model for uniddmectic A phases by Kobayashi
had been developed earlier. In this model, only the pureskational interaction term was
added to the Maier-Saupe theory. In contrast, in McMilldirst paper on modelling these
phasesﬂ6], he only added the mixed interaction term to theeiMgaupe theory. In his later
paper, he included both the pure translational and the mixedaction term to the Maier-
Saupe theory. Hence the pure order parameisrthe density wave amplitude, and the mixed
order parameter is required to model the coupling between the translatiandl orientational
order. The addition of the pure translational interactiernt was needed to reduce the values
of the order parameter, entropy and heat capacity at theeghassition in order to reach better
guantitative agreements with experimental results. Therthin the later paper by McMillan
which includes both the pure-translational and the mixéetaction terms are also referred to as
the McMillan-Kobayashi theory by some auth|_[_1|, 10]. Inliidn, as mentioned by Osipov
[IE], a limitation of this theory is that it does not allow tHetermination of the smectic period
in a self-consistent way.

In the McMillan theory, the order parameters only involve first order term in the Fourier
series,cos (n2nZ/d), wheren is zero or+1. However, the symmetry of smectic A phases
permits other higher order terms in the Fourier series, hafoe|n| > 1 ]. The effects of
these higher order terms has been investigated, for examplarguta, Martin del Rio and de
Miguel ]. In their calculations, the Fourier series pfton = 5 was included. They found
that, although there are some quantitative differencei@oMcMillan theory, the inclusion
of these higher order Fourier terms does not solve the instensies between the McMillan
theory and experiments in the values of the order parameténopy and heat capacity at the
phase transition. Therefore using the first order Fourien t® construct the order parameters
is sufficient within the molecular field approximation.

In order to apply the KLZ theory, the decoupling approxiroatneed to be introduced when we
formulate the internal energy. The decoupling approxiamais o999 = S7. Hence the internal
energy is given by

(U) =—(1/2) (u07'2 + u90092 + u’2007252) . (7.3.4)

In addition, the potential of mean torque is
U(Z,B)=— ((Uo + o S?)T cos (2m Z/d) + (ua00 + thgoT>)SPa(cos ﬂ)) . (7.3.5)
The free energy at equilibrium can be written as
A= —kpTlogQ + (1/2)(up7? 4 u200S? + 3ubgym>S5?). (7.3.6)

The partition function can also be decoupled into an ortearial and a translational part in the
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form (Z.Z.1%). The orientational part is

1
Qp = /exp <kB—T(u200 + oo T?) S Py(cos ﬁ))dcos B, (7.3.7)
and the translational part is
1 / 2
QZ = I(] —]{BT(uO + U2005 )7_ . (738)

The detailed comparisons of the two theories have beenrpegtbwhen the KLZ approximation
was first introduced in referende__[_i27].

In order to reduce the number of parameters in the model, ale slise temperature with the
anisotropy of the molecule%;* = kT /usg9. We keep the original notation by McMiIIa@ZG]
to scale the mixed interaction parametéy,, = ausno, and the pure oneyy = dauggg. The
parametery can be thought of as dependent on a factor which governsahiitstof the smectic
A phase, such as the chain length of the molecules. The cunsia only a proportionality
constant. This is to make sure that when the chain lengtlesabioth the pure translational and
the mixed interactions also changes accordingly. Sindagehe value o# to non zero does
not change the qualitative behaviour of the McMillan mo according to a calculation by
the author, we keep = 0 in the following calculations.

7.3.2 Failures of Minimising the Equilibrium Free Energy

The method which we usually used to solve the molecular fiedries which is to minimise the
equilibrium free energy obtained by the variational deitvaby de Gennes fails to work here.
While this method work for small values of the parametefor large value ofx and at some
low temperature, the free energy behaves unexpectedlyn&gample, we take the parameter
seté = 0, « = 0.5 at the scaled temperatu?& = 0.08. The minimisation of the equilibrium
free energy gives a solutio®) = 0.9828 andr = 0.8165, which is shown as a red cross in figure
[72(a). At a lower temperatufE* = 0.05, the solution which corresponds to the minimum of
the equilibrium free energy is invalid with = 1.0438 andr = 0.8165. Now we need to check
whether this anomalous behaviour also occurs in the selfistency equations

S = le /PQ(COS B) exp (T*_l(l + a7?)S Py (cos ﬁ))dcos B, (7.3.9)

T=Q;'I (T*‘l(é + aS2)T) : (7.3.10)

Solving these self-consistency equations gives us a diftesolutionS = 0.9375 andr =
0.8909 at7™* = 0.08. This solution of the self-consistency equations can be,se®a red dot,
in the contour plot for the free energy in figlre 7.2(a) as alladoint rather than a minimum.
In this case, minimising the non-equilibrium free energyegius the same solution as solving
the self-consistency equations, in marked contrast wélcthssical approach of minimising the
equilibrium free energy. The contour plot for the KKLS fregeegy is shown in figurg 7.2(b).
The minimum of this free energy is also shown as a red dot wisietell-behaved and at the

145



same location as the solution of the self-consistency aqnsatThe suscess of the KKLS theory
in this case can be considered as an explanation for thedaifithe old method of minimising
the equilibrium free energy. For completeness, we show thatens of the KKLS theory
below. In the calculations, we solve the self-consistempyadions instead of minimising the
KKLS free energy. It is because near a first order phase tramsive may have more than
one local minima and we need to compare the correspondingwvaif the free energy to find
the global minimum. In minimising the KKLS free energy, wennat guess the values of the
Lagrangians which correspond to different minima in ordestart the minimisation algorithm.
The self-consistency equations are solved using the MAT lféi:tion fsolve This function
implements the Trust-Region dogleg algorithm, which israprovement of Newton’s method
in solving non-linear equations. We discuss the functiaivisin AppendiXE. In essence, we
give the computer program a starting point. The computegnara then looks for an estimate
of a solution to a desired accuracy using the given startoigtgor the search. After solving
the self-consistency equations, we check the solutionsisighe KKLS free energy at selected
values of the parameter and scaled temperature to make sure it does give a minimutreof t
free energy. This method of calculations is also employehee the self-consistency equations
of biaxial smectic A phases.

0.9 0905 0.91 0915 0.92 0.925 0.93 0.935 0.94 0.945 0.95

(a) Equilibrium free energy. (b) KKLS free energy

FIGURE 7.2: The contour plots for the equilibrium and non-equilibn KKLS free energies
as functions of two order parametefsandr, for § = 0 anda = 0.5 at the scaled temperature
T* = 0.08.

The KKLS theory is given as follows. First, we maximise theérepy, subject to the order
parameters and the normalisation to get the distributioctian
f(Z,B8) = Q lexp (n; cos (2nZ/d) + ngPa(cos 3)). (7.3.11)
Here,
Qnz,mp) = //exp (nz cos (2w Z/d) + ngPs(cos B))dZd cos 3. (7.3.12)
Therefore, the order parameters are given by

S(nz,mp) = Q1 //Pg(cos B) exp (1, cos (2nZ/d) 4+ ngPa(cos B))dZdcos 5, (7.3.13)
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T(n2ymp) = Q! //cos (2nZ/d) exp (0, cos (2nZ/d) + ngPa(cos 3))dZd cos B. (7.3.14)

In addition, the internal energy is given by
U = —(1/2) (uoT? + u200S? + thgym25?) . (7.3.15)
Finally, we can construct the non-equilibrium KKLS free ggyefrom equation[(2.3.10) to give

A* = — (1/2)T_1 (U07'2 + U20052 + U,2007'2S2) + (7727'
+ 13S) — log(Q(n:,13))) - (7.3.16)

7.3.3 Calculations and Results

In figure[7.3, we show the phase map for the KLZ theory, whassset equal to zero. The KLZ
approximation produces the same qualitative featureseasrtginal McMillan theorymi]. All
the three phases are shown in the phase map: isotropic,ialm@matic and uniaxial smectic
A. The stability of the three phases is changed by varyingthectic interaction strength, As

« increases, first the nematic-to-isotropic transition terajure is constant. It is because in the
KLZ theory and also in the McMillan theory, the smectic iatetion strength does not affect the
molecular ordering in the nematic phase. In contrast, tiglgy of the uniaxial smectic A phase
increases as we increaae First theSmAy — Ny, then theSmA — I transition temperature
goes up on increasing. We see that, for small value of theSmA; — Ny transition is second
order. This behaviour changescaat= 0.52 where it becomes first order. In comparison, both the
Ny — I and theSmA; — I transition are first order for all the investigated rangexoFinally,

all three phases coexist at a triple point. There is a majantjative disagreement between
the KLZ theory and the McMillan theory when we seto zero: the location of the tricritical
point is lower in the KLZ theory compared to the McMillan tmgoThe tricritical temperature
of the KLZ theory is0.71Tx; whereas in the McMillan theory it i8.85T;. This value for
the tricritical point predicted by the KLZ theory accorditgour calculations is in agreement
with the original calculations by Kventsel, Luckhurst arelnaie (KLZ) L’I._Z}’]. They also found
that, as\ increases where is kept fixed, the value of the tricritical temperature teolbser to
Twnr1. Nevertheless, both the KLZ and the McMillan theories désccorrectly the qualitative
behaviour of a system forming the uniaxial smectic A phaskam be used interchangeably.
The KLZ theory has an advantage that we now also have themafiton on the pure translational
order parameter. In contrast, in order to have this ordemmpater in the McMillan theory we
need to seb to a non-zero value and the theory would become more compléxthivee order
parameters.

7.4 Biaxial Smectics A Phases

In this section we study the molecular field theory for bi&simectic A phases. We take the
assumption that both the phase and the molecular symmatgés,;,.
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FIGURE 7.3: The dependence of the scaled transition temperatuifeecgmectic interaction
parameterg, for the KLZ theory withd = 0. Continous lines denote first order phase transi-
tions whereas broken lines denote second order transifidvestricritical point is marked by a
circle.

7.4.1 Approximations for The Interaction Parameters

In addition to the KLZ approximation for the order paramsteve can either use the geometric
mean approximation as in section 2]14.3 or the SVD approximais in sectiof 2.41.4 for the ori-
entational interaction parameters. These latter appratkoms for the orientational interaction
parameters can help to reduce the number of orientationdar garameters from four to only
two. If we use the SVD approximation, the potential of meaque is given by

U(Z,9) = —ugo { (a((R3o)* + 2A(R3,)?)) 7 cos (21 Z/d)
+ (14 ar?) ({Rio) Roo(2) + 2M(R5) B3, (Q)) } - (7.4.1)

In addition, the equilibrium free energy can be written as
A* = —log Q + (1/(2T%)) { ({R§y)* + 2A(R3,)*)(1 + 3ar?)} . (7.4.2)

In order to find the stable state of the system at a given stahegerature, we solve the follow-
ing self-consistency equations

(Rfo) = Qq' / Rio() exp (T (1 + ar?) ((R3o) Ro(2) + 2M(R3) R3(2)) ) 4,

(7.4.3)
() = Q5 [ Byl exp (1711 + ar®) () Ry () + 2N By () ),

(7.4.4)

r=Q;'L (T*—l (a((RZ)? + 2M(R%,)2)) T) . (7.4.5)
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Here, the orientational and translational partition fiorts are given by
Qo - / exp (T (1 + ar?) (B30 R3o(9) + 2\ (R FR () )2, (7.4.6)
Qz =T (T (al{R3o)? + 2\(R%,)?) 7). (7.4.7)

If we use the geometric mean approximation, the potentiat@dn torque is given by

U(Z,Q) = —usq {(a((FU>2 + 2<FB>2)) Tcos (2w Z/d)
+ (L4 ar?) ((Fy)Fu(Q) + 2(F)Fp(Q)) } . (7.4.8)

In addition, the free energy is given by
A* = —logQ + (1/2T%)) { ((Fu)* + 2(Fg)*)(1 + 3ar?)} . (7.4.9)

The self-consistency equations for this case are

(Fu) =Qg' / Fy (Q) exp (T*_l(l+0z72)((FU>FU(Q)+2(FB>FB(Q)))dQ, (7.4.10)

(Fp) = Qg / Fp(Q) exp (T**(l +ar?) (Fy) Fu (Q) + 2<FB>FB<Q>>)dQ, (7.4.11)

T=Q,' L (T*_l (a((Fu)? +2(F5)?)) r) : (7.4.12)

where the orientational and translational partition fiord are

Qo = / exp (T (1 +a7?) ((Fy) Fir (©) + 2{F) Fis () ) (7.4.13)

Qz = Iy (T*_l (a((Fir)? + 2(Fg)?)) 7) : (7.4.14)

7.4.2 Calculations and Results

Figure[Z.4 shows four phase maps for the KLZ-SVD approxiomaiin which we fix the value
of a in each phase map and vary the biaxiality In figure[7.4(d) we show the phase map for
a = 0. This is in fact the same phase map presented by Sairedt ] which we have
described in sectidn 2.4.4. We recall that as the biaxialilgcreases, thé&/z — Ny transition
temperature also goes up. In addition, for large values tfiere is a line of first ordeNg — I
transitions. Next, in figurg 7.4(b), the value @fs set equal to 0.3. Now the upper boundaries
of the nematic phases, the order of the phase transitionsharidcation of the tricritical point
at high temperature are not affected by increasirfigom 0 to 0.3. It is because the smectic A
phases are formed at low temperature and in our theory, teetgninteraction strength does
not affect nematic ordering. In addition, the ground stafebe system at low temperature are
the smectic A phases instead of the nematic phases as wedwmvénsfigurd 7.4(%). We also
see that thé&mAy — Ny transition temperature is independent)ofin comparison with the
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Ny — I transition. It is because, in the SVD approximation, theepbéls of mean torque in
the uniaxial nematic and uniaxial smectic A phases do notgn)\, therefore the ordering
in these phases is independent\ofin contrast, the biaxiality parametardoes appear in the
potentials of mean torque for the biaxial nematic and sroécphases and hence they are more
stable on increasing. For small), theSmA p phase exists at lower temperature thanShed ;;
phase. For large value af theSmA ; region vanishes and there is a direct transition, first from
SmAp to Ny, and then fromSmAp to Ng. All phase transitions to the smectic A phases
are second order. The phase mapdok= 0.9 is shown in figurd 7.4(t). ThemAy — Ny
and Ny — [ transition temperatures are also independent of the liigxia We see that, the
Ny region now becomes much narrower and $weAy — Ny transition is now first order,
in agreement with the KLZ theory in figute 7.3. In addition, see that now théVz region
vanishes and is replaced by thm A 5 region. TheSmA 5 — SmA; transition is mainly second
order, with only a small region of it being first order, indicg a tricritical point in between
the two regions. As\ increases, the stability of thémA 5 phase also goes up, as we would
expect. Moreover, the phase sequence changesSmis — SmAy to SmA g — Ny and then
SmAp — I. We calculate a phase map fer= 1.2 which we show in figurg 7.4(tl). Now there
exists only three phases: isotropic, uniaxial smectic Alsiadial smectic A. The vanishing of
the uniaxial nematic phase is in agreement with figuré 7.3 Shbility of theSmA  phase
also increases with and the phase sequence changes ftonm\p — SmAy — [ to directly
from SmA g to the isotropic phase. While tiienA z — SmA transition is second order, the
SmA p — I transition is first order. It is curious that in this case wendbfind a tricritical point
along theSmA 5 — SmAy; transition line. It may be explained that, as the transitfodirectly
from the isotropic to the uniaxial smectic A phase, the ardgof the major axis is already
high at the phase transition. It would then be easier for thr®@maxes to align and the biaxial
ordering is formed at a high temperature, thus blocking adirder transition from uniaxial to
biaxial phase at a lower temperature. Hence a first dfdef 5 — SmA; transition does not
exist in this case.

Figured7.b show five phase maps for the KLZ-GM approximaitiowhich we fix « in each
phase map and vary the biaxialty The phase map fax = 0 is essentially the phase map for
the geometric mean approximation for biaxial nematics Whie have described in section 214.4
and is reproduced in figufe 7.5(a). We recall that the stglili both the uniaxial and biaxial
nematic phases increase on increasingtil they reach the Landau triple pointat= 1//6.
The phase map repeats itself for larger values ahd is not shown here. Asis set equal to
0.3, the behaviour of the nematic phases at high temperistae affected, as shown in figure
[7.5(b). The explanation is analogous to the KLZ-SVD appration. At low temperature, the
smectic A phases are stabilised. It is curious that, evengimehe biaxialityy does appear in
the potentials of mean torque for the uniaxial nematic andcsim A phases, themAy — Ny
transition temperature decreases very slightlyyascreases. In contrast, the stability of the
SmAp phase goes up significantly gsincreases. In addition, the phase transition changes
from SmAp — SmA; to SmAp — Ny and then tdmA p — N, in comparison with the KLZ-
SVD model in figurg 7.4(®). Moreover, all phase transitiomssept for theNy, — I transition,
are second order. Next, we show the phase mapfer 0.9 in figure[7.5(c). Now the extent
of the nematic phases are much smaller. In additionSthé;; — Ny transition is first order,
in agreement with the KLZ theory in figufe 7.3 for= 0. The stability of theSmA 5 phase
increases as goes up. ThémAp — SmAy transition is still second order. In contrast, the
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FIGURE 7.4: The dependence of the scaled transition temperatutieedniaxiality A for the
KLZ-SVD approximation when is fixed. Continous lines denote first order phase transtion
whereas broken lines denote second order transitions. rithiéid¢al point is marked by a red
circle.

SmAp — Ng andSmAp — Ny are first order. Foov = 1.2, the phase map is shown in figure
[7.5(d), the phase behaviour does not change in a significapt ithe nematic phase regions
now become much narrower, whereas the smectic A phase seggmome larger. In addtion,
there is a line of direct transitions from tSen A to the isotropic phase, in agreement with the
KLZ theory in figure[7.B fory = 0. Itis also curious that the stability of the biaxial smectic
A phase does not change in a significant way as we increasspecially for small values of
~. Now in the KLZ-GM approximation, we have not seen a direghsition from the isotropic
phase to the biaxial smectic A phase foas large as 1.2. Since we find that the stability of the
smectic A phases increase @sncreases, we would expect that the dirBatAp — I can be
found for larger values oft. Thus we increase to 1.5 and the phase map is shown in figure
[7.5(€). Indeed we find a direfinA z — I phase transition. Additionally, the qualitative phase
behaviour we find for this case is analogous to the KLZ-SVDraxmation for a smallety of

1.2 in figurd 7.5(0).

In order to illustrate the significance of the smectic intéicm on the stability of the biaxial
phases, we fix the biaxiality parameters and plot the depmedef the scaled transition temper-
atureT™ on the smectic parameter In figured7.6(a) and 7.6(b), we show these phase maps for
the KLZ-SVD and KLZ-GM approximation, respectively. Thewas of the biaxiality parame-
ters are chosen so that the biaxial nematic-to-uniaxialatientransition temperature is not too
high. Thus we choosg = 0.1 and~ = 0.3 for the KLZ-SVD and KLZ-GM approximations,
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respectively. We see that, the qualitative behaviour oftie cases is the same. For small
values ofa, the Ny — I and N — Ny transition temperatures are independentofThis is
simply because in our theory, does not influence the ordering in the nematic phases. As the
temperature is lowered, there is a second order phasetioansom the biaxial nematic to the
biaxial smectic A phase. Asincreases, thBmA p — Ny transition temperature increases. For
large values ofy, the biaxial nematic phase disapears. Instead, the uhr@maatic phase goes
directly into the uniaxial smectic A phase. It is followed &ysecond order transition into the
biaxial smectic A phase at a lower temperature. In additieafind a tricritical point along the
SmA — Ny transition line at 0.52 for both approximations. It is alsteresting to observe that
theSmA g — SmAy; transition temperature increases almost linearly with
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FIGURE 7.6: Figures (a) and (b) depict the dependence of the saaesition temperature
on the smectic interaction parameterfor the KLZ-SVD approximation withh = 0.1 and
the KLZ-GM approximations fory = 0.3. Figure (c) plots the dependence of the transition
temperature on the number of carbon atoms in the flexiblenadfad V-shaped moleculesin an
experiment reported in referen@Zl]. The smectic A phisggure (c) are antiferroelectric;
SmA 4 is uniaxial whereaSmA ;P4 is biaxial, Cr stands for the crystal phase.

The parametety in the molecular field theory can be related to the chain lerdtthe com-
pounds used in the experiments of biaxial smectic A phasesida V-shaped molecules

, ]. We can take a simple assumption thas proportional to the chain length. In
this case the molecular field and the experimental resultseagualitatively. We can make
this comparison by looking at the two phase maps from the cotde field theory in figures
[7:6(a@) and 7.6(b) and the phase map from an experiment oa]deshmoleculel] in figure
[7.6(c). Both the biaxial smectic A-to-uniaxial smectic Adamniaxial smectic A-to-isotropic
phase transition temperatures increase with the numberbdn atoms in the flexible chain. In
agreement, both these phase transition temperatures giruinevparametes in the molecular
field theory.

We see from figurefs 7.6(a) ahd 7.6(b) that, for a small biayiahe biaxial nematic phase is
formed at a low temperature. At that low temperature, a ngsiesn may already form a smectic
or crystal phase. However, for large smectic interactitims biaxial smectic A phase can form
at high temperature, even for those small biaxiality thastuelied. Therefore, the phase maps in
figure[Z.6 demonstrate that the biaxial smectic A phase iseasform than the biaxial nematic
phase.
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7.5 Conclusions

In this chapter, we have developed a molecular field thearpitaxial smectic A phases. Our
theory is an extension of the molecular field theory for uibgmectic A phases by Kventsel,
Luckhurst and Zewdie, or KLZ theory. The KLZ theory is an aitive of a classical molec-
ular field theory for uniaxial smectic A phases by McMillanhéke two theories are in good
qualitative agreement. One important approximation inkh& theory which we adopt is the
decoupling approximation which allows us to write each rdigeientational-translational order
parameters as a product of an orientational order pararaetethe translational order parame-
ter. In addition, we can use either the approximation pregdsy Sonnet, Virga and Durand or
the geometric mean approximation to reduce the number eft@tional order parameters and
interaction coefficients. Using these approximations, s @duce the total number of order
parameters from nine to only three. Thus the calculatioadailitated considerably. The cal-
culation results for this model reveal that the method ofimising the equilibrium free energy
sometimes fails to produce a desired solution. This can p&ieed by considering the non-
equilibrium free energy in the KKLS theory. We check that mmising the non-equilibrium
free energy does indeed give a desired solution. Using a ioatidn of the two methods and
by solving the self-consistency equations, we find that thbility of the biaxial and uniaxial
smectic A phases increase as we increase the smectic tidaraEven for a small molecular
biaxiality, a system with high smectic interaction stréngan still form a biaxial smectic A
phase at high temperature. In contrast, for the same higxialsystem with no smectic inter-
action needs to go to a very low temperature to form a biax@ahatic phase. Additionally, our
results can be made contact with experimental results lgr @foups by assumming that the
smectic interaction parameter is proportional to the clemgth of the constituent molecules.
These experimental results also shows that the stabilithebiaxial and uniaxial smectic A
phases increases with the chain length. Therefore, we wd@¢hat, with the same molecular
biaxiality, it is easier to form macroscopic biaxial ordeyiin the smectic A phases than in the
nematic phases.
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Chapter 8

Summary and Future Directions

8.1 Summary

In this thesis we have used the molecular field theory for ieraad smectic A liquid crystals
to study five problems arising from experimental work on @hrmolecules by other groups. A
main theme, with the exception of chagtér 6 is to stabilisertiotropic biaxial nematic or smec-
tic A phases formed from low molar mass molecules. An ovenoé the classical molecular
field theory for nematic phases is presented in chépter 2.aue left a review of this theory for
smectic A phases to chapfdr 7 since this is the only chaptiisrthesis which involves these
phases. The essence of the molecular field theory is an atsartipat a molecule only inter-
acts with a long-range molecular field generated by otheeoubés through a potential of mean
torque and short-range correlations are ignored. Thiscatdefield approximation can often be
tested and verified using lattice Monte Carlo simulationsmt@Ermolecular pair potentials analo-
gous to the molecular field potential. Additionally, there ather drastic assumptions about the
isotropic distribution of the intermolecular vector ane thominance of the second-rank inter-
action. These assumptions affect both the molecular fielehpial and the pair potential. Either
assumption can be relaxed in order to explain relevant tsfféiche molecular field theory also
assumes pairwise intermolecular interaction as domirfarice ignoring/V-body interaction,
where N is greater than two. Moreover, we assume volume changesaaephansitions as
constant, thus we can use the Helmholtz free energy to dgtertime equilibrium of a system.
This is clearly in comparison with the lattice Monte Carlmalation since in this simulation
the molecular positions are confined and so the volume ofytstersm does not change.

After all these assumptions are made, we identify a systestudy by making assumptions
about symmetry of the phase and the constituent moleculssgally, in constructing a theory
we assume that the lowest symmetry of the system is the sathe a®lecular symmetry. This
result can be tested in the Monte Carlo simulation, whereynongetry of the phase is assumed.
Often we also assume that the constituent molecules ace fiigie resulting system then depend
on a set of order parameters, temperature and intermotéotéaaction coefficients. Each liquid
crystal phase is determined by some non-vanishing ordenpeters. By scaling the tempera-
ture with an interaction coefficient, which is often the seteoank uniaxial anisotropic term,
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we can treat the system as general and not dependent on anificsp®lecular model. In ad-
dition, the other interaction coefficients can be scaleth thie second-rank uniaxial anisotropic
term to give interaction parameters. In the calculations,fiw the temperature and the inter-
action parameters and minimise the free energy in order dotti@ order parameters at a given
temperature, hence determining the stable phase at thpetatare. After that, we vary the
temperature to determine the phase transition temperakunally, the interaction parameters
are varied to determine the phase maps relating the tramsé@mperature with them.

A recent analysis on experimental results for biaxial néteasuggested that the classically
assumed symmetry of these phases should@heinstead ofD,;,. In chaptef B, we fixed the
assumptions about the symmetry of the constituent molsand the phase by assuming that
they are botlty;, instead ofD,;,. We get a theory with nine order parameters and five intenacti
parameters. The theory can be simplified further by keepigtbe dominant interaction terms
in the potential of mean torque. Thus, our system is reduzedmore manageable set of only
three second-rank order parameters and two interactianpers. Even with this simplified
model, we still found that the biaxial nematic phase wity), symmetry is stabilised at the
ground state of the system. It is all the more stable the nime&onstituent molecules deviate
from D5, symmetry. We also found that the nematic phase withsymmetry also has an axial
first-rank order parameter, in addition to the three seqant-ones. In going from the nematic
phase withCy;, symmetry to the isotropic phase, the system may go throwgtrttaxial nematic
phase or the biaxial nematic phase with;, symmetry. In fact we found two biaxial nematic
phases withD,;, symmetry but with different molecular organisation. In @imase, the assigned
molecular minor axes tend to be parallel whereas in the dtlegrtend to be perpendicular. Thus
this model produces a rich phase behaviour of biaxial n@sati

In chaptef#, we aimed to explain a disagreement betweenahecmar field theory and the ex-
periments of biaxial nematic phases formed from V-shapelécntes. While for this particular
V-shaped molecule, the theory predicts that biaxial nessatannot be formed in real system,
they are stabilised at high temperature in the experimemexplain this disagreement, we add
a first-rank interaction term to the potential of mean tortjudescribe dipolar interaction. This
first-rank interaction is expected theoretically since th@ecules have polar shape and pos-
sess a large electrostatic dipole. The first-rank intesacsirength is governed by a first-rank
order parameter and a first-rank interaction parameter. c@gulations show that the dipolar
interaction stabilises the biaxial nematic phase at higiptrature for the V-shaped molecule
analogous to that used in the experiments. Thus this mogédies the disagreement between
theory and experiment. In addition, we show that the dipoitaraction stabilises the polar
biaxial nematic phase. This is another nematic phase of tmrtower thanDs;,, namelyCy,,.

The assumption on molecular rigidity is relaxed when we il effect of molecular flex-
ibility on the stability of biaxial nematic phases in chaff® We study a simple system of
liquid crystal dimers whose constituent molecules can addarge number of shapes, or con-
formation. Our model is simplified in that there are only tvamformers: linear and bent with
tetrahedral interarm angle. Hence one is uniaxial wheteasther has maximal biaxiality. We
find that, when we assume the Boltzmann factor in the confiome distribution to be in-
dependent of temperature, the linear conformer is moreufaebby both biaxial and uniaxial
nematic systems. However, this effect is less importantwire allow the Boltzmann factor in
the conformational distribution to be temperature depehdenportantly, we find that in order
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for the biaxial nematic phase to stabilise, the confornmai@nergy of the bent conformer needs
to be lower than the linear one and the difference betweerdh&rmational energies should
be sufficiently large.

The motivation for chaptef]6 is a recent success in obserairgignificant increase in the
magnetic-field induced uniaxial nematic to isotropic tiaos temperature in experiments. This
success is partially attributed to a high magnetic fielchfite of 31 Tesla used in the experiment.
We have proposed that this success is also due to high matdaialxiality of the constituent
molecules. Hence, we extended the classical model for i@hingmatic formed from biaxial
molecules to include an interaction with the magnetic fialde found that, for systems with
high molecular biaxiality, the effect of the magnetic field the transition temperature is more
pronounced than for those with low molecular biaxialityabidition, the magnetic critical point
for systems with high molecular biaxiality is closer to theacing point than for those with low
molecular biaxiality, thus might require a smaller critifield strength to observe. Moreover,
the critical exponent is cubic. We also related our theompwie Landau-KKLS theory to build
up molecular structure into the Landau expansion. Heneerdbults which we obtained by
solving the molecular field theory are analytical in the Lamd&KLS theory and they agree
qualitatively with the molecular field theory.

Finally, we developed a molecular field theory for biaxiakstic A phases in chaptér 7. To keep
the problem simple, we assume that the phase and the censtitwolecules hav®,;, symme-
try. We use the KLZ approximation which assume that a mixéshtational-translational order
parameter can be written as a product of an orientationarqgrdrameter and the translational
order parameter. In addition, we considered two cases whengsed either the SVD approxi-
mation or the geometric mean approximation for the oriéotat interaction parameters. Thus
our theory for the biaxial smectic A phases is greatly sifigaito only three order parame-
ters and three interaction parameters. We set the interapirameter which scales the pure
translational interaction to zero, hence we are left witly dwo interaction parameters. The
calculations show that, for high smectic interaction, tiexial smectic A phases are easier to
form than the biaxial nematic phase. In addition, using $imsplified model, we can produce
results that are in qualitative agreement with experiments

8.2 Future Directions

There are several research directions which can be takedteiocethe works in this thesis. One
thing could be done is to build in more complexities withircleahapter in order to study more
realistic systems. Another direction is to combine the ti@san some chapters into one model.
This allows us to include many effects into a molecular fiettlel and to see how they influence
each other to stabilise or destabilise the biaxial phases.

For the model of biaxial nematics with,;, symmetry in chaptdr 3, we may include more terms
in the potential of mean torque, thus we can see the effetteofrtinor interaction parameters
and order parameters. In addition, we can explore the mialeocuwganisation with respect to
the phase axes. We may be able to see if the molecular orderisgrss;\*, S;4, 524 and
S44 have the same eigenframes or not which we have not been aeweer in the simplified
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model. In order to relate all five interaction parameterdtorholecular structure, we may use
the excluded volume method. However, the resulting theatly mine order parameters is still

challenging to solve. Hence ingenious computer algoritams coding should be exploited to
resolve this issues.

The calculation results on rigid V-shaped molecules whiehhave presented in chaptéis 4
and[6 are aimed to explain some experimental results. Mor& wan also be done in these
directions to explore the theory further. One may add maeldr interactions in the directions
perpendicular to the existing dipole, in order to see if thexial nematic phase is stabilised
or not. The question about how local ordering influences takilgy of the biaxial nematic
phase also permits further exploration. This would invadeling more complication into the
molecular field theory to a different level. Thus instead n&anolecule interacting with the
molecular field, we may have two or more molecules intergcith the field. Moreover, we
could use the lattice Monte Carlo simulation in which thesimolecular vector distribution is
anisotropic. Again, this would require ingenious methadsdlve. For the magnetic interaction
case, it is still unclear why the ratios in the experimentrateh larger than the molecular field
theory. One possible explanation is that the theory has a p@aliction of the supercooling
temperature. This can also be tested by using the many-sikecoiar field theory or lattice
Monte Carlo simulation.

In chapter$13 anid 4 we study biaxial nematic phases of lowansstry than usually assumed.
However, assuming that second-rank interaction in liqudtals is dominant, biaxial nematic
phases with symmetries even lower thi@h, andCs, are allowed to exist. They arg; andC
symmetries. Thus we may develop molecular field theorieshiese phases. They would be
a combination of the extension of the models in chagiers #arfsuch systems would have a
very rich phase behaviour with several nematic phases fefrdift symmetries.

The model which we have used in chajter 5 is a very basic mddheve molecular flexibility
influences the stability of the biaxial nematic phases. thén significant to extend this model
to allow us to study real systems of nematic liquid crystaltis could be achieved through
several steps. Ideally, we may start with flexible molecutgsherate its many conformations
which may have different symmetries. Then we solve the nutdedield theory for these many
conformations. This appears to be a formidable challengeadelling and solving the theory.

In chaptefl, we have developed a model for biaxial smectibasps withDs;, symmetry. Thus

a valid question would be whether the biaxial smectic A phasa adopt lower symmetries as
the biaxial nematic phases. This can simply be done by intiog the order parameters and
interaction parameters which are responsible for smectlerng into the theories of biaxial
nematic with symmetries lower thaby,. Assuming the second-rank interaction is also dom-
inant in the smectic A phases, the symmetry of biaxial sme&tphases can b€y, C; and
Cs. In addition, if first-rank interactions are also allowed may have a polar biaxial smectic
A phases with ferroelectric character. Moreover, biaxmkstic A phases have been found to
stabilise by some liquid crystal dimers. These moleculesaghly flexible. Therefore, in order
to have a realistic model of these systems, we need to allewntiiecules in the molecular field
theory to change their shape. This would be a joined projétttive extension of chaptet 5.
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Appendix A

Explicit Expressions for some
Clebsch-Gordan Coefficients and
Small Wigner Rotation Matrices

The explicit expressions for some of the Clebsch-Gordarfficmts C'(22L; mm') that are
used in this thesis are:

C(220;00) = C(220;2 — 2) = C(220; —22) = 1/+/5,
C(222;00) = C(220;02) = C(220;0 — 2) = C(220;2 — 2) = C(220; —22) = /2/7,
C(224;00) = 3,/2/35,
C(224;02) = C(224;0 — 2) = (1/2)/6/7,
C(224;22) = C(224; -2 —2) =1,
C(224; —22) = C(224;2 — 2) = 1//70. (A.0.2)

The explicit expressions for the small Wigner rotation ricasd’ (3) used in this thesis are

dgo(8) =1,
dgo(B) = cos B,
dh(ﬁ) = d1—1—1(5) = cos? B/2,
di_y(B) = di_(B) = sin® B/2,
d2,(B) = (3 cos % — 1)/2
d(2)2(ﬁ) = d(%—z(ﬁ) = d%o(ﬁ) =d2 20(8 \/ﬁsm
d%z(ﬁ) = d2—2—2(5) = Cos (5/2)7
d3_(B) = d25,(B) = sin®(5/2),
dgo(8) = (35/8)cos(B) — (15/4)cos?(B) + (3/8),
dga(B) = d§_5(8) = d3y(B) = d5(8) = (V10/8)sin’(B) [Tcos?(B) — 1]
di,(B) = di_,(B) = diy(B) = d*4(B) = (\/(70) /16) sint(8). (A.0.2)
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Appendix B

Minimisation Methods

In order to minimise the free energy, we use the MATLAB fuactimincon An example of a
free energy function is in equation (2.41.35) for a systenmfed from identical molecules with
Do, symmetry using the geometric mean approximation. This rgigedescribes the specific
algorithms which we choose to minimise the free energy. Bs@pve want to minimise a
general functiory (x) of a vector variables with a vector functiorg; (x) containing the values
of the equality and inequality constraints evaluated.aiVe take a few steps in developing the
complexity in our algorithm. First of all we show how Newtsimhethod can be used to solve
a nonlinear non-constrained minimisation problem in appeB. 1. Next, in appendikBl2, we
apply Newton’s method to show that the solutions to a geregahlity constraint nonlinear
minimisation problem are the same as a Sequential Quadratigramming problem. After
that, in appendix_Bl3, we show how to use the Sequential QtiadProgramming to solve
minimisation problem with inequality constraints whictaisalogous to minimisation problems
with equality constraints. This last case has been usee ifutictionfminconin order to find the
global minimum of the free energy of our system. In order tal dgth inequality constraints,
an algorithm called null-space active set method is empleyieich is discussed [0 B.4. Finally,
in appendi B.b we discuss an algorithm to find a step lengéaeth iteration in our algorithm.

B.1 Application of Newton’s Method for Non-constrained Norlin-
ear Minimisation Problems

Newton’s method is a method for solving a system of nonlireguations of general form
f(x) = 0 wheref is a vector function of a vector variables Suppose at iteratioh in the
algorithm the estimate of the solutiotf is x(¥). Newton’s method computes the improved es-
timatex(**1) at stepk + 1 by setting the local linear approximation to the functipat x(*) to
zero and then solve to get**!). The estimate at step+ 1 is given by

xF+D) = x®) _ 3-1p(x0)) g =0,1,2,..., (B.1.1)
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provided that the Jacobian matxof f is non-singular. Newton’s method has been proved to
converge quadratically to a solution.

Newton’s method can be applied to a hon-constrained nanliménimisation problem to find
the direction in the variables to go to the next iteration

min f(x), (B.1.2)

by setting the first derivative to zero and solve the corredpg nonlinear systerw f(x) = 0.
The solution then gives us the direction to the minimum, led sufficient conditions of the
first and second derivatives ¢fare satisfied. The Newton’s direction is then

T
x(FHD) = x (k) _ (Hf(x(k))) Vix®Y) k=0,1,2,..., (B.1.3)

whereH f (x(*)) denotes the estimate of the Hessian matrix of the functien at stepk in the
iteration.

B.2 Sequential Quadratic Programming for Solving Equality Con-
strained Nonlinear Minimisation Problems

Before deriving the Sequential Quadratic Programming pgtive present the theorem which
gives the first order necessary conditions for a generalimssni minimisation problem. Given
the following minimisation problem

min f(x) (B.2.1)
subject to

g(x) =0,

h(x) > 0. (B.2.2)

We define the Lagrangian to bgx,v,0) = f(x) — vg(x) + 6h(x) with arbitrary~y and 6.
Then there are Lagrange multiplier vectersandé*, with components; andé;, such that the
following conditions are satisfied at the minimusa*, v*, 0*)

(B.2.3)

The conditions in this theorem are often known as the Kakudn-Tucker conditions. The
proof of this theorem is complex so we do not include hereirftarested reader see in Nocedal
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and Wright |L1_2b].

Now we come back to our minimisation problem which only imigiequality constraints
min f(x), (B.2.4)

subject to
g(x) = 0. (B.2.5)

If x* and~* are the solution and the corresponding Lagrange multipketors, respectively,
then the followings are satisfied according to the first oogtimality conditions

Vf(x*) - Vgx*)Ty* =0,
—g(x*) = 0. (B.2.6)

Hence the minimum can be found by applying Newton’s methothéofollowing system to
solve forx and~y

V/f(x)—Vgx)Ty =0,
—g(x) =0. (B.2.7)

An iterative step in Newton’s method applying to this sys@monlinear equations is

HL(x"),70) —vg(x®)\ ( p® VL(x®,®)
( —Vg(xtHT 0 >< *(k) ) - _< —g(x®). ) (B.2.8)

Here,p is the desired step from the estimatdo the minimumx*, p = x* — x In fact these
conditions above also satisfy the first-order necessaryglitons for the following quadratic
program

min %pT.HL(x(k), fy(k))p + VL(x(k), fy(k))Tp + L(x(k), fy(k)) =0, (B.2.9)

subject to
Ve(x®)Tp 4 g(x®) = 0. (B.2.10)

Hence the Sequential Quadratic Programming method is &eguivto Newton’s method applied
to the first order necessary conditions, solving the quadpadbgram generates the quasi-Newton
steps. Because of the constraints, the quadratic prograquisalent to

. 1
min EpT,HL(x(k:)7 fy(k:))p + Vf(x(k), f},(k))Tp + f(x(k), ’Y(k))7 (B.2.11)

subject to
Ve(x®)Tp 4 g(x®) = 0. (B.2.12)

Finally, we can drop the last terff(x(*), v(*)) since it is irrelevant in determining(*). There-
fore the quadratic program is

1
min  op" HL(xM,7M)p + Vf(x",+)Tp, (B.2.13)
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subject to
Ve(x")Tp +g(x®) = 0. (B.2.14)

B.3 Sequential Quadratic Programming for Solving General on-
linear Minimisation Problems

A general nonlinear minimisation problem has both equalitygl inequality constraints

min f(x), (B.3.1)
subject to

g(x) =0,

h(x) <0. (B.3.2)

Following the analysis for equality constrained minimisajf the Sequential Quadratic Program-
ming can be extended to a general nonlinear programmingdgmmbThis is the method used
in fminconto locate minima of a general nonlinear smooth constraimetlem. The quadratic
program is now replaced by

, 1
i §PT-HL(X(’“),7(’“))1) + VF(x® 4T p, (B.3.3)
subject to
Ve(x*)T.p+gx®) =0,
Vh(x*) T p + h(x®) < 0. (B.3.4)

In fact this quadratic program also generates Newton steps.

In practice, quasi-Newton methods are often used instebdtkwton’s method. Quasi-Newton
methods are like Newton’s method except the Hessian of thealngjian is approximated instead
of calculated directly as in Newton’s method. The most papugjuasi-Newton algorithm is

the BFGS method, named after its discoverers Broyden, Hdet&oldfarb and Shanno. The
method converges superlinearly, which is slower than Nelwtmethod which is quadratic but
faster than linear convergence. However Newton’s methqdires the calculations of second
derivatives at each step which is more expensive and so t&SBhRethod is more favourable.
The derivation of the approximation formulae for the Hessiaatrix is rather complex and we
only give the formular here for completeness

\VAGORvIALM (H(k)p(k’)) (H(k)p(k’))T

(k+1) _ k) _
= S rwr pT HFpH)

(B.3.5)

whereH¥) is the approximation of the Hessian matrix at stejp1”.
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B.4 Null-space Active Set Method for Solving Quadratic Progams

At each step, a general quadratic program has the form

1
min EpT.HL(x(k), fy(k))p + Vf(x(k), fy(k))Tp =0, (B.4.1)

subject to
Vh(x*)T'p + h(x®)) <0, (B.4.2)

here we do not include equality constraints since it is éwaht to our problem anyway. For
simplicity we rewrite the quadratic program as

1
min §pTHp +c’'p. (B.4.3)
subject to
Ap <b. (B.4.4)

The active set method involves two phases. In the first phdeasible starting point is cal-
culated. In the second phase the method generates arviesatjuence of feasible points that
converge to the solution. Now we define an active Aaehich is the set that keeps informa-
tion about the active constraints (those that are on thetr@nsboundaries). The number of
columns of the active set is equal to the dimensiop @ind is always fixed, we call . The
number of rows of the active set at each step is the numbeeddtive constraints at that step
and we call itl. At each iteration, the active constraint is updated, angésl to form a basis for
a search direction. The search direction is then calculatedminimises the objective quadratic
function while remaining on any active constraint boundary

The first phase involves the computation of a feasible s@ntioint p(®) is not discussed in
details in the documentatiomm] so we obmit here. Howewene strategies can be found in
Nocedal and Wrigh@9].

After the feasible starting point is found, the quadratioggamming starts. At each step the
quadratic programming is solved for the search direafighwith the intention of settingl/) =
p@) — pU=b . The problem now has the form

min %dTHd +cWTq, (B.4.5)
subject to
AVd =o, (B.4.6)
where
d=p-p",
V) = HpY) + c. (B.4.7)

Now it is clear from the constraints that the search directl® must be in the null space of
the active setA (the space formed of vectors whose products vftlgive the zero vector).
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Therefore the search direction can be formed from a B&$iswhose columns are orthogonal
to the active set such th&()TZ0) = 0. This null space matrix can be formed from the last
m — [ columns of the QR decomposition of the matAx Now since the search direction is in
the null space of the active constraints, it is a linear conation of the columns d&(?), in other
wordsd) = ZU)s() for some vectos?). Then the quadratic program is now in termss@t
instead ofd /)

min %STZU)THZU)S +cT'zZs. (B.4.8)

The search directios’) can be found by setting the gradient of this function to zerd solve
the corresponding linear equations. After tkit) can be found. If we can takpl+!) =
pl) + d¥) without violation of any inactive constraints then thatpste accepted. Otherwise
we move to the nearest boundary by takisig™) = p@) + §d/) where

_ . —(ApY) —by)
Then the active set is updated. The quadratic subprograennisrtated wherl) = 0 and the
corresponding Lagrange multipliers are non-negative. Odgrange multipliers are found by
solving the first order optimality conditions

AT — ¢, (B.4.10)

If any Lagrange multiplier is negative then the columns @f dttive set corresponding to that
Lagrange multiplier does not correspond to an equality ttaims and is removed from the active
set and a new iterate is sought.

B.5 Line Search Method for the Determination of Step Length

Now we have solved the quadratic subprogram to find the sefirettionp*) to move along.
The new point in the next iterate has the fox®it?) = x(*) + oK) p(*) where the step length
a®) can be found by line search method. In line search methoe #rertwo phases. The first
phase is théracketing phasevhich finds an intervala, b] containing acceptable step lengths
[a,b]. The second phase is called thelection phasé¢hat iteratively reduce the interval of
acceptable step lengths by interpolating some of the foinethd derivative information gathered
on earlier steps to guess the location of the minimiser. & e several methods that can be used
in these phases and we are not sure which one is employfadiricon Some of the methods
are listed in chapter 3 of Nocedal and Wrigzg]. During #election phase, the optimal
solution is found when it satisfies the Wolfe conditions

wherec; andcy are constants with < ¢; < ¢ < 1. ¥ is called merit function which is the

same as the objective functighin non-constrained minimisation. In constrained minirieaa
the merit function is an addtion of the objective functiorddarms which takes into account
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the constraints to ensure that the next iterate does not gy foom the feasible region. The
discussion of the merit function in this case, especiaklydhe used ifminconis rather complex
and we refer reader to references in the documentd@ [80]the book by Nocedal and
Wright M]. The first condition ensures that the step lbngt?) give sufficient decrease in
the merit function’. We see that the reduction ih should be proportional to both the step
length and the directional derivativéw *)Tp(¥) The second condition is called the curvature
condition which ensures the the algorithm makes reasomabtgess by ruling out unacceptably
short steps. This second condition means that, if the skp&ad small then we cannot expect
much more decrease in the merit function in this directionvecshould stop the algorithm. In
practice the values af; andc, are aboutl0—* and0.9, respectively for Newton and quasi-
Newton method@%
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Appendix C

Analytical Results for the Biaxial
Nematic-to-Uniaxial Nematic Phase
Transition

We consider the relation at the second-rank biaxial nertatimiaxial nematic phase transition

T _ 9t / (F(2)* exp (—

U200

Uy (£2)
kT

>d(Q). (C.0.1)

The function inside the exponential function is the potraf mean torque in the uniaxial phase
and so it is independent of the angleHence we can write this as

% =20y / { [/ (FB(Q))zda] exp (gg;“)) } d(w), (C.0.2)
where
Fp(9) = (R3(2)% + 2y R3 () R3(Q) + (R, (). (C.0.3)

This can be expressed in terms of the quadratic producteditgner rotation matrices by writ-
ting the R functions in terms of them. The quadratic products of then&fgotation matrices
are given by

D2

mn

(@)D

m/n’

(Q) =) _C(22L;mm/)C(22L; nn')Df 4 s 1y (), (C.0.4)
L

Bearing in mind that the Wigner rotation matric@étm((l) vanish under the integration with
respect tay, the results of the quadratic products which are non-zedeuthe integration over
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o are

(1/5) = (2/7)Dg,y () + (3/35) Do (),
(2/T) Do () + (1/2)4/2/35(1/2)\/6/7 D5 ()
D35(2) x D25_5(2) = (2/7)DF_5 () + (1/2)1/2/35(1/2)\/6/7Dgy (),
D3y () x D2, _5(9) = (2/7) Do () + (1/2)1/2/35(1/2)/6/7Dg (%),
D?50(2) x D3_5(2) = (2/7)D5_5(Q) + (1/2)1/2/35(1/2)1/6/7D5_5(%),
D3,(Q) x D25 5(Q) = (2/7) Dy (Q) + (1/70) Dgy (),
D3,() x D? 55 (Q) = 1/v/70D5,(9),
D3_5(2) x D2,(Q) = 1/5 + (2/7) Do () + (1/70) Do (),
D3_5(Q) x D2, ,(Q) = 1/v/70D;_4(Q).

D3,(92) x D244(Q) =
D%O(Q) X D%22( )=

(C.0.5)

Averaging these order parameters over the orientatiorséilolition function for the uniaxial
phase we get the relation of the biaxial nematic-to-unlanémnatic phase transition temperature

and the uniaxial order parameters

kT _ 1429° | ( 2+4w ) (R2,) + 77<R%2>

U200 5

+(22) (R) + 22 (R) + /327 (REy). (C.0.6)
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Appendix D

A Proof of The Rotation Tensor

Let R be a rotation tensor which rotate a vectoaround a unit vectos = (ay,as,a3)’ over
an angle? and send it to a new vecter. We want to prove that

R = A9, (D.0.1)

whereA is a skew symmetric tensor associated with the unit vector

0 —as as
A — as 0 —a (D.0.2)
—a9 al 0

The proof is as follows. First we note that the new veatbis related to the original vector
via the Rodriguez rotation formula

v =vcosf+a(a.v)(l —cosf)+ (ax v)sinb. (D.0.3)
Suppose now = Af is very small, such that
cos Af = 1, sin Af «= Af. (D.0.4)

so that
v v+ Ab(ax v). (D.0.5)

Now we let A be a skew symmetric tensor associated with the unit vegteuch thatAv =
a x v, clearly A is given by equatior {D.0l2). Hence to first order, the rotatensor is

R =1+ A0A. (D.0.6)

Now the rotation around over an arbitrary anglé consists ofN small rotations, wheréV is a
large number, each takesarounda over an anglé /N with the rotation matrix

0
Ry =1+ A, (D.0.7)
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and so the rotation tensor ouers

0 N
R = (1 + NA) . (D.0.8)

Letting V goes to infinity we then have equatidn (DJOR.)= e4?.
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Appendix E

Numerical Method for Solving the
Self-consistency Equations

In this appendix, we discuss the trust-region dogleg algariwhich is implemented in the
MATLAB function fsolve We have used this function to solve the self-consistencatons in
chaptef . The contents of this appendix are taken from teardentation for the MATLAB
Optimization ToolboxEO].

We recall from appendik Bl1 Newton’s method can be appliesoloe a system of nonlinear
equationsf(x) = 0 by improving the estimate (%) of the solution at each step to give the new,
better estimata(*+1) = x*) 4 d(*), Here,d®) is the solution of the equation

IJ(xMatk) = — p(x*)), (E.0.1)

whereJ (x(®)) is the Jacobian matrix.

There are cases where this Newton's method can run into ulifés, as pointed out in the
documentation for the MATLAB Optimization Toolbox [130].0Fexample,J(x(*)) may be
singular, and so the Newton stel®) is not even defined. In addition, the exact Newton step
d®) may be expensive to compute. In addition, Newton's methogl n@ converge if the
starting point is far from the solution.

In order to improve robustness when the starting peifit is far from the solution and also to
handle the case when the Jacobian matrix is singulafTrib&t-Region Methodts used in the
MATLAB function fsolve. To use this method, a merit functismneeded to decide if the new
estimate is better or worse than the old estimate. Insteatleing the equatiod (E.Q.1), the
problem becomes a minimisation

min {(1 12) F(xNT F(x®)) 4+ dTI ()T £(x®) + (1 /2)dTJ(x(k))J(x(k))Td} , (E.0.2)

subject to
[Dd|| < A. (E.0.3)

Here,D is a diagonal scaling matrix an is a positive scalar which can be set in the algorithm.
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In addition, ||.|| denotes the 2-norm. In the algorithm, the sfép is a convex combination of a
Cauchy step (a step along the steepest descent directidrs) @auss-Newton step fgifx(*)).
The Cauchy step is given by

A% = —a (xT f(x®), (E.0.4)

wherea is chosen such that the expression in equafion (E.0.2) ismsied. In other words, the
expression Iikei(ck) is substituted into equatiop (E.0.2) and the minimisat®osalved fora. In
addition, the Gauss-Newton step is calculated by solviegetjuation[(E.0]1) using a method
discussed in the documentati(LE_LEhSO] which gilfé), . The stepd*) is chosen so that

d® = a® 1 (dgr])V _ dgﬂ) , (E.0.5)

where \ is the largest value in the interval [0, 1] such tha®) | < A. If J(x(*)) is nearly
singular,\ is set to zero.
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Appendix F

Solutions of the Landau-de Gennes
Theory of Field Induced Uniaxial
Nematics

F.1 Pure Landau-de Gennes theory

The Landau-de Gennes free energy expansion for uniaxiahtiesrin the absence of magnetic
field is
A= (3/4)a(T — Tie)Q? + (1/4)BQ* + (9/16)CQ*. (F.1.1)

The temperature and order parameter at the uniaxial neaeaisotropic phase transition can
be found by solving the system

A(QNy) = A(0),
DA DA
B)

_Q(Q?VI) = @(0) =0, (F1.2)

for non zeroQ%;;. The transition temperature is given by

1 B2
T =T + ——. F.1.
NI =t or s (F1.3)

And the order parameter at the phase transition is

2B

Q% = -5 (F.1.4)

The Landau-de Gennes free energy expansion for uniaxiahtiesrunder the interactions with
the magnetic field is

A= (3/4)a(T — Ty )Q* + (1/4)BQ® + (9/16)CQ* — hQ. (F.1.5)
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At the critical point, the free energy satisfies

oA _ A _0'a
9Q ~ 902 9Q?

All three derivatives need to be equal to zero. The first twodttions ensure that the critical
point is a stationary point of the free ener@lOZ]. Thedhiondition ensures that it is a
minimum or maximum. In order for it to be a minimum, we also chélee fourth derivative to
be positive.

= 0. (F.1.6)

Solving the third derivative of the free energy equal to zeve get the order parameter at the
critical point

Qe =55 = (/2R (FL.7)

In addition, the fourth derivative only depends ©n Therefore, we requir€ > 0. In order to
simplify the problem, we change the variable to

B
r=Q+ 55 (F.1.8)

The free energy can be rewritten as

1 B?
A :20334 + <§a(T —Tye) — — > z?

16 4 24 C
1 B 1 B3 1 B2
——a(T —Ty)= —h+ ——= —a(T — Thf) == - F.1.9
* ( g~ Tt~ i3 C2> vt s~ Tor) (F.19)
In order for the first two derivatives to vanish, we need
BT Ty - 25 g (F.1.10)
1¢ Mo e T -
and, \
1 B 1 B
——a(T —Ty)= —h+ ——= =0. F.1.11
5ol bt) g —ht {5 =0 ( )
These two equations give us the critical temperature
1 B2
T. =Tj T F.1.12
bf + 183aC ( )
which can be related to the applied field
T="T +iB—2 1+ n (F.1.13)
~ M 9raC 2h. ) -
This can also be written as ]
T. = Ty = 5(Ty = Tho)- (F.1.14)

We can eliminate: (T — Tj,¢) in both equationd (F.1.10) arld (F.1.11) in order to get titear

field ,
1 B
he =~ 557 7 (F.1.15)
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The transition temperature and transitional order paranfer a given field strength can be
found by solving the system

A(Qr) = A(Q2),

A 0A
@(Ql) = %(Qz) = 0. (F.1.16)
This can be simplified into a set of four equations
g(]m?’ + 3 (T T )—iB—2 12+ —la(T—T )E—h—i-LB—3 =
47712 e )t 6 e 162¢c2)
(F.1.17)
9 3 1 B2
ZC(.Z‘% + 22 + z30) + <§a(T — Th) — EF) =0, (F.1.18)
9 ) 3 1 B2
EC(I‘l + 25+ 22wy + 2123 + ZG(T — Tht) — el (x1 + x2)
1 B 1 B3

Using equation{E.1.17) we can eliminate the last term iragqo [E.1.ID) which gives

1 B2

gC’(—3:U‘;f — 323 4+ 2310 + 2123) — (éa(T — Ts) — el

16 1 ) (z1+22) =0. (F.1.20)

This satisfies when either, + x5 = 0, or

2
— 1—960 (2(2 + 23) + (z1 — 22)?) — % < (T — Tis) — %%) = 0. (F.1.21)

However this expression is always less than zerolfdess thanl,.. Therefore our solution
satisfiesr; = —x5. Now adding the two equations in (F.1117) gives

1 B 1 B?
AT -T2 —ht —2_ =0 F.1.22
g/ T =T —h+ 52 =0 ( )

This can be solved to give the field induced transition temujoee

ITN_pNn — Tt = @ 217 aBé (F.1.23)
We can also write this as L h
Tn_pn — Tir = o (F.1.24)
Now equation[(E.1.18) can be solved with= —z> to give
xt, = B (3 54 C( ON — be)> : (F.1.25)
' 81C2
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From equation{E.1.23) we can write this as

B? h
2

Therefore the order parameter at the phase transition is

h

Qr2 = Q. (1 +4/1— h—) : (F.1.27)

In order to find a relation between the order parameter antethperature at the critical field,
we substituteh = k. and equation[(F.1.12) into equatidn (F]1.9) and diffesativith respect
toz.

A
g—x(h = he) = —26244Cx> + 17496aC3x(T. — T) — 1944BaC*(T, — T).  (F.1.28)

Hence at the critical field, we have

20(Q - Qo) = aQ(T. ~ T). (F.1.29)

This equation can be used to find the critical exportenh the limit as7” tends tol, (7' — T,)
is a power of(Q — Q.). We sett = T, — T, the equation becomes

gC’x?’ = a(z + Q.)t. (F.1.30)
In order to find the asymptotic behaviourichgainstz, we expand as a polynomial of:
t =to+ t1x + tox® + tga. (F.1.31)
Therefore, we get

(3/2)Ca® = aQ.to
+ a(ty + Qcty)x
+ a(tl + Qct2)$2

+ alty + Q.tz)z>. (F.1.32)
Equate the two sides, we get
to=t1 =t2 =0. (F.1.33)
And 30
ty = . F.1.34
5= 500, (F.1.34)

Hence(T — T.) behaves asymptotically 4§ — Q.)3

_3C
200,
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F.2 Landau-KKLS theory

Here we seB = 0T so this coefficient is linear in temperature. The Landau-iStee energy
expansion for uniaxial nematics without interaction whie magnetic field is

A= (3/4)a(T — The)Q* + (1/4)bTQ? + (9/16)CQ*, (F.2.1)

where the coefficients are given in equatibn (6.2.17). Thepwature and order parameter at
the uniaxial nematic-to-isotropic phase transition cafoo@d by solving the system

A(Q¥ 1) = A(0),

0A, 0A

el = (0) = F.2.2

50 @) = 550 =0, (F2.2)
for non zeroQY;;. Thus, the transition temperature is the positive solutibtthe quadratic
equation

C C

T2 27‘2—2T n 2762—2be — 0. (F.2.3)
Hence,
1 [ 27aC 27aC"\ 27aC
0 _

Ty = 3 (b2 + \/<b—2> — 4Ty 72 ) . (F.2.4)

And the order parameter at the phase transition is

0 26Ty,

At this stage we cannot choose between the plus and minus feigthe transition temperature.
It is clear when we use the Landau-KKLS theory that takingriieus sign gives us a result
closer to the transition temperature predicted by the nutdedield theory. In addition, taking
the plus sign gives us the order parameter at the phasetivangieater than one which is not
valid. Hence, within the Landau-KKLS theory the transitiemperature is

1 [ 27aC 27aC\ 2 27aC
0
=3 (b2 ‘\/ SR ) (729

The Landau-KKLS free energy expansion for magnetic fieldigsdl nematics is
A= (3/0)a(T — Tie)Q? + (1/D6TQ? + (9/16)CQ* — hQ. (F.2.7)

At the critical point, both the first, second and third detiiv@s of the free energy must be zero
whereas the fouth derivative is strictly positive. In ord@r the third derivative to vanish, the

order parameter at the phase transition must be
bT,
= ——=. F.2.8
Q=55 (F2.8)
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We change the variable to

bT
= —. F.2.
r=0Q+ 9C (F.2.9)

Now we can rewrite the free energy as

1?77
A :20;24 + <§a(T —Thf) — — > ?

16 4 24 C
1 bT 1 373 1 b?1?
——a(T —Tyt)—= —h+ —— —a(T — Tj : F.2.10
* ( g/ T —Tot)m —h+ 155 >x+ 105 (T~ Tot) 2 (F.2.10)
The critical temperature and critical magnetic field aregbleitions of the system
1 b?T?
“a(T — Thyp) — — =0
a( bf) 246 O )
1 bT 1’73
——a(T —Tyt) = —h+-—— =0. F.2.11
gT Tl m —h+ 15 az =0 ( )
Now the critical temperature is the solution of the first eomm
1 [ 18aC 18aC"\ 2 18aC
== | —— =+ — ) — 47T . F.2.12
=11 \/ < “ ) pE (F2.12)

The critical field can be found by eliminating the teati” — T) in the two equations which
gives
1 b3T3
he = 3312 (F.2.13)
The equation relating the order parameter and temperatilne atitical field can be found by

substituting forh,. to equation[(E.2.10) and solve for the first derivative edoaero, we get

9 b7\ ? 3 1 b°T?
e (Q _ ®> _ <§a(T STy — ET) Q. (F.2.14)

Note in this case we cannot find the critical exponent arailti since we cannot write the
critical equation in terms of = 7. — T due to the appearance of the quadratic terf.iff hus,
the transitional order parameter cannot be put into a sifiopieular. Hence we have to rely on
numerical results for this.
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Appendix G

Stability of The Equilibrium Free
Energy for KLZ Approximation

In this appendix, we analyse the stability conditions fag #guilibrium free energy in three
cases: uniaxial smectic A fomed from uniaxial moleculeshwdlLZ approximation, biaxial
smectic A formed from molecules with,;, symmetry with KLZ-GM and KLZ-SVD approxi-
mations. The stability conditions can only be obtainedwiallly at perfect order. The method-
ology and results for the first case were introduced to meutiiv@ private communication with
Mr Hock Seng Nguan.

G.1 KLZ Theory

For convenience, we define the following functions
J(z,8) = (1 + ar?)Py(cos B) 4 2anT cos 21z /d. (G.1.1)

K (z,B8) = 2anT Pycos B + a3 + %) cos 2z /d. (G.1.2)

The second derivatives of the scaled free enetgjyn equation [(Z.316) with respect to the two
order parameters are

2A* 1 - L 1 o
8872 T T2 (K2 B KQ) T (0a +3aS? — 2a5P,) . (G.1.3)
2 A* . -
—%;12 = % <72 _ J2) + % <1 + 3a7? — 2a7cos (sz/d)) . (G.1.4)
QA* 1 - 1 o -
—27'85 =3 (J x K — JK) + T (6@75 — 2a7 Py — 2a.Scos (27Tz/d)) . (G.1.5)
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Here, we make a clear distinction betwegand P, and betweem andcos 27z /d. The overline
represents the integration

e / / Az B) (2 B)dzdB. (G.1.6)

They come from the derivative of the partition function. Tadues of P, andcos 27z/d are
only equalS andr at the solutions of the self-consistency equations. Thetérms in the three
derivatives are thermodynamic fluctuations and vanish dégeorder. In addition, at perfect
order we haveS = P, = 1 andT = cos (27z/d) = 1. Hence the values of the determinant of
the Hessian matrix at the self consistency solutions aepedrder are

1
det H = — (14 a@)da + o — 3a?). (G.1.7)
For simplicity, we letd = 0. It is then easy to see that the second derivatives of the form
0?A/0a? are possitive. Hence, from multivariate analysis, the dadfor stability isdet H >

0, 0r0 < a < 1/3. In the next two sections, we also setb 0 for the GM-KLS approximation
and for the SVD-KLS approximation.

G.2 Geometric Mean Approximation with KLZ Theory

For convenience, we define the following three functions as

Ji(2,9Q) = (6o + a((Fyr)? + 2(F)?)) cos (212/d) + 2at ((Fy) Fi(Q) + 2(Fp) Fp(Q)) .

(G.2.1)
J2(2,Q) = 2a(Fy)7 cos (2rz/d) + (1 + a7?) Fiy (). (G.2.2)
J3(2,Q) = 4a(Fg)7cos (2mz/d) + 2 (1 + ar?) F5(Q). (G.2.3)

The second derivatives of the KKLS free energy in equafiod.9J can be written in terms of
these three functions

o*A* 1 (—2 —5 1
or2 %2 (Jl - J12> o {6+ 3 ((Fiy)* + 2(Fg)?)
~2a ((Fy)Fu + 2(Fp)Fp) } . (G.2.4)
A 1 2 ), L S
IE)? T2 <J2 —Jy ) + T (1 + 3a1 — 2aTcos (27TZ/d)> ) (G.2.5)
PA 1 (g2 gy L ) S
d(Fp)? o2 (Jg —J3 ) + T (2 + 6T — 4daTcos 27Tz/d> . (G.2.6)
02 A* 1 1 - B
oro(Fy) T+ (Ji x Jo = J1J2) + 7 <6aT(FU> — 2a(Fy)cos (272 /d) — 2aTFU) .
(G.2.7)
02 A* 1 1 - ©
) =T (J1 x J3 — J1J3) + T <12a7‘<FB> — 4a(Fp)cos (2nz/d) — 4aTFB) .
2 (G.2.8)
A* )
) (T2 x T3 — JoJ3) . (G.2.9)

O(Fy)0(Fp) T+2
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Here, we make a clear distinction betwe@h;) and Fy;, (Fg) and F, and between and
cos (2rz/d). They only equal each other at the solution of the self-ctesty equations. The
overline represents the integration

A= //A(z,ﬁ)f(z,ﬂ)dzdfz. (G.2.10)

Again, at perfect order, the fluctuation terms vanish. Bgtthe limit for rod-like molecules,
(Fy) = Fy = 1, (Fg) = Fg = v andr = 1, the determinant of the Hessian matrix is

det H = 2a(1 + 29%)(1 + a)(1 — 3a). (G.2.11)

In addition, it is easy to see that the second derivativesefdrmd? A /da? are possitive. Here,
the condition for the de Gennes’ free energy to be well-betias the same as for the uniaxial
smectic A phase formed from uniaxial molecules.

G.3 SVD Approximation

Again, for convenience, we define the following three fuoas

Ki(2,9Q) = (6o + a((Roo)? + 2)\<R22>2)) cos (2mz/d)

+2a1 ((Roo)Roo(2) + 2A(Ra22) R22(2)) . (G.3.1)
Ko(2,9Q) = 2a(Ro)7 cos (2rz/d) + (1 + ar?) Roo(9Q). (G.3.2)
K3(2,Q) = 4aX(Rao)7 cos (2mz/d) + 2 (1 + a1?) ARaa (). (G.3.3)

The KKLS free energy in equation (7.4.2) can be written im®of these three functions

02 A* 1
972 T*2 (Kl K12) + — {5@ + 3« (<R00 + 2\ (Rao 2)
_QO‘ ((Roo)Roo + 2M(Ra2)Ra2) } - (G.3.4)
0% A* 1 -
m T*2 <K2 — Ky ) T (1 + 3ar? — 2arcos (27TZ/d)> (G.3.5)
USSR ) -
W T 2 <K3 — K3 ) + T <2)\ + 6 aT” — 4 aTcos 27rz/d> . (G.3.6)
0?2 A* 1 (0 < T - TOT)
87‘8<R00> — a2\ 2 1482
7%* <6aT<R00> — 2a(Rop)cos (2mz/d) — 2OéTRoo) (G.3.7)
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9% A* 1

rahg) 2 X K )

+% <12)\a7‘<R22> — 4 a(Ray)cos (2mz/d) — 4)\a7'<R22>) ‘ (G.3.8)
9 A* T

— = — (K2 X K3 — K2K3) . G.3.9

B Roo) 0y~ 72 (2> Ko~ I s) 639

Here, we make a clear distinction betwe@Ryo) and Ry, (R22) and Ry, and betweenr
andcos (27z/d). They only equal each other at the solution of the self-ctescy equations.
We note that, at perfect order, the fluctuation terms vaniétting the limit at perfect order
(Roo) = Roo = 1, (Raa) = Rgo = 1 andr = cos (27z/d) = 1, the determinant of the Hessian
matrix is

det H = 2 (1 + A\)(1 + ) (1 — 3a). (G.3.10)

In this case, we can also see that the second derivativesedbtim 92 A/da? are positive.
Hence, we conclude that in all three cases, the conditiothosolution of the self-consistency
equations to coincide with the minimum of the KKLS free elygg0 < a < 1/3.
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