
UNIVERSITY OF SOUTHAMPTON

Faculty of Physical and Applied Sciences

School of Electronics and Computer Science

Secure Provenance-based Auditing of Personal

Data Use

by Roćıo Aldeco-Pérez

Supervisors: Prof. Luc Moreau

Examiners: Prof. Vladimiro Sassone,

Dr. Mike Kirton

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

May 2012

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:raap06r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Roćıo Aldeco-Pérez

In recent years, an increasing number of personalised services that require users to

disclose personal information have appeared on the Web (e.g. social networks, govern-

mental sites, on-line selling sites). By disclosing their personal information, users are

given access to a wide range of new functionality and benefits. However, there exists a

risk that their personal information is misused.

To strike a balance between the advantages of personal information disclosure and pro-

tection of information, governments have created legal frameworks, such as the Data

Protection Act, Health Insurance Portability & Accountability Act (HIPAA) or Safe

Harbor, which place restrictions on how organisations can process personal information.

By auditing the way in which organisations used personal data, it is possible to de-

termine whether they process personal information in accordance with the appropriate

frameworks.

The traditional way of auditing collects evidence in a manual way. This evidence is

later analysed to assess the degree of compliance to a predefined legal framework. These

manual assessments are long, since large amounts of data need to be analysed, and they

are unreliable, since there is no guarantee that all data is correctly analysed. As several

cases of data leaks and exposures of private data have proven, traditional audits are also

prone to intentional and unintentional errors derived from human intervention.

Therefore, this thesis proposes a provenance-based approach to auditing the use of per-

sonal information by securely gathering and analysing electronic evidence related to the

processing of personal information. This approach makes three contributions to the

state of art.

The first contribution is the Provenance-based Auditing Architecture that defines a set

of communication protocols to make existing systems provenance-aware. These proto-

cols specify which provenance information should be gathered to verify the compliance

with the Data Protection Act. Moreover, we derive a set of Auditing Requirements by

analysing a Data Protection Act case study and demonstrate that provenance can be

used as electronic evidence of past processing.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:raap06r@ecs.soton.ac.uk

iv

The second contribution is the Compliance Framework, which is a provenance-based

auditing framework for automatically auditing the compliance with the Data Protec-

tion Act’s principles. This framework consist of a provenance graph representation

(Processing View), a novel graph-based rule representation expressing processing rules

(Usage Rules Definition) and a novel set of algorithms that automatically verify whether

information was processed according to the Auditing Requirements by comparing the

Processing View against the Usage Rules Definition.

The third contribution is the Secure Provenance-based Auditing Architecture that en-

sures any malicious alteration on provenance during the entire provenance life cycle of

recording, storage, querying and analysis can be detected. This architecture, which relies

on cryptographic techniques, guarantees the correctness of the audit results.

Contents

Declaration of Authorship xv

Acknowledgements xix

Nomenclature xxiii

1 Introduction 1

1.1 Provenance: Making Information Processing Transparent 3

1.2 Securing Provenance . 4

1.3 Thesis Statement and Contributions . 5

1.4 Thesis Structure . 7

2 Related Work 9

2.1 Provenance . 10

2.1.1 Computer Systems Provenance Definition 10

2.1.2 Recording Provenance . 12

2.1.2.1 Workflow-based Systems 12

2.1.2.2 Process-based Systems 12

2.1.2.3 Operating System-based Systems 13

2.1.2.4 Granularity of Provenance 13

2.1.3 Storing Provenance . 14

2.1.4 Querying Provenance . 15

2.1.5 Analysing Provenance . 16

2.2 Auditing IT Systems . 17

2.2.1 Audit Trails . 18

2.2.1.1 Audit Trail Collection . 18

2.2.1.2 Audit Trail Analysis . 20

2.2.2 Securing Audit Trails . 21

2.2.3 Disadvantages of Audit Trails . 22

2.3 Security . 23

2.3.1 Security Properties . 23

2.3.1.1 Confidentiality . 23

2.3.1.2 Integrity . 24

2.3.1.3 Authentication . 25

2.3.1.4 Access Control . 30

2.3.1.5 Non-Repudiation . 31

2.3.1.6 Anonymisation . 32

2.3.2 Formalising Security Properties . 33

v

vi CONTENTS

2.3.2.1 Unified Modelling Language 33

UML Elements . 34

2.3.2.2 UMLSec . 34

Cryptographic Notation . 35

Adversary . 37

2.3.2.3 UMLSec Automatic Verification 38

2.4 Data Protection Legislation . 38

2.4.1 Data Protection Act . 38

2.4.1.1 Terminology . 39

2.4.1.2 Principles of the Data Protection Act 40

2.4.2 Safe Habor . 42

2.4.3 HIPAA . 43

2.5 Summary . 45

3 Problem Definition 47

3.1 Exemplar Scenario . 48

3.1.1 On-line Sales Scenario . 48

3.1.2 Scenario Discussion . 49

3.2 DPA Notification Process . 49

3.3 Processing Personal Data . 50

3.4 Requirements Analysis . 53

3.4.1 Principle 1: Personal Data Processed Fairly and Lawfully 53

3.4.2 Principle 2: Legal Purpose . 54

3.4.3 Principle 3: Collection of Relevant Information 54

3.4.4 Principle 4: Information Integrity 55

3.4.5 Principle 5: Identification of Individuals 55

3.4.6 Principle 6: Rights of Data Subjects 56

3.4.7 Principle 7: Secure Management of Personal Information 57

3.4.8 Principle 8: Overseas Information Transfer 57

3.4.9 Requirements Discussion . 58

3.5 Provenance as a Solution . 59

3.6 Assumptions . 60

3.7 Conclusions . 61

4 Provenance-Based Auditing Architecture 63

4.1 Building the Architecture . 64

4.1.1 Components . 64

4.1.1.1 Actors . 65

4.1.1.2 Use Cases and Requirements 66

4.1.2 Component Interactions . 66

4.1.3 Securing the Architecture . 67

4.2 Identifying the Required Provenance . 69

4.2.1 Phase 1: Provenance Question Capture and Analysis 69

4.2.2 Phase 2: Actor Based Decomposition 72

4.2.3 Phase 3: Adapting the Application 73

4.3 Recording Provenance . 76

4.3.1 Notation . 77

CONTENTS vii

4.3.2 Recording Provenance in the Data Request Protocol 78

4.3.2.1 Messages . 78

4.3.2.2 Interaction p-assertions 78

4.3.2.3 Relationship p-assertions 80

4.3.3 Recording Provenance in the Task Request Protocol 80

4.3.3.1 Messages . 80

4.3.3.2 Interaction p-assertions 82

4.3.3.3 Relationship p-assertions 82

4.3.4 Recording Provenance in the Query Request Protocol 82

4.3.4.1 Messages . 83

4.3.4.2 Interaction p-assertions 83

4.3.4.3 Relationship p-assertions 83

4.4 Answering Provenance Questions . 84

4.4.1 Requirement B, Purpose Compliance 84

4.4.1.1 Querying . 84

4.4.1.2 Analysis . 86

4.4.2 Requirement C, Relevant Information Verification 87

4.4.2.1 Querying . 87

4.4.2.2 Analysis . 87

4.4.3 Requirement F, Anonymity Preservation 88

4.4.3.1 Querying . 88

4.4.3.2 Analysis . 89

4.4.4 Requirement G, Basic Security Characteristics Verification 89

4.4.4.1 Querying . 89

4.4.4.2 Analysis . 90

4.4.5 Requirement H, Information Transferred to a Secure Country . . . 90

4.4.5.1 Querying . 90

4.4.5.2 Analysis . 90

4.5 Discussion . 92

4.6 Conclusions . 92

5 Compliance Framework 95

5.1 Preliminaries . 96

5.2 Usage Rules Definition . 99

5.3 Processing View . 103

5.4 Verification Algorithms . 108

5.4.1 Requirement B: Purpose Compliance 109

5.4.1.1 Subrequirement B1: Used Data Compliance 109

5.4.1.2 Subrequirement B2: Purposes Validation 112

5.4.1.3 Subrequirement B3: Reusing Data 116

5.4.2 Requirement C: Relevant Information Verification 121

5.4.3 Requirement F: Anonymity Preservation 124

5.4.4 Requirement G: Basic Security Characteristics Verification 126

5.4.5 Requirement H: Information Transferred to a Secure Country . . . 130

5.5 Discussion . 132

5.6 Conclusions . 133

viii CONTENTS

6 Securing the Provenance-based Auditing Architecture 135

6.1 Preliminaries . 136

6.1.1 Optimised TLS Handshake Protocol 137

6.1.2 Key Management . 137

6.1.3 Cryptographic Notation . 138

6.1.4 Securing Messages . 138

6.2 Securing the Recording and Storage Stage 141

6.2.1 Securing Protocols . 142

6.2.1.1 OTLS Protocol . 142

Messages . 142

Interaction p-assertions . 145

Relationship p-assertions . 147

6.2.1.2 Securing Data Request Protocol 149

Messages . 149

Interaction p-assertions . 151

Relationship p-assertions . 153

6.2.1.3 Securing Task Request Protocol 154

Messages . 154

Interaction p-assertions . 155

Relationship p-assertions . 157

6.2.2 Verifying the Execution of the Protocols 161

6.2.2.1 Verifying the Execution of OTLS 161

6.2.2.2 Verifying the Execution of Data Request 162

6.2.2.3 Verifying the Execution of Task Request 163

6.2.2.4 Verifying Assertions during Storage Stage 163

6.3 Securing the Querying and Analysis Stage 164

6.3.1 Secured Provenance Graph . 165

6.3.2 Verifying a Secured Provenance Graph 167

6.3.3 Securing the Query Request Protocol 168

6.3.3.1 Verifying the Execution of Query Request 172

6.4 Verifying the Secure Provenance-based Auditing Architecture 172

6.4.1 The Viki Model Checker . 172

6.4.1.1 The Adversary Model . 173

6.4.1.2 An Example of the Viki Verification Process 174

6.4.2 Verification . 176

6.4.3 Securing Provenance . 178

6.5 Discussion . 178

6.6 Conclusions . 180

7 System Evaluation 185

7.1 Attack Trees . 186

7.2 System Definition . 187

7.3 System Attacks Analysis . 188

7.3.1 Confidentiality Attacks . 188

7.3.2 Integrity Attacks . 190

7.3.3 Authentication Attacks . 190

7.3.4 Non-Repudiation Attacks . 191

CONTENTS ix

7.3.5 Availability Attacks . 191

7.4 Attack Trees Analysis . 192

7.4.1 Information Confidentiality Attack Tree 193

7.4.2 Information Integrity Attack Tree 194

7.4.3 Authentication Attack Tree . 196

7.4.4 Non-Repudiation Attack Tree . 198

7.4.5 Information Availability Attack Tree 199

7.5 Conclusions . 201

8 Conclusion and Future Work 205

8.1 Contributions . 206

8.1.1 Provenance-based Auditing Architecture 206

8.1.2 Compliance Framework . 207

8.1.3 Secure Provenance-based Auditing Architecture 207

8.2 Future Work . 208

8.2.1 Defining a Standard Vocabulary 209

8.2.2 Privacy protecting provenance . 209

8.2.3 Provenance as legal evidence . 210

A ArgoUML UMLsec Diagrams 211

A.1 OTLS UMLsec Sequence Diagram . 212

A.2 Data Request UMLsec Sequence Diagram 213

A.3 Task Request UMLsec Sequence Diagram 214

A.4 Viki Results . 215

Bibliography 219

List of Figures

2.1 Provenance Life Cycle . 11

2.2 TLS Protocol . 27

2.3 OTLS Protocol . 29

3.1 General Structure of an ICO’s register entry 50

3.2 Register entry of the On-line Sales Scenario 51

3.3 The Data Request and Task Request protocols 52

3.4 The Data Update protocol . 53

4.1 Provenance-Based Auditing Architecture 65

4.2 Securing the Provenance-Based Auditing Architecture. Here Actor can
be any actor defined in Section 4.1.1. 68

4.3 Phase 2 Diagram . 73

4.4 Phase 3 Diagram . 75

4.5 Data Request UML Sequence Diagram . 79

4.6 Task Request UML Sequence Diagram . 81

4.7 Query Request UML Sequence Diagram 83

4.8 Provenance DAG of register without security operations 85

4.9 An alternative representation of the Provenance DAG in Figure 4.8 86

4.10 Provenance DAG of Successful delivery without security operations . . . 88

4.11 Provenance DAG of cryptoaverageAge with security operations 91

4.12 Provenance DAG of Successful transfer without security operations . . . 92

5.1 Usage Rules Definition Graph GΓ . 101

5.2 On-line Sales Example - Usage Rules Definition 104

5.3 Processing View Graph GW . 106

5.4 On-line Sales Example - Processing View 108

5.5 Subgraph B1 of GW . 110

5.6 Used Data Compliance Verification Example: Task 1 113

5.7 Used Data Compliance Verification Example: Task 2 113

5.8 Subgraph B2 of GW . 115

5.9 Purposes Validation Example 1 . 117

5.10 Purposes Validation Example 2 . 118

5.11 Subgraph B3 of GW . 119

5.12 Reusing Data Example . 121

5.13 Subgraph C of GW . 122

5.14 Relevant Information Verification Example 1 123

5.15 Relevant Information Verification Example 2 124

xi

xii LIST OF FIGURES

5.16 Subgraph F of GW . 125

5.17 Anonymity Preservation Requirement Example: Result 1 126

5.18 Anonymity Preservation Requirement Example: Result 2 126

5.19 Subgraph G of GW . 127

5.20 Basic Security Characteristics Verification Example: Result 2 129

5.21 Information Transferred to a Secure Country Example 1 131

5.22 Information Transferred to a Secure Country Example 2 131

6.1 OTLS UMLSec Sequence Diagram . 146

6.2 Data Request UMLSec Sequence Diagram Formalisation 150

6.3 Task Request UMLSec Sequence Diagram Formalisation 160

6.4 An example of a Secured Provenance Graph 166

6.5 Query Request UMLSec Sequence Diagram 171

6.6 A version of OTLS with a security flaw 174

6.7 Viki verification result for the protocol in Figure 6.6 175

6.8 A Man-in-the-middle Attack on the OTLS Protocol with a security flaw . 175

6.9 The OTLS protocol after repairing the security flaw present in Figure 6.6
(public key kC is added to the second message) 175

6.10 Viki verification result for the protocol in Figure 6.9 176

7.1 Information Confidentiality Attack Tree 195

7.2 Information Integrity Attack Tree . 197

7.3 Authentication Attack Tree . 199

7.4 Non-Repudiation Attack Tree . 200

7.5 Information Availability Attack Tree . 202

A.1 OTLS UMLSec Sequence Diagram . 213

A.2 OTLS UMLSec Sequence Diagram Message Content 213

A.3 OTLS UMLSec Sequence Diagram Adversary Content 213

A.4 Data Request UMLSec Sequence Diagram 214

A.5 Data Request UMLSec Sequence Diagram Message Content 214

A.6 Data Request UMLSec Sequence Diagram Adversary Content 215

A.7 Task Request UMLSec Sequence Diagram 215

A.8 Task Request UMLSec Sequence Diagram Message Content 216

A.9 Task Request UMLSec Sequence Diagram Adversary Content 216

A.10 Viki Result of the UMLSec Sequence Diagram 217

List of Tables

3.1 Requirements . 58

4.1 Provenance related question for Requirement B, Purpose Compliance . . . 70

4.2 Provenance related question for Requirement C, Relevant Information
Verification . 70

4.3 Provenance related question of Requirement F, Anonymity Preservation . 71

4.4 Provenance related question of Requirement G, Basic Security Charac-
teristics Verification . 71

4.5 Provenance related question of Requirement H, Information Transferred
to a Secure Country . 72

4.6 Application Data . 77

5.1 Requirements supported by provenance DAGs 134

6.1 Public, Private Keys used in Sequence Diagrams 138

6.2 Session keys used in Sequence Diagrams 138

6.3 Message Components and Convenience Functions 139

6.4 The secret and initial knowledge of the adversary objects used to
verify our protocols . 173

A.1 Viki Notation . 212

xiii

List of Algorithms

1 Data Processed According to a Valid Purpose 112

2 Purposes Validation . 116

3 Reusing Data . 120

4 Relevant Information Verification . 123

5 Anonymity Preservation of Results . 125

6 Basic Security Characteristics Verification 128

7 Data Transferred to a Secure Country . 130

8 Signature Message Checking . 161

9 Hash-value Message Checking . 161

10 The Integrity Checking Algorithm . 167

xv

Declaration of Authorship

I, Roćıo Aldeco-Pérez, declare that the thesis entitled Secure Provenance-based Auditing

of Personal Data Use and the work presented in this thesis are both my own, and have

been generated by me as the result of my own original research. I confirm that:

• this work was done wholly while in candidature for a research degree at this Uni-

versity;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published in a number of conference and journal

papers (see Section 1.3 for a list).

Date: 28 May 2012

xvii

Acknowledgements

First, I want to thank the organisations that have sponsored me during my PhD studies,

without whose support my research would have been impossible. Thanks to CONACyT

for scholarship number 182546, to Programme Alβan, the European Union Programme

of High Level Scholarships for Latin America, for scholarship number E06D103956MX

and to the University of Southampton for scholarship number 21360103 and all the travel

support I have received over the last four years. All three of them have not only provided

me with economical support but also with the opportunity to meet a large community

of people committed to the development of science.

I want to thank my parents. I have reached this point in my professional life because of

the education, values and love that you have given me. You taught me to be committed

and passionate about my work. Thanks for all the support that you have given me and

especially for taking care of a piece of my heart, Tatty, for one long year.

Omar, thanks for letting me follow this dream and live it with me. For being next to

me during stressful times, for leaving your comfortable life, for changing your job, your

friends and your language for me. Thanks for being so adaptive and for understanding

that this experience made us different but in essence we will be always the same.

Natalia, my daughter, my Tatty, thanks for being so brave and mature to understand

that even though we could not spend a lot of time together my love for you is always

present. Your smile, your kisses, your hugs are the best reward after hard work. I LOVE

YOU!

Special thanks to Professor Luc Moreau. Thanks for teaching me how to do research,

how to properly write, how to start a research career. I really appreciate the time that

you spent reading my work, discussing research directions, and pointing me in the right

direction.

To the complete MexSoc society, the current and former members, without you guys this

time would have been very difficult. The parties, the travels, the movies, the festivals,

the food! All of this made me never forget about who I am and where I am from.

xix

xx DECLARATION OF AUTHORSHIP

I want to especially thank Aida. Your friendship has been an enormous support in

difficult times. I can discuss any topic with you, I can complain about everything with

you and your answers always lift my spirit. Thanks for all those long chats, for being

my house mate (I know is not easy), and for just being there. You are and always will

be a very special friend. Finally, thanks for helping me to print this document.

Lulu, thanks for the lunch talks, for your very contagious happiness and optimism. Your

way of enjoying life is unique and you share that with me every day at 12pm. Finally,

thanks for helping me to print this document.

A big “thank you” to Allan, for being there every day at 12pm to listen to this bunch of

crazy PhD women students. Your funny comments, your mature comments, your great

jokes (including pictures) were something that I will never forget.

Zinovi, my lovely house mate, thanks for the long chats, the funny conversations, the

tea, the nice chocolate, the wonderful wine, the poker nights, the movie nights, the

dinners together, for being an excellent friend.

Ruben, you have been a very special person in this process. Your unconditional support

in every aspect of my life, your unique way of seeing life and problems helped me

to achieve this moment. I have a very long list of thanks for you but there is not

enough space, so I will try to sum up. Thanks for being my house mate, for the Dutch

classes, the emotional support, the dinners, the coffee, the wine, the chocolate, the

“stroopwafels”, for everything. Specially, thanks for the writing support. Thanks for

every single moment. You are and always will be a very special person in my life.

Finally, thanks to the IAM group, especially to the “agents people”. The chats with

espresso coffee were a great support in rough times. I already miss you guys.

Para la luz de mi vida, mi eterna motivación, mi todo: Tatty.

xxi

Nomenclature

P Universal Set of Purposes

P Set of Purposes

p A Purpose

T Universal Set of Tasks

T Set of Tasks

t A Task

Types Set containing all Data Types

type A Type

Instances Multiset containing all Data Instances

instance An Instance

Classes Set containing all Data Classes

class A Class

CQ Set of Requested Data Classes

CU Set of Used Data Classes

CG Set of Generated Data Classes

Dp
A Set of Collected Data Instances for a Purpose

dA A Collected Data Instance

R Set of Generated Data Instances

r A Generated Instance

DU Set of Used Data Instances

dU A Used Data Instance

Rel Universal Set of Relationship Labels

Rel Set of Relationships Labels

l A Relationship Label

GΓ Usage Rules Definition

Rule Processing Rule

V Vertex

E Edge

GW Processing View Graph

B1 Used Data Compliance Subgraph

B2 Purposes Validation Subgraph

B3 Reusing Data Subgraph

xxiii

xxiv NOMENCLATURE

C Relevant Information Subgraph

F Anonymity Preservation Subgraph

G Security Subgraph

D Set of Data

SA Signature created by A

kgen Key generation function

Chapter 1

Introduction

Recent years have seen an exponential growth of not only storage and computing power,

but also of the speed at which data is transmitted. For the first time in history, these

technological advances have made possible the personalisation of services on a large

scale1. These services are tailored to the specific needs of the recipient, and are capable

of creating value where homogeneous services fall short.

For instance, in business, companies can collect information about customers’ shopping

and travelling habits, as well as their opinions and preferences about particular products.

Particularly, the business sector has benefited from the collection of this information to

improve and expand existing services, as well as to create new ones.

Similarly, for governments, the benefits of personalised services are also evident: they

increase effectiveness, reduce cost and increase satisfaction. For example, governments

increasingly offer on-line services that simplify the way in which citizens pay their taxes,

apply for pensions and benefits, track their children’s educational progress and check

their medical records [58, 59]. Moreover, the availability of detailed medical information

can aid national health institutions to detect an epidemic and take necessary measures

in a timely fashion. In terms of medical research, the availability of these records en-

ables researchers to identify trends in disease growth, and may potentially speed up the

development of cures.

In both the private and public sector, the development of these new personalised ser-

vices highly depends on the availability of detailed personal information. The continual

improvements to information processing techniques make the use and modification of

this personal information happen at an increasingly faster pace. The benefits of these

technological advances are evident and the opportunities are innumerable.

However, these advances also come with great risks. While the proper use of personal

information can lead to many benefits, its misuse can result in great harm. For example,

1For example, Amazon recommendation service or iGoogle customised Google page

1

2 Chapter 1 Introduction

most people are willing to share their medical records with their doctor. However, they

are likely to be less content if it turns out their family doctor also uses these records to

determine hiring policies. Similarly, on a smaller scale and perhaps more familiar, the

misuse of email addresses can lead to the receipt of unwanted email.

To prevent misuse, it is important to ensure that this information does not fall into the

wrong hands, and that data is used according to the purposes for which it was disclosed.

Two solutions have been proposed in an attempt to address these issues.

The first solution addresses the first part of the problem, i.e. allowing access to infor-

mation only to whom it was disclosed. This led to the development of access control

and information retrieval techniques that protect sensitive information. However, there

are two potential difficulties associated with this solution. First, while access control is

a reliable method of restricting access to information, it does not specify who should

receive those access rights, nor does it ensure the proper use of information to authorised

users. Second, as Weitzner et al. [146] have pointed out, access control alone cannot

properly solve the problem of correct use of personal information on the Web, where in-

formation is widely and publicly available from different sources. In some cases, personal

information that was initially restricted can be inferred by aggregating different pieces

of publicly available information [133]. With new technologies, such as Linked Data [26],

it has become easier to aggregate, automatically correlate and infer data across multiple

sources of information. By so doing, sensitive data can be disclosed that was properly

protected by access control.

The second solution was offered by governments, which decided to legislate the way in

which organisations are allowed to manage personal information. For example, the UK

saw the approval of the Data Protection Act (DPA) [7], which is the implementation of

an EU directive [5] that protects personal information in both the private and public

sectors. Similarly, the US government created the US Safe Harbor [8], which protects

information transferred for commercial purposes between the US and the EU, and the

Health Insurance Portability & Accountability Act (HIPAA) [6] to protect information

managed by health institutions. The main problem with this solution is one of enforce-

ment: how can one make sure that the multitude of decentralised and open information

systems used by a multitude of people are processing data in compliance with these

legislative frameworks.

In light of this problem, both the DPA and the US Safe Harbor define procedures for

investigating and resolving complaints from individuals who suspect that their personal

data is being misused. Audits are currently the main method to implement these pro-

cedures. In detail, an audit is an evaluation of an organization or system to ascertain

whether personal data is stored and processed according to the principles of the applica-

ble legislation. For example, in this context, audits focus on whether personal data was

processed according to the purpose for which it was collected. An audit is performed

Chapter 1 Introduction 3

by a qualified third party known as auditor, who issues a report on the results of the

audit. This process is long, as it relies heavily on manual collection and analysis of large

amounts of data from different sources, and needs to follow many rules and regulations.

Thus, there is no guarantee that all data is properly analysed, and as such, the final

conclusions are based on samples rather than the whole set of available data. More-

over, because this is an inherently manual process, these audits are prone to intentional

and unintentional errors and omissions. The consequences of the ineffectiveness (of the

threat) of these audits are perhaps best illustrated by the highly publicised cases of

information misuse (data leaks and exposures of personal data) [116, 109, 108] and the

review of different legislation [12, 13].

Thus, both access control and legislation fall short of solving the problem of protecting

personal information. As a result, users who give out their personal information have

no guarantees that it is used properly, nor do they know how this information is used

and by whom—information processing remains non-transparent.

1.1 Provenance: Making Information Processing Trans-

parent

It is this lack of transparency that is the main weakness of legislation, or rather systems

implementing this legislation. Without knowing how information was processed, it is

impossible to determine whether this processing was in compliance with the law, and to

take appropriate measures in case of non-compliance.

To address this shortcoming, auditors need the ability to determine which processes were

involved in managing personal information, to analyse these processes, and to make or-

ganisations accept responsibility for these processes. This ability is called information

accountability. Information accountability gives users insight into the way their infor-

mation was used. Moreover, it allows users and society in general to decide—by means

of automatic audits—whether information is used appropriately, i.e. in compliance with

the corresponding data protection framework.

In order to perform automatic audits, it is necessary to make information processing

transparent. This means that the way in which personal information is created, modified

and stored should be made explicit. By doing this, an equivalent audit process is carried

out to the evidence collection performed by auditors when carrying out manual audits.

However, in contrast to manual audits, automatic audits require evidence in electronic

machine-readable form.

In computational systems, this electronic evidence that documents the events performed

by applications at execution time is also referred to as provenance. In more detail, prove-

nance consists of the causal dependencies between data and events explaining what

4 Chapter 1 Introduction

contributed to a result in a specific state [64]. As such, it not only represents data

derivations but also processes derivations, i.e. which processes were involved in the cre-

ation of a piece of data. For that reason, it is regarded as a very promising means of

providing information accountability [146] in open and distributed systems (such as the

Internet). Thus, if the provenance of data is available, processing becomes transparent

since the provenance of data can be audited to verify that information was used properly.

In order to achieve this, systems need to record provenance about processing of personal

information, store this provenance in a so-called Provenance Store, make it available

by offering query functionality, and allow auditors (a role that might be fulfilled by a

component in the system itself) to analyse it. Due to the open and distributed nature

of these systems, these steps involve communication between multiple components over

potentially unsecured networks. Consequently, without additional means of protection,

there are multiple ways in which provenance might be altered, tampered with, or fall into

the hands of untrusted parties. More specifically, several attacks can be performed in

an attempt to break one of the four basic security properties: confidentiality, integrity,

authentication and non-repudiation. For example, a confidentiality attack might aim

to get unauthorised possession of the provenance of personal information; an integrity

attack involves the alteration of provenance in an attempt to cover up misuse of personal

information; an authentication attack aims to record provenance in the name of others;

and a non-repudiation attack aims to deny the use of personal information, by attempt-

ing to refute the creation of the corresponding provenance. If any of these attacks are

successful, they can undermine the reliability and trustworthiness of provenance, making

it unsuitable for use in audits.

As in any information system, provenance information must be available when needed,

a property referred to as availability. However, unlike the aforementioned properties,

ensuring the availability of provenance does not require provenance specific techniques;

existing techniques to protect systems from attacks that target their availability can

be readily implemented in systems that store provenance. Therefore, we consider the

availability property beyond the scope of this thesis.

1.2 Securing Provenance

Against this background, we identify the need for securing provenance. This is one of

the central problems we address in this thesis. As mentioned above, a crucial issue in

the development of transparent systems is the security of the collected provenance. If

this provenance has not been collected and stored in a secure way, results can be altered

by malicious parties, and the integrity of the results obtained from audits cannot be

ensured.

Chapter 1 Introduction 5

To address this problem, in this thesis we develop a novel secure architecture that

protects not only provenance but also the related application data during its collection,

storage, communication, query and analysis phases. By considering the entire life cycle

of provenance and application data, this architecture is designed to minimise the risk

of undetected alterations of provenance by (malicious) actors (for example, in order to

hide improper alterations to data), which would result in incorrect or corrupt audits.

In addition, using the provenance captured by this secure architecture, we develop a novel

set of algorithms that automatically verify the compliance of data processing against

a set of processing rules that specify which operations can be performed on personal

data. In this thesis, we derive these rules from the Data Protection Act. Now, to

perform automatic verification, the algorithms need both provenance and the processing

rules in machine-readable format. To do this, the former is intuitively represented as a

Provenance Graph, which captures the causal dependencies between data and processes.

The latter is also represented as a graph, called a Usage Rules Definition graph, which

captures the relations between the data classes that can be used, and the allowable

operations that can be performed on that data.

1.3 Thesis Statement and Contributions

Thus, our solution to the problem of auditing processing of personal information in IT

systems can be summarised as follows:

By securing provenance we ensure the reliability of audits and enable

auditors to verify and analyse whether personal information was processed

in compliance with a set of processing rules.

In more detail, the contributions made in this thesis are as follows:

1. Our first contribution is the Provenance-based Auditing Architecture, which con-

sists of a set of protocols designed to augment existing systems to make them

provenance-aware, i.e. enabling them to capture provenance at execution time.

Moreover, we derive a set of requirements from a case study of the Data Protec-

tion Act and demonstrate that these requirements can be verified using provenance.

Based on this case study, we identify which provenance should be gathered by the

architecture to verify these requirements. With our proposed architecture and

the corresponding protocols, the necessary provenance can be collected and visu-

ally analysed, demonstrating that provenance can be effectively used to support

information transparency.

6 Chapter 1 Introduction

2. Our second contribution is the Compliance Framework which automatically verifies

the requirements derived from the DPA case study. It uses a novel graph-based rep-

resentation for analysing collected provenance information and verifying whether

information was processed according to the identified requirements. Within this

representation, provenance is encoded as a so-called Provenance Graph, which cap-

tures the relations between data and the processes that acted upon it. Similarly,

the rules that indicate how personal information should be processed are repre-

sented by the Usage Rules Definition Graph, a graph that simplifies the analysis

of past processing. Finally, compliance is decided by checking whether the Prove-

nance Graph matches a Usage Rules Definition Graph.

3. Our third contribution is the Secure Provenance-based Auditing Architecture that

secures the Provenance-based Auditing Architecture in order to minimise the risk

of undetected alteration of provenance (for example, by malicious actors) during

the stages of creation, storage, querying and analysis. This architecture, which

relies on cryptographic techniques, ensures the trustworthiness of the evidence on

which audits are based. By securing provenance, we guarantee that the entire sys-

tem (i.e. provenance and application data) exhibits the properties of confidentiality,

integrity, authentication and non-repudiation. These security characteristics are

formalised and verified using an automatic model checker.

These contributions have led to the publication of the following papers:

• Aldeco-Pérez, R. and Moreau, L. (2010). Securing Provenance-based Audits. In D.

L. McGuinness., J. R. Michaelis and L. Moreau (Eds.), International Provenance

and Annotation Workshop (IPAW 2010) (LNCS 6378, pp. 148-164). Troy, NY:

Springer-Verlag.

• Aldeco-Pérez, R. and Moreau, L. (2010). A Provenance-based Compliance Frame-

work. In A. J. Berre, A. Gómez-Pérez, K. Tutschku and D. Fensel (Eds.), Future

Internet Symposium (FIS 2010) (LNCS 6369, pp. 128-137). Berlin, Germany:

Springer-Verlag.

• Aldeco-Pérez, R. and Moreau, L. (2009). Information Accountability supported

by a Provenance-based Compliance Framework (Poster). UK e-Science All Hands

Meeting 2009. Oxford, UK.

• Aldeco-Pérez, R. and Moreau, L. (2008). Provenance-based Auditing of Private

Data Use. International Academic Research Conference, Visions of Computer

Science (BSC 2008) (pp. 141-152). London, UK: BCS.

Chapter 1 Introduction 7

1.4 Thesis Structure

The remainder of this thesis is organised as follows.

Chapter 2 presents an overview of related work. First, we overview the state of the art

in provenance, analyse the strengths and weaknesses of existing approaches, and identify

the techniques we adopt in our work. Then, we discuss existing approaches for auditing

IT systems, and argue that they are unsuitable for open and distributed systems. After

that, we discuss the four security characteristics of confidentiality, integrity, authentica-

tion and non-repudiation and give an overview of existing techniques that ensure these

characteristics hold. Finally, we focus on legislation frameworks for data protection, and

explain the necessary conditions for compliance.

In Chapter 3, we study the Data Protection Act and derive a set of Auditing Require-

ments that specify the conditions for data processing to be in compliance. With this

goal in mind, we also present a practical scenario and identify the protocols that involve

the exchange of personal information.

In Chapter 4, we develop the Provenance-based Auditing Architecture. This architec-

ture is based on a provenance-aware version of the protocols presented in Chapter 3,

augmented with additional components to support automatic audits. Then, we identify

which provenance needs to be captured in order to automatically verify the Auditing

Requirements stated in Chapter 3.

In Chapter 5, we develop the Compliance Framework, which is capable of automati-

cally verifying the Auditing Requirements described in Chapter 3, using the provenance

captured by the architecture from Chapter 4. This framework consists of three compo-

nents. The first component is a graph based representation of the provenance captured

in Chapter 4. The second component is a graph based representation of the processing

rules, that state how personal information should be processed. These processing rules

are derived from the Auditing Requirements. The third component is a set of algo-

rithms for automatically verifying whether data processing was in compliance with the

processing rules.

Chapter 6 discusses the steps that need to be taken to make the Provenance-based

Auditing Architecture secure. Here, we explain how to guarantee confidentiality, in-

tegrity, authenticity and non-repudiation in each of the stages of the provenance life

cycle: recording, storage, querying and analysis. This is first achieved by securing the

provenance graphs, and second, by formalising the architecture protocols using UML.

Later, the protocols are verified with an automatic model checker. The result of this

chapter is the Secure Provenance-based Auditing Architecture.

8 Chapter 1 Introduction

In Chapter 7, we present a methodical analysis of the security of systems designed

according to the Secure Provenance-based Auditing Architecture. This analysis is car-

ried out by using Attack Trees, which examine the security of a system under realistic

conditions by analysing threats and their corresponding countermeasures.

Finally, Chapter 8 summarises the contribution of this thesis, outlines future work and

offers some concluding remarks.

Chapter 2

Related Work

In Chapter 1, we discussed the benefits and risks involved in disclosing personal infor-

mation. While the proper use of personal information has created value in the form

of new services, its misuse can lead to harm. In an attempt to address this problem,

governments have proposed legislation to restrict the ways in which personal informa-

tion can be used. However, legislation merely transforms the original problem into a

problem of enforcement. We argued that information accountability — making organ-

isations responsible for proper management of personal information — is an essential

step towards successful enforcement. To do this, it is necessary to make information

processing transparent, making it possible to conduct audits to verify whether this in-

formation processing was in compliance with the applicable laws. This transparency

can be achieved by documenting the operations that were applied to data, which con-

stitutes the provenance of that data. Finally, we argued that, in order to ensure the

trustworthiness and reliability of audits, the provenance itself on which these audits are

based needs to be trustworthy and reliable. Thus, we identified the problem of securing

provenance.

Before addressing this problem and developing solutions to it, we first give an overview

of the background of this thesis. To do this, we discuss the four areas identified in

the central problem summarised above: provenance, electronic audits, security and data

protection legislation. In this chapter, we study each of these topics in more detail,

discuss the state of the art, and identify the techniques that we adopt in our own work.

Thus, this chapter is organised as follows. Section 2.1 presents an overview of prove-

nance approaches. Here, we discuss the different ways in which provenance is captured,

stored, queried and analysed. Section 2.2 presents the main approach used to audit

IT systems, audit trails. Section 2.3 formalises the concept of security by discussing

the four main properties that need to hold in secure systems. Section 2.4 presents the

most important data protection legislations, and explains their structure, concepts and

principles. Finally, Section 2.5 summarises the discussion in this chapter.

9

10 Chapter 2 Related Work

2.1 Provenance

The word provenance is used in diverse areas, such art, archaeology and palaeontology,

for describing the history of custody of an object since its creation, including any succes-

sive changes made to it. To establish that this object has not been altered and it is not

a forgery or a reproduction, it is necessary to have documented evidence of such events.

The main purpose of this evidence is to prove that a specific object actually comes from

where it is thought to originate from, in other words, that it is authentic.

Similarly, in Information Technology, provenance makes it possible to determine the

origin of a computational result and its event history. Electronic provenance can be used

to evaluate information quality [112, 47], ascertain information attribution [77], support

reproducibility [87, 137], or as in this thesis, as audit evidence to establish information

accountability. Due to its extended use in diverse domains, different techniques for

capturing, storing and analysing provenance have been developed. These techniques

vary according to the specific requirements of each domain, where provenance is defined

and represented in different forms.

In order to present a systematic general overview of the most representative provenance

approaches, we explain the techniques and approaches used throughout its life cycle to

capture, store, query and analyse provenance. This analysis is based on the characteri-

sations presented by Simmhan et al. [128], Freire et al. [53] and Moreau [103] in their

corresponding surveys.

The aim of this analysis is to identify the necessary characteristics of provenance for

supporting audits.

2.1.1 Computer Systems Provenance Definition

In computer systems, provenance is defined in several different ways depending on the

domain where it is used. A generic definition is given by Simmhan et al. [128] who state

that: “data provenance is information that helps determine the derivation history of a

data product, starting from its original sources”. This definition is similar to the one

found in most dictionaries in the sense that provenance helps to determine how a data

product originated. Here, a data product can be any type of data, such as files, tables,

collections, etc. However, more specialised definitions exist, which we briefly discuss

below.

Buneman et al. [34] define data provenance in database systems as “where a piece of

data came from and the process by which it arrived in the database”. In that sense,

they make a distinction between why-provenance, which refers to the source data (tuples)

that influence the existence of a query result, and where-provenance, which refers to the

location (databases) from which the data was copied.

Chapter 2 Related Work 11

In the scientific domain, Greenwood et al. [60] define provenance as “a kind of metadata,

recording the process of experiments for e-Science, the purpose and results of experi-

ments as well as annotations and notes about experiments by scientists”. This definition

states that a type of data (metadata) is captured from a specific area (e-Science). This

metadata can be enriched by standard “annotations” indicating when an object was cre-

ated or updated, who owns it and what its format is. These annotations can be created

automatically, but also manually by users.

In a different context, Groth et al. [64] define provenance as “[...] the process that led to

that piece of data”. Using this definition, they argue that provenance not only represents

data derivations but also processes derivations, i.e. which processes were involved in the

creation of a piece of data. In the context of our work, this definition is attractive,

because it includes the processes that were performed on data. This is vital information

for establishing the process transparency needed for verifying that personal information

was used in accordance with the law. For this reason, this definition by Groth et al. is

the one used in this thesis.

Now that we have presented the different definitions of provenance, we proceed by re-

viewing the different existing computational approaches for managing provenance. This

review is organised according to the provenance life cycle, which is presented in Fig-

ure 2.1.

The cycle starts when provenance is captured and recorded in a storage component called

Provenance Store, in a stage we refer to as recording. The techniques used to record

provenance are discussed in Section 2.1.2. Provenance is maintained in the Provenance

Store during the storage stage. The different approaches used to store provenance are

described in Section 2.1.3. Provenance is made available by querying the Provenance

Store, during the query stage, which is presented in Section 2.1.4. Finally, the results

of these queries are analysed, during the analysis stage. The different approaches used

during this stage are studied in Section 2.1.5.

Figure 2.1: Provenance Life Cycle

12 Chapter 2 Related Work

2.1.2 Recording Provenance

As Freire et al. argues, there are three different mechanisms used to capture provenance:

workflow-based, process-based and Operating System-based [53]. The characteristics,

advantages and disadvantages of these mechanisms are discussed below.

2.1.2.1 Workflow-based Systems

Workflow-based Systems systematically capture provenance of complex processes, and

represent this provenance as the workflow of data processes that were performed. Pro-

cesses are specified by well-defined languages allowing the system to support automa-

tion, reproducibility and result sharing. One advantage of these systems is that the

capture functionality is integrated into the workflow system, and as such, provenance is

captured through system APIs. These systems normally provide simple programming

models and visual programming interfaces that allow visualisation of provenance work-

flows as graphs, which can be explored and queried. Examples of this type of system

are Kepler [29], Taverna [149] and REDUX [23].

2.1.2.2 Process-based Systems

In process-based systems, each service involved in a computational task is adapted

to capture its own provenance. This is achieved by wrapping existing services in a

provenance-aware adapter, which is capable of recording and storing the data and data-

process dependencies that constitute provenance. To obtain the complete provenance of

a piece of data, provenance information is queried by reconstructing the dependencies

that exist between services. Similar to workflow-based systems, provenance information

can be visualised as graphs.

An example of this type of system is PASOA (Provenance Aware Service Oriented Ar-

chitecture) [64], which captures extra information that describes what actually occurred

at execution time. Such extra information, which is referred to as process documentation

(which we call provenance), can be seen as documented evidence of the events performed

by an application in execution time.

In order for applications to implement PASOA, they first need to be made Provenance

Aware, by recording process documentation at execution time, in addition to performing

the task for which they were designed.

The provenance collected by PASOA consists of a set of assertions generated at execution

time, called p-assertions (Provenance Assertions), which are asserted by the components

of an application. There are three types of p-assertions that document different actions:

Chapter 2 Related Work 13

Interaction P-Assertion is a description of the contents of a message by an actor

that has sent or received such a message.

Relationship P-Assertion is a description of how an actor obtained output data sent

in an interaction, by applying some function or algorithm to input data from other

interactions.

Actor State P-Assertions is a description provided by an actor about its internal

state in the context of a specific interaction.

2.1.2.3 Operating System-based Systems

Operating System-based systems capture provenance at the Operating System (OS)

level, and as such, are not aware of the specific processes executed within the system.

These systems capture data and data-process dependencies created by system calls and

file access. They rely on OS functionalities only, so there is no need for modifying

existing applications that are executed on the system. Similar to process-based systems,

they obtain provenance information through provenance queries that reconstruct the

existing dependencies between system calls and files accesses. One disadvantage of these

systems is the low level and quantity of captured provenance, which makes querying and

analysing this provenance very challenging. Examples of this type of system are PASS

[70] and ES3 [54].

Another important issue about capturing provenance is the granularity level in which it

is captured. In the next section we describe the different approaches used.

2.1.2.4 Granularity of Provenance

The granularity of the captured provenance depends on the specific domain and appli-

cation in which provenance is used. For example, in the databases context, provenance

is used to track tables [144], rows (Trio [147], Perm [56]) and cells [33]. In OS-based

Systems provenance is used to track provenance of files, such as PASS [70] and ES3

[54], the same as some workflow-based systems such as VDS [150]. Other workflow-

based systems, such as Kepler [29] and Taverna [149], track provenance of collections

and collections’ elements. The main disadvantage of workflow-based systems is that the

granularity of provenance is not decided according to a predefined methodology. For

example, it does not take into account the analysis that should later be applied to the

provenance.

In order to obtain a more flexible method, Miles et al. [100] propose a different vision.

They argue that the granularity of provenance can be chosen depending on the spe-

cific use of this information. Specifically, it is possible to decide which provenance is

14 Chapter 2 Related Work

recorded based on the questions that we want to answer using provenance information.

With that purpose, they introduce the Provenance Incorporating Methodology (PrIMe),

which is a software engineering methodology for adapting existing applications to record

provenance about their execution. PrIMe is divided into three phases: provenance ques-

tion capture and analysis, actor based decomposition and adapting the application. As

this methodology is used in this thesis (see Chapter 4), more information about it is

presented below:

Phase 1: Provenance Question Capture and Analysis In the first phase of PrI-

Me, an analysis of the application identifies the provenance related questions to be

answered about the application. Likewise, the information for which provenance

is sought is characterised as well as the answer’s scope.

Phase 2: Actor Based Decomposition In the second phase of PrIMe, the applica-

tion is conceptually decomposed into a set of actors, which record process docu-

mentation. Then, their interactions are analysed to find the relationships between

these interactions. This analysis exposes the information flow within the appli-

cation. For this purpose, PrIMe uses a graph-based representation of application

interactions. The next step is to determine which application actors are involved

in the provenance of a given data item: these actors are called knowledgeable ac-

tors. If the necessary information for answering the provenance related questions

is available from the current actors, then it is time to apply Phase 3. If not, Phase

2 has to be repeated until the correct level of granularity to answer provenance

questions is reached.

Phase 3: Adapting the Application This phase involves the modification of the ap-

plication in order to make explicit the required information items that are currently

unavailable, thereby giving the application the necessary functionality to record

process documentation, which in turn allows actors to perform queries on the

documentation in order to answer provenance questions.

Now that we have discussed techniques for recording provenance, we next focus on the

second stage of the provenance life cycle: storage.

2.1.3 Storing Provenance

There are three principal storage strategies: the no-coupling, the tight-coupling and the

loose-coupling recording strategy [57].

In the no-coupling strategy provenance is stored in a central provenance repository or

in distributed provenance repositories that are dedicated to store provenance only. The

main advantage of this strategy is that it can be used in heterogeneous environments with

Chapter 2 Related Work 15

limited control over the execution (open systems). However, the existence of a centralised

provenance repository creates a single point of failure. If, instead, the repository is

distributed, retrieving provenance becomes more challenging as the provenance of a

single item can be distributed in various repositories.

Since, in this strategy, provenance is stored in a different repository from the one in

which application data is stored, there exist two ways in which the relation between

application data and its provenance is established. The first one maintains a copy of

the original application data as part of the provenance. The second one maintains a

reference to this data. This reference is used to retrieve the original data from the

database where it is stored. Note that, to obtain the original data, the corresponding

credentials are required. Examples of systems that implement this strategy are PASOA,

Kepler and Taverna.

In the tight-coupling strategy, provenance is directly associated with the data whose

provenance is captured. Thus, provenance is attached to the original data. The main ad-

vantage of this strategy is that we do not need a query functionality, because provenance

is obtained together with the data. The disadvantage of this is the lack of protection of

provenance. When a piece of data is accessed it is possible to access and manipulate its

provenance. An example of a system where this strategy is used is discussed by Hasan

et al. [68].

Finally, in the loose-coupling strategy, provenance and data are stored in a single storage

component but logically separated. The main advantages of this strategy is that, since

provenance is contained in the same repository, accessing provenance is faster. Moreover,

provenance and application data can be protected by different policies, since both are

separated. However, should the database crash, not only the application data but also

its provenance is lost. Examples of systems that implement the loose-coupling strategy

include those described by [34, 32] and the OS-based systems, such as PASS.

2.1.4 Querying Provenance

The fundamental goal of provenance systems is to enable analysis of the results produced

by their systems. Therefore, provenance needs to be queried after it has been captured

and stored in a provenance store. To this end, the provenance store should be able to

respond to provenance queries. A provenance query [105] is a user-tailored query over

captured provenance aimed to obtain the provenance of a specific data item.

The intent of a provenance query is to select a set of provenance assertions (p-assertions),

which we refer to as provenance query result, that provides the provenance of a specific

piece of data. A p-assertion expresses the relation between a piece of data and a process

that used or produced it. The piece of data for which provenance is sought is referred

16 Chapter 2 Related Work

to as the data item. Since not all p-assertions related to the data item are relevant to a

query result, only those that belong to a predefined context called scope are returned.

In most systems, such as Taverna, PASS, PASOA, and Kepler, provenance query results

are represented by Directed Acyclic Graphs (DAGs). These DAGs represents the way

in which a piece of data was derived by showing the dependencies between data and

processes. The nodes of such DAGs represent data items and edges represent data

derivations. Thus, by following the relationships in this DAG, it is possible to ascertain

how a data item was produced.

In an effort to standardise this widely used provenance representation, Moreau et al.

[104] developed the Open Provenance Model (OPM). OPM is a model designed to sup-

port the sharing of provenance between different systems. Different from the aforemen-

tioned DAGs, in this model, the nodes of the DAG represent not only artifacts (pieces of

data), but also processes (actions resulting in new artifacts), while the edges represent

causal dependencies between them.

2.1.5 Analysing Provenance

After provenance has been queried using one of the aforementioned methods, it can be

analysed to enforce norms in multi-agent systems, or to verify that proper procedures

were followed in experimental and business workflows.

In workflow systems such as VisTrails, Kepler and Taverna, the actual workflow can

be compared to manually constructed rules that specify so-called acceptable workflows,

which are represented as workflows themselves. These systems provide visual tools for

manually comparing the actual execution of workflows (which is represented as prove-

nance) with the acceptable workflows [35]. Thus, these systems do not offer functionality

for automatic compliance checking.

Miles et al. [101] capture provenance of experimental workflows. This provenance is

later analysed to determine the semantic validity of past experiments. They determine

whether the inputs and outputs of the operations applied in these experiments are of the

correct type. They achieve this by analysing the underlying provenance representation

(XML) against the expected types (represented as XML Schema). The main disadvan-

tage of the model used in their technique is its strong dependence on the implementation

details of XML; it is not an implementation independent theoretical model.

Curbera et al. [44] use provenance in a business context (so-called business provenance),

which provides information about how data was produced, which resources were involved

and which tasks were executed. Business provenance is captured in the form of a DAG

that is analysed to detect compliance with business process regulations. To do so,

they create business control points, which are patterns that business processes should

Chapter 2 Related Work 17

adhere to in their execution. Using these control points, users can detect (the cause of)

problems in business processes by manually analysing the corresponding DAGs against

the control points. The main disadvantage of this method is that, despite the availability

of provenance in electronic form, audits are essentially performed manually.

Vázquez-Salceda and Alvarez-Napagao [142] use provenance to regulate the interactions

of web services in a multi-agent context. In their work, provenance is also represented

as a DAG, which provides information about the states an agent may enter into. In

this context, a norms is represented as a partial order, specifying valid sequences of

agent states. To enforce these norms, an enforcement component analyses the stored

provenance against the norms and takes actions whenever violations are observed.

In this section, we gave an overview of the state of the art in provenance, and argued

it is a promising way of making data processing transparent. As such, it can support

audits to achieve information accountability. However, currently, audits are performed

without the availability of provenance. Therefore, in the next section, we study the state

of the art in IT auditing, and explain the benefits of using provenance instead.

2.2 Auditing IT Systems

An audit is an evaluation of an organization or system performed to ascertain the validity

and reliability of its information and to provide an assessment of its operations [65].

The goal of an audit is to express an opinion about the organisation or system under

evaluation, based on accepted standards, legislative frameworks, or mutual policies. An

audit is performed by a third party known as an auditor, who issues a report on the

results of the audit.

The traditional way of auditing involves a qualified auditor who assesses the degree of

compliance of a predefined set of specifications by collecting evidence that is analysed

later. This assessment is a human-driven process that follows procedures established by,

among others, International Organisation for Standardisation (ISO) standards. These

procedures are long, as auditors have to manually analyse large amounts of data. Thus,

in the end, there is no guarantee that all data has been analysed, since the final con-

clusions are based on samples, rather then on all available data. Moreover, because of

the human intervention, the manual audits are also prone to intentional and uninten-

tional errors and omissions. For these reasons, many researchers [65, 124, 106, 25] have

proposed to automate the auditing process so as to increase efficiency and allow for

continuous auditing. The main computational auditing techniques are reviewed below.

18 Chapter 2 Related Work

2.2.1 Audit Trails

An audit trail, also referred to as an audit log, activity log or system log, is a chronological

series of records of computer events pertaining to operating systems, applications, or user

activity that is generated by an auditing system to monitor system activity [134].

Audit trails offer a way to track the actions of an individual in a system, thereby making

users personally accountable for their actions. Moreover, using audit trails, it becomes

possible to detect attempts of penetrating a system and gaining unauthorized access, to

assess the damage of an incident or to find out how, when, and why such an incident

occurred [65].

Audit trail-based systems are systems that are able to collect audit trails of system

activity, which constitute evidence in an audit. These audits consist of two stages:

1. Audit Trail Collection. This process involves capturing audit trail data, which

typically contains result from activities such as transactions or communications

performed by individuals, systems, accounts or other entities [122].

2. Audit Trail Analysis. During this stage, the relevant audit trails are selected.

These audit trails are then presented to a user (auditor) who analyses them and

takes the necessary measures depending on the nature of the analysis. At this

stage, the collected data is normally reduced using specialised tools to select only

those trails that are important in the context of the goal of the audit.

In what follows, we first analyse the different techniques used in the first stage. Then in

Section 2.2.1.2, we present an overview of the techniques used in the second stage, audit

trail analysis.

2.2.1.1 Audit Trail Collection

Most audit trail-based systems collect trails at the OS level, at varying level of granularity

and in different formats. These properties make the audit trails tightly coupled to the

operating system in which they were created. For example, the Compartmented Mode

Workstation (CMW) [115] is an extension of the UNIX 4.2 BSD operating system with

added auditing capabilities. CMW collects data about command information and access

to objects by users in a format that is dependant on the specific routines present in the

system. Another example is the SunOS MLS System [113], which is a variant of the

SunOS 4.0 distributed operating system that includes audit trail generation capabilities.

This system defines a standard audit file format, however, this format is still tied to the

UNIX family of operating systems, since it specifies routines names that only appear

in UNIX-based systems. Moreover, in the SunOS MLS System, user names and file

Chapter 2 Related Work 19

names are directly referenced in the audit trails, so care must be taken to ensure these

descriptors have meaning across the components (such as terminals and databases) of a

distributed system.

In contrast, systems such as the VAX security kernel [124], a virtual machine monitor

with audit generation capabilities, not only collects audit trails based on user names but

also based on objects. In this context, object means files, devices and processes.

The main problems in these systems are interoperability, since the format of the audit

trails is dependant on the OS, and scaling the quantity of recorded information for

analysis can grow quickly. To address the first issue, standard formats such as Bishop’s

Standard Audit Trail Format [25], Normalised Audit Data Format (NADF) [106] and

Common Audit Trail Interchange Format for UNIX (svr4++) [129] have been proposed.

To address the second issue, preprocessing techniques that reduce the quantity of col-

lected trails have been developed. These techniques select a subset of trails that are

in scope of the main goal of the auditing system. For example, if the goal is intru-

sion detection the preprocessing module selects the trails that are related with a set

of suspicious activities that can lead to intrusion. Another reduction technique is to

select only the trails related to a specific object or user, for example, to track files that

are considered fundamental to system security. A different technique is the creation of

criteria that state which trails should be collected. Examples include the DoD Trusted

System Evaluation Criteria [1] and the Security Criteria for Distributed Systems [95],

which explicitly define the activities and events that need to be tracked by an audit

trail-based system.

When audit trails are collected in a distributed environment, these issues are even more

problematic, as audit trails not only need to be collected locally but also transmitted

to a central location for analysis. These issues are explored in the Distributed Auditing

System (DAS) [22] and the Distributed Audit Service (DAX) [136], in which audit

entities collect audits trails locally, send them to an audit manager entity that merges

them, reduces them and, if necessary, transforms them to the chosen format.

To supplement these approaches, some systems collect audit trails of high-level events,

in addition to those related to low-level OS events. For example, these high-level events

can pertain to applications [85, 91], networks [69] or system configuration [41]. As a

result, these techniques collect large amounts of information which needs to be merged

with the OS-based audit trails in order to facilitate analysis.

Another area in which audit trails are used is databases. Here, audit trails are used to

monitor users’ actions, identify malicious behaviour, maintain data quality, and improve

system performance. In this context, an audit log is a complete record of the operations

on a client table over time. These audit logs can be queried to select the necessary logs

to, for example, check the operations performed by a user on one or more tables [90].

20 Chapter 2 Related Work

2.2.1.2 Audit Trail Analysis

Various tools exist for performing automatic analysis of audit trails. As previously men-

tioned, the analysis tools are applied to a set of audit trails which might be preprocessed

first. These trails are analysed to search for patterns that are previously established by

designers. These patterns can be events that are considered suspicious, such as attempts

to access files or execute commands without proper authorisation. If one or more of such

events are found in the audit trails, the users related to them are flagged as suspicious

and an auditor can manually verify what actually happened.

These suspicious events can be defined in files containing the different activities that

can trigger suspicious behaviour. An example is the Distributed Intrusion Detection

System (DIDS) [130], which creates a list of “notable events” that are collected from

host monitors and sent to a director component. This director component uses an expert

system to analyse the audit trails and identify suspicious activity. The expert system

defines the suspicious activities based on statistical analysis of users’ behaviour. If a

user does something that he or she normally does not do, this event will be reported.

Another technique for defining behavioural patterns is state-modelling, which defines

a system intrusion as a number of different states, each of which has to be present in

the audit trails for it to be considered to have taken place. The work in this area can

be divided into two subclasses [21]. The first focusses on state transitions in which the

states of an intrusion form a simple chain that has to be traversed from beginning to

end. The State Transition Analysis Tool (STAT) [73] uses this technique, where the

actions an attacker can perform to achieve a security violation are represented by state

transition diagrams. These actions are later searched for in the audit trails. If the audit

trails are matched by one of these state transition diagram, a violation is detected and

flagged for review by an auditor.

The second subclass uses Petri nets, which form non-linear state transition structures.

For example, the Intrusion Detection in our Time (IDIOT) [86] uses a particular type

of Petri nets called Coloured Petri Nets (CPN). In IDIOT, security violations are seen

as sequence of actions that lead to an intruder successfully attacking the system. In

this context, each violation is represented as an instantiation of a CPN, whose states

and transitions represent relationships between suspicious events. These CPNs are then

matched against the audit trail system in search of security violations. Using this tech-

nique, the sequence in which the events occurred is very important and needs to be

carefully considered in the design of behavioural patterns and in the collection of audit

trails.

In contrast to IDIOT, the Network Anomaly Detection and Intrusion Reporter (NADIR)

[69] does not require a specific order of events in the collected audit trails. Rather,

NADIR, which is a misuse detection system, employs an expert system to identify misuse

Chapter 2 Related Work 21

scenarios of user activity based on statistical analysis [74]. This is achieved by creating

summary profiles of user activity that are analysed in search of the presence of suspicious

events. Even though this approach is time independent, it does not collect information

about the context in which the events happened, which can lead to false positives.

Another intrusion detection system is Snort [121], which is an open source network-

based intrusion detection system. Snort performs real-time traffic analysis and packet

logging on Internet Protocol (IP) networks. Snort can be configured in three main

modes: sniffer, packet logger, and network intrusion detection. In packet logger mode,

Snort logs packets that later can be analysed against a rule set defined by the user.

A different statistical technique used in the analysis of audit trails is the creation of rules

based on the past behaviour of users. In this technique, misuse scenarios and suspicious

activities are encoded in rules that are used by an expert system to analyse the audit

trails. Systems such as the Next-generation Intrusion Detection Expert System (NIDES)

[18] use this technique that combines statistical analysis and pattern matching. NIDES

creates descriptive statistics rules based on the statistical analysis of users behaviour.

After that, the audit trails are analysed in search of the violation of the rules to flag

potential suspicious behaviour.

Now, since audit trails are sensitive to tampering and they constitute evidence of possi-

bly wrongful conduct, they need to be properly managed and secured. This is especially

important and challenging in distributed systems, where audit trails need to be trans-

mitted over possibly insecure networks. Therefore, in the next section, we address the

problem of securing audit trails.

2.2.2 Securing Audit Trails

From the perspective of security, it is important to securely collect, store and analyse

distributed audit trails. Schaen and McKenney [122] explain how security affects the

auditing process in distributed environments, and suggest which issues need to be ad-

dressed. However, no practical solution is given. In the same area, Huh and Martin [72]

discuss the problem of having trustworthy services for auditing and logging (i.e. trusted

logging). They suggest that, in distributed environments, it is possible to use remote

attestation to enforce procedures and policies in a secure and interoperable way. They

argue that logs should offer integrity and confidentiality through the implementation of

access control. The logs should also be combined and analysed in a distributed fashion

to support multiple administrative domains.

Another important security issue related to audit trails is privacy. When audit logs fall

into the wrong hands, they can be used to analyse users’ actions, and view personal

information that is referenced in these audit logs. Both constitute a violation of users’

22 Chapter 2 Related Work

privacy. A suggested solution to this problem involves the implementation of access

control that restricts user access to query results [107]. A similar privacy problem exists

in the management of provenance, which to date has not been addressed. We come back

to this issue in Chapter 8, when we discuss future work.

2.2.3 Disadvantages of Audit Trails

The focus of this thesis is the collection and analysis of electronic evidence in open and

distributed systems, with the ultimate aim of verifying that personal information was

used in compliance with the law. In this context, audit trails are less suitable, for a

number of reasons.

First of all, few audit trail systems are capable of integrating audit trails across different

platforms in a distributed way. The main problem here is a lack of standardisation of

audit trail formats. Some efforts have been made by creating translators, however, this

hampers systems performance.

The second problem is caused by the fact that the granularity of audit trails is too fine,

i.e. audit trails are too low-level for our purpose. As a result, a lot of information needs

to be collected, which leads to a problem of scalability. While attempts have been made

to solve this problem by filtering the events that are tracked within the system, some

researchers instead have argued that audit trails contain too little information, and more

(instead of less) information is necessary.

Thirdly, by analysing audit trails it is not evident which events where triggered by the

operating system, and which were triggered by user applications. Some researchers have

sought to address this problem by collecting application level trails. The problem of this

solution is the difficulty of merging OS trails with application trails, and to subsequently

analyse the large amount of information that results.

Finally, and perhaps most importantly, audit logs are evidence of “independent events”

that can be ordered by the time of their occurrence (if the corresponding time stamps

were in place). In contrast, provenance is not organised according to the creation time

but according to the relationships between data and processes that acted upon it. Thus,

where audit trails fall short in explaining how a piece of data was used and how it

originated, provenance is capable of accurately capturing this vital information, and

thereby of achieving information transparency. In light of this, provenance is more

suitable in the context of the central problem of this thesis, i.e. for determining whether

personal information was used according to the data protection legislation.

Chapter 2 Related Work 23

2.3 Security

As argued in the introduction of this thesis, an important issue in the collection and

analysis of any type of digital evidence is security. This importance is evident given the

many efforts of the audit trail research community to protect electronic evidence from

being tampered. Provenance, a different type of electronic evidence, is no exception to

this and despite its novelty, some work towards protecting it has already been done.

In light of its importance, we present an analysis of the techniques used to protect elec-

tronic evidence. Specifically, we formally define security by introducing several prop-

erties that need to hold in order to help secure electronic evidence. Furthermore, we

give a brief overview of the techniques used in computer systems to ensure that these

properties hold.

This section is organised as follows. In Section 2.3.1 we discuss the so-called basic

security properties, and an extra property, anonymisation, that is important to preserve

privacy. Then, in Section 2.3.2 we discuss the techniques for formalising and validating

the security of a system. Specifically, we discuss UMLSec, which is the approach we

adopt in this thesis for automatic validation of the protocols involving the exchange of

personal information.

2.3.1 Security Properties

In this section we define a set of security properties which need to hold during collection,

storage and analysis of electronic evidence. Specifically, the properties defined in the

ISO/IEC 7498-2 standard [3]: confidentiality, integrity, authentication, non-repudiation

and access control. These properties are specially important in open systems to ensure

secure communication and, consequently, protect the personal information that is trans-

ported. Beside these properties, we add a property that is decisive in preserving the

privacy of information, called anonymisation. Recalling from Chapter 1, the availability

property is out of the scope of this thesis and, therefore, is not described in this section.

Below, we formally define each of these properties.

2.3.1.1 Confidentiality

Definition 2.1 (Confidentiality). Confidentiality protects sensitive data against non-

authorised disclosures by ensuring that information is accessible only to those authorized

to have access [96].

A commonly used technique for ensuring information confidentiality is encryption sche-

mes, in which only those parties that own a secret key can access sensitive data that

24 Chapter 2 Related Work

is transported over an insecure channel. There exist two different types of encryption

schemes: symmetric-key encryption [48] and public-key encryption [96]. In the former,

two parties secretly choose or secretly exchange a key, which is called symmetric key.

To ensure confidentiality, the sender encrypts the sensitive information, which is subse-

quently transmitted over a (possibly) insecure network. To recover the information, the

receiver decrypts it using the same key. In the latter, both the receiver and sender party

create a key pair consisting of a private key and a public key. Here, the information

is encrypted using receiver’s public key. Then, when the receiver gets the encrypted

message it can be decrypted using the receiver’s private key.

2.3.1.2 Integrity

Definition 2.2 (Integrity). Data integrity is the state that exists when computerized

data has not been exposed to accidental or malicious alteration or destruction [2].

There are two forms of integrity. The first allows us to detect accidental data modifica-

tions, such as transmission errors due to the underlying network. The second allows us

to detect malicious data modifications, insertions or deletions [96]. In terms of security,

the second is our main concern, since we assume open and distributed systems, in which

data is transmitted over unsecured networks.

The most commonly used technique to ensure this property is hash functions. A hash

function is a computationally efficient function that maps binary strings of arbitrary

length to binary strings of some fixed length, called hash-values [96]. The hash-value

associated with a binary string is unique, so if one bit of such a string is changed, its

corresponding hash-value will be different. Moreover, hash functions are chosen to be

collision resistant, which means that it is very difficult to find two different binary strings

whose hash values are the same. Using this property, an entity receiving a piece of data

and its corresponding hash-value is able to verify the integrity of such a piece of data

by re-calculating its hash-value and comparing it with the given one.

There exist two types of hash functions. The first type is called “keyed hash functions”,

which is also know as Message Authentication Codes (MAC), because its specific purpose

is message authentication. These functions require a secret key, and consequently, they

not only provide data integrity but also data-origin authentication, because it is assumed

that apart from the recipient, only the sender knows the secret key necessary to compute

the MAC [96]. An examples of these a keyed hash function is HMAC [24].

The second type is called “unkeyed hash functions”, which are also known as Modifica-

tion Detection Codes (MDC). In this type, the hash function provides a short message

digest of a (possibly large) piece of data. If the data is (maliciously) altered, the digest

of this altered data should be different from the original digest [96], enabling the detec-

tion of the alteration. Examples of these functions are MD5, SHA-1 and its predecessor

Chapter 2 Related Work 25

SHA-2 [117]. The unkeyed hash functions are also used in digital signatures schemes by

hashing long messages (using a publicly available hash function) and signing just the

created hash-value, instead of the entire message.

2.3.1.3 Authentication

Definition 2.3 (Authentication). Authentication verifies the supposed identity of an

actor (software or user) and ensures that the information exchanged originated from the

correct source.

The type of authentication in Definition 2.3 is also known as Entity Authentication or

identification (as opposed to message authentication discussed above). Entity authen-

tication assures one actor that the identity of the second party involved is correct. If

the second party is authenticated to the first one, and vice versa, the authentication is

called Mutual Entity Authentication.

Entity authentication can be implemented using password authentication or login pro-

tocols [143]. In these protocols a password, which is associated with a user, serves as

a shared secret between the user and system. The system authenticates the user by

asking the user to enter his user ID and password. The system checks that the password

matches the corresponding user ID.

Zero-knowledge identification protocols [96, 46] are also used to provide authentication.

These protocols are specifically designed to allow a prover (the party who wishes to

authenticate itself) to identify itself to a verifier (the party who wishes to establish the

prover’s identity) by demonstrating the possession of a secret without revealing any

information whatsoever about the secret.

Another method used to support entity authentication is a challenge-response identifi-

cation protocol [30, 96]. In these protocols one entity (the claimant) proves its identity

to another entity (the verifier) by demonstrating knowledge of a secret. This secret is

associated with that entity only, so proof of possession of the secret identifies its owner.

The demonstration is performed without revealing the secret itself to the verifier. To

do so, the claimant provides a response to a time-variant challenge (such as a random

number), where the response depends on both the entity’s secret and the challenge.

Exemplar protocols of this type are the Transport Layer Protocol (TLS) [27] and all its

variants (such as [19]).

The TLS protocol is a very well-known authentication protocol that is currently in use for

protecting most Internet traffic that involves sensitive information (i.e. online banking

and shopping, email, etc.). Because of its importance to this thesis — we use a variant

of this protocol in Chapter 6 — we describe it in detail below.

26 Chapter 2 Related Work

Transport Layer Security (TLS) is a cryptographic protocol that secures Internet com-

munications by preventing eavesdropping, tampering and message forgery. TLS is a

widely-used IETF (Internet Engineering Task Force) standard that allows client/server

applications to negotiate a secure connection using a handshaking procedure in which

the participants agree on various parameters for establishing the connection. In doing

so, the server authenticates itself to the client and the client and server together cre-

ate the shared session key that is used to encrypt and decrypt the data contained in

messages. The TLS protocol proceeds as follows:

• The handshake begins when a client connects to a TLS-enabled server by request-

ing a secure connection. It presents a list of supported cipher suites, which contains

the supported ciphers and hash functions. This is done in the clientHello message

shown in Figure 2.2.

• From this list, the server chooses the strongest cipher and hash function that it

supports and notifies the client.

• The server identifies itself using a digital certificate. The certificate usually con-

tains the server name, the trusted certificate authority (CA) that signed the cer-

tificate and the server’s public encryption key. All this is achieved by sending the

serverHello message in Figure 2.2.

• When the client receives this information, it may contact the certificate authority

to confirm the validity of the server’s certificate before continuing the execution of

the protocol.

• In order to generate the session key used for securing the connection, the client

encrypts a random number with the server’s public key and sends the result to

the server. If the private keys is securely kept by the server, only it is able to

decrypt the message with its private key. This is achieved by the sending of the

keyExchange message in Figure 2.2.

• From the random number, both parties use the same algorithm to generate the

session key that is used for the encryption and decryption of application data.

• Finally, the server sends a finished message to indicate that the handshake phase

was been completed successfully.

Once these steps have been completed, the handshake phase terminates, and a secure

connection is established. Using this connection, all application data is protected because

it is encrypted by the sender and decrypted by the received using the created session

key until the connection closes. If any of the above steps fail, the TLS handshake fails

and no connection is established. Note that, for reasons of clarity, the description above

Chapter 2 Related Work 27

Figure 2.2: TLS Protocol

and in Figure 2.2 is presented at a high level of abstraction. For more details about this

protocol, including implementation details, we refer the reader to [27].

As suggested by researchers [43, 19], TLS is an expensive protocol, not only in terms

of the number of messages that are exchanged, but also because of the expensive cryp-

tographic operations that the server needs to perform, which can potentially become a

centralised bottleneck in the system.

For our work, these properties of TLS have two negative implications. First, entities

need to mutually authenticate each other in our system (Requirement A). Secondly, our

system gathers provenance about the protocol’s execution in order to keep track of the

security protocols that are used to protect sensitive application data in our system. The

more messages are exchanged, the more provenance will have to be recorded, which

slows down the process of storing, querying, and processing provenance.

Hence, we opt for an improved and more efficient version of TLS, called the Optimised

TLS Handshake Protocol [19, 79, 71] or OTLS1. We emphasise that this choice is by

no means essential in our work, and that TLS or other variants in the TLS family

[127, 43, 126] can also be used. However, OTLS effectively addresses the aforementioned

drawbacks of TLS in the context of our proposed system.

Now, in more detail, the difference between OTLS and TLS is that the former is more

efficient in terms of communication overhead since it requires three messages to perform

mutual client-server authentication, while the latter requires four [19]. In addition, it

reduces server side processing (without compromising security), by reversing the roles

of client and server so that the generation of the pre-master secret2 is performed by the

server instead of the client. This role reversal achieves the aforementioned reduction

1This abbreviation is not used by the authors, we use it in this thesis to distinguish OTLS from
“standard” TLS.

2The pre-master secret is a randomly generated number that will be used to generate a master secret
from which the encryption keys will be derived. This secret is also called “shared secret” as it is known
by the client and the server after the protocol execution.

28 Chapter 2 Related Work

of the number of messages of a TLS handshake to from 4 to 3 and allows the client to

perform the expensive private key operations, thereby reducing the load on the server

(as compared to TLS). In contrast, in the TLS protocol, the public key used by the client

to encrypt the shared pre-master secret is obtained from the server certificate. With

OTLS, the server chooses the pre-master secret and sends it to the client encrypted with

the client’s public key. Therefore, the expensive decryption operation is performed by

the client.

Crucially, OTLS has been proven to be as secure as TLS in terms of providing security to

Internet communications by preventing eavesdropping, tampering and message forgery

[71]. Thus, the use of OTLS has the advantage of providing the same security properties

as TLS with lower overhead in terms of computation and communication.

Now, the OTLS protocol proceeds as follows (see Figure 2.3):

• The handshake begins when a client connects to a OTLS-enabled server by re-

questing a secure connection, and identifies itself by presenting its certificate and

a list of supported cipher suites and hash functions.

• When the server receives this information, it may contact the certificate author-

ity to confirm the validity of the client certificate. At this point, the client has

authenticated itself to the server.

• From the list of supported functions, the server chooses the strongest cipher and

hash function it supports and notifies the client. The server also identifies itself

using a digital certificate, which contains the server name and the server’s public

encryption key signed by the trusted certificate authority (CA). The server also

sends a server certificate containing the pre-master secret, the client’s random

number and the client’s public key. This certificate is signed with server’s private

key and encrypted with client’s public key.

• When the client receives this information, it may contact the certificate authority

to confirm the validity of the server’s certificate before continuing with the protocol.

At this point, the server has authenticated itself to the client.

• The client decrypts the pre-master secret with its private key and verifies the

signature by extracting the public key from the temporary certificate. Later, the

client encrypts the server’s name with the pre-master secret and sends the result

to the server. Only the server is able to decrypt this using the pre-master secret.

• Finally, from the pre-master secret, both parties use the same algorithm to generate

the session key that is used for the encryption and decryption of application data.

Identical to TLS, after a successful handshake a secure connection is established, in

which all application data is encrypted and decrypted with the session key until the

Chapter 2 Related Work 29

connection closes. If any of the above steps fail, the OTLS handshake fails and no

connection is established.

Figure 2.3: OTLS Protocol

In sum, in our work we use OTLS instead of standard TLS, because it is more efficient

in terms of computation and communication. Specifically, since OTLS requires less

messages to be exchanged, less provenance needs to be collected, processed and stored,

resulting in a better performance of our system.

We return to the OTLS protocol in Chapter 6. Here, we use it to provide mutual

authentication between the entities of our proposed architecture. In addition, we make

the necessary alterations to record provenance of its execution, in order to keep track of

the security measures that were used when processing sensitive application data.

However, before ending the discussion of authentication protocols in general, and (O)TLS

in particular, note that no matter how well designed and tested a protocol may be, a

flawed implementation can cause vulnerabilities. These vulnerabilities have the poten-

tial of compromising the security properties of our proposed system (or any system in

general). Specifically, it has been shown by many authors [118, 140, 140] that TLS has

a number of vulnerabilities. For example:

• A design flaw in the protocol could allow an attacker to successfully inject data

in an encrypted session using a man-in-the-middle attack. The problem occurs

during the renegotiation of the TLS channel, specifically, when client certificates

are used [118]

• By eavesdropping messages sent over a TLS channel, it is possible to decrypt some

of the data contained in these messages (such as passwords). This vulnerability is

due to the way error handling is implemented in certain applications [140].

• In some cases, authentication tokens and cookies used in many HTTPS requests,

which uses TLS, can be recovered from the messages (encrypted) messages sent

over a TLS channel [51]. These tokens and cookies can be subsequently used to

gain unauthorised access to websites.

30 Chapter 2 Related Work

Needless to say, the vulnerabilities of implementation of authentication protocols need

to be taken into account when implementing our system. Practically, this means that

the libraries that implement these protocols need to be updated regularly, and that

additional monitoring systems (that, for example notify human operator of suspicious

behaviour) should be put in place. Whilst important, an in-depth discussion of these

issues is outside the scope of this thesis.

2.3.1.4 Access Control

Definition 2.4 (Access Control). Access control, which is also called Protection or

Authorisation, is a security property that protects shared resources against unauthorised

access according to some access control policy [139].

Access control mechanisms are implemented to mitigate the risks of unauthorized access

to data, resources, and systems. Some examples of these mechanisms are classic access

control techniques, such as Access Control Lists (ACLs). An ACL is the most basic form

of access control in which each resource in a system has a list associated with it that

specifies which entities are allowed access to it, and which actions they can perform [89].

An example of this mechanism is the Discretionary Access Control (DAC) in which the

access policies to a resource are determined by the owner of such a resource.

Another access control mechanism is the Role-Based Access Control (RBAC) mecha-

nism. With this mechanism, the right of access to a resource is determined by the

relationship between the requester and the owner of the requested resource, i.e. the re-

quester’s role determines whether access to a specific resource will be granted or denied

[89].

Attribute Based Access Control (ABAC) is another access control method in which

the access control decisions are made based on a set of characteristics, or attributes,

associated with the requester, the environment, or the resource itself. [89].

Finally, Mandatory Access Control (MAC) is an access control mechanism determined

by systems, not owners. Users and resources have a set of security attributes associated

with them. When users request access to a resource, an authorization rule enforced by

the system examines these security attributes and decides whether access is granted [89].

Whilst access control is a vital aspect of system security, this thesis does not focus on the

implementation of access control or the verification of its presence. Rather, we assume

that one of the aforementioned techniques is correctly implemented.

Chapter 2 Related Work 31

2.3.1.5 Non-Repudiation

Definition 2.5 (Non-Repudiation). Non-repudiation makes it impossible for an entity

to deny the sending or receiving of a given message [96].

The most commonly used techniques for ensuring non-repudiation are digital signature

schemes. In these schemes, the sender and the receiver of a message have a pair of keys:

one private and one public. The sender of a message signs it using its private key. As

the private key is only known by the sender, this signature can only be created by the

sender. If the receiver of the message wishes to prove a message was indeed sent by the

sender, the signature can be verified using the publicly available sender’s public key.

In order to properly offer the non-repudiation property, a digital signature scheme should

have two properties. First, a signature generated from a given message and a given

private key should allow for the verification of the authenticity of that message using the

corresponding public key (trapdoor function). Secondly, it should be computationally

infeasible to generate a valid signature by a party who does not possesses the private

key (one-way function) [96].

Digital signature schemes can be classified in two types. The first type, digital signature

schemes with appendix, requires the original message to verify the signature. This type

of signature scheme appends the message signature to the message itself. However, by

just creating a signature and adding it to the original message the signature is vulnerable

to a substitution attack, i.e. given a valid signature for a message it is easy to modify

the given signature in such a way that is valid for another known message. This type of

attack can be prevented by applying a cryptographic hash function (See Section 2.3.1.2)

to the original message before being signed. To verify the validity of a signature, the

hash-value of the message is computed first and a new signature is calculated from

this hash-value. By comparing this new signature with the one the appended to the

message, the validity of the signature can be established. An example of this type of

digital signature is DSA [84], which is used in the FIPS-186-3 standard [16].

The second type is digital signature schemes with message recovery. This type of scheme

does not require the original message to verify the signature. Instead, the original mes-

sage is recovered from the signature itself. Therefore, the process to verify a signature

in these type of schemes is also called extraction. After the original message has been

extracted from the signature, there is no need of additional steps to establish the validity

of the message. This scheme can also be used along with a cryptographic hash function.

In such a case, the message is hashed and the obtained hash-value is signed. Then, the

corresponding hash-value can be extracted from the given signature and the authentic-

ity of the message is verified by comparing the extracted hash-value with the locally

32 Chapter 2 Related Work

computed hash value of the same message. This is the process that most of current ap-

plications implement [110]. Examples of this type are RSA [120] and the ISO/IEC1991

[4] signature schemes.

In practical terms, digital signatures with appendix are applied to messages of arbitrary

length, while digital signature schemes with message recovery are applied to messages

of a fixed length. In order to obtain messages of a fixed length, these can be hashed.

Another option is to break the message into blocks of a fixed length that later can be

signed. A problem of this approach is that signature generation is relatively slow making

the signing and extraction of one message time consuming. Therefore, the preferred

method is to hash [96]. However, in formal methods as the one presented in Section

2.3.2.2, signature schemes with message recovery make use of this scheme.

Due to their evident advantages, the digital signature schemes with message recovery are

the most widely-used. Hence, in the rest of this document we use these type of schemes.

When the security characteristics of our system requires the use of a cryptographic hash

function, we use it and clearly indicate it. We come back to this in more detail in Section

2.3.2.2.

A good survey that presents detailed information about these schemes is found in [102].

2.3.1.6 Anonymisation

Anonymisation is another important property that should hold when information that

is regarded as sensitive is processed. Sensitive data can be defined as any information,

which through loss, unauthorized access, or modification could adversely affect the in-

terests of its owner. For example, information relating to race or ethnic origin, political

opinions, religious beliefs, physical/mental health, trade union membership or criminal

activities. Through anonymisation, the identity of the person associated with this sen-

sitive information has to remain hidden in the result of processing, if this result is made

available to users who are unauthorised to access sensitive information.

As an initial attempt to hide individuals’ identities when sensitive data is being pro-

cessed, a technique called data de-identification was proposed [138]. In this technique,

information that could be used to identify an individual is removed or replaced by

pseudo-data. Pseudo-data is an identifier, which is used instead of information that can

identify an individual. For example, instead of presenting the name of an individual a

sequence number can be used.

However, data de-identification provides no guarantee of anonymity as processing results

might contain other data that can be linked to publicly available information to re-

identify individuals or to infer other sensitive information [42]. This is known as a

linking attack, in which external data is combined with a set of de-identified data in

Chapter 2 Related Work 33

order to infer hidden private information [37]. To effectively hide individuals identity,

the anomymisation property should hold:

Definition 2.6 (Anonymisation). Anonymisation ensures that sensitive personal infor-

mation can not be recovered by unauthorised users through the analysis of (publicly)

available processing results [135].

Data can be anonymised by implementing different techniques, such as Differential Pri-

vacy [52], k-Anonymity [133, 75], `-Diversity [93] or Perfect Privacy [97]. These tech-

niques are mainly used to avoid disclosure of sensitive information from databases that

manage personal data.

Now that we have defined the properties that need to hold in a secure system, we now

shift our focus to techniques for ensuring that systems indeed exhibit these properties.

2.3.2 Formalising Security Properties

Security should be considered during each phase of the software development life cycle.

This way, it is possible to model and analyse the security properties of a system at the

software architecture design level. Recently, some approaches have been proposed that

support this modelling and analysis. These approaches can be classified as semi-formal,

formal and aspect-oriented. Semi-formal approaches, such as UML, use modelling lan-

guages for specification and visualisation to define a vocabulary for annotating these

models and include information about security properties on this model. Formal ap-

proaches use formal methods (mathematical modelling techniques) to specify, develop,

and verify computer system (software and hardware) design. These methods offer a

way to verify security properties in the systems or models before its implementation.

Finally, aspect-oriented techniques approach security as being orthogonal to the appli-

cation’s functionality. Using so-called aspects, i.e. parts of software that are relevant to

a particular concern, non-functional security properties can be modelled independently

from the core application code.

In this thesis, we use both semi-formal and formal methods, which, unlike aspect oriented

techniques, give us architecture design tools as well as formal methods to verify the

correctness of the model. Specifically, we focus on UML and UML-sec, which combine

the development of models with their verification.

2.3.2.1 Unified Modelling Language

In the next section we present an approach to modelling security requirements using

UMLsec, which is an extension of Unified Modelling Language (UML). Thus, we first

34 Chapter 2 Related Work

briefly discuss UML [9] itself. UML is a general-purpose modelling language that includes

a graphical notation used to create an abstract model of a system. It is one of the

most commonly used standards for specifying object-oriented software systems, and

has been adopted as the industry-standard language for visualising, constructing, and

documenting the artifacts of software systems.

UML Elements UML provides a number of diagram types as a mechanism for

entering model elements into the model. In this section, we briefly introduce the relevant

UML diagrams and components that are used throughout this thesis.

Use case diagrams: are visual descriptions of a system’s behaviour pertaining to a

business task or requirement, which focus on the relation between the system,

external entities, and uses cases. It shows the relations between actors, the users,

people, or other systems, and the use cases, the scenarios in which the actors

interact with the system.

Sequence Diagrams: model the communication between objects in a specific process

as a sequence of method calls. In these diagrams, the temporal relation between

the method calls is shown visually in the form of arrows that represent the exchange

of messages between objects.

Tagged Value: is an explicit way to define properties of an element in the model.

Its notation is {tag = value} where tag is the property name and value is the

corresponding value assigned to the tag. These values are called pseudo-attributes

of model elements because the semantics of their description are outside the scope

of UML definition.

2.3.2.2 UMLSec

UMLsec provides a formal specification of security elements that can be included in a

UML model. We will use UMLsec to include and formalise security characteristics in the

architecture presented in Chapter 5. Based on this formalisation, we can automatically

verify the security characteristics that are relevant to our work presented in Chapter 6.

In more detail, UMLsec [79] is a UML extension for the development of secure systems

that provides a formal specification of security elements in a UML model. In UMLsec,

security requirements and assumptions within the system environment are formulated

using tagged values. These can be used by an automatic model checker to determine

whether a system design meets certain security requirements. Additionally, UMLsec

defines a cryptographic notation to model cryptographic protocols and an adversary

model to model security attacks against the system. In what follows, we briefly explain

both.

Chapter 2 Related Work 35

Cryptographic Notation The cryptographic notation is a formal notation used in

the sequence diagrams to model cryptographic protocols that provide specific security

properties to the system, such as those mentioned in Section 2.3.1. This notation con-

tains formal definitions for modelling cryptographic data in a UML specification, which

can later be analysed. These definitions are presented below and taken from [79].

The notation defines a set of keys, which is denoted as Keys. A key k ∈ Keys can be

symmetric or asymmetric. A symmetric key is used for symmetric encryption schemes

and an asymmetric key for asymmetric encryption schemes. If k ∈ Keys is an asym-

metric key, its inverse exists and is denoted as k−1. Thus, if k is used as a public key,

then k−1 is the corresponding private key. The notation also defines a set of variables

Var that contains the variable names defined in the diagrams and a set of data values

Data that contains the message names of the diagrams, including nonces3 and other

secret information. Moreover, UMLsec defines an algebra of cryptographic expressions,

denoted as Exp, which is an algebra generated from the set Data ∪Var ∪Keys. The

operations and properties of this algebra are presented below and taken from [79].

If A,B ∈ Exp, UMLsec defines the following operations [79]:

A ‖ B A concatenated with B (2.1)

head(A) Head of A (2.2)

tail(A) Tail of A (2.3)

{A}k A encrypted using the key k (2.4)

Deck(A) A decrypted using the key k (2.5)

Signk(A) A signed using the key k (2.6)

Extk(A) A extracted using the key k (2.7)

h(A) Hash of A (2.8)

For each A ∈ Exp, we have the following properties [79]:

Deck−1({A}k) = A For all A ∈ Exp and k ∈ Keys (2.9)

Extk(Signk−1(A)) = A For all A ∈ Exp and k ∈ Keys (2.10)

The Ext function, the inverse of the Sign operation, recovers the data that was signed,

i.e. does extraction. Thus, when the Sign operation is applied to plain, sensitive data,

the Ext function can be used to recover it. As a result, when used in isolation, the

3Nonces are time-variant parameters which serve to distinguish one protocol instance from another
to prevent replay attacks [96]. In these attacks, an adversary records the messages exchanged as part of
a security protocol, and reuses these in an attempt to break system security.

36 Chapter 2 Related Work

Sign operator ensures non-repudiation, but does not ensure confidentiality, since the

plain data can be recovered by anyone in possession of the corresponding public key.

However, if instead of the plain data, the hash value of the data is signed, the plain data

is not recoverable from the signature. Moreover, by doing so, the integrity of the data

can be ensured, since the signed hash can not be altered by a third party (i.e. anyone

not in possession the private key) without being detected. Therefore, in the remainder

of the thesis, if we only need to ensure non-repudiation of non-sensitive data (such as

the digital certificates in Figure 6.1), only the Sign and Ext operations are used. If,

however, non-repudiation and integrity of data need to be ensured, the Sign operation

is applied to the hash value of sensitive data (for example, this is done in the Data

Request, Task Request and Query Request protocols where sensitive application data is

exchanged) and verification is performed by hashing the original data and comparing it

to the result of the Ext function.

Finally, the laws regarding concatenation [79, page 37]. Note that the concatenation

operation is equivalent to the cons function used to handle lists in most programming

languages.

For all expressions E1, E2, E3 ∈ Exp

(E1 ‖ E2) ‖ E3 = E1 ‖ (E2 ‖ E3) (2.11)

For all E1, E2 ∈ Exp the operation head() is defined as:

head(E1 ‖ E2) = E1 (2.12)

For all expressions E1, E2 ∈ Exp such that there exist no E,E′ with E1 = E ‖ E′ the

operation tail is defined as:

tail(E1 ‖ E2) = E2 (2.13)

Moreover, for each E ∈ Exp, we use the following abbreviations [79]:

fst(E) = head(E) (2.14)

snd(E) = head(tail(E)) (2.15)

thd(E) = head(tail(tail(E))) (2.16)

The defined algebra assumes that it is not possible to obtain plain data values from

encrypted data without the decryption key. Moreover, it assumes that the symmetric

Chapter 2 Related Work 37

encryption technique provides integrity by implementing Message Authentication Codes

(MAC), which were explained in Section 2.3.1.

Adversary The adversary model represents a network attacker that can eavesdrop,

modify or insert messages on the communication channel with malicious intentions.

This adversary model relies on an extended Dolev-Yao adversary model [50], in which

an adversary can read messages sent over the communication channel, in an attempt to

derive secret knowledge and break system security.

In the formalisation process, each sequence diagram is associated with an adversary

object that is used to verify that the modelled protocol exhibits the aforementioned

security properties. To this end, the adversary object contains three types of predefined

values: secret, initial knowledge and guard. The values labelled secret are the

data items that should be protected from the attacker. The values in the set initial

knowledge denote the information known by the attacker beforehand (e.g. public keys),

and guardn represents the operations to be performed by the receiver of message n after

it has been received, but before it is processed. Finally, the simultaneous execution

of the adversary model and the sequence diagram model is undertaken to search for

possible attacks. The next section describes how this evaluation is performed.

Using the adversary model, it is possible to model attacks on a specific part of a system.

The adversary is modelled by defining the actions it can perform on each part of the

system. For example, an adversary may be capable of reading messages exchanged over

the communication links of the system, but can not read records in a database. Different

attacks to the system are defined in the form of abstract threats, which are the common

attacks to the information channels:

delete indicates that the adversary can delete messages from the communica-

tion channel.

read indicates that the adversary can read messages on the communication

channel.

insert indicates that the adversary can insert messages on the communication

channel.

access indicates that the adversary has access to the communication channel

or to a physical system node.

When an adversary attack takes place in an actual channel, concrete threats can be

obtained from the real vulnerabilities of such channel. For example, on an Internet con-

nection without implementation of security techniques, the adversary’s concrete threats

are delete, read and insert messages.

38 Chapter 2 Related Work

2.3.2.3 UMLSec Automatic Verification

To verify that the security requirements expressed in UMLsec are maintained during the

execution of a protocol, the Viki model checker can be used [80]. Viki takes as input

a UML sequence diagram and its associated adversary model, and returns the possible

attacks that can be performed by the given attacker in the modelled protocol. Viki

obtains the security requirements from the UMLsec elements and the predefined values

used in sequence diagrams [80]. These requirements are formalised in First-Order Logic

and analysed with automatic theorem provers (e-SETHEO [131] and SPASS [145]) to

find flaws. If a flaw is found, a Prolog engine can be used to generate the attack trace,

which can provide a system designer with valuable insights to solve it.

Using this tool, we can ensure that the modelled attacks are unsuccessful in the model.

Since, in this context, a successful attack means that the system does not exhibit one

of the security properties [125], Viki enables us to verify system security. Therefore,

in Chapters 6, we use the techniques described in this section to model and verify the

security of our Provenance-based Auditing Architecture.

2.4 Data Protection Legislation

As we mentioned in the introduction to this thesis, one of the initial attempts to pro-

tect personal information from misuse is the creation of Data Protection Legislation.

Data Protection Legislation protects individuals by making the misuse of personal in-

formation illegal. In general, it provides a set of rules that organisations should follow

when personal information is handled. Moreover, it defines procedures for verifying that

these organisations processed individuals’ personal information in compliance with the

applicable legislation.

In this section we overview three important examples of Data Protection Legislation:

The Data Protection Act (Section 2.4.1), which is the UK data protection legislation

that safeguards UK citizens’ personal data; Safe Harbor (Section 2.4.2), which is a US

framework that protects personal information managed for commercial purposes between

the US and the EU; and the HIPAA (Section 2.4.3), which is a legislative framework for

protecting patients’ medical information.

2.4.1 Data Protection Act

The Data Protection Act (DPA) 1998 [7] provides protection for an individual’s personal

information by placing restrictions on how organisations can use personal information

— including how they should acquire, store, share or dispose of it. The UK’s DPA is an

implementation of the European directive [5] that enforces the protection of individuals’

Chapter 2 Related Work 39

personal data as it is processed within or moved between Member States of the European

Union. The DPA introduces a new regime for the distribution of information using

computer based systems by legislating the computational processing that organisations

are allowed to perform on individuals’ personal information.

2.4.1.1 Terminology

The DPA defines three entities that are involved in the processing of personal informa-

tion:

Definition 2.7 (Data Controller (DC)). A Data Controller is an individual or organisa-

tion that decides the purpose for which, and the manner in which, personal information

is to be processed.

Definition 2.8 (Data Subject (DS)). A Data Subject is an individual whose information

is held by a Data Controller.

Definition 2.9 (Data Processor (DP)). A Data Processor is an individual or organ-

isation, other than an employee or subsidiary of the Data Controller, that processes

personal data on behalf of the Data Controller.

In the DPA, the information processed by these entities is classified into two types:

Definition 2.10 (Personal Data or Personal Information). Any information related to

a living individual that can be used to identify that individual. For example, name, date

of birth, address, etc. including opinions about this individual or indications of intent

towards him or her.

Definition 2.11 (Sensitive Personal Data). A special subclass of personal data that

can only be processed under certain conditions. Examples of this type are: racial or

ethnic origin, political opinions, religious beliefs, physical and mental condition, sexual

life, offences, etc.

Both types of information could be processed under certain conditions. In the DPA, as

it can be seen in the next definition, processing means anything that can be done with

data.

Definition 2.12 (Processing). The ways of processing information include obtaining,

recording, holding or carrying out any operations, including:

• Organisation, adaptation or alteration.

• Retrieval, consultation or use.

• Disclosure, transmission or dissemination.

40 Chapter 2 Related Work

• Alignment, combination, blocking, erasure or destruction.

This definition of processing is not precise enough for our purposes. For example, it does

not distinguish between the act of collecting and using data, and it does not explicitly

specify the purpose for which processing it performed. However, this is vital information

for deciding whether processing was conducted according to the DPA principles discussed

in the next section. Therefore, we make the following additional definitions:

Definition 2.13 (Purpose). A Purpose is the intention for which the data is to be

processed.

Definition 2.14 (Collected Data). A set of Collected Data is the information obtained

from Data Subjects.

Definition 2.15 (Used Data). A set of Used Data is the information used in the pro-

cessing of a result.

2.4.1.2 Principles of the Data Protection Act

The Data Protection Act consists of eight statutory principles that a Data Controller

should adhere to in order to process a Data Subject’s information. Below, the principles

are presented and briefly explained. In Chapter 5, we develop the Compliance Frame-

work that is capable of automatically verifying these principles using the provenance

collected by the Provenance-based Auditing Architecture described in Chapter 4.

Principle 1. Personal data shall be processed fairly and lawfully and, in particular, it

shall not be processed unless:

(a) At least one of the conditions in Schedule 2 is met.

(b) In the case of sensitive personal data, at least one of the conditions in Schedule 3

is also met.

Principle 1 introduces the concept of purpose through Schedules 2 and 3. In this context,

purpose is the intention for which the data is to be processed. Thus, a DC should have

a purpose for processing DS’s personal data. In more detail, in Schedule 2 and 3 the

DPA states the legal purposes for which a DS’s information can be processed. The

former, used in case (a), specifies legal purposes for using personal data (Definition

2.13). Examples of legal purposes include the consent of a DS, a contract between a DC

and a DS, a legal obligation, the vital interest of a DS or functions of public interest. The

latter, which is used in case (b), specifies legal purposes of processing sensitive personal

data. Examples of these legal purposes are the explicit consent of a DS, to perform any

right or obligation, to protect vital interest of a DS, medical purposes, administration

of justice, etc. For more information about Schedule 2 and 3 the reader should refer to

[10].

Chapter 2 Related Work 41

Principle 2. Personal data shall be obtained only for one or more specified and lawful

purposes, and shall not be further processed in any manner incompatible with that purpose

or those purposes.

If a DC requests personal information from a DS, then such information should only

be obtained with a specified and lawful purpose, which should be provided to the DS.

Furthermore, if a DC obtains information from a DS, such information can only be

processed in accordance with the stated purpose.

Principle 3. Personal data shall be adequate, relevant and not excessive in relation to

the purpose or purposes for which it is processed.

This principle requires that a DC obtains from a DS only the information that is nec-

essary to perform the processes established in the initial purposes. Thus, the data

requested from a DS has to be relevant for the stated purposes. Moreover, a DC should

not request, collect or use more information than required.

Principle 4. Personal data shall be accurate and, where necessary, kept up to date.

The personal information held by a DC should be updated in a way specified by him

or her to ensure that the DC only processes correct information. Hence, a DC has to

provide the means for a DS to perform an update of his or her information.

Principle 5. Personal data processed for any purpose or purposes shall not be kept for

longer than is necessary for that purpose or those purposes.

This principle requires the destruction or deletion of personal data that is no longer

necessary, i.e. when the processing established in the purpose has been accomplished.

The aim of this principle is it must be impossible to identify such an individual through

previously processed data, after the elimination of one individual’s personal information.

Principle 6. Personal data shall be processed in accordance with the rights of data subjects

under this Act.

This principle states that any process applied to personal data should be in accordance

with the Data Subject seven rights, which are presented in [7]. These rights are:

Access to personal data Data Subjects have the right to access their personal data,

which is stored by a DC, whenever the DS wants.

Prevention of processing likely to cause damage or distress The processing of

DS’s information should not cause damage or distress to him or her.

Prevention of processing for direct marketing A Data Subject’s personal infor-

mation cannot be used for direct marketing purposes.

Prevention of automated decision-taking A Data Subject’s personal information

cannot be used for automated decision-taking purposes.

42 Chapter 2 Related Work

Rectification, blocking, erasure, and destruction The DC needs to perform these

actions to a DS’s personal information if so requested by a DS.

Compensation If the DPA is not followed by an organisation, the affected Data Sub-

ject can demand compensation.

Request for assessment Data Subjects can request an audit on the use of their per-

sonal information to verify that DCs followed the DPA principles. A report of the

audit results has to be sent to the DS involved.

Principle 7. Appropriate technical and organisational measures shall be taken against

unauthorised or unlawful processing of personal data and against accidental loss or de-

struction of, or damage to, personal data.

This principle indicates that a DC should ensure an appropriate level of security for

all the processes involving the personal information of a DS. To achieve this, a DC

should implement technical and organisational measures to protect personal data against

accidental or unlawful destruction, loss, alteration, disclosure or access. These measures

are particularly important when processing involves the transmission of personal data

over a network.

Principle 8. Personal data shall not be transferred to a country or territory outside the

European Economic Area unless that country or territory ensures an adequate level of

protection for the rights and freedoms of data subjects in relation to the processing of

personal data.

Principle 8 places restrictions on the transfer of personal data outside the European

Economic Area. Only the countries that fulfil the requirements of this Act can request

personal data from Data Subjects situated in UK. For example, the United States has

implemented the Safe Harbor [8] to ensure the adequate level of protection required by

the DPA. The Safe Harbor legislation is introduced in the next section.

2.4.2 Safe Habor

The Safe Harbor [8] is a legislative framework that protects the privacy of personal infor-

mation transported between the European Union and the United States for commercial

purposes. Because of this, Safe Harbor has seven principles that are similar to the ones

discussed above. These principles require the following:

Notice Organisations should notify individuals about the purposes for which they col-

lect and use individuals’ information. Organisations also should provide their

contact information about how individuals can contact them with any enquiries

or complaints. Finally, organisations should notify the individual with the types

of third parties to which they intend to disclose the personal information and the

Chapter 2 Related Work 43

choices and means organisations offer for limiting the information use and disclo-

sure.

Choice If individuals’ personal information is disclosed to a third party or used for

a purpose incompatible with the collection purpose, then organisations should

request individuals for authorisation. For sensitive information the same principle

applies but the request should be affirmative or explicit.

Onward Transfer (Transfers to Third Parties) Organisations transferring informa-

tion to a third party should apply the notice and the choice principles. Moreover,

if an organisation transfers such information to a third party that is acting as an

agent, then such agent should be subscribed to the Safe Harbor or to the European

Directive. If not, then the organisation and the agent should have a written agree-

ment requiring that the agent provides at least the same level of privacy protection

as is required by the relevant principles.

Access Individuals should have access to their personal information, which is held by

organisations, to correct, amend or delete that information where it is inaccurate.

Security Organisations should implement the necessary security measures to protect

personal information from loss, misuse and unauthorised access, disclosure, alte-

ration and destruction.

Data integrity The personal information collected by the organisations should be rel-

evant for the purpose it is to be used for. Thus, organisations might ensure that

the data collected is reliable (accurate, complete and current) for its intended use.

Enforcement To ensure compliance with the Safe Harbor principles, organisations

should

1. Implement the necessary mechanisms to investigate and resolve any individ-

ual’s complaint.

2. Offer procedures for verifying that organisations have implemented the Safe

Harbor principles.

3. Implement mechanisms to remedy problems arising out of a failure to comply

with the principles.

2.4.3 HIPAA

Health Insurance Portability & Accountability Act (HIPAA) of 1996 [6] is a legislative

framework aimed to improve the efficiency in healthcare delivery by standardising elec-

tronic data interchange and, at the same time, protecting the confidentiality and security

of such electronic health data through setting and enforcing standards.

HIPAA is composed of four main parts:

44 Chapter 2 Related Work

1. Standards for Electronic Transactions. The term Electronic Health Transactions

includes health claims, health plan eligibility, enrolment and disenrolment, pay-

ments for care and health plan, claim status, first injury reports, coordination of

benefits, and related transactions. Thus, all the health organisations should use

one format in the management of such transactions to simplify and improve the

efficiency in the use of this information.

2. Unique Identifiers for Providers, Employers, and Health Plans. This rule requires

hospitals, doctors, nursing homes, and other healthcare providers to obtain a

unique identifier when filing electronic claims with public and private insurance

programs.

3. Security Rule. This rule requires that organisations provide a uniform level of

protection of all individuals’ health information that is stored or transmitted elec-

tronically. Organisations have to implement mechanisms to ensure the confiden-

tiality, integrity, and availability of all electronic protected health information in its

creation, reception or transmission. Therefore, the implemented technical mecha-

nism should protect networks, computers and other electronic devices from security

threats.

4. Privacy Rule. This rule protects the privacy of the individuals that could be

identified through their health information held by health organisation, regardless

of whether the information is, or has been, in electronic form. For this reason

organisations should [6]:

• Give patients rights to access their medical records, restrict access by others,

request changes, and to learn how they have been accessed.

• Restrict most disclosures of protected health information to the minimum

needed for healthcare treatment and business operations.

• Enable patients to decide if they will authorize disclosure of their health

information for uses other than treatment or healthcare business operations.

The frameworks discussed in this chapter demonstrate that governments have acknowl-

edged the importance of protecting personal information. Furthermore, if we compare

the DPA, Safe Harbor and HIPAA, we can see significant similarities. All of them state

that the purpose for collecting and processing personal information needs to be stated,

and then define legal ways in which this information can be processed. However, what is

lacking in all three of them, is an effective and concrete means of enforcing these rules.

As was noted in Chapter 1, what is missing is processing transparency, which makes

it possible for an auditor to investigate how information was managed, and determine

whether this was in compliance with the rules. In this thesis, we argue that provenance

is an effective way of accomplishing this. To that end, in Chapter 3, we study the DPA in

Chapter 2 Related Work 45

more detail, and translate its principles into a set of Auditing Requirements—concrete

conditions for compliance with the DPA which operate directly on collected provenance.

Then, in Chapter 5 we develop algorithms for verifying these Auditing Requirements.

2.5 Summary

In this chapter, we presented an overview of related work. First, we studied the state

of the art in provenance using the provenance life cycle of recording, storage, querying

and analysis. Specifically, we identified PASOA as the primary approach for recording,

storing and querying provenance. The reason for this is that PASOA is the only approach

currently in existence that records causal relations between data that can be contained

in messages, which is an essential requirement of achieving processing transparency in

open systems. We also discussed in detail the PrIMe methodology, an effective tool

for deciding which provenance needs to be collected and which level of granularity is

appropriate. This methodology is used in the development of the application presented

in Chapter 4. Moreover, in terms of the final stage of the life cycle (analysis), we

concluded that, whilst provenance has been used for many purposes, it has not been

used for verifying whether data processing was performed in compliance with the law,

which is one of the primary objectives of this thesis.

Second, we studied audit trails, an alternative technique for collecting electronic evidence

of the use of personal information. However, the main problem with this approach is

that it records the actions that a system or user performs ordered by time. As such, it

does not record the aforementioned essential relations between data and the processes

that were applied to it. Moreover, it is a technology and domain dependent technique,

making it less suitable for use in open and distributed systems. Finally, there exists no

principled methodology for identifying which actions need to be recorded, leading to a

large amount of data, which makes the analysis particularly challenging. In light of this,

we concluded that provenance is the superior technique for our purposes.

Third, we argued the need for securing electronic evidence, provenance or otherwise.

We discussed the key requirements of security and showed the importance of being able

to verify that a system meets these requirements. To this end, we discussed UMLsec,

an approach that allows us to include, formalise and verify security properties in UML

models. Ultimately, the main reason to model security in our work is to obtain secure

audit results: if we can guarantee that the transportation and storage of information

is secure, the results obtained from an audit can be made trustworthy and reliable.

The application of UMLsec to the Provenance-based Auditing Architecture defined in

Chapter 4 is presented in Chapter 6.

Finally, we discussed three important data protection legislations, and showed that the

importance of protecting personal information is acknowledged by governments. These

46 Chapter 2 Related Work

legislations were created to mandate the requirements under which the processing of

personal data in computer systems must be carried out. Therefore, if an authority needs

to verify the compliance of some computational processing to a legislative framework

through audits, it is desirable to have tools that allow this authority to perform such

analysis. For this reason, in the following chapters we present an approach that can

be used to audit the processing of personal information in computational systems and

verify its compliance with the law.

Chapter 3

Problem Definition

In the introduction of this thesis we highlighted the importance of verifying that personal

information was processed correctly and legally. Furthermore, we discussed various types

of legislation created by governments and public institutions to address this problem,

and specifically focused on the Data Protection Act.

In this chapter, we define the central problem we address in this thesis. In order to do

this, we analyse a case study of the Data Protection Act as a model of how legislation is

used to protect personal information. The reason for focusing on this specific legislative

framework, is that the Data Protection Act (DPA) is the main framework enforcing

information privacy in the UK. Moreover, the DPA consists of principles that are well-

specified and can therefore be made amenable to computational implementation.

Against this background, the contribution of this chapter is the identification of a set of

requirements derived from this case study. The remainder of this thesis addresses the

central challenge of automatically verifying these requirements. To accomplish this, we

identify computational security techniques and provenance as a key means of accom-

plishing this.

The remainder of this chapter is organised as follows. First, we present an exemplar

scenario in which the use of the DPA is demonstrated, and which will serve as a running

example throughout this thesis. Then, based on the insights gained from this scenario, in

Section 3.2, we analyse the DPA notification process and identify the need for performing

audits on systems that manage personal information. Next, in Section 3.3, we identify

the key application processes that involve the processing of personal information, and,

as such, are subject to the DPA. In Section 3.4, we proceed by analysing the main

principles of the DPA (see Section 2.4.1) to derive requirements for lawful processing

of data, which can be automatically verified. Then, in Section 3.5, we argue that the

availability of provenance of data processing is necessary to achieve this. In Section 3.6

we identify the key assumptions under which our algorithms and techniques perform

this verification, and provide concluding remarks in Section 3.7.

47

48 Chapter 3 Problem Definition

3.1 Exemplar Scenario

This section presents a practical scenario in which personal information is being pro-

cessed, and, as a result, to which the DPA legislation needs to be applied. In this

example, we focus on the way personal information is processed and how it can be mis-

used by the organisations that are collecting it. The scenario exposes the ways in which

personal information can be captured and misused in an on-line e-commerce applica-

tion. The scenario will later help us to derive various requirements, and is be used as a

running example in subsequent chapters.

3.1.1 On-line Sales Scenario

Consider the following scenario. Alice is trying to start a family, and has decided to

take a fertility treatment (advised by her doctor who gave her the corresponding pre-

scription). She decides to buy her treatment from an on-line pharmacy. In order to

get her treatment, she needs to register by providing her name, address, date of birth,

gender and national insurance number. At the same time, but unrelated to her attempt

to get pregnant, she applies for a job at the same pharmacy—but her application is

turned down. She suspects that the pharmacy may have accessed her ordering history

and realised that she has plans to start a family. As a result, the company has marked

her as a high risk employee because of potentially expensive maternity costs. If this is

true, the company obviously misused Alice’s personal information; when she provided

her personal information to the pharmacy, she did this with the purpose of purchasing

her treatment. From the point of view of the company, the purpose is “on-line sales”.

For this purpose, the pharmacy is allowed verify the existence of the medicine, charge

the amount to her card, send the medicine to her home and even create a record of the

product’s sale. Each of these tasks uses a different set of collected data. For example,

the company can create a report of the monthly sales, which includes the medicine’s

name and the quantity sold. However, such a report cannot contain the name of the

people that bought that item, since this might allow to each person to be identified and

linked to a specific medication and, therefore, to a specific medical condition.

In this case, the DPA principles should also be followed. The pharmacy should process

its clients’ information for the purpose that was initially stated and not use more infor-

mation than necessary. To verify that the pharmacy is following these rules, audits on

the performed processes can be carried out.

Chapter 3 Problem Definition 49

3.1.2 Scenario Discussion

According to the DPA legislation (presented in Section 2.4.1), in the on-line sales scenario

the pharmacy is a Data Controller and the customers, including Alice, are Data Subjects.

The Data Processor is the internal stock management department.

In this example, the Data Subjects’ personal information should be processed following

the DPA principles. In order to verify whether such principles are observed, we need

to expose the way in which this information was processed, i.e. make the processing

of information transparent. When this is achieved, it becomes possible to analyse this

processing to decide whether organisations are in compliance with the DPA principles.

Such an analysis is called an audit and was described in Section 2.2.

To be in compliance with the DPA, organisations shall follow all of its principles. Each

of these principles states different requirements, which are derived in Section 3.4.

3.2 DPA Notification Process

The example in the previous section highlights the importance of conducting audits to

verify the compliance of information processing with the DPA principles. In the DPA

case, audits could be conducted by the Information Commissioner’s Office (ICO) [111],

which is the UK’s independent public body established to protect its citizens’ personal

information. The ICO has legal powers to ensure that organisations comply with the

requirements of the Data Protection Act. Some of these legal powers include:

• Conducting assessments to check that organisations are in compliance with the

Act.

• Conducting audits to assess whether organisations’ processing of personal data

follows good practice.

To be able to perform such audits, it is necessary to specify which processes are allowed to

be performed on which data. This specification is later used to verify that applications

are indeed correctly and lawfully carried out using personal data. Consequently, the

DPA requires that every Data Controller that is processing personal information in

an automated form should notify the ICO of the details of such processing through

the Notification Process [7]. This process consists of the creation of a register entry

describing the processing that each Data Controller is performing. This register entry is

part of a public register of Data Controllers maintained by the ICO. The ICO’s register

has a well-defined structure categorising the purposes for collecting personal data from

Data Subjects, as well as the Data Subjects of each Data Controller. Figure 3.1 shows

the general structure of a register entry and Figure 3.2 is the application of this structure

50 Chapter 3 Problem Definition

Figure 3.1: General Structure of an ICO’s register entry

to the On-line Sales Scenario. The ICO’s register for an existing UK pharmacy can be

found in [88].

Each entry in the ICO’s register is organised according to the purposes of a single Data

Controller. Each purpose has a description that could include specific tasks related to

it. It also includes a list of Data Subjects, Data Classes (types of personal information

that are to be processed), and Recipients (individuals or organisations with whom the

Data Controller intends or may wish to share data) applicable to the purpose. Data

Subjects, Data Classes and Recipients have a numbered classification, as is shown in the

example of Figure 3.2. The complete classification can be found in [111]. Further on,

this classification model is used to assess whether organisations processed personal data

according to the DPA.

The ICO’s register can later be used in an audit to verify that the purposes, personal

information and Data Subjects that the Data Controller has declared are used according

to the DPA principles.

3.3 Processing Personal Data

By analysing the practical scenario described in Section 3.1, we can see that patterns

exist in the communication between the Data Controllers who request personal informa-

tion, and the Data Subjects who provide it. In this section, we identify and generalise

these patterns in order to model them as a computational application, which will later

form the foundation for the communication protocols we develop in the next chapter.

Chapter 3 Problem Definition 51

Figure 3.2: Register entry of the On-line Sales Scenario

As the DPA states, there exist three main entities: Data Controller (Definition 2.7), Data

Subject (Definition 2.8) and Data Processor (Definition 2.9). In practice, Data Subjects

typically make initial contact with Data Controllers. However, this communication is

not modelled because it contains no personal information. As a consequence, we assume

that the Data Controller initiates the communication by requesting personal information

from Data Subjects. We can model this communication using the following workflow:

1. The Data Controller sends a request for personal information to a Data Subject in-

dicating which information it requires and the purpose for which such information

is to be collected.

2. The Data Subject verifies the purpose and, if the purpose is accepted, the Data

Subject sends the requested data.

3. The Data Controller receives the personal information and stores it in a local

database. At this point, the information should be processed according to the

52 Chapter 3 Problem Definition

stated purpose. The Data Controller could perform the processing or outsource it

to a Data Processor.

4. The Data Controller sends a request for processing to a Data Processor indicating

the task to be performed and sends the information to be processed.

5. The Data Processor receives the information, performs the task and returns the

result of the processing to the Data Controller.

In step 4, in order to obtain the necessary information to perform the indicated task, the

Data Controller can grant access to the local database to the Data Processor. However,

without loss of generality, we assume that the Data Controller explicitly sends a set of

data that needs to be processed by the Data Processor. Equivalently, this data could be

a reference to a database with the necessary credentials to access to it.

In this step-by-step explanation, two different stages can be identified. The first involves

a request for personal information (steps 1, 2 and 3), which we call data request. The

second involves the processing of information (steps 4 and 5), which we call task request.

Using this workflow description, we design a protocol that represents the communication

between the three main entities. This protocol is presented in Figure 3.3 in which entities

are represented by squares and the communication between them by arrows, which are

labelled using the same numbering as above.

Figure 3.3: The Data Request and Task Request protocols

A different process that is not modelled by the protocol in Figure 3.3, but is mentioned

in the DPA, is the update process, which we call data update. In this process, the Data

Controller has already collected personal information from a Data Subject, but this

Data Subject wants to modify some of its personal details (e.g. address). In practice,

Chapter 3 Problem Definition 53

Data Subjects inform Data Controllers of their wish using a message which contains no

personal information. Thus, again we assume that Data Controllers initiate the update

process, which is presented in Figure 3.4 and explained below.

1. The Data Controller sends a request for updating the Data Subject’s personal

information.

2. The Data Subject sends the updated information to the Data Controller.

3. The Data Controller receives this information and updates the Data Subject’s

personal information, which is stored in a local database.

Figure 3.4: The Data Update protocol

3.4 Requirements Analysis

Thus far, we have presented communication protocols that generalise the communication

patterns found in applications that manage personal data. To verify whether the DPA

was correctly applied in these protocols, it is necessary to analyse the DPA’s principles.

In doing so, we can derive requirements that need to be satisfied for the processing of

personal information to be in compliance with the DPA.

In this context, this section presents a requirements analysis of the DPA’s eight prin-

ciples, which were presented in Section 2.4.1.2. For each principle, we derive possibly

multiple requirements that have to be satisfied, in order for the principle to be followed.

3.4.1 Principle 1: Personal Data Processed Fairly and Lawfully

Principle 1 is focused on the notion that data shall be collected and processed fairly and

lawfully. Within the context of collection of information, these concepts are defined in

terms of the stated purpose. However, this purpose only has meaning in the context of

the identity of the Data Controller (DC). Thus, both the identity of the Data Controller

and the reason for collecting the information must be known beforehand. This provides

us with the first requirement for information processing:

Requirement. A [Authentication] In the first contact between a Data Subject (DS)

and a DC, the DC should send its identity, the set of information requested and the

purpose. DS verifies them and decides whether to accept the request.

54 Chapter 3 Problem Definition

The fair and lawful concepts are also applied to the processing of data, which is es-

tablished by the initial purpose. In our case, information is processed lawfully if the

purpose by which it was processed appears in the corresponding register file. Addition-

ally, information is processed fairly if its processing is clearly understood by individuals

who provide their personal information. The verification of fair and lawful processing is

supported by Principle 2, for which we derive a corresponding requirement.

3.4.2 Principle 2: Legal Purpose

Principle 2 states that the DC may only request and process data from a DS for a legal

purpose. When DS receives a DC request, DS has to verify the request and decide

whether to send the required information. If DS decides to accept the request, then DS

is giving his or her consent to process the information only for the given purpose. Thus,

this information can only be processed according to the purpose agreed by DS. After

processing the information, an auditor can verify that the processing conducted by a

Data Processor (DP) was really that stated in the purpose. This provides us with the

following auditing requirement:

Requirement. B [Purpose Compliance] For verifying that DC and DP used DS’s infor-

mation only for the stated purpose, we require an explicit description of the processing

that was applied to such information. This description has to include which processes

were applied and the purposes for which such processes were performed. This descrip-

tion can be analysed by auditors to determine whether these processes were compatible

with the stated purposes. Moreover, auditors can verify whether the DC’s purposes are

legal and whether the ICO was notified.

3.4.3 Principle 3: Collection of Relevant Information

In Principle 3, the data requested from DS has to be relevant for the stated purpose; the

DC should not request, collect or use more information than strictly necessary. Hence,

when data processing is complete, an auditor should be able to verify that all the data

captured and used by DC (or by DP, in the case of an outsourced processing) was

relevant. Accordingly, we derive a new auditing requirement:

Requirement. C [Relevant Information Verification] For verifying that DC and DP

requested and used only relevant information when processing data, we require a de-

scription of the information used to derive a specific result and a description of the

information that should have been used. Then, an auditor can use both descriptions to

determine whether the information that was actually used was indeed necessary to yield

the required result.

Chapter 3 Problem Definition 55

3.4.4 Principle 4: Information Integrity

Principle 4 is focused on information integrity, which in the case of our model needs to

be guaranteed during the stages of communication and storage of information. In order

to support integrity of data transportation and data storage, we derive the following two

requirements:

Requirement. D [Integrity] The integrity of information exchanged between the DC,

DS, and DP should be maintained, as well as that of any description of the applied

processes or information used. In so doing, we can guarantee that information sent

by the main entities is not tampered with, that the descriptions represent what really

happened to the information and that any unauthorized alteration of the exchanged

information will be detected.

Requirement. E [Access Control] When the DS maintains the information in a storage

component, which is managed by DC, we require that such a component implements

access control measures to prevent undesired alterations. In so doing we can guarantee

the integrity of this information.

3.4.5 Principle 5: Identification of Individuals

According to Principle 5, when collected information has been processed (once the initial

purpose has been accomplished), it should not be possible to identify specific individuals

by means of this information or any related processing result.

Thus, information that could identify a specific individual should not be present in the

output of a process, i.e. processing results should be de-identified. De-identification

of data can be achieved by removing information that could be used to identify an

individual or by creating pseudo-data (see Section 2.3.1.6). For example, in the on-

line sales scenario from Section 3.1, in order to hide Alice’s identity, her name should

not appear in an inventory. If for some reason, Alice’s name needs to be present in

the inventory, a sequence number can be used instead. This way, customers cannot be

identified, but it is still possible to determine how processing results originated.

However, data de-identification provides no guarantee of anonymity, as processing results

might contain other data, such as race, birth date, sex, and post code. This data can

be linked to publicly available information to re-identify individuals [42]. To effectively

anonymise data, various techniques, such as Differential Privacy [52], k-Anonymity [133,

75], `-Diversity [93] and Perfect Privacy [97] can be used. To support Principle 5, and

ensure personal data is not exposed, one of the previously mentioned techniques can be

employed.

In the remainder of this thesis, we use the term anonymisation to refer to both anonymi-

sation and de-identification, since they are two different techniques with the same goal,

56 Chapter 3 Problem Definition

i.e. to avoid the identification of individuals through their personal information. This

leads to the following requirement:

Requirement. F [Anonymity Preservation] To verify that personal information can-

not be used to identify a specific individual by a third party, we require an explicit

description of the data used to generate processing results. An auditor can later analyse

this description to check whether personal personal data was correctly anonymised. By

anonymising personal data, links to individuals can be hidden so that they cannot be

identified, while ensuring the link between data and process is maintained.

3.4.6 Principle 6: Rights of Data Subjects

According to Principle 6, personal data processing should be performed in conformity

with the rights of data subjects. These rights are listed below. For each of them, we

explain how they are already supported by the protocols from Section 3.3 or by the

requirements above.

• The first right, access to personal data, states that a DS should have access to his

or her personal data. This data is stored by a DC in a storage component, as the

local database presented in Figure 3.3. This component should implement access

control techniques and the corresponding interfaces to grant users access to their

personal data.

• The second right, prevention of processing likely to cause damage or distress, is

part of the authorization given by DS to process its data for the purpose given

by DC. The DS decides if the process can cause some kind of damage or distress

to him or her and then decides whether or not to give consent to process the

information.

• The third and fourth rights state that personal information requested from the

DS should not be used for direct marketing or automated decision-taking. This

can be seen as a set of processes that cannot be applied to the collected data and,

therefore, be part of Requirement B.

• The fifth right, rectification, blocking, erasure, and destruction, is a list of actions

that DC can perform on the information at DS’s request. The rectification pro-

cess is part of the update process: DS rectifies the information and, in some cases,

updates it. This process is modelled in Figure 3.4. The blocking, erasure, and

destruction processes are carried out in order to avoid DS’s personal information

from being used. The first one refers to blocking access to DS’s personal informa-

tion, which is maintained in a storage component. The second and third refer to

the deletion of DS’s personal information from the storage component. From an

audit point of view, deleting information affects the data gathering process, which,

Chapter 3 Problem Definition 57

in turn, affects the quality of the audit result. In order to solve this problem, we

assume that instead of deleting information, the techniques explained in Require-

ment F are used. In this way, DS’s identity is safe and the information can still

be used to perform the necessary audits.

• The sixth right states the possibility of obtaining compensation if the rules stated

in the DPA are not followed. Whilst this is an important issue, this is not compu-

tationally verifiable, and is therefore outside the scope of our work.

• The seventh right, request for assessment, mandates the ability to perform audits.

These audits are carried out by an authorized entity to verify the correctness of

the information processing and report the results. As mentioned in Section 3.2,

within the context of DPA, this entity is the ICO.

3.4.7 Principle 7: Secure Management of Personal Information

Principle 7 states that a DC has to offer technical and organizational measures for man-

aging the data of a DS. For example, this can be achieved by implementing the set of

controls comprising the best practice in information security, as defined in ISO/IEC-

17799 [11]. However, the measures defined in this ISO standard are beyond the scope of

our work. Instead, we focus on the technical measures, specifically on the measures that

relate to the information security properties defined in ISO/IEC-7498-2 [3]: confiden-

tiality, integrity, authentication, non-repudiation and access control. These properties

are offered by various security techniques that can encrypt and decrypt information,

sign messages and verify signatures. These techniques were discussed in Section 2.3.

Thus, within the context of this thesis, this principle states that auditors should be

able to verify that entities implement information security techniques that offer the five

aforementioned properties. This is captured in the next requirement:

Requirement. G [Basic Security Characteristics Verification] For verifying that DS,

DC and DP implement security techniques in their communication, we require an explicit

description of the techniques that were applied to data. This description can be analysed

by auditors to verify that all necessary security techniques were used during information

processing.

3.4.8 Principle 8: Overseas Information Transfer

Finally, Principle 8 states that the personal information of a DS cannot be transferred

to countries not listed in the list of secure countries defined by the DPA. Thus, to verify

this, we derive the next requirement.

58 Chapter 3 Problem Definition

Requirement. H [Information Transferred to a Secure Country] DS, DC and DP can-

not transfer personal information to a country that is not included in the list of secure

countries, which is defined in the DPA.

3.4.9 Requirements Discussion

Table 3.1 summarises the requirements we derived from the principles of the DPA. Most

of the principles are supported by a single requirement except Principle 4, which requires

two security characteristics, and Principle 6, which supports the seven rights of Data

Subjects.

Table 3.1: Requirements

In order to implement these requirements, we can classify them into two groups. The

first group contains requirements for auditing the processing of personal data and in-

cludes Requirements B, C, F, G and H. To verify that these requirements are met, an

explicit description of this processing is required. This description can later be audited

to verify whether these requirements were implemented. For this reason, we call the re-

quirements in this group “Auditing Requirements”. In Chapter 5, we develop algorithms

for automatically verifying that data processing satisfied these requirements.

The second group contains requirements related to security properties and includes Re-

quirements A, D, E, F and G. These require the implementation of security protocols

or cryptographic techniques, so we refer to these as “Security Requirements”. These

requirements guarantee the authentication, confidentiality, integrity, non-repudiation,

access control and anonymity preservation properties. The different ways in which these

properties can be implemented were discussed in Section 2.3. In Chapter 4, we develop

an architecture that exhibits these properties.

Note that Requirements F and G belong to both groups. The reason for this is that they

support characteristics of both groups. Requirement F is used to verify that personal

data was correctly anonymised. To do so, we require an explicit description of past

Chapter 3 Problem Definition 59

processing. Hence, Requirement F is an Auditing Requirement. However, this require-

ment also states that data needs to be anonymised by implementing an anonymisation

technique, making this requirement a Security Requirement as well. This requirement

and its implementation is discussed in more detail in Chapter 5.

Similarly, Requirement G is used to verify that DPA entities implement security tech-

niques in their communication. To do so, it also requires an explicit description of such

techniques. Thus, Requirement G is an Auditing Requirement. At the same time, the re-

quirement states that the technical means to support the implementation of such security

techniques should be provided. Thus, Requirement G is also a Security Requirement.

3.5 Provenance as a Solution

As discussed in the previous section, the Auditing Requirements need an explicit descrip-

tion of past processing. Using this description, it becomes possible to perform audits

and verify whether these requirements were met during the processing of personal infor-

mation. To obtain such a description, the provenance of data and processing needs to

be available.

The PASOA (Provenance Aware Service Oriented Architecture) model (see Section

2.1.2.2) was designed in the context of service-oriented architectures relying on individ-

ual services to record their own provenance. This model proposes to capture assertions

that encode the relationships between the represented services and data in a generic,

customizable and scalable way [63]. PASOA also incorporates a set of security proper-

ties [135], as well as a software engineering technique, called PrIMe [100], for making

applications provenance-aware.

The PASOA model offers some desirable characteristics that can be useful to support

the Auditing Requirements. These characteristics are listed below [63].

• PASOA is platform, domain and technology independent.

• The query functionality offered by this model supports multiple levels of abstrac-

tion allowing for the creation of user-tailored queries [98]. This is a crucial char-

acteristic that allows us to audit all the requirements we have derived above.

• The provenance DAG representation can be easily used to analyse past processing

against the Auditing Requirements.

By adopting this provenance model, we can process documentation as the explicit de-

scription of past processing, which is required to satisfy the Auditing Requirements.

Provenance documentation is recorded at execution time, and queried after the process-

ing of personal data has finished. This provenance information, which can be represented

60 Chapter 3 Problem Definition

as a DAG, can be analysed to decide whether the application satisfied the Auditing Re-

quirements.

3.6 Assumptions

In order to use the provenance model in the protocols defined in Section 3.3, we need

to define a set of assumptions under which the solutions we develop in the remainder of

this thesis operate. These assumptions are described below.

1. Provenance information cannot be deleted. We assume the provenance information

cannot be partially or totally deleted. Thus, when the provenance of a piece of

data is obtained, complete information about past executions is always available.

2. Provenance is persistent and available. We assume provenance information is per-

sistently stored in a Provenance Store component and is accessible at all times.

Consequently, provenance information is accessible when required.

3. Data and provenance are securely stored. We assume that all the Local Data-

bases, which contain application data, and the Provenance Store, which contain

provenance information, implement the necessary measures to protect the stored

information from unauthorised access by means of access control.

4. Provenance is recorded truthfully. All actors involved in the creation of provenance

record what really happened at execution time. This can be achieved by using a

secured library that automatically records the assertions that are made by actors.

5. Only relevant provenance is recorded. The actors involved in the processing of

information only record information required to verify the Auditing Requirements.

6. It should be possible to query the provenance store. We assume the provenance

store has a query functionality that can be used to retrieve the provenance of a

specific item and supports scoped-provenance queries (see Section 2.1.2.2).1

7. There exists an ontology that defines the way personal information is processed. We

assume that there exists a well-defined ontology that defines personal information

and the processes that operate on it. This ontology should be used during the

capture of provenance information, and should be used by all the entities involved.

Based on this assumption, our solutions can operate in the knowledge that entities

consistently create, query and reason about provenance.

8. Audits are performed off-line. Audits are performed after the execution of the

processes over personal information finishes. Otherwise, it is not possible to analyse

the complete processing that was performed on personal information.

1This is in contrast with some of the techniques described in 2.1.3, which do not do this.

Chapter 3 Problem Definition 61

3.7 Conclusions

In this chapter, we formulated the central problem that we address in this thesis: the

automatic verification of correct processing of personal data. To do this, we first intro-

duced an exemplar scenario that illustrates the application of the DPA. We analysed

this scenario to demonstrate that performing audits allows us to decide whether data

processing is in compliance with DPA principles. We also identified the key protocols

that are used by the three main entities of an application that manages personal data:

the Data Subject (DS), the Data Controller (DC) and the Data Processor (DP). Based

on these protocols and the DPA principles discussed in Section 2.4.1, we identified the

requirements for valid and lawful processing of personal information. We grouped these

requirements into Auditing Requirements (which can be verified by auditing provenance)

and Security Requirements (which require the implementation of security protocols or

cryptographic techniques). Then, we discussed the importance of provenance for auto-

matically verifying that these requirements are met. Finally, we identified the underlying

assumptions of the solutions we develop in the upcoming chapters.

More specifically, in the following chapters, we address different aspects of the problem

formulated here. In Chapter 4, we lay the foundations by creating an architecture for

collecting the required provenance, while at the same time securing the exchange of

application data. By so doing, we satisfy Security Requirements A (Authentication)

and G (Basic Security Characteristics). Then, in Chapter 5, we develop algorithms

for automatically verifying the Auditing Requirements. In Chapter 6, we secure the

architecture from Chapter 4, including the complete life cycle of provenance—collection,

communication, storage and analysis. By doing so, we satisfy the remainder of the

Security Requirements. Finally, in Chapter 7 we methodically analyse the security of

the complete architecture and verify that we have indeed satisfied all requirements.

Chapter 4

Provenance-Based Auditing

Architecture

In the previous chapter, we analysed the principles of the DPA and derived a correspond-

ing set of requirements. These requirements are grouped into Auditing Requirements

and Security Requirements. Ultimately, the goal of the thesis is to automatically verify

whether data processing has satisfied these requirements and, by so doing, determine

whether this processing was in compliance with the DPA.

In this chapter, we take the first step towards this goal. This step involves the creation

of the Provenance-based Auditing Architecture, which is the contribution of this chapter.

This architecture captures and stores the provenance that is later used by the algorithms

we develop in the next chapter to perform automatic verification of the Auditing Re-

quirements. At the same time, this architecture secures the communication between its

main entities. By doing so, it satisfies Security Requirements A (Authentication) and

G (Basic Security Characteristics). In Chapter 6, we secure the remainder of the archi-

tecture (including the storage and analysis of provenance) to satisfy the other Security

Requirements.

Now, to identify which provenance needs to be captured by the Provenance-based Au-

diting Architecture, we use the PrIMe methodology (see Section 2.1.2.4). PrIMe allows

us to make this architecture provenance-aware by deciding which assertions should be

recorded during execution time. Recall from Section 2.1.2.2 that assertions document

which operations were performed on data, and are the primary way of encoding prove-

nance in the PASOA model (see Section 2.1.2.2) on which our work is based.

To capture the required provenance identified by PrIMe, we extend the Data Request

(invoked when a Data Controller requests personal data from a Data Subject) and

Task Request (invoked when a Data Controller wishes to delegate processing to a Data

63

64 Chapter 4 Provenance-Based Auditing Architecture

Processor) protocols (see Section 3.3). Furthermore, we define a new protocol, Query

Request, that allows an auditor to retrieve the provenance from the architecture.

Since the role of auditor will be played by the algorithms we develop in the next chapter,

provenance needs to be machine accessible. Thus, the final step we perform in this

chapter is to define the provenance queries, the result of which forms the input of the

algorithms in Chapter 5. These answers take the form of provenance DAGs (see Section

2.1.4), which are particularly suitable for automatic analysis.

Thus, in more detail, we perform the following steps. First, in Section 4.1, we present

the Provenance-based Auditing Architecture. Then, in Section 4.2, we apply the PrIMe

methodology to expose the assertions that need to be recorded. Next, in Section 4.3,

we modify the Data Request and Task Request protocols to capture provenance, and

define the Query Request protocol. Using this protocol, the algorithms in Chapter

5 can retrieve the necessary provenance. Thus, in Section 4.4, we describe how this is

achieved, by defining the necessary provenance queries. Finally, in Section 4.5 we discuss

the contributions made in this chapter in the context of existing work, and conclude in

Section 4.6.

4.1 Building the Architecture

In this section, we develop the Provenance-based Auditing Architecture. First, we de-

scribe its components in Section 4.1.1 using concepts from UML. Then, in Section 4.1.2

we explain how these components interact, i.e. how the architecture operates. Finally,

in Section 4.1.3, we secure the communication between its components.

4.1.1 Components

The architecture is based on the Data Request and Task Request protocols presented in

Section 3.3. Consequently, the entities that exist within these protocols also appear in

the architecture. However, the main difference between these protocols and the ones that

exist in the architecture, is that the latter records provenance. Therefore, it is necessary

to include new components, which essentially make our architecture provenance-aware.

The architecture is presented as a UML use case diagram in Figure 4.1, in which the

Data Subject, the Data Controller and the Data Processor are modelled as actors. Two

new actors are introduced—the Provenance Store and the Auditor actors. Furthermore,

the Data Request and Task Request protocols are modelled as use cases. Again, we add

new use cases, which are invoked by the Auditor to verify Auditing Requirements B, C,

F, G and H (Section 3.4).

In what follows, we describe the actors and use cases in further detail.

Chapter 4 Provenance-Based Auditing Architecture 65

Figure 4.1: Provenance-Based Auditing Architecture

4.1.1.1 Actors

The main actors in the architecture are:

The Data Subject actor is a software proxy representing a Data Subject that com-

municates with a Data Controller on behalf of an individual.

The Data Controller actor represents a Data Controller that collects personal infor-

mation from Data Subjects for a specific purpose.

The Data Processor actor represents a Data Processor that processes information on

behalf of a Data Controller.

The Auditor actor represents an auditor who verifies whether the processing of the

Data Subject’s information was performed in compliance with the auditing re-

quirements derived in Chapter 3.

The Local Database subactor represents a local database in which the Data Con-

troller stores the Data Subjects’ information. We refer to this component as a

subactor to show that is part of the Data Controller actor, who manages the

information stored in it.

The Provenance Store actor represents the Provenance Store where provenance, in

the form of p-assertions (See 2.1.2.2) are stored. This provenance is generated

as a result of the interactions between Data Controllers, Data Subjects and Data

Processors.

66 Chapter 4 Provenance-Based Auditing Architecture

4.1.1.2 Use Cases and Requirements

The following use cases represent the protocols and processes in which the actors par-

ticipate. These use cases are represented by blue ovals in Figure 4.1.

The Data Request / Data Update use case represents a request for personal infor-

mation or a request for updating personal information issued by a Data Controller

to a Data Subject. These use cases represent the protocols described in Figures

3.3 and 3.4.

The Task Request use case represents a request for delegating a task issued by a

Data Controller to a Data Processor. This use case represents the interaction

between the Data Controller and the Data Processor shown in Figure 3.3.

The Record use case represents the process of recording p-assertions.

The Query Request use case represents the process of querying p-assertions.

The Resolve References use case represents the process of resolving references to

objects stored in the Local Database, which contains the actual data. As men-

tioned in Section 2.1.2.2, provenance information can contain references to data

instead of a copy of the real data. If this data needs to be accessed, the Provenance

Store presents the necessary credentials to the corresponding database, accesses

the original data, and executes this use case.

The use cases presented as green ovals in Figure 4.1 represent the Auditing Requirements

described in Chapter 3. By obtaining the necessary provenance and invoking the Query

Request, auditors can verify whether actors who processed personal information were

in compliance with these requirements.

4.1.2 Component Interactions

Now that we have presented the components of the Provenance-based Auditing Archi-

tecture separately, in this section we explain how the actors interact by participating in

use cases, and by doing so, exploit the functionality of the architecture.

The Data Subject actor communicates with the Data Controller actor through the

Data Request and the Data Update use case. The Data Request use case represents

a request for personal information issued by the DC to the DS. The Data Controller

requests information from the Data Subject, which is stored by the Local Database

actor. The Data Update use case represents the updating process performed by DS: if

the Data Subject wishes to change its personal information, the updated information

is sent to the Data Controller.

Chapter 4 Provenance-Based Auditing Architecture 67

The Data Processor actor communicates with the Data Controller using the Task

Request use case, which represents a task delegated to DP by DC. The p-assertions

generated by the Data Subject, Data Controller and Data Processor actors are

recorded in the Provenance Store. This process is represented by the Record use

case. Additionally, in the Provenance Store, references to the original data (stored

in the Local Database) could be recorded instead of the information itself. Thus,

the Provenance Store has a connection to the Local Database through the Resolve

References use case. Note that if instead of a reference to data a copy to the actual

data is maintained, then this use case is not necessary.

Finally, the Auditor actor, who is responsible for verifying the compliance of the prin-

ciples mentioned in Chapter 3, participates in five use cases: Purpose Compliance,

Relevant Information Verification, Anonymity Preservation, Basic Security

Characteristics Verification and Information Transferred to a Secure Coun-

try. These use cases correspond to the Auditing Requirements (B, C, F, G and H)

identified in Chapter 3. These requirements can be verified by querying the p-assertions

stored in the Provenance Store after information processing has finished. For this rea-

son, the Auditor is connected to the Provenance Store through the Query Request

use case.

Thus, the information flow within the Provenance-based Auditing Architecture can be

summarised in the following workflows:

Recording of provenance in which components make assertions related to the actions

they perform and record them in a Provenance Store.

Storage of provenance in which assertions are persistently stored in a Provenance Store.

Querying of provenance in which process documentation is queried.

Analysis of provenance to determine whether the execution of the system is in compli-

ance with the requirements. The result of this workflow is an audit report.

4.1.3 Securing the Architecture

As the analysis of the DPA principles (Section 3.4) illustrates, security is a key issue in

a provenance-aware system. Without having the necessary security protocols in place,

which prescribe how messages should be exchanged between actors, the correctness of

the information produced, recorded, stored or queried can not be ensured.

In the architecture, communications between the actors can take place over an insecure

network. This means that a third party can eavesdrop on the communications channel

or even modify the content of messages without being detected. Hence, it is necessary

to implement the security measures required by the Security Requirements (see Section

68 Chapter 4 Provenance-Based Auditing Architecture

Figure 4.2: Securing the Provenance-Based Auditing Architecture. Here Actor can
be any actor defined in Section 4.1.1.

3.4.9). Moreover, the communication between the actors and the Provenance Store also

needs to be secured, in order to ensure that the same security guarantees apply to the

assertions generated by actors.

In order to support the Security Requirements, we extend the architecture with a use

case called Secure Communication (see Figure 4.2). This use case offers functional-

ity that supports the required security characteristics. This functionality includes the

authentication of entities (offered by the Authentication use case), the encryption of

messages (offered by the Encryption/Decryption use case) and the signing of messages

(offered by the Signature/Verification use case).

To establish secure communication between entities, we need to use a challenge-response

identification protocol. A protocol of this type provides security over Internet commu-

nications preventing eavesdropping, tampering or message forgery. It allows entities to

(mutually) authenticate each other through certificates and create session keys that are

used to encrypt/decrypt the data contained in messages. In so doing, the confidentiality

property is guaranteed to hold for the data that is exchanged. After a secure connection

has been established, public and private keys can be created, which form the basis of

a digital signature scheme. In this scheme, each message is signed before being sent

and the signatures verified after being received. As a result, the properties of integrity,

message authentication and non-repudiation are guaranteed to hold. As explained in

assumption 3 (see Section 3.6), access control is not considered in this thesis. However,

access control can be implemented using public certificates, i.e. an entity is granted

to a resources after verifying its identity through the use of certificates. In light of

our intention to present a technology independent approach, the specific technical and

implementation details of cryptographic techniques are outside the scope of this work.

Chapter 4 Provenance-Based Auditing Architecture 69

4.2 Identifying the Required Provenance

In the previous section, we developed the Provenance-Based Auditing Architecture that

includes the Provenance Store component. This component is a key element in the

implementation of provenance auditing functionality. We also explained how to secure

the architecture by supporting the Security Requirements. The next step is to identify

which provenance needs to be collected in order to verify compliance of the Auditing

Requirements (Table 3.1).

As we discussed earlier, this provenance is encoded as p-assertions. To verify the Au-

diting Requirements, it is not necessary to record all possible assertions. Rather, we

only need to record those that document the processes that are decisive in the use of

information. Now, to decide which assertions should be recorded to verify the Auditing

Requirements, we use the PrIMe methodology (see Section 2.1.2.4). This methodology

consists of three phases:

• For each Auditing Requirement, identify which provenance-related questions need

to be answered.

• Decompose the application into a set of actors that record provenance.

• Identify which information is required to answer the provenance questions related

to the Security Requirements, but is lacking from the interactions between the

actors identified in Phase 2.

In what follows, we go through each of these phases.

4.2.1 Phase 1: Provenance Question Capture and Analysis

In first phase of PrIMe, we must identify which provenance-related questions within the

application need to be answered. Tables 4.1, 4.2, 4.3, 4.4 and 4.5 show these provenance

questions, which are derived from the Auditing Requirements B, C, F, G and H. Each

table presents a provenance question and its corresponding provenance query or queries.

In each table, the data item and the scope (see Section 2.1.4) are defined to delimit the

results from the provenance query.1 Furthermore, we define a processing step, which

transforms the result of the query into a definitive answer of the provenance question.

Before detailing each provenance-related question, we first define two types of data that

we use in this section. The first type, Collected data is the information obtained from

Data Subjects as a result of the Data Request use case. Second, Used data is the

1Later on, when we represent this query result as a DAG, the data item refers to a node whose
ancestors we want to retrieve, and the scope to the type of edges (i.e. type of relationships).

70 Chapter 4 Provenance-Based Auditing Architecture

information used in the Task Request use case (for delegating the processing of data to

a Data Processor).

Table 4.1 summarises the provenance question related to Requirement B, Purpose

Compliance, which verifies whether the results of data processing were compatible with

the purpose for which data was collected. To answer this question, we need to know

which data was used in the process, as well as the purpose for capturing the data. This

data can then be compared to the established criteria related to the purpose. Thus,

this comparison allows us to conclusively determine whether the audit requirement was

observed.

Provenance Question Was the result obtained by processing personal data com-
patible with the purpose for which it was captured?

Provenance Query What was the used data to obtain the result, and the purpose
for which the data was used?

Data item Result
Scope Requested and collected data
Processing step Compare the used data with established criteria related to

the purpose.

Table 4.1: Provenance related question for Requirement B, Purpose Compliance

Next, Table 4.2 relates to the provenance question that verifies whether all personal data

captured from a DS was actually used by a process. Thus, this provenance question is

related to Requirement C, Relevant Information Verification. For answering this

provenance question, we need to know which data was used to obtain the result and

which data was collected from the DS. Then, the used data can be compared with the

collected data.

If these sets are not equal, we have two possibilities. The first possibility is that more

personal data was collected than strictly necessary. This means there is some data that

was collected but not used. The second possibility is that more data was required than

collected. This data might be collected from other entities or might be produced by

another process performed by the same entity. The details of these cases are analysed

in Chapter 5.

Provenance Question Was all the collected data used in the processing of result?
Provenance Query What was the used data and the collected data used to obtain

result?
Data item Result
Scope Requested and collected data
Processing step Compare the used data with the collected data and highlight

the differences.

Table 4.2: Provenance related question for Requirement C, Relevant Information
Verification

Chapter 4 Provenance-Based Auditing Architecture 71

Table 4.3 relates to the provenance question that checks whether personal information

was anonymised, such that a third party cannot link individuals to their personal in-

formation. This question is related to Requirement F, Anonymity Preservation. To

answer this provenance question, we need to know whether the result contains sensitive

data, i.e. information that should not be exposed in a processing result. To verify this

requirement, we assume that we have a list of data items considered sensitive (such as

ethnic origin or medical history). This list can then be compared to data items con-

tained in the result. If one or more sensitive items are found, we can conclude that the

information was not properly anonymised.

Provenance Question Were all used data and associated results properly anony-
mised?

Provenance Query What was the produced result?
Data item Result
Scope Requested and Collected Data
Processing step Verify that no sensitive items are present in the result

Table 4.3: Provenance related question of Requirement F, Anonymity Preservation

Table 4.4 presents the provenance question that checks whether messages exchanged be-

tween the entities were encrypted and signed cryptographically. This question relates to

Requirement G, Basic Security Characteristics Verification. To answer this question

we need to know which data was used to obtain the result and which security processes

were applied to this data. Then, the identified security processes can subsequently be

analysed to determine whether they ensure the properties of confidentiality, integrity,

authentication and non-repudiation.

Provenance Question Was all data used to obtain the result encrypted, signed,
decrypted, verified, etc.?

Provenance Query Which data was used, and which security processes were
applied to it?

Data item Result
Scope Provenance of result with security processes
Processing step Check that data was encrypted, decrypted, verified, signed,

etc.

Table 4.4: Provenance related question of Requirement G, Basic Security Character-
istics Verification

Finally, Table 4.5 relates to the provenance question that checks whether the collected

information stayed inside countries listed as secure. This question is related to Re-

quirement H, Information Transferred to a Secure Country. To answer this question

we need to know whether collected data crossed a border. The list of countries through

which personal information transited can then be compared with the ones listed by the

DPA.

Now that we have identified the provenance questions, we can proceed to the next phase.

72 Chapter 4 Provenance-Based Auditing Architecture

Provenance Question Was collected data only sent to “secure countries”?
Provenance Query What was the collected data and to which countries was it

sent?
Data item Collected Data
Scope Provenance of Collected Data including countries it tran-

sited through
Processing step Check if the countries appear in the secure countries list

Table 4.5: Provenance related question of Requirement H, Information Transferred
to a Secure Country

4.2.2 Phase 2: Actor Based Decomposition

In the second phase of PrIMe, actor-based decomposition, we identify the interactions

between actors and the messages they exchange. By recording the act of sending and

receiving these messages, we can capture the provenance of the data processing that

occurs within the system.

The result of this phase is the diagram shown in Figure 4.3. This figure presents a more

detailed formalisation of the Data Request and Task Request protocols from Section 3.3.

More specifically, it shows the messages that are exchanged between the main entities

as well the relationships between these messages.

In this diagram, the main entities are represented by squares: the DC (Data Controller),

the DS (Data Subject) and the DP (Data Processor). For the purpose of consistency, the

labels of the messages in this diagram correspond to the ones in Figure 4.4, which shows

the result of the third phase of the PrIMe methodology.

Now, the information flows in the Data Request and Task Request protocols can be

modelled by the exchange of four messages: M4, M5, M10 and M11 (the solid arrows). In

M4, DC sends the collection purpose to DS, who responds with message M5, which contains

the requested data. These two messages are the main part of the Data Request protocol

that represents the request of personal data. Then, using message M10, DC sends a set

of data (which is a subset of the data contained in M5). This data is processed by DP,

which informs DC of the result using M11. Thus, messages M10 and M11 are part of the

Task Request protocol that formalises the process of outsourcing a job.

As mentioned earlier, Figure 4.3 also shows the relationships between these messages,

denoted by R4, R9, R10 and R11 (the dashed-arrows). The meaning of these relations is

as follows:

• Relation R4 indicates that message M5 was Acquired For the purpose conveyed in

message M4.

Chapter 4 Provenance-Based Auditing Architecture 73

Figure 4.3: Phase 2 Diagram

• Relation R9 indicates that the data processing requested by message M10 was Ini-

tiated By the purpose in message M4.2

• Relation R10 indicates that the content of M10 (Process data) was Overlapped With

the data contained in M5.

• Relation R11 indicates that the content of M11 (Result) was used data in M10.

So far, we have identified the key messages exchanged in the Data Request and Task

Request protocols, as well as the relationships between these messages. Note that in

Figure 4.3 messages related to security do not appear. Thus, as it stands, these protocols

are not secure. In phase 3, we address this shortcoming.

4.2.3 Phase 3: Adapting the Application

To secure the messages and relationships identified in Phase 2, shown in Figure 4.3, we

require additional information that is currently not conveyed by the messages in this

figure. Therefore, in the third phase of PrIMe, we augment the protocols to make this

information explicit.

As an example of missing information, the diagram created in Phase 2 (Figure 4.3) does

not have explicit information about the security functions applied to data, which are

2Relationship R9 cannot be directly created between messages M4 and M10, as both messages are sent
by DC. In practice, the R9 is produced by creating an internal state related to M4 that later is used to
create a relationship with M10.

74 Chapter 4 Provenance-Based Auditing Architecture

required to support the Security Requirements. This information is necessary to deter-

mine whether the Basic Security requirement hold (see Table 4.4 for the corresponding

provenance question).

Now, in order to make this information available, we split each actor into a main ac-

tor and a subactor. These subactors are called Secure Communication, which make

available the security functions supported by the Secure Communication use case (see

Section 4.1.3 and Figure 4.2). Figure 4.4 shows the same protocol as Figure 4.3, but

extends it with the Secure Communication subactors.

Again, messages are represented by solid arrows and the relations between them by

dashed arrows. The local secure communication entity performs the four main security

operations described in Figure 4.2: encryption, decryption, signature and verification.

Thus, Secure Communication subactors associated with each main actor are called

DCSec, DSSec and DPSec. This diagram also includes messages related to the implemen-

tation of a challenge-response authentication protocol, which is implemented to support

Security Requirements A (Authentication) and G (Basic Security Characteristics).

As a result, in Figure 4.4, M1, M2, M3 (between DC and DS), M7 and M8, M9 (between

DC and DP) are part of the authentication protocol. The messages exchanged between

the actors and their corresponding Secure Communication subactor represent the en-

cryption, decryption, signing, and verification processes. These processes generate the

relationships verifiedDecrypted to indicate the verification and decryption of a message,

and encryptedSigned to indicate the encryption and signature of a message. Note that

these messages are exchanged internally by the corresponding actor. Thus, the messages

exchanged between the pair DC–DS, and the pair DC–DP are transported over a network

(and encrypted and signed), while the messages exchanged between the actor and its

Secure Communication subactor are not (for clarity, these messages, which are related

to the encryption, decryption, signing, and verification, are not labelled).

When we compare Figure 4.4 to the protocol from phase 2 (shown in Figure 4.3), we

can see that in the communication between DC and DS, four messages are added. These

messages are M1, M2 and M3, and M6. Of these, the first three implement an authentication

protocol. The last one acknowledges the correct receipt of the data contained in message

M5 that was part of the original protocol from phase 2.

Besides these new messages, the extended protocol also contains four new relationships:

R1, R2, and R3, and R5. The first three of these encode relationships between the mes-

sages exchanged by an authentication protocol. The fourth, R5 encodes the relationship

between message M5 (which contains the data sent by DS to DC) and message M6, which

acknowledges the receipt of this message.

As can be seen in Figure 4.4, similar messages and relationships are introduced to extend

the protocol that exists between DP and DC

Chapter 4 Provenance-Based Auditing Architecture 75

Figure 4.4: Phase 3 Diagram

76 Chapter 4 Provenance-Based Auditing Architecture

This concludes the application of the PrIMe methodology to the Data Request and Task

Request protocols we described in the previous chapter. Using PrIMe, we identified

the messages exchanged in these protocols and the relationships that exist between

these messages. In addition, we secured these protocols by introducing new Secure

Communication subactors that implement the necessary basic security functions. In the

next section, we show how provenance is recorded by creating assertions associated with

the messages and relationships identified in this section.

4.3 Recording Provenance

At this point, we have defined the messages that are exchanged between the actors,

and the relationships that exist between these messages. In this section, we show how

provenance is extracted from the protocols identified in the previous section, and stored

as p-assertions (see Section 2.1.2.2). In more detail, the provenance of the act of sending

and receiving a message is captured as an interaction p-assertion, while a relationship

is stored as a relationship p-assertion.

In more detail, note that the actual messages are not recorded in the provenance store,

but the relationship p-assertions that refer to these messages are. These relationship

p-assertions contain references to the data that was contained in the corresponding

messages. We assume that each message contains a unique identifier, which is used in

relationship p-assertions to refer to messages. Thus, given a message identifier, it is

possible to find all relationship p-assertions that contain this identifier, and to retrieve

a reference to the data that the original message contained. For more details on these

data references, see Section 2.1.2.2 and Section 3.5 where we explain that the PASOA

model used in this thesis is a process-based system that records and stores references to

the data and the data process dependencies that constitute provenance.

To illustrate the process of recording these assertions, we create a UML sequence diagram

for each of the use cases in the Provenance-based Auditing Architecture we defined in

Section 4.1. These sequence diagrams model the Data Request, Task Request and

Query Request communication protocols. We extend these protocols, which originally

were defined as the interaction between two actors (e.g. between Data Subject and Data

Controller, and between Data Controller and Data Processor), with the recording

of provenance by invoking the Record use case. Recall from Section 4.1.2, that this use

case enables these three main actors to store p-assertions in the Provenance Store.

In this section, our main focus is on how provenance is created and stored; securing these

protocols will be the subject of Chapter 6. Therefore, in what follows, the messages

related to the implementation of an authentication protocol and its technical details will

be omitted from the diagrams.

Chapter 4 Provenance-Based Auditing Architecture 77

First, we introduce the notation used in these diagrams. Then, we present the sequence

diagrams themselves, one for each of the aforementioned protocols.

4.3.1 Notation

Within the sequence diagrams, two types of elements are exchanged: messages and p-

assertions. Both contain application data—the data exchanged by the Data Request,

Task Request and Query Request protocols (see Section 4.1). The notation used for

this data is shown in Table 4.6.

Actor

Data DS DC DP AU

Purpose purpose purpose - -
Collected Data data data - -
Used Data - processData processData -
Task - - task1 -
Processing Result - result result -
Ack Message ok ok ok ok
pquery Item - - - item
pquery Scope - - - scope
pquery Result - - - qresult

Table 4.6: Application Data

A message is a tuple consisting of application data and a unique identifier idi:

message(idi, d) (4.1)

The p-assertions can be grouped into two categories: interaction p-assertions and rela-

tionship p-assertions (See Section 2.1.2.2). The former records the act of receiving or

sending a message. Therefore, it is a tuple of the identifier of the message it refers to,

and a so-called view, which is either receiver or sender :

ipa(idi, view) (4.2)

The latter records the relationship between interaction p-assertions. For example, a

relationship p-assertion can express the fact that a message was sent in response to

another. To encode this fact, relationship p-assertion contain the message identifiers

idi and idj , the relationship rel between these messages, and the application data d to

which the relationship pertains.3

rpa(idi, d, rel, idj) (4.3)

3Depending on the approach used to manage application data, d can be a reference to or a copy of
the plain data contained in the message to which this assertion is related to.

78 Chapter 4 Provenance-Based Auditing Architecture

In what follows, we make the Data Request, Task Request and Query Request proto-

cols provenance-aware by recording interaction p-assertions and relationship p-assertions

defined in Equations (4.2) and (4.3).

4.3.2 Recording Provenance in the Data Request Protocol

Recall from Section 4.1.1 that the first use case, Data Request, represents the process

in which the Data Controller requests personal information from the Data Subject.

This process is modelled in the sequence diagram presented in Figure 4.5 showing three

objects: DS, DC, and PS, which are instances of the Data Subject, Data Controller

and Provenance Store actors defined in Section 4.1.1.

The protocol modelled in this sequence diagram is the following: DC requests some

personal information from DS for a given purpose, DS checks the purpose and, if DS

accepts it, then it responds with the requested information. Then, when DC receives

this information, DC acknowledges its receipt. At the same time, both actors record the

p-assertions related to this process by communicating with PS.

4.3.2.1 Messages

In Figure 4.5, the messages exchanged between DS and DC are labelled Mi. These mes-

sages were defined in Section 4.2.3, and therefore are labelled with the same numbers as

in Figure 4.4. For clarity, we repeat the meaning of each message, and indicate which

application data they carry.

Message M4 contains purpose. With this message DC requests personal information from

DS to be used for the indicated purpose. When M4 is received, the purpose is verified

by DS, who responds with message M5 if the stated purpose is accepted. Message M5

contains data, the personal data requested. Upon receipt of this message, DC stores the

data in a local database, and acknowledges the receipt to DS by sending M6.

4.3.2.2 Interaction p-assertions

This protocol is made provenance-aware by recording interaction p-assertions construc-

ted according to Equation (4.2). These assertions are represented in the sequence di-

agram as Ii. In this diagram, assertions I7, I10 and I11 are related to messages M4,

M5 and M6 and sent by DC and stored by PS upon receipt. Turning to assertions I8, I9

and I12, these denote the act of recording interaction p-assertions related to the same

messages from the point of view of DS.

Chapter 4 Provenance-Based Auditing Architecture 79

Figure 4.5: Data Request UML Sequence Diagram

80 Chapter 4 Provenance-Based Auditing Architecture

4.3.2.3 Relationship p-assertions

The relationship p-assertions in this protocol are labelled by Ri. Using these assertions,

the sender of a message records the relationship between two interaction assertions.

Messages R3, R4 and R5 denote the act of recording relationship p-assertion of previous

messages in the Provenance Store.

Since an authentication protocol is executed before message M4 is sent (not shown in

this diagram), relation p-assertion R3 creates a relationship indicating that M4 was sent

in Response To M3, which is the last message of the authentication protocol execution

(again, this message is not shown in this diagram. See Figure 4.4). R4 indicates that

the data contained in M5 was Acquired For the purpose contained in M4. Finally, R5

indicates that M6 was sent in acknowledgement to (in Ack To) M5.

Using the extensions made in this section to the Data Request protocol, we have made

provenance available about the collection of personal information. In the next section,

we will carry out a similar process for the processing of personal information.

4.3.3 Recording Provenance in the Task Request Protocol

The Task Request use case, discussed in Section 4.1.1, represents the protocol in which

the Data Controller delegates the processing of information to the Data Processor.

This process is modelled in the sequence diagram shown in Figure 4.6 containing the

objects DP, DC, and PS, which are instances of Data Processor, Data Controller and

Provenance Store actors.

This protocol is initiated by DC, who sends personal information that DP is requested

to process. After receiving and processing this information, DP sends the result to DC.

Finally, DC acknowledges the receipt of the result.

4.3.3.1 Messages

Again, the messages in Figure 4.6 are labelled Mi. Since we defined these messages in

Section 4.2.3, they have the same labels as in Figure 4.4. For clarity, we repeat the

meaning of each message, and indicate which application data is contained in them.

Message M10 contains process data shown as processData, which is a data set of personal

information to be processed by DP. After this is received, DP processes it using function

task1 that outputs the result. The name of this function is made explicit, because

the type of processing performed on the data is essential for determining whether the

Auditing Requirements were satisfied. Using message M11, DP informs DC of the result

of the processing. Upon receipt of this message, DC acknowledges its receipt using M12.

Chapter 4 Provenance-Based Auditing Architecture 81

Figure 4.6: Task Request UML Sequence Diagram

82 Chapter 4 Provenance-Based Auditing Architecture

4.3.3.2 Interaction p-assertions

As in the previous protocol, the protocol for this use case is made provenance-aware by

recording interaction p-assertions. Here, assertions I13, I16 and I17 are related to the

act of sending or receiving M10, M11 and M12 by DC. Similarly, assertions I14, I15 and

I18 record the sending or receiving the same messages from the perspective of DP.

4.3.3.3 Relationship p-assertions

Relationship p-assertions R8, R9, R10, R11, R12 and R13 encode the relationships between

the messages described above. We now briefly discuss each of them.

R8 indicates that M10 was sent in Response To M9, which is the last message of the

authentication protocol execution (as in Section 4.3.2, messages exchanged during exe-

cution of this protocol). R9 indicates that task1 was Initiated By the purpose contained

in M4, which is part of the Data Request protocol. R10 encodes that processData was

Overlapped With the information contained in M5, which is the information sent by the

DS in the Data Request protocol. R11 indicates that task1 used data contained in M10.

R12 indicates that result was Generated By T1. Finally, R13 encodes that M12 was sent

in acknowledgement to (in Ack To) M11.

By recording these assertions, we can capture the provenance of the processing of per-

sonal information. Thus, the modifications we made to Data Request in the previous

section, combined with those made here to Task Request, reveal the provenance of the

entire life cycle of personal data. To query this provenance, we need a new protocol,

called Query Request. This protocol is developed in the next section.

4.3.4 Recording Provenance in the Query Request Protocol

Using the PrIMe methodology, we exposed the provenance in the two main communica-

tion protocols that deal with application data. These protocols were made provenance-

aware in the previous two sections. Now, once the p-assertions are stored in the prove-

nance store, an auditor should be able to access them in order to verify that data pro-

cessing was in compliance with the Auditing Requirements. This process is formalised in

the Query Request protocol. To keep track of the operations that the auditor performs,

this protocol needs to be provenance-aware as well. Without this, the auditor is not

accountable, which would constitute a major weakness of the system.

In this section, we present the sequence diagram related to this use case, which is shown

in Figure 4.7. This sequence diagram contains the objects AU and PS, which are instances

of the actors Auditor and Provenance Store. The process that is modelled by this

sequence diagram is the following. Auditor requests the provenance of certain data item

Chapter 4 Provenance-Based Auditing Architecture 83

(item) under certain scope (scope).The data item and scope of the relevant provenance

questions were defined in Section 4.2.1. After receiving the query, PS executes it and

returns the result (qresult) to the Auditor. Once the Auditor gets the query result, an

acknowledgement is sent to PS. The qresult can subsequently be used to verify any of

the Auditing Requirements.

4.3.4.1 Messages

In the sequence diagram presented in Figure 4.7 messages are labelled Qi. Message

Q1 contains a provenance query that includes the data item from which provenance is

sought and the scope that defines the context of the provenance query result. Message

Q2 contains the provenance query result (qresult). Finally, message Q3 contains an

acknowledgement of the correct receipt of the provenance query result.

Figure 4.7: Query Request UML Sequence Diagram

4.3.4.2 Interaction p-assertions

The interaction p-assertions corresponding to the messages defined above are labelled

IQi. Note that in the sequence diagram, interaction p-assertions generated by PS are

not shown because they are internally created and recorded by the same entity.

4.3.4.3 Relationship p-assertions

In this protocol, the Auditor creates three relationship assertion, RQ1, RQ2, and RQ3.

84 Chapter 4 Provenance-Based Auditing Architecture

Assertion RQ1 indicates that Q1 was sent in Response To M3, which is the last message

of the authentication protocol execution. RQ2 indicates that qresult contained in Q2 was

query Result Of the item and scope contained in Q1. Finally, RQ3 indicates that Q3 was

sent in acknowledgement to (in Ack To) Q2.

Now that we have a mechanism for capturing and accessing provenance, we are a step

closer to answering the provenance questions stated in 4.2.1.

4.4 Answering Provenance Questions

In this section, we query the provenance captured in the protocols that we made prove-

nance-aware in the previous section. Moreover, we demonstrate that the query results

can be represented as a provenance DAG (see Section 2.1.4). Such a DAG indicates

where and how the data was used. Thus, by following the relationships in this DAG,

it is possible to ascertain how a data item was produced. Here, we perform a manual

analysis of several provenance DAGs in an initial attempt to answer the provenance

questions we defined in Section 4.2.1. In the next chapter, we automate this analysis

to achieve one of the main goals of this thesis: the automatic compliance verification of

the principles of DPA discussed in Chapter 3.

In the what follows, we present five examples of DAGs and the analysis that is carried

out to answer the provenance questions in Tables 4.1, 4.2, 4.3, 4.4 and 4.5. These DAGs

are based on our running example of Section 3.1.1 in which Alice buys medicine from

an on-line pharmacy.

4.4.1 Requirement B, Purpose Compliance

Purpose compliance states that data processing was carried out in accordance with

the purpose for which it was collected. The corresponding provenance question was

presented in Table 4.1. To answer this question, it is necessary to identify the data

used to obtain a processing result. In Figure 4.4 this data is called processData, and is

contained in message M10, which is sent by DC to DP. The data in processData is a subset

of the data collected by DC, i.e. not all the data that was collected is used. However, M10

can contain additional information, such as information collected from a different entity

than DC that is necessary for performing the processing. Note that this information

could be personal and, therefore, it should also be audited.

4.4.1.1 Querying

To answer the Purpose Compliance question, the p-assertions related to security (among

which those related to execution of the authentication protocol) are not necessary.

Chapter 4 Provenance-Based Auditing Architecture 85

Therefore, a provenance query results in the form of a DAG of the result of a processing

without security operations is extracted. This is achieved by performing a scoped prove-

nance query [98], in which the scope is used to include only the relevant information in a

query result. Thus, in this case, the security functions applied to the exchanged informa-

tion are excluded. To reflect this, the provenance query presented in Table 4.1 contains

“result” as data item and “requested and collected data without security operations” as

scope.

To illustrate this process, we focus on the task manage stock, which creates a sales

report in the On-line Sales Scenario. The result of this process is a report which lists

the quantity sold for each product. To audit this process in the context of Alice’s data,

we construct a provenance query containing Alice’s order (Alice, clomid, 1) as data item

and “requested and collected data without security operations” as scope. The result of

this query is shown in Figure 4.8, which is based on the provenance recorded in Figures

4.5 and 4.6. The piece of data whose provenance is sought is shown on the right, in

this case order. Relationships through which this result was obtained are shown in bold.

The data that was used is identified in the DAG with a yellow oval.

Figure 4.8: Provenance DAG of register without security operations

The provenance query result presented in Figure 4.8 can be encoded using the logical

structure shown in Figure 4.9. In practice, this logical structure, which can be used to

represent both provenance information and provenance query results, can be stored as

an XML document [99]. For the sake of clarity, however, Figure 4.9 does not (strictly)

adhere to the specific XML schema used in [99]. Rather, it depicts the most representa-

tive elements of the provenance DAG in Figure 4.8 and the relations that exist between

them. Figure 4.9 shows the the source (sender) and sink (receiver) of each message

and its contents, and the source (cause) and sink (effect) of each relationship and its

description. For a more technical description of the logical structure used to represent

provenance, we point the reader to [61], specifically Figure 3.6 in Section 3.6.3.

Note that tasks are not explicitly represented in the DAG in Figure 4.8. The reason for

this is that the PASOA representation of provenance, which is used here, only models

86 Chapter 4 Provenance-Based Auditing Architecture

data and the relationships between data. Processes are modelled as a relationship be-

tween the input data and the output data. By so doing, it essentially does not treat

processes as first-class citizens. This is a drawback in the PASOA model, because in

order to verify the auditing requirements, it is necessary to know which operations were

performed internally on the data by a single actor. We come back to this issue in Chapter

5, where we use the OPM model instead.

Figure 4.9: An alternative representation of the Provenance DAG in Figure 4.8

4.4.1.2 Analysis

To answer the provenance question in Table 4.1, we perform the processing step described

in this table. To do so, we identify which data was used to process Alice’s order in the

DAG (yellow oval). This data includes the name, medicine’s name and the quantity

sold to the Data Subject who disclosed personal information to the on-line pharmacy.

Chapter 4 Provenance-Based Auditing Architecture 87

In this particular case, this data is Alice, clomid, 1. We also identify the purpose of

collection, which is “on-line sales”.

This information needs to be compared with an established criterion—in this case the

ICO’s Register entry related to the On-line Sales Scenario (Figure 3.2). This register

entry contains the purposes for which data is allowed to be collected and the types of

data classes (See Section 3.2) that can be captured in relation to each purpose. Thus,

we need to verify whether the on-line sales purpose is part of the declared purposes and

whether the data that was used is part of the list of Data Classes. We can see that the

on-line sales purpose is indeed present in the register entry. The list of data classes of

this purpose includes the personal details class (containing the name), and the goods or

services provided class (containing the medicines’ names and the quantity sold). Based

on this, we can affirm that the part of sales report that used Alice’s data was obtained in

accordance to the purpose for which was captured. Thus, the order was in compliance

with Principle 2, i.e. it was processed following Requirement B.

4.4.2 Requirement C, Relevant Information Verification

To answer the provenance question in Table 4.2, it is necessary to identify two types

of data: Used Data, which was identified in the previous section, and Collected Data.

Collected data is the information sent by DS to DC in message M5 as a result of a request

made in message M4.

4.4.2.1 Querying

Again, to answer this question, the p-assertions related to security are not necessary.

Thus, the provenance query presented in Table 4.2 contains “result” as data item and

“requested and collected data without security operations” as scope.

To illustrate this process, we focus on the task that delivers the requested medicine to

the buyer’s home in the On-line Sales Scenario (deliver medicine). The result of this

task could be successful delivery or failed delivery. To start the audit, we construct a

provenance query containing this result as data item and “requested and collected data

without security operations” as scope. The provenance query result of this provenance

query is presented in Figure 4.10, in which collected data is represented by a green oval.

4.4.2.2 Analysis

To perform the processing step described in Table 4.2, we need to identify the data used

to deliver Alice’s medicine (used data), which is the set Alice, 25 upper st, clomid, 1

(yellow oval), and the data collected from her (collected data), which is the set Alice,

88 Chapter 4 Provenance-Based Auditing Architecture

Figure 4.10: Provenance DAG of Successful delivery without security operations

25 upper st, 01-01-75, female, 123456, clomid, 1 (green oval). If we compare both sets,

we can see that more data was collected than was necessary to perform the delivery of

medicine. This means the delivery of medicine task is not in compliance with Principle

3, i.e. it does not follow Requirement C.

It is important to note that we use assumption 8 (Section 3.6) here, which states that

auditing is started after the purpose for which personal data was collected has been

fulfilled. If this is not the case, auditing might incorrectly conclude that data processing

was not in compliance, since some data items were not yet used. Therefore, in order to

obtain correct results, it is important that such analysis is postponed until after data

processing has terminated.

4.4.3 Requirement F, Anonymity Preservation

To determine whether the Anonymity Preservation requirement was satisfied, we need

to identify how the data requested from the Data Subject was used (which is contained

in M10). Then, we can verify whether the results derived from this data were properly

anonymised.

4.4.3.1 Querying

To answer the provenance question related to this requirement (presented in Table 4.3),

we can reuse the provenance query result of Requirement B (see Figure 4.8). To do

so, we identify where Alice’s information was used. In this case, one of the uses of her

information was to compile an sales report.

Chapter 4 Provenance-Based Auditing Architecture 89

4.4.3.2 Analysis

As the processing step of Table 4.3 indicates, we need to determine whether information

of a specific individual (in this case, Alice) is present in the result (the sales report).

Now, the ICO’s Register entry does not contain a detailed list of data items that are

allowed to appear in a result. However, to be able to automatically verify this require-

ment, we need rules that define which results tasks are allowed produce. In the next

chapter, we develop a formalism for defining these rules. For simplicity, in this example

we assume that there is a rule that simply states which data items are allowed to appear

in the result. In this case, this rule states that the monthly sales report can only contain

the name of the medicine and the quantity sold.

Now, in our specific scenario, Alice’s name is appears in the sales report. As a result, if

another entity (such as the Human Resources Department) has access to this register, it

can deduce that Alice is taking a fertility drug. This information could be used against

her, as we explained in Section 3.1.1. Thus, we can conclude that this data processing

was not in compliance with Principle 5, i.e. it does not follow Requirement F.

4.4.4 Requirement G, Basic Security Characteristics Verification

The Basic Security Characteristics Verification requirement states that all information

that is transported should exhibit the four basic security properties: the confidentiality,

integrity, authentication and non-repudiation. The corresponding provenance question

was presented in Table 4.4. Since this is a security requirement, to answer this question

the p-assertions related to security are now required. Thus, the provenance query used

here contains “result” as data item and “requested and collected data with security

operations” as scope. Even though the assertions related to security are not shown

in the corresponding sequence diagrams, we explain how the relationships depicted in

Figure 4.4 can be used to verify Requirement G.

4.4.4.1 Querying

To illustrate this process, we again focus on the manage stock task from the On-line

Sales Scenario. The result of the provenance query (see Table 4.4) in this example is

presented in Figure 4.11. In this figure, encrypted data is represented by an orange

rectangle and plain data by a blue rectangle. The encryption/signing relationship is

labelled encryptedSigned and the verification/decryption relationship is labelled veri-

fiedDecrypted (both shown in Figure 4.2.3). Therefore, if a provenance DAG contains

the relationships encryptedSigned and verifiedDecrypted, data was transported using a

digital signature scheme, and thus exhibits the required security characteristics.

90 Chapter 4 Provenance-Based Auditing Architecture

4.4.4.2 Analysis

In Figure 4.11, the result is represented by cryptoOrder, which is the same as the one

shown in Figure 4.8, but signed and encrypted. If we traverse the graph in the figure, we

can see that cryptoRegister is the result of the encryption/signing of plainOrder, which,

in turn, is the result of processing plainName, plainMedName and plainQuantitySold.

These are results of the verification/decryption of cryptoName, cryptoMedName and

cryptoQuantitySold. That means that the result (order) and the used data (plainName,

plainMedName, plainQuantitySold) were encrypted and signed before being transported

and verified and decrypted after being received. Then, we can confirm that cryptoOrder

was processed in compliance to Principle 7, i.e. it follows Requirement G.

4.4.5 Requirement H, Information Transferred to a Secure Country

The Basic Security Characteristics Verification requirement states that information is

only transmitted through the countries listed as secure by the DPA. Again, to answer the

corresponding provenance question (Table 4.5), the p-assertions related to security are

not necessary. Thus, the provenance query related to this requirement contains “result”

as data item and “requested and collected data without security operations” as scope.

4.4.5.1 Querying

To illustrate this process, we need to focus on the task that transfers information between

systems in different countries, which in the On-line Sales Scenario is called transfer

information. The result of such a task could be successful transfer to country X or

failed transfer to country X. Thus, we construct a provenance query with the result of

data processing as data item.

4.4.5.2 Analysis

The result of this provenance query is presented in Figure 4.12. In this figure, we can see

that two items of personal data related to Alice were transferred to an EU country. As

can be seen in the corresponding ICO’s Register entry (see Figure 3.2), the pharmacy is

allowed to transfer data only to countries inside of the European Economic Area. Thus,

in this case, Alice’s personal information was transferred in compliance to Principle 8,

i.e. it follows Requirement H.

This concludes our discussion of how the provenance captured in Section 4.3 can be

used to answer the provenance questions we stated in Section 4.2. We demonstrated

that provenance can be represented as a DAG, which indicates where and how the data

Chapter 4 Provenance-Based Auditing Architecture 91

Figure 4.11: Provenance DAG of cryptoaverageAge with security operations

92 Chapter 4 Provenance-Based Auditing Architecture

Figure 4.12: Provenance DAG of Successful transfer without security operations

was used. In an initial attempt to answer the provenance questions, we performed a

manual analysis of these DAGs. This analysis will be automated in Chapter 5.

4.5 Discussion

Existing work has proposed the use of provenance to audit the quality of information as

well as its use [114, 40, 82].

Philip et al. [114] and Chorley et al. [40] propose the idea of using provenance to create

audit reports related to Evidence-Based Policy Assessment (EBPA). They suggest using

provenance to evaluate the quality and reliability of data, the robustness of an analysis,

and the validity of findings in an assessment. However, they do not present any analysis

that shows how to use provenance in this specific field.

Kifor et al. [82] proposes the use of provenance in electronic healthcare record systems.

They also investigate the privacy risk aspects of introducing provenance into healthcare

systems. To decrease this risk, they propose not to store sensitive medical data in the

provenance store, but only references. By doing so, unauthorized users are unable to

link medical data to specific individuals. The described technique is already included

in our work, not only for security reasons but also for scalability. To use provenance

information for making audits is mentioned but not fully discussed. Neither do they

present audit use cases or an analysis of security characteristics.

4.6 Conclusions

In this chapter, we have developed a Provenance-Based Auditing Architecture that sup-

ports audits of the processing of personal data. This architecture is based on the prin-

ciples of the DPA and protocols we identified in Chapter 3. It can be implemented by

Chapter 4 Provenance-Based Auditing Architecture 93

systems that process personal information and, as such, have to follow the rules of a

legislative framework.

To determine which assertions need to be recorded in the Provenance Store to deter-

mine whether processing is in compliance with such a framework, we applied the PrIMe

methodology. PrIMe identifies the provenance that needs to be captured in order to

verify the Auditing Requirements. We extended the Data Request and Task Request

protocols defined in Chapter 3 to record and secure this provenance, and introduced

a third one, Query Request. This protocol can be used by an auditor to retrieve the

provenance generated in the first two protocols.

Finally, we presented a preliminary set of provenance query results, in an initial attempt

to determine whether data processing was in compliance with the Auditing Require-

ments. These query results are represented as DAGs. We also presented an intuitive

manual analysis of these DAGs to determine whether information was processed accord-

ing to these requirements. In so doing, we have shown that provenance, specifically in

the form of a DAG, can facilitate audits on the processing of personal data and decide

whether such processing was done in compliance with the DPA regulatory framework.

Now that we have an architecture that captures the necessary provenance, as well as a

means to query this provenance, we can proceed to the second main contribution of this

thesis: the automatic verification of the Auditing Requirements. This the subject of the

next chapter.

Chapter 5

Compliance Framework

In the previous chapter, we developed the Provenance-based Auditing Architecture that

captures and records provenance of the operations applied to personal information. In

this chapter, we use this provenance to achieve the second main contribution of this

thesis: a suite of algorithms that automatically verifies whether data processing was

performed in compliance with the Auditing Requirements defined in Chapter 3.4.

To achieve this, we need to make two additional augmentations to the architecture. First,

not only provenance should be available in a machine-readable format (i.e. a provenance

DAG), but also the rules data processing needs to adhere to. These rules specify which

data can be used and the legal operations that can be applied to it. As we discussed in

Chapter 3.2, within the DPA framework these rules are described in the ICO’s Register.

Thus, to allow for automatic verification of these rules, our first step is to transform

these into a machine-readable format as well. The result is a novel representation of

processing rules using DAGs. While doing this, we will see that the ICO’s Register is

incomplete: we identify requirements that need to be satisfied, which are not explicitly

stated in this register. We already encountered one example of this in Section 4.4 where

we attempted to manually verify compliance of Requirement F, Anonymity Preservation.

Specifically, we demonstrated that an explicit description of the data types and classes

that are allowed to be present in a result were missing. Thus, in this chapter, we extend

these rules to ensure that they fully capture the intent of the DPA.

The second augmentation needs to be made in the provenance DAGs. In the previous

chapter, these DAGs expressed the data as nodes, and the processes as relations (rela-

tionship p-assertions to be more precise). However, by doing this, processes are treated

as “second-class citizens”, despite the fact that they are an essential aspect of a datum’s

provenance. Thus, to reflect their true importance, we adopt the OPM model [104],

in which provenance is also represented as a DAG that contains specific elements to

differentiate between artifacts (pieces of data) and processes (actions).

95

96 Chapter 5 Compliance Framework

After making these two modifications, we develop the primary contribution of this chap-

ter: the Compliance Framework. This framework combines the novel representation of

processing rules mentioned above and a representation of provenance in the OPM model

with a suite of algorithms for automatic verification of the Auditing Requirements.

Thus, in summary, the remainder of this chapter is organised as follows. First, in Sec-

tion 5.1, we present the definitions and notation that are used throughout this chapter.

Then, in Section 5.2, we present our novel representation of processing rules. Next, in

Section 5.3, we present the provenance DAG representation of the operations applied to

personal information within the Open Provenance Model. Given this rule representa-

tion and provenance DAGs, in Section 5.4, we develop a set of algorithms that perform

the automatic verification of the Auditing Requirements. This verification is made by

comparing the processing rules against the provenance DAG representation. We illus-

trate how this verification is performed in our running example of the On-line Pharmacy

Scenario (Section 3.1). Finally, in Section 5.5 we discuss the contributions made in this

chapter in the context of existing work, and conclude in Section 5.6.

5.1 Preliminaries

Before presenting the Compliance Framework, we first show some definitions and nota-

tion that are used throughout this chapter. Specifically, we introduce the purposes (pi),

which are the goals for which a set of data was collected, the tasks (ti), which are the

processes applied to data. Furthermore, we represent collected data by DAi, processed

data by DUi, and processing results by Ri. Below, we describe these concepts in further

detail.

Let P be the universal set of purposes. Then, there are two different types of purposes,

Collection Purposes and Processing Purposes, which are defined as follows:

Definition 5.1 (Collection Purposes). A set of purposes for which the data is to be

collected. This set is a subset of P.

Definition 5.2 (Processing Purposes). A set of purposes for which the data is to be

processed. This set is a subset of P.

Going back to the On-line Sales Scenario, a collection purpose might be “on-line sales”.

An example of a processing purpose is “creating sales reports”.

Furthermore, let T be the universal set of tasks. Then, we can define the concept of a

set of tasks as:

Definition 5.3 (Set of Tasks). A set of tasks is a set of operations that were applied

to data. This set is defined as follows:

Chapter 5 Compliance Framework 97

T = {t1, t2, ..., tn}

where n > 0 and T ⊆ T .

Then, a data type is defined as a formal description of a set of values and the basic

operations that can be applied on them. Example of data types are “string”, “integer”

and “boolean”. A data class is an attribute of an object with constraints for being a

member of the class. Examples of classes are “name”, “address” and “gender”. Finally,

a data instance is defined as an occurrence of an object with a data type which belongs

to a certain class. For example, “Alice” is an instance of the data type “string” and

belongs to the class “name”.

Next, if we consider Types as a set containing all data types, Instances as a multiset

containing all data instances and Classes as a set containing all data classes, we can

express the following:

Definition 5.4 (Requested Data Classes). Requested Data Classes are a set composed

of ordered pairs (x, y), where x is a data class and y is the data type of such a class,

representing the data classes that are requested from a user. This set is defined as

follows:

CQ = {(class1, type1), (class2, type2), ..., (classn, typen)}

where n > 0, classi ∈ Classes and typei ∈ Types for 1 ≤ i ≤ n

Definition 5.5 (Used Data Classes). Used Data Classes are a set containing ordered

pairs (x, y), where x is a data class and y is the data type of such a class, representing

the data classes that are used to perform a task. This set is defined as follows,

CU = {(class1, type1), (class2, type2), ..., (classn, typen)}

where n > 0, classi ∈ Classes and typei ∈ Types for 1 ≤ i ≤ n

Definition 5.6 (Generated Data Classes). Generated Data Classes are a set composed

of ordered pairs (x, y), where x is a data class and y is the data type of such a class,

representing the data classes that are the result of a processing. This set is defined as

follows,

CG = {(class1, type1), (class2, type2), ..., (classn, typen)}

where n > 0, and for 1 ≤ i ≤ n, classi ∈ Classes and typei ∈ Types

In practice, the names of the tasks, the names of the data classes and the data types

correspond to the names of the processes, the names of the data attributes and the data

98 Chapter 5 Compliance Framework

types used at execution time, respectively. These names are created by system designers

and should be made explicit when a system is made provenance aware. The entity who

creates the processing rules should also be notified of these names, so it can use these

in the corresponding processing rules.

The three previous definitions are used to define the processing rules. Since these rules

are created at design time, they refer to data classes and data types, not actual data.

In contrast, the three definitions that follow describe the actual data.

Definition 5.7 (Collected Data Instances). Collected Data Instances are a multiset of

data instances that are collected for Collection Purpose p (Definition 5.1). Collected

Data Instances is a multiset, because instances can occur multiple times. For example

the integer ‘25’ can occur as an age as well as a quantity. This set is defined as follows,

Dp
A = {dA1, dA2, ..., dAn}

where n > 0, DC ⊆ Instances and p ∈ P.

Definition 5.8 (Generated Data Instances). Generated Data Instances are a multiset

of data instances are the result of a processing, and also known as processing results.

This set is defined as follows:

R = {r1, r2, ..., rn}

where n > 0 and R ⊆ Instances .

Definition 5.9 (Used Data Instances). Used Data Instances are a multiset of data

instances that are used to perform a task, and are also known as input data. This

multiset can contain sets of collected data instances (Definition 5.7) or sets of generated

data instances (Definition 5.8), and is defined as follows:

DU = {dU1, dU2, ..., dUn}

where n > 0 and DU ⊆ Instances .

The multisets of data instances defined above contain collected or used instances of

data. These instances have a class and type. Thus, it is possible to associate the

elements of Instances with a class, which is an element of Classes , and with a type, which

is an element of Types . As a result, an element e of a multiset of data instances is defined

as e ≡ (d, cl, ty), where d ∈ Instances , cl ∈ Classes and ty ∈ Types . We define the accessors

as instance(e) = d, class(e) = cl and type(e) = ty.

Generated Data Instances contain results of processing which can be reused by different

processes to produce a new result. Thus, Used Data Instances can contain elements

Chapter 5 Compliance Framework 99

of Collected Data Instances and Generated Data Instances, or just Collected Data In-

stances. Later, in Section 5.4.1.3, we use this distinction to determine whether Generated

Data Instances were correctly reused.

Finally, there exist relationships between the sets and multisets from Definitions 5.4, 5.5,

5.6, 5.7, 5.8 and 5.9. For example, such a relationship can represent that a multiset of

Collected Data Instances was acquired for set of Collection Purposes. These relationships

are identified by labels. If Rel is the universal set of relationship labels, then we derive

the next definition.

Definition 5.10 (Relationship Labels). Relationship labels identify relationships be-

tween elements of data processing. This set is defined as follows,

Rel = {l1, l2, ..., ln}

where n > 0 and Rel ⊆ Rel .

Using these definitions, we now present each component of the Compliance Framework in

more detail. First, we focus on the Usage Rules Definition component, which represents

the rules within our framework.

5.2 Usage Rules Definition

The Usage Rules Definition (URD) is a novel graph-based representation of a set of

rules that can be verified within our Compliance Framework. These rules express which

operations an application is allowed to perform on personal information, and are derived

from the ICO’s Register (see Section 3.2). In more detail, rules within the URD specify

the conditions under which processing is valid over a set of data classes.

To represent the URD, we formally define the concept of a rule inspired by the ICO’s

Register, which contains the purposes for collection and the data classes to collect. Each

rule represents the way in which a set of requested data classes (CQ) can be used, i.e.

which tasks can use a certain set of data classes to accomplish which purpose (p). To

make this component and its corresponding analysis stage more fine-grained, we add

some additional elements. These are: tasks to be performed (t) to accomplish purposes,

data classes to be used (CU) and data classes to be generated (CG) by such tasks. The

rule definition is presented below:

Definition 5.11 (Processing Rule).

Rule =
〈
p, C ′Q, CUi, ti, CGi

〉
where p ∈ P, C ′Q ⊆ CQ, CUi ⊆ CU ,ti ⊆ T , CGi ⊆ CG

100 Chapter 5 Compliance Framework

This rule expresses that, within the context of a collection purpose p, certain data classes

and types can be requested. The requested set of data classes and types (C ′Q) is then

divided into sets of used data classes (CUi) that are used by the corresponding tasks ti

to produce the corresponding set of generated data classes (CGi).

By including tasks, used data and generated data classes elements, these rules express in

a more detailed way how information should be processed, compared to the rules in the

ICO’s Register. This enables the framework to verify the Auditing Requirements. For

example, in the On-line Sales Scenario, we can define a processing rule for the “manage

stock” task. This rule indicates that the set of personal information CQ is collected

based on the purpose “on-line sales”. Then, CU , which is a subset of CQ, can be used

by the task “manage stock” to obtain the set CG .

manageStock = 〈

p = {on-line sales},

CQ = {(name, string), (address, string),

(medicineName, string), (quantity, integer)},

CU = {(medicineName, string), (quantity, integer)},

t = {manage stock},

CG = {(medicineName, string), (quantity, integer)}〉

By exposing the tasks’ names, the data classes and the data types that each Data

Controller is allowed to use in the processing of data, the analysis of provenance query

results (such as the ones presented in Section 4.4) can be simplified. The URD combines

multiple of these processing rules into a single formalism.

In more detail, the Usage Rules Definition is a set of processing rules represented by

an edge-labelled directed acyclic graph (DAG) called GΓ that is depicted in Figure 5.1.

In this figure, the elements of GΓ are represented by special symbols: purposes are

represented by double-line rounded rectangles, tasks by squares, set of data classes by

ovals and the set of generated data classes by bold-line ovals. These components are

connected by labelled arrows indicating the relationships that exist among them. The

labels of relationships are actions, which are stated in the present tense, since they

express the fact that these actions are expected to always happen. More formally the

Usage Rules Definition Graph GΓ is defined as:

Definition 5.12 (Usage Rules Definition Graph). Let us consider a set of purposes PΓ, a

set of data classes CQΓ
, a set of used data classes CUΓ

, a set of tasks TΓ, a set of generated

Chapter 5 Compliance Framework 101

data classes CGΓ
, and a set of relationship’s names RelΓ = {isAcquiredfor, overlapsWith,

isInitiatedBy, uses, isGeneratedBy}.

A Usage Rules Definition Graph GΓ = (VΓ, EΓ, RelΓ) is then a directed acyclic graph,

where VΓ ⊆ PΓ∪CQΓ
∪CUΓ

∪TΓ∪CGΓ
, EΓ ⊆ (CQΓ

×PΓ× isAcquiredfor)∪ (CUΓ
×CQΓ

×
overlapsWith)∪ (TΓ×CUΓ

×uses)∪ (TΓ×PΓ× isInitiatedBy)∪ (CGΓ
×TΓ× isGeneratedBy).

GΓ contains a set of purposes (PΓ) which users’ data (represented as sets of requested

data classes CQ) is acquired for. Sets of used data classes (CU) overlap with a set

of requested data, i.e. the requested data is divided in subsets of used data. Thus, a

set of tasks (TΓ) uses sets of used data classes to generate results, which we call sets

of generated data classes. This way, each task can only use and produce the indicated

set of data classes. Finally, to accomplish the initially stated purpose, tasks (TΓ) are

initiated by such a purpose.

Figure 5.1: Usage Rules Definition Graph GΓ

The URD can contain more than one purpose. Each purpose has a set of data associated

with it that is requested in order to achieve it. The set of requested data is divided into

multiple subsets, each of which is used by a task to produce a result. It is important

to note that the union of all the used data sets should be equal to the requested data

set, i.e. all the data that is requested should be used (Requirement C, see Section 3.4.3),

although, more be requested than needed. Also note that an element of the set of

requested data classes can be used in more than one set of used data classes. Below, the

102 Chapter 5 Compliance Framework

Usage Rules Definition Graph edges (representing relations between data and tasks) are

formally defined.

Let GΓ = (VΓ, EΓ, RelΓ) be a Usage Rules Definition Graph, CG be a set of generated

data classes, t be a task in TΓ, CUi be a set of used data classes, CQ be a set of requested

data classes, and p be a purpose in PΓ.

Definition 5.13 (Result is generated by Task). A set of generated data classes CG is

generated by task t ∈ TΓ if there exists (CG , t, isGeneratedBy) ∈ EΓ.

Definition 5.14 (Task uses Used Data Classes). Task t uses a set of used data classes

CU ∈ CUΓ
if there exists (t, CU , uses) ∈ EΓ.

Definition 5.15 (Task is initiated by Purpose). Task t is initiated by purpose p ∈ PΓ

if there exists (t, p, isInitiatedBy) ∈ EΓ.

Definition 5.16 (Used Data overlaps with Requested Data). A set of Used Data Classes

CU overlaps with a set of requested data classes CQ ∈ CQΓ
if there exists (CU , CQ

overlapsWith) ∈ EΓ.

Definition 5.17 (Requested Data is acquired for Purpose). A set of requested data

classes CQ is acquired for Purpose p ∈ PΓ if there exists (CQ, p, isAcquiredFor) ∈ EΓ.

In summary, by following the arrows in Figure 5.1, Definition 5.13 indicates that a set

of generated data classes CG is generated by a task t; Definition 5.15 indicates that a

task t is initiated by a purpose p; Definition 5.14 indicates that a task t uses the set

of data classes CUi; Definition 5.16 indicates that set of used data classes CUi overlaps

with a set of requested data classes CQ and Definition 5.17 indicates that the set of

requested data classes CQ is acquired for a set of purposes P . As the Usage Rules

Definition Graph defines how the data should be used (which is done at design time), it

only contains sets of data classes not actual data.

Now that we have defined the nodes (data classes and tasks) and the edges (the relation-

ships defined in Definitions 5.13 to 5.17), we now define what constitutes a valid Usage

Rules Definition Graph.

Property 1 (Well-Formed Usage Rules Definition Graph). Let GΓ be a Usage Rules

Definition Graph. GΓ is a Well-Formed Usage Rules Definition Graph if and only if

a) For any CG ⊆ CGΓ
there exist one and only one t ∈ TΓ, such that, CG is generated

by t.

b) For any t ∈ TΓ there exists one and only one p ∈ PΓ and one and only one CUi ⊆ CUΓ
,

such that t is initiated by purpose p and t uses a set of data classes CUi.

c) For any CUi ⊆ CUΓ
, there exist one and only one CQ ⊆ CQΓ

such that CUi overlaps

with a set of data classes CQ and
⋃

iCUi = CUΓ
.

Chapter 5 Compliance Framework 103

d) For any CQ ⊆ CQΓ
there exist one and only one p ∈ PΓ such that CQ is acquired for

a purposes p.

Property 1 indicates that a well-formed Usage Rule Definition Graph can contain more

than one set of generated data classes CG , which are generated by one and only one task

t. Such a task is initiated by one and only one purpose p and uses one and only one

set of data classes CUi. Each CUi is overlapped by one and only one CQ. At the same

time, all the elements that are collected should be used, therefore, the union of all the

CUi should be equal to CQ (Property 1.c). Finally, CQ is acquired for one and only one

purpose p.

It is important to note that the algorithms we develop in Section 5.4 are only guaranteed

to produce correct results on well-formed Usage Rule Definition Graphs.

To illustrate the URD, we present an example. For continuity, this example is based on

our running example of the On-line Sales Scenario, which was presented in Section 3.1.1.

Throughout this chapter, we use the Compliance Framework to verify whether Alice’s

personal information was used by the pharmacy in accordance to the usage rules. In

this analysis, we focus on two tasks deliver medicine and manage stock that are part

of the main purpose: on-line sales. Figure 5.2 presents the Usage Rules Definition

related to the “on-line sales” purpose. As previously described, this component contains

data classes and their corresponding data types. Figure 5.2 shows that to accomplish the

on-line sales purpose the pharmacy collects the name of a person, address, medicine’s

name, and its quantity. To conduct the deliver medicine task the pharmacy needs

the name of a person, address, the medicine’s name to be delivered and its quantity,

and for the manage stock task it just needs the medicine’s name and its quantity. Both

tasks are initiated by the same initial purpose, on-line sales, and produce a delivery

state and a sales report, respectively.

Next, we present the second component of the Compliance Framework, the Processing

View. In contrast to the Usage Rule Definition, the Processing View represents the

actual operations performed on personal data.

5.3 Processing View

In the previous section, we created the Usage Rules Definition, a novel representation

of rules that specifies which operations are allowed to be performed on personal data.

To verify whether data processing was in compliance with the Auditing Requirements,

we also need to know the operations were actually performed, and on which data. In

the previous chapter, we represented the latter as nodes, and the former as edges in

provenance DAGs. However, as mentioned in the introduction to this chapter, this does

not do justice to the importance of the operations, since these form an important part

104 Chapter 5 Compliance Framework

Figure 5.2: On-line Sales Example - Usage Rules Definition

of the provenance of data. Furthermore, upgrading operations from edges to nodes

simplifies the verification process we perform in the next section. In light of this, we

choose to represent provenance using the Open Provenance Model [104]. By doing so,

we develop the second component of the Compliance Framework, the Processing View.

In more detail, the Processing View represents a provenance graph captured at execution

time that contains information concerning past processing of the Data Subject’s data.

The Processing View is an edge-labelled directed acyclic graph called GW that is very

similar to the provenance graphs presented in Section 4.4. However, in contrast to these

provenance graphs, the Processing View explicitly represents the task that was executed

to obtain a result (as a node in the graph instead of an edge, i.e. relationship).

The Processing View presented in Figure 5.3 represents the life cycle of general data

processing. In this view, nodes represent sets of data instances and the operations per-

formed on them, and edges represent relations that exist between sets of data instances

and operations (usage or result), or between two sets data instances (e.g. subset of).

In Figure 5.3, the labels of the relationships are presented in past tense expressing the

Chapter 5 Compliance Framework 105

fact that these actions happened in the past. Accordingly, the life cycle began when an

application requested a multiset of data from a user declaring the purpose for which such

a set was acquired (collection purpose). After checking the application purpose, the

user sent the requested multiset of data instances (collected data instances). The goal of

the application was to achieve the collection purpose. As a consequence, a task was ini-

tiated by the related processing purpose. Such a task used a multiset of data instances

that overlapped with a multiset of used data instances. Note that the task could

have used the previous collected multiset of data instances or a subset of it. Later, the

task was executed with the used data instances as input and generated results. These

results could have been reused in the execution of a new task to appear as collected data

instances.

For the sake of clarity, Figure 5.3 shows a single multiset of data instances collected

from a single entity (DA). However, in real applications more than one multiset of data

instances can be collected from different entities generating a graph that contains all

these sets of data instances. This issue is discussed in detail in Section 5.4.1.

In Figure 5.3, the nodes of the Processing View are represented by special symbols:

purposes are represented by double-line ovals, tasks by squares, multisets of collected

data instances by ovals and multisets of processed data instances by bold-line ovals.

These elements are connected by labelled arrows with the name of the relationships that

exist between them.

Using these definitions, the Processing View Graph GW can be defined as:

Definition 5.18 (Processing View Graph). Let us consider a set of purposes PW , a

set of tasks TW , a multiset of collected data instances DAW
, a multiset of used data

instances DUW
, a multiset of results RW and a set of relationship’s names RelW =

{wasInitiatedBy, used, overlappedWith,wasGeneratedBy,wasAcquiredFor, contained}.

A Processing View Graph GW = (VW , EW , RelW) is a directed acyclic graph, where

VW ⊆ PW ∪ TW ∪DAW
∪DUW

∪ RW , EW ⊆ (RW × TW × wasGeneratedBy) ∪ (TW ×
PW ×wasInitiatedBy)∪ (TW ×DUW

× used)∪ (DAW
×DCW

× overlappedWith)∪ (DUW
×

RW × overlappedWith) ∪ (DAW
× PW × wasAcquiredFor).

Using all the concepts developed above, the edges (representing relations between data

instances and processes, and among data instances themselves) of a Processing View

Graph can now be formally defined. These edges mirror those defined in Section 5.2.

Let GW be a Processing View Graph, R be a multiset of results in RW , t be a task in

TW , DUi be a multiset of used data instances, and DA be a multiset of collected data

instances.

Definition 5.19 (Result was generated by Task). R was generated by task t ∈ TW if

there exists (R, t,wasGeneratedBy) ∈ EW .

106 Chapter 5 Compliance Framework

Figure 5.3: Processing View Graph GW

Definition 5.20 (Task was initiated by Purpose). Task t was initiated by purpose

p ∈ PW if there exists (t, p,wasInitiatedBy) ∈ EW .

Definition 5.21 (Task used Used Data). Task t used a multiset of used data instances

DUi ∈ DUW
if there exists (t,DU , used) ∈ EW .

Definition 5.22 (Used Data overlapped with Collected Data). A multiset of used data

instances DUi overlapped with a subset of collected data instances DA ∈ DAW
if there

exists (DUi, DA, overlappedWith) ∈ EW .

Definition 5.23 (Used Data overlapped with a subset of Results). A multiset of used

data instances DUi overlapped with a subset of generated data instances R′ ∈ RW if

there exists (DUi, R
′, overlappedWith) ∈ EW

1.

1The relationship overlappedWith is used in Definition 5.23 to indicate that one or more elements of
DUi can appear one or more times in R′

Chapter 5 Compliance Framework 107

Definition 5.24 (Collected Data was acquired for Purpose). A multiset of collected

data instances DA was acquired for a set of purposes P ∈ PW if there exists (DA, P,

wasAcquiredFor) ∈ EW .

In summary, by following the arrows in Figure 5.3, Definition 5.19 indicates that a

multiset of results R was generated by a task t; Definition 5.20 indicates that a task t

was initiated by a purpose p; Definition 5.21 indicates that a task t used the multiset

of data instances DUi in its execution; Definition 5.22 indicates that multiset of used data

instances DUi overlapped with a subset of collected data instances DA and Definition

5.23 indicates that the multiset of used data instances DUi overlapped with a subset

of generated data instances R′. Finally, Definition 5.24 indicates that the multiset of

data instances DA was acquired for accomplishing a set of purposes P .

Similar to Section 5.2, we can use these definitions to define the property of well-

formedness of a Processing View Graph:

Property 2 (Well-Formed Processing View Graph). Let GW be a Processing View

Graph. GW is a Well-Formed Processing View Graph if and only if,

a) For any R ∈ RW there exist one and only one ti ∈ TW , such that, R was generated

by t.

b) For any t ∈ TW there exists one and only one p ∈ PW and one and only one DUi ∈
DUW

, such that, t was initiated by purpose p and t used a multiset of data instances

DUi.

c) For any DUi ∈ DUW
there exist one or more DA ∈ DAW

and one or more R′ ∈ RW ,

such that, DUi overlapped with a subset of collected data instances DA and DUi

overlapped with a subset of generated data instances R′.

d) For any DA ∈ DAW
there exist one or more p ∈ PW , such that, DA was acquired for

a purpose p.

Property 2 indicates that a well-formed Processing View Graph can contain more than

one collection purpose pi for which a multiset of data instances is captured. The multiset

of collected data (DA) is divided in different subsets (DUi), each of which is used by one

and only one task t to produce one and only one set of results R. Tasks are initiated by

one purpose that is contained in the set of collection purposes. Note that elements of

the multiset of collected data can be used in more than one multiset of used data. It is

also important to mention that results can be reused and, therefore, be part of multisets

of used data.

It is important to note that the algorithms we develop in Section 5.4 are only guaranteed

to produce correct results on well-formed Processing View Graphs.

108 Chapter 5 Compliance Framework

To illustrate the operation of this framework component, Figure 5.4 presents the Pro-

cessing View related to the processing of Alice’s personal information. There, we can

see that Alice’s personal information was collected for the on-line sales purpose. The

set of data that was collected from her contains name, address, medicine’s name and

quantity. This data is subsequently used by two tasks: deliver medicine and manage

stock, which use a subset of the collected information. As explained previously, the

Processing View contains instances of data together with their class and type. This can

be seen in Figure 5.4.

Figure 5.4: On-line Sales Example - Processing View

Next, we present the final component of the Compliance Framework, the Verification

Algorithms. These algorithms analyse the Processing View to verify the compliance of

the information processing with the Usage Rules Definition.

5.4 Verification Algorithms

Now that we have the Usage Rules Definition (a machine readable representation of

processing rules) and the Processing View (a machine readable representation of how

Chapter 5 Compliance Framework 109

data was used), we can develop algorithms to automatically verify that processing was

performed in accordance with the Auditing Requirements.

These algorithms compare past processing, described in the Processing View, against the

expected processing, represented by the Usage Rules Definition. To do this, provenance

query results related to each audit requirement are extracted from the Processing View

in the form of a subgraph. These subgraphs are obtained using the corresponding

provenance queries explained in the tables presented in Section 4.2. Then, the data and

the relationships of such these subgraphs are compared with the Usage Rules Definition.

If these match we can conclude that the Auditing Requirements were satisfied.

In this section, we shall discuss each of these algorithms in turn. Specifically, for each

Auditing Requirement described in Section 3.4, we develop one or more verification

algorithms. Thus this Section is divided as follows:

• Section 5.4.1 discusses Requirement B: Purpose Compliance.

• Section 5.4.2 discusses Requirement C: Relevant Information Verification.

• Section 5.4.3 discusses Requirement F: Anonymity Preservation.

• Section 5.4.4 discusses Requirement G: Basic Security Characteristics Verification

• Section 5.4.5 discusses Requirement H: Information Transferred to a Secure Coun-

try.

5.4.1 Requirement B: Purpose Compliance

This requirement states that when performing a task, only the data that is strictly

necessary to accomplish its initial stated purpose can be used. The verification of this

requirement involves checking whether the correct class and type of data was used,

whether data was used to accomplish the stated valid purposes and, if data is reused,

whether processing was performed according to the stated purposes. From this, we

derive three subrequirements which will be discussed in upcoming subsections: Used

Data Compliance (B1), Purposes Validation (B2) and Reusing Results (B3). In what

follows, we develop algorithms for verifying each subrequirement individually.

5.4.1.1 Subrequirement B1: Used Data Compliance

To verify the first subrequirement, Used Data Compliance, we need to check that the

class and type of data used match those specified by the task, and that the purpose

for which the task was initiated was correct. We also verify that the purpose and the

task occur in the corresponding Usage Rules Definition. To do this, we focus on the

110 Chapter 5 Compliance Framework

provenance of the result, which is a subgraph of the Processing View Graph, containing

the ancestors of the node that represents the processing result. Specifically, we focus on

the task that generated this result, the data this task used and the purpose for which

the task was initiated. This subgraph, denoted with the symbol B1 is called the Used

Data Compliance Subgraph. This subgraph is defined below.

Definition 5.25 (Used Data Compliance Subgraph, B1(GW , ti)). A Used Data Com-

pliance Subgraph is a subgraph of a well-formed Processing View Graph GW for task

ti ∈ GW , such that:

VB1 = {pi, DUi , ti}

EB1 = {(ti, pi,wasInitiatedBy), (ti, DUi , used)}

where pi ∈ PW , ti ∈ TW , DUi ∈ DUW

EB1 ⊆ EW , and 0 < i ≤ n.

The general structure of a Used Data Compliance Subgraph B1(GW , ti) is presented in

Figure 5.5. This structure encodes that a task ti used a multiset of Used Data Instances

DUi, and was initiated by the purpose pi. Based on this, we can derive the following

property of B1:

Figure 5.5: Subgraph B1 of GW

Property 3 (Well-Formed Set of Tasks). Let T be set of tasks. T is well-formed in B1

if, for all t ∈ T Property 2.b holds.

At this point, we have extracted the required provenance information from the Pro-

cessing View Graph in the form of the subgraph B1. Now, we need to verify that the

information processing was performed in accordance with the Usage Rules Definition

Graph GΓ, i.e. we need to compare the nodes and the relationships’ names of B1 against

the ones stated in GΓ.

By analysing B1 against GΓ, we can see that the set of nodes VB1 contains instances of

data, while the set of nodes VΓ of GΓ contains classes and types of data. Similarly, the

set of edges, EB1 contains relationships expressed in the past tense whilst EΓ contains

relationships expressed in the present tense (see Definitions 5.18 and 5.12).

Chapter 5 Compliance Framework 111

The class and type of each instance created at execution time are collected at the same

time as the provenance information and obtained using the accessors class and type.

Thus, for each used data item present in VB1 it is necessary to compare its class and

type against the ones that appear in VΓ. This comparison is straightforward in the case

of purposes and tasks.

For the edges, we define the function match(past, present) that given a relationship’s

name in past tense (contained in B1) and another one in present tense (the one that

should be present in GΓ) returns true if both names are equivalent or false if not.

All the characteristics that B1 needs to exhibit to be in compliance with the Used Data

Compliance subrequirement are summarised in the next property.

Property 4 (Data Processed According to a Valid Purpose). Let B1 be the subgraph

defined in Definition 5.25, GΓ be a Usage Rules Definition Graph, CUj ∈ GΓ a set of

used data classes, pj ∈ GΓ a purpose and tj ∈ GΓ a task. DUi ∈ B1 was processed by

ti ∈ B1 according to a valid purpose pi ∈ B1 if

a) pi = pj ,

b) ti = tj ,

c) if for all x ∈ DUi , there exists one and only one pair (cl, ty) ∈ CUj such that class(x) =

cl and type(x) = ty and,

d) if for all x ∈ RelB1 , there exists one and only one y ∈ RelΓ such that match(x, y) =

true.

Therefore, if Property 4 holds in subgraph B1 of a Usage Rules Definition Graph GΓ,

we state that the processing result was obtained in compliance with the Used Data

Compliance subrequirement. Algorithm 1 presents the verification process of Property

4.

The following example illustrates how the Used Data Compliance Subrequirement can

be verified in the On-line Sales Scenario.

Example 5.1 (Used Data Compliance Subrequirement Example). First, we extract

the subgraph B1(GW , t1) from the Processing View, which is related to the deliver

medicine task, and is shown at the right of Figure 5.6. The left panel of the same figure

shows the portion of the Usage Rules definition that contains the rules related to the

deliver medicine task.

Using Algorithm 1, we check whether data was processed according to a valid purpose. We

can see that the purpose and the task contained in B1 and GΓ are the same. Therefore,

the purpose and the task are valid. Then, we check the labels of the edges. We can see

that all the past tense labels contained in B1 have their present tense equivalent in GΓ.

112 Chapter 5 Compliance Framework

Algorithm 1 Data Processed According to a Valid Purpose

Input: GΓ = {VΓ, EΓ, RelΓ}, B1(GW , ti) = {VB1 , EB1 , RelB1}
Output: 1 if graph B1 is in compliance with the Used Data Compliance subrequire-

ment or -1, -2, -3, -4 if it is not.
pi ∈ VB1 , ti ∈ VB1 , DUi ∈ VB1 , CUj ∈ VΓ

if pi ∈ VΓ then
if ti ∈ VΓ then

for each x ∈ RelB1 and y ∈ RelΓ do
if not(match(x, y)) then

return -1 . Label not matched
end if

end for
for each x ∈ DUi do

if (class(x), type(x)) /∈ CUj then
return -2 . Type not matched

end if
end for

else
return -3 . Not registered task

end if
else

return -4 . Not registered purpose
end if
return 1 . Compliance

Finally, we check that the classes and types of instances of the used data set contained

in B1 correspond to the classes and types present in GΓ.

GΓ contains the set ((name, string), (address, string), (medicine, string),

(quantity, integer)), each element of which matches with the class and type of the

instances contained in B1. Therefore, we can conclude the data contained in DUi was

processed by the deliver medicine task according to purpose p1 and in compliance with

the Used Data Compliance Subrequirement.

In the case of the manage stock task, we extract the subgraph B1(GW , t2), which is

presented in Figure 5.7. In that subgraph, the purpose and the task are valid, as well as

the labels of the edges. The Usage Rules Definition shows that the task manage stock

should use the set (medicine, string), (quantity, integer). However, the Pro-

cessing View depicts that this task used an extra element: (name, string). Therefore,

the processing presented in Figure 5.7 does not satisfy the Used Data Compliance Sub-

requirement since it is using more data than stated in the processing rules.

5.4.1.2 Subrequirement B2: Purposes Validation

The second subrequirement of the Purpose Compliance Requirement is Purposes Val-

idation, which states that the processing purposes of a set of data were in accordance

Chapter 5 Compliance Framework 113

Figure 5.6: Used Data Compliance Verification Example: Task 1

Figure 5.7: Used Data Compliance Verification Example: Task 2

with the collection purposes.

To verify this requirement, we start by extracting a subgraph from a Processing View

Graph, which contains a set of tasks related to one set of collected data. Specifically,

we focus on the purposes from which such tasks were initiated and the purposes from

which the collected data was acquired. This is expressed as a subgraph B2, which is

called Purposes Validation subgraph, and is defined as:

Definition 5.26 (Purposes Validation Subgraph, B2(GW , ti)). Given a task ti, a Pur-

poses Validation Subgraph is a subgraph of a well-formed Processing View Graph GW ,

114 Chapter 5 Compliance Framework

such that:

VB2 = {pi, DA, DUi , ti, p
′
i}

EB2 = {(ti, p′i,wasInitiatedBy), (ti, DUi , used), (DUi , DA, overlappedWith),

(DA, pi,wasAcquiredFor)}

where pi, p
′
i ∈ PW , ti ∈ TW , DUi ∈ DW , DA ∈ DW ,

EB2 ⊆ EW and 0 < i ≤ n

The general structure of the Purposes Validation Subgraph B2(GW , ti) is presented in

Figure 5.8, which shows the provenance graph of all the tasks performed over one set

of collected data. In this graph, the execution of a task ti was initiated by a purpose

p′i using the data DU . At the same time, the set of Used Data DU is a subset of the

Collected Data DA that was acquired for the purpose pi.

Here, we are analysing the purposes related to the collection and processing of one set

of data. However, more than one set of data can be collected from different entities.

Therefore, in the verification of this subrequirement, all the sets of collected data should

be checked. For clarity, in what follows we focus on a single set.

Before we introduce the verification algorithm, we first define the well-formedness prop-

erty that needs to hold in order for the algorithm to produce meaningful results.

Property 5 (Well-formed Multiset of Collected Data). Let DA be a multiset of collected

data. DA is well-formed in B2 if, for any DA, Property 2.d holds.

In addition to Property 5, subgraph B2 also exhibits Property 3, because B2 contains

a well-formed set of tasks T , since for any t ∈ T was initiated by purpose p′. Such a p′

is a Processing Purpose. Thus, as can be seen in Figure 5.8, the set P ′ containing all

purposes p′i is the set of Processing Purposes (Definition 5.2). According to Property 5,

if B2 contains a well-formed multiset of collected data DA, this data was acquired for

purposes p1, p2, ..., pn, which are Collection Purposes. Hence, the set P containing all pi

is the set of Collection Purposes (Definition 5.1).

After both sets of purposes have been extracted, it is possible to check whether there

exist some relations between them. Here, we define this relation as the subset operation,

as can be seen in the next property.

Property 6 (Collection and processing justified by the same purposes). Let P ′ be

the set of Processing Purposes in B2 and P be the set of Collection Purposes in B2.

Collection and processing are justified by the same purpose if P ′ ⊆ P

Finally, it is necessary to check that both sets contain valid purposes, i.e. they are

contained in the Usage Rules Definition Graph. Therefore, we derive the next property:

Chapter 5 Compliance Framework 115

Figure 5.8: Subgraph B2 of GW

Property 7 (Validity of processing and collection purposes). Let VΓ be the nodes of

the Usage Rules Definition Graph GΓ, let P ′ be the set of processing purposes and P

be the set of collection purposes extracted from B2. The set of processing purposes and

the set of collection purposes are valid if:

P ′ ⊆ VΓ and P ⊆ VΓ

Therefore, when Properties 6 and 7 hold in subgraph B2 of a Usage Rules Definition

Graph GΓ, we can say that subgraph B2 is in compliance with the Purposes Validation

subrequirement. The comparison process explained above is formalised in Algorithm 2.

The following example illustrates the process of verifying the Purposes Validation Sub-

requirement in the On-line Sales Scenario.

116 Chapter 5 Compliance Framework

Algorithm 2 Purposes Validation

Input: GΓ = {VΓ, EΓ, RelΓ}, B2(GW , ti) = {VB2 , EB2 , RelB2}
Output: 1 if B2 is in compliance with the Purposes Validation Subrequirement, -2 or

-1 otherwise.
P ′ contains all processing purposes p′iin B2

P contains all the collection purposes pi in B2

if P ′ ⊆ P then
if P ′ ⊆ VΓ ∧ P ⊆ VΓ then

return 1 . Compliance
else

return -1 . Not registered purpose
end if

else
return -2 . Not compatible purpose

end if

Example 5.2 (Purposes Validation Subrequirement Example). First, we extract from

the Processing View the subgraph B2(Gw, ti) (where 1 ≤ i ≤ 2), which is presented in

Figure 5.9. According to Algorithm 2, we need to check that the Processing Purposes

are contained in the Collection Purposes. In this example all the purposes are the same:

on-line sales. Thus, we just need to check that this purpose is in the Usage Rules

Definition. As the purpose is indeed contained in the Usage Rules Definition, we can

say that the multiset of collected data DA was used by the deliver medicine and the

manage stock tasks in compliance with the Purposes Validation Subrequirement.

Now, suppose that besides the tasks described previously, the on-line pharmacy also cross

references customer information with personal data from job applicants. This search is

conducted by the task search job applicants that returns true if the name and date

of birth of a customer match with the name and date of birth of a job applicant. As

Figure 5.10 shows, this task is initiated by the purpose job application, which is not

related to the collection purpose (on-line sales) and the purpose stated in the Usage

Rules Definition (also, on-line sales). The reason is that Alice disclosed her infor-

mation to accomplish the on-line sales purpose not the job application purpose.

Thus, we can conclude that the search job applicants task is not in compliance with

the Purposes Validation Subrequirement.

5.4.1.3 Subrequirement B3: Reusing Data

The subrequirements in Sections 5.4.1.1 and 5.4.1.2 are used to verify the purposes

related to data that was collected and processed by the same entity. However, an entity

may use data generated by tasks executed by other entities. This data is referred to

as reused data, which has its own processing purpose related to the task that produced

it. To be in compliance with Requirement B, this processing purpose should be in

Chapter 5 Compliance Framework 117

Figure 5.9: Purposes Validation Example 1

accordance to the purposes for which data was reused. This requirement is formalised

in Subrequirement B3: Reusing Data.

To verify this subrequirement, we first need to identify reused data. This data resulted

from a task executed by a different data controller than the one that uses it. Specifically,

we focus on the task that generated reused data and the purpose from which such a task

was initiated. For the sake of clarity, we focus on one reused result contained in one

multiset of used data. Nevertheless, all the used data multisets related with one entity

that contain reused data should be checked. The relations between Reused Data, the

118 Chapter 5 Compliance Framework

Figure 5.10: Purposes Validation Example 2

tasks that processed it and the purpose for which is was processed are expressed as a

subgraph B3, which is called Reusing Data Subgraph:

Definition 5.27 (Reusing Data Subgraph, B3(GW , Rj)). A Reusing Data Subgraph B3

is a subgraph of a well-formed Processing View Graph GW consisting of results Rj , such

that,

VB3 = {Rj , tj , p
′
j}

EB3 = {(Rj , tj ,wasInitiatedBy), (tj , p
′
j ,wasGeneratedBy)}

where pj ∈ PW , tj ∈ TW , Rj ∈ RW ,

EB3 ⊆ EW and 0 < i ≤ n

Chapter 5 Compliance Framework 119

The general structure of a Reusing Data Subgraph B3(GW , Rj) is presented in Figure

5.11 (inside of the dotted-line rectangle) showing that a result Rj , which was reused in

the multiset of used data DUm as dmj , was generated by a task tj that was initiated by

a purpose p′j . In this figure, dm1 = dUm1, dm2 = dUm2, . . . , dmn = dUmn. Therefore, the

extra data in DUm is dmj .

Similar to Section 5.4.1.2, we derive the following property of well-formedness.

Figure 5.11: Subgraph B3 of GW

Property 8 (Well-formed Multiset of Results). Let R be a multiset of results. R is

well-formed in B3 if for any R ∈ B3 Property 2.a holds.

By using Property 8 and Property 3 of B3, it is possible to obtain the task tj ∈ B3 that

generated the result we are interested in and the purpose p′j ∈ B3 that initiated this

task. After that, p′j can be compared to the purposes for which the used data multiset

DU was processed. To obtain the processing purposes related to DU we use Property 3

and 5. In that way, P ′ contains the set of processing purposes and P the set of collection

purposes. Therefore, we just need to verify that both sets contain p′j by using the next

property.

120 Chapter 5 Compliance Framework

Property 9 (Purpose Compatibility). Let P ′ be a set of Processing Purposes and P

be a set of Collection Purposes. A purpose p′ ∈ B3 is compatible with P ′ ∈ VB2 and

P ∈ VB2 if

p′ ∈ P ′ and p′ ∈ P

In this case, p′j is not checked against the Usage Rules Definition Graph because P ′ and

P were already checked in the subrequirement Purpose Validation (B2(GW , ti)). Thus,

if p′j is contained in both sets, it is also contained in the Usage Rules Definition Graph,

therefore, is a valid purpose.

If Property 9 holds in subgraph B3 of GW , we can say that such a subgraph is in

compliance with the Reusing Data subrequirement. The verification process of this

subrequirement is presented in Algorithm 3.

Algorithm 3 Reusing Data

Input: GΓ = {VΓ, EΓ, RelΓ}, B3(GW , Rj) = {VB3 , EB3 , RelB3}
Output: 1 if B3 was in compliance with The Reusing Data Subrequirement, and -1

otherwise.
P ′ ⊆ GΓ, P ⊆ GΓ, p ∈ VB3

if p ∈ P ′ and p ∈ P then
return 1 . Compatible purpose

else
return -1 . Not compatible purpose

end if

The following example illustrates the verification of the Reusing Data Subrequirement

in the On-line Sales Scenario.

Example 5.3 (Reusing Data Subrequirement Example). To demonstrate how the Re-

using Data Subrequirement can be verified, we extend the initially presented Processing

View (Figure 5.3) by adding the reusing of results by the Human Resources Department.

After Alice’s information is processed, the pharmacy decided to share the results of the

manage stock task (a sales report) with this department. When the Human Resources

Department receives the sales report, it performs a search to find matches between job

applicants’ names and customers’ names. The result of this search is used to infer in-

formation about job applicants’ circumstances that can be costly to the company, such

as chronic diseases or pregnancy. This information can be later used to take decisions

regarding the hiring of applicants. In Alice’s case, however, when she disclosed her in-

formation she did it with the purpose of buying her fertility drug on-line, not for it to be

investigated as part of a job application.

To verify this requirement, Figure 5.12 shows subgraph B3(GW , R2) expressing that some

data items contained in the sales report (name and medicine’s name) that were generated

by the manage stock task were reused by the job application task. However, this

Chapter 5 Compliance Framework 121

report used data that was collected for the purpose of p1 = on-line sales, as the

corresponding GΓ indicates. Therefore, reusing this result for the purpose of p2 = job

application is not in compliance with the Reusing Data Subrequirement, since p2 is

neither contained in the collection nor the processing purposes.

Figure 5.12: Reusing Data Example

This concludes the verification of Requirement B. Specifically, if all subrequirements

discussed above are satisfied, we can say that the processing of personal information is

in compliance with Requirement B. Next, we focus on the verification of Requirement

C.

5.4.2 Requirement C: Relevant Information Verification

The Relevant Information Verification Requirement states that all the collected data

should be used in processes initiated by the collection purpose. So, if some data was

collected and not used, it means that more data than was strictly necessary was collected

and, therefore, the process does not satisfy this requirement.

To verify compliance with this requirement, the multisets of used data instances as

well as the multiset of collected data instances should be compared against the Usage

Rules Definition. However, in subrequirement B1 (Used Data Compliance) the used

data multisets are already compared against the Usage Rules Definition. Thus, here we

only compare the multiset of collected data instances against the set of collected data

classes.

122 Chapter 5 Compliance Framework

To do this, we first extract from a Processing View Graph the provenance graph of all

multisets of used data that are overlapped with one multiset of collected data, which was

captured from one specific Data Subject. Then, we focus on the elements of collected

data and the used data multisets. For the sake of clarity, we analyse one set of collected

data, however, to verify compliance with this requirements, all sets of collected data

should be checked. The relation between collected data and used data is expressed as a

subgraph C that is called Relevant Information Subgraph and is defined below.

Definition 5.28 (Relevant Information Subgraph, C(GW , DUi)). A Relevant Informa-

tion Subgraph is a subgraph of a well-formed Processing View Graph GW restricted to

a set of used data DUi such that:

VC = {DA, DUi}

EC = {(DU1 , DA, overlappedWith), (DU2 , DA, overlappedWith), ...,

(DUm , DA, overlappedWith)}

where DUi ∈ DW , DA ∈ DW , EC ⊆ EW and 0 < i ≤ m

Hence, we derive the next property from this subgraph:

Figure 5.13: Subgraph C of GW

Property 10 (Well-formed Multiset of Used Data). Let DU be a multiset of used data.

DU is well-formed in C if for any DUi Property 2.c holds.

Then, by using Property 10, we can extract the multisets of collected data instances DA

contained in subgraph C. After that, we compare the class and type of each element of

DA against the data classes that should be collected. These data classes are contained

in GΓ, specifically in CQ. This is formalised in the following property.

Property 11 (All Collected Data was Used). Let DA ∈ GW be a multiset of collected

data instances and CQ ∈ GΓ a set of collected data classes. For each x ∈ DA there exists

one and only one pair (cl, ty) ∈ CQ such that class(x) = cl and type(x) = ty.

Therefore, if Property 11 holds in a subgraph C, we can conclude this subgraph is in

compliance with the Relevant Information Verification Requirement. The verification

process of this requirement is formalised in Algorithm 4.

Chapter 5 Compliance Framework 123

Algorithm 4 Relevant Information Verification

Input: GΓ = {VΓ, EΓ, RelΓ}, C(GW , DUi) = {VC , EC , RelC}
Output: 1 if C is in compliance with the Relevant Information Verification Require-

ment, and -1 otherwise.
CQ ∈ VΓ, DA ∈ VC
if ∀x ∈ DA : (class(x), type(x)) ∈ CQ then

return 1 . All collected data was used
else

return -1 . Not all collected data was used
end if

The following example illustrates the verification of the Relevant Information Verification

Requirement in the On-line Sales Scenario.

Example 5.4 (Relevant Information Verification Requirement Example). To verify the

Relevant Information Verification Requirement in the on-line sales scenario, we extract

subgraph C(GW , DUi) (where 1 ≤ i ≤ 2) from the Processing View. This subgraph is

presented in Figure 5.14. According to Algorithm 4, we need to check that the class

and type of each of the elements of DA are contained in the corresponding CQ. Thus,

we extract multisets DA = {“Alice” (name, string), “25 upper st” (address, string),

“clomid” (medicine, string), 1 (quantity, integer)} and CQ = { (name, string), (address,

string), (medicine, string), (quantity, integer)}, in which the class and type of each

element of DA is contained in CQ. To clarity the information that we are analysing,

Figure 5.14 does not show the classes and types of DA. Instead, these can be seen in

the corresponding Processing View (Figure 5.4). Therefore, assuming that all the tasks

from which the pharmacy collected Alice’s information were executed, we can conclude

that the collection of information performed by the pharmacy is in compliance with the

Relevant Information Verification requirement.

Figure 5.14: Relevant Information Verification Example 1

To illustrate a case of non-compliance, suppose that the on-line pharmacy also collected

the nationality of Alice. Figure 5.15 shows the subgraph C(GW , DUi) in which the item

‘‘British’’ (nationality, string) has been collected from Alice. Considering the

purpose for which Alice’s information is collected, there is no reason why the pharmacy

124 Chapter 5 Compliance Framework

asks for Alice’s nationality. Thus, such an item does not appear in the corresponding

Usage Rules Definition. This problem is exposed when the subgraph C is compared

to this Usage Rules Definition. Therefore, in this specific case, we can conclude that

the collection of information performed by the pharmacy is not in compliance with the

Relevant Information Verification requirement.

Figure 5.15: Relevant Information Verification Example 2

5.4.3 Requirement F: Anonymity Preservation

The Anonymity Preservation Requirement states that information that can be used

to identify a specific individual should not be presented in a result of processing per-

sonal information. As previously discussed, there are different approaches to satisfy this

property. Thus, after using an anonymisation technique, processing results contain two

types of information: non-sensitive information and identifiers that reference to sensitive

information.

To verify this requirement, we extract from a Processing View Graph a multiset of

results related to one specific task. The class and type of the elements of this result

are compared with the ones contained in the corresponding set of generated data classes

from the Usage Rules Definition Graph. For clarity, we analyse one multiset of results,

however, each multiset of results contained in the Processing View should be checked.

The subgraph F of the Processing View that needs to be considered to verify this

requirement is called the Anonymity Preservation Subgraph and is defined below.

Definition 5.29 (Anonymity Preservation Subgraph, F (GW , Ri)). A Anonymity Preser-

vation Subgraph is a subgraph of a well-formed Processing View Graph GW , which is

focused on a set of results Ri, such that:

VF = {Ri, ti}

EF = {(Ri, ti,wasGeneratedBy)}

where Ri ∈ RW , ti ∈ TW , EF ⊆ EW and 0 < i ≤ n

Chapter 5 Compliance Framework 125

The general structure of an Anonymity Preservation Subgraph F (GW , Ri) is presented

in Figure 5.16 showing that a result Ri was generated by a task ti. By using Property

8, which holds in F , it is possible to obtain a multiset of results Ri, which is to be

compared with the corresponding set of generated data classes from the Usage Rules

Definition. This comparison is made using the following property:

Figure 5.16: Subgraph F of GW

Property 12 (Results’ Anonymisation). Let Ri be a multiset of generated data in-

stances and CGi a set of generated data classes. For each x ∈ Ri there exists one and

only one pair (cl, ty) ∈ CGi such that class(x) = cl and type(x) = ty.

If Property 12 holds in a subgraph F of GW , we can conclude that this subgraph is in

compliance with the Anonymity Preservation Requirement. The verification process of

this requirement is formalised in Algorithm 5.

Algorithm 5 Anonymity Preservation of Results

Input: GΓ = {VΓ, EΓ, RelΓ}, F (Gw, Ri) = {VF , EF , RelF }
Output: 1 if F is in compliance with the Anonymity Preservation Requirement or -1

otherwise.
CGi ∈ VΓ, Ri ∈ VC
if ∀x ∈ Ri : (class(x), type(x)) ∈ CGi then

return 1 . All data was anonymised
else

return -1 . Not all data was anonymised
end if

The following example illustrates the verification of the Anonymity Preservation Re-

quirement in the On-line Sales Scenario.

Example 5.5 (Anonymity Preservation Requirement Example). To verify the Anony-

mity Preservation Requirement, it is necessary to extract two subgraphs, each of which is

related to the two results that were produced in Figure 5.4. Then, to verify the delivery

state result, we extract from the Processing View the subgraph F (GΓ, R1), which is

presented in Figure 5.17. In this figure, the task deliver medicine produces the result

“Successful delivery”. If we compare this subgraph to the Usage Rules Definition, we can

see that the class and type of the elements of R1 match with the ones that appear in CG1.

In that case, we can say that the processing of Alice’s information was in compliance

with the Anonymity Preservation Requirement, as the result produced by the deliver

medicine task does not expose any information that can used to identify Alice.

126 Chapter 5 Compliance Framework

Figure 5.17: Anonymity Preservation Requirement Example: Result 1

Regarding the second result, we extract the subgraph F (GΓ, R2) from the Processing

View (see Figure 5.18). In this subgraph, the task manage stock produces a sales report

containing a name, a medicine name and a quantity. If we compare this subgraph to

the Usage Rules Definition, we can see that the class and type of the elements of R2 do

not match with the ones contained in CG2: (name, string) should not have been used.

The reason for this is that an sales report should not contain the name of the customers.

Rather, it only needs the quantity sold of each item. Thus, in this case, we can say

that the processing of Alice’s information was not in compliance with the Anonymity

Preservation Requirement, and therefore, such an inventory could be used against her

interest, as shown in Section 5.3.

Figure 5.18: Anonymity Preservation Requirement Example: Result 2

5.4.4 Requirement G: Basic Security Characteristics Verification

The Basic Security Characteristics Verification Requirement states that all the data

transferred between entities should be transmitted over secure communication channels.

As discussed in Section 3.4.9, we focus on the implementation of the confidentiality,

integrity and non-repudiation security properties (recall that one of the assumptions

made in Section 3.6 assumes access control is implemented). It is important to note

Chapter 5 Compliance Framework 127

that this requirement is not expressed in the Usage Rules Definition Graph, since it only

specifies which operations related to the processing of application data can be performed.

As discussed in Section 4.4.4, the required security properties can be supported by

encryption/decryption and digital signature schemes. The difference between the prove-

nance DAG presented in Section 4.4.4 and the one we create here is that the applied

security functions can be seen as tasks applied to data following a specific pattern in-

stead of relationships. Since we are concerned about secure transportation, we focus on

the security functions applied to data before it was sent and after it was received. To

do this, we define a group of tasks indicating the implementation of such schemes.

Figure 5.19: Subgraph G of GW

As discussed in Section 4.1.3, data is encrypted and signed before being sent to an entity.

Hence, a piece of encrypted data along with its corresponding signature is transported.

When this piece of data is received, the data is decrypted and its signature is veri-

fied. The task that encrypts and creates the signature of a piece of data is denoted as

tES = encSign, which is equivalent to the encryptedSigned relationship presented in

Figure 4.11. Similarly, the task that decrypts a piece of data and checks its signature is

denoted as tV D = verDec, which is equivalent to the verifiedDecrypted relationship

presented in Figure 4.11.

128 Chapter 5 Compliance Framework

To verify this requirement, we extract from a Processing View DAG a subgraph con-

taining a set of data that was transmitted between entities (collected data, used data or

reused data). When in its plain representation, this set is represented as D, and as {D}
when it is encrypted. Finally, SD expresses the signature related to the same piece of

data. This extracted information is expressed as a subgraph G, which is called Security

Subgraph. This subgraph is defined as:

Definition 5.30 (Security Subgraph, G(GW , D)). A Security Subgraph is a subgraph

of a well-formed Processing View Graph GV pertaining to a set of data D such that:

VG = {D, ({D}, SA), tES , tV D}

EG = {(D, tV D,wasGeneratedBy), (tV D, ({D}, SA), used),

(({D}, SA), tES ,wasGeneratedBy), (tES , D, used)}

where D is any data set in DW , {D} is the encrypted version of D,

SA is the signature associated with D, tES = encSign ∈ TW ,

tV D = verDec ∈ TW , VG ⊆ VW and EG ⊆ EW .

If the tasks tES and tV D are present in the past processing of information, it means that

encryption/decryption and digital signature schemes were used to protect the trans-

ported data. The following property verifies that data was protected:

Property 13 (Secured Data). A multiset D ∈ G was transported securely if,

Exist tES , tV D ∈ G such that,

(D, tV D,wasGeneratedBy) ∈ G, (tES , D, used) ∈ G, tES = encSign and tV D = verDec

The verification process of this requirement is formalised in Algorithm 6.

Algorithm 6 Basic Security Characteristics Verification

Input: G(GW , D) = {VG, EG, RelG}
Output: 1 if G satisfies the Basic Security Characteristics Verification Requirement,

-1 otherwise.
D ∈ GW , tES = encSign, tV D = verDec
if (D, tV D,wasGeneratedBy) ⊆ EG and (tES , D, used) ⊆ EG then

return 1 . D was securely transported
else

return -1 . D was not securely transported
end if

The following example illustrates the verification of the Basic Security Characteristics

Verification Requirement in the On-line Sales Scenario.

Example 5.6 (Basic Security Characteristics Verification Requirement Example). To

verify the Basic Security Characteristics Verification Requirement, we extract from the

Chapter 5 Compliance Framework 129

Processing View the subgraph G(GW , R2), which is presented in Figure 5.20. This graph

shows that after the stock manager executed the manage stock task to obtain sales report

R2, this report was encrypted, signed and sent to the on-line pharmacy. After being

received by the pharmacy, the signature is verified, the data is decrypted, and obtained

in its plain form. By analysing G, we can conclude that the set R2 was transported

in a secure way since the tasks tES = encSign and tV D = verDec are present, which

indicates the implementation of encryption/decryption and digital signature schemes.

Thus, we can say that the R2 was transported in compliance with the Basic Security

Characteristics Verification Requirement.

Figure 5.20: Basic Security Characteristics Verification Example: Result 2

130 Chapter 5 Compliance Framework

5.4.5 Requirement H: Information Transferred to a Secure Country

The Information Transferred to a Secure Country states that personal information col-

lected within the UK cannot be transferred to countries that do not implement the DPA

principles explained in Chapter 3. In order to verify this requirement, it is necessary

to include the task of transferring information in the Usage Rules Definition indicat-

ing to which countries personal information is transferred. Then, we make explicit the

task “sentTo” and the country where this data is sent to. For example, if a set of data

was sent to USA, the processing graph contains a task t = sentToUSA. If the data is

transferred within the European Union, the name of the task is sentToEU. If the data

is transferred within UK, the name of the task is simply sent. Note that the inclusion

of this task does not change the structure of the Usage Rules Definition Graph, it just

defines a specific task that should be notified and verified as the rest of the executed

tasks.

To verify this requirement, we extract from the Processing View Graph the tasks related

to the transferring of information to create the set Tsent. The elements of this set

are compared with the ones contained in the Usage Rules Definition Graph. Since in

the verification of this requirement just nodes are extracted, no subgraph is defined or

depicted. The comparison process is explained in the next property.

Property 14 (Information Transferred to a Notified Country). Let Tsent be a set con-

taining all the tasks related to the transferring of information from GW and TΓ ∈ GΓ a

set tasks. For each x ∈ Tsent there exists one and only one y ∈ TΓ such that x = y.

If Property 14 holds in a subgraph Tsent of GW , we can say that GW is in compliance

with the Information Transferred to a Secure Country Requirement. The verification

process of this requirement is presented in Algorithm 7.

Algorithm 7 Data Transferred to a Secure Country

Input: Tsent ∈ GW , TΓ ∈ GΓ

Output: 1 if the Data Transferred to a Secure Country is satisfied, -1 otherwise.
if ∀x ∈ Tsent : x ∈ TΓ then

return 1 . All the data was sent a secure country
else

return -1 . Data sent to an insecure country
end if

The following example illustrates the verification of the Information Transferred to a

Secure Country Requirement in the On-line Sales Scenario.

Example 5.7 (Information Transferred to a Secure Country Requirement Example).

To illustrate how this requirement can be verified in the on-line sales scenario, we extract

from the Processing View the set of all the tasks that involve the transfer of information.

In this case this set of tasks is Tsent = {sentToEU}, which is presented in Figure 5.20.

Chapter 5 Compliance Framework 131

This graph shows that after the task manage stock was executed, the result was sent to

a country the EU. Since the task sentToEU is contained in the Usage Rules Definition,

we can conclude that this task was in compliance with this requirement.

Now, consider a different example, shown in Figure 5.22, where, instead of sending the

sales report to the EU, it was sent to the United States. In this case, the destination

country is not contained in the Usage Rules Definition, i.e. the task sentToUSA is not

contained in. Thus, we can conclude that this task was not in compliance with Require-

ment H.

Figure 5.21: Information Transferred to a Secure Country Example 1

Figure 5.22: Information Transferred to a Secure Country Example 2

This concludes our discussion of a set of algorithms for verifying the Auditing Rules

(B, C, H, G, F) using the Usage Definition Rules (specifying which operations can be

performed on personal data), and the Processing View (which represents the operations

that were actually performed, and the data instances on which they were performed).

In combination, these algorithms constitute the third and final component of the Com-

pliance Framework we developed in this chapter.

132 Chapter 5 Compliance Framework

5.5 Discussion

Recently, a number of researchers have proposed provenance as a means of verifying

compliance of different policies related to the use of personal information [66, 55, 119].

Others have proposed different technology to support compliance [20, 92, 81].

Hanson et al. [66] present a data-purpose algebra to annotate data with usage re-

strictions. With these restrictions, requirements similar to the ones presented here can

be checked. In their approach, data is annotated after execution, in contrast to our

approach, which creates provenance information at execution time. However, their ap-

proach does not contain any algorithms for performing the actual compliance verification.

Gil et al. [55] argue that computational workflow systems can be used to ensure and

enforce the appropriate use of sensitive personal data. These systems provide compli-

ance, transparency and accountability. To this end, they define a set of requirements

that are similar to the ones we present here. Using a workflow system to support process

transparency, the defined requirements can be verified. They also propose the use of this

technology to enforce policies and negotiate these policies between the Data Subject and

Data Controller. In our work, we argue that the openness of the Web makes enforcement

of these policies infeasible. Instead, we propose compliance verification after the fact as

a more viable solution. Moreover, Gil et al. do not offer a formalisation of their solution

as we do here.

Ringelstein and Staab [119] present the PAPEL language (Provenance-aware Policy Def-

inition and Execution Language) to define policies that control how application data and

provenance information is accessed and processed. They use a modified version of OPM

to express processing execution and an extended version of XACML to represent per-

mission and restriction policies. By modelling execution conditions, proper use of data

can be enforced. In contrast, as mentioned above, we provide accountability, not en-

forcement. Moreover, we do not modify OPM, but instead create a set of a graph-based

rules, against which OPM-based provenance graphs can be easily checked without any

transformations. They also create policies for controlling access and the processing of

provenance information using XACML, while our policies (processing rules) apply to

application data as well, and are represented as a DAG.

In the business processes context, Ly et al. [92] present similar work to verify the

compliance of rules related to the quality of a data product (e.g. a database, a document,

or a single record). They use process-aware information systems and process models to

model the rules. Their requirements are different from ours, as they verify only the

order in which processes are executed. Awad et al. [20] check compliance of control flow

and data flow in business process models by using BPMN to express process models and

BPMN-Q to represent policies. They design a set of queries and present how violations

occur by comparing predefined patterns with the queries. These two approaches do not

Chapter 5 Compliance Framework 133

support the verification of use of data items and are not based on an open model, such

as OPM.

Kang et al. [81] present a similar approach to ours that helps users to conform with

existing policies in a social networks context. This is achieved by making applications

aware of data usage restrictions defined by the users. One drawback of this work is that

they only define a small set of policies. In contrast, our framework defines a set of usage

rules which can be easily extended and applied to a diversity of contexts.

Finally, there is also work on authorisation and enforcement of rules in databases

[97, 141, 119]. However, given the openness of information on the Web and the possi-

bility of inferring information using previously published information, authorisation and

enforcement are very challenging to implement.

Miklau et al. [97] define accountability in databases as the ability to analyse past events

to detect breaches, maintain data quality, and audit compliance with policies. In this

way, their work is similar to ours. In order to make database systems accountable, da-

tabases should preserve a historical record of user operations such as creating, updating

or selecting data records (accountability provenance). In contrast to our work, however,

they store provenance with the data itself, which requires modifications to existing da-

tabases, and has possible negative repercussions to security. In terms of the provenance

questions, their work only presents the idea of answering enquiries about which actions

were taken when and by whom, but does not formally define these questions as we do.

Vaughan et al. [141] introduce the notion of evidence-based audits, which relies on a

secure kernel that wraps critical primitives and logs their invocation with a so-called

proof (which is similar to provenance), which acts as evidence that the operation was

allowed. In contrast to our work, which records evidence of execution of application

processes, instead of primitive operations. With respect to the rules that can be verified

in their work, they use the proofs to provide information that enables a system to create

access control policies. In our work, we do not consider access control. Moreover, our

rules are created at design time depending on the necessities of each specific application.

5.6 Conclusions

In this chapter, we have presented the Compliance Framework for automatically verifying

that past processing was carried out according to predefined processing rules. In this

thesis, these rules are represented by the Auditing Requirements (see Chapter 3).

The first component of the Compliance Framework, the Usage Definition Rules (URD),

represents these rules as a Directed Acyclic Graph (DAG). This DAG encodes restrictions

on processing of personal data by specifying which classes and types of data can be

used. The second component, the Processing View, represents provenance of data, i.e.

134 Chapter 5 Compliance Framework

the actual operations that were performed on data. This Processing View (PV) is based

on the Open Provenance Model (OPM), in which data and operations are represented

as nodes, and edges represent the relations between them.

Using both the URD and the PV, we developed the third and final component of the

Compliance Framework: a suite of algorithms for automatically verifying the Auditing

Requirements. Since both the URD and PV are DAGs, these algorithms operate by

matching subgraphs of the PV against the URD. Table 5.1 shows the extracted sub-

graphs and the requirements supported for each them. In summary, we have shown

that by representing both past processing and processing rules as DAGs, the verification

of the Auditing Requirements be easily performed and computationally implemented.

Moreover, we believe that the URD can be used to not only represent the DPA re-

quirements but also other processing rules that restrict the operations an application is

allowed to perform. These rules can also be extended to verify proper use of any type

of information as well.

Table 5.1: Requirements supported by provenance DAGs

To ensure that the presented algorithms are practically viable, we developed a working

proof of concept in the form of a library that provides audit functionality. This library

allows for the manual definition of usage rules and can automatically analyse provenance

to verify that data processing was performed in compliance with these rules.

The biggest practical challenge is that provenance and rules need to be expressed in a

standard vocabulary when defining purposes, tasks, collected data and used data (classes

and types). In that way, the auditing library can be used in an application independent

manner. This issue is further discussed in Section 8.2.

Now, the Compliance Framework relies heavily on the correctness of the provenance

DAGs (the Processing View Graphs). Thus, if these graphs are forged or altered, the

result of the analysis can be compromised. Even though we secure the communication

between the entities, the auditor is still able to alter provenance query results. Should

this happen, the result of an audit processing will be based on incorrect provenance

information. Consequently, it is necessary to secure provenance information, and ensure

these types of attacks are effectively thwarted. Against this background, in the next

chapter, we present a set of techniques for securing this provenance information.

Chapter 6

Securing the Provenance-based

Auditing Architecture

At this point, we have modelled the complete provenance life cycle. In chapter 4 we

defined the Provenance-based Auditing Architecture, an application architecture for

recording, storing and querying provenance. Using the provenance that this architec-

ture makes available, we also created the Compliance Framework, which contains a

set of algorithms for analysing data processing and verifying that this processing was

performed in accordance with the rules.

While the application data has been secured in Chapter 4, the provenance of this data

that is captured by the Provenance-based Auditing Architecture and analysed by the

Compliance Framework is still vulnerable. This is problematic, because if provenance is

altered or forged by adversaries (including the auditor), audit results may be corrupted.

In more detail, these adversaries can perform attacks in an attempt to break one or

more of the four basic security characteristics: confidentiality, integrity, authentication

and non-repudiation [3]. Therefore, it is necessary to be able to detect any modification

of provenance information during its complete life cycle of recording, storing, querying

and analysis. In addition, if attacks were performed by insiders, it is also necessary to

be able to identify this adversary.

To address this vulnerability, in this chapter, we secure the provenance generated by the

Data Request, Task Request and Query Request protocols (see Chapter 4) by creating

a secure communication channel between the actors within the architecture. These

protocols guarantee that the provenance information within the system exhibits the

four basic security characteristics.

Additionally, to secure the analysis stage developed as part of the Compliance Frame-

work (see Chapter 5), we protect the provenance DAGs by applying cryptographic tech-

niques. By doing so, we not only secure the graph as a whole, but also each part

135

136 Chapter 6 Securing the Provenance-based Auditing Architecture

independently. As a result, the properties of non-repudiation, end-point authentica-

tion and provenance information integrity are guaranteed to hold for the (subgraphs of)

provenance DAGs. Moreover, we can guarantee that none of the actors, not even the

auditor, can change p-assertions after these are recorded in the Provenance Store with-

out being detected. We prove these guarantees using a model checker and verify that

the mentioned security requirements hold during the complete provenance life cycle.

In summary, the contribution of this chapter is the Secure Provenance-based Auditing

Architecture, a novel approach for securing provenance and application data during the

entire provenance life cycle. This architecture contains a set of secure protocols for the

exchange of provenance and a set of cryptographic components for securing provenance

DAGs. Using this architecture, alteration of provenance information during its creation,

storage and analysis can be detected, thereby improving the reliability of audits.

The remainder of this chapter is structured as follows. First, in Section 6.1, we introduce

the terminology and concepts used throughout this chapter. Then, in Section 6.2, we

secure communication protocols of the recording and storage phases of the provenance

life cycle. Next, in Section 6.3, we secure the querying and analysis stages as well by

developing the Secured Provenance Graph and an algorithm for checking its integrity.

In Section 6.4, we combine these four stages to obtain the Secure Provenance-based Au-

diting Architecture, and formally prove that it exhibits the properties of confidentiality,

integrity, authentication and non-repudiation. In Section 6.5 we discuss the contribu-

tions made in this chapter in the context of existing work. Finally, we conclude in

Section 6.6.

6.1 Preliminaries

In this section, we define the notation that is used throughout the rest of the chapter.

Specifically, we discuss how the assertions created by the actors of a provenance-aware

system can be secured. To achieve this, we use a protocol for mutual authentication (a

variant of TLS which we will refer to as the Optimised TLS Handshake Protocol [19]),

and add cryptographic components (fields) to both the messages and the provenance

assertions. These components are later used to verify the security properties during the

storage stage, presented in Section 6.2.

Then, in Sections 6.2.1.2, 6.2.1.3 and 6.3.3, we secure the Data Request, Task Request

and the Query Request communication protocols that were defined in Sections 4.3.2,

4.3.3 and 4.3.4. For this purpose, we first describe the Optimised TLS protocol and, later,

introduce key concepts that are used to achieve this: key management, cryptographic

functions and some useful auxiliary functions.

Chapter 6 Securing the Provenance-based Auditing Architecture 137

6.1.1 Optimised TLS Handshake Protocol

Recall from Section 2.3.1.3 that the OTLS protocol is a more efficient version of TLS

which allows two actors to mutually authenticate each other in a single execution. Thus,

OTLS ensures two important security properties required in our architecture: mutual

authentication and confidentiality (see Section 4.1.3).

Specifically, as discussed in Section 2.3.1.3, OTLS is a protocol that enables client-server

applications to negotiate a secure connection using a handshaking procedure, in which

the participants agree on various parameters (such as cipher suites and session keys) to

establish a secure connection. In doing so, entities are mutually authenticated through

certificates and are able to create the session key that is used to encrypt the (sensitive)

data that is contained in messages exchanged between the actors.

Now, in Section 6.2.1.1, we augment the OTLS protocol to capture provenance of its

execution. This provenance is important to verify that the proper security measures

were taken in the processing and transfer of sensitive application data (Requirement G

in Section 3.4).

6.1.2 Key Management

In our architecture, cryptographic keys are used to sign and encrypt the messages that

are exchanged between actors. In what follows, we assume that actors have already

created private keys and exchanged public keys. We also assume that these keys do not

change and are stored in a safe place so they cannot be compromised [94].

The keys related to each actor are presented in Tables 6.1 and 6.2. These tables contain

all the actors participating in the Provenance-based Auditing Architecture (see Section

5). Hence, DS, DC, DP, AU, PS and CA are instances of the actors Data Subject, Data

Controller, Data Processor, Auditor, Provenance Store and Certified Authori-

ty, respectively. Table 6.1 contains the private and public keys of each actor. Thus,

given an actor A, kA represents its public key and k−1
A its private key. Table 6.2 presents

the session keys created after executing the OTLS protocol between two communicating

actors. Then, a session key k′x is created, where x denotes the entities that use this

specific key. For example, k′DS−DC is used in the communication established between

the entities DS and DC.

Note that the Certificate Authority is not part of the Architecture. However, we assume

it exists and that it creates valid certificates for all actors inside the architecture.

138 Chapter 6 Securing the Provenance-based Auditing Architecture

Entities

Data DS DC DP AU PS CA

Public Key kDS kDC kDP kAU kPS kCA

Private Key k−1
DS k−1

DC k−1
DP k−1

AU k−1
PS k−1

CA

Table 6.1: Public, Private Keys used in Sequence Diagrams

Entities

DS DC DP AU PS

k′DS−DC k′DS−DC k′DP−DC k′AU−PS k′DS−PS

k′DS−PS k′DP−DC k′DP−PS k′DC−PS

k′DC−PS k′DP−PS

k′AU−PS

Table 6.2: Session keys used in Sequence Diagrams

6.1.3 Cryptographic Notation

Before presenting the messages that are used in the sequence diagrams of this section,

we first introduce the cryptographic notation we use on them.

In the communications protocols that are discussed in Sections 6.2.1.1, 6.2.1.2, 6.2.1.3

and 6.3.3, a hash-value h of a piece of data d is computed by a hash function h, and

represented as h = h(d). The concatenation operation1 is represented by ‖. The public

and private keys of an actor A used for signing messages are represented by kA and

k−1
A respectively. A signature of a message m is computed by s = Signk−1

A
(m) and the

extraction of m by ExtkA(s) = m. Note that, as explained in Section 2.3.2.2 the Sign

function only signs data, and does not hash data first. Thus, depending on whether it

is used to sign data item m or the hash-value of m, the Ext function can be used to

obtain m (in the clear) or the hash-value of m, respectively. The encryption of a piece

of data d is computed by e = {d}k′ and the decryption by Deck′(e) = d, where k′ is a

symmetric key. This symmetric key is a session key, which is agreed upon during the

execution of a secure protocol and is used to encrypt private information.

6.1.4 Securing Messages

In this section, we secure the messages that are exchanged between the actors in the

communication protocols. The first set of messages is used in the OTLS protocol [19, 79,

71], which provides mutual entity authentication and allows for the creation of a session

key. The OTLS protocol, which was discussed in Section 6.1.1, will be formalised in

Section 6.2.1.1. These messages are presented by a 5-tuple, a 4-tuple and a 3-tuple in

(6.1), (6.2) and (6.3), respectively:

1Note that this concatenation operation is equivalent to the cons function used in programming
languages as explained in Section 2.3.2.2

Chapter 6 Securing the Provenance-based Auditing Architecture 139

clientHello(idi, Ni, kC , si, hi) (6.1)

serverHello(idi, ei, si, hi) (6.2)

keyExchange(idi, ei, hi) (6.3)

As can be seen in Table 6.3, and in messages (6.1), (6.2) and (6.3), the client’s key

pair is represented by kC and k−1
C and its name is represented by C. Similarly, for the

server, these are kS , k−1
S and S. Messages (6.1), (6.2) and (6.3) also contain a unique

identifier idi, which is used in the creation of provenance information. Also, message

(6.3) contains the session key k′C−S indicating this key is later used to encrypt data

exchanged between the client (C) and the server (S).

Table 6.3: Message Components and Convenience Functions

Note that in these messages, si represents a signature, ei encrypted data and hi a

hash-value. Then, to access to the individual elements of the messages, we define a set

of accessors and convenience functions in Table 6.3. It is important to note that the

Sign operation used to construct one or more of the individual elements of these three

messages ((6.1),(6.2) and (6.3)) does not hash data before signing it.

After the last message of the protocol is sent, the actors that executed the protocol

have a symmetric key that can be used to protect the confidentiality of the exchanged

140 Chapter 6 Securing the Provenance-based Auditing Architecture

information. These actors have also created and exchanged their public keys, which are

later used to provide non-repudiation and integrity.

In order to ensure all these security properties hold for sensitive application data, the

Sign operation that is used to construct some of the individual elements in the rest

of the messages is applied in conjuction with the hash operation (h), therefore, data is

hashed before being signed.

Using these symmetric, public and private keys, we define secureMsg in (6.4). This mes-

sage contains secured information that guarantees the confidentiality, non-repudiation

and integrity properties on the original data that is exchanged in our protocols:

secureMsg(ei, si, hi) (6.4)

These messages are symmetrically encrypted and signed. Therefore, they contain en-

crypted data (ei), a signature (si) and a hash-value (hi) related to their corresponding

assertions. The hash-value along with a unique identifier idi, which is encrypted on ei,

(See Table 6.3) are used to create the relationship and the hash-value of the next asser-

tions. We also define a set of accessors and convenience functions that are described in

Table 6.3.

The ipa message in (6.5) contains the same elements of the message defined in (4.2) and

a signature. This signature is used to guarantee the integrity and non-repudiation of

interaction p-assertions related to the messages exchanged between the actors:

ipa(idi, view, si) (6.5)

As previously defined in message (4.2), interaction p-assertions contain the unique iden-

tifier idi of the message that the interaction refers to. They also contain a view indicating

whether the entity that creates the interaction was the receiver or sender of the corre-

sponding message. To provide non-repudiation and integrity of the information recorded

in the Provenance Store, the interaction p-assertions’ content is now signed using the

sender’s key (si). Moreover, a set of accessors and convenience functions related to

message (6.5) is defined in Table 6.3. Note that the information contained in the ipa

message is not encrypted. The reason for this is that this information (idi, view) is not

sensitive. Therefore, it cannot be used to break the security of the protocols.

Finally, messages (6.6) and (6.7) contain secure information that guarantees the rela-

tionship p-assertions that encode the relation between two interaction p-assertions is

secured:

simpleRpa(ei, si, hi) (6.6)

rpa(ei, si, hi) (6.7)

Chapter 6 Securing the Provenance-based Auditing Architecture 141

Recall from message (4.3) that these p-assertions contain a message identifier idi that is

a unique identifier of the first interaction p-assertion (called the cause) and idj of second

(called the effect) of a relationships rel in the Provenance Store. To guarantee the four

basic security characteristics, messages (6.6) and (6.7) make the following alterations to

message 4.3:

• Integrity of the information asserted by the actors is guaranteed by introducing

a hash-value hi. This hash-value is created by the sender to protect the content

of the assertion and its relationship with the previous message. For this reason,

this hash-value includes the hash-value of the previous relation p-assertion, which

is identified by its corresponding id.

• To provide non-repudiation, assertions also contain a signature si, which is com-

puted by the sender.

• To provide confidentiality, the information transported in this message is encrypted

in ei.

Contrary to the information contained in the ipa messages, rpa messages contain sensitive

information. Even though relationship p-assertions could contain pointers only, these

pointers refer to existing pieces of data, and the fact that a relationship between these

pieces of data exist is sensitive information. Knowledge of the name of the relationship

and the pointers can be used to generate an (anonymous) graph from which information

about the processing of the information might be inferred.

Finally, if an assertion related to the first message of a protocol is created, a special

relationship p-assertion is created, which does not contain a relationship but a hash-value

(see message (6.6)). As in previous secure messages, a set of accessors and convenience

functions related to messages (6.6) and (6.7) is defined in Table 6.3.

Using the secure messages we created in this section, we can now secure the first two

stages of the provenance life cycle: recording and storage.

6.2 Securing the Recording and Storage Stage

In this section, we secure the Data Request and Task Request communication protocols

which are part of the Provenance-based Auditing Architecture presented in Chapter 4.

Additionally, we modify the OTLS protocol to record provenance of its execution. By

doing so, evidence is recorded of the fact that proper security measures have been taken,

which is needed to verify compliance of the Security Requirements defined in Chapter

3.

142 Chapter 6 Securing the Provenance-based Auditing Architecture

In what follows, we formalise the modified protocols using an extension of UML called

UMLSec, which offers cryptographic notation for secure systems development [79]. This

formalisation includes one UML sequence diagram for each of the following protocols:

OTLS, Data Request and Task Request. In the remainder of this section, we first show

how these protocols are secured (Section 6.2.1). Then, in Section 6.2.2, we develop

algorithms for verifying that the protocols were executed correctly by detecting message

tampering or forgery.

6.2.1 Securing Protocols

6.2.1.1 OTLS Protocol

In this section, we modify the OTLS protocol discussed in 6.1.1 to capture and secure

provenance of its execution. To do this, we present a UMLSec sequence diagram used

in the formalisation of the OTLS protocol, which establishes a secure communication

channel between the actors that are part of the Provenance-based Auditing Architecture.

The OTLS protocol allows actors to verify each others’ identities and create a session

key used to encrypt/decrypt exchanged messages, i.e. to authenticate themselves. For

that reason, we use this protocol to establish communication between each of the entities

(DS-DC, DP-DC) and between the entities and the Provenance Store2 (DS-PS, DP-PS,

DC-PS and AU-PS). This protocol is modelled in Figure 6.1, which shows the objects

client, server and PS. Both client and server can be instances of any of the actors

presented in the architecture, and PS is an instance of the Provenance Store actor.

The model of this protocol is based on the examples presented in [79].

In order to achieve a clear distinction between protocol messages and provenance-related

messages, we first explain the protocol messages that are part of the normal (i.e. “prove-

nance unaware”) execution of the protocol. Later, all the provenance-related messages

(Interaction and Relationship p-assertions) are explained. Note that the same applies

to the rest of the protocols (Data Request, Task Request and Query Request).

Messages In the OTLS sequence diagram, the messages exchanged between client

and server are denoted as Mi. These messages are defined according to (6.1), (6.2)

and (6.3), which represent the messages described in Section 6.1.1, and are explained in

more detail below.

clientHello The client initiates the protocol by sending the clientHello message (M1).

This message contains a random number Ni and the client’s public key kC . It

2Note that in order to protect the Provenance Store only p-assertions from a previously authenticated
entity can be stored. Therefore, when the OTLS protocol is executed between an entity and the Provence
Store no p-assertions are recorded.

Chapter 6 Securing the Provenance-based Auditing Architecture 143

also contains a message identifier idM1 and a hash-value, which are part of the

provenance integrity support that is explained later. The client also includes

its own certificate to authenticate to the server. In practice, this message also

contains a lists of the cryptographic capabilities of the client, such as the version

of the protocol, the cipher suites supported by the client, and the data com-

pression methods supported by the client. In our model, these parameters are

omitted as they do not alter the security of the protocol, which is the main goal of

this formalisation. Below, message M1 is formally described presenting its content

during the execution of the protocol in Figure 6.1.

Let certificateM1 = Signk−1
CA

(C||kC)

Let integrityHashM1 = h(idM1||C||kC)

M1=

clientHello(

idM1, . M1 OTLS message identifier

Ni, . random number

kC , . client’s public key

certificateM1, . client’s certificate

integrityHashM1 . provenance integrity hash-value

)

serverHello The serverHello message (M2) is sent by the server as a response to a

clientHello message. Upon receipt of the clientHello message, the server generates

the pre-master secret k′C−S using a key generation function (kgen) 3 Then, the

pre-master secret is signed along with the client random number4 (Nj) and the

client public key (kC) using the server private key (k−1
S), and encrypts it using the

public key of the client (kC). By signing the pre-master secret, the client random

number and the client public key together, the server binds the pre-master secret

with the current session and client. Then, the signed and encrypted pre-master

secret is sent to the client along with its certificate (Signk−1
CA

(S||kS)). This message

is presented in (6.2). Again, this message also contains a message identifier idM2,

the cryptographic cipher suite and the data compression method selected by the

server. As before, the last two parameters are omitted for the same reasons as

mentioned above. Below, message M2 content is formally described.

3kgen denotes a key generation function used to create strong keys. To prevent related-key attacks
[96], keys need to be generated truly randomly and contain sufficient entropy. To support these prop-
erties, keys can be randomly generated using a pseudo-random number generator (PRNG) [28] or a
cryptographic hash function along with a pass-phrase [117].

4The random data in the clientHello and serverHello messages is created using a carefully designed
pseudo-random function to be used in the creation of the key. In that way, it is possible to guarantee
that the generated symmetric key will be unique in the scope of a single actor.

144 Chapter 6 Securing the Provenance-based Auditing Architecture

Let signedEncryptedSecretM2 = {Signk−1
S

(k′C−S ||Nj ||kC)}kC

Let certificateM2 = Signk−1
CA

(S||kS)

Let integrityHashM2 = h(idM2||S||kS)

M2=

serverHello(

idM2, . M2 OTLS message identifier

signedEncryptedSecretM2, . signed and encrypted pre-master secret

certificateM2, .server’s certificate

integrityHashM2 . provenance integrity hash-value

)

keyExchange When the client receives the serverhello message, it decrypts the pre-

master secret with its private key and extracts the public key from the certificate.

By extracting the signature on the pre-master secret as well as the server certificate,

the client authenticates the server. Once the client extracts the pre-master secret

and verifies the signatures, it sends the keyExchange message (M3). This message

uses the created pre-master secret as symmetric encryption key5 (k′C−S) to encrypt

the name of the server (S). This message is used to verify that both actors know

the agreed upon key and is presented in (6.3). After that, the created symmetric

key can be used to exchange application data in a secure way. Below, message M3

content is formally described.

Let encryptedServerNameM3 = {S}k′C−S

Let integrityHashM3 = h(idM3||C||kC)

M3=

keyExchange(

idM3, .M3 OTLS message identifier

encryptedServerNameM3, .encrypted server’s name

integrityHashM3 .provenance integrity hash-value

)

By exchanging these messages, the client and the server verify each others’ identities

and create a symmetric session key k′C−S . When the protocol terminates, the exchange

of encrypted application data can commence using the created session key . The role of

client and server can be represented by any of the entities that communicate in our

model. In this way, entities are mutually authenticated and there is a symmetric key

used by two entities to encrypt the information they want to exchange.

5In practice, the pre-master secret is used to generate a master secret and then the session key used
to encrypt data. As we assume that keys are created using well-designed methods (See Section 7.4), we
do not present this process, which is performed by the server and the client using a public algorithm
defined in the TLS standard. Instead, we use the pre-master secret as the session key.

Chapter 6 Securing the Provenance-based Auditing Architecture 145

In the sequence diagrams that follow, we assume that the OTLS protocol has been

previously executed between the main entities of the protocol and between each entity

and the Provenance Store. Thus, the corresponding entities have already been mutually

authenticated and have the created symmetric key, as shown in Table 6.2.

Interaction p-assertions To make the OTLS protocol provenance-aware, actors

should record the interaction p-assertions related to the messages they send, which are

labelled Ii in Figure 6.1 and use the message format from (6.5).

Interaction p-assertions I1, I4 and I5 are recorded by the client in the PS. These

assertions refer to the messages M1 (clientHello), M2 (serverHello) and M3 (keyExchange)

described above. Therefore, they contain the OTLS message identifiers of the corre-

sponding messages, i.e. they contain idM1, idM2 and idM3 respectively. Similarly,

interaction p-assertions I2, I3 and I6 refer to the same messages, but now from the

perspective of the server. Below, interaction p-assertions I1, I2, I3, I4, I5 and I6

are formally described.

Message I1

Let signatureWithHashI1 = Signk−1
C

(h(idM1||sender))

I1=

ipa(

idM1, . M1 OTLS message identifier

sender, .view

signatureWithHashI1 .message signature with hash

)

Message I2

Let signatureWithHashI2 = Signk−1
S

(h(idM1||receiver))

I2=

ipa(

idM1, .M1 OTLS message identifier

receiver, .view

signatureWithHashI2 .message signature with hash

)

Message I3

Let signatureWithHashI3 = Signk−1
S

(h(idM2||sender))

146 Chapter 6 Securing the Provenance-based Auditing Architecture

Figure 6.1: OTLS UMLSec Sequence Diagram

Chapter 6 Securing the Provenance-based Auditing Architecture 147

I3=

ipa(

idM2, .M2 OTLS message identifier

sender, .view

signatureWithHashI3 .message signature with hash

)

Message I4

Let signatureWithHashI4 = Signk−1
C

(h(idM2||receiver))

I4=

ipa(

idM2, .M2 OTLS message identifier

receiver, .view

signatureWithHashI4 .message signature with hash

)

Message I5

Let signatureWithHashI5 = Signk−1
C

(h(idM3||sender))

I5=

ipa(

idM3, .M3 OTLS message identifier

sender, .view

signatureWithHashI5 .message signature with hash

)

Message I6

Let signatureWithHashI6 = Signk−1
S

(h(idM3||receiver))

I6=

ipa(

idM3, .M3 OTLS message identifier

receiver, .view

signatureWithHashI6 .message signature with hash

)

Relationship p-assertions As part of a provenance-aware communication protocol,

the actors also need to record the relationship p-assertions related to the interaction

p-assertions they create. These assertions encode the relation between application data

and the message that contains it. In Figure 6.1, these assertions are labelled Ri and use

the message format from (6.6) and (6.7). Next, the relationship p-assertions created in

this protocol are described.

148 Chapter 6 Securing the Provenance-based Auditing Architecture

• Relationship p-assertion R0 is not related to another message. Thus, since this

message is the first message of the protocol, the ancestor hash of message M1 is

created using (6.6). Below, relationship p-assertion R0 is formally described.

Let encryptedDataR0 = {idM1||getDataItem(M1)}kC−PS

Let integrityHashR0 = h(idM1||getDataItem(M1))

Let signatureWithHashR0 = Signk−1
C

(h(idM1||getDataItem(M1)||integrityHashR0))

R0=

simpleRpa(

encryptedDataR0, .encrypted data

signatureWithHashR0, .message signature with hash

integrityHashR0 .provenance integrity hash-value

)

• Message R1 is a relationship p-assertion denoting that the message M2 was sent in

Response To the receipt of the message M1. Relationship R1 is created using (6.7)

and below it is formally described.

Let encryptedDataR1 = {idM1||getDataItem(M2)||inResponseTo||idM2}kS−PS

Let integrityHashR1 = h(idM1||getDataItem(M2)||inResponseTo||getHash(R0))

Let signatureWithHashR1 = Signk−1
S

(h(idM1||getDataItem(M2)||inResponseTo||

idM2||integrityHashR1))

R1=

rpa(

encryptedDataR1, . encrypted data

signatureWithHashR1, . message signature with hash

integrityHashR1 . provenance integrity hash-value

)

• Finally, message R2 is a relationship indicating that the message M3 was sent

in Response To the receipt of message M2. Below, relationship p-assertion R2

is formally described.

Let encryptedDataR2 = {idM2||getDataItem(M3)||inResponseTo||idM3}kC−PS

Let integrityHashR2 = h(idM2||getDataItem(M3)||inResponseTo||getHash(R1))

Let signatureWithHashR2 = Signk−1
C

(h(idM2||getDataItem(M3)||inResponseTo||

idM3||integrityhashR2))

Chapter 6 Securing the Provenance-based Auditing Architecture 149

R2=

rpa(

encryptedDataR2, . encrypted data

signatureWithHashR2, . message signature with hash

integrityHashR2 . provenance integrity hash-value

)

It is important to mention that, as opposed to other relationship p-assertions created

in this formalisation, the ones related to the OTLS protocol just contain the digital

certificates and public keys (instead of application data) of the corresponding messages.

By doing so, we avoid the exposure of private information that could compromise the

security of the protocol, for example by recording the symmetric key in the corresponding

relationship p-assertion.

6.2.1.2 Securing Data Request Protocol

The second protocol we secure is the Data Request Protocol. Recall from Section 4.3.2

that this protocol is used to request personal information by the Data Controller from

a Data Subject. To secure this protocol, we extend the sequence diagram presented in

Figure 4.5. The result is shown in Figure 6.2. Note that the modified protocol uses the

messages defined above. The difference with Figure 4.5 is that these messages are now

secured (see Section 6.1.4). Furthermore, the modified protocol contains several guards,

which are logical conditions that specify whether the execution of the protocol should

be continued. These guards guarantee that the information and provenance exchanged

between actors is secure. In Section 6.2.2, these guards are explained in further detail.

Messages In the Data Request sequence diagram, the messages exchanged between

DS and DC are denoted as Mi. These messages are created according to (6.4) to provide

confidentiality, non-repudiation and integrity. In what follows, we explain each message.

Message M4 contains purpose, which is symmetrically encrypted using the session key

and signed using the private key of DC. With this message DC requests to DS personal

information to be used with the indicated purpose. When M4 is received, it is verified

and decrypted (shown by guardM4). Below, message M4 is formally described.

Let encryptedDataM4 = {idM4||purpose}k′DS−DC

Let integrityHashM4 = h(idM4||purpose)

Let signatureWithHashM4 = Signk−1
DC

(h(idM4||purpose||integrityHashM4))

150 Chapter 6 Securing the Provenance-based Auditing Architecture

Figure 6.2: Data Request UMLSec Sequence Diagram Formalisation

Chapter 6 Securing the Provenance-based Auditing Architecture 151

M4=

secureMsg(

encryptedDataM4, . encrypted data

signatureWithHash, . message signature with hash

integrityHashM4 . provenance integrity hash-value

)

In response, DS sends the encrypted personal data requested (data) in Message M5,

which is also signed by DS. When DC receives M5, the signature is verified and the data

is decrypted, (see guardM5), to later be stored in a local database, which is maintained

by DC. Below, message M5 is formally described.

Let encryptedDataM5 = {idM5||data}k′DS−DC

Let integrityHashM5 = h(idM5||data)

Let signatureWithHashM5 = Signk−1
DS

(h(idM5||data||integrityHashM5))

M5=

secureMsg(

encryptedDataM5, . encrypted data

signatureWithHashM5, . message signature with hash

integrityHashM5 . provenance integrity hash-value

)

Then, DC acknowledges the receipt of the data to DS in M6, which is also verified and

decrypted in guardM6. Below, message M6 is formally described.

Let encryptedDataM6 = {idM6||OK}k′DS−DC

Let integrityHashM6 = h(idM6||OK)

Let signatureWithHashM6 = Signk−1
DC

(h(idM6||OK||integrityHashM6))

M6=

secureMsg(

encryptedDataM6, . encrypted data

signatureWithHashM6, . message signature with hash

integrityHashM6 . provenance integrity hash-value

)

Note that the message numbers continue from the OTLS sequence diagram showing

that the OTLS protocol protocol was successfully completed before this protocol was

executed. The same applies for the messages and protocols that follow.

Interaction p-assertions Interaction p-assertions (Ii) are built according to (6.5)

providing non-repudiation and integrity. Similarly to the sequence diagram of Figure

4.5, in this sequence diagram assertions I7, I10 and I11 denote the act of receiving or

sending messages M4, M5 and M6 by DC in the Provenance Store. Similarly, assertions I8,

I9 and I12 denote the act of sending or receiving the same messages from the perspective

of DS. The difference with Figure 4.5 is that in this sequence diagram the interaction

152 Chapter 6 Securing the Provenance-based Auditing Architecture

p-assertion are signed. Moreover, when interaction p-assertions are received by the PS,

their signatures are checked at its reception. Below, interaction p-assertions I7, I8,

I9, I10, I11 and I12 are formally described.

Message I7

Let signatureWithHashI7 = Signk−1
DC

(h(idM4||sender))

I7=

ipa(

idM4, .M4 Data Request message identifier

sender, .view

signatureWithHashI7 .message signature with hash

)

Message I8

Let signatureWithHashI8 = Signk−1
DS

(h(idM4||receiver))

I8=

ipa(

idM4, .M4 Data Request message identifier

receiver, .view

signatureWithHashI8 .message signature with hash

)

Message I9

Let signatureWithHashI9 = Signk−1
DS

(h(idM5||sender))

I9=

ipa(

idM5, .M5 Data Request message identifier

sender, .view

signatureWithHashI9 .message signature with hash

)

Message I10

Let signatureWithHashI10 = Signk−1
DC

(h(idM5||receiver))

I10=

ipa(

idM5, .M5 Data Request message identifier

receiver, .view

signatureWithHashI10 .message signature with hash

)

Chapter 6 Securing the Provenance-based Auditing Architecture 153

Message I11

Let signatureWithHashI11 = Signk−1
DC

(h(idM6||sender))

I11=

ipa(

idM6, .M6 Data Request message identifier

sender, .view

signatureWithHashI11 .message signature with hash

)

Message I12

Let signatureWithHashI12 = Signk−1
DS

(h(idM6||receiver))

I12=

ipa(

idM6, .M6 Data Request message identifier

receiver, .view

signatureWithHashI12 .message signature with hash

)

Relationship p-assertions Relationship p-assertions (Ri) are built according to

(6.6) and (6.7) providing confidentiality, non-repudiation and integrity. The relationships

created in this sequence diagram are the same as the ones created in the sequence

diagram of Figure 4.5. The differences are the inclusion of the corresponding hash-

values, the encryption of data application and the signing of messages. In this diagram,

when a relationship p-assertion is received by the PS, its hash-value and signature are

checked according to the corresponding guard. These guards are explained in detail in

Section 6.2.2. Below, relationship p-assertions R3, R4 and R5 are formally described.

Message R3

Let encryptedDataR3 = {idM3||getDataItem(M4)||inResponseTo||idM4}k′DC−PS

Let integrityHashR3 = h(idM3||getDataItem(M4)||inResponseTo||getHash(R2))

Let signatureWithHashR3 = Signk−1
DC

(h(idM3||getDataItem(M4)||inResponseTo||

idM4||integrityHashR3))

R3=

rpa(

encryptedDataR3, .encrypted data

signatureWithHashR3, .message signature with hash

integrityHashR3 .provenance integrity hash-value

)

154 Chapter 6 Securing the Provenance-based Auditing Architecture

Message R4

Let encryptedDataR4 = {idM4||getDataItem(M5)||wasAcquiredFor||idM5}k′DS−PS

Let integrityHashR4 = h(idM4||getDataItem(M5)||wasAcquiredFor||getHash(R3))

Let signatureWithHashR4 = Signk−1
DS

(h(idM4||getDataItem(M5)||wasAcquiredFor||

idM5||integrityHashR4))

R4=

rpa(

encryptedDataR4, .encrypted data

signatureWithHashR4, .message signature with hash

integrityHashR4 .provenance integrity hash-value

)

Message R5

Let encryptedDataR5 = {idM5||getDataItem(M6)||inAckTo||idM6}k′DC−PS

Let integrityHashR5 = h(idM5||getDataItem(M6)||inResponseTo||getHash(R4))

Let signatureWithHashR5 = Signk−1
DC

(h(idM5||getDataItem(M6)||inAckTo||

idM6||integrityHashR5))

R5=

rpa(

encryptedDataR5, .encrypted data

signatureWithHashR5, .message signature with hash

integrityHashR5 .provenance integrity hash-value

)

6.2.1.3 Securing Task Request Protocol

In this section, we secure the Task Request Protocol and record its provenance. Recall

from Section 4.3.3 where this protocol is used to delegate the processing of personal data

by DS to DP. This section presents the sequence diagram of the modified protocol, which

is presented in Figure 6.3. This diagram models the interaction as shown in Figure 4.6,

but instead uses secure message presented in Section 6.1.4.

Messages Similarly to the Data Request sequence diagram, messages are denoted

as Mi and use (6.4) to provide confidentiality, non-repudiation and integrity.

Message M10 contains processdata, which is symmetrically encrypted using the session

key and signed using DC’s private key. This data is a set of personal information to be

processed by DP. Thus, DP needs to verify the signature and decrypt such set of data

Chapter 6 Securing the Provenance-based Auditing Architecture 155

to process it, as guardM10 shows. After the set of data is decrypted, DP computes it

using the internal function task1 that returns result. Below, message M10 is formally

described.

Let encryptedDataM10 = {idM10||processData}k′DP−DC

Let integrityHashM10 = h(idM10||processData)

Let signatureWithHashM10 = Signk−1
DC

(h(idM10||processData||integrityHashM10))

M10=

secureMsg(

encryptedDataM10, . encrypted data

signatureWithHashM10 . message signature with hash

integrityHashM10 . provenance integrity hash-value

)

Message M11 is signed by DP and contains the encrypted result of the previous process-

ing (result). Thus, when DC receives M11, the signature is verified and the result is

decrypted in guardM11. Below, message M11 is formally described.

Let encryptedDataM11 = {idM11||result}k′DP−DC

Let integrityHashM11 = h(idM11||result)

Let signatureWithHashM11 = Signk−1
DP

(h(idM11||result||integrityHashM11))

M11=

secureMsg(

encryptedDataM11, . encrypted data

signatureWithHashM11, . message signature with hash

integrityHashM11 . provenance integrity hash-value

)

Finally, DC sends an acknowledgement to the reception of result to DP in M12, which is

verified and decrypted in guardM12. Below, message M12 is formally described.

Let encryptedDataM12 = {idM12||OK}k′DP−DC

Let integrityHashM12 = h(idM12||OK)

Let signatureWithHashM12 = Signk−1
DC

(h(idM12||OK||integrityHashM12))

M12=

secureMsg(

encryptedDataM12, . encrypted data

signatureWithHashM12, . message signature with hash

integrityHashM12 . provenance integrity hash-value

)

Interaction p-assertions As in the previous protocol, interaction p-assertions (Ii)

are built according to (6.5) providing non-repudiation and integrity. Similarly to the

sequence diagram of Figure 4.6, in this sequence diagram interaction p-assertions I13,

156 Chapter 6 Securing the Provenance-based Auditing Architecture

I14, I15, I16, I17 and I18 denote the act of receiving and sending the messages de-

scribed above by DC and DP. Again, interaction p-assertion are signed and their signatures

are verified according to the corresponding guard. Below, interaction p-assertions I13,

I14, I15, I16 and I17 are formally described.

Message I13

Let signatureWithHashI13 = Signk−1
DC

(h(idM10||sender))

I13=

ipa(

idM10, .M10 Task Request message identifier

sender, .view

signatureWithHashI13 .message signature with hash

)

Message I14

Let signatureWithHashI14 = Signk−1
DP

(h(idM10||receiver))

I14=

ipa(

idM10, .M10 Task Request message identifier

receiver, .view

signatureWithHashI14 .message signature with hash

)

Message I15

Let signatureWithHashI15 = Signk−1
DP

(h(idM11||sender))

I15=

ipa(

idM11, .M11 Task Request message identifier

sender, .view

signatureWithHashI15 .message signature with hash

)

Message I16

Let signatureWithHashI16 = Signk−1
DC

(h(idM11||receiver))

I16=

ipa(

idM11, .M11 Task Request message identifier

receiver, .view

signatureWithHashI16 .message signature with hash

)

Chapter 6 Securing the Provenance-based Auditing Architecture 157

Message I17

Let signatureWithHashI17 = Signk−1
DC

(h(idM12||sender))

I17=

ipa(

idM12, .M12 Task Request message identifier

sender, .view

signatureWithHashI17 .message signature with hash

)

Message I18

Let signatureWithHashI18 = Signk−1
DP

(h(idM12||receiver))

I18=

ipa(

idM12, .M12 Task Request message identifier

receiver, .view

signatureWithHashI18 .message signature with hash

)

Relationship p-assertions Here, relationship p-assertions (Ri) are also built ac-

cording to (6.6) and (6.7) providing confidentiality, non-repudiation and integrity. The

created relationships as the same as the ones created in the sequence diagram of Figure

4.6. However, this sequence diagram includes hash-values, encryption of data applica-

tion and signing of messages. Then, when the relationships R8, R9, R10, R11, R12 and

R13 are received by the PS, application data is decrypted, and their hash-values and sig-

natures are verified, as guardR8, guardR9, guardR10 guardR11 guardR12 and guardR13

respectively show. Below, relationship p-assertions R8, R9, R10, R11, R12 and R13

are formally described.

Message R8

Let encryptedDataR8 = {idM10||getDataItem(M10)||inResponseTo||idM9}k′DC−PS

Let integrityHashR8 = h(idM10||getDataItem(M10)||inResponseTo||getHash(R7))

Let signatureWithHashR8 = Signk−1
DC

(h(idM10||getDataItem(M10)||inResponseTo||

idM9||integrityHashR8))

R8=

rpa(

encryptedDataR8, .encrypted data

signatureWithHashR8, .message signature with hash

integrityHashR8, .provenance integrity hash-value

)

158 Chapter 6 Securing the Provenance-based Auditing Architecture

Message R9

Let encryptedDataR9 = {idT1||getDataItem(T1)||wasInitiatedBy||idM4}k′DP−PS

Let integrityHashR9 = h(idT1||getDataItem(T1)||wasInitiatedBy||getHash(R8))

Let signatureWithHashR9 = Signk−1
DP

(h(idT1||getDataItem(T1)||wasInitiatedBy||

idM4||integrityHashR9))

R9=

rpa(

encryptedDataR9, .encrypted data

signatureWithHashR9), . message signature with hash

integrityHashR9 .provenance integrity hash-value

)

Message R10

Let encryptedDataR10 = {idM10||getDataItem(M10)||overlappedWith||idM5}k′DC−PS

Let integrityHashR10 = h(idM10||getDataItem(M10)||overlappedWith||getHash(R9))

Let signatureWithHashR10 = Signk−1
DC

(h(idM10||getDataItem(M10)||overlappedWith||

idM5||integrityHashR10))

R10=

rpa(

encryptedDataR10, .encrypted data

signatureWithHashR10), .message signature with hash

integrityHashR10 .provenance integrity hash-value

)

Message R11

Let encryptedDataR11 = {idT1||getDataItem(T1)||used||idM10}k′DP−PS

Let integrityHashR11 = h(idT1||getDataItem(T1)||used||getHash(R10))

Let signatureWithHashR11 = Signk−1
DP

(h(idT1||getDataItem(T1)||used||

idM10||integrityHashR11))

R11=

rpa(

encryptedDataR11, .encrypted data

signatureWithHashR11, .message signature with hash

integrityHashR11 .provenance integrity hash-value

)

Message R12

Chapter 6 Securing the Provenance-based Auditing Architecture 159

Let encryptedDataR12 = {idM11||getDataItem(M11)||wasGeneratedBy||idT1}k′DP−PS

Let integrityHashR12 = h(idM11||getDataItem(M11)||wasGeneratedBy||getHash(R11))

Let signatureWithHashR12 = Signk−1
DP

(h(idM11||getDataItem(M11)||wasGeneratedBy||

idT1||integrityHashR12))

R12=

rpa(

encryptedDataR12, .encrypted data

signatureWithHashR12, .message signature with hash

integrityHashR12 .provenance integrity hash-value

)

Message R13

Let encryptedDataR13 = {idM12||getDataItem(M12)||inAckTo||idM11}k′DC−PS

Let integrityHashR13 = h(idM12||getDataItem(M12)||inAckTo||getHash(R12))

Let signatureWithHashR13 = Signk−1
DC

(h(idM12||getDataItem(M12)||inAckTo||

idM11||integrityHashR13))

R13=

rpa(

encryptedDataR13, .encrypted data

signatureWithHashR13, .message signature with hash

integrityHashR13 .provenance integrity hash-value

)

160 Chapter 6 Securing the Provenance-based Auditing Architecture

Figure 6.3: Task Request UMLSec Sequence Diagram Formalisation

Chapter 6 Securing the Provenance-based Auditing Architecture 161

6.2.2 Verifying the Execution of the Protocols

Now that the OTLS, Data Request and Task Request protocols have been secured,

we can verify the integrity, confidentiality and non-repudiation of the messages and p-

assertions exchanged between the actors. Thus, before assertions are recorded in the

Provenance Store, they need to be checked. In the diagrams 6.1, 6.2 and 6.3, these

checks are represented by guards, which are processes carried out by the actors after

messages have been received.

Algorithm 8 Signature Message Checking

Input: Mi : message, k′ : sessionKey, kA : publicKey
Output: true if the signature of Mi is correct or false if it is not.

1: procedure signCheck(Mi : message, k′ : sessionKey, kA : publicKey)
2: if ExtkA(getSign(Mi)) = h(Deck′(getEncData(Mi))) then
3: return true . Signature is correct
4: else
5: return false . Signature is incorrect
6: end if
7: end procedure

Guards are shown in the sequence diagrams in rounded blue rectangles and are identified

by the names guardMi, guardIi and guardRi, which are used to verify the content of

messages Mi, interaction p-assertion Ii and relationship p-assertion Ri, respectively.

These guards use Algorithm 8 to check the message signatures and Algorithm 9 to verify

the hash-values that are included in the messages to guarantee their integrity. In the

following sections, we discuss in further detail how the correct execution of the protocols

described in Section 6.2 (OTLS, Data Request and Task Request) can be verified.

Algorithm 9 Hash-value Message Checking

Input: Ri : message and Ri-1 : message
Output: true if the hash-value of Ri is correct or false if it is not.

1: procedure hashCheck(Ri : message, Ri-1 : message)
2: if getHash(Ri) = h(getDataItem(Ri) ‖ getRel(Ri) ‖ getHash(Ri-1)) then
3: return true . Hash-value is correct
4: else
5: return false . Hash-value is incorrect
6: end if
7: end procedure

6.2.2.1 Verifying the Execution of OTLS

In this section, we only explain the guards related to the execution of the OTLS protocol;

the explanation of the guards related to the assertions generated by these messages is

very similar to the ones in the Data Request and Task Request protocols, and are

therefore presented in the next section.

162 Chapter 6 Securing the Provenance-based Auditing Architecture

After receiving M1, guardM1 is performed by the server to check the client’s certificate.

In this guard, the signature is verified by extracting the client’s public key k′C and the

name C from the certificate (which is essentially the public key and the client name

signed with the Certificate Authority private key) and comparing it to the plain copy of

both. If this verification is successful, the server sends message M2. When the client

receives M2 the guardM2 is verified. In this guard, the server’s certificate is verified in

the same way as in the previous message. Then, the random number (Nj), the client’s

public key (kC) and the pre-master secret (k′) are extracted from the signature. The

latter is used to create the next message. After that, message M3 is sent with the server’s

name encrypted with the session key. In guardM3, this key is used to decrypt it and

verify that both, the server and the client, posses the generated key. At this stage the

session key is already agreed upon and it is renamed to k′C−S .

6.2.2.2 Verifying the Execution of Data Request

The verification process for the Data Request protocol is divided in three parts: checking

messages, checking interaction p-assertions and checking relationship p-assertions.

The guards related to the checking of messages Mi are very similar. When messages

M4, M5 and M6 are received, the corresponding data is decrypted and the signature is

verified using Algorithm 8. For example, guardM4 represents the process that verifies

the signature and decrypts the data contained in message M4, which in this case is the

purpose. Thus, this guard first checks that the signature is valid and then decrypts

purpose. The remaining guards (guardM5, guardM6) are interpreted similarly.

The second set of guards is related to the interaction p-assertions that are about to be

stored in the Provenance Store. In this sequence diagram, we only present guardI7,

which represents the verification process of the interaction p-assertion I7. This p-

assertion contains information about M4 and it is recorded by DC. Then, this guard

checks that the signature contained in I7 is valid before recording its content in the

Provenance Store using Algorithm 8. The guards related to the remaining interaction

p-assertions are created and interpreted similarly.

Turning to relationship p-assertions, when R3, R4, R5 are received by PS, their hash-

values6 and signatures are checked using Algorithm 8 and 9. These verifications are

represented as guards guardR3, guardR4, guardR5.

6As hash-values depend on hash-values contained in previous messages, the Provenance Store should
wait until the indicated message arrive to be able to check the corresponding hash-value.

Chapter 6 Securing the Provenance-based Auditing Architecture 163

6.2.2.3 Verifying the Execution of Task Request

The interpretation of guards related to the checking of messages Mi in the Task Request

protocol is very similar to the ones previously explained. Upon receipt of messages M10,

M11 and M12, their corresponding data is decrypted and the signature is verified using

Algorithm 8.

The interpretation of interaction p-assertions’ guards is the same as the ones explained

in previous diagrams. As a consequence, these guards are not present in this protocol.

Turning to the guards that are related to the relationship p-assertions, the explanation

of guardR8, guardR9, guardR10, guardR11, guardR12 and guardR13 is the same as the

the previous guards related to relationship p-assertions: the signature and the hash-

value are verified using Algorithm 8 and 9, respectively. After each guard is successfully

checked, the corresponding assertion is stored in the Provenance Store. In that way, we

guarantee that that the integrity of each assertion was not compromised.

6.2.2.4 Verifying Assertions during Storage Stage

After the successful execution of the protocols discussed above, the corresponding as-

sertions are stored in the Provenance Store. It is important to note that assertions are

decrypted and verified before being stored. Thus, in order to protect confidentiality dur-

ing storage, assertions should be encrypted by the Provenance Store using a specially

created key or can be protected by implementing access control techniques (See Section

2.4).

At any point it is possible to check the integrity of the entire content of the Provenance

Store by verifying the hash-values and signatures of the assertions. This guarantees

that the assertions were not modified during exchange or storage. This check can be

performed periodically to verify the integrity of the Provenance Store, and to take the

necessary measures if a problem is found. This mechanism can also be used to detect

internal attacks, such as attacks from the Provenance Store administrator who attempts

to maliciously modify the stored assertions. To be able to perform these checks, the

secure storage of the entities’ keys (public and private) is crucial. This needs to be

done to avoid problems checking signatures created by entities whose public key have

changed. In contrast, session keys do not need to be stored, since, as mentioned before,

after decrypting the information it can be re-encrypted using a specific key for protecting

confidentiality during storage.

Another important issue is the malicious insertion of assertions. This can occur in three

different ways: (1) inserting messages in the communication channel between two ac-

tors, which leads to the creation of malicious assertions, (2) the insertion of a malicious

assertions in the communication channel between an actor and the Provenance Store,

164 Chapter 6 Securing the Provenance-based Auditing Architecture

and (3) the direct insertion of malicious assertions into Provenance Store. The first

attack is prevented by the OTLS protocol, which creates a secure communication chan-

nel. This prevents the insertion of malicious messages, and consequently, the creation of

assertions related to them. To prevent the second attack, we assume that all actors that

record assertions are properly authenticated to the Provenance Store, so we can trust

the assertions created by them. To prevent the third one, we rely on the secure storage

of the private keys of the actors, which are required to create properly signed asser-

tions. Finally, as Assumption 1 explains (see Section 3.6), we assume that provenance

information cannot be partially or totally deleted.

So far, we have secured individual assertions created by individual actors in our archi-

tecture. However, a provenance DAG returned in response to a query to the Provenance

Store using only these secure assertions is still vulnerable. To illustrate this, consider

the following scenario. Suppose that a piece of data d1 is used by a process p1 executed

by actor A. After that, the same piece of data is used by a process p2 executed by actor

B. These operations lead to the creation of two (partially overlapping) fragments of the

provenance graph: one containing d1 and p1, and a relation R1 indicating that p1 used

d1, and a fragment containing d1 and p2, and a relation R2 indicating that p2 used d1.

Now, when these fragments are merged into a single provenance DAG and returned as

a query result, it has two vulnerabilities. The first is that actor A can change relation

R1, because it possesses the keys used to sign this relation. For example, A can make it

point to a different process or change its relationship name. The same applies to actor

B and relation R2. The second vulnerability is that any actor can delete any node or

relation of the DAG as well as add new ones. This is because nodes do not secure infor-

mation about the relationships they participate in. For example, any actor can delete

p1 and R1, because d1 does not have information about the fact that it participates in

R1. Consequently, we need a different mechanism to protect the integrity of provenance

graphs. This mechanism is presented in the next section.

6.3 Securing the Querying and Analysis Stage

At this point, we can guarantee that the assertions generated by actors and stored in the

Provenance Store have not been maliciously altered during the recording and storage

stages. Thus, when the processing of information has finished, assertions can be queried

to obtain provenance DAGs containing the provenance of a particular piece of data.

To maintain the integrity and non-repudiation of these provenance DAGs during the

querying stage, the Provenance Store inserts new cryptographic components. Then,

after a provenance DAG has been created, it can be securely transported. To achieve

this, we develop the Secured Provenance Graph, a data structure that is included in each

node of a provenance DAG during its creation and is later used to verify its integrity.

By including this structure, we can protect the provenance DAGs from any malicious

Chapter 6 Securing the Provenance-based Auditing Architecture 165

alteration performed by an attacker (who may even be an auditor). At the same time,

the identity of the actor who created a provenance DAG becomes verifiable.

First, in Section 6.3.1, we present the Secured Provenance Graph. Then, in Section 6.3.2

we present the algorithm to verify the integrity of a Secured Provenance Graph. Finally,

we secure the Query Protocol defined in Section 6.3.3, and show where in the protocol

this graph is created.

6.3.1 Secured Provenance Graph

Let us consider a set of node identifiers Id, a set of data D, a set of hash-values H, and

a set of relationships’ names R. A Secured Provenance Graph G = (V,E,Node,Edge)

is a directed acyclic graph, where V = Id, E ⊆ Id× Id, Node : Id→ D×H is the node

labelling function, and edges are labelled using the function Edge : E → R.

Furthermore, given a Secured Provenance Graph G, we include a reference to a piece

of data and a hash-value into each node. Then, given a node id ∈ V , we obtain its

corresponding data by the accessor dataG(id) and its corresponding hash-value by the

accessor hashG(id). We also create a lexicographically ordered list (the reason for doing

this will be discussed later) of ancestors’ identifiers by the accessor ancestorG(id). The

hash-value contained in each node is then computed as:

compHashG(id) = h

dataG(id)
n

idi∈ancestorG(id)

edge(id, idi) ‖ hashG(idi)

(6.8)

Equation (6.8) creates a hash-value that is used to verify not only the integrity of the

data and the relationships related to id but also the integrity of the past (origin) of

the data. This is achieved by including the hash-values of the ancestors of id, which

creates an unforgeable reference to its past. The complete Secured Provenance Graph is

protected by the signature of the Provenance Store, so it is not possible for another entity

to reproduce it without being noticed. We compute this signature S = Signk−1
PS

(G),

which is attached to the corresponding provenance graph after the provenance graph is

constructed. We also define the accessor signG(G) to obtain the signature related to

the graph G.

Figure 6.4 presents an example of a Secured Provenance Graph, in which nodes are rep-

resented by circles containing data di, the directed edges are labelled with relationships

ri and the hash-values associated with each node are represented as hi.

166 Chapter 6 Securing the Provenance-based Auditing Architecture

We assume that a simple provenance graph is created by a querying service. After that,

Equation (6.8) is used in each of the nodes of the simple provenance graph to create a

Secured Provenance Graph.

Note that instead of data, nodes can contain references to data. If that is the case, the

necessary credentials to access to the original piece of data and a hash-value of such a

piece of data should be included, in addition to the reference itself. In that way, after

the original data is retrieved using the corresponding credentials, its integrity can be

checked using the included hash-value.

Figure 6.4: An example of a Secured Provenance Graph

It is important to note that the order of the relationships and the hash-values in each

node is a very important issue. In graphs, the outgoing edges of a node are not ordered.

However, if we want to create and later verify the hash-values contained in such a

node, it is necessary to preserve certain order in the checking process. For example,

the hash-value of node d3, which is presented in Figure 6.4, can be created in two

different ways. If we take r5 in first place, we obtain the hash-value h3 = h(d3r5h6r6h7).

But, if we take r6 in first place, its hash-value is h3 = h(d3r6h7r5h6). Both hash-

values represent the same node in the provenance graph. Nevertheless, if we do not

know the order in which the hash-value was created, its checking will be incorrect as

h(d3r5h6r6h7) is different from h(d3r6h7r5h6). In our case, the list of ancestors’ identifiers

is lexicographically ordered according to the relationship’s names. Then, the correct

hash-value is h3 = h(d3r5h6r6h7). Therefore, choosing and defining an order technique

that all the principals know beforehand and maintain during the creation, recording and

querying processes is decisive in the integrity checking of provenance graphs. If such an

ordering technique is not used in all the mentioned processes, we are not able to check

the integrity of the provenance information, even if the integrity is intact.

Chapter 6 Securing the Provenance-based Auditing Architecture 167

Note that a provenance graph can contain nodes with no relationships. This does not

mean that such nodes do not have a “past”. Instead, however, it means that the prove-

nance graph does not contain the past of such nodes because it is not relevant for the

analysis stage7. If for some reason, a problem is found in these nodes without explicit

past, the auditor can request a provenance graph showing their past from the Provenance

Store. Later, this new provenance graph can be checked.

6.3.2 Verifying a Secured Provenance Graph

During the querying stage, an auditor sends a provenance query to the Provenance Store

which returns a provenance graph in response. If this provenance graph is a Secured

Provenance Graph, its integrity should be checked before commencing a compliance

analysis (see Chapter 5). By doing so, any tampering or forgery of the elements of the

provenance graph can be detected, and the perpetrators can be identified. If the graph

is valid, the compliance analysis is allowed to begin.

Algorithm 10 The Integrity Checking Algorithm

Input: G = (V,E,Node,Edge) a Secured Provenance Graph and kPS the Public Key
of PS.

Output: 1 if the integrity of G is not compromised or 0, -1 otherwise.
1: procedure integrityCheck(G : Secured Provenance Graph, kPS : publicKey)
2: id : node identifier ∈ V
3: if ExtkPS

(signG(G)) 6= h(G) then
4: return 0 . signature is incorrect
5: end if
6: for each id ∈ V do
7: if hashG(id) 6= (compHashG(id)) then
8: return -1 . integrity is compromised in id
9: end if

10: end for
11: return 1 . Success
12: end procedure

In order to perform an integrity check of a Secured Provenance Graph, we introduce

the integrityCheck algorithm (see Algorithm 10). This algorithm first verifies the

signature associated with the graph using the public key of the Provenance Store kPS .

This signature is used to check whether the content of any part of the complete graph

was altered. If this signature cannot be verified, there is no reason to continue with the

rest of the process, and the algorithm returns 0.

If the signature is found to be correct, the algorithm proceeds to verify the hash-value

of each node in the graph. This is achieved by visiting each node in the graph, and

computing a hash-value by calling the compHashG function (see Equation 6.8) for each

7The relevance of the information is defined by the provenance queries, such as the ones presented in
Chapter 4

168 Chapter 6 Securing the Provenance-based Auditing Architecture

of these nodes. This new hash-value depends on the ancestors’ hashes, which in turn

depend on the hash-values of their ancestors, etcetera. This computed hash-value is

compared against the hash-value contained in the node. If they are found to be different,

the integrity of this node has been compromised. If, after visiting all the nodes, no

problems are found, we can conclude that the integrity of all nodes is intact.

Now, if the integrity of any of the provenance graph nodes was found to be compromised,

the algorithm indicates which one was altered by outputting its corresponding id. The

auditor can access the information stored in the Provenance Store related this id in

order to check whether it was altered since the recording stage (see Section 6.2.2.4). If,

however, the integrity of the provenance DAG is intact, the audit process is allowed to

begin. In this way, we can guarantee that the results derived from the analysis of a

secured provenance graph are based on information that was not maliciously altered.

In this thesis, we assume that deletion of provenance information is not allowed since all

assertions that our model records to be able to perform a successful audit are required

(see Assumption 1 in Section 3.6). Moreover, if one or more assertions are deleted, Algo-

rithm 10 will find an integrity problem, because the hash-values are incorrect. However,

it is impossible to determine whether this is caused by the deletion of assertions, or by the

fact that some assertions have been (maliciously) altered. To avoid this from happening,

provenance repositories should implement appropriate access control techniques.

6.3.3 Securing the Query Request Protocol

To have a completely secured querying stage, the communication between auditors and

Provenance Store also needs to be secured to avoid that a provenance graph is forged

during this transmission. Thus, in this section we secure the Query Request protocol

(see Section 4.3.4).

The process that models the Query Request protocol (Figure 6.5) is similar to the one

explained in Section 4.3.4, but the former uses the secure messages defined in Section

6.1.4. The Auditor initiates the protocol by requesting the provenance of a certain data

item (item) under certain scope (scope) in message Q1. Below, message Q1 is formally

described.

Let encryptedDataQ1 = {idQ1||item||scope}k′AU−PS

Let integrityHashQ1 = h(idQ1||item||scope)

Let signatureWithHashQ1 = Signk−1
AU

(h(idQ1||item||scope||integrityHashQ1))

Chapter 6 Securing the Provenance-based Auditing Architecture 169

Q1=

secureMsg(

encryptedDataQ1, . encrypted data

signatureWithHashQ1, . message signature with hash

integrityHashQ1 . provenance integrity hash-value

)

The PS resolves the query and returns the result qresult to Auditor in message Q2. The

difference from the unsecured protocol from Section 4.3.4 is that here, the query result

is represented as a Secured Provenance Graph which is created by the Provenance Store.

Then, after the provenance query result is obtained, Equation (6.8) is used in each of

the nodes of such result to create a Secured Provenance Graph and sent to Auditor.

Below, message Q2 is formally described.

Let encryptedDataQ2 = {idQ2||qresult}k′AU−PS

Let integrityHashQ2 = h(idQ2||qresult)

Let signatureWithHashQ2 = Signk−1
PS

(h(idQ2||qresult||integrityHashQ2))

Q2=

secureMsg(

encryptedDataQ2, . encrypted data

signatureWithHashQ2, . message signature with hash

integrityHashQ2 . provenance integrity hash-value

)

When the Secured Provenance Graph is received by Auditor, its integrity is checked by

calling the integrityCheck procedure in Algorithm 10. In this model, this procedure

is represented as part of the guard that is executed after the provenance query result

is received. If the integrity of the provenance graph has not been compromised, an

acknowledgement is sent to PS in message Q3 and the compliance verification process is

allowed to begin. If not, the protocol terminates and indicates to the PS which node is

incorrect. Below, message Q3 is formally described.

Let encryptedDataQ3 = {idQ3||OK}k′AU−PS

Let integrityHashQ3 = h({idQ3||OK)

Let signatureWithHashQ3 = Signk−1
AU

(h({idQ3||OK||integrityHashQ3))

Q3=

secureMsg(

encryptedDataQ3, . encrypted data

signatureWithHashQ3, . message signature with hash

integrityHashQ3 . provenance integrity hash-value

)

As in previous diagrams, we formally describe the interaction p-assertions (IQ1, IQ2 and

IQ3 and relationship p-assertions (RQ1, RQ2 and RQ3) created during the execution of

the Query Request Protocol.

170 Chapter 6 Securing the Provenance-based Auditing Architecture

Message IQ1

Let signatureWithHashIQ1
= Signk−1

AU
(h(idQ1||sender))

IQ1=

ipa(

idQ1, . Q1 Query Request message identifier

sender, .view

signatureWithHashIQ1
.message signature with hash

)

Message IQ2

Let signatureWithHashIQ2
= Signk−1

AU
(h(idQ2||receiver))

IQ2=

ipa(

idQ2, .Q2 Query Request message identifier

receiver, .view

signatureWithHashIQ2
.message signature with hash

)

Message IQ3

Let signatureWithHashIQ3
= Signk−1

AU
(h(idQ3||sender))

IQ3=

ipa(

idQ3, .Q3 Query Request message identifier

sender, .view

signatureWithHashIQ3
.message signature with hash

)

Message RQ1

Let encryptedDataRQ1
= {idQ1||getDataItem(Q1)||inResponseTo||idM3}k′AU−PS

Let integrityHashRQ1
= h(idQ1||getDataItem(Q1)||inResponseTo||getHash(R2))

Let signatureWithHashRQ1
= Signk−1

AU
(h(idQ1||getDataItem(Q1)||inResponseTo||

idM3||integrityHashRQ1
))

RQ1=

rpa(

encryptedDataRQ1
, .encrypted data

signatureWithHashRQ1
, .message signature with hash

integrityHashRQ1
.provenance integrity hash-value

)

Chapter 6 Securing the Provenance-based Auditing Architecture 171

Message RQ2

Let encryptedDataRQ2
= {idQ2||getDataItem(Q2)||queryResultOf||idQ1}k′AU−PS

Let integrityHashRQ2
= h(idQ2||getDataItem(Q2)||queryResultOf||getHash(Q1))

Let signatureWithHashRQ2
= Signk−1

AU
(h(idQ2||getDataItem(Q2)||queryResultOf||

idQ1|integrityHashRQ2
))

RQ2=

rpa(

encryptedDataRQ2
, .encrypted data

signatureWithHashRQ2
, .message signature with hash

integrityHashRQ2
.provenance integrity hash-value

)

Message RQ3

Let encryptedDataRQ3
= {idQ3||getDataItem(Q3)||inAckTo||idQ2}k′AU−PS

Let integrityHashRQ3
= h(idQ3||getDataItem(Q3)||inAckTo||getHash(Q2))

Let signatureWithHashRQ3
= Signk−1

AU
(h(idQ3||getDataItem(Q3)||inAckTo||

idQ2||integrityHashRQ3
))

RQ3=

rpa(

encryptedDataRQ3
, .encrypted data

signatureWithHashRQ3
), .message signature with hash

integrityHashRQ3
.provenance integrity hash-value

)

Figure 6.5: Query Request UMLSec Sequence Diagram

172 Chapter 6 Securing the Provenance-based Auditing Architecture

6.3.3.1 Verifying the Execution of Query Request

To verify the correct execution of the Query Request protocol, it contains several guards.

These verify the integrity of the messages contained in this diagram, and are very similar

to the guards explained in previous diagrams: each message signature and hash-values

are verified and the content is decrypted to be later processed using Algorithms 8 and

9.

The only difference is in guardQ2, which after verifying the signature of the message and

decrypting it, it invokes the integrityCheck procedure that verifies the integrity of

the query results. If any problems are found, the compliance checking is not allowed to

start according to the framework presented in Chapter 5.

6.4 Verifying the Secure Provenance-based Auditing Ar-

chitecture

In the previous sections, we secured the entire provenance life cycle consisting of the

recording, storage, querying and analysis stages. Taken together, these stages form

the Secure Provenance-based Auditing Architecture that exhibits the four basic security

characteristics (confidentiality, integrity, authentication, and non-repudiation) that we

set out to establish at the beginning of this thesis.

To verify that these characteristics indeed hold, in this section we perform several types

of attacks on this architecture, and demonstrate that these attacks fail.

To do this, we first discuss the Viki model checker we used to verify the architecture

and give an example of its execution in Section 6.4.1.2 Then, in Section 6.4.2, we use

the Viki model checker to verify that several known attacks are successfully thwarted

by our architecture.

6.4.1 The Viki Model Checker

As mentioned in Section 2.3.2.3, the Viki model checker [80] can be used to verify that

the security requirements expressed in UMLSec are maintained during the execution

of the protocols presented in the previous sections. With that purpose, Viki takes as

input a UMLSec sequence diagram and its associated adversary model, and returns the

possible attacks that can be performed by the given attacker in the modelled protocol.

Viki obtains the security requirements from the UMLSec elements and the predefined

values used in sequence diagrams. These requirements are formalised in First-Order

Logic and analysed with automatic theorem provers (Viki uses e-SETHEO [131] and

SPASS [145]) to find flaws. If a flaw is found, a Prolog engine can be used to generate

Chapter 6 Securing the Provenance-based Auditing Architecture 173

the attack trace, which can provide a system designer with valuable insights on how to

solve it.

The set of protocols presented in the previous sections are used as the input of the Viki

tool to automatically generate attacks. In that way, we can ensure that these attacks

are unsuccessful in our protocols. Since, in this context, a successful attack means that

the system does not exhibit one of the security properties [125], Viki enables us to verify

system security.

Before presenting the security verification process of our architecture, we first explain

how Viki works. With that purpose, in the next section, we describe how to create the

adversary model that is later used by Viki in the verification process.

6.4.1.1 The Adversary Model

To verify that the four security characteristics hold for the data exchanged in our se-

quence diagrams, we use UMLSec to define the information an adversary can get access

to. This is achieved by the creation of an adversary model. The adversary model we

use here represents an attacker that can eavesdrop, modify or insert messages into the

communication channel with malicious intentions. This adversary model is based on

an extended Dolev-Yao adversary model [50], in which an adversary is able to read all

messages exchanged by the participants of a protocol to obtain sensitive information.

In the verification process that follows, we associate an adversary object with each

sequence diagram to determine whether the modelled protocol indeed has the aforemen-

tioned security properties. To this end, the adversary is modelled by three set of values

called secret, initial knowledge and guard. The values associated with secret are

the data items that should be protected from the attacker. The values contained in

the initial knowledge denote the information known by the attacker beforehand (e.g.

public keys). Finally, the set guard contains the checks that are performed by the re-

ceiver of a message. These were defined in Section 6.2.2. Table 6.4 shows the secret

and initial knowledge of the adversary models for each protocol.

Protocol secret initial knowledge

OTLS k′C−S kC , kS , kCA

Data Request purpose, data and OK kDC , kDS

Task Request processData, result and OK kDC , kDP

Query Request item, scope, qresult and OK kAU , kPS

Table 6.4: The secret and initial knowledge of the adversary objects used to
verify our protocols

In what follows, we explain how Viki verifies the sequence diagrams with the correspond-

ing adversary model.

174 Chapter 6 Securing the Provenance-based Auditing Architecture

6.4.1.2 An Example of the Viki Verification Process

In order to show how the Viki model checker can be used to verify a protocol modelled

in UMLSec, we present an example taken from [79, 71]. In this example, which is shown

in Figure 6.6, a flawed version of the OTLS protocol is used [19]. In this protocol, it is

possible to perform a man-in-the-middle attack [139] by impersonating the client.

This UMLSec diagram is created using the notation described in Section 2.3.2.2 and acts

as the input of the Viki model checker. As Figure 6.7 shows, Viki outputs the result

“Proof Found”, meaning that an attack was found. Put differently, the information

contained in the secret set can become known by the attacker. This result is supported

by the creation of a Thousands of Problems for Theorem Provers (TPTP) file 8, which

shows how a man-in-the-middle attack can be performed. Thus, the attacker is able to

obtain the secret data, which in this case is the symmetric session key.

Figure 6.6: A version of OTLS with a security flaw

In more detail, Figure 6.8 depicts in the form of a sequence diagram the content of the

corresponding TPTP file. This diagram shows how an attacker can perform the man-in-

the-middle attack by impersonating the client and establishing communication with

the server, while the server believes it is establishing communication with the client.

As presented in [71], this vulnerability can be removed by including the client’s public

key (kC) in the second message of the protocol. By including this parameter, a man-

in-the-middle attack can be prevented and, as a result, an attacker will not be able to

obtain the created secret key. Figure 6.9 presents the repaired version of the protocol.

If we check this sequence diagram using Viki, we obtain the result “Completion Found”

(See Figure 6.10). This means that the attacker cannot obtain the secret parameter (the

symmetric session key) during the execution of this protocol.

8A TPTP file is produced by the TPTP library [132]. This library supports the testing and evalua-
tion of Automated Theorem Proving(ATP) systems by defining general evaluation guidelines and using
standard formats for inputs and outputs. Viki uses this library to analyse the possible attacks to the
protocols.

Chapter 6 Securing the Provenance-based Auditing Architecture 175

Figure 6.7: Viki verification result for the protocol in Figure 6.6

Figure 6.8: A Man-in-the-middle Attack on the OTLS Protocol with a security flaw

Figure 6.9: The OTLS protocol after repairing the security flaw present in Figure 6.6
(public key kC is added to the second message)

In what follows, we verify the presented sequence diagrams using the Viki tool. This

means that we evaluate the simultaneous execution of the adversary model and the

176 Chapter 6 Securing the Provenance-based Auditing Architecture

Figure 6.10: Viki verification result for the protocol in Figure 6.9

sequence diagram to identify whether attacks to the four basic security characteristics

can be successfully performed.

6.4.2 Verification

To verify that the integrity property is maintained during the execution of the protocols,

we use the Viki model checker discussed in the previous section. Using Viki, each

sequence diagram and its corresponding adversary model are executed simultaneously

to determine whether the adversary’s attack was successful. In this context, a successful

attack means that one of the basic security properties does not hold [125]. These attacks

are defined as follows:

Definition 6.1 (Successful Confidentiality Attack). A sequence of protocol transitions

that lead to a piece of data contained in the secret set to be in the possession of the

attacker.

Definition 6.2 (Successful Integrity Attack). A sequence of protocol transitions that

lead to a piece of data contained in the secret set to be modified without being noticed.

Definition 6.3 (Successful Non-Repudiation Attack). A sequence of protocol transi-

tions that lead to the possibility of denying sending of a piece of data contained in the

secret set.

Definition 6.4 (Successful Authentication Attack). A sequence of protocol transitions

that lead to a piece of data contained in the secret set being sent in a message whose

sender cannot be identified.

Chapter 6 Securing the Provenance-based Auditing Architecture 177

In what follows, we derive the set of properties that we will verify using Viki. If Viki finds

no successful attacks, we can deduce that our protocols indeed exhibit these properties

hold. If not, Viki gives the sequence of protocol transitions that invalidates the particular

property.

Lemma 6.5 (Confidentiality Property). No successful confidentiality attack is possible

for OTLS, Data Request, Task Request and Query Request Protocols.

Lemma 6.5 states that an adversary is unable to obtain elements from the secret set

during the execution of the OTLS, Data Request, Task Request and Query Request

Protocols. This lemma is based on the fact that a piece of data contained in the set of

secret values cannot be deduced by an adversary during the execution of the protocol.

We verified these protocols using Viki, and we found that this lemma holds.

Lemma 6.6 (Integrity Property). No successful integrity attack is possible for OTLS,

Data Request, Task Request and Query Request Protocols.

Lemma 6.6 states that an adversary cannot modify a piece of data marked as secret

during the execution of the OTLS, Data Request, Task Request and Query Request

Protocols. This lemma is based on the collision resistant nature of the used cryptographic

hash function, which guarantees that an adversary cannot alter the integrity of a piece of

data (i.e. messages or assertions) without having a visible effect in the output. Moreover,

an adversary can not insert a new piece of data without being detected. Using Viki,

we verified these protocols and found that this lemma holds under the assumption that

collision resistant hash functions are used.

Lemma 6.7 (Non-Repudiation Property). No successful non-repudiation attack is pos-

sible for OTLS, Data Request, Task Request and Query Request Protocols.

Lemma 6.7 states that an adversary cannot deny having sent a message. This lemma

relies on the trapdoor one-way function used in the signing algorithm and the collision

resistant nature of the used hash function [96]. Both properties guarantee that an at-

tacker cannot reproduce a signature of a message, if it does not possess the corresponding

private key. Thus, assuming that the private key of the sender remains secret, we can

guarantee that only the entity that owns the private key is able to sign a message. Using

Viki, we verified that the modelled protocols are impervious to a non-repudiation attack.

Therefore, this lemma holds.

Lemma 6.8 (Authentication Property). No successful authentication attack is possible

for OTLS, Data Request, Task Request and Query Request Protocols.

Lemma 6.8 states that an adversary cannot participate in the architecture without first

being properly authenticated. The lemma relies on the properties provided by the used

178 Chapter 6 Securing the Provenance-based Auditing Architecture

authentication protocol, which in this case is OTLS. OTLS provide a multitude of se-

curity measures, such as, nonce numbers to avoid man-in-the-middle attacks, the im-

plementation of a hand shake protocol to create symmetric session keys and the use of

certificates issued by certified authorities [27]. By again using Viki, we found that an

authentication attack on the protocols is not possible, thereby proving this lemma.

6.4.3 Securing Provenance

Now that we have proved that all protocols in the Provenance Based-Auditing Architec-

ture are secure, we can show that the architecture itself is also secure. As we explained

in Section 6.4.2, the Data Request, Task Request and Query Request protocols (Section

6.2.1) are secure, since they exhibit the properties of integrity, confidentiality, non-

repudiation and authentication. Thus, based on this, we can derive the next theorem:

Theorem 6.9 (Secure Provenance Based-Auditing Architecture). A Provenance Based-

Auditing Architecture is secure, since the properties of confidentiality, integrity, non-

repudiation and authentication hold.

Theorem 6.9 relies on the property lemmas derived from each of the protocols of the

architecture, which were defined in the previous section. If each of the properties hold

in all protocols of our architecture, we have a Secure Provenance Based-Auditing Archi-

tecture.

Since Theorem 6.9 holds for the Secured Provenance-based Auditing Architecture, we

can conclude that, under the given assumptions, the architecture is secure and, therefore,

the provenance information created by it is secure as well. Thus, the results derived from

the analysis of this secured provenance data are based on correct information.

6.5 Discussion

Securing provenance is critical for making systems accountable and for measuring qual-

ity and trust in systems [103]. For that reason, researchers have developed different

techniques to prevent (malicious) alteration of provenance while it is created, trans-

ported, recorded and queried. In doing so, trust in the result derived from its analysis

can be significantly increased. Hence, researchers have sought to address the challenge

of securing provenance information [135, 67, 31, 148, 68].

Tan et al. [135] expose and discuss the problem of securing provenance in a SOA-

based provenance system. To ensure accountability, liability and integrity of provenance

assertions, they use digital signatures providing non-repudiation. They discuss basic

security issues within provenance systems and mention access control as a possible so-

lution, but do not explain how this should be implemented in practice. Moreover, their

Chapter 6 Securing the Provenance-based Auditing Architecture 179

proposed solution does not provide all four basic security characteristics; they guarantee

non-repudiation and integrity, but not confidentiality and authentication.

Hasan et al. [67] argue that the importance of securing provenance has not been suffi-

ciently acknowledged within the fields of digital forensics, law, and regulatory compli-

ance. They identify integrity, availability and confidentiality as the main properties that

a provenance-aware system should exhibit to provide trustworthy provenance. They

propose a provenance model [68], in which provenance is defined as the record of actions

taken on a particular document over its lifetime. Here, a document can be a file, a

database tuple or a network packet. In this approach, the provenance of a document is

represented by a “provenance chain”, which is a linear time-ordered sequence of prove-

nance records pertaining to a specific version of the document. Because of this, in con-

trast to our DAG representation, non-linear relations are not expressible in their model.

Moreover, since their approach attaches provenance to a document itself, relations that

may exist with other documents are not recorded. Their method of guaranteeing the

integrity of the provenance of a document is similar to ours, i.e. relations between sub-

sequent versions of a document are secured by including hashes of the ancestors into the

document. The difference is that, in our approach, only the hashes of the predecessors

are considered, instead of all ancestors of a node. By doing so, our method is more

scalable, since only references to the previous operations performed on a piece of data

are stored, instead of references to its entire history.

Braun et al. [31] also discuss the problem of securing provenance. In their work, they

use a similar model to PASOA [64], the model used in this thesis, in which provenance is

represented as a graph. They argue provenance information differs from traditional data

and, therefore, the existing security models used to protect “traditional information” do

not apply to graphs and are therefore not easy to extend. Consequently, they present

the challenge of constructing a security model for provenance graphs. This model should

secure data and relationships in the graph, as the approach presented here. In contrast

to our work, however, they only focus on how to represent different levels of access

control on the elements of a provenance graph. In our approach this is addressed by

limiting access to the information contained in the provenance DAG to the auditor, who

is a trustworthy actor. However, users can decide to record references to the original

data in the provenance assertions, restricting access to the information contained on

the DAG. In that way, just the actors who have the right credentials can access this

information.

Xu et al. [148] discuss the problem of managing provenance systems. They define

several desirable requirements that secure provenance-aware systems should exhibit: ac-

cess control, integrity, accountability and privacy protection. In order to satisfy these

requirements they propose a framework which contains a layer that maintains the in-

tegrity of data and provenance information during storage, transferring and processing.

180 Chapter 6 Securing the Provenance-based Auditing Architecture

As in our solution, they argue that integrity of both data and provenance information

is important. However, no concrete solution to this problem is presented.

6.6 Conclusions

In this chapter we secured the Provenance-based Auditing Architecture by providing

the properties of confidentiality, integrity, authenticity and non-repudiation to the en-

tire provenance life cycle of recording, storage, querying and analysis. To do this, we

applied cryptographic techniques to the provenance-aware protocols of Data Request,

Task Request and Query Request that we developed in Chapter 4, and showed how these

techniques can be used to verify the correct execution of these protocols, i.e. that all four

aforementioned properties hold. Furthermore, to ensure that provenance DAGs cannot

be maliciously altered during the analysis stage, we developed the Secured Provenance

Graph. This graph contains specially designed hash-values in each of its nodes along

with a signature from the Provenance Store, which makes possible to detected malicious

alterations. Using the Integrity Checking Algorithm, we demonstrated that the integrity

of this graph can be easily verified.

We extensively and methodically analysed each protocol individually, and proved that

the presented techniques indeed support the four security requirements by conducting an

automatic verification of the presented protocols. Specifically, using the Viki automatic

model checker, we verified that these properties hold during the execution of the proto-

cols. Moreover, we demonstrated that we can verify that the provenance information,

which is recorded in and queried from the Provenance Store, has not been tampered

with. By offering these security properties, we can guarantee query results obtained

from the Provenance Store are correct. Consequently, the analysis performed by the

verification algorithms of the Compliance Framework developed in Chapter 5 is based

on secure and correct DAGs.

From a more practical point of view, the method presented in this chapter can be easily

implemented by adding the corresponding security functions to the library that provides

provenance functionality. Indeed, to demonstrate that our methods are practically vi-

able, we developed a working proof of concept by augmenting the PReServ library [62]

(which allows developers to make applications provenance aware) with the algorithms

described in this chapter.

In more detail, we implemented a Java program that simulates the scenario in Sec-

tion 3.1, involving four actors: two data subjects that communicate with a single data

controller, which, in turn, communicates with a data processor. The program runs a

single process (i.e. it is not distributed), in which messages are (locally) exchanged using

TCP/IP. Public-private key pairs were created for each actor before the execution of

the scenario, which are stored on the local file system without any protection. Session

Chapter 6 Securing the Provenance-based Auditing Architecture 181

keys were created during the execution of the OTLS protocol and used to encrypt data

sent over the communication channels, and decrypt data when it is received. Since key

management and access control are outside the scope of this thesis, these aspects were

not implemented in the prototype.

To test the correctness of our protocols, we performed a number of tests, in which

various messages were altered during transmission or after storage in the provenance

store. After the termination of each test, we ran Algorithm 9 from Section 6.2.2 on the

assertions created in the provenance store in order to detect possible anomalies. The

tests we performed involved the following:

• No (malicious) alterations

• An alteration of a piece of application data (e.g. the date of birth)

• An alteration in the name of a relationship between data (e.g. wasGeneratedBy)

• An alteration of the endpoints of a relationship (e.g. result wasGeneratedBy t2,

instead of result wasGeneratedBy t1)

In all tests, the algorithms performed correctly: in the first case, no anomalies were de-

tected (as expected), while in the second, third and forth cases, Algorithm 9 terminated

with the error message “hash value is incorrect”.

We also executed several types of provenance queries (as in Section 4.4), and verified that

the result of these queries was not (maliciously) altered after creation. In more detail,

we performed the same four tests as mentioned above. Here, again, our algorithms

performed as expected. In the first case, no anomalies were detected, while in the

second, third and forth cases, Algorithm 10 terminated with the error message “integrity

is compromised in id”, where id is the identifier of the specific element that was altered.

Needless to say, in its current form, our prototype has a number of limitations that

restrict its application in the real world. First, the system should be made distributed,

such that the various actors can run on different computers. This enables us to as-

certain how well the system scales under conditions where information and actors are

(physically) distributed. Second, access control to the provenance store needs to be im-

plemented to prevent unauthorised access to the provenance assertions, because these

contain (references to) private information. Third, keys should be properly managed

(which involves creation, safe storage, distribution and revocation) by all actors.

Of these limitations, key management is perhaps the most critical one, since all required

security properties of confidentiality, integrity, authentication and non-repudiation can-

not be maintained without it. In light of this, we briefly discuss the challenges of key

management, and how these challenges can be addressed in our system.

182 Chapter 6 Securing the Provenance-based Auditing Architecture

In more detail, there are three types of keys that are used in our proposed system that

need to be taken in to consideration when implementing key management: session keys

(such as k′C−S in Figure 6.1), private keys and public keys (such as k−1
C and kC in

Figure 6.1). Session keys should be treated differently from private and public keys.

Specifically, since session keys are used only once during the execution of a protocol

between two actors, they do not need to be stored after the protocol has terminated. In

more detail, the life time of a session key is the time it takes to execute a protocol. It

is created at the start of the protocol using OTLS, and is used to encrypt information

sent over the insecure channel, and decrypted immediately on receipt by the receiving

actor. To protect this information after it is stored in the provenance store, it should

be encrypted (using a different key than the session key) and access control should be

implemented to prevent unauthorised access.

Compared to session keys, private and public keys have a much longer life. As a result,

they need to be carefully stored over a longer period of time. Depending on the length

of this period, two possibilities exist: actors generate a single private-public key pair

which is used permanently, or they periodically discard their keys and generate new

ones. In both cases, public keys of all actors can be stored in our Provenance Store,

which is a central system that all actors have access to. Private keys need to be securely

stored by the actors themselves. However, since absolute security does not exist, there

is always a risk of a private key becoming compromised. As a result, the solution of

permanently using a single key pair is more vulnerable than periodically generating new

keys. However, the latter solution introduces a number of challenges, each of which

needs to be addressed carefully and securely:

Key revocation When a new key pair is generated, all actors should be made aware

that the key pair is no longer valid; accepting a signature made by a key that has

been revoked is a security risk.

Key distribution Up-to-date public keys should be accessible by all actors at all times.

These keys should also be verified and signed by a trusted third party to cre-

ate a digital certificate, so that actors cannot deny having sent a message (non-

repudiation).

Maintaining key history A history of public keys needs to be kept in order to ensure

that signatures made using expired keys can still be verified, and to ensure the

non-repudiation of all provenance information collected over time.

The most common way to address these challenges is the use of a Public Key Infras-

tructure (PKI) [17]. The responsibility of a PKI is the secure creation, management,

distribution, usage, storage, and revocation of public-private pairs and their correspond-

ing digital certificates. Of all PKIs currently existence, X.509 [14] is the most widely

Chapter 6 Securing the Provenance-based Auditing Architecture 183

used and proven system. In addition, it addresses the third challenge by maintaining a

complete key history. It is therefore a strong candidate for managing keys in a proto-

type or deployed version of our system. However, as mentioned earlier, we consider this

outside the scope of this thesis and part of future work.

Thus far, we have given formal proofs of the correctness of the individual protocols.

There are several underlying assumptions that allow us to derive these proofs. However,

in practise, some of these assumptions might not hold. For example, one of the assump-

tions we made in this chapter is that provenance information is always available to be

used in the compliance analysis. In the next chapter, we discuss what happens when

this assumption (and others) are dropped. More specifically, we present an analysis of

the attacks that a Provenance-based Auditing System can be subjected to, explaining

which of them are thwarted by the techniques developed in this thesis, and which of

them need additional measures to avoid.

Chapter 7

System Evaluation

In the previous three chapters, we developed the three main contributions of this thesis:

the Provenance-based Auditing Architecture (Chapter 4) for capturing provenance of

processing of personal information, the Compliance Framework (Chapter 5) for verifying

that personal information was processed in compliance with a set of processing rules,

and the Secure Provenance-based Auditing Architecture (Chapter 6) that secures the

entire provenance life cycle of recording, storage, querying and analysis. Taken together,

these contributions ensure trustworthy audits of personal data processing.

However, until now, we have considered fairly idealised conditions under which a system

that implements these three contributions (i.e. build according to the Secure Provenance-

based Auditing Architecture) operates. In practise, these systems do not operate in

isolation. Rather they interact with each other, have multiple actors, and are distributed.

Therefore, it is necessary to identify the strengths and weaknesses of such systems under

more practical and realistic conditions.

To do this, we explore the effect of the most common (and known) attacks on our

system in an attempt to break the four basic security properties, and an additional one

(for reasons that will become clear later on): confidentiality, integrity, authentication,

non-repudiation, and availability. To facilitate this evaluation, we employ Attack Trees

[123], a technique that is specifically designed to evaluate the security of an information

system. In so doing, we determine whether our contributions are capable of protecting

both application data and provenance. Moreover, if they fall short in this respect, we

identify what is required to mitigate these new risks.

The main contribution of this chapter is to show that the Secured Provenance-based

Architecture is resistant to a set of important attacks on the basic security properties

under the assumption that vulnerabilities in the underlying operating system and attacks

from malware are addressed elsewhere.

185

186 Chapter 7 System Evaluation

This chapter is organised as follows. First, in Section 7.1 we give an overview of Attack

Trees and their underlying methodology. Next, in Section 7.2, we define the system that

we analyse in this chapter, which is based on the architecture described in Chapter 4.

Then, in Section 7.3, we give a summary of known attacks grouped by the aforementioned

security properties they aim to break. Given these attacks, in Section 7.4, we present

five attack trees and their corresponding analysis. Finally, we conclude in Section 7.5.

7.1 Attack Trees

Attack Trees provide a formal, methodical way of testing the security of systems, using

a variety of attacks [123]. These attacks are represented as a tree structure in which

the root node is the goal of the attack, and the leafs are the ways in which the goal can

be achieved. Each node is a subgoal of its parent, and, in turn, its children are ways

to achieve that subgoal. Attack trees have two types of nodes, AND and OR. The first

type, AND nodes, are used to represent all steps that need to succeed to achieving a

goal, whereas the second type, OR nodes, are used to represent alternatives. Thus, an

OR node succeeds if one of its children succeeds, while an AND node succeeds if all of

its children succeed.

Each node can also contain additional information about the goal it represents. Ex-

amples of additional information include whether the goal is possible or not (given the

current configuration of the system), the cost of achieving the goal, and whether the

attacker needs special resources to achieve it. Additionally, in our case, this information

also includes whether the attack is prevented by one of the techniques developed in the

previous chapters, or be detected by one of our assumptions from Section 3.6.

The aim of using Attack Trees is to understand all different ways in which a system can

be attacked and to design countermeasures to prevent such attacks. Attack Trees also

allow us to understand who the attackers are, and what their abilities, motivations, and

goals are.

Now, in order to create Attack Trees to test the security of a system, Schneier [123]

proposes a systematic methodology, which is presented below.

1. Identify all possible attack goals (threats) by considering the weaknesses of each

component, property, layer, etc. of the system. Each attack goal is the root of a

tree, and trees can share subtrees and nodes. Thus, the number of trees is equal

to the number of attack goals.

2. Create attack trees by enumerating all possible ways in which the attack goals

can be achieved. This is an iterative process which needs to be repeated until all

Chapter 7 System Evaluation 187

possible ways are described. If the system changes, attacks can be added (based

on its new weaknesses) or removed (depending on whether they still apply).

3. For each possible attack goal, analyse the circumstances under which each leaf of

the corresponding tree can be reached by creating scenarios for successful achieve-

ment of the goal. To do this, prerequisites, assumptions and the attacker capa-

bilities should be included in these scenarios. Then, we decide how feasible each

attack goal is and what could happen if the conditions in the scenario change.

4. After identifying all feasible attacks, we identify the means by which all these

attacks can be prevented in a given scenario.

Using this methodology, we can define the security assumptions of a system and deter-

mine if a system is vulnerable to a particular type of attack. For that reason, Attack

Trees are especially useful to perform architecture risk analysis.

A very useful characteristic of the attack trees is that they capture knowledge in a

scalable and reusable form. The trees can be modified at the same time as systems

change, and also can be reused by systems that have similar characteristics. However,

one drawback of this technique is that there is no guarantee of completeness. Thus, a

collection of attack trees does not necessarily represent all possible attacks. However, by

regularly evaluating the system, unrepresented attacks may be found. In sum, Attack

Trees help to conduct a high level analysis of security risks in a system to make the right

choices to mitigate or avoid such risks.

In Section 7.3 we perform steps 1 and 2 of the methodology described above. Then, in

Section 7.4, we perform steps 3 and 4. First, however, we describe the system we subject

to analysis using the Attack Tree technique.

7.2 System Definition

The systems we analyse in this chapter are based on the Secure Provenance-based Audit-

ing Architecture defined in Chapters 4 and 6. Each system consists of one or more Data

Subjects and one or more Data Processors, and interacts with other systems with the

same properties and structure. This leads to the interaction of various Data Controllers.

As mentioned in the initial assumptions (see Section 3.6), all entities record provenance

truthfully. To enforce this, these entities can, for example, record provenance automat-

ically using a library which can not be (maliciously) altered by its users.

A system with these characteristics presents a variety of security risks, which are mainly

related to the communication between entities, recording of provenance information and

188 Chapter 7 System Evaluation

storage of information. These risks are analysed in our attack trees to show how the

secure architecture mitigates them.

It is important to mention that this analysis focuses on the technical security risks

that our system is exposed to. All the security issues related to the end-user, such as

lost passwords or keys, creation of weak passwords or physical security, are outside the

scope of this analysis. However, needless to say, administrators should implement the

necessary measures to prevent and avoid these issues that could impact the security of

the system.

7.3 System Attacks Analysis

Now that we have defined the system that can be subject to various attacks, we now

describe the actual attacks that can be performed against our architecture, which would

compromise the security of the audit process. By doing so, we cover steps 1 and 2 of

the Attack Tree Methodology.

As mentioned in Chapters 4, 5 and 6, we wish to guarantee four security properties:

integrity, confidentiality, authentication and non-repudiation. In this section, we add a

fifth property: availability, which guarantees information is available when needed. Even

though this property is out of the scope of this thesis, it is important because the lack of

availability can have a detrimental impact on the execution of our system. For example,

if for some reason the Provenance Store is not available due to an attack, the system will

be not able to record provenance, resulting in either an incomplete record of provenance

information, or a severe delay the execution of the application protocols (Data Request

and Task Request). Therefore, the attacks that we define in the remainder of this section

focus on breaking each of these five properties.

In the next sections, we describe what an attack on each property entails, and enumerate

the possible attacks that can compromise these properties. These attacks are used later

on to create the Attacks Trees, which are presented in Section 7.4.

7.3.1 Confidentiality Attacks

A successful attack on the confidentiality property means that information regarded as

“confidential” is accessed by an attacker. Since all information in our system is encrypted

before being transported, to breach confidentiality, an attacker needs to obtain (one or

more) private keys to decrypt previously stolen information or needs to obtain (on or

more) passwords to access a storage component containing confidential information. In

the list below, we enumerate the ways in which an attacker can accomplish this.

Chapter 7 System Evaluation 189

Related-key Attacks In this attack, an adversary uses cryptanalysis techniques to

observe the operation of a cipher to determine which keys were used or recently

created. Examples of this are known-key attacks and compromised-key attacks

[96]. These attacks can usually be performed on badly designed encryption algo-

rithms. In such cases, keys can be guessed if the key generation algorithm creates

weak keys or uses weak random number generators. One of our assumptions is

that only well-designed encryption algorithms are used.

Password-based Attacks This attack takes place when an adversary obtains a valid

password of a valid user, thereby gaining the rights of this a user, including those

that allow access to confidential information. Examples of these attacks are pass-

word guessing attack, dictionary attack and brute force attack. The best way to

avoid these attacks is implementing precomputation techniques (such as hashing

passwords), salting techniques and requiring strong passwords [96]. Another im-

portant issue is the proper protection of passwords by users, such that they can not

be easily stolen. In this case, we work under the assumption that user passwords

are sufficiently strong and properly protected.

Sniffer Attack A sniffer or packet analyser is computer hardware or software that can

intercept and log traffic passing through a network. These can be used to eavesdrop

on the communication channel, for example to perform related-key attacks or

attacks to break encryption algorithms. Once the attacker gets a valid key, all

encrypted traffic can be decrypted. Here, we assume all the necessary physical

measures to avoid this type of attack are taken.

Data Driven Attacks In this attack, malicious code is embedded in innocuous-looking

data in an attempt to attack the system in different ways. Normally, this code is

not recognised by firewalls so it is easily introduced into the system. We assume

that our system is well protected against this type of attacks. Examples of these

attacks are:

(a) Trojans: These are pieces of software that give unauthorised access to an

adversary. In the case of breaking confidentiality, they are used to conduct

password or key theft by unauthorised installation of software, unauthorised

downloading and uploading files, key stroke logging (record what is typed by

the user), etc.

(b) Trapdoors: These are weaknesses in software that is running on the system

that allows someone with knowledge of these weaknesses to gain unauthorised

access to confidential data. These trapdoors are used by programmers for

security purposes to debug and test programs, but are not properly protected

in production systems.

190 Chapter 7 System Evaluation

7.3.2 Integrity Attacks

A successful integrity attack means that information that has been transported or stored

has been (maliciously) altered. To break the integrity property, an attacker needs to

change the content of a sent message or the information stored in a persistent storage.

The attacks that can be conducted to compromise information integrity are enumerated

below:

Unauthorised Data Message Modification Attack In this attack, an adversary

modifies the data contained in a message without being noticed. This directly

affects the integrity of the information transported in a communication channel.

To preserve the data integrity, it is important to use hash algorithms in messages

(for example, as we did in Chapter 6). Moreover, it is important that the chosen

hash algorithm is well designed to avoid hash attacks, which are described below.

Hash Attacks This type of attacks can take place if the implemented hash function is

badly designed. In such cases, attacks such as Birthday Attack, Yuval’s Birthday

Attack, Pseudo-collision Attack or Chaining Attacks [96] can take place and com-

promise the integrity of data. One of the assumptions of our work is the use of a

strong, well-designed hash function.

Password-based Attacks / Trojans / Trapdoors These attacks, which were ex-

plained above, can also be used by an attacker to modify or delete files, thereby

affecting their integrity. Again, we assume that our system is well protected against

these.

7.3.3 Authentication Attacks

A successful attack on the authentication property means that an attacker gains the

ability to impersonate a valid user. To do this, the attacker needs to acquire some form of

identification that belongs to such valid user, such as a private key or a password. In more

detail, the attacks that can be conducted by an attacker to compromise authentication

are as follows:

Impersonation In this type of attacks, an adversary assumes the identity of one of the

legitimates parties in a system. These attacks include:

(a) Man in the middle (MITM): This is an attack in which a third person im-

personates one of the parties involved in a communication protocol. To avoid

this, is necessary to create a secure communication channel and freshly cre-

ated nonces, which is done in most of authentication protocols. It is important

to mention that the system is verified to be resistant to this attack by the

model checker Viki in the protocols presented in Chapter 6.

Chapter 7 System Evaluation 191

(b) Interleaving attack, Reflection Attack, Misplaced trust in a server, Replay

attack [96]: These attacks are a consequence of badly designed authentication

protocols. As such, they are not discussed here, since one of our assumptions

is the use of well designed protocols, such as TLS, OTLS or SSL, which have

been widely analysed and used. Moreover, the protocols presented in Chapter

6 were verified by Viki and found to be resistant to this type of attack.

(c) Obtain keys of a valid user: When keys are used as a proof of identity, an

attack can focus on acquiring such keys. To do this, an attacker can use

various techniques, such as data driven attacks (trojans, viruses, etc), related

key attacks or use password-based attacks, which were explained in Section

7.3.1.

Transitive Trust In this attack, an adversary obtains a user account using some of

the means already described. This account is then used to get more or higher-

level privileges or to create new accounts with administrator’s privileges. This

attack compromises access control to resources (information, equipment, identities)

and, thereby, the integrity and confidentiality of information. The identity of the

authorised user is also compromised. We assume that all the necessary access

control techniques are implemented to protect the resources of our system (see

Section 3.6).

7.3.4 Non-Repudiation Attacks

A successful attack on the non-repudiation property means that an attacker can modify

the evidence of the sending and receipt of a message in order to deny having sent or

received this message. To do this, the attacker needs to obtain the identity of a valid

actor using any of the attacks presented in the previous section, or steal the private keys

of a valid user to sign messages in his or her name. The attacks that can be conducted

by an attacker to compromise non-repudiation are listed below:

Impersonation This attack involves an attacker assuming the identity of a valid actor,

to be able to sign and send messages on its behalf.

Data driven attacks This attack involves an attacker stealing private keys or certifi-

cates of a valid actor in order to obtain its identity.

7.3.5 Availability Attacks

A successful attack on the availability of a system means that an attacker is able to

prevent authorised users to access a system resource. To do this, the attacker saturates

a component of the system with external communication requests forcing it to reset or

192 Chapter 7 System Evaluation

expend significant computation or bandwidth. This way, the component can no longer

serve its intended purpose. These attacks also obstruct the communication between the

intended users and the component such that adequate communication becomes impos-

sible. In more detail, the following are common availability attacks:

Denial of Service (DoS) and Distributed Denial of Service (DDoS) These at-

tacks compromise the availability of information or services in a system or network

resource, and is a well-investigated issue [39, 96, 15]. One of our assumptions is

that all the necessary prevention measures have been implemented to avoid these

kind of attacks [39]. These include implementing route filters, disabling unused

network services, using redundant and fault tolerant network configuration, etc.

Trojans These attacks were previously explained as a means to break confidentiality.

However, they can also be used to conduct DDoS attacks by using infected com-

puters to simultaneously launch a DoS attack on a predefined target. As previously

stated, we assume the system is protected against these attacks.

Now that we have defined all possible attacks, and have identified the assumptions under

which the security analysis of our system will be performed, we can now formalise these

using Attack Trees.

7.4 Attack Trees Analysis

In this section, we create and analyse the Attack Trees using the previously presented

attack analysis. Thus, in this section we cover steps 3 and 4 of the Attack Trees Method-

ology discussed in Section 7.1.

Corresponding to each of the five security properties discussed in the previous section,

we create five attack trees with the following attack goals: disclosure of confidential

information, compromise data integrity, compromise authentication, compromise non-

repudiation, and compromise system availability.

Before presenting the analysis of our Attack Trees, we present a set of security assump-

tions under which this analysis is made. To differentiate these assumptions from the

ones defined in Section 3.6, the security assumptions are labelled with the letter S.

S1 All cryptographic algorithms and protocols used in the architecture are well de-

signed and cannot be forged. This includes encryption, digital signature and hash

algorithms, as well as authentication protocols.

S2 Access Control measures are implemented in all system resources, including data-

bases, Provenance Stores and processing rules.

Chapter 7 System Evaluation 193

S3 All information related to keys, certificates and passwords is securely stored and

protected. Also, keys, certificates and passwords are created using well-designed

methods.

S4 All necessary prevention measures to avoid “Sniffer Attacks”, “Data Driven At-

tacks”, “DoS” and “DDoS” have been implemented.

S5 We assume that all the actors use a library that allow them to automatically record

the provenance information we identified in Section 4.2. This library cannot be

deleted or accessed by attackers to intentionally modify its behaviour. The same

applies to the Usage Rules Definition (see Section 5.2), which cannot be deleted

or modified without previous authorisation of the administrator in charge.

Now, in the attack trees presented in this section, each node is given a colour. The

blue nodes are attacks that are not addressed in this thesis, and considered outside the

scope of our work. These attacks mainly relate to availability and authentication. The

red nodes are attacks that can be prevented by the assumptions listed above. These

nodes contain the labels of the corresponding assumptions. Finally, the green nodes

are the attacks are within the scope of our work, i.e. those that are addressed by the

contributions presented in this thesis. In these nodes, we include the corresponding

Lemma from Section 6.4 that addresses the corresponding attack.

In the upcoming subsections, we present the Attack Trees corresponding to the attacks

identified in the previous section.

7.4.1 Information Confidentiality Attack Tree

The Information Confidentiality Attack Tree is presented in Figure 7.1. This tree shows

attacks that can lead to the disclosure of confidential information.

In this figure, the nodes labelled a, b and c represent attacks that are prevented by

the previously defined security assumptions: “Unauthorised access to data stored in

the Provenance Store”, “Unauthorised access to data stored in the Local Database” and

“Unauthorised access to data usage rules”. These three attacks are related to the Access

Control of the databases in our architecture. We assume these databases implement the

techniques discussed in 3.4.9 to prevent these attacks (Assumption S2).

The nodes labelled d and e, which are within the scope of our work, differentiate between

the disclosure of data in the provenance assertions and the disclosure of data during

communication.

The attack corresponding to node d, “Disclosure of data in the assertions”, is addressed

by Lemma 6.5. The goal of d can be accomplished by two different attacks: “Cross-

reference” in node d.1 and “Inference” in node d.2. In the “Cross-reference” attack,

194 Chapter 7 System Evaluation

an attacker, who can see the provenance that different entities are recording, combines

information from different sources to obtain private information that was not present in

the sources individually. In the “Inference” attack, an intruder uses this information to

infer new private information. To see why these attacks fail in our system, recall that

the information contained in provenance assertions can either be a copy of application

data or a reference to it. Now, if only references are maintained in these assertions, only

the auditor should have access to the original information. Thus, in this approach, both

attacks (cross-referencing and inference), can be prevented since attackers only have

access to references, which they can not resolve as they do not have the credentials to

access the original information.

The attack corresponding to node e, “Disclosure of data in the communication”, has

three ways of succeeding: e.1 “Impersonation”, e.2 “Sniffer Attack” and e.3 “Data

driven attacks”. As mentioned in Assumption S4, we assume the necessary measures

have been taken to avoid the latter two attacks (e.2 and e.3) are successful.

To prevent attack e.1, “Impersonation”, we first need to ensure that all the keys and

password are created using well-designed cryptographic algorithms and are stored in a

secure place. This is guaranteed by Assumption S3. Furthermore, we need to guarantee

that our communication protocol cannot be attacked. This was verified in Chapter 6 by

formalising the protocol and the communication in the architecture (Lemma 6.5).

Therefore, following the analysis of this tree, we can ensure that confidentiality attacks

are unsuccessful under the given security assumptions.

7.4.2 Information Integrity Attack Tree

The Information Integrity Attack Tree is presented in Figure 7.2, and shows the possible

attacks that compromise the integrity of information.

In Figure 7.2, there are two nodes, b and c, that are prevented by the assumptions:

“Unauthorised manipulation of data stored in the local databases” and “Unauthorised

manipulation of data usage rules”. As previously mentioned, these attacks are related

to Access Control of the databases, for which we assume the necessary techniques have

been implemented (Assumption S2). Moreover, Assumption S5 makes tampering with

the data usage rules not possible, and ensures that provenance is securely recorded.

The remaining nodes are within the scope of our work: a “Unauthorised manipulation

of data stored in the PS”, d “Unauthorised manipulation of assertions” and e “Unau-

thorised manipulation of data in the communication”. These nodes represent attacks

that compromise the integrity of data contained in the Provenance Store, data contained

in assertions and data contained in the messages, respectively. These attacks are ad-

dressed in Lemma 6.6, which was presented in Chapter 6. More specifically, the goals

Chapter 7 System Evaluation 195

Figure 7.1: Information Confidentiality Attack Tree

196 Chapter 7 System Evaluation

associated to node a, d and e cannot be accomplished because the cryptographically

protected p-assertions (see Section 6.2.1) make malicious alteration of the information

stored in the Provenance Store not possible. However, cryptographic protection is based

on several additional assumptions. For node a, these are the same as for node c, which

was previously discussed.

Node d contains three different attacks. The first, d.1, “Replicate plain data”, is ad-

dressed by the Secure Provenance Graph (Section 6.3.1), which prevents corruption of

the integrity of the information and relations contained in this graph. The second, d.2,

“Impersonation”, is addressed in the formalisation and verification our communication

protocol (as discussed in Section 7.4.1). The last one, d.3 “Hash-attacks” is prevented

by Assumption S1.

In node e, “Unauthorised manipulation of data in the communication”, we guarantee the

integrity of data by implementing the OTLS protocol, which creates a secure communi-

cation channel. Since we assume that the encryption algorithms and hash functions used

within this protocol are well-designed (Assumption S1 and S2), the nodes e.1 “Encryp-

tion Attacks” and e.2 “Hash-attacks” are coloured red. Finally, the attack corresponding

to node e.3, “Impersonation”, was addressed in Section 7.4.1.

Since all five nodes represent unsuccessful attacks, we can ensure that, under the given

assumptions, the integrity of information is maintained.

7.4.3 Authentication Attack Tree

The Information Authentication Attack Tree is depicted in Figure 7.3, showing attacks

to compromise authentication in the system.

Analysing this tree, we initially have nodes a, “Compromise assertions end-point au-

thentication”, b, “Compromise entities mutual authentication”, and c, “Multiple user or

system identities”. Nodes a and b are related to the different properties that authentica-

tion protocols and algorithms can provide to the information: end-point authentication

and mutual authentication.

In node a, end-point authentication is used to identify which entity sends a message.

In the attack associated with this node, we only need to prevent the “Impersonation”

attack (which was discussed in Section 7.4.1), assuming that the used hash techniques

are well-designed (Assumption S1) and that the necessary measures to avoid data driven

attacks have been implemented (Assumption S4).

In node b, mutual authentication verifies the identity of two or more users that estab-

lished communication. This is addressed by the implementation of the OTLS protocol,

which was formalised in Chapter 6, specifically in Lemma 6.8.

Chapter 7 System Evaluation 197

Figure 7.2: Information Integrity Attack Tree

198 Chapter 7 System Evaluation

In both cases, the strength and secure storage of private keys and certificates is an im-

portant issue, which is addressed by Assumption S3. The remaining issues related to the

design of a secure protocol and a hash algorithm that can guarantee end-point authen-

tication and mutual authentication were explained and were solved by the formalisation

presented in Chapter 6.

Finally, node c, is an attack that involves the abuse of multiple identities. For example,

turning to our running example of the On-line Sales Scenario, a manager that plays

both the role of stock manager and HR manager is able to manually cross-reference or-

ders with job applications, which is in non-compliance with the Auditing Requirements.

This problem is the focus of the Identity Management research area [49, 83] that deals

with identifying individuals in a system to control the access to resources by placing

restrictions on the established identities. One of the challenges within this area is the

management of multiple identities that refer to the same individual or system. To avoid

these challenges, we assume that in our architecture each user has only one identity.

DiMicco and Millen, and Koch and Moslein [49, 83] discuss the possible solutions to this

problems and its future developments.

Thus, after analysing this tree, we can conclude that under the given assumptions the

aforementioned authentication attacks can be prevented.

7.4.4 Non-Repudiation Attack Tree

The Non-Repudiation Attack Tree presented in Figure 7.4 contains all possible attacks

related to the non-repudiation property. In this tree, the attack goal is “Compromise

Non-repudiation”, which is divided in two subgoals.

Node a, the first subgoal, represents the attack “Compromise non-repudiation of mes-

sages”, which is related to the messages sent between the entities in our architecture.

Here, the most important issue is the creation and storage of keys and certificates (As-

sumption S3), since all non-repudiation techniques require entities to have a secure way

of identification.

The same applies to the attack in node b, the second subgoal, which is called “Compro-

mise non-repudiation of assertions”. Here, we use digital signatures to check the identity

of the actors that are recording provenance information. These issues were addressed by

Lemma 6.7, which states that non-repudiation holds in the protocols of Data Request,

Task Request and Query Request.

Therefore, we can guarantee that under these assumptions, these non-repudiation attacks

cannot succeed.

Chapter 7 System Evaluation 199

Figure 7.3: Authentication Attack Tree

7.4.5 Information Availability Attack Tree

The Information Availability Attack Tree is presented in Figure 7.5. As mentioned in

Section 7.3, this attack is outside the scope of this work. However, it is important to

mention the measures that should be taken to avoid this attack takes place in our system.

As Figure 7.5 shows, there are three main attacks that could affect the availability of a

resource: a “Databases Attacks”, b “Network Attacks” and c “Client Attacks”.

Node a contains three subgoals (children). To prevent attacks a.1 “Physical Attacks”

and a.2 “Data Driven Attacks”, all necessary physical and technical measures should be

implemented in the system (Assumption S4) [15]. Attack a.3 “Crash Databases”, has

200 Chapter 7 System Evaluation

Figure 7.4: Non-Repudiation Attack Tree

been the focus of much investigation, which aims to enable databases to recover from

a crash without losing data [89]. Thus, to prevent these attacks, we assume that these

measures have been implemented in the local databases of our system (Assumption S2).

In the case of Provenance Store failures, measures such as the ones presented by Chen

and Moreau [38] should be taken into consideration when systems’ provenance stores

are designed and deployed.

Node b, “Network Attacks”, can be carried out by implementing b.1 “Data Driven At-

tacks” or b.2 “Physical Attacks”. To thwart these attacks, different preventive and

corrective measures should be followed. Examples of these measures are the correct im-

plementation of firewalls, intrusion detection systems and physical security. A detailed

Chapter 7 System Evaluation 201

description of these measures can be found in [76]. We assume that all of them are

implemented in our system.

The attack associated with node c, “Client Attacks”, can be carried out by achieving

one of its four subgoals. The first one, c.1, “Hack recording querying audit software”,

is prevented by Assumptions S5, which states that the necessary measures have been

taken to protect the library used by entities to record provenance. The second and third

subgoals c.2 “Delete Data Descriptions” and c.3 “Delete Usage Rules”, represent attacks

against one of the basic components of our architecture (i.e. provenance information and

processing rules, respectively). For this reason, these should be protected and securely

stored by implementing proper access control restrictions. Finally, the fourth subgoal,

c.4 “OS Attacks”, raises another issue that is out of the scope of this work. However,

it should be taken into account in the maintenance of our system by ensuring that the

operating system is regularly updated.

This concludes our description and analysis of the Attack Trees. Using these trees, we

have successfully shown that the attacks defined in Section 7.3 can be prevented, either

by the contributions proposed in this thesis, or the assumptions we made at the start of

section.

7.5 Conclusions

In this chapter, we completed the security analysis of a system designed according to the

Secure Provenance-based Auditing Architecture. This analysis was made using Attack

Trees, which is formal and methodical way of describing the security attacks systems

can be subjected to.

The presented analysis focused on the four security properties that we have addressed in

this thesis: confidentiality, integrity, authentication and non-repudiation. We also added

availability as an important property. Even though this property was not addressed in

this thesis, we present some preventive actions that need to be taken in order to guarantee

the proper execution of a system.

First, we thoroughly enumerated the possible attacks on each of the components of

the architecture in an attempt to break the aforementioned security properties. Then,

we created and analysed five Attack Trees that formalise the attacks identified in the

previous step, and discussed which of these attacks are addressed by the contributions

of this thesis, and which are prevented by the security assumptions derived from the

assumptions in Section 7.3. If neither, we discussed which further measures should be

implemented.

202 Chapter 7 System Evaluation

Figure 7.5: Information Availability Attack Tree

Chapter 7 System Evaluation 203

After this methodical security analysis, we can conclude that under the given assump-

tions and by implementing the explaining measures, a system that is designed according

to our architecture is secure and none of the mentioned attacks can be performed without

being detected or solved. Thus, taken together, our contributions ensure that provenance

is securely recorded, stored, queried, and analysed.

Chapter 8

Conclusion and Future Work

In recent years, an increasing number of on-line services have started to offer personalised

services that require users to disclose personal information. By disclosing personal infor-

mation, users get access to a wide range of new functionality, such as recommendations

or customisation. However, this disclosure also creates a risk that personal information

is misused, resulting in harm to its owner.

Within this context, it becomes necessary to be able to verify whether personal informa-

tion was processed in the correct way, i.e. according to the corresponding data protection

legislation. In order to achieve this, information processing should be made transpar-

ent so it can later be determined whether the use of such information was appropriate.

Specifically, if information processing is transparent, auditors can analyse the way in

which information was processed and make organisations responsible for any misuse

(information accountability). This analysis procedure is called audit.

Against this background, this thesis has proposed a solution to the problem of how

to automatically conduct audits, i.e. to verify that personal information has been used

according to the Data Protection Act. We have proposed that provenance is an effective

means of providing process transparency. When it is used for this purpose, provenance

can be seen as electronic evidence of past processing. This provenance can later be

automatically analysed (by means of an automatic audit) to decide whether processing

was performed in compliance with the data protection legislation.

However, due to the open and distributed nature of current systems, the use of prove-

nance can involve communication between multiple components over potentially unse-

cured networks. Moreover, even after being securely stored, provenance can still be

tampered with by the auditor who conducts the analysis. Consequently, without ad-

ditional means of protection, there are multiple ways in which provenance might be

altered, tampered with, or fall in the hands of untrusted parties. In such cases, the

integrity of the obtained audits results cannot be ensured.

205

206 Chapter 8 Conclusion and Future Work

Thus, we identified the need for securing provenance. To address this problem, we

developed the Secure Provenance-based Architecture that protects not only provenance

but also the related application data during its collection, storage, communication, query

and analysis. By securing the complete life cycle of provenance and application data, this

architecture ensures the correctness of the audit results derived from this information.

In addition, using the provenance captured by this secure architecture, we developed

the Compliance Framework for automatically verifying the compliance of data process-

ing against a set of Auditing Requirements derived from the DPA. To perform this

automatic verification, it needs both provenance and the processing rules in machine-

readable format. To do this, the former is represented as a Provenance Graph using

the Open Provenance Model, which captures the causal dependencies between data and

processes. The latter is also represented as a graph, called a Usage Rules Definition

graph, which captures the relations between the data classes that can be used, and the

allowable operations that can be performed on that data. Thus, processing rules form

patterns that provenance must contain to be in compliance.

8.1 Contributions

We now revisit the main contributions made in this thesis in more detail.

8.1.1 Provenance-based Auditing Architecture

First, we derived a set of requirements from a case study of the Data Protection Act.

These requirements were divided into two groups, Auditing Requirements and Security

Requirements. These groups show that both security and auditing functionalities are

necessary to create systems that successfully and securely audit the use of personal infor-

mation. Consequently, we argued that any system architecture for processing personal

information should support both.

To address the Auditing Requirements, the first group of requirements, we developed

the Provenance-based Auditing Architecture, which consists of a set of three protocols

designed to enable existing systems to capture provenance at execution time, i.e. make

them provenance-aware. These three protocols, Data Request, Task Request and Query

Request, represent the recording, storing and querying of provenance (the final stage,

analysis, is addressed by the Compliance Framework). The architecture and its as-

sociated protocols were developed using the PrIMe methodology, which allowed us to

identify which provenance should be gathered in order to verify compliance with the

Auditing Requirements.

Finally, we demonstrated that, using the provenance collected by the architecture, we

can effectively achieve process transparency, i.e. use provenance as electronic evidence

Chapter 8 Conclusion and Future Work 207

of past processing. As a proof of concept, we presented a manual analysis of the prove-

nance to verify if personal information was processed in accordance with to the Auditing

Requirements.

8.1.2 Compliance Framework

Second, we developed the Compliance Framework, a provenance-based auditing frame-

work for automatically auditing the use of personal information by analysing the prove-

nance collected by the Provenance-based Auditing Architecture. Thus, this framework

allows for the automatic verification of the Auditing Requirements, and, as such, whether

processing of personal information was performed in compliance with the Data Protec-

tion Act.

The Compliance Framework consists of three components. The first component, the

Processing View, represents provenance as a DAG, showing the relation between data

and the processes that act upon it. Put differently, the Processing View captures how

personal information was used. The second component, the Usage Rules Definition,

encodes the Auditing Requirements using a graph-based rule representation. The third

component is a set of algorithms for automatically verifying whether personal informa-

tion was processed according to the derived requirements. To do so, these algorithms

compare the Processing View against the Usage Rules Definition to detect and report

any violations of the rules. In summary, the Compliance Framework demonstrates that

through the automatic comparison of provenance against processing rules, we can sup-

port information accountability.

8.1.3 Secure Provenance-based Auditing Architecture

Third, we developed the Secure Provenance-based Auditing Architecture, to guarantee

provenance nor application data can be tampered with during its life cycle of recording,

storage, querying and analysis. To do this, it secures the main components of the

Provenance-based Auditing Architecture: the Data Request, Task Request and Query

Request protocols, as well as the provenance graphs. By securing the former, we ensure

that provenance is securely created and transmitted and stored in unsecured networks.

By securing the latter, we can guarantee provenance cannot be maliciously altered during

storage and analysis stage. By doing so, even the auditor is unable to modify the

electronic evidence of the processing of personal information.

We formalised the security of the architecture by modelling its protocols using UMLsec.

This allowed us to automatically and conclusively verify that the architecture exhibits

the essential security properties of confidentiality, integrity, authentication and non-

repudiation. By using the Viki model checker, we showed that these properties indeed

208 Chapter 8 Conclusion and Future Work

hold. As a result, we can guarantee the correctness of audits based on the provenance

collected by the Secure Provenance-based Auditing Architecture.

Taken together, these contributions represent a significant advance in the use of prove-

nance for achieving information accountability. However, there are still a few more open

questions that need to be addressed.

8.2 Future Work

Specifically, we identify three directions for future work that are aimed to broaden the

scope and improve the practical applicability of our research.

As discussed in assumption 7 (See Chapter 3), we assume that there exists a well-

defined ontology that defines personal information and the processes that act upon it.

This assumption is vital in the creation of the Processing View and the Usage Rules

Definition, as well as in the correct execution of the algorithms that are part of the

Compliance Framework, because in order to analyse provenance against processing rules,

both need to be described using the same concepts and language. Thus, we believe that

further research should be conducted in order to create a standard vocabulary that

defines processing of personal information.

A second important issue is the protection of privacy in provenance. This issue has

already been raised by the research community. In this work, we discuss the impor-

tance of anonymity of users as a mean to protect privacy of individuals (see Anonymity

Preservation Requirement, Section 3.4). However, this requirement is only verified in

the use of data application. Since provenance itself also contains personal information

(in the form of a reference or an actual copy), without proper protection, the disclosure

of provenance can lead to the disclosure of personal information. Thus, there exists a

sensitive trade off between the desire to protect privacy of individuals and to achieve

information transparency. Consequently, further investigation should be carry out to

develop privacy protecting provenance frameworks.

Finally, one of the main motivations of our work is the Data Protection Act. As discussed

in Chapter 3, the Data Protection Act states the possibility of auditing organisations to

verify that their data processing is in compliance. We believe that the work presented

here can be used as a mean to automatically conduct these audits. However, in order to

make the results of these automatic audits admissible as legal evidence, further research

is needed into the legal aspects of this electronic evidence, and the necessary protocols

that should be followed.

In the next sections, these directions of future work are discussed in further detail.

Chapter 8 Conclusion and Future Work 209

8.2.1 Defining a Standard Vocabulary

As we explained in Chapter 5, where we discussed the Compliance Framework, in order

to successfully verify that personal information was processed according to a set of

processing rules, it is necessary to have a standard vocabulary. This vocabulary should

be used in the provenance representation (Processing View) and in the processing rules

(Usage Rules Definition). This vocabulary should allow us to correctly describe the

main components of the processing of personal information: purposes, tasks, collect

data and used data (classes and types). Even though the ICO’s Register attempts to

define these components, we demonstrated that for achieving processing transparency

it is incomplete. Moreover, it does not define a proper language that can be reused

in a computational system. For example, an organisation can define “on-line sales” as

purpose to indicate that they will collect information from users to sale products using

an on-line application. Another organisation can define “e-sales” as purpose to indicate

the same activity.

By developing a standard vocabulary for processing personal information, the set of

algorithms for automatic analysis of personal data processing can be applied anywhere

personal information is processed, instead of having to develop domain-specific instanti-

ations of the algorithms for each separate organisation. We believe that it is important

that this vocabulary is implemented using Semantic Web Technologies, i.e. as a standard

ontology that can be (re)used by any organisation that is managing personal informa-

tion. Thus, the algorithms presented in Chapter 5 can be implemented using RDF. In

that way, the Compliance Framework can be widely used to verify the compliance with

the Data Protection Act.

8.2.2 Privacy protecting provenance

As we argued in the introduction, processing transparency is a key issue in ensuring

information accountability. By supporting processing transparency, auditors are able

to analyse how data was processed and which data was used. However, processing

transparency should also protect privacy of individuals. This way, if provenance contains

sensitive information about a user, the identity of this user should be protected. In that

sense, there exists a trade-off between process transparency and privacy protection.

How much personal information should be disclosed on provenance to ensure process

transparency without breaking privacy of the involved individuals?

Even though, there are other research areas (such as databases) in which this issue has

been investigated, little research has focussed on this issue in the provenance community

[45] Therefore, we believe that it is necessary to develop new techniques that find a

balance between process transparency and privacy protection, i.e. create a privacy-aware

audit approach.

210 Chapter 8 Conclusion and Future Work

8.2.3 Provenance as legal evidence

Our Secure Provenance-based Auditing Architecture creates unforgeable evidence about

the processing of information. This information is later used to decide whether DPA

principles where correctly followed during this processing. If a principle was violated,

the Compliance Framework can detect who was responsible, and how and where this

violation occurred. Hence, from a legal point of view, the provenance obtained and anal-

ysed by our architecture can be seen as “digital evidence”. Digital evidence or electronic

evidence is “any probative information stored or transmitted in digital form that a party

to a court case may use at trial” [36]. For that reason, we believe we have provided all

the necessary means to ensure that the evidence created by the Secure Provenance-based

Auditing Architecture can be used in a court as evidence of misuse of information. Con-

sequently, it is important to explore the more practical issues involved in achieving this,

such as the protocols involved in handling evidence, and the necessary properties that

need to hold to make electronic evidence admissible. To achieve this, computer scientists

should work in close collaboration with experts in the field of (Internet) law.

Addressing these open questions combined with the contributions of this thesis is a clear

step forward in mitigating the risks of disclosing personal information, making organi-

sations accountable for the way in which they manage this information, and increasing

the trustworthiness of on-line services.

Appendix A

ArgoUML UMLsec Diagrams

In Chapter 6, we presented the set of UMLsec sequence diagrams that were used to

verify that the Provenance-based Auditing Architecture exhibits security properties of

authentication, confidentiality, integrity and non-repudiation. For reasons of clarity

and consistency, these sequence diagrams are a graphic representation of the original

diagrams that were verified with the Viki tool. In the interest of completeness, however,

the original UMLsec diagrams are presented in this appendix.

The original diagrams were created using ArgoUML version 0.32.3, a visual editor de-

veloped to create UML diagrams. This editor generates UML models that follow Viki

requirements and, therefore, can be directly used as input to Viki.

Unfortunately, ArgoUML does not visualise the contents of the messages or tag values

within the UML diagrams. Hence, in this Chapter we not only present the original

UMLsec diagram of each protocol of the Secure Provenance-based Auditing Architecture

but also the Graphical User Interface elements showing the contents of each message and

the contents of the adversary entity, which includes three set of tag values called secret,

initial knowledge and guard.

This appendix is organised as follows. First, in Section A.1 we present the UMLsec dia-

gram of the OTLS protocol including the message contents and the tag values. Similarly,

we present the diagram of the Data Request protocol in Section A.2 and the diagram of

the Task Request protocol in Section A.3. Finally, the results of the verification process

are presented in Section A.4.

211

212 Appendix A ArgoUML UMLsec Diagrams

A.1 OTLS UMLsec Sequence Diagram

This section presents the ArgoUML UMLsec sequence diagram of the OTLS protocol

created in ArgoUML (Figure A.1) along with the content of the messages of this protocol

(Figure A.2) and the tag values contained in the attacker entity (Figure A.3) 1

These diagrams are a different representation of the sequence diagram presented in

Figure 6.1. In Figure A.1 the entities S, C, PS and A are instances of the Server,

Client, ProvenanceStore and Adversary actors, respectively. The messages presented

in Figure A.2 are equivalent to the messages in Figure 6.1. However, these messages use

a different notation, which is equivalent to the notation presented in Equations (2.2) to

(2.8). This notation is used by Viki and presented in Table A.1 [78].

Operation Notation

A concatenated with B A :: B
A equal to B A = B

Logical conjunction &
Head of A head(A)
Tail of A tail(A)

Private key k inv(k)
A symmetrically encrypted using the key k symenc(A, k)
A symmetrically decrypted using the key k dec(A, k)
A asymmetrically encrypted using the key k enc(A, k)
A symmetrically decrypted using the key k dec(A, k)

A signed using the key k sign(A, k)
A extracted using the key k ext(A, k)

Hash of A hash(A)
Key generation function kgen()

Extract the ith element from message M M i

Table A.1: Viki Notation

The last operation M i in Table A.1 provides a way to access individual elements of each

message. For example, if we have a message M containing three elements M(e1, e2, e3),

M 1 retrieves the first element of M , which in this case is e1. Similarly, M 2 and M 3

retrieve e2 and e3, respectively. Note that, in Viki variables do not need to be explicitly

declared, instead they are implicitly declared on first use.

Finally, the tag values presented in Figure A.3 are the same as the ones presented as

blue ovals in Figure 6.1 along with the ones presented in Table 6.4.

1The original OTLS UMLsec Diagram can be found in http://tinyurl.com/6uoend6 This diagram
is contained in a zargo file that can be opened in the visual editor ArgoUML.

http://tinyurl.com/6uoend6

Appendix A ArgoUML UMLsec Diagrams 213

Figure A.1: OTLS UMLSec Sequence Diagram

Figure A.2: OTLS UMLSec Sequence Diagram Message Content

Figure A.3: OTLS UMLSec Sequence Diagram Adversary Content

A.2 Data Request UMLsec Sequence Diagram

This section presents the ArgoUML UMLsec sequence diagram of the Data Request pro-

tocol related to the sequence diagram presented in Figure 6.2. In Figure A.4 the entities

214 Appendix A ArgoUML UMLsec Diagrams

DS, DC, PS andA are instances of the DataSubject, DataController, ProvenanceStore

and Adversary actors, respectively 2.

As in Section A.1, the messages presented in Figure A.5 are the same ones presented

in Figure 6.2 but use the notation presented in Table A.1. The tag values presented in

Figure A.6 are also the same as the ones presented as blue ovals in Figure 6.2 and the

ones presented in Table 6.4.

Figure A.4: Data Request UMLSec Sequence Diagram

Figure A.5: Data Request UMLSec Sequence Diagram Message Content

A.3 Task Request UMLsec Sequence Diagram

This section presents the ArgoUML UMLsec sequence diagram of the Task Request pro-

tocol related to the sequence diagram presented in Figure 6.3. Therefore, in Figure A.7

2The original Data Request UMLsec Diagram can be found in http://tinyurl.com/7aamyoa. Again,
this diagram is contained in a zargo file that can be opened in the visual editor ArgoUML

http://tinyurl.com/7aamyoa

Appendix A ArgoUML UMLsec Diagrams 215

Figure A.6: Data Request UMLSec Sequence Diagram Adversary Content

the entities DP , DC, PS and A are instances of the DataProcessor, DataController,

ProvenanceStore and Adversary actors, respectively 3.

As in previous diagrams, the messages presented in Figure A.8 and the tag values pre-

sented in Figure A.6 are the same ones presented in Figure 6.2.

Figure A.7: Task Request UMLSec Sequence Diagram

A.4 Viki Results

The UMLSec diagrams presented in the previous sections are created using the notation

described in Table A.1 and act as input to the Viki model checker. In this section, we

present the results obtained after verifying these diagrams with Viki. As the results for

each of the above diagrams are the same, we only show a single figure representing the

output of the verification process of all the diagrams.

3The original Task Request UMLsec Diagram can be found in http://tinyurl.com/74hzubt. Again,
this diagram is contained in a zargo file that can be opened in the visual editor ArgoUML

http://tinyurl.com/74hzubt

216 Appendix A ArgoUML UMLsec Diagrams

Figure A.8: Task Request UMLSec Sequence Diagram Message Content

Figure A.9: Task Request UMLSec Sequence Diagram Adversary Content

As Figure A.10 shows, Viki outputs the result “Completion Found”, meaning that during

the execution of the corresponding sequence diagram, the attacker cannot obtain any of

the parameters designated as “secret” in the tag values.

Appendix A ArgoUML UMLsec Diagrams 217

Figure A.10: Viki Result of the UMLSec Sequence Diagram

Bibliography

[1] Trusted Computer System Evaluation Criteria, 1985.

[2] Trusted Computer System Evaluation Criteria (5200.28-STD), 1985.

[3] ISO/IEC-7498-2: Information Processing Systems – Open Systems Interconnec-

tion – Basic Reference Model – Part 2: Security Architecture, 1989.

[4] ISO/IEC-9796: Information Technology – Security Techniques –Digital Signature

Scheme Giving Message Recovery, 1991.

[5] Directive 95/46/EC of the European Parliament, October 1995.

[6] Health Insurance Portability and Accountability Act. http://www.hhs.gov/ocr/

hipaa, 1996.

[7] Data Protection Act. http://www.opsi.gov.uk/acts/acts1998/19980029.htm,

1998.

[8] Safe Harbor. http://www.export.gov/safeharbor/index.html, 2000.

[9] OMG Unified Modeling Language Specification v1.5, March 2003.

[10] Public Sector Data Sharing: Guidance on the Law, November 2003.

[11] ISO/IEC-17799: Information Technology – Security Techniques – Code of Practice

for Information Security Management, 2005.

[12] Protection of Private Data – First Report of Session 2007–08. http://www.

publications.parliament.uk/pa/cm200708/cmselect/cmjust/154/154.pdf,

2007.

[13] Data Handling Review. http://www.cabinetoffice.gov.uk/

resource-library/data-handling-procedures-government, November

2008.

[14] ITU-T Recommendation X.509: Information Technology – Open Systems Inter-

connection – The Directory: Public-key and Attribute Certificate Frameworks,

2008.

219

http://www.hhs.gov/ocr/hipaa
http://www.hhs.gov/ocr/hipaa
http://www.opsi.gov.uk/acts/acts1998/19980029.htm
http://www.export.gov/safeharbor/index.html
http://www.publications.parliament.uk/pa/cm200708/cmselect/cmjust/154/154.pdf
http://www.publications.parliament.uk/pa/cm200708/cmselect/cmjust/154/154.pdf
http://www.cabinetoffice.gov.uk/resource-library/data-handling-procedures-government
http://www.cabinetoffice.gov.uk/resource-library/data-handling-procedures-government

220 BIBLIOGRAPHY

[15] Strategies to Protect Against Distributed Denial of Service (DDoS) At-

tacks. http://www.cisco.com/en/US/tech/tk59/technologies_white_

paper09186a0080174a5b.shtml, April 2008.

[16] FIPS-186-3: Digital Signature Standard (DSS), 2009.

[17] Carlisle Adams and Steve Lloyd. Understanding PKI: concepts, standards, and

deployment considerations. Addison-Wesley, 2003.

[18] Debra Anderson, Thane Frivold, Ann Tamaru, and Alfonso Valdes. Next Gener-

ation Intrusion Detection Expert System (NIDES) Software Users Manual. Cali-

fornia, USA, 1994.

[19] George Apostolopoulos, Vinod Peris, and Debanjan Saha. Transport Layer Secu-

rity: How much does it really cost? In Conference on Computer Communications

(IEEE InfoCom), pages 717–725, New York, 1999. IEEE Computer Society.

[20] Ahmed Awad, Matthias Weidlich, and Mathias Weske. Specification, Verification

and Explanation of Violation for Data Aware Compliance Rules. In Lecture Notes

In Computer Science, volume 5900, pages 500–515, Stockholm, 2009. Springer-

Verlag.

[21] Stefan Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. Techni-

cal Report 99-15, Department of Computer Engineering, Chalmers University of

Technology, Goteborg, Sweden, March 2000.

[22] D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, and D. Price. Auditing

of distributed systems. In 14th National Computer Security Conference, pages

59–68, October 1991.

[23] R S Barga and L A Digiampietri. Automatic capture and efficient storage of

e-Science experiment provenance. Concurrency and Computation: Practice and

Experience, 20:419–429, 2008.

[24] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for

message authentication. In Lecture Notes in Computer Science, volume 1109

of 16th Annual International Cryptology Conference on Advances in Cryptology

(CRYPTO ’96), pages 1–15. Springer-Verlag, 1996.

[25] Matt Bishop. A Standard Audit Trail Format. In 18th National Information

Systems Security Conference, pages 136–145. IEEE, 1995.

[26] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story

So Far. To appear on International Journal on Semantic Web and Information

Systems, (Special Issue on Linked Data), 2010.

[27] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. RFC

3546: Transport Layer Security (TLS) Extensions, June 2003.

http://www.cisco.com/en/US/tech/tk59/technologies_white_paper09186a0080174a5b.shtml
http://www.cisco.com/en/US/tech/tk59/technologies_white_paper09186a0080174a5b.shtml

BIBLIOGRAPHY 221

[28] Manuel Blum and Silvio Micali. How to Generate Cryptographically Strong Se-

quences of Pseudo-random Bits. SIAM Journal on Computing, 13(4):850–864,

November 1984.

[29] S Bowers, T M McPhillips, and B Ludäscher. Provenance in collection-oriented

scientific workflows. Concurrency and Computation: Practice and Experience,

20:519–529, 2008.

[30] Gilles Brassard. Modern cryptology : A Tutorial. Number 325 in LNCS. Springer-

Verlag, New York, 1988.

[31] Uri Braun, Avraham Shinnar, and Margo Seltzer. Securing Provenance. In

USENIX Association, editor, 3rd USENIX Workshop on Hot Topics in Security,

USENIX HotSec, pages 1–5, Berkeley, CA, USA, July 2008.

[32] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management

in curated databases. In SIGMOD Conference, pages 539–550, 2006.

[33] Peter Buneman, James Cheney, and Stijn Vansummeren. On the expressiveness

of implicit provenance in query and update languages. ACM Transactions on

Database Systems (TODS), 33(4):1–47, 2008.

[34] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A

Characterization of Data Provenance. In Lecture Notes in Computer Science,

volume 1973, pages 316–325. Springer-Verlag, 2001.

[35] S P Callahan, J Freire, E Santos, C E Scheidegger, Cláudio T Silva, and H T Vo.

VisTrails: visualization meets data management. In SIGMOD Conference, pages

745–747, 2006.

[36] Eoghan Casey. Digital Evidence and Computer Crime: Forensic Science, Com-

puters and the Internet. Elsevier Academic Press, 2nd. edition, 2004.

[37] Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin Machanavajjhala.

Privacy-Preserving Data Publishing. Foundations and Trends in Databases,

2(12):1–167, 2009.

[38] Zheng Chen and Luc Moreau. Provenance and Annotation of Data and Processes.

In Lecture Notes in Computer Science, volume 5272, pages 92–105, Berlin, Heidel-

berg, 2008. Springer-Verlag.

[39] Tzi-cher Chiueh and Shibiao Lin. A Survey on Solutions to Distributed Denial of

Service Attacks. RPE report TR-201, Stony Brook University, Stony Brook, NY,

September 2006.

[40] Alison Chorley, Pete Edwards, Alun Preece, and John Farrington. Tools for tracing

evidence in social science. In Proceedings of the Third International Conference

on eSocial Science, pages 1–10, October 2007.

222 BIBLIOGRAPHY

[41] Gary G. Christoph, Kathleen A. Jackson, Michael C. Neuman, Christine L. B.

Siciliano, Dennis D. Simmonds, Cathy A. Stallings, and Joseph L. Thompson.

UNICORN: Misuse Detection for UNICOS. In Proceedings of the 1995 ACM/IEEE

conference on Supercomputing, pages 56–66, 1995.

[42] V. Ciriani, S. Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymity.

In Ting Yu and Sushil Jajodia, editors, Secure Data Management in Decentralized

Systems, volume 33 of Advances in Information Security, pages 323–353. Springer

US, 2007. 10.1007/978-0-387-27696-0-10.

[43] Cristian Coarfa, Peter Druschel, and Dan S. Wallach. Performance analysis of TLS

Web servers. ACM Transactions on Computer Systems, 24(1):39–69, February

2006.

[44] Francisco Curbera, Yurdaer Doganata, Axel Martens, Nirmal K. Mukhi, and Alek-

sander Slominski. Business Provenance — A Technology to Increase Traceability

of End-to-End Operations. In OTM 2008 Confederated International Conferences,

pages 100–119, Monterrey, Mexico, 2008. Springer-Verlag.

[45] Susan Davidson. On Provenance and Privacy. In Deborah McGuinness, James

Michaelis, and Luc Moreau, editors, Provenance and Annotation of Data and Pro-

cesses (IPAW 2010), volume 6378 of Lecture Notes in Computer Science, pages

3–10, Troy, NY, 2010. Springer Berlin / Heidelberg.

[46] Donald Watts Davies and W.L. Price. Security for Computer Networks. JohnWiley

& Sons, New York, 2nd edition, 1989.

[47] Nicholas Del˜Rio, Paulo Pinheiro˜da Silva, and Raed Aldouri. Identifying and

Explaining Map Quality Through Provenance: A User Study. In Proceedings of

IJCAI 2009 Workshop on Explanation-Aware Computing (ExACT 2009), pages

110–117, Pasadena, CA, USA, July 2009.

[48] W. Diffie. The first ten years of public key cryptology. In Contemporary Cryptology:

The Science of Information Integrity, pages 135–175, 1992.

[49] Joan Morris DiMicco and David R. Millen. Identity management: multiple pre-

sentations of self in facebook. Conference on Supporting Group Work, 2007.

[50] D. Dolev and A. Yao. On the security of public key protocols. Information Theory,

IEEE Transactions on, 29(2):198–208, March 1983.

[51] Thai Duong and Juliano Rizzo. Here Come The ⊕ Ninjas. In Ekoparty Security

Conference, May 2011.

[52] Cynthia Dwork. Differential Privacy. In 33rd International Colloquium on Au-

tomata, Languages and Programming, pages 1–12, Venice, Italy, 2006. Springer

Verlag.

BIBLIOGRAPHY 223

[53] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. Provenance

for Computational Tasks: A Survey. Computing in Science and Engineering,

10(3):11–21, 2008.

[54] James Frew and Peter Slaughter. ES3: A Demonstration of Transparent Prove-

nance for Scientific Computation . In Juliana Freire, David Koop, and Luc Moreau,

editors, Provenance and Annotation of Data and Processes, volume 5272 of Lecture

Notes in Computer Science, pages 200–207, Berlin, Heidelberg, 2008. Springer-

Verlag.

[55] Yolanda Gil and Christian Fritz. Reasoning about the Appropriate Use of Private

Data through Computational Workflows. In AAAI Spring Symposium on Privacy

Management 2010, pages 23–25, 2010.

[56] Boris Glavic and Gustavo Alonso. Perm: Processing Provenance and Data on the

Same Data Model through Query Rewriting. In 2009 IEEE 25th International

Conference on Data Engineering (ICDE’09), pages 174–185. IEEE Computer So-

ciety, March 2009.

[57] Boris Glavic and Klaus R. Dittrich. Data Provenance: A Categorization of Existing

Approaches. In Database Systems for Business, Technology and Web (BTW),

pages 227–241, 2007.

[58] UK Government. UK’s Government Public Data. http://www.data.gov.uk/.

[59] USA Government. USA’s Government Public Data. http://www.data.gov/.

[60] M Greenwood, C Goble, R Stevens, J Zhao, and Others. Provenance of e-Science

Experiments - experience from Bioinformatics. In Simon Cox, editor, OST e-

Science Second All Hands Meeting 2003 (AHM’03), Nottingham, UK, September

2003.

[61] Paul Groth. On the Record: Provenance in Large Scale, Open, Distributed Systems.

PhD thesis, University of Southampton, ECS, 2005.

[62] Paul Groth, Simon Miles, and Luc Moreau. PReServ 0.3.1, P-assertion Recording

for Services. http://twiki.gridprovenance.org/bin/view/PASOA/SoftWare,

August 2007.

[63] Paul Groth, Simon Miles, and Luc Moreau. A Model of Process Documentation to

Determine Provenance in Mash-ups. Transactions on Internet Technology (TOIT),

9:1–31, 2009.

[64] Paul Groth and Luc Moreau. Recording Process Documentation for Provenance.

IEEE Transactions on Parallel and Distributed Systems, 20(9):1246–1259, Septem-

ber 2009.

http://www.data.gov.uk/
http://www.data.gov/
http://twiki.gridprovenance.org/bin/view/PASOA/SoftWare

224 BIBLIOGRAPHY

[65] Barbara Guttman. An Introduction to Computer Security: The NIST Handbook.

NIST, NIST Special Publication 800-12 edition, 1995.

[66] Chris Hanson, Tim Berners-lee, Lalana Kagal, Gerald Jay Sussman, and Daniel

Weitzner. Data-Purpose Algebra: Modeling Data Usage Policies. In Eighth IEEE

International Workshop on Policies for Distributed Systems and Networks (POL-

ICY ’07), pages 173–177, June 2007.

[67] Ragib Hasan, Radu Sion, and Marianne Winslett. Introducing Secure Provenance:

Problems and Challenges. In Proceedings of the ACM Workshop on Storage Secu-

rity and Survivability (StorageSS), pages 13–18. ACM Press, 2007.

[68] Ragib Hasan, Radu Sion, and Marianne Winslett. The Case of the Fake Picasso:

Preventing History Forgery with Secure Provenance. In FAST ’09 7th conference

on File and storage technologies (2009), pages 1–14, Berkeley, CA, USA, 2009.

USENIX Association.

[69] Judith Hochberg, Kathleen Jackson, Cathy Stallings, J. F. McClary, David

DuBois, and Josephine Ford. NADIR: An automated system for detecting network

intrusion and misuse. Computers & Security, 12(3):235–248, May 1993.

[70] David A. Holland, Margo I. Seltzer, Uri Braun, and Kiran-Kumar Muniswamy-

Reddy. PASSing the provenance challenge. Concurrency and Computation: Prac-

tice & Experience, 20(5):531–540, 2008.

[71] Siv Hilde Houmb, Geri Georg, Jan Jürjens, and Robert France. An Integrated

Security Verification and Security Solution Design Trade-off Analysis. Integrating

Security and Software Engineering: Advances and Future Visions, pages 190–219,

2007.

[72] Jun Ho Huh and Andrew Martin. Trusted logging requirements for grid computing.

In Third Asia-Pacific Trusted Infrastructure Technologies Conference, pages 30–

42, 2008.

[73] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition analysis: a rule-

based intrusion detection approach. IEEE Transactions on Software Engineering,

21(3):181–199, March 1995.

[74] Kathleen Jackson, David DuBois, and Cathy Stallings. An expert system ap-

plication for network intrusion detection. In 14th National Computer Security

Conference, pages 215–225, January 1991.

[75] W Jiang and C Clifton. A secure distributed framework for achieving k-anonymity.

VLDB Journal, 15(4):316–333, November 2006.

[76] Andy Koronios Jill Slay. IT Security Risk Management. Wiley, Australia, 2006.

BIBLIOGRAPHY 225

[77] Patrick Juola. Authorship attribution. Foundations and Trends in Information

Retrieval, 1(3):233–334, 2006.

[78] Jan Jürjens. Viki v. 2.0.4, UMLsec Tool. http://inky.cs.tu-dortmund.de/

main2/jj/umlsectool/downloads.html, 2002.

[79] Jan Jürjens. Secure Systems Development with UML. Springer, 2005.

[80] Jan Jürjens. Using interface specifications for verifying crypto-protocol implemen-

tations. In Foundations of Interface Technologies. FIT’08 @ ETAPS, 2008.

[81] Ted Kang and Lalana Kagal. Enabling Privacy-awareness in Social Networks.

In Intelligent Information Privacy Management Symposium at the AAAI Spring

Symposium, pages 98–103, 2010.

[82] Tamás Kifor, László Varga, Sergio Álvarez, Javier Vázquez-Salceda, and Steven

Willmott. Privacy Issues of Provenance in Electronic Healthcare Record Systems.

Journal of Autonomic and Trusted Computing (JoATC), 3:1–10, 2008.

[83] Michael Koch and Kathrin Möslein. Identities Management for E-Commerce and

Collaboration Applications. International Journal of Electronic Commerce IJEC,

9:11–29, 2005.

[84] David W. Kravitz. Digital Signature Algorithm. U.S. Patent 5,231,668, 1993.

[85] Sandeep Kumar. Classification and Detection of Computer Intrusions. Phd thesis,

Purdue University, West Lafayette, Indiana, USA, 1995.

[86] Sandeep Kumar and Eugene H. Spafford. A Pattern Matching Model for Misuse

Intrusion Detection. In 17th National Computer Security Conference, pages 11–21,

1994.

[87] Brian Neil Levine and Marc Liberatore. DEX: Digital evidence provenance sup-

porting reproducibility and comparison. Digital Investigation, 6:S48–S56, 2009.

[88] Boots UK Limited. Data protection register. http://www.ico.gov.uk/

ESDWebPages/DoSearch.asp?reg=4488469, December 2002.

[89] Gary Locke and Patrick D. Gallagher. Privilege Management (Draft NI-

STIR 7657). http://csrc.nist.gov/publications/drafts/nistir-7657/draft-nistir-

7657 privilege-management.pdf, 2009.

[90] Wentian Lu and Gerome Miklau. Auditing a Database under Retention Restric-

tions. In IEEE International Conference on Data Engineering (ICDE), pages

42–53, 2009.

[91] Teresa F. Lunt. IDES: An Intelligent System for Detecting Intruders. In Computer

Security, Treat and Countermeasures Symposium, pages 110–121, Rome, Italy,

1990.

http://inky.cs.tu-dortmund.de/main2/jj/umlsectool/downloads.html
http://inky.cs.tu-dortmund.de/main2/jj/umlsectool/downloads.html
http://www.ico.gov.uk/ESDWebPages/DoSearch.asp?reg=4488469
http://www.ico.gov.uk/ESDWebPages/DoSearch.asp?reg=4488469

226 BIBLIOGRAPHY

[92] Linh Thao Ly, Stefanie Rinderle-Ma, and Peter Dadam. Design and Verification

of Instantiable Compliance Rule Graphs in Process-Aware Information Systems.

In 22nd International Conference on Advanced Information Systems Engineering

(CAiSE’10), pages 9–23, 2010.

[93] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrish-

nan Venkitasubramaniam. `-diversity: Privacy beyond k-anonymity. ACM Trans-

actions on Knowledge Discovery from Data (TKDD), 1(1):52–62, 2007.

[94] Luther Martin. Key-Management Infrastructure for Protecting Stored Data. Com-

puter, 41(6):103–104, June 2008.

[95] Terry Mayfield, Virgil D Gligor, Janet A Cugini, John M Boone, and Robert W

Dobry. Security Criteria for Distributed Systems: Functional Requirements. Tech-

nical report, Institute for Defense Analyses, USA, September 1995.

[96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[97] Gerome Miklau, Brian Neil Levine, and Patrick Stahlberg. Securing history: Pri-

vacy and accountability in database systems. In Conference on Innovative Data

Systems Research (CIDR), pages 387–396, 2007.

[98] Simon Miles. Electronically querying for the provenance of entities. In Proceedings

of the International Provenance and Annotation Workshop IPAW, pages 184–192.

Springer, November 2006.

[99] Simon Miles, Paul Groth, and Luc Moreau. Provenance Query API Func-

tional Specification. http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/

ProvenanceQueryFunctionalSpec, March 2006.

[100] Simon Miles, Paul Groth, Steve Munroe, and Luc Moreau. PrIMe: A Methodology

for Developing Provenance-Aware Applications. ACM Transactions on Software

Engineering and Methodology, 20(3):8–18, August 2011.

[101] Simon Miles, S Wong, Weijian Fang, Paul Groth, K Zauner, and Luc Moreau.

Provenance-based validation of e-science experiments. Web Semantics: Science,

Services and Agents on the World Wide Web, 5(1):28–38, March 2007.

[102] C. J. Mitchell, F. C. Piper, and P. R. Wild. Digital Signatures, chapter 6 of

Contemporary cryptology: The science of information integrity, pages 325–378.

IEEE Press, Piscataway NJ, 1992.

[103] Luc Moreau. The foundations for provenance on the web. Foundations and Trends

in Web Science (In Press), November 2010.

http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/ProvenanceQueryFunctionalSpec
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/ProvenanceQueryFunctionalSpec

BIBLIOGRAPHY 227

[104] Luc Moreau, Ben Clifford, Juliana Freire, Yolanda Gil, Joe Futrelle, Natalia Kwas-

nikowska, Simon Miles, Paolo Missier, Jim Myers, Yogesh Simmhan, Eric Stephan,

Jan Van Den Bussche, and Beth Pale. The Open Provenance Model Core Speci-

fication (v1.1). Future Generation Computer Systems, pages 1–30, 2010.

[105] Luc Moreau, Paul Groth, Simon Miles, Javier Vázquez, John Ibbotson, Sheng

Jiang, Steve Munroe, Omer Rana, Andreas Schreiber, Victor Tan, and László

Varga. The provenance of electronic data. Communications of the ACM, 51(4):52–

58, April 2008.

[106] Abdelaziz Mounji, Baudouin Le Charlier, Denis Zampunieris, and NajiHabra. Dis-

tributed audit trail analysis. In ISOC 1995 Symposium On Network and Dis-

tributed System Security, pages 102–112, 1995.

[107] Shubha U. Nabar, Krishnaram Kenthapadi, Nina Mishra, and Rajeev Motwani.

A Survey of Query Auditing Techniques for Data Privacy, volume 34, chapter 17,

pages 415–431. Springer US, 34 edition, 2008.

[108] BBC News. Data lost by revenue and customs. http://news.bbc.co.uk/1/hi/

uk/7103911.stm, 21 November 2007.

[109] BBC News. UK’s families put on fraud alert. http://news.bbc.co.uk/1/hi/uk_

politics/7103566.stm, 20 November 2007.

[110] Kaisa Nyberg and Rainer Rueppel. Message Recovery for Signature Schemes Based

on the Discrete Logarithm Problem. In Alfredo Santis, editor, Advances in Cryp-

tology – EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science,

pages 182–193, Berlin/Heidelberg, 1995. Springer-Verlag.

[111] Information Commissioner’s Office. Data Protection Register. http://www.ico.

gov.uk/, 1998.

[112] Hartig Olaf and Jun Zhao. Using Web Data Provenance for Quality Assessment.

In 1st Int. Workshop on the Role of Semantic Web in Provenance Management

(SWPM) at ISWC, pages 6–16, Washington, USA, 2009.

[113] W Olin Sibert. Auditing in a Distributed System: SunOS MLS Audit Trails. In

11th National Computer Security Conference, pages 82–90, 1988.

[114] Lorna Philip, Alison Chorley, John Farrington, and Pete Edwards. Data Prove-

nance, Evidence-Based Policy Assessment, and e-Social Science. In Proceedings of

the Third International Conference on eSocial Science, pages 1–10, 2007.

[115] J. Picciotto. The Design of an Effective Auditing Subsystem. In IEEE Symposium

on Security and Privacy, pages 13–22, Oakland, CA, USA, April 1987. IEEE

Computer Society.

http://news.bbc.co.uk/1/hi/uk/7103911.stm
http://news.bbc.co.uk/1/hi/uk/7103911.stm
http://news.bbc.co.uk/1/hi/uk_politics/7103566.stm
http://news.bbc.co.uk/1/hi/uk_politics/7103566.stm
http://www.ico.gov.uk/
http://www.ico.gov.uk/

228 BIBLIOGRAPHY

[116] Bogdan Popa. 15-year-old student breaks into school

computer system. http://news.softpedia.com/news/

15-year-old-Student-Breaks-into-School-Computer-System-86076.shtml,

May 2008. Softpedia Web Page.

[117] Bart Preneel. Cryptographic hash functions. European Transactions on Telecom-

munications, 5(4):431–448, 1994.

[118] Marsh Ray and Steve Dispensa. Renegotiating TLS. Technical report, PhoneFac-

tor, Inc., November 2009.

[119] Christoph Ringelstein and Steffen Staab. PAPEL: A Language and Model for

Provenance-Aware Policy Definition and Execution. In 8th International Business

Process Management Conference, pages 195–210, 2010.

[120] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-

natures and public-key cryptosystems. Communications of the ACM, 21(2):120 –

126, 1978.

[121] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In Confer-

ence on Systems Administration, pages 229–238, 1999.

[122] S.I. Schaen and B.W. McKenney. Network auditing: issues and recommendations.

In Proceedings Seventh Annual Computer Security Applications Conference, pages

66–79, San Antonio, TX, USA, 1991. IEEE Comput. Soc. Press.

[123] Bruce Schneier. Secrets and lies: digital security in a networked world. John Wiley

& Sons, 1st edition, 2000.

[124] Kenneth .F. Seiden and Jeffrey .P. Melanson. The auditing facility for a VMM

security kernel. In IEEE Computer Society Symposium on Research in Security

and Privacy, pages 262–277, Oakland, CA , USA, 1990. IEEE Comput. Soc. Press.

[125] Pasha Shabalin. Model Checking UMLsec Models. Master’s thesis, Department

of Informatics, TU München, Germany, 2004.

[126] Hovav Shacham and Dan Boneh. Fast-track session establishment for TLS. In

Mahesh Tripunitara, editor, Proceedings of NDSS 2002, pages 195–202. Internet

Society (ISOC), February 2002. Extended abstract of SBR04 journal paper.

[127] Hovav Shacham, Dan Boneh, and Eric Rescorla. Client-side caching for TLS. ACM

Transactions on Information and System Security, 7(4):553–575, 2004.

[128] Y Simmhan, B Plale, and D Gannon. A survey of data provenance in e-science.

SIGMOD Record, 34:31–36, 2005.

http://news.softpedia.com/news/15-year-old-Student-Breaks-into-School-Computer-System-86076.shtml
http://news.softpedia.com/news/15-year-old-Student-Breaks-into-School-Computer-System-86076.shtml

BIBLIOGRAPHY 229

[129] Stephen E. Smaha. svr4++, A Common Audit Trail Interchange Format for UNIX.

Technical report, Haystack Laboratories, Inc., Austin, Texas, USA, Version 2.2

1994.

[130] Steven R Snapp, James Brentano, Gihan Dias, Terrance Goan, Louis Todd Heber-

lein, Che-lin Ho, Karl Levitt, Biswanath Mukherjee, Stephen Smaha, Tim Grance,

Daniel Teal, and Douglas Mansur. DIDS(Distributed Intrusion Detection System)

-Motivation, Architecture, and An Early Prototype. In 14th National Computer

Security Conference, pages 167–176, October 1991.

[131] Gernot Stenz and Andreas Wolf. e-SETHEO: An Automated Theorem Prover.

In TABLEAUX ’00: Proceedings of the International Conference on Automated

Reasoning with Analytic Tableaux and Related Methods, pages 436–440, London,

UK, 2000. Springer-Verlag.

[132] Geoff Sutcliffe and Christian Suttner. The TPTP Problem Library for Automated

Theorem Proving. http://www.cs.miami.edu/~tptp/.

[133] L Sweeney. k-anonymity: A model for protecting privacy. International Journal

on Uncertainty, Fuzziness and Knowledgebased Systems, 10(5), 2002.

[134] Committee On National Security Systems. National Information Assurance (IA)

Glossary. www.cnss.gov, June 2006.

[135] Victor Tan, Paul Groth, Simon Miles, Sheng Jiang, Steve Munroe, Sofia Tsasakou,

and Luc Moreau. Security Issues in a SOA-based Provenance System. In Proceed-

ings of the International Provenance and Annotation Workshop (IPAW’06), pages

203–211, Chicago, Illinois, 2006. Springer-Verlag.

[136] The Open Group. Distributed Audit Service (XDAS) Preliminary Specification

P441. Berkshire, United Kingdom, 1997.

[137] Giorgos Tylissanakis and Yiannis Cotronis. Data Provenance and Reproducibility

in Grid Based Scientific Workflows. In Workshops at the Grid and Pervasive

Computing Conference (GPC ’09), pages 42–49, Washington, DC, USA, 2009.

IEEE Computer Society.

[138] Ozlem Uzuner, Yuan Luo, and Peter Szolovits. Evaluating the state-of-the-art in

automatic de-identification. Journal of the American Medical Informatics Associ-

ation : JAMIA, 14(5):550–63, January 2007.

[139] Henk C. A. Van Tilborg. Encyclopedia of Cryptography and Security. Springer,

2005.

[140] Serge Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL,

IPSEC, WTLS ... In EUROCRYPT ’02 Proceedings of the International Confer-

ence on the Theory and Applications of Cryptographic Techniques: Advances in

http://www.cs.miami.edu/~tptp/
www.cnss.gov

230 BIBLIOGRAPHY

Cryptology, pages 534–546, Amsterdam, The Netherlands, May 2002. Springer-

Verlag.

[141] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-

based audit. In 21th IEEE Computer Security Foundations Symposium, pages

177–191. IEEE Computer Society, 2008.

[142] Javier Vázquez-Salceda and Sergio Alvarez-Napagao. Using SOA Provenance to

Implement Norm enforcement in e -Institutions. In Jomi Fred Hübner, Eric Mat-

son, Olivier Boissier, and Virginia Dignum, editors, Coordination, Organizations,

Institutions and Norms in Agent Systems IV, volume 5428 of Lecture Notes in

Computer Science, pages 188–203, Berlin, Heidelberg, 2009. Springer-Verlag.

[143] Dominique de Waleffe and Jean-Jacques Quisquater. Better login protocols for

computer networks. In Computer Security and Industrial Cryptography - State of

the Art and Evolution, ESAT Course, pages 50–70, London, UK, 1993. Springer-

Verlag.

[144] Y. Richard Wang and Stuart E. Madnick. A Polygen Model for Heterogeneous

Database Systems:The Source Tagging Perspective. In 16th International Confer-

ence on Very Large Data Bases (VLDB ’90), pages 519–538, San Francisco, CA,

USA, 1990. Morgan Kaufmann Publishers Inc.

[145] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian

Theobald, and Dalibor Topic. S PASS Version 2.0. In CADE-18: Proceedings of the

18th International Conference on Automated Deduction, pages 275–279, London,

UK, 2002. Springer-Verlag.

[146] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum, James

Hendler, and Gerald Jay Sussman. Information accountability. Communications

of the ACM, 51(6):82–87, 2008.

[147] Jenifer Widom. Trio: A system for integrated management of data, accuracy,

and lineage. In Second Biennial Conference on Innovative Data Systems Research

(CIDR 2005), pages 262–276, Asilomar, California, 2005.

[148] Shouhuai Xu, Qun Ni, Elisa Bertino, and Ravi Sandhu. A Characterization of

the problem of secure provenance management. In International Conference on

Intelligence and Security Informatics, pages 310–314, Texas, USA, June 2009.

IEEE.

[149] Jun Zhao, Carole Goble, Robert Stevens, and D. Mining Taverna’s semantic web of

provenance. Concurrency and Computation: Practice and Experience, 20(5):463–

472, 2008.

BIBLIOGRAPHY 231

[150] Yong Zhao, Michael Wilde, and Ian Foster. Applying the Virtual Data Provenance

Model . In Luc Moreau and Ian Foster, editors, Provenance and Annotation of

Data, volume 4145 of Lecture Notes in Computer Science, pages 148–161, Berlin,

Heidelberg, 2006. Springer-Verlag.

	Declaration of Authorship
	Acknowledgements
	Nomenclature
	1 Introduction
	1.1 Provenance: Making Information Processing Transparent
	1.2 Securing Provenance
	1.3 Thesis Statement and Contributions
	1.4 Thesis Structure

	2 Related Work
	2.1 Provenance
	2.1.1 Computer Systems Provenance Definition
	2.1.2 Recording Provenance
	2.1.2.1 Workflow-based Systems
	2.1.2.2 Process-based Systems
	2.1.2.3 Operating System-based Systems
	2.1.2.4 Granularity of Provenance

	2.1.3 Storing Provenance
	2.1.4 Querying Provenance
	2.1.5 Analysing Provenance

	2.2 Auditing IT Systems
	2.2.1 Audit Trails
	2.2.1.1 Audit Trail Collection
	2.2.1.2 Audit Trail Analysis

	2.2.2 Securing Audit Trails
	2.2.3 Disadvantages of Audit Trails

	2.3 Security
	2.3.1 Security Properties
	2.3.1.1 Confidentiality
	2.3.1.2 Integrity
	2.3.1.3 Authentication
	2.3.1.4 Access Control
	2.3.1.5 Non-Repudiation
	2.3.1.6 Anonymisation

	2.3.2 Formalising Security Properties
	2.3.2.1 Unified Modelling Language
	UML Elements

	2.3.2.2 UMLSec
	Cryptographic Notation
	Adversary

	2.3.2.3 UMLSec Automatic Verification

	2.4 Data Protection Legislation
	2.4.1 Data Protection Act
	2.4.1.1 Terminology
	2.4.1.2 Principles of the Data Protection Act

	2.4.2 Safe Habor
	2.4.3 HIPAA

	2.5 Summary

	3 Problem Definition
	3.1 Exemplar Scenario
	3.1.1 On-line Sales Scenario
	3.1.2 Scenario Discussion

	3.2 DPA Notification Process
	3.3 Processing Personal Data
	3.4 Requirements Analysis
	3.4.1 Principle 1: Personal Data Processed Fairly and Lawfully
	3.4.2 Principle 2: Legal Purpose
	3.4.3 Principle 3: Collection of Relevant Information
	3.4.4 Principle 4: Information Integrity
	3.4.5 Principle 5: Identification of Individuals
	3.4.6 Principle 6: Rights of Data Subjects
	3.4.7 Principle 7: Secure Management of Personal Information
	3.4.8 Principle 8: Overseas Information Transfer
	3.4.9 Requirements Discussion

	3.5 Provenance as a Solution
	3.6 Assumptions
	3.7 Conclusions

	4 Provenance-Based Auditing Architecture
	4.1 Building the Architecture
	4.1.1 Components
	4.1.1.1 Actors
	4.1.1.2 Use Cases and Requirements

	4.1.2 Component Interactions
	4.1.3 Securing the Architecture

	4.2 Identifying the Required Provenance
	4.2.1 Phase 1: Provenance Question Capture and Analysis
	4.2.2 Phase 2: Actor Based Decomposition
	4.2.3 Phase 3: Adapting the Application

	4.3 Recording Provenance
	4.3.1 Notation
	4.3.2 Recording Provenance in the Data Request Protocol
	4.3.2.1 Messages
	4.3.2.2 Interaction p-assertions
	4.3.2.3 Relationship p-assertions

	4.3.3 Recording Provenance in the Task Request Protocol
	4.3.3.1 Messages
	4.3.3.2 Interaction p-assertions
	4.3.3.3 Relationship p-assertions

	4.3.4 Recording Provenance in the Query Request Protocol
	4.3.4.1 Messages
	4.3.4.2 Interaction p-assertions
	4.3.4.3 Relationship p-assertions

	4.4 Answering Provenance Questions
	4.4.1 Requirement B, Purpose Compliance
	4.4.1.1 Querying
	4.4.1.2 Analysis

	4.4.2 Requirement C, Relevant Information Verification
	4.4.2.1 Querying
	4.4.2.2 Analysis

	4.4.3 Requirement F, Anonymity Preservation
	4.4.3.1 Querying
	4.4.3.2 Analysis

	4.4.4 Requirement G, Basic Security Characteristics Verification
	4.4.4.1 Querying
	4.4.4.2 Analysis

	4.4.5 Requirement H, Information Transferred to a Secure Country
	4.4.5.1 Querying
	4.4.5.2 Analysis

	4.5 Discussion
	4.6 Conclusions

	5 Compliance Framework
	5.1 Preliminaries
	5.2 Usage Rules Definition
	5.3 Processing View
	5.4 Verification Algorithms
	5.4.1 Requirement B: Purpose Compliance
	5.4.1.1 Subrequirement B1: Used Data Compliance
	5.4.1.2 Subrequirement B2: Purposes Validation
	5.4.1.3 Subrequirement B3: Reusing Data

	5.4.2 Requirement C: Relevant Information Verification
	5.4.3 Requirement F: Anonymity Preservation
	5.4.4 Requirement G: Basic Security Characteristics Verification
	5.4.5 Requirement H: Information Transferred to a Secure Country

	5.5 Discussion
	5.6 Conclusions

	6 Securing the Provenance-based Auditing Architecture
	6.1 Preliminaries
	6.1.1 Optimised TLS Handshake Protocol
	6.1.2 Key Management
	6.1.3 Cryptographic Notation
	6.1.4 Securing Messages

	6.2 Securing the Recording and Storage Stage
	6.2.1 Securing Protocols
	6.2.1.1 OTLS Protocol
	Messages
	Interaction p-assertions
	Relationship p-assertions

	6.2.1.2 Securing Data Request Protocol
	Messages
	Interaction p-assertions
	Relationship p-assertions

	6.2.1.3 Securing Task Request Protocol
	Messages
	Interaction p-assertions
	Relationship p-assertions

	6.2.2 Verifying the Execution of the Protocols
	6.2.2.1 Verifying the Execution of OTLS
	6.2.2.2 Verifying the Execution of Data Request
	6.2.2.3 Verifying the Execution of Task Request
	6.2.2.4 Verifying Assertions during Storage Stage

	6.3 Securing the Querying and Analysis Stage
	6.3.1 Secured Provenance Graph
	6.3.2 Verifying a Secured Provenance Graph
	6.3.3 Securing the Query Request Protocol
	6.3.3.1 Verifying the Execution of Query Request

	6.4 Verifying the Secure Provenance-based Auditing Architecture
	6.4.1 The Viki Model Checker
	6.4.1.1 The Adversary Model
	6.4.1.2 An Example of the Viki Verification Process

	6.4.2 Verification
	6.4.3 Securing Provenance

	6.5 Discussion
	6.6 Conclusions

	7 System Evaluation
	7.1 Attack Trees
	7.2 System Definition
	7.3 System Attacks Analysis
	7.3.1 Confidentiality Attacks
	7.3.2 Integrity Attacks
	7.3.3 Authentication Attacks
	7.3.4 Non-Repudiation Attacks
	7.3.5 Availability Attacks

	7.4 Attack Trees Analysis
	7.4.1 Information Confidentiality Attack Tree
	7.4.2 Information Integrity Attack Tree
	7.4.3 Authentication Attack Tree
	7.4.4 Non-Repudiation Attack Tree
	7.4.5 Information Availability Attack Tree

	7.5 Conclusions

	8 Conclusion and Future Work
	8.1 Contributions
	8.1.1 Provenance-based Auditing Architecture
	8.1.2 Compliance Framework
	8.1.3 Secure Provenance-based Auditing Architecture

	8.2 Future Work
	8.2.1 Defining a Standard Vocabulary
	8.2.2 Privacy protecting provenance
	8.2.3 Provenance as legal evidence

	A ArgoUML UMLsec Diagrams
	A.1 OTLS UMLsec Sequence Diagram
	A.2 Data Request UMLsec Sequence Diagram
	A.3 Task Request UMLsec Sequence Diagram
	A.4 Viki Results

	Bibliography

