2012 IEEE International Symposium on Intelligent Control (ISIC)
Part of 2012 IEEE Multi-Conference on Systems and Control
October 3-5, 2012. Dubrovnik, Croatia

Assessment of Gradient-based Point-to-Point ILC for MIMO Systems
with Varying Interaction
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Abstract—This paper examines the performance of a
gradient-based point-to-point iterative learning control (ILC)
algorithm applied to multivariable input, multivariable output
(MIMO) systems. Whilst ILC is concerned with tracking a
reference trajectory defined over a finite time duration, the
point-to-point formulation addresses application domains where
the output is not critical at all points over the task duration.
The algorithm therefore enforces tracking of only an arbitrary
subset of points, with the advantage that the convergence rate
increases and input energy decreases as points are removed
from the reference. Experimental results presented using a
MIMO test facility which can be configured with variable levels
of input-output interaction and exogenous disturbance/noise
injection confirm the theoretical findings.

I. INTRODUCTION

Iterative Learning Control (ILC) is a methodology appli-
cable to systems which repeatedly track a reference, yq(t),
defined over a finite interval 0 < ¢t < T'. The aim is to use
past experience to sequentially improve tracking performance
over repeated trials of the task. It has been an area of
intense research interest in both theoretical and application
domains, see, for example, [1] for a recent literature review.
However, rather than follow a motion profile defined at
all points, in many applications the system output is only
critical at a finite set of prescribed time instants. Examples
include production line automation, crane control, satellite
positioning, and robotic ‘pick and place’ tasks in which the
critical points correspond to the location of the payloads.

The standard ILC framework is able to tackle the point-to-
point problem simply by employing an arbitrary reference,
va(t), which passes through the desired points. However
superior results follow if this is coupled with strategies such
as Input Shaping in order to suppress vibrations that occur
between the critical points. This approach is taken in [2]
for a high-acceleration positioning table. An alternative is
to use a simpler feedback controller to track y,(t) and to
employ ILC to update parameters within the input shaping
filter applied to the reference, as proposed by [3] for control
of an industrial robot. Another approach is to develop ILC
algorithms which have two separate components; one which
ensures tracking of y4(t), and another which reduces the
amplitude of residual vibrations occurring after the point-to-
point location is reached [4].

The drawback to all these methods is that they fail to
utilize the extra freedom available in ILC design to satisfy
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additional performance demands. Furthermore, if y4(t) is
designed a priori to meet such performance objectives, these
will not be met in practice due to the presence of model
uncertainty and noise.

Other approaches to point-to-point motion control have
broken away from the standard ILC framework of tracking
a static reference defined over 0 < ¢ < T, but have only
considered the case where a specified position must be
reached at time ¢ = T/, as in, for example, [5], [6], [7], [8], or
the case of a movement between two equilibrium points [9].
Whilst these approaches dispense with tracking unnecessary
output points, they do not use the resulting freedom to tackle
practical performance objectives. A further limitation is that
they only consider a single point-to-point movement, rather
than a sequence of actions needed to build up complex
movements, such as is required in robotic automation and
production line assembly.

In this paper an algorithm is derived which enforces
tracking of an arbitrary number of point-to-point movements.
Analysis shows that this algorithm robustly converges to
the minimal input energy solution, and moreover, that this
solution reduces as the number of points is removed from
the tracking task. At the same time the convergence rate of
the algorithm increases as additional points are removed.

II. PROBLEM FORMULATION

For any vector x € R”, |x||, = vxTx. For any
matrix A € R™*™, ||A]| is the induced norm of the vector
norm, \;(A) denotes the i*" eigenvalue of A, and p(A) =
max; [A;(A)] is the spectral radius of A. The n x n identity
and zero matrices are denoted by I,, and 0,, respectively.

Consider the following linear time-invariant (LTI) system

%
-~
+
=
|

Ax(t) + Bu(t)

Cx(t) + Du(t) x(0

) =x

~<

—
~

=

0
(D
defined over the finite time interval ¢ € [0,1,2,..., N — 1].
Here x(-) € R™, u(:) € R™, y(-) € R? are the state, input
and output vectors respectively, and the input and output
sequences are given by

c RmN
e RPN

u = o) u®?, ... uN -1
y = O ym",. .y -1T"

The standard ILC framework constructs a series of inputs
which drives the system to track a reference sequence
€ RPY

Yd = [yd<O)T7yd(1)T7 cos Ya(lN — 1)T]T
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Let uy, and yj be the input and output vectors respectively
on the k" trial, with e, = Y4 —Yi the tracking error. Then it
is necessary to find a sequence of control inputs that satisfies

lexl[ =0, [ug —ugl| =0 ()

lim lim
k—o0 k—o0
where ug is the unknown desired input sequence correspond-
ing to y4. Over the k' trial the input/output time-series

relationship can be expressed by yx = Guyi + yo where

D 0 0 -0
CB D 0 -0

a_| caB B D - 0| g geNxmN
CAN=2B CAN-3B CAN-*B ... D

3)

Here y is the response to initial conditions whose effect can

be absorbed into the reference trajectory, so that without loss

of generality it is assumed yy = O, or equivalently xg = O.
An ILC update of the form

Ui+l = Ui + Ley, 4)

can be considered as an iterative numerical method to solve
the tracking problem, and has been the focus of significant
research effort. The update (4) is convergent to a solution if
and only if

p(IpN — GL) < 1. 5)

The convergence rate is given by ﬁ and is maximal when

p(-) =0.
A. Point-to-point ILC formulation

Now consider the point-to-point problem in which the
component of the reference y, corresponding to the 5% plant
output is only required to be tracked at a fixed number,
M; < N, of sample instants given by 0 < n;; <
njo < .-+ < mjn; < N, which are contained in the
set S; = {nj1,...,n5nm,}. The tracked points are extracted
from y4 and placed in the same order in a point-to-point
reference y, through the operation y, = ®y,. Here & €
RMx*PN s defined as follows: Introduce 1 € RPN with
elements

it (6= 1)/p] € Sic(i=1)/p)p>
vi = { 0 otherwise ©

where | -| denotes the ‘floor’ function. This is a vector whose
(i x p+ )" point is 1 if the j*" output at time 7 is required
to be tracked, and 0 otherwise. @ is produced by splitting
each non-zero element of ) into a separate row, giving

=10 o LEmtest g

otherwise
with M = Zﬁ;l M;. When any output vector is pre-
multiplied by @, it extracts the components that correspond
to prescribed point-to-point locations, whilst retaining their
original order.

Remark 1: 1f each output is stipulated at the same set of

point-to-point locations, that is S; = &1, V j € {2,...,p},
then matrix ® has block-wise components
o Ip if j:nLi, i:1,2,...M1

iy = { 0p otherwise. ®)

In addition the reference has the form
T
yr = [yr<0)T7YT(1)Ta T aYr(Ml - 1>T} € RM
)

where y,.(i) € RP is the prescribed output vector at sample
Ny, and M = pM;. O

ILC can be formulated for the point-to-point case by
deriving an iterative numerical solution to the problem of
finding a control input which minimizes the point-to-point
error norm. The control objective is to find a sequence of

control inputs {u} such that
lim ||y, — ®Gui|| =0 (10)
k—oo

which replaces the standard requirement (2). The ILC update
(4) now assumes the form

U1 = ug + L(y, — Pyx) (11)
so that the convergence condition (5) becomes
p(Iy — ®GL) < 1 (12)

In Section III a learning operator L is derived to satisfy (12),
but first further motivation is provided to support the utility
of point-to-point ILC over the standard framework.

B. Point-to-point ILC motivation

Let d denote the rank deficiency of the plant matrix G (the
number of linearly dependent rows). If d > 0 the standard
ILC update (4) cannot force the plant to track an arbitrary
reference trajectory yg.

Theorem 1: The point-to-point update (11) can enforce
tracking of an arbitrary reference y, if and only if the tracked
points are chosen such that

M < Np—max{d,N(p—m)} (13)
Proof. A necessary and sufficient condition for an operator
L to exist satisfying the convergence condition (12) is that
rank (PG) = M. For the standard ILC case ® = I, M = N
and hence rank (PG) = N —d < M, leading to Iy — PGL
having d eigenvalues at unity. Now the i*" row of ®G is
the (j|®;; = 1)" row of G, hence if p < m and the point-
to-point samples are chosen to correspond to any subset of
linearly independent rows of G, the convergence condition
(12) can be satisfied. If p > m then the additional condition
M < Nm is imposed. O
Remark 2: Let system (1) be written as discrete transfer-
function matrix G(z) = C(zI,, — A)~'B + D with compo-
nent G; j(z) corresponding to the i*" output and j** input.
If the relative degree of G j(z) is 1y j, then d =, ;7 ;.
The ability of point-to-point ILC to employ a modified

standard reference to recover feasibility is extremely impor-
tant, especially as d > 1 in practice due to the delay action of
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a zero-order hold. However many tasks are naturally defined
only at a small number of points, and hence additional
benefits may also be expected by not enforcing unnecessary
tracking. The next lemma shows how the space of feasible
inputs expands as the number of tracked points, M, reduces.

Lemma 1: Assuming (13) is satisfied, the feasible in-
put space which forces the system (1) to track y,
is of dimension pN — M, and is given by U =
{(@G)T yr +X,x € null (@G)} where AT = (AT A)~1AT
is the pseudoinverse of A. The nullspace of ®G has an
orthogonal basis given by the rows of @P(EG)T* where

PG € RPN=M)xmN g guch that the matrix [@T(q)G)T}

is full rank, and P4 = I — AAT is the orthogonal projection
onto the nullspace of A. 0

The algorithm proposed in the next section exploits this
enlarged space to achieve desirable performance properties.

III. GRADIENT DESCENT POINT-TO-POINT ILC

The gradient descent method is one of many numerical
algorithms used to tackle nonlinear optimization problems,
and has previously been applied within the standard ILC
framework [10]. Motivated by (10) and the accompanying
discussion, it is applied to solve

min J (), J(u) = |y, — ®Gul|* (1)
leading to the iterative update for the control input
p
Up41 up — §VU_J(uk)
= w5 (®G) (v, —Pyr) (19

where the experimental plant output, y; has replaced the
nominal value, Guy, so that the optimisation is robustly
achieved within the ILC framework.

Theorem 2: Let ® comprise point-to-point locations sat-
isfying rank (#G) = M. Let ® equal ® but with the i*"
row removed, and hence correspond to tracking all but the
it" point-to-point location. Let the M eigenvalues of the
matrix A = (®G)(®G)T be denoted A\py < Apr_q-++ <
A2 < A1, which also equal the singular values since A is
Normal. Similarly, let the M — 1 eigenvalues of the matrix
B = (@G)(@G)T be denoted ppr < ppro1-c- < ps < o,
which also equal the singular values since B is Normal. Then
the following relationship holds

Av < pvr S A1 S pir—1 0 < < Ao < pp < AgL
(16)
In particular, let y equal the #*" column of A with the i*"
element removed. Then if the eigenvalues of B are distinct
and no eigenvector of B is orthogonal to y then

Av < piar < Apor < pp—1cee < pz < Ag < pg < At
a7
Proof. First note that A is a Hermitian matrix of order M,
and that B is a principal submatrix of A of order M —1. Then
(16) follows as an application of Cauchy’s Interlace Theorem
for eigenvalues of Hermitian matrices [11]. It is further

proven in [11] that (17) holds provided: 1) the eigenvalues
of B satisfy pias < piar—1 -+ < pg < o, and 2) the vector

)t (18)
has non-zero elements, where U is a unitary matrix of
order M — 1 such that UTBU = D, with D =
diag{pa, p3 - . . pas }- To satisfy 2) a suitable choice for U has

columns that are the eigenvectors of B, and hence 3 z; =0
only if y is orthogonal to an eigenvector of B. (]

UTy = [, 23, ..

A. Convergence Rate

Theorem 3: Provided the point-to-point locations are cho-
sen to satisfy (13), the choice of gain in (15)

0 2 B 2
<P < S@GERO)T) ~ [RG@A)T]

guarantees convergence of the plant output to the reference
yr. In particular, the maximum convergence rate corresponds
to
2
= F(PG(PG)T) + a(PG(PG)T)
The convergence rate using (20) increases as the number of

point locations, M, is reduced.
Proof. The convergence condition for (15) corresponds to

Iy — BRG(RG)T) < 1 21
providing a linear convergence rate to zero error [12]. Since
o (PG (®G)T) > 0, Vi since ®G(PG)T is positive definite,
oi(In — BPG(PG)T) =1 — Boy(PG(PG)T) < 1 Vi

= 0 < Boi(PG(PG)T) < 2
yielding (19). The solution to mﬂin p(I — BOG(®G)T) cor-
responds to the choice (20) and convergence rate
7(PG(2G)T) + o(®G(PG)T)
F(PG(PG)T) — o(PG(PG)T)

1+

19)

(20)

= (22)
20(2G(2G)T)

(PG (2G)T) — a(2G(2G)T)

Application of Theorem 2 guarantees that each point

removed from y, increases o(®G(®G)T) and reduces

(®G(®G)T). Hence the convergence rate increases.  [J

The convergence can be further analysed by diagonalizing
the matrix relationship ®ej 1 = (I — BOG(PG)T)Dey,

Peyyq = Vdiag{l — Bo;(®G(®G)T)}V ' ey,
where V is the eigenvector matrix of ®G(®G)”. This gives
V1@, = diag{(1 — Boi(®G(PG) ")}V dey.

Since V! = VT, the component of ®ey projected onto
the j'* eigenvector of ®G(®G)T hence evolves as (1 —
Boi(PG(PG)T))E. If eigenvalues i, and i, correspond to
minimum and maximum values of |1 — Bo;(®G(®G)T)|,
then the point-to-point reference with the fastest convergence
rate is given by a scalar multiple of y, = V;,, and similarly
the slowest is y, = V;,. For an arbitrary reference, the error
norm sequence lies in the interval

(10, (0G(2G)"))* < [ < (15, (8G(0G))
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B. Robustness Margins

Theorem 4: Let there exist a multiplicative uncertainty on

each element of the plant model G(z), such that G; ;(2) =
Gi.;(2)U;(z). Here G(z) is the actual plant and the model
G(z) corresponds to the matrix G used in the update law
(15). A sufficient condition for monotonic convergence is that
each arg{U;(e’“)} lies in the open interval (—m/2,7/2),
demonstrating a phase margin of 90°.
Proof. This is an extension of robustness analysis for the
standard gradient algorithm (® = I,,y) in [13] for the SISO
case. Suppose that the uncertainty can be expressed in the
matrix form G = GU, and that point locations satisfy (13).
Then from (15) the point-to-point error satisfies

leksa|? = lenl|? =82 GGTRT (BGGT DT
— BeL dGUTGT o e,

where ¢ = ®e. If U is positive, the first term on the right-
hand side is strictly positive for an arbitrary non-zero €y
and 3 > 0, and of O(3?). Similarly the second term is of
O(B) and strictly negative, and hence there always exists a
[ > 0 which ensures monotonic reduction in error norm.
This also holds if the components of éX ®G are reordered
so that the elements corresponding to the same input are
grouped, resulting in a reordering of the U matrix such
that Ugi—1ym+i,(j—1)m+; = Ui,j. The stipulation that the
components of G associated with the same input have the
same uncertainty then results in U having the block diagonal
structure U = {U;,Us...U,,} where U; corresponds to
the i'" input. A sufficient condition for U to be positive
definite is that each U; is positive definite. This is the
same as that arrived in [13] which goes on to show that
a sufficient condition is that each U;(z) is positive-real.
Therefore a sufficient condition for monotonic convergence
is that arg{U;(e’*)} lies in the open interval (—7/2,m/2)
V i. Note that any gain uncertainty |U;(e’*)| can be tolerated
through use of a sufficiently small 5. (]

C. Input Energy

Theorem 5: Consider the system (1) and a point-to-point
reference y,.. ILC algorithm (15) converges to the minimum
input energy solution that tracks y,.. Furthermore, this solu-
tion is bounded by

-l
u|| < —————
= @eee))
whose right-hand side strictly reduces as the number of

points M is reduced.
Proof. Repeated application of (15), with ug = 0, yields

k .
Wyl = (Z (I- (<I>G)T<I>G)1> (@G) "y,

=0

(23)

which has the limit
lim uy = (@3)T3G) " (3G)Ty, = (&) y, (24)
—> 00

Now suppose the input update u* solves the standard track-
ing problem, so that Gu* = y, where y, contains the desired

points, y,. Then exchange rows in matrix G' and y, to group
the stipulated, y,, and free components, y 4, as

G | . [ya
[ oé = (3]
where & € RPN =M)xPN g quch that [®7, ®7 is full rank.
The optimal cost of the problem

(25)

min ||ul| subjectto ®Gu =y,
u

is the norm of the orthogonal projection of u*, onto the range
of (®G)T, that is

lul| = [[(@G)T (2G)") | < fJu”]| (26)

Now insert into (26) the relationship

_ f i1 [va
* 1 L
ut = {(@GP(@G)T) ,(@GP@G)T> } {y}
to obtain a value of u which equates to the limit given in
(24). The relationship

1

|@a)| =7 (@) = o (BG(2G)T)

where o and ¢ are the maximum and minimum singular
values respectively, leads to (23). It follows that the input
norm is small when point-to-point locations are selected
which maximize the smallest eigenvalue of ®G(®G)T. Ap-
plying Theorem 2 means that o (PG(®G)”) increases as
each point-to-point location is removed, and hence the right-
hand side of (23) reduces.

Remark 3: If only a single point is specified for each
output then (23) becomes

-l

m
min > |G 4(2)]]
Jj=1,...p

q=1

This is also achieved if the time between point locations
exceeds the time taken for the impulse response to approxi-
mately go to zero (assuming asymptotic stability). O

Theorem 5 provides an example of the benefit obtained
compared with the bound |lu|| = ||G~y,| corresponding
to standard ILC (if it exists). This benefit increases as
the number of tracked points is reduced, or their temporal
spacing is increased.

Jul| < 27

D. Practical Implementation

Remark 4: The term ((I>G)T (yr — @yx) in (15) can be
efficiently generated using the co-state representation of
system (1). More specifically, it is equal to the output y
of the system

x(t) = AT+ D)x(t+1)+CT(t+1)at+1)
y(t) = BT(®)x(@t)+ DT (t)a(), t=N-1,...,0
with the input 0 = &7 (y, — ®y;). Use of the co-state

system therefore avoids calculation of the large G matrix
appearing in (15) and the algorithms which follow.
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IV. MULTIVARIABLE TEST FACILITY

The performance advantages established in the previous
section are now confirmed experimentally using a multivari-
able test facility. This system employs two interconnected
differential gearboxes, together with spring-mass-damper
components and is driven by two induction motors [14].
A high degree of coupling between inputs and outputs is
possible which can be varied by the operator. The completed
system is shown in Fig. 1 with component details listed
in Table 1. The level of damping applied between the two
differential gearboxes, shown as component 11 in Table I, is
parametrized by ¢ € [0, 1] which determines the interaction
existing in the system. Modeling of each interaction level has
been achieved through open-loop frequency response tests, in
which sinusoids were injected over the range of interest. The
resulting output power spectra were used to generate Bode
plots which have been optimally fitted by linear transfer-
functions. For interaction level c the resulting model is

b1 — Hp, Hpy| |Uh

b2 Héy Hey] U2
where ¢; and ¢9 are outputs (rad) of the MIMO system that
are measured by encoders, Uy, Us are the inputs, (volts), fed

to the inverters. For the uncoupling case (¢ = 0) the transfer-
function components are

(28)

o — 130000(s+2.75)
Bl ™ s(s+12.58)(s+14.20)(s+13.08)(s+15.10)
Ho. — 50000(s+1.99)
C2 ™ 5(5+8.41)(5+9.53)(5+10.62)(s+12.60)
0 _
Hp, = 0
0 _
HY, = 0

and for the fully coupling case (c = 1)

J 2 - 1403008200(5+0.06)

B1 — 5(s+45.0)(s+43.4)(s+38.2)(s+25.4)(s+31.7)(s+29.2)
gL, — 5000000(s5+0.77)

B2 — s(s+30.09)(s+28.43)(s+38.91)2(s+40.66)
gL — 59008000 (s+1.89)

c1 = s(5+38.07)(s+47.25)(s+49.32) (s+37.80) (s+28.19)
HL. — 598522600(s+0.14)

c2 —

5(5136.20)(51+39.65)(s+59.72) (5+39.04) (5+38.41)(s+60.93)

For other values of ¢ transfer-functions were similarly ob-
tained. A proportional feedback loop has been implemented
as a prestabilizer around each transfer-function, using a gain
of 0.1. The closed-loop system constitutes the controlled
system and, following discretization using 75 = 0.01, is
converted to matrix G using (3). T' = 5 secs giving N = 500.

First standard ILC is applied using M = N, & = I, in the
update (15) with optimal 3 calculated from (20). Sinusoidal
references are used, given by y, = [r1(0) r2(0) ... r1 (N —
1) r2(N — 1)]T where r(t) 6sin(2mt/T), ra(t) =
3sin(27t/T). The control input and error norms are shown
in Fig. 2 and Fig. 3 respectively. A very high input is required
which increases with the coupling level, attaining a value of
~ 1700. This would continue to increase but due to safety
reasons the experiment was terminated after 1200 trials, and
the coupling level was limited to 0.9. The error convergence
is very slow, and is still high after 1200 trials with the
coupling level ¢ = 0.9. The predicted convergence rate is

—— @

[ System components |
Encoder
DC motor 4
Spring 6
Coupling shaft 8 DC motor controller
Inverters and circuit breakers 10 | Mass

Adjusting interaction dampers || 12 | Emergency button

Induction motor
Damper

TABLE I
DEFINED COMPONENTS FOR THE MIMO SYSTEM J
Differential gearbox

ﬂ.ehwl

F1g 1: MIMO testbed facility

3000
2500
2000

Z' 1500
1000

500

0
Coupling, ¢ [ 02 04 06 08 1
Coupling, ¢

Fig. 2: Standard ILC input norm: a) Experimental results,
and b) Predicted final value.

calculated using (22) and differs from the results due to
model uncertainty and noise that are exacerbated by the large
control inputs and high number of trials.
Ten points have been selected from the references ry(t),
ro(t) for use with point-to-point ILC. These are respectively
yr1 = [3.53,5.71, 0, -5.71, -3.53] at time points S; = {50,
150, 250, 350, 450} and y, o = [2.85, 1.76, -1.76, -2.85,
0] at time points So = {100, 200, 300, 400, 500}. The
reference y, is assembled according to Section II, together
with the 10 x N matrix ®. The results are shown in Fig. 4 and
Fig. 5. The convergence is far faster than the standard case,
and the input norm far reduced. The predicted convergence
rate (22) is also shown, and matches the experimental data
more accurately than for standard ILC. The standard ILC
framework is again applied, but the sinusoidal references are
now replaced with the reference
ya=G(2G)y (29)
which solves (14) based on the nominal plant model. This
ensures fair comparison with point-to-point ILC. Results
are shown in Fig. 6 and Fig. 7. Both point-to-point and
standard ILC with reference (29) show that a higher coupling
level reduces convergence speed and requires greater control
effort. Comparing the error norms, the results show that
point-to-point ILC achieves a lower error norm, and this
is accentuated as the level of coupling is increased. This
difference is due to the standard ILC framework enforcing
tracking of unnecessary points which gives rise to learning
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a) b)

ay,li

-

1" - @y, Il
o

05 - S 10
Coupling 0 0% Trials, k Coupiing o

Fig. 3: Standard ILC error norm: a) Experimental and b)
Predicted results.

10°  Trials, k

700

600

e

llu,

o
Trials, k 10 0

Coupling, ¢ 0 02 04 06 08 1
Coupling, ¢

Fig. 4: Point-to-point ILC input norm: a) Experimental
results, and b) Predicted final value.

transients which are magnified by noise and plant model un-
certainty. The predicted convergence rate is calculated using
(22) and is also shown. This is accurate for approximately
the first 100 trials but the presence of model uncertainty and
noise causes discrepancies thereafter. For coupling levels [0.1
0.20.3040.50.60.70.80.9 1] the predicted convergence
rates for point-to-point ILC are [2.31, 2.26, 2.165, 2.06, 1.96,
1.92, 1.85, 1.71, 1.50, 1.37, 1.29] and for standard ILC with
reference (29) it is [1.83, 1.79, 1.71, 1.63, 1.54, 1.50, 1.47,
1.35, 1.27, 1.22, 1.16]. This increased rate reflects Theorem
3.

The results show that point-to-point ILC provides superior
convergence and a reduced input norm for controlling the
MIMO testbed facility, especially at high interaction levels.

Coupling Coupling 10° Trials, k

0

Fig. 5: Point-to-point ILC error norm: a) Experimental and
b) Predicted results.

Trials,k 0% 0

Coupling, ¢ ] 02 04 06 08 1
Coupling, ¢

Fig. 6: Standard ILC with optimal y,4 input norm: a) Exper-
imental results, and b) Predicted final value.

05

Coupling o Trials, k Coupling 0

Fig. 7: Standard ILC with optimal y4 error norm: a) Exper-
imental and b) Predicted results.

V. CONCLUSIONS

The requirement for point-to-point motion control arises in
many practical applications, including industrial automation,
robotics and rehabilitation engineering. However, there are
no available approaches to address general point-to-point
tasks and given performance objectives in a framework which
uses learning to attain optimal solutions in the presence
of model uncertainty and noise. This paper derives an al-
gorithms to address this deficit, and analyses convergence,
performance and robustness properties. Experimental results
confirm the practical utility and performance of the proposed
approaches and illustrate the benefit gained over using the
standard framework with an a priori generated reference.
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