The University of Southampton
University of Southampton Institutional Repository
Warning ePrints Soton is experiencing an issue with some file downloads not being available. We are working hard to fix this. Please bear with us.

Theoretical formalism for collective electromagnetic response of discrete metamaterial systems

Theoretical formalism for collective electromagnetic response of discrete metamaterial systems
Theoretical formalism for collective electromagnetic response of discrete metamaterial systems
We develop a general formalism to describe the propagation of a near-resonant electromagnetic field in a medium composed of magnetodielectric resonators. As the size and the spatial separation of nanofabricated resonators in a metamaterial array is frequently less than the wavelength, we describe them as discrete scatterers, supporting a single mode of current oscillation represented by a single dynamic variable. We derive a Lagrangian and Hamiltonian formalism for the coupled electromagnetic fields and oscillating currents in the length gauge, obtained by the Power-Zienau-Woolley transformation. The response of each resonator to electromagnetic field is then described by polarization and magnetization densities that, to the lowest order in a multipole expansion, generate electric and magnetic dipole excitations. We derive a closed set of equations for the coherently scattered field and normal mode amplitudes of current oscillations of each resonator both within the rotating wave approximation, in which case the radiative decay rate is much smaller than the resonance frequency, and without such an assumption. The set of equations includes the radiative couplings between a discrete set of resonators mediated by the electromagnetic field, fully incorporating recurrent scattering processes to all orders. By considering an example of a two-dimensional split ring resonator metamaterial array, we show that the system responds cooperatively to near-resonant field, exhibiting collective eigenmodes, resonance frequencies, and radiative linewidths that result from strong radiative interactions between closely-spaced resonators
1550-235X
85116
Jenkins, Stewart D.
65d861fb-b85a-4927-805a-7c906fca26c6
Ruostekoski, Janne
2beb155e-64b0-4ee9-9cfe-079947a9c9f4
Jenkins, Stewart D.
65d861fb-b85a-4927-805a-7c906fca26c6
Ruostekoski, Janne
2beb155e-64b0-4ee9-9cfe-079947a9c9f4

Jenkins, Stewart D. and Ruostekoski, Janne (2012) Theoretical formalism for collective electromagnetic response of discrete metamaterial systems. Physical Review B, 86, 85116. (doi:10.1103/PhysRevB.86.085116).

Record type: Article

Abstract

We develop a general formalism to describe the propagation of a near-resonant electromagnetic field in a medium composed of magnetodielectric resonators. As the size and the spatial separation of nanofabricated resonators in a metamaterial array is frequently less than the wavelength, we describe them as discrete scatterers, supporting a single mode of current oscillation represented by a single dynamic variable. We derive a Lagrangian and Hamiltonian formalism for the coupled electromagnetic fields and oscillating currents in the length gauge, obtained by the Power-Zienau-Woolley transformation. The response of each resonator to electromagnetic field is then described by polarization and magnetization densities that, to the lowest order in a multipole expansion, generate electric and magnetic dipole excitations. We derive a closed set of equations for the coherently scattered field and normal mode amplitudes of current oscillations of each resonator both within the rotating wave approximation, in which case the radiative decay rate is much smaller than the resonance frequency, and without such an assumption. The set of equations includes the radiative couplings between a discrete set of resonators mediated by the electromagnetic field, fully incorporating recurrent scattering processes to all orders. By considering an example of a two-dimensional split ring resonator metamaterial array, we show that the system responds cooperatively to near-resonant field, exhibiting collective eigenmodes, resonance frequencies, and radiative linewidths that result from strong radiative interactions between closely-spaced resonators

Text
PhysRevB.86.085116.pdf - Version of Record
Download (1MB)

More information

Submitted date: 1 June 2012
Published date: 13 August 2012
Organisations: Applied Mathematics

Identifiers

Local EPrints ID: 340132
URI: http://eprints.soton.ac.uk/id/eprint/340132
ISSN: 1550-235X
PURE UUID: 836dca1d-b554-4fdd-b6ec-d3dcf7b05e4b

Catalogue record

Date deposited: 13 Jun 2012 11:28
Last modified: 20 Nov 2021 12:13

Export record

Altmetrics

Contributors

Author: Stewart D. Jenkins

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×