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The paper describes a substantial extension of norm optimal iterative learning control (NOILC) that permits tracking of a class
of finite dimensional reference signals whilst simultaneously converging to the solution of a constrained quadratic optimisation
problem. The theory is presented in a general functional analytical framework using operators between chosen real Hilbert
spaces. This is applied to solve problems in continuous time where tracking is only required at selected intermediate points
of the time interval but, simultaneously, the solution is required to minimise a specified quadratic objective function of the
input signals and chosen auxiliary (state) variables. Applications to the discrete time case, including the case of multi-rate
sampling, are also summarised. The algorithms are motivated by practical need and provide a methodology for reducing
undesirable effects such as payload spillage, vibration tendencies and actuator wear whilst maintaining the desired tracking
accuracy necessary for task completion. Solutions in terms of NOILC methodologies involving both feedforward and
feedback components offer the possibilities of greater robustness than purely feedforward actions. Results describing the
inherent robustness of the feedforward implementation are presented and the work is illustrated by experimental results from
a robotic manipulator.
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1. Introduction

Iterative learning control (ILC) is a methodology ap-
plicable to systems which repeatedly perform the same
operation over a finite time interval 0 ≤ t ≤ T. Each rep-
etition is termed an iteration or trial. The aim is to se-
quentially improve the performance of the operation as
the trial index, k, increases through suitable use of data
recorded over previous trials of the task, often in combi-
nation with current-trial information. Originally conceived
for robotic applications (Arimoto, Miyazaki, & Kawamura,
1984), ILC has since been applied to wide variety of appli-
cation fields, with research interest in both theoretical and
application domains continuing to expand year-on-year. Re-
cent overviews of the literature are given in Ahn, Chen, and
Moore (2007) and Bristow, Tharayil, and Alleyne (2006). A
mature algorithmic framework has evolved for the case of
linear ILC applied to linear plants, which include gradient
based algorithms whose convergence and robustness prop-
erties have been extensively studied (Furuta & Yamakita,
1987; Kinosita, Sogo, & Adachi, 2002; Owens, Hätönen, &
Daley, 2009). A highly cited example is norm optimal ILC
(NOILC) (Amann, Owens, & Rogers, 1996b), which cal-
culates the input of trial k to minimise a quadratic cost
function comprising weighted norms of the current trial
error vector and the difference in the control input vector

∗Corresponding author. Email: cf@ecs.soton.ac.uk

on two successive trials. A general Hilbert space and hence
general theoretical development of NOILC appeared orig-
inally in Amann et al. (1996b) and was shown to lead to
a control realisation as a state feedback plus feedforward
(predictive) term. The ability to achieve control over er-
ror and input (mean square) norm evolution has led to
NOILC receiving significant attention in the ILC commu-
nity e.g. Gunnarsson and Norrlof (2001), Lee, Lee, and
Kim (2000) and Barton and Alleyne (2011). The robust-
ness and performance afforded by this combined control
structure was subsequently verified experimentally on ap-
plications including an accelerator based free electron laser
(Rogers et al., 2010), multi-axis laser facility (Barton &
Alleyne, 2011) and within stroke rehabilitation (Freeman,
Rogers, Hughes, Burridge, & Meadmore, 2012). The gen-
eral formulation also permitted further theoretical devel-
opments including the extension to the discrete time case
(Amann, Owens, & Rogers, 1996a), an N-iteration ahead
predictive solution (Amann, Owens, & Rogers, 1998), ac-
celeration mechanisms (Owens & Chu, 2009), the inclu-
sion of convex input constraints (Chu & Owens, 2010) and
a detailed analysis of the effect of non-minimum phase
zeros in the continuous (Owens, Chu, Rogers, Freeman,
& Lewin, 2012) and discrete time (Owens & Chu, 2010)
cases.

C© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
 H

ig
hf

ie
ld

] 
at

 0
7:

32
 1

0 
M

ay
 2

01
3 

http://dx.doi.org/10.1080/00207179.2013.771822


2 D.H. Owens et al.

Over the years, some of the original postulates in Ari-
moto et al. (1984) defining the task and underlying plant
have been relaxed, one of which is the stipulation that the
task is that of following a motion profile defined at all points
0 ≤ t ≤ T. For example, a recent body of work (Chen &
Xu, 1997; Gauthier & Boulet, 2008, 2009; Wang & Hou,
2011; Xu & Huang, 2008; Xu, Chen, Lee, & Yamamoto,
1999) considered the case where a specified position must
be reached at time t = T. Extensions to this have recently
been considered in discrete (Freeman, 2012; Freeman &
Tan, 2012; Son & Ahn, 2011) and continuous time (Owens,
Freeman, & Dinh, 2012; Son, Ahn, & Nguyen, 2011a; Son,
Nguyen, & Ahn, 2011b; Son & Ahn, 2012), which enforce
tracking only at specified intermediate times, thereby pro-
viding an ILC framework for use with a broad class of
applications including production line automation, crane
control, satellite positioning and robotic ‘pick and place’
tasks in which the system output (e.g. payload position)
is only critical at a finite set of prescribed time instants. A
further application is within stroke rehabilitation. Here elec-
trical stimulation is applied to assist patients’ movements
precisely to encourage voluntary effort whilst ensuring ac-
curate movement, but where the task is naturally specified
in the form of a point-to-point problem (Freeman et al.,
2012). Whilst the point-to-point problem can be tackled
by the standard ILC framework by employing a reference,
which passes through the required points, its formulation
as an optimisation problem which does not enforce track-
ing over unnecessary time periods clearly holds the pos-
sibility of more rapid convergence and superior transient
performance, whilst enabling more transparent design and
analysis. This was illustrated in Owens et al. (2012) using
an extension of NOILC to deal with the intermediate point
tracking problem. Experimental results indicated the rela-
tive benefits of feedforward plus feedback implementations
as compared to the purely feedforward implementation.

In general, tracking at intermediate points only implies
that the desired tracking control signal will be non-unique.
It is natural in these circumstances to ask whether or not an
ILC algorithm can be constructed that not only achieves the
desired tracking at intermediate points but also converges
to a solution that minimises an auxiliary quadratic objec-
tive function dependent on the input signal and a defined
set of auxiliary variables e.g. accelerations and inter-sample
velocities. Within robotic manipulation, such an approach
would limit system vibration as well as spillage or damage
of/to the payload. The designer may also wish to limit the
control effort in order to reduce energy needs and actuator
wear. The aim of this paper is to show that solutions do in-
deed exist for this problem and that they can be approached,
constructed and analysed using techniques similar to those
used in the well-developed framework of NOILC. Two for-
mulations of algorithms based on ‘switching’ between two
different optimisation problems are presented, the second
being a relaxation of the first that requires more iterations

but displays superior robustness in practice. In addition,
as the computations are a combination of matrix manipu-
lations and quadratic optimisation similar to NOILC, the
algorithms can be implemented in a feedforward form or a
combined feedforward plus feedback form.

This paper is structured as follows: in Section 2 the
problem is defined and modelled in a general product
Hilbert space setting. This approach simplifies notation
and indicates the generality of the algorithms to be de-
rived later. The notational simplification is analogous to
that obtained from the use of transfer functions in classical
control. The generality comes from the ability to analyse
and construct algorithms for continuous time, discrete time
and other classes of systems under the same framework.
Section 3 explains how the operator formulation can be
applied to the case of linear, continuous state space sys-
tems, linear discrete systems and multi-rate systems. In
Section 4, two new switching algorithms are derived and
key information on convergence rates and the character of
the limit input function are proven. In Section 5, a theoret-
ical analysis of a feedforward implementation is discussed
in detail and indicates the potential for considerable ro-
bustness of convergence in practice. This is followed by a
practical evaluation using a robotic experimental facility,
which indicates that the theory is an excellent guide to con-
vergence and robustness properties in practice. Conclusions
are given in Section 7.

2. Iterative tracking with auxiliary optimisation:
a general model

In this section, a general theory is presented that provides
a framework for the solution of a class of linear system
ILC problems that not only have a tracking requirement
but also require that a solution is found simultaneously that
minimises a selected quadratic performance criterion (also
called an objective function). The framework chosen is that
used by Amann et al. (1996b), namely functional analysis
in real Hilbert spaces. This has the benefit of compact-
ness of notation and proof plus a generality that permits
wide application to a number of problems including time-
invariant, time-varying continuous time, discrete time and
multi-rate ILC problems. The presentation starts with this
problem formulation and then, in later sections, the precise
form of a proposed algorithm is described. The conver-
gence properties of the algorithm are then investigated and
a modification is described that provides flexibility for im-
plementation purposes. Proofs of robustness properties are
then given. All use the modelling tools described in this
section.

2.1. Systems models, signal spaces, operators and
the problem statement

The system model to be used has signals consisting of inputs
u ∈ U , outputs y ∈ Y and auxiliary variables z ∈ Z where
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U ,Y,Z are real Hilbert spaces. The inner product in U is
denoted <u, v>U with induced norm ‖u‖U = √

<u, u>U
with similar notation used for Y and Z .

The underlying systems dynamics is described by a lin-
ear relation

y = Gu+ d (Plant Dynamics), (1)

where G is a bounded linear operator mapping U into Y and
d is an iteration independent term describing initial condi-
tion effects and any exactly repeated disturbances or bias in
the signal. Implicit in this assumption therefore is that the
initial condition on each iteration is the same. This model
plays an indirect role in the general theory but, as will be
seen from the state space examples in the next section, it
plays a crucial role in the construction of the actual track-
ing problem. This tracking problem requires two ingredi-
ents, namely a tracking requirement and auxiliary variables
defined as follows. Examples describing formulations in
terms of state space models are given in later sections (e.g.
Section 3.1.1).

The tracking requirement is defined using a signal re ∈
Re, where Re is also a Hilbert space. The tracking sought
is specified by the linear relation

ye = re where ye = G0u+ d0 (Tracking Requirement),
(2)

where G0 is a bounded linear operator mapping U into
Re and d0 ∈ Re is an iteration independent term again
describing the effects of initial conditions and repeated dis-
turbances or bias.

An auxiliary signal z is selected as a suitable measure
of desired control performance and is specified by a linear
relation

z = G1u+ d1 (Auxiliary Variable Dynamics), (3)

where G1 is a bounded linear operator mappingU into a real
Hilbert spaceZ and d1 ∈ Z is an iteration independent term
again describing the effect of initial conditions and exactly
repeated disturbances or bias. The precise ILC tracking
problem is defined as follows:

Problem definition: Given a desired reference re ∈ Re and
an initial input signal u0 ∈ U , construct an ILC algorithm
for the plant with dynamics y = Gu + d to find a system
input signal inU that satisfies the tracking requirement ye =
re where ye = G0u + d0 whilst simultaneously minimising
the objective function,

J (z, u) = ‖z− z0‖2
Z + ‖u− u0‖2

U , (4)

where (z0, u0) is the solution pair of the auxiliary equation
for the given input u0. That is, the ILC algorithm converges

to a solution of the constrained optimisation problem,

u∞ = argmin{J (z, u) : u ∈ U ,
re = G0u+ d0, z = G1u+ d1}. (5)

A special case: If G1 = 0 and d1 = 0, then (z0, u0) = (0,
u0) is a solution of the auxiliary system (for all choices of
u0) and, in this case, the auxiliary optimisation problem is
the minimisation of the input energy measure ‖u− u0‖2

U .

Next, the following assumptions are also used to en-
sure invertibility of relevant ‘matrix’ operators later in the
development in this paper.

Important dimensionality and invertibility assump-
tions: It is assumed throughout the paper that

(1) the Hilbert space Re is finite dimensional and also
that

(2) the kernel (null space) of the adjoint operator sat-
isfies ker[G∗

0] = {0} (equivalently, the range of G0,
denoted R[G0], is exactly Re).

The important aspects of Hilbert space theory rele-
vant to the theoretical development are summarised in
Appendix 1.

Note: The condition on the range of G0 is necessary to
ensure that all signals in Re can be tracked. In practice, if
R[G0] is a proper subspace of Re, the apparent problem
of failing to satisfy the assumptions can be removed in a
formal way by regarding R[G0] as a Hilbert space in its
own right and setting Re equal to this subspace.

2.2. Invertibility and spectral properties

The following results follow from the above construction
and assumptions and are important to the following theo-
retical development. The first easily proven result provides
information on invertibility of a special operator.

Lemma 2.1: Given the above assumptions, let L : U → U
be any positive definite or semi-definite, self adjoint opera-
tor in U . Then the following self-adjoint operator

G0(I + L)−1G∗
0 : Re → Re

can be represented by a non-singular, positive definite (in
the topology of Re), square matrix of dimension equal to
the dimension of the space Re. In particular, choosing
L = 0, the matrix representation of G0G

∗
0 is square and

non-singular.

The following results characterise the spectrum of an
operator relevant to the problem. It uses an important alter-
native topology for Re defined by the result.
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4 D.H. Owens et al.

Lemma 2.2: Using the above assumptions and construc-
tion, suppose that a new Hilbert topology inRe is defined by
the inner product<u, v>0 = <u, (G0G

∗
0)−1v>Re

and as-
sociated induced norm. Then this topology is topologically
equivalent to that induced by <·, ·>Re

.

Proof: Note also that all norm topologies in finite dimen-
sional spaces are equivalent. The bilinear form <u, v>0 =
<u, (G0G

∗
0)−1v>Re

is indeed an inner product as
<u, v>0 = < v, u>0(∀u, v) and, without loss of gener-
ality, it is always possible to choose a basis for Re in which
the matrix representation of the product <u, v>Re

= uT v.
The norm in Re is then Euclidean. In this basis, the
self-adjoint operator G0G

∗
0 is a positive-definite, symmet-

ric matrix so the associated quadratic form <u, u>0 =
<u, (G0G

∗
0)−1u>Re

is positive definite. �
Lemma 2.3: Using the above assumptions and construc-
tion, suppose that L is self-adjoint and positive semi-definite

on U with δ2I ≤ L ≤ δ
2
I for some scalars 0 ≤ δ2 ≤ δ

2
.

Define W∞ = I −G0(I + L)−1G∗
0(G0G

∗
0)−1. Then W∞ is

self adjoint and positive semi-definite in the topology de-
fined by the inner product <·, ·>0 and its eigenvalues are
real and lie in the half-open interval [0, 1). More precisely,
every eigenvalue λ satisfies the inequality,

0 ≤ δ2

1 + δ2
≤ λ ≤ δ

2

1 + δ
2
< 1. (6)

Moreover, its spectral radius r(W∞) is equal to its induced
norm ‖W∞‖0, which is hence characterised by the relation

r(W∞) = ‖W∞‖0 = min{<v,W∞v>0 : <v, v>0 = 1}.
(7)

Proof: First, write W∞ = I − �. It is easily seen that � is
self-adjoint and positive definite in the <·, · >0 topology.
Its spectrum (eigenvalues) is (are) hence real and strictly
positive. Let� v= λ vwith v �= 0 and write, using algebraic
manipulation and the Cauchy Schwarz inequality.

1

1 + δ
2
‖v‖2

0 ≤ λ‖v‖2
0 = <v,�v>0

= <G∗
0(G0G

∗
0)−1v, (I + L)−1G∗

0(G0G
∗
0)−1v>U

≤ 1

1 + δ2
‖v‖2

0, (8)

where the bounds on L have been used to write 1

1+δ2 I ≤
<u, (I + L)−1u>U ≤ 1

1+δ2<u, u>U ,∀ non-zero u ∈ U .

The result follows by converting this inequality into bounds
on 1 − λ. �

Note: The results can be refined if L is positive definite

and δ2I < L ≤ δ
2
I with 0 ≤ δ2 < δ

2
. In this case the spec-

trum lies in the open interval (0, 1) and each eigenvalue

satisfies

0 ≤ δ2

1 + δ2
< λ ≤ δ

2

1 + δ
2
< 1. (9)

Finally, the bounded operator G0 has some simple proper-
ties of value in the following analysis.

Lemma 2.4: If Re has dimension nr, then for any chosen
basis of Re, there exists vectors gj, 1 ≤ j ≤ nr such that
the mapping u → G0u maps u into the coordinates of G0u
following the rule:

u →

⎡
⎢⎣
<g1, u>U

...
<gnr , u>U

⎤
⎥⎦ (10)

Furthermore, let {uk}k ≥ 0 be an infinite sequence in U .
Then, a sufficient condition for G0uk to converge to zero in
the norm topology ofRe is that uk → 0 in the weak topology
of U .

Proof: Boundedness of G0 is equivalent to continuity. The
result then follows from the definitions of norm and weak
topologies in Hilbert spaces and the Riesz Representation
Theorem (see, for example, Luenberger, 1969). �

3. Linear state space systems: intermediate point
tracking problems

The problem definition described in the previous section
has the advantage of generality but needs to be tailored to
meet the needs of a specific application. In the next sub-
sections, an application to continuous state space systems
is defined in detail and application to single and multi-rate
discrete systems outlined. The presentation starts with the
construction of the tracking system from a basic underly-
ing state space model S(A, B, C), proceeds to define the
relevant spaces, the operators G, G0, G∗

0 and G1 and then
to compute G0G

∗
0 which is a matrix that is needed in the

resultant algorithms.

3.1. Continuous time systems

3.1.1. A general intermediate point tracking
system model

The following description demonstrates how the interme-
diate point tracking objective of attaining desired output
values at specific points in a time interval [0, T] can be for-
mulated as a special case of the general problem with spe-
cific operators G, G0, G1 and spaces Y,U ,Z,Re. Let S(A,
B, C) be a strictly proper m-output, �-input, state dimension
n, linear, time-invariant system written in the form,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, y(t) = Cx(t) (11)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
 H

ig
hf

ie
ld

] 
at

 0
7:

32
 1

0 
M

ay
 2

01
3 



International Journal of Control 5

or, equivalently, in the operator form y = Gu + d, whereG :
L�2[0, T ] → Lm2 [0, T ], y, d ∈ Lm2 [0, T ] and u ∈ L�2[0, T ]
i.e. U = L�2[0, T ] and Y = Lm2 [0, T ]. Here T < ∞ is as-
sumed to be fixed. The relevant convolution operator G and
signal d appearing in Equation (1) are hence defined by

(Gu)(t) =
∫ t

0
CeA(t−s)Bu(s) ds,

d(t) = CeAtx0, t ∈ [0, T ]. (12)

Note: The output y(t) is assumed to contain all mea-
sured variables whose values will be specified by the track-
ing problem at some or all intermediate times. For example,
if positions y and velocities ẏ are to be specified in a me-
chanical problem (e.g. a robot required to be momentarily
stationary at each location in a component assembly task)
and CB = 0 then the velocities can be added to an output
y(t) = Cx(t) by the map,

y →
[
y

ẏ

]
, C →

[
C

CA

]
and m → 2m. (13)

Note: G is always bounded as T is finite even if it is
unstable. It is natural to assume however that S(A, B, C)
is asymptotically stable as algorithms will normally be im-
plemented in conjunction with a stabilising feedback con-
troller.

Let 0< t1 < t2 < ···< tM = T be M distinct intermediate
points in [0, T] needed to define the task. For any f ∈
Lm2 [0, T ], consider the linear map f 
→ f e with

f e =

⎡
⎢⎣
F1f (t1)

...
FMf (tM )

⎤
⎥⎦ ∈ Rf1 × · · · × RfM = Re

where each Fj is fj × m and of full row rank. Clearly Re

can be identified with Rnr with nr = f1 + ··· fM.
Note: Including the Fj permits the designer to require

only that selected elements or linear combinations of ele-
ments of f that are important in the tracking objective be
specified at each time t = tj, e.g. a system may need to
arrive at the end-time at a specific spatial point with a de-
sired velocity but need only to pass through a number of
given spatial points at some intermediate times (velocities
unspecified).

With this notation, the ‘extended output’ ye from the
plant is defined to be the values Fjy(tj), 1 ≤ j ≤ M at
intermediate points, i.e. the dynamics in Equation (2) can
be modelled using

ye = G0u+ d0,

G0u =

⎡
⎢⎣
Ge

1u
...

Ge
Mu

⎤
⎥⎦ , d0 =

⎡
⎢⎣
F1d(t1)

...
FMd(tM )

⎤
⎥⎦ (14)

with G0 : L�2[0, T ] → Rf1 × · · · × RfM a linear operator.
As there is no need to define a reference trajectory for all
points of [0, T], the reference signal is defined as re =
[(re1 )T , . . . , (reM )T ]T ∈ Re where rej is the desired value of
Fjy(tj) at time tj, 1 ≤ j ≤ M. This notation is consistent with
the above by noting that re is generated by the map r →
re for any nominal r(t) that has the desired values at the
intermediate points. With this definition, the tracking error
is constructed from ee = re − ye = (r − y)e. Each operator
Ge
j : L�2[0, T ] → Rfj in Equation (14) is constructed from

G and defined by the relation,

Ge
ju = Fj (Gu)(tj ) = Fj

∫ tj

0
CeA(tj−t)Bu(t) dt. (15)

3.1.2. Computing the adjoint operators and G0G
∗
0

First the relevant adjoint operator G∗
0 of G0 is computed.

Take the product space Re = Rf1 × · · · × Rf1 to be a
Hilbert space with inner product,

<(v1, . . . , vM ), (w1, . . . , wM )>[Q] =
M∑
j=1

vTj Qjwj ,

where the fj × fj matrices Qj, 1 ≤ j ≤ M are symmetric and
positive definite. [Q] is used to denote the data set {Q1, . . .,
QM} and the squared error norm is ‖ee‖2

[Q] = <ee, ee>[Q].
Also the input signal space U is a real Hilbert space with
inner product and norm

<u, v>R =
∫ T

0
uT (t)Rv(t) dt where R = RT > 0

and ‖u‖R =
√∫ T

0
uT (t)Ru(t) dt . (16)

Note: For notational transparency in the state space
examples, the inner products have been given subscripts
corresponding to the weighting matrices used.

Noting that

<(w1, . . . , wM ),G0u>[Q] = <G∗
0(w1, . . . , wM ), u>R

(17)

by definition, then the adjoint is computed from adjoints of
Ge
j , 1 ≤ j ≤ M .
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6 D.H. Owens et al.

(1) Adjoint operator of Ge
j : Consider Ge∗

j via the
identity

wTj QjFj

∫ tj

0
CeA(tj−t)Bu(t) dt

=
∫ tj

0
(R−1BT eA

T (tj−t)CT FTj Qjwj )
T Ru(t) dt.

It can hence be deduced that

(Ge∗
j wj )(t) ={
R−1BT eA

T (tj−t)CT FTj Qjwj ; 0 ≤ t ≤ tj

0; t > tj

}
,

(18)

which can be computed from the relation Pj(t) = 0,
t ∈ (tj, T] and, on [0, tj], from

Ṗj (t) = −AT Pj (t), Pj (tj )
= CT FTj Qj , (Ge∗

j wj )(t)

= R−1BT Pj (t)wj . (19)

(2) Adjoint operator of G0: Using the above repre-
sentations, the adjoint operator of G0 is the map
(w1, . . . , wM ) 
→ u defined by

u(t) =
M∑
j=1

(Ge∗
j wj )(t)

= R−1BT
M∑
j=1

Pj (t)wj . (20)

(3) Finally, the matrixG0G
∗
0 is obtained as an nr × nr

block matrix with fi × fj (i, j )th block given by

(G0G
∗
0)ij =

∫ min(ti ,tj )

0
FiCe

A(ti−t)

×BR−1BT eA
T (tj−t)CT FTj Qj dt

= Q−1
i

∫ min(ti ,tj )

0
PTi (t)RPj (t) dt. (21)

3.1.3. The auxiliary system

The auxiliary system z = G1u + d1 of Equation (3) is
assumed to be described by an �-input, mz-output proper
state space model S(Az, Bz, Cz, Dz) of state dimension nz,
i.e.

ẋz(t) = Azxz(t) + Bzu(t), z(t) = Czxz(t) +Dzu(t)
xz(t) ∈ Rnz , xz(0) = xz0

(22)

with G1 and d1 defined as

(G1u)(t) = Dzu(t) +
∫ t

0
Cze

Az(t−s)Bzu(s) ds,

d1(t) = Cze
Aztxz0, t ∈ [0, T ]. (23)

Choosing Z = L
mz
2 [0, T ] with inner product and norm de-

fined by

<z1, z2>Q =
∫ T

0
zT1 (t)Qz2(t) dt &

‖z‖Q =
√∫ T

0
zT (t)Qz(t) dt, (24)

(where the mz × mz matrix Q = QT > 0) then the auxiliary
optimisation problem is the minimisation, subject to both
the auxiliary dynamic equations and the tracking require-
ment, of the objective function,

J (z, u) =
∫ T

0

[
(z(t) − z0(t))TQ(z(t) − z0(t))

+ (u(t) − u0(t))T R(u(t) − u0(t))
]

dt (25)

indicating the secondary objective of minimising a
weighted combination of an input energy measure and the
variation of the auxiliary signal. The relative weights of
these objectives are reflected in the choices of the mz × mz

matrix Q and � × � matrix R.
In summary, for the continuous time case the tracking

requirement (2), auxiliary dynamics (3) and objective func-
tion (4) are, respectively, represented by Equations (14)–
(15), (23) and (25).

3.2. Discrete time state space systems

The relevant models and operators for this case are sum-
marised in Appendix where it is seen that both uni-rate
(Appendix 1) and multi-rate (Appendix 2) systems can be
included in the general operator formulation favoured in this
paper. In particular, the finite dimensionality assumptions
are automatically valid in these cases even if full tracking at
all sample points is required. The invertibility assumptions
do still need to be checked however and the computations
for operators and adjoints, etc. differ in computational de-
tail. Other useful practical observations include:

(1) Discrete time tracking of a reference signal at each
sample point is just NOILC (Amann et al., 1996b),
which fits into the formulation described by choos-
ing G0 = G and Re = Y . The idea of auxiliary op-
timisation only makes sense here if the input u that
enables the tracking to be achieved is non-unique.
This is the case if � > m.
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International Journal of Control 7

(2) The situation of discrete time delay systems is easily
included in the formulation if delays are synchro-
nised with the samples and every delay is an integer
multiple of the sample length. In such a case the de-
lay is removed by replacing it by an extended state
description.

3.3. A comment on the choice of a state space
auxiliary system

The auxiliary system choice is infinite (in both continuous
time and discrete time cases) and must reflect the needs of
the application. A number of possible other interpretations
are illustrated below using the notation of the above and
Appendix.

(1) G1 may reflect the map between inputs and other
states of interest to the control problem but this is
not necessary for applications.

(2) More generally, the choice of G1 could be based
upon a perceived need to shape the frequency con-
tent of the input signal. This can be seen by assum-
ing that d1 = 0 and u0 = 0 and writing the auxiliary
objective function in the form,

J (z, u) = ‖z− z0‖2
Z + ‖u− u0‖2

U
= <u, (I +G∗

1G1)u>U. (26)

Assuming that it is possible to do the factorisation
(I +G∗

1G1) = G∗
fGf , then the auxiliary optimisa-

tion problem can be seen to be that of minimising
the norm of the ‘filtered’ input Gfu. This argument
can be reversed, starting with a desired Gf and using
it to construct G1. Details of the exploitation of this
idea are left for future research output.

(3) In both discrete time and continuous time state
space situations, suppose that u0 = 0, d1 = 0 and
Q = Rz where Rz is symmetric and positive def-
inite. Also assume that G1 can be identified with
the matrix identity G1 = I. Then the auxiliary ob-
jective function becomes simply J = ‖u‖2

R+Rz . In
this case the methodology can be interpreted as an
algorithm that uses an input weight R during itera-
tions to achieve tracking whilst minimising control
energy as measured by J = ‖u‖2

R+Rz .

4. Switching algorithms - general theory

The paper now considers the iterative solution of the con-
strained optimisation problem (5) in a manner that meets
the needs of ILC. The structure of the proposed algorithms
is designed to address, in one algorithm, the TWO objec-
tives of eliminating the tracking errors ee = re − ye (where
ye = G0u + d0 is the intermediate point output achieved

by the input signal u) whilst also achieving the desired aux-
iliary minimisation of J(z, u). In addition, the aim is to
design algorithms that use simple computational tools from
linear quadratic optimisation that, for state space systems,
can be realised as familiar linear quadratic optimal control
methodologies. Both on-line and off-line computational im-
plementations are then possible.

The two algorithms now presented are based on the
idea of switching between constraints in the sense that
each iteration consists of two components. The two com-
ponents of each iteration for the first algorithm (Switching
Algorithm 1) respectively solve the tracking problem ex-
actly and then minimise a modified auxiliary objective
function. The second algorithm (Switching Algorithm 2)
is a relaxation of the first that allows approximate satis-
faction of the tracking constraint at each iteration whilst
retaining the asymptotic convergence properties of the first
algorithm. This approximation takes the form of replacing
the exact solution by a series of k0 ≥ 1 iterations of a NOILC
problem based on G0 and a start condition obtained from
the auxiliary system iterations.

4.1. Switching Algorithm 1

The algorithm is given as follows and presupposes that re,
Q, [Q] and R have been specified, that the two factors u0, z0

appearing in objective function (4) have been chosen and
that G∗

0 and G0G
∗
0 have been computed:

Switching Algorithm 1

1. Set the iteration index k = 0 and choose uk = u0

2. Find the plant output yek = G0uk + d0 and compute
eek = re − yek .

3. Solve the optimisation problem

ũk+1 = argmin{‖u− uk‖2 : re = G0u+ d0}
using the off-line formula ũk+1

= uk +G∗
0(G0G

∗
0)−1eek. (27)

Note the need for invertibility of the matrix G0G
∗
0.

4. Solve the optimisation problem

(uk+1, zk+1) = argmin
{‖z− zk‖2

Z
+‖u− ũk+1‖2

U : z = G1u+ d1
}
.

(28)

5. Replace k by k + 1 and go to step 2.

Note that step 4 is computationally identical to the first
iteration of a NOILC control problem with ‘output’ equal to
the auxiliary signal z, a reference signal ‘zk’ and first input
choice of ‘ũk+1’. It can be computed off-line or on-line,
and in the latter case a combined feedback and (predictive)
feedforward structure has been found to be more robust
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8 D.H. Owens et al.

to model uncertainty (Owens et al., 2012). The required
formulation is provided by Amann et al. (1996b), and for
clarity the exact formulae involved are given by Equations
(77)–(79).

Finally, there is an option to terminate the algorithm at
any point if required but, for analysis purposes, it is assumed
that the iterations are not terminated. For simplicity, the
algorithm is written assuming that the control input uk + 1

is the new input applied to the plant on iteration k + 1 but
the input ũk+1 could be used as an alternative.

4.2. Analysis of Switching Algorithm 1

To analyse the behaviour of the algorithm, note that steps 3
and 4 give rise to the characterisation,

uk+1 = ũk+1 +G∗
1(zk − zk+1)

= uk +G∗
1(zk − zk+1) +G∗

0(G0G
∗
0)−1eek

= uk +G∗
1G1(uk − uk+1) +G∗

0(G0G
∗
0)−1eek, (29)

which gives

uk+1 = uk + (I +G∗
1G1)−1G∗

0(G0G
∗
0)−1eek (30)

and hence

eek+1 = W∞eek, where

W∞ = (I −G0(I +G∗
1G1)−1G∗

0(G0G
∗
0)−1), (31)

which is a matrix iteration in the finite dimensional space
Re. Using Lemmas 2.1–2.3 and identifying L with G∗

1G1

immediately yields the convergence theorem

Theorem 4.1: Using the above construction, W∞ has a
real spectrum lying in the half-open interval [0, 1) and the
tracking error sequence {eek}k≥0 satisfies the condition,

ee∞ = lim
k→∞

eek = 0
(

i.e. ye∞ = lim
k→∞

yek = re
)

(32)

in any norm topology of Re. In particular,

‖eek+1‖0 ≤ λ‖eek‖0∀k ≥ 0 (where λ = ‖W∞‖0 < 1) (33)

and eek converges to zero as ‖eek‖0 ≤ λk‖ee0‖0 → 0 as k →
∞. Finally,

lim
k→∞

‖ũk − uk‖U = 0. (34)

(1) Note that the tracking error is monotonic in the error
norm ‖e‖0, which depends upon the original inner
product chosen for Re modified by (G0G

∗
0)−1. It

is therefore not necessarily monotonic in the com-
monly used Euclidean norm although the user may

influence convergence properties through choice of
[Q], Q and R.

(2) Also, as each ũk solves the tracking problem, an
important outcome of this result is that of con-
sistency i.e. either of the sequences {uk}k ≥ 0 or
{ũk}k≥0 asymptotically solve the problem.

To derive additional properties of the algorithm, write
the input iteration in the form

uk+1 = uk + (I +G∗
1G1)−1G∗

0(G0G
∗
0)−1Wk

∞e
e
0 (35)

which, as W∞ has spectral radius <1, proves the existence
of the limit u∞ = limk → ∞uk generated from the formula,

u∞ − u0 = (I +G∗
1G1)−1G∗

0(G0G
∗
0)−1

∞∑
k=0

Wk
∞e

e
0 = (I +G∗

1G1)−1G∗
0(G0G

∗
0)−1(I −W∞)−1ee0,

(36)

where u∞ hence generates the auxiliary signal z∞ = G1u∞
+ d1 where

lim
k→∞

zk = z∞ = z0 +G1(I +G∗
1G1)−1G∗

0(G0G
∗
0)−1

× (I −W∞)−1ee0. (37)

Writing the above as

(I +G∗
1G1)(u∞ − u0) = G∗

0λ0 where

λ0 = (G0G
∗
0)−1(I −W∞)−1ee0 ∈ Re (38)

or using z = G1u + d1

u∞ − u0 = G∗
0λ0 +G∗

1λ1, where z∞ − z0 = −λ1.

(39)
It is immediately concluded that

Theorem 4.2: Under the condition defined above, the pair
(u∞, z∞) is a stationary point of the Lagrangian

L(u, λ0) = J (z, u) + 2 < λ0, r
e −G0u− d0 >Re

+ 2 < λ1, z−G1u− d1 >Z (40)

(with multipliers λ0 ∈ Re, λ1 ∈ Z) for the linearly con-
strained optimisation problem with

Objective Function J (z, u) = ‖z− z0‖2
Z + ‖u− u0‖2

U
(41)

and Constraints {u ∈ U , re = G0u+ d0, z = G1u+ d1}.
(42)
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International Journal of Control 9

Furthermore, the sequence {uk}k ≥ 0 (and hence {ũk}k≥0)
asymptotically solves the associated ILC tracking prob-
lem with the auxiliary optimisation criterion posed in
Section 2.

Proof: The linearity of the constraints and the assump-
tion that R[G0] = Re indicate that all points of Z × U
are regular points (see, for example, Luenberger, 1969)
of the constraints. This condition, together with the obser-
vation that the objective function is convex and the con-
straint set is both closed and convex in Z × U , then proves
that (u∞, z∞) solves the required, constrained optimisation
problem. �

4.3. Switching Algorithm 1: convergence rates
and parameter choices

The norms inU and Z are assumed to be chosen by the con-
trol design engineer to reflect the desired relative weighting
between ‖z− z0‖2

Z and ‖u− u0‖2
U in the objective func-

tion (4). To illustrate the influence of this relative weighting
replace (4) by the modified weighting

Jε(z, u) = ‖z− z0‖2
Z + ε2‖u− u0‖2

U , (43)

where ε2 > 0 is a parameter introduced to reveal the effects
of a simple change in the relative weights of the two terms
in the objective function.

The effect on the previous theory is simply that the
operator G∗

1 is replaced by ε−2G∗
1 and, in particular, W∞ is

replaced by

W∞(ε) = (I −G0(I + ε−2G∗
1G1)−1G∗

0(G0G
∗
0)−1). (44)

W∞(ε) has all the properties of W∞. It also has relevant
properties for algorithm performance as reflected in the
following result:

Theorem 4.3:

lim
ε→∞W∞(ε) = 0 (45)

and, if ker[G1] = {0},

lim
ε→0+

W∞(ε) = I (the Identity) (46)

In particular, the spectral radius r(W∞(ε)) then has the
properties

lim
ε→∞ r(W∞(ε)) = 0 & lim

ε→0+
r(W∞(ε)) = 1 (47)

(which is interpreted as stating that convergence will be
slow if ε is ‘very small’ and very rapid if ε is ‘large’, i.e.
the algorithm convergence is, in general, expected to be

faster if greater emphasis is placed on control input energy
reduction in the auxiliary optimisation problem).

Proof: The first limit follows by first letting ε2 >

‖G∗
1G1‖U and then using the expansion (I + X)−1 =

I + X + X2 + X3 + ··· for any bounded operator X with
norm strictly less than unity to show that W∞(ε) = O(ε−2)
→ 0 as ε → ∞. To prove the second limit, let r ∈ Re be
arbitrary and nonzero. Set v = G∗

0(G0G
∗
0)−1r ∈ U and ex-

amine the relation uε = (I + ε−2G∗
1G1)−1v in the form

ε2uε +G∗
1G1uε = ε2v i.e., using the Cauchy Schwarz

inequality,

ε2‖uε‖U + ‖G1uε‖2
Z = ε2<uε, v>U ≤ ε2‖uε‖U‖v‖U

so that ‖uε‖U ≤ ‖v‖U∀ε. Also, it follows that ‖G1uε‖2
Z ≤

ε2‖uε‖U‖v‖U ≤ ε2‖v‖2
U → 0 (as ε → 0). Now let ψ ∈ Z

be arbitrary and examine the relation <ψ,G1uε>Z =
<G∗

1ψ, uε>U → 0 (as ε → 0). The assumption that
ker[G1] = {0} implies that G∗

1 has dense range (see, for
example, Luenberger, 1969). This, together with the proved
fact that ‖uε‖U ≤ ‖v‖U∀ε then proves that uε converges to
zero (as ε → 0) in the weak topology of U . Writing

(I −W∞(ε))r = G0(I +G∗
1G1)−1G∗

0(G0G
∗
0)−1r = G0uε

and using the finite dimensionality of Re to identify G0 as
a matrix with ‘rows’ in U (see Lemma 2.4) indicates that

lim
ε→0+

W∞(ε)r = r, (48)

which ends the proof of the result as r is arbitrary and Re

is finite dimensional. �

4.4. Switching Algorithm 2

Algorithm 1 assumes that the optimisation in step 3 will
be solved using the given formula (27) for ũk+1 (or an
equivalent computation). This requirement can be relaxed
by replacing this step by a finite iteration process to yield
the modified algorithm written in the form of ILC ‘outer’
iterations with index k for the sequence {uk}k ≥ 0, etc. but,
where each such iteration consists of k0 ‘inner iterations’
(with index j) used in the computation of ũk+1. This is
still an ILC process but the use of two iteration indices
simplifies the presentation of the methodology. In addition
to providing control over the input change, the use of inner
iterations means that the tracking problem can be addressed
on-line over several trials, e.g. by exploiting a feedback
plus (predictive) feedforward implementation. Intuitively,
this could lead to greater robustness in practice in dealing
with plant-model mismatch. The algorithm proposed is as
follows.
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10 D.H. Owens et al.

The ‘outer iteration’ process:

1. Set the iteration index k = 0 and choose uk = u0

and an integer k0 ≥ 1.
2. Undertake k0 ‘inner iterations’ using the NOILC

problem for the system ye = G0u + d0 with refer-
ence signal re and initial input choice uk (a more de-
tailed description is given following this algorithm
statement). These iterations can be undertaken on-
line.

3. Set ũk+1 to be equal to the final control signal ũ(k0)
k+1

generated by this process.
4. As in Switching Algorithm 1, solve the optimisa-

tion problem

(uk+1, zk+1) = argmin{‖z− zk‖2
Z + ‖u− ũk+1‖2

U :

z = G1u+ d1} (49)

for the control signal uk + 1.
5. Replace k by k + 1 and go to step 2.

The Inner Iterations: Step 2 in the above can be de-
scribed in more detail as follows:

1. Set an inner iteration index j = 0 and initiate inner
iterations from the starting condition ũ(j )

k+1 = uk and
ee(k+j ) = eek .

2. Compute the new input signal

ũ
(j+1)
k+1 = ũ

(j )
k+1 +G∗

0(I +G0G
∗
0)−1ee(k+j ) (50)

obtained by minimising

∥∥ee(k+j+1)

∥∥2

Re
+ ∥∥ũ(j+1)

k+1 − ũ
(j )
k+1

∥∥2

U , (51)

where the new output ye(k+j+1) = G0ũ
(j+1)
k+1 + d0

and the resultant tracking error ee(k+j+1) = re −
ye(k+j+1).

3. Replace j by j + 1.
4. If j = k0, end the inner iteration process. Otherwise

return to step 2.

Note: Step 2 of the inner iterations can be done either
off-line by simulation or on-line using experimentation.
In the latter case, a combined feedback and (predictive)
feedforward structure embeds the potential for greater ro-
bustness to model uncertainty. A solution has recently been
published (Owens et al., 2012), which makes this possible
in the continuous time case, and, for completeness, the exact
formulae required are given by (82)–(86).

4.5. Analysis of Switching Algorithm 2

The analysis is similar to that of Switching Algorithm 1.
The crucial difference is the inner iteration process. It is
easily seen from NOILC that, ∀j ≥ 0,

ũ
(j+1)
k+1 = ũ

(j )
k+1 +G∗

0e
e
(k+j+1) and hence

ee(k+j+1) = (I +G0G
∗
0)−1ee(k+j ),

i.e. ee(k+j ) = (I +G0G
∗
0)−j eek (52)

Hence, using induction, and ũ(0)
k+1 = uk

ũk+1 = ũ
(k0)
k+1 = uk +G∗

0

k0−1∑
j=0

(I +G0G
∗
0)−(j+1)eek. (53)

Whenever the matrixG0G
∗
0 is positive definite, all eigenval-

ues of (I +G0G
∗
0)−1 are strictly less than unity and hence,

summing the geometric series,

ũk+1 = uk +G∗
0(I +G0G

∗
0)−1(I − (I +G0G

∗
0)−1)−1

× (I − (I +G0G
∗
0)−k0 )eek, (54)

which yields

ũk+1 = uk +G∗
0(G0G

∗
0)−1(I − (I +G0G

∗
0)−k0 )eek. (55)

As limk0→∞(I +G0G
∗
0)−k0 = 0, it is seen that Algorithm 2

is equivalent to Algorithm 1 when k0 = ∞.
The use of finite values of k0 can however affect per-

formance. More precisely, using the above input signal in
step 4 of Algorithm 2 and using similar algebra to that used
in Algorithm 1 yields the results that, ∀k ≥ 0,

eek+1 = Wk0e
e
k and hence eek = Wk

k0
ee0 (56)

where the matrix

Wk0 = I −G0(I +G∗
1G1)−1G∗

0(G0G
∗
0)−1

× (I − (I +G0G
∗
0)−k0 )

i.e. Wk0 = W∞ + (I −W∞)(I +G0G
∗
0)−k0

(57)

The rest of the analysis is identical to that of Switching
Algorithm 1 with W∞ replaced byWk0 with identical results
and properties provided that all eigenvalues of Wk0 have
modulus strictly less than unity. Noting that

lim
k0→∞

Wk0 = W∞, (58)

it follows that all of the properties of Switching Algorithm
1 are retained if k0 is large enough. However, if k0 is too
small, then it might be expected thatWk0 could have eigen-
values ≥1 and hence that the algorithm could diverge. The
following result proves that this is not the case.
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Theorem 4.4: Under the conditions defined above, every
eigenvalue λ of Wk0 satisfies the inequality,

|λ| ≤ r(W∞) + (1 − r(W∞))

(
(r((G0G

∗
0)−1))

(1 + r((G0G
∗
0)−1))

)k0

< 1.

(59)

That is r(Wk0 ) < 1 for all k0 > 0 and Switching
Algorithm 2 converges for all choices of k0 > 0.

Note: The bound on r(Wk0 ) is monotonically decreasing
to the value r(W∞) = ‖W∞‖0. This suggests that, although
k0 has no effect on final convergence, increasing k0 will
tend to increase convergence rate.

Proof: For any eigenvalue λ, using ‖K‖0 to denote the
induced norm of an operatorK : Re → Re in the topology
induced by <· ·>0,

|λ| ≤ ‖Wk0‖0 ≤ ‖W∞‖0 + ‖I −W∞‖0‖(I +G0G
∗
0)−1‖k0

0

= r(W∞) + (1 − r(W∞))‖(I +G0G
∗
0)−1‖k0

0 .

It is easily proved that (I +G0G
∗
0)−1 is positive definite

and self-adjoint in the <·, ·>0 topology. Its norm is hence

equal to its spectral radius which is just g2

1+g2 , where g2

is largest eigenvalue of (G0G
∗
0)−1. This completes the

proof. �
Finally, the discussion of convergence rates and parame-

ter choices also remains valid. In particular, if the parameter
ε2 is introduced into the inner iteration objective function,
i.e.,

∥∥ee(k+j+1)

∥∥2

Re
+ ∥∥u(j+1)

k+1 − u
(j )
k+1

∥∥2

U

→ ∥∥ee(k+j+1)

∥∥2

Re
+ ε2

∥∥u(j+1)
k+1 − u

(j )
k+1

∥∥2

U , (60)

then G∗
0 is replaced by ε−2G∗

0 in all formulae. W∞ is un-
changed by this modification but

lim
ε→0

Wk0 (ε) = W∞. (61)

That is, smaller values of k0 can be used to achieve a given
convergence rate if the weighting of the control energy in
the inner iteration optimisation problem is reduced.

5. A discussion of algorithm robustness

A characterisation of robustness is possible in the special
case where all computations are undertaken off-line but us-
ing observed plant tracking error data, i.e. a specific feed-
forward implementation.

Feedforward assumption for robustness analysis: Sup-
pose that both the computation of ũk+1 from uk and eek and
the auxiliary optimisation problem generating uk + 1 from zk

and ũk+1 are undertaken off-line but that each uk is used
on-line to generate the tracking error data eek from the plant.

It follows that differences between the plant and the
model G0 will affect each signal yek , and hence eek , in an
‘unpredictable’ way. In contrast, although there may be
modelling errors in G1 (as a representation of the behaviour
of the actual values of z generated by the plant), these errors
have no impact on the algorithm as the ‘real’ z measure-
ments are not made and are not required for the compu-
tations. The algorithm may still converge to the desired
tracking signal, but, if it does indeed converge, it is natural
to ask the question whether or not it converges to a solution
of the defined ILC problem with auxiliary optimisation de-
fined in terms of the model-based values of the auxiliary
variable z.

Using the feedforward assumption and, for simplicity,
examining the case of Switching Algorithm 1, the main
change to the theoretical analysis is that the data eek used
is generated from the plant. Let G0 now denote the op-
erator deduced from a model of the plant and denote
the actual value of this operator by G0 + �G0 where,
again, �G0 maps U into Re and is bounded. In a similar
manner, suppose that the plant replaces the model value
d0 by d0 + �d0. As a consequence, the plant output
yek = (G0 +�G0)uk + (d0 +�d0) and the observed on-
line plant error is now

eek = re − yek = re − (G0 +�G0)uk − (d0 +�d0)∀k ≥ 0.
(62)

The relevant formulae used for analysis are as follows,
namely, if uk generates the error eek from the actual plant
on-line, then the next input uk + 1 can be characterised via
off-line computation of ũk+1,

ũk+1 = uk +G∗
0(G0G

∗
0)−1eek

using the model G0. This is then followed by the model-
based off-line NOILC minimisation problem, which has the
formal solution

uk+1 = ũk+1 +G∗
1(zk − zk+1)

= uk +G∗
1G1(uk − uk+1) +G∗

0(G0G
∗
0)−1eek

i.e. uk+1 = uk + (I +G∗
1G1)−1G∗

0(G0G
∗
0)−1eek

It follows trivially, by operating on this with the real plant
operator G0 + �G0, that

eek+1 = (W∞ +�W∞)eek,∀k ≥ 0, (63)

where�W∞ is the change induced by the plant-model mis-
match. Note that the change to d0 has no effect on the
general form of the error evolution.

Analysis of the algorithm has already proved that the
spectral radius r(W∞) of the matrix W∞ is strictly less
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12 D.H. Owens et al.

than unity and considerably less than unity if the weighting
on control energy in the auxiliary optimisation problem is
large.

The matrix perturbation �W∞ takes the form,

�W∞ = −�G0(I +G∗
1G1)−1G∗

0(G0G
∗
0)−1. (64)

Again, using ‖K‖0 to denote the induced norm ofK : Re →
Re in the topology induced by the inner product <·, ·>0, it
is deduced that

Theorem 5.1: Under the defined conditions above, the
feedforward implementation of the Switching Algorithm 1
converges to a zero tracking error if the induced norm,

‖�W∞‖0 = ‖�G0(I +G∗
1G1)−1G∗

0(G0G
∗
0)−1‖0

< 1 − r(W∞). (65)

In particular, it is sufficient that

‖�G0‖ = (sup{<�G0v,�G0v>0 : v ∈ U &

<v, v>U = 1})1/2 < (1 − r(W∞))(1 + δ2) (66)

where δ2 is any positive scalar in the range 0 ≤ δ2 ≤ δ2

where

δ2 = inf {<G1v,G1v>Z : v ∈ U & <v, v>U = 1}.
(67)

Proof: The relation eek+1 = (W∞ +�W∞)eek indicates that
it is only necessary to prove that, under the defined con-
ditions, all eigenvalues of W∞ + �W∞ have modulus
strictly less than unity. Note that all eigenvalues satisfy the
inequality,

|λ| ≤ ‖W∞ +�W∞‖0

≤ ‖W∞‖0 + ‖�W∞‖0

= r(W∞) + ‖�W∞‖0

(68)

i.e. the first inequality is sufficient to ensure that |λ| < 1.
Next, note that a sufficient condition for this to be true is
that

‖�G0‖ < 1 − r(W∞)

‖(I +G∗
1G1)−1‖‖G∗

0(G0G
∗
0)−1‖ (69)

From the definitions,

‖G∗
0(G0G

∗
0)−1‖2 = sup{<G∗

0(G0G
∗
0)−1v,

G∗
0(G0G

∗
0)−1v>U : <v, v>0 = 1}

= sup{<v, (G0G
∗
0)−1v>Re

: <v, v>0 = 1} = 1,
and‖(I +G∗

1G1)−1‖ ≤ (1 + δ2)−1,

which proves the result. �

Three useful observations can easily be made, namely:

(1) It is always possible to choose the value δ = 0. This
choice removes the need to consider the auxiliary
system dynamics in the robustness analysis.

(2) If G1 is generated from a continuous state space
model S(Az, Bz, Cz), then, as high frequency inputs
generate infinitesimally small outputs, it is expected
that δ2 = 0 so δ = 0 is the only choice.

(3) Choosing δ2 = 0 and using the lower bound

1 − r(W∞) = inf{<v, (I −W∞)v>0 :
v ∈ Re, <v, v>0 = 1}

≥ 1

1+δ2 for any

δ
2 ≥ ‖G1‖2 = sup{<G1v,G1v>Z :

v ∈ U &<v, v>U = 1},

the robustness condition can be replaced by the
simple inequality,

‖�G0‖ < 1

1 + δ
2
, (71)

which bounds permissible modelling errors simply
in terms of a bound on the operator norm of G1 in
U . G0, R and [Q] play a role in the numerical values
appearing in the inequality as the defined measure
of magnitude of �G0 is defined in terms of the
<·, ·>0 topology. Also Q and R affect the numerical

value of δ
2
.

(4) It is noted that these formulae may make it pos-
sible to provide more explicit numerical bounds
on robustness. For example, if G1 is an asymp-
totically stable �-input, mz output continuous state
space system as in Section 3, then causality on [0,
T], monotonicity of norms with respect to T and
Parseval’s theorem on [0, ∞) suggests the choice

of δ
2

as

‖G1‖2 ≤ δ
2 = sup

ω≥0
r(R−1GT

1 (−iω)QG1(iω)),

(72)

where G1(s) is used to denote the transfer function
matrix of the state space model of the operator G1.
The general effects of Q and R on robustness are
now revealed, i.e. robustness tends to reduce as the
input weighting R reduces (or Q increases). It also
suggests that, for a given choice of weights, the
form of the frequency response G1(iω) will have
an effect, e.g. significant resonances will reduce

robustness by increasing δ
2
.
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The final question to be answered is ‘what is the nature of
the limit of the algorithm in the presence of such modelling
errors?’ This is answered by the following theorem.

Theorem 5.2: Under the conditions of the previous the-
orem, the feedforward implementation of Switching Algo-
rithm 1 in the presence of the defined modelling error con-
verges to a solution (u∞, z∞, λ0, λ1) of the equations,

u∞ − u0 = G∗
0λ0 +G∗

1λ1,

z∞ − z0 = −λ1, z∞ = G1u∞ + d1 (73)

and

re − (G0 +�G0)u∞ − (d0 +�d0) = 0. (74)

Proof: The proof follows in a similar manner to Theorem
4.2, replacing W∞ by W∞ + �W∞ to prove the existence
of the limits to the input sequence and auxiliary variable
sequence. The relevant value of λ0 is just

λ0 = (G0G
∗
0)−1(I −W∞ −�W∞)−1ee0,

which completes the outline proof. �
These equations are just perturbations of the stationary

point conditions for the Lagrangian associated with the
optimisation problem,

min
u∈U

{J (z, u) : u ∈ U , re = G0u+ d0, z = G1u+ d1}
(75)

suggesting that the converged solution no longer minimises
the auxiliary objective function but, if modelling errors are
small, will be a good approximation.

6. Experimental verification using intermediate
point tracking with auxiliary optimisation

The paper now considers the experimental evaluation of
the algorithms for the continuous time intermediate point
problem considered in Section 3. The results are evalu-
ated in this section by first summarising the equations that
must be solved/implemented in each iteration and then pre-
senting the results of experiments that not only verify the
predictions of the theory but also support the theoretical
prediction of good algorithm robustness.

6.1. Computational procedures for continuous
systems

Once the intermediate points have been identified, the Fj

identified, the desired auxiliary variables have been cho-
sen, models have been obtained and Q and R selected, the
computations are as follows:

6.1.1. Switching Algorithm 1

Step 3 requires the calculation of ũk+1 from uk and eek given
by Equation (27). Here all that is needed is the computation
of G∗

0, G0G
∗
0 and its inverse as defined in Section 3. In

step 4 the calculation (28) of the next control input signal
uk + 1 requires the minimisation of

∫ T

0
[(z(t) − zk(t))

TQ(z(t) − zk(t))

+(u(t) − ũk+1(t))T R(u(t) − ũk+1(t))] dt (76)

subject to the auxiliary equation dynamics S(Az, Bz, Cz, Dz)
of Equation (22). In the case of Dz = 0, this is just the first
iteration of the NOILC solution defined by Amann et al.
(1996b) with reference zk(t) and initial input ũk+1(t). That
is the feedback plus feedforward solution,

uk+1(t) = ũk+1(t) − R−1BTz
[
Kz(t)xz(t) + ξz,k+1(t)

]
,

(77)
where the feedback gain Kz(t) is the unique solution of the
Riccatti equation,

K̇z(t) +Kz(t)Az + ATz Kz(t) −Kz(t)BzR
−1BTz Kz(t)

+CTz QCz = 0,Kz(T ) = 0 (78)

and the feedforward term is generated from

ξ̇z,k+1(t) + ATz ξz,k+1(t) −Kz(t)BzR
−1BTz ξz,k+1(t)

−Kz(t)Bzũk+1(t) + CTz Qzk(t) = 0,

ξz,k+1(T ) = 0. (79)

The structure of this solution allows either off-line compu-
tation or on-line implementation.

6.1.2. Switching Algorithm 2

Step 4 of this algorithm has the same solution procedure for
the auxiliary optimisation (49) as given above. The main
difference lies within step 2, where k0 inner iterations are
used to compute uk + 1 each of which is a problem of the
form,

min
u∈L�2[0,T ]

(
M∑
p=1

(rep − yep)TQp(rep − yep)

+
∫ T

0

(
u(t) − ũ

(j )
k+1(t)

)T
R
(
u(t) − ũ

(j )
k+1(t)

)
dt

)

(80)

for ũ(j+1)
k+1 , subject to the constraint ye = G1u + d1 in

the form of its state space model. There are two possible
solution techniques for this
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14 D.H. Owens et al.

A feedforward solution: uses G∗
0 and G0G

∗
0 to write

ũ
(j+1)
k+1 = ũ

(j )
k+1 +G∗

0(I +G0G
∗
0)−1ee(k+j ),

j = 0, 1, 2, . . . , k0 − 1 (81)

A feedback/feedforward solution: A solution for this
has recently been published (Owens et al., 2012) in the
form

ũ
(j+1)
k+1 (t) = ũ

(j )
k+1(t) − R−1BT

[
K(t)xz(t) + ξ

(j+1)
k+1 (t)

]
,

(82)
where the feedback gain K(t) is now the unique solution of
the Riccatti equation,

K̇(t) +K(t)A+ ATK(t) −K(t)BR−1BTK(t)

+CTQC = 0,K(T ) = CT FTMQMFMC
T (83)

with jump conditions

K(tp−) −K(tp+) = CT FTp QMFpC
T , 1 ≤ p < M (84)

at the intermediate points and the feedforward term is gen-
erated from

ξ̇
(j+1)
k+1 (t) + AT ξ

(j+1)
k+1 (t) −K(t)BR−1BT ξ

(j+1)
k+1 (t)

−K(t)Bũ(j )
k+1(t) = 0,

with ξ
(j+1)
k+1 (T ) = CT FTMQMFMrM (85)

and jump conditions

ξ
(j+1)
k+1 (tp−) − ξ

(j+1)
k+1 (tp+) = CT FTp QpFpr

e
p, 1 ≤ p < M.

(86)

The possibility of on-line implementation is clear from the
structure of the solution.

6.2. Control of a robotic manipulator system

The ILC approaches developed have been experimentally
tested on a six degree of freedom anthropomorphic robotic
arm whose five rotary joints are composed of PowerCubes
(Schunk GmbH & Co.) incorporating brushless servomo-
tors with integrated power electronics and transmission.
Each servomotor includes cascaded current and velocity
control loops with a control input supplied by a dSPACE
ds1103 real-time board with communication via a CAN
bus at a rate of 500 kbit/s. Results are presented for the first

Figure 1. Robotic manipulator system showing actuated output,
y.

joint, which is aligned in the horizontal plane as shown in
Figure 1. Frequency response tests have established that the
linear model (87) adequately represents the system dynam-
ics, with angular input and output specified in degrees.

G(s) = 400788.1582(s + 12.14)(s + 24.01)2

(s + 31.52)(s + 22.97)(s + 2.178)(s2 + 36.59s + 363.7)(s2 + 124.5s + 4076)
(87)

This can be represented in continuous-time by a state space
model (11) whose matrices (A, B, C) are used for computa-
tion and simulation.

The intermediate point task replicates an industrial mul-
tiple ‘pick and place’ process in which payloads are manip-
ulated during an assembly operation. The selected reference
is given by the vector of output values

re = [
20, −30, 10, 20

]T
(88)

at the M = 4 time points

t1 = 1, t2 = 3, t3 = 5, t4 = T = 6. (89)

on the interval [0, 6]. Using Equation (89) and the above
representation of the plant G, G0 is then given by (14) with
Fj = 1, 1 ≤ j ≤ M, whose elements (15) map the plant input
to its output at time tj.

To produce a smooth output response at all points t ∈
[0, 6], and hence reduce vibration and potential payload
damage/spillage between the specified intermediate points,
some degree of minimisation of the mean square joint
acceleration is proposed. The auxiliary variable is hence
z(t) = ÿ(t), and, since system (87) has relative degree >2,
G1 can be written in continuous-time state-space form using
Equation (22) with S(Az, Bz, Cz, Dz) = S(A, B, CA2, 0).

The solutions u∞ and z∞ of the objective function (4)
calculated using the nominal plant model are shown in Fig-
ure 2 for R = I, and the cases Q = 0 and Q → ∞. The input
signal for the latter contains significant initial oscillatory
behaviour, which reduces as Q is decreased and is entirely
absent when Q = 0. It is noted that, as Q → ∞, z∞(t) is
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Figure 2. Limiting solutions to the objective function minimisa-
tion calculated using the nominal plant model and R = I.

almost linear between sample points, hence providing a less
impulsive acceleration response. In the results which fol-
low, all algorithms have been calculated in continuous-time
and then discretised using a sampling time of 500 Hz.

6.3. Switching Algorithm 1 results

Switching Algorithm 1 has been implemented using the
procedure described in Section 4.1. In step 3 the feedfor-
ward update (27), which involves the non-causal operator
G∗

0(G0G
∗
0)−1, is calculated using Equations (20) and (21).

To solve Equation (28) in step 4 the algorithms in Sec-
tion 6.1.1 have been employed. The best performance has
been achieved by implementing feedback plus state feed-
back NOILC to solve the auxiliary problem experimentally
in step 4 using (77)–(79). 200 trials have been performed
and results are shown in Figure 3. Norm results comparing
performance during the initial convergence stage are shown
in Figure 4 and it can be seen that negligible degradation of
performance occurs as the number of trials increases.

To quantify convergence rates, the iteration index, k∗,
is recorded that corresponds to when the intermediate point
tracking criterion,

‖re − yek‖ < ε‖re‖, (90)

is first met. Here yek is the output of the constraint trial in
step 4. A value of ε = 0.01 has been taken in all the results
that follow. Experimental norm values recorded on step 4

.

.

.

.

.

.

Figure 3. Switching Algorithm 1—experimental results
recorded during step 4. Final trial input, output and auxiliary
signals for a range of Q.

Figure 4. Switching Algorithm 1—experimental results
recorded during step 4. Intermediate point tracking, auxiliary sig-
nal and cost function norms for a range of Q.
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16 D.H. Owens et al.

Table 1. Switching Algorithm 1—experimental results recorded during step 4. Convergence data using ε = 0.01, and corresponding
auxiliary and cost function norms. Predicted values for the limit k → ∞ using the nominal plant model are shown on the right-hand side.

Q k∗ ||uk∗ || ||zk∗ ||/
√
Q J (zk∗ , uk∗ ) ||u∞|| ||z∞||/√Q J(z∞, u∞)

0.0006 4 30.774 457.994 1072.946 34.650 321.143 1262.510
0.002 3 32.256 304.160 1225.506 35.451 228.599 1361.341
0.006 3 33.462 207.854 1378.941 36.652 164.190 1505.176
0.02 3 35.369 141.851 1653.406 38.413 120.152 1764.333
0.06 4 37.215 112.847 2149.056 40.071 102.355 2234.326
0.2 6 38.681 108.103 3833.482 41.653 95.925 3575.325

of trial k∗ are given in Table 1 for a variety of Q values and
compared with the theoretical limit values obtained from
the model. The excellent agreement is self-evident.

As Q increases, the theoretical optimal value of J(u∞)
increases. At the same time the theoretical optimal value of
||z∞||/√Q decreases as more weight is given to it in the
optimisation problem (4). The experimental results match
the predicted results reasonably well, although it has been
found that for high values of Q (�1) there is a reduction in
performance, with fluctuation in norms and eventual lack
of convergence. This reflects Theorem 5.1 in Section 5,
which bounds the admissible plant uncertainty as ‖�G0‖ <
(1 − r(W∞))(1 + δ2). The calculated bounds are shown in
Table 2.

Since robustness reduces as Q increases, excessive val-
ues should be avoided, especially as such Q values pro-
duce negligible improvement in cost, as reflected in the fact
that the theoretical value of ||z∞||/√Q corresponding to
Q = 0.2 (95.925) is close to the limiting value as Q → ∞
(94.266). As Q is increased, the convergence of the plant
outputs shown in Figure 3 to the limiting case as Q → ∞
given in Figure 2 is clear. To mitigate the effect of noise and
model uncertainty, it is common practice in ILC to apply a
zero-phase low-pass filter to the control input uk + 1 (and/or
ũk+1) prior to its application in the subsequent trial (Long-
man, 2000), however in the present case this has not been
done in order to assess the effects of noise and uncertainty.

6.4. Switching Algorithm 2 results

Switching Algorithm 2 is implemented using the procedure
of Section 4.4 with the algorithms given in Section 6.1.2.

Table 2. Robustness bounds.

Q r(W∞) (1 − r(W∞))(1 + δ2)

0.0006 0.0660 0.9340
0.002 0.1372 0.8628
0.006 0.2320 0.7681
0.02 0.3763 0.6239
0.06 0.5461 0.4545
0.2 0.7403 0.2608

Experimental implementation of both steps 2 and 4 has been
found to provide the best performance. Within step 2, k0 =
2 inner iteration trials with all Qj = 100 have been used,
and the feedforward plus state feedback implementation of
NOILC, given by Equations (82)–(86), has been found to
provide superior results than purely feedforward implemen-
tation. Step 4 is implemented as in Switching Algorithm 1,
using Equations (77)–(79).

Two hundred trials of the switching algorithm procedure
have been performed with norm plots shown in Figure 5,
and summary convergence data is given in Table 3.

Figure 5. Switching Algorithm 2—experimental results
recorded during step 4. Qj = 100 and k0 = 2 inner iterations
are used in step 2, using combined feedback and feedforward
NOILC. Intermediate point tracking, auxiliary signal and cost
function norms for a range of Q.
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Table 3. Switching Algorithm 2—experimental results recorded during step 4. Qj = 100 and k0 = 2 inner iterations are used in step
2, using combined feedback and feedforward NOILC. Convergence data using ε = 0.01, and corresponding auxiliary and cost function
norms. Predicted values for the limit k → ∞ using the nominal plant model are shown on the right-hand side.

Q k∗ ||uk∗ || ||zk∗ ||/
√
Q J (zk∗ , uk∗ ) ||u∞|| ||z∞||/√Q J(z∞, u∞)

0.0006 4 31.323 379.843 1067.727 34.650 321.143 1262.510
0.002 4 32.334 254.567 1175.111 35.451 228.599 1361.341
0.006 5 33.753 178.199 1329.856 36.652 164.190 1505.176
0.02 5 35.598 127.863 1594.241 38.413 120.152 1764.333
0.06 6 37.044 110.756 2109.921 40.071 102.355 2234.326
0.2 8 38.532 105.772 3722.299 41.653 95.925 3575.325

Table 4. Switching Algorithm 2—experimental results recorded during step 4. Qj = 50 and k0 = 2 inner iterations are used in step
2, using combined feedback and feedforward NOILC. Convergence data using ε = 0.01, and corresponding auxiliary and cost function
norms. Predicted values for the limit k → ∞ using the nominal plant model are shown on the right-hand side.

Q k∗ ||uk∗ || ||zk∗ ||/
√
Q J (zk∗ , uk∗ ) ||u∞|| ||z∞||/√Q J(z∞, u∞)

0.0006 5 31.221 378.558 1060.760 34.650 321.143 1262.510
0.002 6 32.398 255.212 1179.898 35.451 228.599 1361.341
0.006 7 33.794 178.471 1333.160 36.652 164.190 1505.176
0.02 8 35.580 127.784 1592.562 38.413 120.152 1764.333
0.06 10 37.115 111.240 2120.042 40.071 102.355 2234.326
0.2 11 38.194 105.977 3705.055 41.653 95.925 3575.325

Table 5. Switching Algorithm 2—experimental results recorded during step 4. Qj = 50 and k0 = 10 inner iterations are used in step
2, using combined feedback and feedforward NOILC. Convergence data using ε = 0.01, and corresponding auxiliary and cost function
norms. Predicted values for the limit k → ∞ using the nominal plant model are shown on the right-hand side.

Q k∗ ||uk∗ || ||zk∗ ||/
√
Q J (zk∗ , uk∗ ) ||u∞|| ||z∞||/√Q J(z∞, u∞)

0.0006 3 31.152 377.251 1055.838 34.650 321.143 1262.510
0.002 3 32.140 254.629 1162.651 35.451 228.599 1361.341
0.006 4 33.576 177.346 1316.057 36.652 164.190 1505.176
0.02 5 35.394 126.844 1574.523 38.413 120.152 1764.333
0.06 6 36.948 111.334 2108.870 40.071 102.355 2234.326
0.2 7 38.071 105.142 3660.369 41.653 95.925 3575.325

Switching Algorithm 2 attains lowest norm values when
Qj is chosen small enough to produce accurate convergence
(i.e. Qj equals a value that performs well using standard
intermediate point NOILC (Owens et al., 2012) without any
switching). If Qj is chosen accordingly, the value of k∗ then
determines the convergence rate of the combined switching
algorithm, as predicted by Theorem 4.4. To illustrate this,
Table 4 shows results using Qj = 50 with k0 = 2 inner
iterations, and displays similar norm values to the Qj = 100
case, but slower convergence. If k0 is then increased, the
convergence rate using Qj = 50 can then be returned back
to similar levels seen in the Qj = 100 results. This is shown
in Table 5 with results for Qj = 50 with k0 = 10 inner
iterations. The relatively large number of inner iterations
leads to accurate intermediate point tracking during step
2, and hence to rapid convergence of the overall switching
algorithm to low norm levels. The price paid for this is a
greater overall number of experimental trials.

7. Conclusions

A powerful new and general functional analytic framework
has been developed which models a novel class of ILC
problems which require tracking of a specified finite di-
mensional reference signal whilst minimising a quadratic
objective function of input and a defined auxiliary variable.
Although the tracking problem is finite dimensional, the
underlying dynamics and auxiliary dynamics can be infi-
nite dimensional. It is shown that this formulation can be
used to solve the abstract tracking problem whilst simulta-
neously minimising a general class of quadratic objective
function representing secondary control objectives. Gen-
eral applications to solutions of intermediate point discrete
and continuous time tracking are described in detail and
indications of applications to multi-rate and discrete de-
lay systems are outlined. The ideas and algorithms have a
broad range of operations within fields such as industrial
automation and robotics require such a framework to, for

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
 H

ig
hf

ie
ld

] 
at

 0
7:

32
 1

0 
M

ay
 2

01
3 



18 D.H. Owens et al.

example, move payloads to preset positions during manu-
facturing tasks whilst reducing spillage, vibration, contact
forces and actuator wear.

This paper is the first to derive general solutions em-
ploying the norm optimal ILC framework, with implemen-
tation achieved using either a feedforward update structure,
or a combined feedback plus feedforward form which has
the practically confirmed benefit of additional robustness
to modelling uncertainty. The general analysis and algo-
rithms proposed, expressed in terms of operator notation,
has the advantage of efficiency and generality of proofs
plus the great benefit that the results on performance and
robustness are directly applicable to many system types
including linear discrete-time, continuous-time and time-
varying systems. The algorithm structure is based on sys-
tematic switching between objectives and permits design
flexibility in terms of choice of a number of parameters
[Qj], Q, R, k0 and the choice of whether off-line updates
are applied to the experimental plant or updates are gener-
ated on-line. A rigorous robustness analysis has been per-
formed which provides explicit uncertainty bounds, which
ensure convergence to a solution which precisely achieves
the tracking objective despite the presence of plant-model
mismatch. The various options have been explored us-
ing experimental tests on a robotic manipulator system,
with results confirming a high degree of performance in
practice.
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Appendix 1. A summary of relevant Hilbert space
concepts
The following aspects of Hilbert space theory are relevant in the
theoretical development used in the paper:

(1) The adjoint operator of a bounded linear operator K map-
ping a Hilbert space H1 into a Hilbert space H2 is the
uniquely defined bounded operator K∗: H2 → H1 satisfy-
ing the equality

<u,Kv>H2 = <K∗u, v>H1 ∀v ∈ H1 ∀u ∈ H2. (A1)

The induced operator norm of K is defined to be

‖K‖ = sup{‖Ku‖H2 : u ∈ H1 & ‖u‖H1 = 1}. (A2)

(2) If H1 = H2 then ‖K∗‖ = ‖K‖. K is said to be self-adjoint if
H1 = H2 and K = K∗. If this is the case then K is positive
semi-definite (respectively positive definite) if and only
if<v,Kv> ≥ (resp. >) 0 ∀ non-zerov ∈ H1. In the case
of H1 = H2 being finite dimensional with K positive semi-
definite or positive definite, the spectral radius r(K) of K
has the same value as the norm of K and is then given as
the solution of the optimisation problem

r(K) = ‖K‖H1 = max{<v,Kv>H1 :

v ∈ H1, ‖v‖H1 = 1}. (A3)

(3) The condition on the range of G0 is necessary to ensure
that all signals in Re can be tracked. In practice, if R[G0]
is a proper subspace ofRe, the apparent problem of failing
to satisfy the assumptions can be removed in a formal way
by regarding R[G0] as a Hilbert space in its own right
and setting Re equal to this subspace.

Appendix 2. Discrete time systems modelling
In this appendix, the models and operators relevant to the case of
discrete time systems are summarised. Both uni-rate and multi-
rate systems are considered.

A2.1. Identical input and output sample rates
The relevant formulae for an �-input, m-output discrete time sys-
tem y = Gu + d represented by a discrete time state space model
S(A, B, C) of the form,

x(t + 1) = Ax(t) + Bu(t), x(0) = x0, y(t) = Cx(t),
(on the interval t = 0, 1, 2, . . . , N) (A4)

can be derived in a similar way, with details outlined below. The
relevant real Hilbert spaces Y,U,Z are now all spaces of vector
time series on the defined time interval (0, 1, 2, . . ., N) with inner
products (assuming constant Q and R for simplicity),

U : <u, v>R =
N∑
j=0

uT (t)Rv(t), so that ‖u‖R

= √
<u, u>R (A5)

Z : <z1, z2>Q =
N∑
j=0

zT1 (t)Qz2(t), so that ‖z‖Q

= √
<z, z>Q.

The space Re and its inner product remain as for the continuous
time case.

The underlying dynamics of Equation (1) are defined by the
discrete convolution,

(Gu)(0) = 0, (Gu)(t) =
t−1∑
s=0

CAt−s−1Bu(s) ∀t ≥ 1, & d(t)

= CAtx0∀t ≥ 0. (A6)

The notation defining the tracking problem (2) is the same as for
the continuous time case but each Ge

j in Equation (14) is now
given by

Ge
ju =

tj−1∑
s=0

FjCA
tj−s−1Bu(s) (A7)

so that its adjoint is the map whose operation onwj ∈ Rfj is given
by the time series

(Ge∗
j wj )(t)

=
{
R−1BT (AT )tj−t−1CT FT

j Qjwj ; 0 ≤ t ≤ tj − 1;
0; tj ≤ t ≤ N

}
. (A8)

In particular G0G
∗
0 has (i, j )th block

(G0G
∗
0)ij = Ge

iG
e∗
j

=
min(ti ,tj )−1∑

s=0

FiCA
ti−s−1BR−1BT (AT )tj−s−1

×CT FT
j Qj . (A9)
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The auxiliary optimisation problem (3) for the switching algo-
rithms is constructed from an auxiliary discrete system S(Az, Bz,
Cz, Dz) defined as

xz(t + 1) = Azxz(t) + Bzu(t), xz(0) = xz0, z(t)

= Czxz(t) +Dzu(t),

(on the interval t = 0, 1, 2, . . . , N) (A10)

so that G1 and d1 are represented as

(G1u)(0) = 0, (G1u)(t) =
t−1∑
s=0

CzA
t−s−1
z Bzu(s)∀t ≥ 1,&

d1(t) = CzA
t
zxz0∀t ≥ 0 (A11)

’and the cost (4) is given by

J (z, u) =
N∑
t=0

[
(z(t) − z0(t))TQ(z(t) − z0(t))

+ (u(t) − u0(t))T R(u(t) − u0(t))
]
. (A12)

In summary, for the discrete time case the tracking requirement (2)
is represented by Equations (14) and (A7), the auxiliary dynamics
(3) is represented by Equation (A11), and the objective function
(4) is represented by Equation (A12).

A2.2. A note on multi-rate sampled systems
Consider the case of multi-rate sampled systems where the out-
put sampling interval is an integer multiple of the input sampling
interval and it is desired that the sampled output tracks a desired
reference at the output sample points. The auxiliary variable z is
assumed to be defined and of interest at sample points synchronous
with the input sample times. This situation can be modelled us-
ing the discrete modelling tools above by regarding the output
sample points as the intermediate points {tj}1 ≤ j ≤ M. In this case
M and hence nr will be typically very large. This does not alter
the principles described in the algorithms and could be used to
control the inputs and auxiliary variable between output sample
instances. If auxiliary variable measurements at the faster input
sampling speed are not available, then the auxiliary optimisation
problem will necessarily be model-based and entirely off-line. Al-
ternatively an on-line implementation could be considered using
a model and observer to reconstruct z from input output data.
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