
Chapter 7

Event-B and Rodin

7.1. Event-B

7.1.1. The Event-B definition

Event-B [ABR 08] is a formal method for specifying, modeling, and reasoning
about systems based on set theory and predicate logic. Event-B evolved from Classical
B [ABR 96] and Action Systems [BAC 89]. On the one hand, Event-B is a simplification
as well as an evolution of the B-Methods; on the other hand, Event-B is influenced
by the action systems approach. It has the same structure as an action system, which
describes the behavior of a reactive system in terms of the guarded actions that can
take place during its execution.

Event-B is different from the B-Method in some aspects. The B-Method is organized
in a way that is suitable for the development of non-concurrent programs, whereas
Event-B is geared toward the development of systems including reactive and concurrent
systems. Building a model in Event-B starts with a very abstract level, and continues in
different abstraction levels by use of refinement, which will be explained in section 7.1.3.
Event-B uses mathematical proof to verify consistency between refinement levels.
Association of proof obligations in Event-B permits us to reason about it;
see section 7.1.4. Rodin is a tool platform for modeling and proving in Event-B. It will
be outlined in section 7.2. Section 7.4 describes the development of a metro system
case study in Event-B.

Chapter written by Michael Butler, Asieh Salehi Fathabadi and Renato Silva.

216 Industrial Use of Formal Methods

7.1.2. Event-B structure and notation

A model in Event-B [ABR 08] consists of contexts and machines. Contexts contain
the static part (types and constants) of a model while machines contain the dynamic
part (variables and events). Contexts provide axiomatic properties of an Event-B
model, whereas machines provide behavioral properties of an Event-B model. Items of
machines and contexts presented in this section are called modeling elements. There are
various relationships between contexts and machines. A context can be “extended” by
other contexts and “seen” by machines. A machine can be “refined” by other machines
and refer to contexts as its static part. Refinement is described more in section 7.1.3. The
relationship between machine and context is illustrated in Figure 7.1.

seesabstract
Machine(1) Context(1)

sees

refines extends

abstract
machine

Machine(2) Context(2)concrete
machine

.

.
refines

.

. extends

M hi (i) C t t(i)

.

sees

refines .

Machine(i) Context(i)

Figure 7.1. Machine and context relationships

From a given machine, Machine1 in this case, a new machine, Machine2, can
be built as a refinement of Machine1. In this case, Machine1 is called an abstraction
of Machine2, and Machine2 is said to be a concrete version of Machine1.

7.1.2.1. Context structure

Modeling elements of a context [ABR 08] are of four forms: sets, constants, axioms,
theorems. This is illustrated in Figure 7.2. Axioms are predicates that describe the
properties of sets and constants. Theorems are properties that should follow from the
axioms. A context may extend one or more other contexts. And can also be seen by
several machines in a direct or indirect way.

Event-B and Rodin 217

Figure 7.2. Structure of a context

7.1.2.2. Machine Structure

A machine [ABR 08] consists of variables, invariants, events, theorems, and variants,
illustrated in Figure 7.3. Variables, v, define the states of a model. Invariants, I(v),
constrain variables, and are supposed to be hold whenever variables are changed by
an event. New events can be defined in a concrete machine. These will be described
more in section 7.1.3. To prove that they do not take control forever, a new event must
decrease a natural number expression called a variant.

Figure 7.3. Structure of a machine

7.1.2.3. Events

In Event-B, state of a model is changed by means of event execution. Each event
is composed of a name, a set of guards G(t, v), and some actions S(t, v), where t are
parameters of the event and v is state of the system, which is defined by variables. All
events are atomic and can be executed only when their guards hold. When the guards
of several events hold at the same time, then only one of those events is chosen non-
deterministically to be executed. An event can appear in three forms presented in
Table 7.1. In the simplest terms, an event contains only some actions, in the second
form it can be composed of guards and actions without parameters, and finally in the
third form, an event has guards, actions, and some parameters.

The action of an event can have one of several forms of assignment, illustrated in
Table 7.2. Here x is a variable, E(t, v) is an expression, and P (t, v, x) is a predicate. The
first assignment form is deterministic. In the second row, the assignment is

218 Industrial Use of Formal Methods

non-deterministic (for instance, assign a value within a non-empty set). The third
row assigns a value to x according to the predicate defined, and it is also considered
non-deterministic.

Three Possible Forms of an Event
E = begin S(v) end
E = when G(v) then S(v) end
E = any t when G(t,v) then S(t,v) end

Table 7.1. Event forms

Type Generalized Substitution
Deterministic x := E(t, v)
Non-deterministic x :∈ E(t, v)
Non-deterministic x :| P (t, v, x′)

Table 7.2. Action forms

7.1.3. Refinement in Event-B

In an Event-B development, rather than having a single large model, we are
encouraged to construct the system in a series of successive layers, starting with an
abstract representation of the system. The abstract model should provide a simple view
of the system, focusing on the main purpose and key features of the system. The
details of how the purpose is achieved are ignored in the abstraction. Details of
functionality of the system are added gradually to the abstract model in a stepwise
manner. This process is called refinement.

In Event-B modeling, we use proof to verify the consistency of a refinement. The
definitions of some refinement proof obligations are described in section 7.1.4.

Refining an Event-B model can consist of context extension and machine refinement.
Considering context extension, it is possible to add new sets, constants, and properties
while retaining the old ones.

Refinement in Event-B has different views or classification. From Event-B notation
point of view, refinement of a machine consists of:

1. Refining existing events:
(a) Adding new parameters, guards and actions to the existing abstract event:

in this case the resulting concrete event is labeled as extended. In an extended event,
the existing parameters, guards and actions cannot be modified.

Event-B and Rodin 219

(b) Modifying parameters, guards, and actions of the existing abstract event: in
this case, the resulting concrete event is labeled as non − extended (refine). Adding
new parameters, guards, and actions are allowed, too.

In both types, the guards of the concrete event must be proved to be stronger than
its abstraction (guard strengthening).

2. Adding new events

The new event refines a dummy event in the abstraction, which does nothing
(skip).

The new event does not diverge. It means that it should not take control
forever. The new event can be labeled as:

- Convergent: Each convergent event requires a variant to ensure
non-divergence.

- Anticipated: Events that will be introduced in a future refinement but are
declared in anticipation.

- Ordinary: None of the others and the most commonly used.

3. Add new variables and invariants:

Introducing new variables usually results in (2) or (1.a) types of
refinement. Sometimes, abstract variables can be replaced by new concrete
variables. In this case, the refinement can result in (1.b). Variable replacement is
called data refinement.

A gluing invariant connects the abstract variables to the concrete variables. In
other words, it glues the state of the concrete model to that of its abstraction. The
invariant of the concrete model including gluing invariants should be preserved
for every event.

Each abstract event should be refined by at least one concrete event. One abstract
event can be refined by more than one concrete event. This is called event splitting.
Also, one concrete event can refine more than one abstract event. This is called event
merging.

Refinement is the process of enriching or modifying the abstract model to introduce
new functionality or add details of the current functionality. From another view, there
are two forms of refinement:

– Vertical Refinement (Structural Refinement): In this form, design details of
current functionalities are added. This form of refinement may involve data refinement
(3) and modifying abstract events (1.b). In the refinement level, the modified events
are labeled as non-extended events.

– Horizontal Refinement (Superposition Refinement or Feature Augmentation):
New functionalities of the system, which are not addressed in the abstract level, are
introduced. Usually, it can be achieved by introducing new events (2), new variables

220 Industrial Use of Formal Methods

(3) or extending abstract events (1.a). In the refinement level, these concrete events are
labeled as extended events.

7.1.4. Proof obligations

There are different proof obligations, which are generated by the Event-B tool,
Rodin, during the development of a system using Event-B [ABR 08]. Here, we describe
some of those that are most important. Considering Figure 7.4, machine M2 refines
machine M1. Both of them see context Ctx. M2 contains two events, evt3 as a new
event and evt2 as a refining event. It also contains some gluing invariants.

machine M1 sees Ctx machine M2 refines M1 sees c

variables v1
invariants inv1

variables v2
invariants inv2, gluing_inv
variant n

refines

events

event evt1

variant n

events
e e t e t
any x1
where grd1
then act1

event evt2 refines evt1
any x2
where grd2

end

end

g
then act2

end

convergent event evt3
any x3
where grd3

sees

context Ctx
constants c
sets s

then act3
end

d

sees

sets s
axioms axm
end

end

Figure 7.4. An Event-B model (context Ctx, abstract machine M1,
concrete machine M2)

Table 7.3 contains a list of important proof obligation in Event-B modeling.

Here is an explanation for each of these proof obligations:

– Well-definedness (WD): Ensure that an axiom, theorem, invariant, guard, action,
variant is well-defined. When using the cardinality of a set, card(S), it should be proved
that the set, S, is finite.

Event-B and Rodin 221

– Invariant Preservation (INT): Ensure that every invariant is preserved by
each event. For instance, in Figure 7.4, one of the generated proof obligation is
evt1/inv1/INV, ensuring that inv1 is preserved by event evt1 in machine M1.

– Feasibility (FIS): Ensure that each non-deterministic action is feasible. In
Figure 7.4, for event evt1 in machine M1, this proof obligation is given: evt1 / act1 /
FIS; this means there should exist values for variable v1 such that the assignment act1
is feasible.

– Guard Strengthening (GRD): Ensure that each abstract guard is no stronger
than the concrete ones in the refining event. As a result, when a concrete event is
enabled, the corresponding abstract one is also enabled. For instance, for the model in
Figure 7.4, evt2 / grd1 / GRD ensure that the abstract guard grd1 is weaker than the
guards of the concrete event evt2.

– Simulation (SIM): Ensure that each action in a concrete event simulates the
corresponding abstract action. When a concrete event executes, the corresponding
abstract event is not contradicted. In Figure 7.4 the simulation proof is evt2 / act1 /
SIM.

– Numeric Variant (NAT): Ensures that under the guards of each convergent
event a proposed numeric variant is indeed a natural number. evt3 / NAT is the proof
obligation generated for the model of Figure 7.4.

– Decreasing of Variant (VAR): Ensures that each convergent event decreases
the proposed numeric variant. As a consequence the new event does not take control
forever. evt3 / VAR in Figure 7.4 ensures that event evt3 does not take control forever.

Well-definedness x / WD x is the name of axiom,
theorem, invariant, guard,
action, variant

Invariant Preservation evt / inv / INV evt is the event name, inv is the
invariant name

Feasibility of a non-deterministic
event action

evt / act / FIS evt is the event name, act is the
action name

Guard Strengthening evt / grd / GRD evt is the concrete event name,
grd is the abstract guard name

Action Simulation evt / act / SIM evt is the concrete event name,
act is the abstract action name

Natural number for a numeric
Variant

evt / NAT evt is the new event name

Decreasing of Variant evt / VAR evt is the new event name

Table 7.3. Proof obligations in Event-B

222 Industrial Use of Formal Methods

7.1.5. A comparison between Event-B and other formal methods

Classical B, Z, and VDM have a one-to-one operation refinement, meaning that
one abstract operation is refined by only one concrete operation. There is no facility
for introducing new events in refinements in these formal methods. Event-B is more
flexible as it bases its refinement on action systems. Also, event merging and event
splitting are provided in Event-B refinement. Although Event-B is an extension of
Classical B, there are some differences between them:

– The model structure is different. In Event-B, the context as the static part of the
system and the machine as the dynamic part of the system are explicitly separated. In
the B-Method, a machine contains both parts.

– In the B-Method, operations are called by other operations while in Event-B,
the enabled events are continually executed in a non-deterministic manner. Since in
Event-B, we are modeling reactive systems, the events are not called and the model
controls its behavior by non-deterministically choosing the enabled events.

– A B-Method operation contains pre-conditions, which express formally what is
to be proved when the operation is invoked. The caller of an operation is responsible
for ensuring that pre-conditions of the called operation are satisfied before calling
it. The called operation can assume that its pre-conditions are satisfied, and it does not
need to check its pre-conditions. In contrast, an Event-B event contains guards. An
event can be executed only when its guards hold. In Event-B, enabled events are non-
deterministically chosen to execute.

– Refinement is more general in Event-B. Introducing new events is an important
ability in Event-B refinement.

7.2. Rodin as an Event-B tool

Rodin [ABR 10, EVE] is an open source software tool for formal modeling and
proving in Event-B. Rodin has an open platform and is an extensible and adaptable
modeling tool. The ProB animator [WIK 02, LEU 08], UML-B [WIK 03, SNO 06],
B2LaTeX [WIK 01] and model decomposition [SIL 11] are good examples of plug-in
developments; ProB is a model checker, which checks the consistency of B machines;
UML-B maps a graphical formal modeling notation to the Event-B language; B2LaTex
is used for translating Event-B models into LaTeX documents; and model decomposition
which decomposition of a model into sub-models. Decomposition will be explained in
section 7.3.

Like programming tools, Rodin carries out many tasks automatically, and provides
fast feedback in the case of changes in a model text. While a programming tool
provides feedback to the programmer by compiling and executing a program, Rodin
provides feedback to modellers by generating proof obligations and verifying these
using automated provers.

Event-B and Rodin 223

Rodin is an integration between modeling and proving. As described in previous
sections, proving is an essential part of modeling. The proof obligations define what
is to be proved for an Event-B model. Discharging all proof obligations of a model
shows that all model properties are consistent. Sometimes, a model can be changed
using proof errors. When a proof obligation cannot be charged, it shows that there is
an inconsistency in the model. This leads us to learn more about the system to change
the model in an inconsistent way. Therefore, during modeling, we can learn about
the system and eliminate misunderstandings. We can also learn new requirements by
proving the failed proof obligations.

7.3. Event-B model decomposition

7.3.1. Overview

Model decomposition predated Event-B and is found in action systems [BAC 89]. In
developing a model in Event-B, one of the key features is introducing new events and
new state variables during refinement. As a consequence, it usually ends up with many
events and many variables in the last refinement level. Dealing with a large number of
events and variables can be complex; particularly when we need to refine just a few
variables and events and so other variables and events play no role in the refinement.

Model decomposition in Event-B [SIL 11] is intended to decrease the complexity
and increase the modularity of a large Event-B model, especially after several layers
of refinements. The idea of model decomposition is cutting a huge model into smaller
pieces called sub-models, which we can more easily deal with than the first model, and
each of them can be refined separately.

Distribution of proof obligations into several sub-models is one of the major results
of model decomposition, which is expected to be easier to discharge. The further
refinements of independent sub-models in parallel is a benefit of model decomposition.
Moreover, the possibility of team development after model decomposition seems useful
in developing a big system.

An overview of the model decomposition in Event-B is illustrated in Figure 7.5. As
presented, the model becomes bigger during refinement layers and with decomposition,
it is split into smaller sub-models. Then, each sub-model can be refined independently.

7.3.2. Decomposition styles

There are two ways of decomposing an Event-B model, shared variable and
shared event [SIL 11]. The shared event approach seems particularly suitable for
message-passing distributed programs, whereas the shared variable approach seems

224 Industrial Use of Formal Methods

more suitable for concurrent programs [BUT 97]. In shared event model decomposition,
variables are partitioned among the sub-models, whereas in the shared variable approach,
events are partitioned among the sub-models. Details are explained in the next section. A
model decomposition plug-in [SIL 11] in the Rodin platform provides tool support for
both styles of model decomposition.

Figure 7.5. Model decomposition in Event-B

7.3.2.1. Shared variable style

Shared variable decomposition, illustrated in Figure 7.6, is proposed by Abrial and
Hallerstede [ABR 07]. Machine M is decomposed into machine M1 and M2. The solid
lines show relationships between events and variables in each machine.

The shared variable decomposition does not permit event sharing and a variable can
be split into different sub-models. This variable is called a shared variable. First, the
events of M are partitioned among M1 and M2. Then, the variables of M are distributed
according to the event partition. Variables v1 and v3 are private variables since they are
accessed by events of only one sub-model, e1 in M1 and e4 in M2, respectively. Variable
v2 is a shared variable, which is accessed by event e2 in M1 and e3 in M2. External
event of e2_ext is built in M2, since e2 modifies the shared variable v2 in M1. The

Event-B and Rodin 225

invariant distribution is done according to variable distribution. An invariant belongs
to a sub-model if all variables used in that invariant belong to that sub-model.

Figure 7.6. Shared variable decomposition

7.3.2.2. Shared event style

Figure 7.7 illustrates shared event decomposition proposed by Butler [BUT 09].
Variables of the machine M are partitioned among the sub-models, M1 and M2. After
the variable partition, it is necessary to split the events according to the variable
partition. Events using variables allocated to different sub-models, e2 using v1 from
M1 and v2 from M2, are called shared events and must be split. Part of the shared event,
which is corresponding to each variable, e2_1 and e2_2, is used to build sub-model
events. Invariant distribution is similar to shared variable decomposition.

7.4. Case study: metro system

This section describes how the modeling, refinement, and decomposition techniques
presented in the previous sections can be applied in practice. We aim to develop a
system that becomes more complex with each refinement step, preserves its properties
(requirements) and re-uses existing developments and proofs as much as possible. A
safety-critical metro system case study is developed. This version is a simplified version
of a real system but tackles points where the techniques outlined in the previous
sections become relevant: stepwise incrementation of the complexity of the system
being modeled, sub-components communication, stepwise addition of requirements
at each refinement level, refinement of decomposed sub-components. Although this
system is initially modeled as a single component, it can be seen as a distributed
system where the initial model is split into smaller sub-components that communicate

226 Industrial Use of Formal Methods

via shared events. The split is achieved through a shared event decomposition and
the sub-components are further refined independently. After several refinements, we
reach a refinement that fits an existing generic development of metro doors. Using that
development as a pattern, two models are instantiated accordingly.

Figure 7.7. Shared event decomposition

7.4.1. Overview of the safety-critical metro system

The safety-critical metro system case study describes a formal approach for the
development of embedded controllers for a metro system1. Butler [BUT 02] makes a
description of embedded controllers for a railway using classical B. The railway system
is based on the French train system. Our starting point is based on that work but applied
to a metro system. That work goes as far as our first decomposition originating three
sub-components. We augment that work by refining each sub-component, introducing
further details, and more requirements to the model. Moreover, in the end, we instantiate
emergency and service doors for the metro system.

The metro system is characterized by trains, tracks circuits (also called sections
or CDV: Circuit De Voie, in French), and a communication entity that allows the
interaction between trains and tracks. The trains circulate in sections and before a train

1 A version of this model is available online at http://eprints.ecs.soton.ac.uk/23135/.

Event-B and Rodin 227

enters or leaves a section, a permission notification must be received. In case of a
hazardous situation, trains receive a notification to brake. The track is responsible for
controlling the sections, changing switch directions (switch is a special track that can
be divergent or convergent as seen in Figure 7.8), and sending signaling messages to
the trains.

Figure 7.9 shows a schematic representation of the metro system decomposed
into three sub-components. Initially, the metro system is modeled as a whole. Global
properties are introduced and proved to be preserved throughout refinement steps. The
abstract model is refined in three levels (MetroSystem_M0 to MetroSystem_M3) before
we apply the first decomposition. We follow a general top-down guideline to apply
decomposition:

(a) Divergent Switch

(b) Convergent Switch

Figure 7.8. Different types of switches: divergent and convergent

Figure 7.9. Components of metro system

228 Industrial Use of Formal Methods

Stage 1: Model system abstractly, expressing all the relevant global system properties.

Stage 2: Refine the abstract model to fit the decomposition (preparation step).

Stage 3: Apply decomposition.

Stage 4: Develop independently the decomposed parts.

For instance, Stage 1 is expressed by refinements MetroSystem_M0 to
MetroSystem_M3. MetroSystem_M3 is also used as the preparation step before the
decomposition corresponding to Stage 2. The model is decomposed into three parts:
Track, Train, and Middleware as described in Stage 3. This step allows further
refinements of the individual sub-components corresponding to Stage 4. The following
decompositions follow a similar pattern.

An overview of the development can be seen in Figure 7.10. After the first
decomposition, sub-components can be further refined. Train global properties are
introduced in Train leading to several refinements until Train_M4 is reached. Train_M4
is decomposed into LeaderCarriage and Carriage. We are interested in refining the
sub-component corresponding to carriages to introduce doors requirements. These
requirements are extracted from real requirements for metro carriage doors.

7.4.2. Abstract model: MetroSystem_M0

We model a system constituted by trains that circulate in tracks. The tracks are
divided into smaller parts called sections. The most important (safety) global property
introduced at this stage states that two trains cannot be in the same section at the same
time (which would mean that the trains might collide).

We need to ensure some properties regarding the routes (set of track sections):

– Route sections are all connected: sections should be all connected and cannot
have empty spaces between them.

– There are no loops in the route sections: sections cannot be connected to
themselves and cannot introduce loops.

These properties can be preserved if we represent the routes as a transitive closure
relation. We use the no-loop property proposed by Abrial [ABR 08] and used to model
a tree-structured file system in Event-B [DAM 08]: a context is defined and this
property is proved over track section relations and functions. The reason we choose
this formulation, instead of transitive closure, which is generally used, is to make
the model easier to prove. Context TransitiveClosureCtx containing the transitive
closure property can be seen in Figure 7.11.

Event-B and Rodin 229

Figure 7.10. Overall view of the safety-critical metro system development

230 Industrial Use of Formal Methods

Figure 7.11. Context TransitiveClosureCtx

Set CDV represents all the track sections in our model. Constant tcl, which is
a transitive closure, is defined as a total function mapped from CDV ↔ CDV to
CDV ↔ CDV . Giving r ∈ CDV ↔ CDV , the transitive closure of r is the least
x satisfying x = r ∪ r; x [DAM 08]. Difficult transitive closure proofs in machines
are avoided by using Theorems, such as theorem thm3 shown in Figure 7.11: for
s ⊆ CDV and t as a partial function CDV �→CDV , s ⊆ t−1[s] means that s contains
a loop in the t relationship. Hence, this states that the only such set that can exist is the
empty set and thus the t structure cannot have loops. This theorem has been proved
using the interactive prover of Rodin. The strategy to prove this theorem is to use proof
by contradiction [DAM 08].

We define the environment of the case study (static part) with context
MetroSystem_C0 that extends TransitiveClosureCtx as seen in Figure 7.12. SetTRAIN
represent all the trains in our model. Several track properties are described in the
axioms:

– The constant net represents the total possible connectivity of sections (all possible
routes subject to the switches positions) defined as relation CDV ↔CDV (axm1). No
circularity is allowed as described by axm2. Moreover, the no loop property for net is
expressed by axiom axm11. Theorems thm1 state that net preserves transitive closure.

– Switches (aiguillages in French) are sections (axm3) that cannot be connected
to each other (axm6). They are represented by aig_cdv divided into two
kinds: div_aig_cdv for divergence switches and cnv_aig_cdv for convergent
switches. Moreover, switches have at most two predecessors and one successor or
one predecessor and two successors (axm10).

– Non-switches have at most one successor and at most one predecessor (axm9).

Event-B and Rodin 231

Figure 7.12. Context MetroSystem_C0

In addition to the global property defined by invariant inv13 in Figure 7.13a, the
following system properties are added to the Event-B model:

1. The trains (variable trns) circulate in tracks. The current route based on current
positions of switches is defined by next: a partial injection CDV �� CDV . next
is a subset of net (inv1) preserving the transitive closure property as described by
theorem thm1, thm2 and does not have loops (thm3). Sections occupied by trains
are represented by variable occp. These sections also preserve the transitive closure
property as seen by thm4;

2. A train occupies at least one section and the section corresponding to the
beginning and end of the train is represented by variables occpA and occpZ,
respectively. Note that next does not indicate the direction that a train is moving
in: the direction can be occpA to occpZ or occpZ to occpA. These two variables point
to the same section if the train only occupies one section (inv11).

The system proceeds as follows: trains modeled in the system circulate by entering
and leaving sections (events enterCDV and leaveCDV in Figure 7.13b), ensuring
that the next section is not occupied (grd9 in enterCDV) and updating all the sections
occupied by the train (act1 and act2 in both events). At this abstract level, event
modifyTrain modifies a train defining the set of occupied sections for a train t. A
train changes speed, brakes, or stops braking in events changeSpeed, brake, and
stopBraking. When event brake occurs, train t is added to a set of braking trains
(variable braking). Variable next represents the current connectivity of the trail based
on the positions of switches. The current connectivity can be updated by changing

232 Industrial Use of Formal Methods

Figure 7.13. Variables, invariant and events of MetroSystem_M0

Event-B and Rodin 233

convergent/divergent switches in events switchChangeDiv and switchChangeCnv
as seen in Figure 7.13b.

7.4.3. First refinement: MetroSystem_M1

MetroSystem_M1 refines MetroSystem_M0, incorporating the communication layer
and an emergency button for each train. The communication work as follows: a message
is sent from the tracks, stored in a buffer, and read in the recipient train. The properties
to be preserved for this refinement are as follows:

1. Messages are exchanged between trains and tracks. If a train intends to move to
an occupied section, the track sends a message negating the access to that section and
the train should brake.

2. As part of the safety requirements, all trains have an emergency button.

3. While the emergency button is enabled, the train continues braking and cannot
speed up.

Now, the system proceeds as follows: trains that enter and leave sections must
take into account the messages sent by the tracks. Therefore, events corresponding to
entering and leaving the section need to be strengthened to preserve this property. The
requirement concerning the space required for the train to halt is a simplification of
a real metro system and could require adjustments to replicate the real behavior (for
instance the occupied sections of a train could be defined as the sum of the sections
directly occupied by the train and the sections indirectly occupied by the same train that
correspond to the sections required for the train to halt). Nevertheless, in real systems,
trains can have a built-in way to detect the required space to break. For instance, in
Communication-Based Train Control (CBTC [TSD 12, FAL 09]) systems, that is called
the stopping distance downstream.

The messages are represented by variables tmsgs that store the messages (buffer)
sent from the tracks and permits that receive the message in the train, expressing
property 1. At this level, the messages are just Boolean values assessing whether a
train can move to the following section (check if the section is free): if TRUE the
train can move; if FALSE the next section is occupied and the train should brake. New
event sendTrainMsg models the message sending. The reception of messages is
modeled in event recvTrainMsg where the message is stored in permit before
tmsgs is reset. The guards of event brake are strengthened to allow a train to brake
when permit(t) = FALSE or when the emergency button is activated (guard grd3 in
Figure 7.14b). Property 2 is expressed by adding variable emergency_button. The
activation/deactivation of the emergency button occurs in the new event
toggleEmergencyButton. Property 3 is expressed by guard grd3 in The event stop
Braking: a train can only stop braking if the emergency button is not enabled.

234 Industrial Use of Formal Methods

Figure 7.14. Excerpt of MetroSystem_M1

7.4.4. Second refinement: MetroSystem_M2

In this refinement, we introduce train doors and platforms where the trains can stop
to load/unload. When stopped, a train can open its doors. The properties to be preserved
are as follows:

1. If a train door is opened, then the train is stopped. In contrast, if the train is
moving, then its doors are closed.

2. If a train door is opened, that either means that the train is on a platform or there
was an emergency and the train had to stop suddenly.

3. A train door cannot be allocated to different trains.

We consider that platforms are represented by single sections. A train is on a
platform if one of the occupied sections corresponds to a platform. Doors are introduced
as illustrated in Figure 7.15a by sets DOOR and their states are represented by
DOOR_STATE. Variables door and door_state represent the train doors and their
current states as seen in Figure 7.15b: all trains have allocated a subset of doors
(inv2). Several invariants are introduced to preserve the required properties: property 1
is defined by invariants inv4 and inv5; property 2 is defined by invariant inv7; property

Event-B and Rodin 235

Figure 7.15. Excerpt of MetroSystem_M2

236 Industrial Use of Formal Methods

3 is stated by inv3; theorem thm1 is used for proving purposes (if no doors are open,
then all doors are closed).

To preserve inv5, the guards of changeSpeed (in Figure 7.14b) are strengthened
by grd4 ensuring that whilst the train is moving, the train doors are closed. Also,
events that model entering and leaving sections are affected, with the introduction
of a similar guard (grd11 in leaveCDV). Adding/removing train doors is modeled
in events addDoorTrain and removeDoorTrain, respectively: to add/remove a
door, the respective train must be stopped. If the train is stopped and either one of
the occupied sections corresponds to a platform or the emergency button is activated
(guard grd3), doors can be opened as seen in event openDoor. For safety reasons, event
toggleEmergencyButton is strengthened by guard grd3 to activate the emergency
button whenever doors are open and the train is not on a platform.

7.4.5. Third refinement and first decomposition: MetroSystem_M3

This refinement does not introduce new details to the model. It corresponds to
the preparation step before the decomposition. We want to implement a three-way
shared event decomposition and therefore we need to separate the variables that will
be allocated to each sub-component. In particular, for exchanged messages between
the sub-components, the protocol will work as follows: messages are sent from Track
and stored in the Middleware. After receiving the message, the Middleware forwards
it to the corresponding Train. Train reads the message and processes it according
to the content. This protocol allows a separation between Train and Track with the
Middleware working as a bridge between these two sub-components.

The decomposition follows the steps described in section 7.3.2.2. Variables are
distributed according to Figure 7.16. To avoid constraints during the decomposition
process, predicates and assignments containing variables that belong to different sub-
components are re-arranged in this refinement step.

Some guards need to be rewritten in the refined events. For instance, guard grd10
in event leaveCDV needs to be rewritten so as not to include both variables trns
(sub-component Train) and occp (sub-component Track). Therefore, it is changed
from:

∀tt·tt ∈ trns ∧ card((occp ∪ {c2 �→ t1})−1[{tt}]) > 1 ⇒ (occpZ �− {t1 �→ c2})(tt) 	= occpA(tt)

to:
∀tt·tt ∈ dom(occpZ)∧card((occp ∪ {c2 �→ t1})−1[{tt}]) > 1⇒(occpZ �−{t1 �→ c2})(tt) 	= occpA(tt)

(Figure 7.17).

Both predicates represent the same property since trns corresponds to the domain
of variable occpZ (see inv7 in Figure 7.13a). In Figure 7.17, the original guard grd3

Event-B and Rodin 237

in toggleEmergencyButton is rewritten to separate variables occp and door. In
this case, an additional parameter occpTrns representing the variable occp is added
(grd4). This additional parameter will represent the value passing between the resulting
decomposed events: parameter occpTrns is written the value of occp and afterward it is
read in guard grd3. Similarly, guard grd4 in eventopenDoor must not include variables
occp and emergency_button and consequently parameter occpTrns is added.

Sub-components Train, Track, and Middleware are described in the following
sections.

Figure 7.16. MetroSystem_M3 (shared event) decomposed into Track,
Train and Middleware

7.4.6. Machine Track

Machine Track contains the properties concerning the sections in the metro system.
Events corresponding to entering, leaving tracks, and changing switch positions are part
of this sub-component resulting from the variables allocation for this sub-component:
next, occp, occpA and occpZ. Event sendTrainMsg is also added since the messages
are sent from the tracks as seen in Figure 7.18. The original events toggleEmergency
Button and openDoor require occp in their guards. Consequently, a part of these
original events are included in this sub-component.

Note that the invariants defining the variables may change: in MetroSystem_M1
variable occp is defined as occp ∈ CDV ↔ trns (inv4 in Figure 7.13a); in Track
is occp ∈ CDV ↔ TRAIN (which is the same as theorem typing_occp : occp ∈
P(CDV × TRAIN) in Figure 7.18). This is a consequence of the variable partition

238 Industrial Use of Formal Methods

Figure 7.17. Preparation step before decomposition of MetroSystem_M3

Figure 7.18. Excerpt of Track

Event-B and Rodin 239

since trns is not part of Track and therefore, the occp relation is updated with trns’s
type: TRAIN (see inv3 in Figure 7.13a). Variables occpA and occpZ are subject
to the same procedure where the original invariant is a total function trns → CDV
and in the sub-component, both become P(TRAIN × CDV). The sub-components
invariants are derived from the different initial abstract models (see their labels in
Figure 7.18). Invariants that only restrain the sub-component variables are automatically
included although additional ones can be added manually.

7.4.7. Machine Train

Machine Train models the trains in the metro system. Trains entering/leaving a
section, modeled by events enterCDV and leaveCDV , are part of this sub-component,
(see Figure 7.19b). The interaction with sub-component Track occurs through
parameters t1, c1 and c2 (see events Track.leaveCDV in Figure 7.18). Variables door
and door_state are part of this sub-component and consequently, the events that modify
these variables: openDoor and closeDoor. Moreover, since the emergency button is
part of a train, the respective variable emergencyButton (and the modification event
toggleEmergencyButton) is also included in this sub-component. Event recvTrain
Msg receives messages sent to the trains and the content is stored in the variable
permit. Although variable permit is set based on the content of the messages exchanged
between Train and Track, that variable is read by trains. This is the reason why it is
allocated to this sub-component. The events that change the speed of the train are also
included in this sub-component: brake, stopBraking, changeSpeed due to variables
speed and braking as depicted in Figure 7.19.

7.4.8. Machine Middleware

Finally, the communication layer is modeled by Middleware as seen in Figure 7.20.
Middleware bridges Track and Trains, by receiving messages (sendTrainMsg) from
the tracks and delivering to the trains (recvTrainMsg). Variable tmsgs is used as a
buffer.

Benefiting from the monotonicity of the shared event approach, the resulting
sub-components can be further refined. Following Figure 7.10.

7.4.9. Refinement of Train: Train_M1

In Train_M1, carriages are introduced as parts of a train. Each carriage has an
individual alarm, which when activated, triggers the train alarm (enables the emergency
button of the train). Each train has a limited number of carriages. Each carriage has

240 Industrial Use of Formal Methods

Figure 7.19. Excerpt of Train

a set of doors and the sum of carriage doors corresponds to the doors of a train. The
properties to be preserved are as follows:

Event-B and Rodin 241

1. There is a limit to the number (MAX_NUMBER_CARRIAGE) of
carriages per train.

2. Whenever a carriage alarm is activated, then the emergency button of that same
train is activated.

3. The sum of carriage doors corresponds to the doors of a train.

Figure 7.20. Machine Middleware

The definition of these requirements need the introduction of some static
elements, such as a carrier set CARRIAGE, constants MAX_NUMBER_CARRIAGE,
and DOOR_CARRIAGE (function between DOOR and CARRIAGE). The latter is
defined as a constant because the number of doors in a carriage does not change. Context
Train_C2 is depicted in Figure 7.21a. Several variables are added, such
as train_carriage relating carriages with trains and carriage_alarm that is a total
function between CARRIAGE and BOOL, illustrated in Figure 7.21b. Property 1 is
expressed by invariant inv6 stating that trains have a maximum of
MAX_NUMBER_CARRIAGE carriages. Property 2 is defined in inv7 as seen in
Figure 7.21b. Events activateEmergencyCarriageButton and deactivateEmergency
TrainButton refine abstract event toggleEmergencyButton: the first event enables a
carriage alarm and consequently enables the emergency button of the train; the latter
occurs when the emergency button of a train is active and corresponds to the deactivation
of the last enabled carriage alarm, which results in deactivating the emergency button; a
new eventdeactivateEmergencyCarriageButton is added to model the deactivation
of a carriage alarm when there is still another alarm enabled for the same train (guards
grd4 and grd5). The allocation and removal of carriages (events allocateCarriageTrain

242 Industrial Use of Formal Methods

Figure 7.21. Excerpt of machine Train_M1

Event-B and Rodin 243

and removeCarriageTrain) refine addDoorTrain and removeDoorTrain, respectively. In
these two events, the parameter d representing a set of doors is replaced in the witness
section by the doors of the added/removed carriage:d = DOOR_CARRIAGE−1[{c}].

7.4.10. Further development

Details of some remaining refinement and decomposition steps may be found
in [SIL 12]. Carriage is refined and decomposed until it fits in a generic model GCDoor
corresponding to a Generic Carriage Door development as seen in Figure 7.22. A
generic model GCDoor is instantiated into two instances: EmergencyDoors and
ServiceDoors benefiting from the refinements in the pattern.

Figure 7.22. Carriage Refinement Diagram and Door Instantiation

7.4.11. Conclusion

We modeled a metro system case study, starting by proving its global properties
through several refinement steps. Afterward, due to an architectural decision and to
alleviate the problem of modeling and handling a large system in one single machine, the
system is decomposed in three sub-components. We further refine one of the resulting
sub-components (Train), introducing several details in four refinements levels.

244 Industrial Use of Formal Methods

The derivation of the distributed rail system illustrates a formal design approach
for embedded controllers that takes into account models of the physical behavior as
well as required control behavior. Traditionally, formal methods are used to verify
correctness of computer systems with respect to a specification. Here, we are using
formal methods to model and reason about a system as a whole, both the physical
system and the required control behavior.

Specifying the system-level model does require skill in deciding on the appropriate
abstractions, what aspects of behavior need to be modeled and what aspects can be left
out of the model. The benefit of the system-level model is that it is easier to understand
and reason about the behavior of the system as a whole.

The complexity of the entities and the relationships between them is handled through
the use of refinement, which allows complexity to be introduced and reasoned about in
steps. We made use of refinement for two main purposes, to introduce communications
mechanisms leading to system partition and to replace abstract structures by more
concrete realizations (such as replacing next by pos).

Although we are mainly interested in safety properties, the model checker
ProB [WIK 02] proved to be very useful as a complementary tool during the development
of this case study. In some stages of the development, all the proof obligations were
discharged but with ProB, we discovered that the system was deadlocked due to some
missing detail. In large developments, these situations possibly occur more frequently.
Therefore, we suggest discharging the proof obligations to ensure the safety properties
are preserved and run the ProB model checker to confirm that the system is free from
deadlocks.

7.5. Acknowledgments

The authors of this chapter would like to acknowledge funding from the FP7
DEPLOY Project (www.deploy-project.eu).

7.6. Bibliography

[ABR 96] Abrial J.-R., The B-book: Assigning Programs to Meanings, Cambridge University
Press, New York, USA, 1996.

[ABR 07] Abrial J.-R., Hallerstede S., “Refinement, decomposition, and instantiation
of discrete models: application to Event-B”, Fundamenta Informaticae, vol. 77, no. 1-2,
p. 1-28, 2007.

[ABR 08] Abrial J.-R., Modeling in Event-B: System and Software Engineering, Cambridge
University Press, 2008.

Event-B and Rodin 245

[ABR 10] Abrial J.-R., Butler M., Hallerstede S., Hoang T.S., Mehta F., Voisin L.,
“Rodin: an open toolset for modelling and reasoning in Event-B”, STTT, vol. 12, no. 6,
p. 447-466, 2010.

[BAC 89] Back R.-J., “Refinement calculus, part II: parallel and reactive programs”, REX
Workshop, p. 67-93, 1989.

[BUT 97] Butler M.J., “An approach to the design of distributed systems with B AMN”, ZUM,
p. 223-241, 1997.

[BUT 02] Butler M., “A system-based approach to the formal development of embedded
controllers for a railway”, Design Automation for Embedded Systems, vol. 6, p. 355-366,
2002.

[BUT 09] Butler M., “Decomposition structures for Event-B”, Integrated Formal Methods
iFM2009, Springer LNCS 5423, February 2009.

[DAM 08] Damchoom K., Butler M., Abrial J.-R., “Modelling and proof of a tree-structured
file system in Event-B and Rodin”, Proceedings of the 10th International Conference on
Formal Methods and Software Engineering, ICFEM ’08, p. 25-44, Springer-Verlag, Berlin,
Heidelberg, 2008.

[EVE] Event-B and Rodin Website [Online]. http://www.event-b.org/.

[FAL 09] Falampin J., Butler M., Fitzgerald J., Deploy deliverable d16 d2.1
pilot deployment in transportation (wp2). http://www.deploy-project.eu/pdf/D16_final6,
September 2009.

[LEU 08] Leuschel M., Butler M., “ProB: an automated analysis toolset for the B Method”,
International Journal on Software Tools for Technology Transfer (STTT), vol. 10, p. 185-203,
2008.

[SIL 11] Silva R., Pascal C., Hoang T.S., Butler M., “Decomposition tool for Event-B”,
Software, Practice and Experience, vol. 41, no. 2, p. 199-208, 2011.

[SIL 12] Silva R., Supporting Development of Event-B Models, Draft PhD Thesis, University
of Southampton, 2012.

[SNO 06] Snook C.F., Butler M.J., “UML-B: formal modeling and design aided by UML”,
ACM Transactions on Software Engineering and Methodology, vol. 15, no. 1, p. 92-122,
2006.

[TSD 12] Transportation Systems Design Inc, Communications based train control,
http://www.tsd.org/cbtc/, January 2012.

[WIK 01] Wiki. B2Latex [Online]. http://wiki.event-b.org/index.php/B2Latex.

[WIK 02] Wiki. ProB [Online]. http://wiki.event-b.org/index.php/ProB.

[WIK 03] Wiki. UML-B [Online]. http://wiki.event-b.org/index.php/UML-B.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

