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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Renato Alexandre da Cruz Silva

We believe that the task of developing large systems requires a formal approach. The

complexity of these systems demands techniques and tool support to simplify the task of

formal development. Often large systems are a combination of sub-components that can

be seen as modules. Event-B is a formal methodology that allows the development of

distributed systems. Despite several benefits of using Event-B, modularisation and reuse

of existing models are not fully supported. We propose three techniques supporting the

reuse of models and their respective proof obligations in order to develop specifications

of large systems: composition, generic instantiation and decomposition. Such techniques

are studied and tool support is defined as plug-ins by taking advantage of the extensi-

bility features of the Event-B toolset (Rodin platform).

Composition allows the combination of different sub-components and refinement is

possible. A shared event approach is followed where sub-components events are com-

posed, communicating via common parameters and without variable sharing. By reusing

sub-components, proof obligations required for a valid composition are expressed and

we show that composition is monotonic. A tool is developed reinforcing the conditions

that allow the monotonicity and generating the respective proof obligations.

Generic Instantiation allows a generic model (a machine or a refinement chain) to

be instantiated into a suitable development. Generic model proof obligations are reused,

avoiding re-proof and its refinement comes for free. An instantiation constructor is de-

veloped where the generic free identifiers (variables and constants) are renamed and

carrier sets are replaced to fit the instance.

Decomposition allows the splitting of a model into several sub-components in a

shared event or shared variable style. Both styles are monotonic and sub-components

can be further refined independently, allowing team development. Proof obligations of

the original model are split into the different sub-components which usually results in

simpler and easier to discharge proof obligations. Decomposition is supported by a prac-

tical tool permitting the use of both styles.

We expect to close the gap between the use of formal methods in academia and

industry. In this thesis we address the important aspect of having tools supporting

well-studied formal techniques that are easy to use by model developers.
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Chapter 1

Introduction

This thesis investigates techniques that allow support of formal developments in Event-

B [3, 9]. In particular we focus in reuse of developments, in the avoidance of re-proofs

and respective tool support. We begin by studying other formal languages and the

respective formal support for three techniques: composition, generic instantiation and

decomposition. Afterwards and based on the previous study we apply the use of such

techniques to Event-B. Case studies and respective tool support for each technique are

developed in the Rodin platform, an application targeting developments in Event-B.

1.1 Thesis contribution

1.1.1 Overview

We believe that the development of large, complex and/or critical systems should be

done using formal methodology. The development of such systems usually is complex

and they must be ensured to work as desired avoiding failures that could lead to se-

rious consequences or even life-threatening situations. Formal methods are used to

help the development and modelling of these systems, which itself can be a hard task

to accomplish. Several formal notations can be used for modelling systems. We use

Event-B, a recent formal method with growing popularity used for modelling discrete

systems. Event-B results from an evolution of other formal methods notations like the

B-Method [158] and Action Systems [26]. Event-B is suitable for modelling parallel,

reactive and distributed system and not restricted to software development unlike the

“parent” B-method, including a richer notion of refinement. As we are mostly interested

in distributed systems, this seems a suitable notation to be used.

However as a recent notation, Event-B lacks some features and mechanisms. We address

in particular the lack of reusability mechanisms like avoiding proof obligations (POs)

3
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re-proof. We believe that reusability is very useful specially in large developments and

we address these missing mechanisms.

1.1.2 Contributions

This thesis contributes to the development of systems, in particular large, distributed

systems. It is necessary to envisage mechanisms that simplify the correct development

of large systems according to their specifications and having tool support eases such a

complex task. We propose three techniques for Event-B that help the development of

these kind of systems: composition, generic instantiation and decomposition. Individual

models can be composed in a shared event style through the composition technique.

Proof obligations in the individual models can be reused to minimise the proof effort on

the resulting composed model. Through generic instantiation an existing model can be

used as generic and instantiated to be used in other developments. The new instances

inherit the generic properties and respective POs. Decomposition allows the partitioning

of a model into several sub-models as an architecture feature and/or to simplify and more

easily discharge POs. The three techniques support reuse of existing sub-components

taking advantage of their properties (reuse of models and avoiding re-proof). Necessary

POs are defined and simplified using the existing POs associated to the individual sub-

components. The Rodin platform serves as a host for the plug-ins developed to give tool

support to each of the techniques. We present the work developed for these techniques

starting from the theory behind each one of them, the application to case studies and

the extension to tool support.

This chapter introduces the contribution of this thesis and the necessary background to

understand the rest of the document. The technical details start with the introduction of

formal methods in Sect. 1.2. Several formal methods relevant to our thesis are introduced

in Sect. 1.3. Refinement is briefly covered including a comparison to different formal

methods in Sect. 1.4. Section 1.5 introduces the formal method that we use for our work

as well as a brief view of the Rodin platform, the toolset for Event-B. We finish this

chapter by covering the background related to our contribution: composition in Sect. 1.6

and decomposition in Sect. 1.7.

Next we describe in more detail what formal methods are and show some examples.

1.2 Formal Methods

Formal Methods use rigorous mathematical techniques to reason about systems’ be-

haviour. It can be applied to software and hardware systems and formal specification

expresses, in precise mathematical terms, whether a future computer based system or
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program is working correctly. Formal methods ensures that a program fulfills its for-

mal specification. This is specially important in the development of critical safety sys-

tems [38]. On a top-down development, the application of formal methods can be divided

into 3 steps [5]:

• Creation of requirement documents

• Development of the Abstraction Model (first model representing a system through

the use of formal notation) and the steps toward the Concrete Model (model which

is closer to what the system will be, but still represented by formal notation)

• Converting the Concrete Model into an Implementation. On a programming soft-

ware project, there already exist tools that automatically do this task.

[5, 7] use some formal methods case studies in industry and discuss how requirement

documents, system models and executable code fit on a project’s life cycle.

Formal methods can differ in several aspects, like syntax (specification language), seman-

tics or applications. Classifications can be drawn from the different notations. A possible

classification is to distinguish formal methods in terms of behaviour, i.e. state-based or

event-based approaches [1, 35, 74]:

• State-Based behaviour: the system is described by a sequence of state changes. A

state is a set of assignments to a set of components (frequently variables). This kind

of systems usually are rooted in logic and close to how imperative programming

languages that deal with state. This approach forces a close examination of how

the real system is represented in the model [1, 31]. Examples of formal methods

with a state-based behaviour are Z [173], VDM [105] or B [4].

• Event-Based behaviour: the system is described by a sequence of operations. The

specification is manipulated algebraically while defining the actions [1]. Event-

based systems are used to develop and integrate systems that are loosely coupled

(suitable for large-scale distributed applications). The integrated systems can

communicate by generating and receiving event notifications [74]. Examples of

formal methods with a event-based behaviour are CSP (Communicating System

Processes) [92] or CCS (Calculus of Communicating Systems) [126].

A state-based system usually changes state through the execution of events. An event-

based approach expresses the evolution of the system by defining the enabled operations.

Event-based view is suitable for message-passing distributed systems while state-based

view is suitable for design of parallel algorithms [42]. Not always it is possible to make

a very clear distinction of these two situations: depending on the viewpoint a formal

notation is seen, it can show both characteristics.
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[112, 113] suggest another classification for formal notations based on common charac-

teristic of modelling languages from a system re-engineering point of view:

• Model based: a system is described by explicitly defining state and operations.

It progresses through the execution of operations that change the system from

one state to another. There is no explicit representation of concurrency and some

functional requirements cannot be expressed (temporal requirements). Several

stated-based formal methods are also model based as are the examples of Z, VDM,

B or Event-B [9].

• Logic based: Logics are used to describe desirable properties of the system such

as specification, temporal or probabilistic behaviour. The validity of these prop-

erties relies on the associated axiom system. The final executable specification

can be used for simulation and prototype construction. Logic can be augmented

with some concrete programming constructs to obtain a wide-spectrum formalism.

In that case, correctness refinement steps are applied during the construction of

such systems. Examples of logic based modelling languages are Hoare Logic [65],

Weakest Precondition Calculus [64], Modal Logic [133] or Temporal Logic [119].

• Algebraic Approach: Explicit definition of operations is given by describing the

behaviour of different operations without any definition of state. Like model-based

notations, concurrency it is not explicitly expressed. Examples are OBJ [84] or

LARCH [86].

• Process Algebra Approach: Concurrent systems are explicitly represented.

The system behaviour is constrained by all observable communication between pro-

cesses. Examples are: CSP, CCS, ACP (Algebra of Communicating Processes) [28]

or LOTOS (Language of Temporal Ordering Specification) [98].

• Net based: Graphical languages are combined with formal semantics, bringing

some advantages to system creation/development. Graphical notation are popular

resulting from the simplicity of defining specifications for systems without requiring

a deep understanding of the underlaying framework. Examples are: Petri Net [143],

StateCharts [95] or UML-B [170].

The classification of the formal notation helps when deciding which formal methods is

suitable for a particular system development. The next section gives an overview of

other formal methods (related to Event-B or) relevant to our developed work.

1.3 Overview of some formal methods

Event-B is a formal method that allows the specification and modelling of reactive sys-

tems (see Sect. 1.5). Nevertheless other formal methods are available for implementing
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different kind of systems. We overview some formal methods related to Event-B and in

particular to our work:

• CSP

• VDM

• Action Systems

• Classical B

• Z

These formal notations are briefly introduced in the following sections.

1.3.1 Communicating Sequential Processes - CSP

CSP is a process algebra formal method that allows modelling of parallel processing and

interaction between systems [91]. The basic concept in CSP considers a process as a

mathematical abstraction of interactions between the system and its environment. The

behaviour of the system is described through independent Processes in an event-based

view. A set of events in which a process P can engage is called its alphabet, written

αP and represents the visible interface between the process and its environment [53].

The processes are constrained in the way they can engage in the events of its alphabet,

using CSP process term language [43]. A process interacts with its environment by

synchronously engaging in atomic events. A sequence of events is described using a

prefix operator ’→’. For instance, a→P describes the process that engages in the event

a and then behaves as process P . The environment can decide between two processes

using the choice operator ’8’. For instance, P 8Q represents the process that offers the

choice to the environment between behaving as process P or as process Q. There is also

a non-deterministic choice operator ’u’: P u Q represents the process that internally

chooses between behaving as P or Q, without any environment control. There are

several operations that can be applied to traces [92] like concatenation, interleaving,

subscripting, reversal among others. We describe here in more detail the concatenation

and interleaving operations as they will be used later on.

Concatenation Let s be a sequence, each of whose elements is itself a sequence.

Then a/s is obtained by concatenating all the elements together in the original order.

A definition can be given by means of the following laws (distributive operator) [92]:

• a/〈〉 = 〈〉

• a/〈s〉 = s
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• a/(sa t) = (a/s)a (a/t)

Interleaving A sequence s is an interleaving of two sequences t and u if it can be split

into a series of subsequences, with alternate subsequences extracted from t and u. For

example s = 〈1, 6, 3, 1, 5, 4, 2, 7〉 is an interleaving of t and u, where t = 〈1, 6, 5, 2, 7〉 and

u = 〈3, 1, 4〉. A recursive definition can be given by means of the following laws [92]:

• 〈〉 interleaves (t, u) ≡ (t = 〈〉 ∧ u = 〈〉)

• s interleaves (t, u) ≡ s interleaves (u, t)

• (〈x〉a s) interleaves (t, u) ≡ (t 6= 〈〉 ∧ t0 = x ∧ s interleaves (t
′
, u)) ∨

(u 6= 〈〉 ∧ u0 = x ∧ s interleaves (t, u
′
)),

where t
′

(same for u
′
) is the tail of sequence t (u).

CSP allows the refinement of models. The refinement depends on the semantic model

of the language which is used [153] and respective granularity:

• Traces refinement: The coarsest used relationship is based on the sequences of

events which a process can perform (the traces of the process). A process Q is

a traces refinement of another, P, if all the possible sequences of communications

which Q can do are also possible for P. The previous trace refinement can be

expressed as P vT Q =̂ traces(Q) ⊆ traces(P ).

• Failures refinement: A finer distinction between processes can be made by con-

straining events. An implementation can constrain events permitted to block as

well as events that can be performed. A failure is a pair (s,X), where s is a

trace of the process and X is a set of events the process can refuse to perform

at that point (refusal). A state of a process is deadlocked if it can refuse to do

every event and STOP is the simplest deadlocked process. Deadlock is also com-

monly introduced when parallel processes do not succeed in synchronising on the

same event. Failures refinement between processes P and Q can be expressed as

P vF Q =̂ failures(Q) ⊆ failures(P ).

• Failures-Divergences refinement: The failures model does not model processes

that might livelock (i.e., perform an infinite sequence of internal actions) and

so may never subsequently engage in a visible event. The failures-divergences

model meets this requirement by adding the concept of divergences. The diver-

gences of a process are the set of traces after which the process may livelock.

This gives two major enhancements: the ability to analyse systems which have

the potential to never perform another visible event and assert this does not oc-

cur in the situations being considered; and use divergence in the specification

to describe “do not care” situations. Formally, after a divergence, a process
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is considered as acting chaotically and is able to do or refuse anything. This

means that processes are considered to be identical after they have diverged. A

failures-divergences refinement between processes P and Q can be expressed as

P vFD Q =̂ failures(Q) ⊆ failures(P ) ∧ divergences(Q) ⊆ divergences(P ).

• Infinite traces refinement: The infinite-traces model of CSP was introduced by

Roscoe [152]. It extends the failures-divergences model by including all possible

infinite behaviours of a process. A process model now has components (A,F,D, I)

where A, F and D are as in the failures-divergences model and I is some subset

of Aw, the set of infinite sequences of elements of A, the alphabet of the process.

An infinite traces refinement between processes P and Q can be expressed as

P vFDI Q =̂ failures(Q) ⊆ failures(P ) ∧ divergences(Q) ⊆ divergences(P ) ∧
infinites(Q) ⊆ infinites(P ).

The semantics of an expression P is written (α(P ),FJP K,DJP K, IJP K), or JP K for short.

The semantics function is used to justify the algebraic laws: for expressions P,Q, P = Q

iff JP K = JQK [53].

There are some tools available for CSP. FDR2 (Failures/Divergence Refinement 2) is a

refinement checker for establishing properties of models expressed in CSP. Also ProBE,

an animator for CSP processes, allows the user to explore the behaviour of models

interactively. These two tools are developed by Formal Systems Europe [80]. Adelaide

Refinement Checker (ARC) [136] is a CSP refinement checker developed by the Formal

Modelling and Verification Group at The University of Adelaide. Occam Transformation

System is an automated tool to assist in carrying out algebraic transformations.

1.3.2 Vienna Development Method - VDM

Vienna Development Method (VDM) is a model-oriented notation developed while a

research group of IBM laboratory in Vienna was working on compiler developments

and language designs. It consists of a formal modelling language,VDM-SL, which is

a combination of data definitions, state variables and a set of operations describing

the specification of systems and state variables invariants verified before and after the

execution of an operation [111]. Unlike other notations like Z or B, VDM has a three

values logic which allows explicit treatment of undefinedness. The VDM syntax can be

described using ASCII or mathematic notation. More recently an extension of VDM

was developed, VDM++, supporting object-oriented design, concurrency and capable of

modelling real-time distributed systems [77].

A VDM development is made up of state descriptions at successive levels of abstraction

and implementation steps which link to the state description. The implementation of

an abstract state description Sa by means of a more concrete one Sc describes [111]:
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• either a data reification, i.e. how the state variables of Sc implement the ones of

Sa;

• or an operation decomposition, i.e. how the operations of Sc implement the ones

of Sa into a computer language algorithm (implementation).

While modelling a specification using VDM, in particular for the operations, predicates

precondition and postcondition are written explicitly. The state of variables before

and after an operation usually is defined. To refer to a before value it is used the “˜”

decoration on the relevant variable [77]. VDM objects must be validated by proof obliga-

tions [111] and for an operation to be valid, the satisfiability rule (a sentence is satisfiable

if there is some interpretation under which it is true) must be met [101]. VDM formal

development uses data reification from abstract to concrete model [equivalent to data

refinement] but also uses operation decomposition to develop (abstract) implicit speci-

fications of operations and functions into algorithms that can be directly implemented

in a computer language of choice. In general operation decomposition it is applied after

the data reification [101].

In terms of tools, VDMTools [59] is the leading commercial tool for VDM-SL and

VDM++ developed by CSK Systems. Overture [134] is a community-based open source

initiative aimed at providing free tool support for VDM++ on top of the Eclipse plat-

form. Its aim is to develop a framework for interoperable tools that may be useful for

industrial application, research and education.

1.3.3 Action Systems

Action Systems was introduced by Back and Kurki-Suonio [26]. It provides a general

description of reactive systems, capable of modelling terminating, aborting and infinitely

repeating systems. Arbitrary sequential programs can be used to describe an atomic

action. A basic action system P = (A, v, Pi, Pa) consists of a list of labels A, a list of

variables v, a set of labelled statements (actions) Pa = {Pα | α ∈ A} and an initialisation

statement Pi. Each action α ∈ A is of the form [26]:

action α : gα(x)→ y := S(x, y). (1.1)

The action guard gα is a condition that the enabling variables x must satisfy for action

α to be enabled. The effect of the action is to assign new values S(x, y) to the update

variables y. Actions are atomic which means that when an action is executing no other

action of the system occurs until the first action is complete. Taking the view that

an action system engages in an action jointly with the surrounding environment allows

the environment to observe the executed actions and not the state of the action system

itself [41].
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Back and von Wright [27] describe how Action Systems can be used on parallel and

distributed systems in a stepwise manner by giving a behavioural semantics in terms of

execution traces. Back [24] suggests that sequential programs could also be implemented

in a parallel fashion: two or more actions can be executed in parallel, as long as the

(atomic) actions do not have variables in common. Butler [41] exposes a composition

using Action Systems from an event-based point of view based on CSP synchronisation.

Woodcock and Morgan [189] give two proof methods which are sound and jointly com-

plete in terms of CSP failure-divergences semantics for state-based concurrent systems

using the weakest precondition wp approach proposed by Morgan [129]. The weakest

precondition is briefly explained below.

Weakest Precondition For guarded command G, command com, and postcondition

Q:

wp(G→ com,Q) =̂ G⇒ wp(com,Q).

Whereas wp(com,Q) characterises the states from which com is certain to establish Q,

we need the states from which com could possibly establish Q. Morgan [129] defined

the conjugate weakest precondition as follows:

¬wp(com,¬Q)

because in those states it is not certain that com will establish ¬Q. Note that we are

taking the view that an aborting command could possibly establish anything. Therefore

we can say that:

wp(com,Q) =̂ ¬wp(com,¬Q) (1.2)

Although wp(com, true) implies termination of com, (1.2) shows that wp(com, true)

does not. For any action α let G be its guard. Then

G ≡ wp(α, true).

Butler [53] augments Back and von Wright [27] and Woodcock and Morgan [189] works

by defining the semantics of Action Systems in terms of the CSP infinite-traces semantic

model:

Definition 1.1. For action system P = (A, v, Pi, Pa),

{[P ]} =̂ (A,F{[P ]},D{[P ]}, I{[P ]})

A failure is a pair of the form (s,X), where s ∈ A∗ (set of finite sequences of elements of

A) is an event-trace and X ⊆ A is a refusal set. If (s,X) is in P after initialisation,then

P could engage in the action trace s and then refuse all actions X. Trace s is a divergence

if P〈i〉s aborts. For an infinite trace u ∈ Aw (Aw is the set of infinite traces for alphabet

A) and Pu =̂ (i | i ∈ N·Pui), I{[P ]}) are those u ∈ Aw in which the execution of all the
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P〈i〉u in sequence is possible. Operationally, for this to be possible in some state it must

be the case that state S0 is enabled and that execution of S0 could result in a state in

which S1 is enabled and so on for each Si [53].

Event-B is inspired by Action Systems and as a consequence several similarities can be

drawn (atomic actions, state based, modelling reactive systems) for these two formal

methodologies. More information regarding composition follows in Sect. 1.6.

1.3.4 Classical B

Classical B (or B-Method) [4] created by Abrial is a formal approach for the specifica-

tion and development of computer software systems [158] and can be seen as a parent

of Event-B. A system specification is defined by machines that have variables defin-

ing the state space. The state progresses with the execution of operations. Operations

can have preconditions, guards (or both) and postconditions. Properties of the sys-

tem can be expressed by means of predicates called invariants. The B-Method can be

seen as both state-based (explicit notion of “state” expressed by variables) or event-

based (operations occurring nondeterministically). The development of models usually

follows a top-bottom style (Event-B inherits this style as seen in Sect. 1.5) where the

most abstract model is simple. More details and complexity are added throughout

stepwise refinements. Classical B defines three basic components: abstract machine, re-

finement and implementation. The last component, implementation, is a special kind of

refinement machine from which code can be produced, respecting the original abstract

specification. The refinement in Classical B is one to one: one abstract operation is re-

fined by one concrete operation and it is not possible to introduce new operations unlike

Event-B. Classical B has been used widely in both academic [169, 17] and industrial

developments [5].

Different ways and different tools exist for generating the output code like the B-

Toolkit [20] or Atelier B [19]. The B-Method focus on software systems and conse-

quently the final result - implementation model - although similar to other refinement

steps, includes programming constructs for common languages (e.g. C and Ada) with

some restrictions on the used syntax.

1.3.5 Z

The Z notation [173] is a state-based formal method, which uses mathematical tech-

niques to represent and describe computing systems: hardware and software. A system

contains a set of state variables and some operations that change the variables values.

A model that is characterised by the operations is called an Abstract Data Type (ADT)

and Z follows this style. Z can be used to describe object-oriented programs since the
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state variables and operations can be compared to instance variables and methods, re-

spectively [100]. Z serves as basis for other notations (for instance, classical B) and

several variants adapted to object-oriented programming (an example is Object-Z [168]

which is an object-oriented extension of Z). Z includes two notations [100]: notation for

ordinary discrete mathematics and notation that provides structure to the mathemat-

ical text - paragraphs. The most important and more used paragraph is a macro-like

abbreviation and naming construct called schema. Z defines the requirements through

the use of mathematic entities such as sets, relations/functions or sequences. A schema

consists of three parts: name which identifies the schema and it is used when composed

with other schemas; signature which is a collection of variables introducing data types

and created by declarations and providing a vocabulary for making mathematical state-

ments; predicate (or constraint) that defines relations between signatures elements using

predicates (describing abstractly the effect of each operation in the proposed system).

One of the ways to represent a schema StateSpace is represented here (the shortest one)

[37]: StateSpace =̂ [x1 : S1; ...;xn : Sn | Inv(x1, ..., xn)]. x1...xn are state variables,

S1...Sn are expressions that represent variable types. Inv(x1, ..., xn) are the state in-

variants. Schemas are used to define the static and dynamic feature of a system. The

static part includes the possible states and rules that should be preserved during the

system execution (invariant clauses). The dynamic part consists of available operations

and changes on the state after the execution of an operation, as well as on relationships

between input and output.

Research has been undertaken to adjust Z to model concurrent systems [37, 76]. Some

of these results are: Fischer’s CSP-OZ [75] developed to combine CSP properties with

Object-Z; Circus [186, 185], developed by Woodcock and Cavalcanti providing formal

support for the specification of data, behaviour aspects of concurrent systems and allow-

ing refinement through the use of a syntactical approach in opposition to a semantic one;

TLZ [109] developed by Lamport that combines Temporal Logic of Actions (TLA) [108]

and Z; Taguchi and Araki [179] combine Z and CCS to specify concurrent systems,

among others.

The Community Z Tools (CZT) project [57] is an open source project providing an

integrated toolset to support Z, with some support for Z extensions such as Object-

Z, Circus, and TCOZ. Another Z tool is Fastest [79] which is a model-based testing

tool. The tool receives a Z specification and generates (almost automatically) test cases

derived from the specification. f uzz [175, 174] is Spivey’s typechecker for the original

Z language. It includes style files for LaTeX and it is available as part of the Z Word

Tools [180].

All the previous formal methods have something in common: the use of refinement to

describe a specification. Refinement plays an important role in formal developments in

particular on a top-down style. Initially we have an initial abstract and simplistic view

of the modelled system. Refinement allows the introduction of more details in the state
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system respecting the initial abstract view. We discuss more about refinement in the

next section.

1.4 Refinement

Refinement allows the construction of a model in a gradual way, making it closer to

an implementation [15]. At same time, the overall correctness of the system should

be preserved. A property P ′ is said to refine a property P if P ′ v P . The initial

model is defined as the abstract model. A model that maintains the properties of the

abstract model and adds more details is defined as a concrete model. The states in the

abstract model are linked to the concrete ones. The refinement process can be repeated

so it can be applied over a concrete model generating an even more concrete model.

All formal notations presented in the previous sections have the notion of refinement

although sometimes named differently (in VDM it is known as reification). Operations

in B, VDM and Z are “refined” on a one-to-one basis: one abstract operation is refined

by only one concrete operation. Event-B, as it will be seen in the Sect. 1.5, is more

flexible as it inherits a refinement property from Action Systems and CSP where it is

possible to introduce new events during the stepwise refinement steps. Gluing invariants

are predicates used to link the abstract and concrete states. In Event-B, refinement can

also be applied to a machine and respective context(s) separately. It is possible to extend

contexts by adding new sets, constants or axioms to an existing context as long as the

abstract context properties are kept [150] (see Sect. 1.5).

Proof obligations are generated and discharged during the refinement process to preserve

the abstract properties in the concrete model: concrete events must keep the behaviour

of the respective abstract ones; the new model should not introduce divergence and

the invariants of the concrete model should be preserved for every event enabled (the

semantic of these proof obligations are described in Sect. 1.5.3). New events refining an

implicit event which does nothing (skip) [15] can be added in a refinement step. All the

abstract events must be refined in the concrete model. A constraint for the refinement

is that the concrete machine should not deadlock before the abstract machine, other-

wise the concrete machine might not achieve what the abstract machine had previously

required. The formalization of the described constraints can be found in [15].

Next section focus on the Event-B language and properties which will help understand

the rest of the document. The refinement POs for Event-B are also described in the

following section.
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1.5 Event-B

Event-B is a formal methodology that uses mathematical techniques based on set theory

and first order logic. It is a notation and method used for modelling discrete systems

resulting from an evolution of other formal methods notations like classical B and Action

Systems. The justifications and explanations for such notation can be found in [87].

Event-B is suitable for modelling parallel, reactive and distributed systems and can be

seen as a state-based formal method due to the close relation to classical B. Event-

B models can be developed in the Rodin modelling tool [151, 71] and we discuss it

briefly in Sect. 1.5.7. The semantics of a model developed in Event-B is given by means

of its proof obligations (cf. Sect. 1.5.3). These obligations have to be discharged to

show consistency of the model with respect to some behavioural semantics. Abrial [9]

expresses these behavioural semantics as state trace semantics.

An abstract Event-B specification is divided into two parts: a static part called context

and a dynamic part called machine. A context Ctx consists of carrier sets s (similar to

types [15]), constants c, axioms (assertions constraining constants and carriers sets) and

theorems A(s, c) . (Identifiers occurring free in a formula are indicated in parentheses).

An example of a context can be seen in Fig. 1.1.
BirthdayBook_C0

context BirthdayBook_C0

constants

p0

d0

sets PERSON DATE

axioms

@axm1 p0 ! PERSON

@axm2 d0 ! DATE

end

Page 1

Figure 1.1: Context BirthdayBook C0

A model is defined by a machine M that sees a context Ctx. A machine usually contains

global state variables v as well as invariants and (machine) theorems I(s, c, v) that define

the dynamic properties of the specification by constraining v. Possible state changes are

described by means of events: when their conditions are satisfied, optional local variables

(parameters) can be used and state variables may be updated. An example of a birthday

book machine can be seen in Fig. 1.2.

An abstract Event-B specification can be refined by adding more details and becoming

more concrete (see Fig. 1.3 where machine N refines machine M).

Refinement allows the introduction of more details in small steps. Otherwise the speci-

fication development would have to be done in one single step with the possible conse-

quence of becoming complicated, hard to reason about (dealing with all the details of
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BirthdayBook_M0

machine BirthdayBook_M0 sees BirthdayBook_C0

variables birthday

invariants

  @inv1 birthday ! PERSON ! DATE

events

  event INITIALISATION

    then

      @act1 birthday " {p0"d0}

  end

  event AddBirthday

    any p d

    where

      @grd1 p ! PERSON

      @grd2 d ! DATE

      @grd3 p # dom (birthday)

    then

      @act1 birthday " birthday ! {p " d}

  end

end

Page 1

Figure 1.2: Machine BirthdayBook M0
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ABSTRACT ABSTRACT
CONTEXT

CONCRETE CONCRETE
CONTEXT

M C

DN

sees

Variables

Invariants

Events

Sets

Constants

Axioms

sees

Variables

Invariants

Events

Sets

Constants

Axioms

MACHINE

MACHINE

extends

Figure 3. Machine Refinement and Context Extension

reality are now revealed by the microscope. An even more powerful microscope will reveal more details, etc. A

refined model is thus one which is spatially larger than its previous abstractions.

In correlation to this spatial extension, there is a corresponding temporal extension: this is because the new

variables can be modified by some transitions, which could not have been present in the previous abstractions,

simply, because the concerned variables did not exist in them. Practically this is realized by means of new events

involving the new variables only (they refine some implicit events doing “nothing” in the abstraction). Refinement

will thus result in a discrete observation of reality, which is now performed using a finer time granularity.

We distinguish two principal uses of refinement, superposition [6] refinement and data-refinement [7]. Super-

position refinement corresponds solely to a spatial and temporal extension of a model. Data-refinement is used in

order to modify the state so that it can be implemented on a computer by means of some programming language.

5.1. Machine Refinement and Context Extension

From a given machineM, a new machine N can be built and asserted to be a refinement ofM. MachineM is said to

be an abstraction of N and machine N is said to be a refinement ofM or a concrete version of it. Likewise, context

C, seen by a machineM, can be extended to a context D, which is then seen by N. This is represented in Fig. 3.

Note that it is not necessary to extend context C when refining machine M. In this restricted case, machine N

just sees context C as does its abstractionM. This is illustrated in Fig. 4.

The sets and constants of an abstract context are kept in its extension. In other words, the extension of a

context just consists of adding new sets t and new constants d. These are defined by means of new axioms

Q(s, t, c, d). Consequently, no specific proof obligations are associated with context extension. In this article we
present singleton context extension and context reference to achieve conceptual simplicity. The generalization to

multiple context extension and reference is not difficult and particularly useful in conjunction with decomposition

as presented in Section 6.

The situation is not the same when refining machines. The concrete machine N (which supposedly “sees”

Figure 1.3: Machine and context refinement

implementation at once) and most important, hard to understand [88]. Concrete mod-

els are expressed through the refinement of events, introduction of new variables w and

consequently the introduction of gluing invariants: invariants that relate abstract and

concrete states (variables). Therefore abstract variables can exist in a concrete model

or disappear and be replaced by a concrete variables. In that case, a gluing invariant

is required to relate the abstract and concrete variable. Abstract contexts can be ex-

tended by concrete contexts allowing the introduction of new carrier sets, constants and

axioms. As an example, see Fig. 1.4 where machine BirthdayBook M0 is refined with

the introduction of a new variable reminder (relation between variable birthday and

a reminding date; the same birthday can have multiple reminding dates). Note that

we do not change the original abstract event: we only “extend” it; the abstract event
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AddBirthday is extended by appending a concrete guard grd4 and a concrete action

act4.

machine BirthdayBook_M1 refines BirthdayBook_M0   

sees BirthdayBook_C0 

 

variables birthday reminder 

 

invariants 

 @inv1 reminder ! birthday ! DATE 

 

events 

  event INITIALISATION extends INITIALISATION 

  then 

   @act2 reminder !" 

  end 

 

  event AddBirthday extends AddBirthday 

  any r 

  when 

   @grd4 r ! DATE 

  then 

   @act4 reminder(p"d)!r 

  end 

end 

!

Figure 1.4: Machine BirthdayBook M1

Proof obligations arise to verify the consistency of a model. For instance, there are

proof obligations to establish the refinement relationship between two machines, and to

establish invariant preservation by the events. We reason about a system specification

through its proof obligations. The reasoning verifies that the specification is sound wrt

some behavioural semantic and that system properties are always satisfied [88]. The logic

used in Event-B is typed set theory built on first-order predicate logic, and allows the

definition of partial functions. As such, it is necessary that the used proof system handles

well-definedness. In [122], it is shown that it is possible to reason about partiality without

abandoning the well-understood domain of two-valued predicate logic. In that approach,

the reasoning is achieved by extending the standard calculus with derived proof rules

that preserve well-definedness across proofs [116]. The proof calculus outlined in [122]

is the one used to reason in Event-B.

1.5.1 Preliminaries

A full definition of the mathematical language of Event-B may be found in [16]. Here we

give a very brief overview of the structure of the mathematical language to help motivate

the remaining sections and chapters.

Event-B distinguishes predicates and expressions as separate syntactic categories. Pred-

icates are defined in term of the usual basic predicates (>,⊥, A = B, x ∈ S, y ≤ z,

etc), predicate combinators (¬,∧,∨, etc) and quantiers (∀,∃). Expressions are defined

in terms of constants (0, ∅, etc), (logical) variables (x, y, etc) and operators (+, ∪,

etc). Basic predicates have expressions as arguments. For example in the predicate



18 Chapter 1 Introduction

E ∈ S , both E and S are expressions. Expression operators may have expressions as

arguments. For example, the set union operator has two expressions as arguments, i.e.,

S ∪ T . Expression operators may also have predicates as arguments. For example, set

comprehension is defined in terms of a predicate P , i.e., { x | P } [11].

1.5.1.1 Notation

The naming conventions that we use throughout this thesis are shown in the following

tables:

Context Ctx

Constant c

Carrier Set s

Axiom/Theorem A(c, s)
(a) Context Elements

Machine M

Abstract Variable v

Concrete Variable w

(Abstract) Invariant/Theorem I(c, s, v)

(Concrete) Invariant/Theorem J(c, s, v, w)
(b) Machine Elements

Event evt

(Abstract) Parameter p

(Concrete) Parameter q

(Abstract) Guard G(c, s, p, v)

(Concrete) Guard H(c, s, q, w)

Parameter Witness W (c, s, p, q, w,w′)
Variable Witness W (c, s, q, v′, w, w′)
(Abstract) Action S(c, s, p, v, v′)
(Concrete) Action T (c, s, q, w,w′)

(c) Event Elements

1.5.1.2 Types

All expressions have a type which is one of three forms:

• a basic set, that is a predefined set (Z or BOOL) or a carrier set provided by the

user (i.e., an identifier);

• a power set of another type, P(α);

• a cartesian product of two types, α× β

These are the types currently built-in to the Rodin tool [11]. User-defined types can be

defines as carrier sets and the only implicit assumption is that they are not empty [156].

An expression E has a type type(E ) provided E satisfies typing rules. Each expression

operator has a typing rule which we write in the form of an inference rule. For example,

the following typing rule for the set union operator specifies that S ∪ T has type (Pα)

provided both S and T have type P(α):
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type(S ) = P(α) type(T ) = P(α)

type(S ∪ T ) = P(α)

This rule is polymorphic on the type variable α which means that union is a polymorphic

operator. It should be noted that an expression of type BOOL is not a predicate. The

type BOOL consists of the values TRUE and FALSE, both of which are expressions.

These are different to the basic predicates > and ⊥. The bool operator is used to

convert a predicate into a boolean expression, i.e., bool(x > y). A boolean expression E

is converted to a predicate by writing E = TRUE. We have that bool(>) = TRUE.

1.5.1.3 Functions

There exists a relation between operators and function application in Event-B. The

type of an Event-B function f is P(type(A)× type(B)). The functionality of a partial

function f ∈ A 7→B is specified with an additional property and a uniqueness condition:

∀x, y, y′ ·x 7→ y ∈ f ∧ x 7→ y′ ∈ f ⇒ y = y′

The domain of f , written dom(f), is the set {x | ∃y ·x 7→ y ∈ f}. Application of f

to x is written f(x) which is well-defined provided x ∈ dom(f). Note that f is not

an operator itself: it is simply an expression. The operator involved here is implicit:

it is the function application operator that takes two arguments, f and x. An explicit

operator for a function application could have been written as apply(f, x), where apply

is the operator and f and x are the arguments. But in the Rodin tool, the shorthand

f(x) must be used.

Variables in the mathematical language are typed by set expressions. This means, for

example, that a variable may represent a function since a function is a special case of

a set (of pairs). Variables may not represent expression operators or predicates in the

mathematical language. This means that, while we can quantify over sets (including

functions), we cannot quantify over operators or predicates.

1.5.1.4 Well-Definedness

Ill-defined terms arise in the presence of partial functions. They result from the applica-

tion of functions to terms outside their domain. When ill-definedness is a concern, the

adopted reasoning framework has to cope with it. Different approaches exist to reason

in the presence of partial functions. Each of these approaches has its own specialised

proof calculus. In [122], it is shown that it is possible to reason about partiality without

abandoning the well-understood domain of two-valued predicate logic. In that approach,

the reasoning is achieved by extending the standard calculus with derived proof rules

that preserve well-definedness across proofs [116].
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Along with typing rules as defined above, all expression operators come with well-

definedness predicates. We write WD(E) for the well-definedness predicate of expres-

sion E. Table 1.1 gives examples of well-definedness conditions for several operators,

including the function application operator.

Expression Well-Definedness Conditions

F (E) WD(F ),WD(E), F ∈ x 7→ y,E ∈ dom(F )

F/E WD(F ),WD(E), E 6= 0

card(E) WD(E), finite(E)

S ∪ T WD(S),WD(T )

F mod E WD(F ),WD(E), E 6= 0

min(S) WD(S), S 6= ∅, ∃x·(∀n·n ∈ S⇒ x ≤ n))

max(S) WD(S), S 6= ∅, ∃x·(∀n·n ∈ S⇒ x ≥ n))

Table 1.1: Some expressions and respective well-definedness conditions

From the Table 1.1, it can be seen that an expression F (E) is well-defined provided

both F and E are well-defined, that F is a partial function and that E is in the do-

main of F . In the Rodin tool, well-definedness conditions give rise to proof obligations

for expressions that appear in models. The well-definedness conditions are themselves

written as predicates in the Event-B mathematical language. [125] gives the full list of

expression, predicates and respective well-definedness conditions available in the Rodin

tool. A well-defined sequent of the form H `D G is defined as follows:

H `D G =̂ D(H), D(G), H ` G.

That is, the well-definedness of H and G is assumed when proving H ` G. Generally

speaking, when proving a sequent H ` G, the approach suggests proving its validity as

well as its well-definedness:

WDD : `D D(H ` G)

V alidityD : H `D G

where D(H ` G) is defined as D(∀x·H⇒G) such that x are the free variables of H and

G [116]. A proof rule is said to preserve well-definedness (WD) iff its consequent and

antecedents only contain well-defined sequents (i.e., `D sequents). For a generic proof

rule where H1 . . . Hn (standing for a conjunction), n > 0, are a sequence of (possible

empty) sequents and G is also a sequent, with an optional name r:

` H1 . . . Hn

` G r

then, the same proof rule can be rewritten including the well-definedness conditions (and
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the well-definedness operator D [122]) as:

`D D(H1) . . . D(Hn)

`D D(H1 . . . Hn)
∧goalD `D H1 . . . Hn

`D G
rD

Additional details about the use of well-definedness in a first order predicate calculus

can be found in [122].

Other works also study the well-definedness of partial functions: Fitzgerald and Jones [78]

discuss a connection between the classical First-order Predicate Calculus(FoPC) and the

Logic of Partial Functions (LPF). It is claimed that theorems in LPF using weak equality

can be straightforwardly translated into ones that are true in FoPC; translation in the

other direction results, in general, in more complicated expressions but in many cases

these can be readily simplified. [18, 120] discuss the semantics of Z in relation to first

order logic, particularly regarding undefinedness and proofs.

With regard to recursive functions, they are not supported in the Rodin platform. The

theory plug-in [115] that allows the extension of the mathematical language [11, 51],

allows the definition of new (possibly recursive) operators as well as the necessary well-

definedness conditions. Nevertheless this is currently work in progress.

Next we extend this initial description by focusing on the kind of events, the types of vari-

ables assignments and parameters. In the end we outline the existing proof obligations

for Event-B models. These details are necessary further on to explain our contributions.

1.5.2 Events

In Event-B, events specify changes to variables and the conditions under which they

may occur. Events occur as soon, and as long, as its firing condition (guards) are set [3].

An event evt is expressed by parameters (local variables to the event) p, by guards

G(s, c, p, v) and actions S(s, c, p, v, v′):

evt =̂ ANY p WHERE G(s, c, p, v) THEN S(s, c, p, v, v′) END.

When the guard G(s, c, p, v) is true then the event evt is enabled and therefore the action

S(s, c, p, v, v′) can update the set of variables v to v′ (after-state of v). A more general

definition is as follows: events may occur atomically when its guards are true and as

a result the state is updated through the execution of actions. The guard of an event

states the necessary conditions under which an event may occur and an action describes

how the state variables evolve when an event occurs [88]. A mandatory event called

INITIALISATION, with TRUE as guard, defines the initial state of the machine. The

system state progresses when events are enabled and occur. More details about events,

guards and actions can be found in [15].
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We consider three kind of events depending on when they are introduced during the

development of a model:

• convergent: new events introduced after a refinement. These kind of events refine

skip and require a variant (see Section 1.5.3.2) to ensure non-divergence.

• anticipated: event declared in anticipation that does not need to decrease a variant

(but must not increase it either); it only decreases the variant when it becomes

convergent in a further refinement [9].

• ordinary: neither convergent nor anticipated.

The majority of developments use ordinary or convergent events but anticipated events

can be useful when modelling. Anticipated events are used to avoid a technical difficulty

of using abstract variables in a new event during a refinement step. By declaring the

new event in anticipation in an abstract refinement, this technicality is circumvented. As

mentioned, new events can be introduced in a refinement of an abstract model (similar

to CSP hiding operator where some events are hidden from the environment) repre-

senting internal events. These new events may (optionally) be defined as convergent or

anticipated.

For variable assignments in an action, there are three simple forms [13] described in

Table 1.2. v and v1 are some variables, E(. . . ) denotes an expression, p are parameters

Assignment Before-After Predicate (BAP)

v := E(p, v1) v′ := E(p, v1)

v :∈ E(p, v1) v′ :∈ E(p, v1)

v :| S(p, v1, v
′) S(p, v1, v

′)

Table 1.2: Event-B assignments

and S(. . . ) is a predicate. The before-after predicate (BAP) denotes the relationship

holding between the state variables of the model just before (denoted by v) and just

after (denoted by v′) applying a substitution. The first row in Tab. 1.2 corresponds to

a deterministic substitution while the other two are non-deterministic substitutions. In

the second row, the assignment is non-deterministic and based on the expression E(. . . )

(for instance, assigning a value to v from a non-empty set). The third row assigns a

value to v according to the predicate defined and it is also considered non-deterministic.

Variables that do not appear on the left-hand side of an assignment of an action are not

changed (variables v1). The last row is the most general form of assignment and all the

other assignments can be expressed in this manner.

Concrete models are expressed through the refinement of events. An abstract event

evt1 is refined by evt2 if the guard H(s, c, q, w) of evt2 is stronger (guard strengthening)
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than the guard G(s, c, p, v) of evt1 and the gluing invariant J(s, c, v, w) establishes a

simulation of evt2 (T (s, c, p, w,w′)) by evt1 (S(s, c, p, v, v′)):

evt1 =̂ ANY p WHERE G(s, c, p, v) THEN S(s, c, p, v, v′) END

evt2 =̂ ANY q WHERE H(s, c, q, w)

WITH p : W1(p, s, c, w, q)

v′ : W2(v′, s, c, w, q, w′)

THEN T (s, c, p, w,w′) END.

The gluing invariant must be preserved by all events: invariants are supposed to hold

whenever a variable value changes in an event (invariant preservation PO). Moreover

the guard strengthening PO is preserved as follows: when a concrete event is enabled,

then so it is the corresponding abstract one. Finally the simulation PO is proved if the

occurrence of the concrete event does not contradict what the corresponding abstract

event does. In addition, for event refinements it must be shown that it is possible to

choose a value for the abstract parameter p such that G(s, c, p, v) holds and the gluing

invariant J(s, c, v, w) is re-established. Possible values of the abstract parameter p are

given as witness predicates W1(p, s, c, q, w) in concrete events [90, 87]. A witness is

necessary for each disappearing abstract parameter of an abstract event in the abstract

event. Moreover a witness W2(v′, s, c, w, q, w′) is needed for each disappearing abstract

variable v′ that has a non-deterministic assignment (see the third row of Table 1.2) [9].

New events can be introduced in a refinement of an abstract machine. They must

refine the implicit abstract dummy event skip and it may be proved that they do not

collectively diverge by being always enabled and preventing abstract events to occur.

The divergence is avoided if each new event decreases a variant [14]. The variant must

be well-founded, may be an integer or a finite set and it is bounded. One variant per

event that must be decremented by that same event. To preserve refinement, consistency

proof obligations are defined as described in Sect. 1.5.3.

1.5.3 Proof obligations

Proof obligations have a two-fold purpose. On the one hand, they show that a model

is sound with respect to some behavioural semantics. On the other hand, they serve

to verify properties of the model [88]. In Event-B, there are different kind of proof

obligations generated during a model development. A list of standard POs for contexts

and machines is defined in [9, 88, 87]. Here we only cover the relevant POs for our work.

In Event-B, refinement is defined in terms of POs and these correspond to standard

forward simulation [10]. We shall use a generic model illustrated in Fig. 1.5 to describe

the POs. Backward simulation is currently not supported.

Context Ctx is characterised by constants c, carrier sets s and axioms A(s,c). This

context is seen by all the involved machines. The abstract machine M contains a set of
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CONTEXT Ctx
CONSTANTS c
SETS s
AXIOMS A(s, c)

(d) Context Ctx

MACHINE M SEES Ctx
VARIABLES v
INVARIANT I(s, c, v)
EVENT evt =̂

ANY p WHERE
G(p, s, c, v)

THEN
v :| S(p, s, c, v, v′)

END

(e) Machine M

MACHINE N REFINES M
SEES Ctx
VARIABLES w
INVARIANT J(s, c, v, w)
VARIANT n(s, c, w)
EVENT evt1 REFINES evt =̂

ANY q WHERE
H(q, s, c, w)

WITH
p : W1(p, s, c, w, q)
v′ : W2(v′, s, c, w, q, w′)

THEN
w :| T (q, s, c, w,w′)

END
convergent EVENT evt2 =̂

ANY q WHERE
H2(q, s, c, w)

THEN
w :| T2(q, s, c, w,w′)

END

(f) Machine N

Figure 1.5: Context Ctx seen by machine M and respective refinement N

variables v, a list of invariants and local theorems I(s,c,v) and an event evt defined by

the parameter p, guards G(p,s,c,v) and before-after predicates S(p, s, c, v, v′) [considered

in the non-deterministic form as defined in the third row of Table 1.2] over the set of

variables v. Machine N refining M , contains a set of variables w and a set of additional

(concrete) invariants and theorems J(s, c, v, w). Event evt1 refines abstract event evt

and a new convergent event evt2 is introduced in this refinement. We assume that

variables v and w are pairwise disjoint and the same happens to parameters p and q. A

proof obligation is a sequent of the shape:

Hypotheses

` Goal

Hypotheses and goal are defined by predicates such as invariants, theorems, axioms

or guards. Based on the previous, we define the standard proof obligations in Event-

B [9]. These proof obligations are divided into consistency POs and refinement POs as

described below.

1.5.3.1 Consistency POs

Consistency POs are required to be always verified for each machine. Consistency is

expressed by the feasibility and invariant preservation POs for each event [88]. Moreover

well-definedness POs are generated for each potential ill-defined term (such as axioms,

theorems, invariants, variant, guards, actions).

Invariant Preservation (INV): This kind of proof obligation ensures that each in-

variant is preserved by each event. The hypotheses include axioms, invariants,
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local theorems, guards and before-after predicates of that event. The goal is each

individual invariant from the set of existing invariants. In Fig. 1.5(e), for event evt

and each of the invariants i(s, c, v) in I(s,c,v), the respective proof obligation rule

is given by (1.3).

evt/inv/INV :

A(s, c)

I(s, c, v)

G(p, s, c, v)

S(p, s, c, v, v′)

` i(s, c, v′)

(1.3)

i(s, c, v′) is one of the invariants where variables v are modified to v′.

Feasibility (FIS): It ensures that each non-deterministic action is feasible for a partic-

ular event. The hypotheses include axioms, invariants, local theorems and guards

of that event. The goal ensures that values exist for variables v′ such that the

before-after predicate S(p, s, c, v, v′) is feasible. In Fig. 1.5(e), for event evt and

each of the actions act, this proof obligation is given by (1.4).

evt/act/FIS :

A(s, c)

I(s, c, v)

G(p, s, c, v)

` ∃v′ ·S(p, s, c, v, v′)

(1.4)

Well-Definedness (WD) It ensures that any axiom (WD/AXM), theorem (WD/THM),

invariant(WD/INV ), guard(WD/GRD), action(WD/ACT ), variant(WD/VWD)

or witness p in an event evt(evt/p/WWD) is indeed well-defined. It varies with

the potentially ill-defined expression as seen in Table 1.1. An important property

for WD proof obligations is that they are ordered. For example, the WD condi-

tions for an invariant depends only on the previous defined invariants: for the WD

of ik, which is the invariant k from the set of invariants I, the hypotheses that can

be assumed are i1 . . . ik−1.

1.5.3.2 Refinement POs

The refinement POs are required when the an abstract machine is refined by a more

concrete one. Besides the consistency POs, refinement POs are additional obligations

required to be discharged to ensure valid refinements. As mentioned in Section 1.4,

in Event-B refinement requires concrete events to keep the behaviour of the respective

abstract ones. Proof rule (1.5) expresses the refinement PO for each concrete event.
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Refinement (REF): For each concrete event, the refinement PO reinforces that ab-

stract actions are simulated by the concrete ones, that each abstract guard is at

least as weak as the concrete one and that when an abstract variable is data refined

by a concrete one and disappears, gluing invariants exist linking the abstract and

concrete variables.

evt1/REF :

A(s, c)

I(s, c, v)

J(s, c, v, w)

H(q, s, c, w)

T (q, s, c, w,w′)

` ∃v′ ·G(p, s, c, v) ∧ S(p, s, c, v, v′) ∧ J(s, c, v′, w′)

(1.5)

The use of witnesses (cf. Sect. 1.5.2) allows the separation of the previous proof rule

in three parts: proof rules Gluing Invariant Preservation (1.7), Guard Strengthen-

ing (1.8) and Simulation (1.9). In practice, when discharging POs, it is simpler to

deal with one part of the refinement PO at a time instead of dealing with all at

once. We do not address the technical parts about the partition of the refinement

POs but more details can be found in [10]. When non-deterministic witnesses are

used, a proof obligation is generated to ensure that the witness is feasible.

Non-Deterministic Witness (WFIS): It ensures that each witness proposed in the

concrete event indeed exists, in particular when the witness is a non-deterministic

predicate. Witness are used when an abstract parameter is refined and disappears

(being replaced by another parameter, a variable or an expression) or when an

abstract variable that is assigned non-determistically is refined and disappears.

In both cases, witnesses should related the refined element with a concrete repre-

sentation (parameter, variable, expression) and this proof obligation ensures that

the substitution is indeed feasible. The hypotheses include axioms, invariants and

theorems (abstract and concrete), concrete guards and before-after predicate for

witness. The goal is to confirm that the witness indeed exists. In Fig. 1.5(f), for

convergent event evt2 and witness p, this proof obligation is given by (1.6).

evt2/p/WFIS :

A(s, c)

I(s, c, v)

J(s, c, v, w)

H2(q, s, c, w)

T (q, s, c, w,w′)

` ∃p·W1(p, s, c, w, q)

(1.6)

With the use of witnesses, the refinement PO (1.5) can be split in three parts

(which in practice makes the POs easier to manage and discharge). These three

proof rules are presented below.



Chapter 1 Introduction 27

Gluing Invariant Preservation (INV): In a refinement, concrete invariants must

be preserved for each concrete event. The hypotheses include axioms, abstract

invariants and theorems plus concrete invariants and theorems, concrete guards,

witnesses predicates for variables and concrete before-after predicates. The goal is

each concrete invariant from the set of invariants in the refinement. In Fig. 1.5(f),

for event evt1 and each of the invariants j(s, c, v, w) in J(s,c,v,w), the respective

proof obligation rule is given by (1.7).

evt/inv/INV :

A(s, c)

I(s, c, v)

J(s, c, v, w)

H(q, s, c, w)

W2(v′, s, c, w, q, w′)

T (q, s, c, w,w′)

` j(s, c, v′, w′)

(1.7)

Guard Strengthening (GRD): It ensures that each abstract guard is at least as weak

as the concrete one in the refining event. As a consequence, when a concrete event

is enabled, the corresponding abstract one is also enabled. The hypotheses include

axioms, abstract invariants and theorems, concrete invariants and theorems, con-

crete guards and witness predicates for parameters. The goal is each individual

abstract guard from the set of abstract guards. In Fig. 1.5(f), for event evt1 and

each of the abstract guards g(p,s,c,v), this proof obligation is given by (1.8).

evt1/grd/GRD :

A(s, c)

I(s, c, v)

J(s, c, v, w)

H(q, s, c, w)

W1(p, s, c, w, q)

` g(p, s, c, v)

(1.8)

Simulation (SIM): It ensures that each action in a concrete event simulates the corre-

sponding abstract action. When a concrete action is executed, the corresponding

abstract one should not be contradicted. The hypotheses include axioms, abstract

invariants and theorems, concrete invariants and theorems, concrete guards, wit-

ness predicates for refined parameters, witness predicate for refined abstract vari-

ables and the concrete before-after predicate for each concrete event. The goal

is each individual abstract before-after predicate from the set of abstract assign-

ments. In Fig. 1.5(f), for event evt1 and one of the respective actions act, this

proof obligation is given by (1.9).
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evt1/act/SIM :

A(s, c)

I(s, c, v)

J(s, c, v, w)

H(q, s, c, w)

W1(p, s, c, w, q)

W2(v′, s, c, w, q, w′)

T (q, s, c, w,w′)

` S(p, s, c, v, v′)

(1.9)

When dealing with convergency and divergency, a variant is required to ensure

that new events are not enabled forever. Otherwise, that possibly would not allow

abstract events to occur resulting in the introduction of divergency to the model.

The solution for this situation is the addition of a variant as described below.

Numeric Variant (NAT): It ensures that under the guards of each convergent or

anticipated event, a proposed numeric variant is indeed a natural number. Also

applicable to finiteness of set variants (FIN). The hypotheses include axioms, in-

variants and theorems (abstract and concrete) and guards for each convergent (or

anticipated) event. The goal is to prove that the numeric variant is a natural

number. In Fig. 1.5(f), for convergent event evt2, this proof obligation is given by

(1.10).

evt2/NAT :

A(s, c)

I(s, c, v)

J(s, c, v, w)

H2(q, s, c, w)

` n(s, c, w) ∈ N

(1.10)

Numeric Variant Decreasing (VAR): It ensures that convergent events decrease

the proposed numeric variant. Also applicable to finiteness of set variants (FIN).

The hypotheses include axioms, invariants and theorems (abstract and concrete)

and guards for each convergent (or anticipated) event. The goal is to prove that

after the assignments the numeric variant decreases. In Fig. 1.5(f), for convergent

event evt2, this proof obligation is given by (1.11).

evt2/VAR:

A(s, c)

I(s, c, v)

J(s, c, v, w)

H2(q, s, c, w)

T (q, s, c, w,w′)

` n(s, c, w′) < n(s, c, w)

(1.11)
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1.5.3.3 Enabledness PO

All the previous proof obligations are supported by the Event-B tool (Rodin platform

described in Sect. 1.5.7). Nevertheless there is another proof obligation that is not

supported by Rodin but it can be important when modelling a system: enabledness.

Following the CSP notation for channels [153], we distinguish between parameters with

an input (represented in CSP as “!”) or output (represented in CSP as “?”) behaviour.

This distinction is important in particular for the generation of enabledness proof obli-

gations during refinements. The enabledness proof obligation is given by [41] (described

in that work as the progress condition):

G ∧ J ⇒H ∨HN (1.12)

where G are the abstract guards, J are the gluing invariants, H are the concrete guards

of refined events and HN are the guards of the new events. The guards of the abstract

event imply the guards of the concrete event or any of the new events guards. If an event

is disabled in the concrete model, it should be disabled in the abstract model. Reducing

the nondeterminism of individual events may result in reducing internal nondeterminism.

The choice between a range of output values may be reduced during a refinement because

the external choice is preserved. But the range of input values in a refinement must be

preserved [41]. Using an example, let us consider event Add1 in machine M illustrated

by Fig. 1.6(a).

MACHINE M
VARIABLES s
INVARIANT s ⊆ N

EVENT Add1 =̂
ANY p WHERE

p ∈ 0..9
THEN

s := s ∪ {p}
END

(a) Machine S and event Add1

EVENT Add2 =̂
ANY pWHERE

p ∈ 0..5
THEN

s := s ∪ {p}
END

(b) Event Add2

EVENT Add3 =̂
ANY pWHERE

p ∈ ∅
THEN

s := s ∪ {p}
END

(c) Event Add3

Figure 1.6: Machine M and events Add1, Add2 and Add3

If we consider that parameter p is an input parameter and that event Add2 refines Add1,

the enabledness PO resulting from (1.12) is given by:

p ∈ 0..9 ∧ s ⊆ N⇒ p ∈ 0..5

The previous PO cannot be proved and therefore the enabledness is violated. The

concrete guard is strengthened and some abstract conditions (x ∈ 6..9) are not accepted

in the concrete event. If we consider p as an output parameter and again Add2 refining

Add1, the enabledness proof obligations is:

p ∈ 0..9 ∧ s ⊆ N⇒∃p·p ∈ 0..5
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which can be easily proved as there exists a value for p between 0..5 from the hypotheses

(p ∈ 0..9). But if we consider Add3 as a refinement of Add2, the enabledness proof

obligation is:

p ∈ 0..5 ∧ s ⊆ N⇒ (∃p·p ∈ ∅).

The enabledness is violated because we cannot prove this PO: there is no value of p that

satisfies the concrete guard.

1.5.4 Feasibility and Initialisation

Contexts contain the static part of an Event-B model. It may contain carrier sets,

constants, axioms and theorems. Carrier sets, that are user-defined types, only have a

built-in assumption that they are not empty. Other assumptions about it can be added

as axioms (e.g. carrier set s is finite: finite(s)).

An Event-B model is initialised by an event initialisation with no guards. This event

does not have guards because the initialisation must always be possible. Moreover the

expressions on the right-hand side of the initialisation actions cannot refer to any variable

of the model, since the model is being initialised [9]. Returning to the birthday book

example in Sect. 1.5, this action is a valid initialisation:

• birthday :| birthday′ = {p0 7→ d0}

and this is an invalid initialisation:

• birthday :| birthday′ = birthday ∪ {p0 7→ d0}, because the right-hand side of the

assignment refers to state birthday that have not been initialised yet.

The initialisation event cannot preserve the invariants because before that event, the

system state does not exist ; the initialisation event must establish the invariant for

the first time. Thus, the other events, that are only possible after initialisation has

taken place, can be enabled when the invariants hold. The invariant proof obligation

for this invariant establishment is almost identical to the proof obligation rule INV

(see Sect. 1.5.3) except that the invariants are not mentioned in the hypotheses of the

sequent as described by PO rule (1.13) [9]. The initialisation provides a witness for the

satisfiability of the invariants.

INITIALISATION/inv/INV :

A(s, c)

S(s, c, v′)

` i(s, c, v′)
(1.13)
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Note that axioms in contexts do not generate proof obligations. Consequently they

can introduce false assumptions and in that case, anything can be proved. To tackle

this issue, sanity tests such as checking if a predicate that is clearly false can be dis-

charged (e.g., (1 = 0)) can be used. If yes, a false predicate exists in the model and

the properties and assertions may not hold. Note that this situation is different from

introducing an invariant or a theorem that are clearly false: the corresponding PO for

that invariant/theorem should not be found provable.

Events have feasibility proof obligations for non-deterministic actions as seen in Sect. 1.5.3.

Moreover, the introduction of a guard that is always false results in that event being

always disabled. Currently proof obligations are only generated for safety properties.

Because the enabledness property is a liveness property, no proof obligation is generated

to verify that situation. Nevertheless ProB [141], that is a model checker for the Rodin

platform (see Sect. 1.5.7) allows the verification of enabledness considering small finite

sets.

1.5.5 Event-B and Action Systems

In Event-B a system is specified as an abstract machine consisting of some state vari-

ables and some events (guarded actions) acting on that state. This is essentially the

same structure as an action system which describes the behaviour of a parallel reactive

system in terms of the guarded actions that can take place during its execution. As

described in Sect. 1.3.3, an action in Action Systems is a predicate transformer that

maps postconditions to preconditions. Event-B events are similar but from a more spe-

cific view where guards correspond to preconditions and the occurrence of the event

lead to postconditions. We can compare both by defining the weakest preconditions (as

described in Sect. 1.3.3) for events and actions respectively. We write wpM (α,Q) for

the weakest precondition guaranteeing that the event with label α ∈ A (A being the

finite set of labels of machine M) will establish postcondition Q. An event labelled α

from machine M has a canonical form in terms of a guard and a before-after predicate

as follows [9]:

event α =̂ WHEN G(v) THEN v :| BA(v, v′) END.

The weakest precondition of this canonical form is [48]:

wpM (α,Q) =̂ G(v)⇒ (∀v′ ·BA(v, v′)⇒Q[v′/v]). (1.14)

An action α from a basic action system P = (A, v, Pi, Pa), where α ∈ A has a canonical

form in terms of a guard and a before-after predicate as follows [26]:

action α : G(v)→ v := BA(v, v′).
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The weakest precondition of this canonical form is [128, 129]:

wp(G(v)→ BA(v, v′), Q) =̂ G(v)⇒ wp(BA(v, v′), Q[v′/v])

≡ G(v)⇒∀v ·BA(v, v′)⇒Q[v′/v]). (1.15)

The weakest precondition semantics (1.14) and (1.15) are equivalent. This occurs be-

cause Event-B can be seen as a realisation of the generic Action Systems formalism:

both are predicate transformers mapping preconditions to postconditions.

1.5.6 CSP Semantics for Event-B Machines

Morgan’s CSP semantics for Action Systems [129] allows traces, failures and divergences

to be defined for action systems in terms of sequences of actions that can and cannot

engage in. Butler [53] extends that work to include unbounded nondeterminism and

defines the infinite traces for Action Systems. Schneider et al [159] developed a CSP

viewpoint of Event-B refinement for traces, divergences and infinite traces (TDI). The

notion of traces here refers to a finite sequence of events from a machine’s alphabet (e.g.

tr ∈ αM∗), where alphabet are the observations of possible occurrences of events of M .

The CSP semantics is also based on the weakest precondition semantics of events. The

syntax used is slightly different from Sect. 1.3.3. For example, a sequence of actions

〈act1, act2〉 occurs in exactly those states satisfying wp(act1; act2, true). That could be

also expressed as [129, 159]:

¬[act1, act2]false ≡ wp(act1; act2, true).

Let S be a statement (of an event). Then [S]Q denotes the weakest precondition for

statement S to establish postcondition Q. Observe that for the case Q = true we have

[when G(v) then v : |BA(v, v′) end]true = true. The semantics of machine M can be

defined in terms of:

Traces The traces of a machine M are those sequences of events tr = 〈a1, ..., an〉 which

are possible for M (after initialisation init): those that do not establish false:

traces(M) = {tr | ¬[init; tr]false} (1.16)

Divergences A sequence of events tr is a divergence if the sequence of events is not

guaranteed to terminate, i.e. ¬[init; tr]true. Thus

divergences(M) = {tr | ¬[init; tr]true} (1.17)

Any Event-B machine M with events of the form given above in Sect. 1.5.2 is

divergence-free (use of anticipated, convergence clause). This is because [evt]true =
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true for such events (and for init), and so [init; tr]true = true. Thus no potential

divergence tr meets the condition ¬[init; tr]true.

Infinite Traces An infinite sequence of events u = 〈u0, u1, ...〉 is an infinite trace of M

if there is an infinite sequence of predicates Pi such that ¬[init](¬P0) (i.e. some

execution of init reaches a state where P0 holds), and Pi⇒¬[ui](¬Pi+1) for each

i (i.e. if Pi holds then some execution of ui can reach a state where Pi+1 holds).

infinites(M) = {u | ∃〈Pi〉i∈N ·¬[init](¬P0) ∧ ∀i·Pi⇒¬[ui](¬Pi+1) (1.18)

Moreover, the failures semantics of machine M can also be defined.

Failures A failure is a pair comprising a trace and a refusal; a refusal is a set of actions.

Let R be a refusal. The behaviour (tr, R) is observed whenever the process first

engages in all the actions in tr and then may refuse any action in R. The failures

tr : A∗;R : A of the action system (A, init) are those for which

failures(M) = {tr | ¬[init; tr]gd(R)} (1.19)

is true initially, where A∗ is a set of sequences with elements in A and gd(R) is the

disjunction of the guards of the actions in R. Thus R can be refused if init then

tr can reach a state in which no guard of any action in R is true [129].

Like some other formal notations, Event-B has tool support. The tool is called Rodin

and it is briefly described below.

1.5.7 Rodin Platform

The Rodin platform [151] is the result of an EU research project1. It is a software tool,

based on modern software programming tools developed to use Event-B notation [49, 13].

DEPLOY2 is a continuation of this project and addresses scaling methodologies in re-

quirements validation, requirements evolution, reuse, resilience, and scaling tooling in

simulation, analysis and verification of formal models. Rodin was created to help the

development of specifications based on the idea that a large complex or critical project

should be started by modelling and reasoning about the specification. Moreover, formal

reasoning is achieved through the generation of proof obligations. The (ambitious) pur-

pose is to give more options to the industry when using formal methods and decrease

the criticism that affects the formal methods [6]. Rodin strives to be a high usabil-

ity tool showing that modelling does not have to be cumbersome nor hard to achieve.

1RODIN - Rigorous Open Development Environment for Open Systems: EU IST Project IST-511599
2DEPLOY - Industrial deployment of system engineering methods providing high dependability and

productivity (2008 - 2011): FP VII Project 214158 under Strategic Objective IST-2007.1.2. Further
information and downloadable tools are available at http://www.deploy-project.eu/
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Besides formally validating the specifications according to some user defined proper-

ties (invariants), the main idea is to increase the understanding of the system that is

being modelled. Therefore discharging the proof obligations correspond to the formal

validation that the created system matches the requirements [49].

Rodin is an open source tool, based on the Eclipse Platform [66] and a complement

for a rigorous modelling development [49]. The intention is to allow the tool to be

customised according to the industry requirements by permitting the integration of

functionalities considered necessary. Rodin supports a Static Checker that validates

model properties. A Proof Generator is used to generate proofs obligations and these

proofs can be discharged by an Automatic Prover (which is a theorem prover that

discharges automatically as many proofs as possible as seen in Fig. 1.7). Proofs that are

not automatically discharged have to be proved interactively. Another Rodin feature

is the high level of extensibility reflected by, for instance, the ability to extend the

default theorem prover (B4free provers provided by ClearSy [21]), model checking (ProB

provided by University of Düsserdorf [141]) or even animate models (Brama provided by

ClearSy [39] and ProB). Applying the UML framework using Event-B, it is also another

approach developed using plug-in technology, where the concept of object oriented and

classes are introduced and “merged” with Event-B notation [182, 170, 169, 171]. Figure

1.8 shows a screenshot of the user interface for Rodin Platform.

Figure 1.7: The Proof Obligation Perspective: on the left, it is shown the proof tree
of the selected PO; on the middle, on the top window are the hypotheses of the selected
PO and just below the respective goal. Below the goal window are the buttons used
to interactively discharge a PO; on the right, are the list of generated POs. Having all

the POs green, it means that all the POs are discharged.
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Figure 1.8: The Event-B Perspective: on the left, the list of projects where the last
one is expanded, showing several machines and a context; in the middle window, a view
of a machine cm1 where the sections of variables, invariants and events are expanded

and can be edited.

Next we cover the background of some of our contributions: composition and decompo-

sition.

1.6 Composition

Composition has several definitions depending on the context. In a computer science

context, (functional) composition can be defined as the act or mechanism of combining

simple functions to build more complicated ones. It derives from a usual mathematical

step of composing functions where the result of each function is passed as the argu-

ment of the next, and the result of the last one is the result of the whole. Engineering

suggests another perspective of composition: ability to interact with sub-components.

It is possible to represent concurrently-executing systems. In the formal methods con-

text, in particular specifications, composition is the capacity to model the interaction

of sub-components generating larger and more concrete specifications. Several formal

methods define the interaction of specifications based on shared state or shared events

(operations) [53]. Another possibility is a combination of the previous two approaches

(sometimes called fusion composition [25]). The next sub-sections describe these differ-

ent kind of interactions in different formal methodologies.
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1.6.1 Shared State Composition

Shared state composition allows the interaction of sub-components by state sharing.

Because variables usually define the state of a system, this composition is also known

as shared variable. Back [23] using Action Systems applies the interaction of sub-

components through external variables sharing. In that work, local variables are kept

distinct and the global variables are shared among the processes in the parallel com-

position. Composing action systems P = (v, PAi, PA, ) and Q = (w,QBi, QB) can be

represented as follows:

P ‖ Q =̂ ((v, w), PAi ∪QBi, PA ∪QB)

The set of variables v and w are merged and the actions of both action systems (PAi and

QBi for the initialisation plus PA and QB) are executed in parallel. The actions of P ‖ Q
are the union of both sets of actions and the interaction occurs when global variables

are shared. Furthermore, under certain conditions parallel composition is considered

monotonic w.r.t. data refinement [24]. If P ′ is a refinement of P , then P ′ ‖ Q is a

refinement of P ‖ Q under a condition R (abstraction relation) as long as the interleaved

execution of actions from Q preserves R.

Abadi and Lamport in [1] propose a shared variable composition as a conjunction of

properties. Composition of systems means interaction within their environments and a

system behaves properly only if its environment does. A system guarantees the prop-

erties M and L only under the environment assumption E. This can be described as

E⇒M ∩ L, where M and L are the safety and liveness properties of the system respec-

tively.

There are some approaches for the development of composition using VDM [111, 77, 101].

One of the approaches is based on rely/guarantee conditions [104] where two state pred-

icates are added as pre and postconditions of a specification, allowing interference be-

tween systems. This extension of VDM developed by Jones [103] permits the specifica-

tion and development of concurrent shared-variable systems [187]. In this approach, a

specification can then be described as:

(P,R,G,Q)

where P corresponds to the precondition and is a condition describing a set of states,

while R,G,Q are rely-condition, guarantee-condition and postcondition respectively.

The last three are conditions of state-transitions (predicates of two states: before and

after state). A rely-condition states the postcondition that the rest of the system may

achieve for any atomic step. Similarly, the guarantee-condition is the postcondition for

any atomic step made by the operation itself [187]. The guarantee condition of parallel
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processes should imply the guarantee condition of the overall operation. [183] describes

further work for composition using VDM combining ideas in concurrent separation logic

and the rely/guarantee formalism. Assume-guarantee [81] is a similar style to rely-

guarantee.

The B-Method includes a syntax for composition. There are some keywords that can be

used to compose models like Includes, Imports, Sees and Uses. [158] describes the use

of such keywords and restrictions. When a machine has a number of included machines

(using the Includes keyword), several operations from different machines can be called

in parallel. Combining operations results in the conjunction of the preconditions and

the body of the parallel combination will be the parallel combination of all the bodies.

This can be expressed as follows:

PRE P1 THEN S1 END ‖ PRE P2 THEN S2 END

= PRE P1 ∧ P2 THEN S1 ‖ S2 END

where P1, P2 are preconditions and S1, S2 are operation statements. The preconditions

are conjoined and the postconditions are called in parallel. Potet and Rouzaud [140] use

some of these keywords to prove the correctness of composed specifications under certain

restrictions. Blazy et al [33] use classical B to define specification patterns to be used

as reuse mechanisms. One of the reuse mechanisms is composition where two patterns

can be associated using the keyword Extends and proof obligations are generated when

necessary for each kind of composition: juxtaposition (patterns are composed without

defining any link between them), composition with inter-pattern links (relations between

variables of the composed patterns can be added) and unification (some variables of the

composed patterns can be merged and shared).

More recently, Abrial et al [124, 15] proposed a state-based decomposition for Event-B

where the splitting of a system in sub-components (machines) is achieved using vari-

ables. In this case, decomposition is considered the inverse operation of composition

and one can go from one to another and vice-versa. Figure 1.9 shows the decomposition

of machine M(Fig. 1.9(a)) into machines M1(Fig. 1.9(b)) and M2(Fig. 1.9(c)). In a

shared variable decomposition, just like the name suggests, variables can be shared as

a consequence of the events’ decomposition. Therefore, the events evt1 and evt2 from

machine M are allocated to machine M1 and the rest of the events (evt3 and evt4) are

allocated to machine M2. Variable v2 (Fig. 1.9(a)) is shared by events evt2 and evt3

that belong to different sub-components after decomposition (Figs. 1.9(b) and 1.9(c)

respectively). Therefore v2 is considered a shared variable. In addition to the events

allocated to each sub-component, it is necessary to introduce additional external events

to each sub-component, to simulate how the shared variable is handled in the other sub-

component. An external event is created based on the original event but only referring

to shared variables. They have to be refined by the original events [15]. Other variables

become parameters in that same event. evt3 ext is added to machine M1 and evt2 ext
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is added to machine M2, respectively. Sub-components M1 and M2 can be refined

independently but shared variables must always be present and cannot be data-refined.

The re-composition of the (refined) sub-components should always be possible (although

not necessary) resulting in a refinement of the original system [124].

(a)

(b) (c)

Figure 1.9: Shared Variable Decomposition of Machine S in Machines T and W with
shared variable v2

While studying the several approaches for the composition of systems, we realised that

there is a strong similarity between the rely/guarantee approach proposed by Jones

and the shared variable decomposition for Event-B proposed by Abrial. The constraint

originated by the shared variables and external events corresponds to the rely condition

while the internal events correspond to the guarantee conditions as depicted in Fig. 1.10.

Figure 1.10: Shared Variable Decomposition Result

From M1 viewpoint (similar for M2), evt3 ext is the rely condition that modifications

in the state in event evt3 are preserved in M1 and consequently evt2 is guaranteed to

behave as the original one. Thus it is possible to make a correlation between these two

approaches. Further study is required to use the developed worked on rely/guarantee

for VDM in the shared variable decomposition for Event-B and we intend to do it in the

future.
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1.6.2 Shared Event Composition

The shared event approach is suitable for the development of distributed systems [42]:

sub-components interact through synchronised events in parallel. Even for formal no-

tation where the models have an explicit state space, the communication occurs at

the event/operation level. CSP is an event-based methodology used for modelling dis-

tributed systems. Because of CSP’s stateless approach, several works try to combine

state-based and event-based approaches, as are the examples of combining CSP and

B [43, 50, 181] or combining CSP with object oriented classes [75, 131]. The parallel

composition of two processes P and Q is expressed as P ‖ Q. Events for process P are

represented by their alphabet αP (similar to Q). The interaction happens by synchro-

nising common events in αP ∩αQ, while events not in αP ∩αQ can occur independently.

An example of a synchronisation between events is represented as follows [53]:

(a →P ) ‖ (a→Q) = a →(P ‖ Q)

Events common to P and Q become single events in P ‖ Q. In CSP there exists a special

class of events known as communication which is an event described by a pair c.v: c is

the name of the channel on which the communication occurs and v is the value of the

message to be communicated. A process ready to input (receives) any value x on the

channel c, and then behave like Q can be described as: c?x →Qx. Similarly a process

that outputs (sends) a value v on the channel c and then behaves like P can be defined

as: c!v →P [153]. Channels can be considered members of the alphabet of the process

and used for communication in only one direction and between two processes [92]. If

two processes P and Q are composed in parallel and both have a common channel

c, interaction happens whenever both processes are ready to engage in the common

channel. If P is ready for c!v and process Q is ready for c?x, v can be passed from P to

Q [41]:

(c!v →P ) ‖ (c?x →Qx) = c!v →(P ‖ Qv)

As expected the result is an output channel and the process Q receives the value v. This

can also be applied for channels with input-input behaviour. The laws that govern the

behaviour of P ‖ Q are simple and regular. Some of these laws are described below

although there are more properties defined in [92]:

• Commutativity: P ‖ Q = Q ‖ P , there is a logical symmetry between a process

and its environment.

• Associativity: (P ‖ Q) ‖ R = P ‖ (Q ‖ R), so when three processes are assembled,

it does not matter in which order they are put together.
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• Monotonicity: If P v P ′ then P ‖ Q v P ′ ‖ Q′, for any Q. Components that are

part of the parallel operation can be refined independently while preserving the

parallel relationship.

In Z, it is possible to create big schemas based on small ones. That can be seen as compo-

sition, where specifications are reused, creating more complex systems. Since Z permits

the refinement of specifications, composition and refinement can be applied at the same

time to a model. [173] describes how the combination of schemas can be achieved, as-

suming that overloading - possibility that two distinct variables in the same scope might

have identical names - is forbidden. The piping operator (�) is used to describe op-

erations that have almost independent effects on two disjoint sets of state variables. If

we compose the schemas Op1 and Op2 using the piping operator: Op1 � Op2, the

output parameters of Op1 are matched with the inputs of Op2 and hidden, while the

other components are merged as they would be in Op1∧Op2. Another approach for the

composition is through the use of views [34, 99]. A view is a partial specification of the

entire system and can be evaluated directly from the requirements. Partial means that

unnecessary details of the system’s behaviour tackled by other views should be omit-

ted. An advantage of views is that they can be constructed and analysed independently

of other views. The interaction between views uses the schema calculus and standard

logic operators. Views can be connected by an invariant relating their state (state-based

approach), or connected by synchronising their operations (event-based approach) or

a mix of both. [34] discusses a similar approach using views, but the composition is

through coupling schemas (relation between different state spaces). By relating several

state schemas and respecting some properties, it is described how the composition can

be achieved based on three techniques: data refinement, view composition and viewpoint

unification. Circus (that combines Z and CSP) programs are sequences of paragraphs:

channel declarations, channel set definitions, Z paragraphs, or process definitions. A

system is defined as a process that encapsulates some state and communicates through

channels. The generic channel declaration channel[T ]c : T declares a family of channels

c and [T ] determines the type of the values that are communicated through channel c.

An action can be a schema, a guarded command, an invocation of another action, or a

combination of these constructs using CSP operators. The CSP operators of sequence,

external and internal choice, parallelism, interleaving, their corresponding iterated op-

erators, and hiding can be used to compose actions [54, 155]. The prefixing operator

is standard, but a guard construction may be associated with it. For instance, given

a Z predicate p , if the condition p is true , the action p & c?x→ A inputs a value

through channel c and assigns it to the variable x , and then behaves like A, which has

the variable x in scope. If, however, the condition p is false , the same action blocks.

Such enabling conditions like p may be associated with any action. The CSP operators

of sequence, external and internal choice, parallelism, interleaving, their corresponding

iterated operators, and hiding may also be used to compose actions.
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Butler [45] proposes a shared event composition for Event-B inspired by CSP and Action

Systems with event sharing as seen in Fig. 1.11. In this kind of composition, machines

with independent state spaces (variable sharing is not permitted) can be composed by

sharing events. Since it is based on CSP synchronisation, this composition also inher-

its the CSP properties for the channel communication described above. As aforemen-

!"#$%&'()%*+',-./-01+1-*'

Figure 1.11: Shared Event Composition of machines M1 and M2 into M with com-
position of events e2 and e3

tioned in Sect. 1.5.5, Action Systems and Event-B are related. Based on that relation,

Butler [42, 45] defined the relation between the parallel composition of actions (includ-

ing composition with Value-Passing) in Action Systems and the B operations/Event-B

events. This definition is described by Definition 1.2 as described below. In Fig. 1.11,

machine M1 has events e1 and e2 and variable v1. Machine M2 has events e3, e4 and

e5 and variables v2 and v3. These two machines can be composed originating machine

M. In particular, events e2 and e3 can be composed. Moreover, in case both events

have a common parameter p, this can be used for message passing between machines

M1 and M2. The composition of synchronised Action Systems actions ( using Event-B

syntax for actions) generates a new action whose guard is the conjunction of the original

guards and the actions are executed in parallel [42]:

Definition 1.2. If both events evt1 and evt2 have a parameter p:

evt1 =̂ ANY p?, x WHERE p? ∈ C ∧G(p?, x,m) THEN S(p?, x,m) END

evt2 =̂ ANY p!, y WHERE H(p!, y, n) THEN T (p!, y, n) END

then:

evt1 ‖ evt2 =̂

ANY p!, x, y WHERE p! ∈ C ∧G(p!, x,m) ∧ H(p!, y, n)

THEN S(p!, x,m) ‖ T (p!, y, n) END
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where x, y, p are sets of parameters from each of the actions evt1 and evt2. Action evt1

has p? as an input parameter and evt2 has p! as an output parameter and the resulting

composition is p! itself an output parameter (like in CSP). This property can be used to

model value-passing systems: the parameter p! is written in evt2 and its value is used as

input for parameter p? to be used in G(p?, x,m) and S(p?, x,m). An interpretation of

this composition is that the value p is sent from evt2 and received in evt1. The fusion of

parameters in only possible if the types of the shared parameter match or are a subset

of each other:

p! ∈ C ∧ p? ∈ D⇒ C ∩ D 6= ∅ (1.20)

where C and D are types (carrier sets). Actions with shared parameters of type input

can also be composed and the shared parameter has input behaviour. Actions with

shared parameters of type output cannot be composed since this could lead to a deadlock

state [42].

A relation between the infinite-traces semantics of CSP and Action Systems is defined in

Definition 1.1. Based on that definition, the event-based parallel composition of action

systems can be shown to correspond to the CSP parallel-composition of processes as

described by Theorem 1.1 and proved in [53]: the infinite-traces semantic of syntactic

parallel composition of actions is equal to the infinite-traces semantic composition of

individual actions.

Theorem 1.1 (see [53, Theorem 5.17]). Let {[M ]} represent the infinite-traces semantics

of action system M ( similar for {[N ]} and action system N). Then the infinite-traces

semantics of CSP can be applied to Action Systems according to Definition 1.1: the

infinite-traces semantics of action system M in parallel with N , M ‖ N is given as 3:

{[M ‖ N ]} = {[M ]} ‖ {[N ]} (1.21)

In order to give a CSP semantics to Event-B we simply treat an Event-B machine as

an action system. Doing this just requires treating an Event-B event as a predicate

transformer as shown previously in Section 1.5.5. Therefore with respect to infinite-

traces semantics, the parallel composition of action systems corresponds to the parallel

composition of Event-B events. Moreover the properties of the parallel composition

of action systems are also inherited in the parallel composition of machines. The most

relevants are commutativity along with monotonicity : if M and N are Event-B machines

and M v M ′ then M ‖ N v M ′ ‖ N , for any N . Therefore machines M and N can

be refined independently while the properties of the parallel composition M ‖ N are

still preserved. This is one of the most important and powerful properties that shared

event composition in Event-B inherits from Action Systems and CSP. The monotonicity

property for the shared event composition in Event-B is proved by means of proof

3This theorem is shown and proved in [53], theorem 5.17 on page 67.
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obligations in Sect. 2.3.4.

1.6.3 Fusion Composition

Fusion composition is another kind of composition which can be seen as a combination

of the previous two approaches. Back and Butler [25] extend the notion of a product

operator for refinement calculus of Back [22]. The fusion operator is introduced as a

generalisation of the product operator preserving the monotonicity and conjunctivity

properties. The fusion operator can be used to conjoin two specifications into a larger

specification that refines both specifications within their combined termination condi-

tion. As a result the non-determinism is reduced on the termination behaviour of both

specifications. Poppleton [138] follows the previous work by proposing a composition

using the fusion operator as a way to reuse existing models for Event-B. A proposal for

development of feature oriented specifications [139, 70] uses the fusion operator. Con-

sider machines M1 and M2 in Fig. 1.12 which are fused by combining variables and

events, generating machine M. Machine M1 has a set of variables v (variables x are

assigned in the event e and variables y are kept unchanged), a context defined by carrier

sets s, constant c, axioms A1 and invariant I1. Similarly, machine M2 has variables z

(divided in a and b) and same context properties except the axioms A2 and invariant I2.

The union of the variables of each model corresponds to the set of variables of machine

M . The common events (we consider that events e and f are common) are composed

similarly to shared event composition described in Sect. 1.6.2.

Machine M1
v = x ∪ y / ∗ variables ∗ /
s, c, A1(s, c) / ∗ context ∗ /
I1(s, c, v) / ∗ invariant ∗ /
event : e =̂

ANY p1 WHERE G1(p1, v)
THEN x := S1(p1, v) END

(a)

Machine M2
z = a ∪ b / ∗ variables ∗ /
s, c, A2(s, c) / ∗ context ∗ /
I2(s, c, z) / ∗ invariant ∗ /
event : f =̂

ANY p2 WHERE G2(p2, z)
THEN a := S2(p1, z) END

(b)

Machine M
v, z = x ∪ y ∪ a ∪ b / ∗ variables ∗ /
s, c, A1(s, c) ∧A2(s, c) / ∗ context ∗ /
I1(s, c, v) ∧ I2(s, c, z) / ∗ invariant ∗ /
event : e� f =̂

ANY p1, p2 WHERE G1(p1, v) ∧G2(p2, z)
THEN x := S1(p1, v) ‖ a := S2(p1, z) END

(c)

Figure 1.12: Fusion Composition of machines M1 and M2 into machine M

Event fusion preserves the refinement properties of the model [138] and as a requirement,

shared variables should be refined in the same functional manner in both machines.

Decomposition, that can be seen as the inverse operation of composition, is briefly

discussed in the next section.
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1.7 Decomposition

The development of specifications in a “top-down” style starts with an abstract model of

the envisaged system. Throughout refinements the initial model becomes less abstract

and more concrete, closer to an implementation. As a consequence, there is a better view

of the system as a whole and design decisions can be taken. Nonetheless refinements of

a system bring complexity and tractability problems when the model augments in a way

that becomes cumbersome to manage [124]. Decomposition is precisely the process by

which a single model can be split into various sub-components in a systematic fashion.

The complexity of the whole model is decreased by studying, and thus refining, each

sub-component independently of the others [124]. The independent sub-components

can be developed in parallel which is attractive in an industrial environment. As a

result of the attractive benefits of decomposition, it is a topic of interest that has been

explored in several areas like mathematics, in different areas of engineering and also

in different formal methodologies. There is a strong relation between composition and

decomposition: they can be seen as the inverse operation of each other. Therefore the

related work is very often interleaved as we present below.

Abadi and Lamport [2] suggest a decomposition of concurrent systems (interleaving

and non-interleaving representation) in the style of “composition is conjunction” using

TLA [108]. The goal is to facilitate the decomposition of complete systems and respective

proofs by reasoning about the sub-components when the environment conditions are

safety properties.

Moore [127] suggests a decomposition of system requirements and respective proofs us-

ing the CSP Trace Model. The method emphasizes the decomposition of high-level

requirements and reasons about the safety of non-divergent processes. The only way a

process can communicate with another process executing concurrently is through CSP-

like communication channels; no shared variables are permitted. The method proceeds

iteratively, until the appropriate requirements for the component processes and the min-

imal set of synchronization requirements are found.

Jian [101] uses a combination of data reification and operation decomposition in VDM

(DD-VDM) to reason about data decomposition. Data decomposition is based on the

ideas of model splitting, modularisation and operation decomposition. The operations

in the sub-models are viewed as the operations working on the whole model and rules

are added in DD-VDM concerning the interaction of several sub-models. [102] is the

continuation of that work by developing parallel object-oriented programs in the VDM

framework.

Butler [40] suggests a decomposition approach for Action Systems with value-passing,

internal actions and parallel composition as described in Sect. 1.6.2. As a continuation

of that approach, Butler and Waldén [52] combine Action Systems and classical B to
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derive parallel and distributed systems.

Two methods have been identified for the Event-B decomposition: shared variable

(Fig. 1.9) and shared event (Fig. 1.13). The shared event decomposition can be seen as

the inverse operation of the shared event composition described in Sect. 1.6.2. In this

case, the decomposition requires the definition of which variables are allocated to which

sub-component (in Fig. 1.13, v1 is allocated to machine M1 and variables v2, v3 are

allocated to machine M2). Event evt2 is shared since uses variables v1 and v2 allocated

to different sub-components. During the decomposition, evt2 is decomposed into evt2′

(containing only guards and actions related to v1) and evt2′′ (containing only guards

and actions related to v2). We follow the shared event decomposition approach and in a

pragmatic way, we aim to study and specify a decomposition tool. Because shared-event

decomposition is monotonic [45], the generated sub-components can be further refined

independently. So M1 and M2 can be refined independently into M11, M12. . . and

M21, M22. . . respectively . Therefore we can introduce team development: several de-

velopers share parts of the same model and can work independently in parallel (we show

this option is our case study in Chapter 6). Besides alleviating problems when dealing

with complex specifications, decomposition also partition the proof obligations which are

expected to be easier to be discharged in the sub-components. Next we discuss in more

detail the shared event decomposition before introducing our contribution in Chapter 4.

1.7.1 Shared Event Decomposition

In Event-B, decomposition of a component (specification) corresponds to distributing

events and variables among the sub-components. Shared event decomposition does not

permit variable sharing and an event can be split into different sub-components as seen

in Fig. 1.13. The sub-components can be further refined independently according to the

monotonicity property of decomposition [45].

(a)

(b) (c)

Figure 1.13: Shared event decomposition of machine M into machines M1 and M2
with shared event evt2
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The decomposition can be seen as syntactic and semantic: syntactic because the sub-

components are a consequence of the syntactic partition of the component ; semantic in

the sense that the sub-components can lose some information (invariants that relate sub-

components) but the behaviour of the recomposed sub-components is the same as the

non-decomposed component (i.e. the recomposition is a valid refinement of the abstract

component).

Figure 1.14 shows the decomposition of machines M1 into M3 0 and M4 0. M3 0 and

M4 0 are refined independently until M3 m and M4 n are reached. It should be possible

to recompose M3 m and M4 n into cM2 and proved that cM2 is a refinement of M1.

This is equivalent to express the monotonicity property of decomposition as:

M1 v (M3 0 ‖M4 0) v (M3 m ‖M4 n)

The shared event parallel composition of M3 0 and M4 0 refines M1. Also the par-

allel composition of the individual refinements of M3 0 and M4 0 (M3 m and M4 n

respectively) are a refinement of the M1.

Figure 1.14: Decomposition, Recomposition and Refinement

Consider machine M in Fig. 1.15(a) containing variables v, z and events evt1, evt2 and

evt3. Each event has a parameter pi, guards Gij and assignments to variables using

predicates Sij , where i and j are indexes corresponding to events elements. Machine M

is decomposed into machines M1 and M2 as seen in Fig. 1.15. Variable v is allocated to

machine M1 and variable z is allocated to machine M2 meaning that event evt1 (that

only depends on that variable) is part of M1 and event evt2 (only dependent on z) is

part of M2. Event evt3 uses both variables so the event is split in two parts: guards
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MACHINE M
VARIABLES v, z
EVENT evt1 =̂

ANY p1 WHERE
G1(v, p1)

THEN
v := S1(v, p1)

END
EVENT evt2 =̂

ANY p2 WHERE
G2(z, p2)

THEN
z := S2(z, p2)

END
EVENT evt3 =̂

ANY p3 WHERE
G31(v, p3)
G32(z, p3)

THEN
v := S31(v, p3)
z := S32(z, p3)

END

(a) Machine M

MACHINE M1
VARIABLES v
EVENT evt1 =̂

ANY p1 WHERE
G1(v, p1)

THEN
v := S1(v, p1)

END
EVENT evt3 =̂

ANY p3 WHERE
G31(v, p3)

THEN
v := S31(v, p3)

END

(b) Machine M1

MACHINE M2
VARIABLES z
EVENT evt2 =̂

ANY p2 WHERE
G2(z, p2)

THEN
z := Sz(z, p2)

END
EVENT evt3 =̂

ANY p3 WHERE
G32(z, p3)

THEN
z := S32(z, p3)

END

(c) Machine M2

Figure 1.15: Machines M1 and M2 resulting from the shared event decomposition of
machine M

and actions related with variable v are decomposed into machine M1 and guards and

actions related to variable z are stored in machine M2.

Event evt3 from machine M has a parameter p3. During the decomposition p3 is shared

between the sub-events and allows the interaction between the sub-components M1 and

M2. This correspond to modelling value-passing systems as described in [40, 41] for

Action Systems or in [42] for B and in [45] for Event-B.

1.7.2 Shared Variable Decomposition

In Event-B, the shared variable decomposition allows variable sharing and external

events are introduced in the sub-components to ensure that the behaviour of the shared

variables is maintained in all sub-components. Such approach is suitable for designing

parallel algorithms [42] (an example can be found in [90]). The re-composition of the

(refined) sub-components should always be possible resulting in a refinement of the orig-

inal system. Therefore what was described in Fig. 1.14 can also be applied to the shared

variable decomposition and it is proved in [8].

Consider again machine M in Fig. 1.16(a) containing variables v, z and events evt1,

evt2 and evt3. Machine M is shared variable decomposed into machines M1 and M2.

Event evt1 is allocated to machine M1 and events evt2, evt3 are allocated to machine

M2. Consequently variable v is shared. Event evt3 ext must be added to machine M1

to ensure that the behaviour of (shared) variable v in the machine M is preserved in

that sub-component. Similarly, in machine M2, event evt1 ext is added to simulate

the behaviour of v from the machine M2. Machines M1 and M2 can be further refined
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MACHINE M
VARIABLES v, z
EVENT evt1 =̂

ANY p1 WHERE
G1(v, p1)

THEN
v := S1(v, p1)

END
EVENT evt2 =̂

ANY p2 WHERE
G2(z, p2)

THEN
z := S2(z, p2)

END
EVENT evt3 =̂

ANY p3 WHERE
G31(v, p3)
G32(z, p3)

THEN
v := S31(v, p3)
z := S32(z, p3)

END

(a) Machine M

MACHINE M1
VARIABLES v /*shared var*/
EVENT evt1 =̂

ANY p1 WHERE
G1(v, p)

THEN
v := S1(v, p)

END
EVENT evt3 ext =̂

ANY p3 WHERE
G31(v, p3)

THEN
v := S3(v, p3)

END

(b) Machine M1

MACHINE M2
VARIABLES z

v /*shared var*/
EVENT evt1 ext =̂

ANY p1 WHERE
G1(v, p1)

THEN
v := S1(v, p1)

EVENT evt2 =̂
ANY p2 WHERE

G2(z, p2)
THEN

z := S2(z, p2)
END

EVENT evt3 =̂
ANY p3 WHERE

G31(v, p3)
G32(z, p3)

THEN
v := S31(v, p3)
z := S32(z, p3)

END

(c) Machine M2

Figure 1.16: Machines M1 and M2 resulting from the shared variable decomposition
of machine M

independently as long as the external events and shared variables are present. Moreover,

the shared variables and the external events cannot be refined.

The following chapters describe our work applied to three reuse mechanisms: composi-

tion, generic instantiation and decomposition. Each chapter contains a small case study

applying the respective mechanism. A more complex case study is presented in the end

to illustrate the use of the reuse mechanisms when developing models.
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Shared Event Composition for

Event-B

The development of a system can start with the creation of a specification. Following

this viewpoint, we claim that often a specification can be constructed from the combi-

nation of specifications. The combination of specifications can be seen as composition.

Event-B is a formal method that allows modelling and refinement of systems. The com-

bination, reuse and validation of component specifications is not currently supported

in Event-B. We extend the Event-B formalism using shared event composition as an

option for developing distributed systems. Refinement is used in the development of

specifications using composed machines and we prove that properties and proof obliga-

tions of specifications can be reused to ensure valid composed specifications. The main

contribution of this work is the Event-B extension to support shared event composition

including the definition of static checks and proof obligations (POs) for a composed

machine. Composition and refinement are coupled to gradually develop a model in a

stepwise manner. Moreover, composition is the preliminary work towards decomposition

(described in Chapter 4) as it defines a methodology for (de)composing specifications.

We explore the composition of specifications by defining properties and (reuse of) proof

obligations. These contributions are supported by a tool developed in the Rodin plat-

form (parallel composition plug-in [162]). This chapter is based on papers accepted for

the B workshop running in parallel with FM 2011 (International Symposium on Formal

Methods) [161] and in FMCO 2010 (International Symposia on Formal Methods for

Components and Objects) [164].

2.1 Introduction

In a “top-down” style, the initial model abstracts the most important behaviour and

state of the system. Systems can often be seen as a combination and interaction of sev-

49
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eral sub-specifications (hereafter called sub-components) where each sub-component has

its own functionality aspect. This view introduces modularity in the system: different

sub-components represent a particular functionality and changes in the sub-components

are accommodated more gracefully [99] in the system specification. We use composition

to structure specifications through the interaction of sub-components seen as indepen-

dent modules. This use of composition is not new in other formal notations: exam-

ples are [191, 106, 138] as described in Sect. 1.6. Here we express how we can (re)use

composition for building specifications in Event-B through sub-components (modules)

interaction, benefiting from their properties and proof obligations inspired by views in

Z [99]. The interesting part of composition involves the interaction of sub-components

which occurs by shared state, shared operations or a combination of both (for exam-

ple, fusion composition) as discussed in Chapter 1. Although sub-components usually

have states, in our approach we mainly focus on their (visible) operations similar to the

CSP view [129, 53]. Therefore we follow a shared event composition approach where

events/operations from different sub-components are synchronised in parallel. We con-

strain sub-components to have independent state spaces and consequently avoid dealing

with sub-components that have intersecting states like it happens in a shared state

approach [144, 145].

This chapter is structured as follows: Sect. 2.2 introduces the notion and properties for

shared event composition. The notion of composed machine, respective static checks,

proof obligations and the monotonicity property are introduced in Sect. 2.3. Section 2.4

illustrates the application of the shared event composition to a distributed system case

study: file transfer system. Related work is described in Sect. 2.5. Conclusions and

future work are drawn in Sect. 2.6.

2.2 Shared Event Approach

Sub-component specifications, that are part of a full system specification, deal with a

particular aspect of the system being modelled. Sub-component interaction must be

verified to comply with the desired behavioural semantic of the system. The interaction

usually occurs as a shared state, shared event or a combination of both as described in

Sect. 1.6. The kind of interaction usually depends on the characteristics of the specified

system. For instance, when specifying an automated teller machine (ATM) system, user

and cashMachine can have separate specifications. Both specifications can define vari-

ables to describe the used debit/credit cards for the transactions and the composition of

these two specifications can interact through shared variables: the variables representing

the cards. On the other hand, a shared event composition allows sub-components to

interact through synchronised events. The specification user can have an event that

defines the personal identification number (PIN) of the card: user defines PIN. cashMa-

chine can contain an event that changes the card PIN: change PIN card. Furthermore an
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additional sub-component serverBankValidation can have events defining when a bank

operation is enabled. One of these events can be validate user operation card. A shared

event composition of these specifications results in a new event user change PIN that

allows the introduction of a new PIN for a particular card when the conditions defined

in validate user operation card are enabled. Such event could be specified by composing

events user define PIN, change PIN card and validate user operation card.

Here we focus on the developments using shared event composition only, where com-

position is treated as the conjunction of individual elements’ properties: conjunction

of individual invariants, union of variables and synchronisation of events. Events when

synchronised are composed as described in Def. 1.2. Machine properties are merged by

the conjunction of invariants as seen in Def. 2.1.

Definition 2.1. Let machines M1 . . .Mm have variables v1 . . . vm respectively. Then

if machines M1 . . .Mm are composed in parallel, the invariant of the composed machine

M1 ‖ . . . ‖ Mm is given as:

I(M1 ‖ · · · ‖Mm) =̂ I1(s, c, v1) ∧ · · · ∧ Im(s, c, vm). (2.1)

When sub-components are composed it is desirable to define properties that relate the in-

dividual sub-components allowing interactions. These properties are expressed by adding

composition invariants ICM (s, c, v1, . . . , vm) to the composed machine constraining the

variables of all machines being composed. Therefore a more complete version of the

conjunction of invariants is described in Def. 2.2.

Definition 2.2. The invariant of the parallel composition of machines M1 to Mm with

variables v1 to vm respectively is the conjunction of the individual invariants (Def. 2.1)

and the composition invariant ICM (s, c, v1, . . . , vm):

I(M1 ‖ · · · ‖Mm) =̂ I1(s, c, v1) ∧ · · · ∧ Im(s, c, vm) ∧ ICM (s, c, v1, . . . , vm). (2.2)

In Fig. 1.11, composed machine M can have as invariant the conjunction of the individual

invariants as defined by Def. 2.2: I(M1 ‖ M2) =̂ IM1(s, c, v1) ∧ IM2(s, c, v2, v3) plus

possible composition invariant ICM (s, c, v1, v2, v3).

2.3 Composed Machines: Composition and Refinement

We define a new construct composed machine, representing the shared event composi-

tion of Event-B machines. We aim to have a construct that remains reactive to changes

in the sub-components in a way that has a minimal effect on the entire specification.

Consequently this representation of the composition is structural. The interaction of



52 Chapter 2 Shared Event Composition for Event-B

sub-components, following a “top-down” approach, can represent a refinement of an

existing abstraction. In that case, to formalise the composition, it is necessary to de-

fine composition POs plus refinement POs. In the following sections, we introduce the

structure of a composed machine, respective POs, prove the monotonicity property for

shared event composition and describe the required static checks.

2.3.1 Structure of Composed Machines

A shared event composed machine is expressed as the parallel conjunction of sub-

component properties. Composed machine CM defined by machines M1, . . . ,Mm can

be seen in Fig. 2.1. Machines are composed in parallel including their properties and

events: CM =̂ M1 ‖ · · · ‖Mm. Moreover:

• The composed machine variables are all the sub-component variables (v1 from M1,

v2 from M2, . . . , vm from Mm) and are state-space disjoint.

• The invariants of the composed machine are defined as Def. 2.2.

• The composed events are defined according to Def. 1.2.

COMPOSED MACHINE CM SEES Ctx
INCLUDES M1, . . . , Mm

VARIABLES v1, . . . , vm
INVARIANTS ICM (s, c, v1, v2, . . . , vm)
EVENTS

INITIALISATION =̂ M1.INITIALISATION ‖ . . .Mm.INITIALISATION
evt11 =̂ M1.evt11 ‖ . . .Mm.evtm1

. . .
evt1p =̂ M1.evt1p ‖ . . .Mm.evtm1 evt1p

END

Figure 2.1: Composed machine CM composing machines M1 to Mm seeing context
Ctx

ICM (s, c, v1, v2, . . . , vm) expresses the properties relating the states of sub-components.

When a composed machine is used as a combination of composition and refinement, it

refines an abstract model and just like in an ordinary machine, abstract events must be

refined. For instance, a composed machine CM refining abstract machine M0 can be

expressed as (M0 v CM) ≡ (M0 vM1 ‖ · · · ‖Mm). The next section discusses static

checks that are required in order to implement a tool for composition.

2.3.2 Static Checks

For the implementation of a tool for composition (Sect. 5.2), composed machines need

to be validated against some well-formedness conditions. The shared event composition

relies on these definitions:
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• The state space of the composed machine is defined as the composition of the

sub-components’ state space.

• The invariant of the composed machine is defined as the conjunction of the indi-

vidual invariants plus possible additional composition invariants.

• Sub-components can communicate via shared parameters during the parallel oc-

currence of events (composed events).

We distinguish between necessary technical conditions for the composition and method-

ological conditions (convenient and for simplicity). The technical conditions are as

follows:

• Sub-component variables cannot be shared.

• A composed event is defined by events of the different sub-components.

• The same event can be composed more than once. It corresponds to different

events’ synchronisations.

The methodological conditions are:

• A composed machine is defined by at least one sub-component.

• Composed machines refining an abstraction do not introduce new events. For

simplicity we restrict the introduction of new events during the composition since

adding new events before or after the composition has a similar outcome to adding

them during the composition.

• Variants are not required for composed machines. Only new events require variants

and they are not allowed, as justified in the previous point.

• A composed event is defined by at least one event.

• When the composed machine refines an abstraction, the rules and refinement POs

are applied similarly to standard machines.

These are the required conditions to build a valid composed machine. Next we present

the required POs to verify composed machines.

2.3.3 Proof Obligations

POs play an important role in Event-B developments. For simplicity we define POs in

terms of a composition of two machines M1(v1) and M2(v2) that refine machine M0(v0),
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but the rules generalise easily to the composition of n machines. Furthermore context

elements in the formulas (s, c, A(s, c)) are not considered. The same proof obligations

defined for standard machines (invariant preservation, well-definedness, refinement, etc)

are defined for composed machines. We simplify the composed machines POs by assum-

ing that the POs of the individual machines already hold. We just define the additional

POs necessary to ensure that the composed machine satisfies all the standard POs.

Therefore we consider that the POs of the machines to be composed (M1 and M2)

hold. The same applies for the abstract machine M0. Following the POs described

in Sect. 1.5.3 for standard machines, the respective composition POs are described as

follows.

2.3.3.1 Consistency

Consistency POs are required to be always verified. Consistency is expressed by the

feasibility and invariant preservation POs for each composed event. In the composed

machine, feasibility PO FISCM corresponds to the feasibility of all events from the

individual machines that are composed. To show the feasibility proof obligation for a

composed event, we compose event evt1 from machine M1 and event evt2 from machine

M2: evt1 ‖ evt2. The feasibility proof obligation for the composed event evt1 ‖ evt2 is

FISevt1‖evt2.

Theorem 2.1. Let FISevt1 and FISevt2 be the feasibility proof obligations for two dif-

ferent events evt1 and evt2 operating on disjoint variables v1 and v2 respectively. Then

FISevt1‖evt2 holds if both FISevt1 and FISevt2 also hold.

From (1.4):

FISevt1 : FISevt1H ` FISevt1G ≡ I1(v1) ∧G1(p1, v1) ` ∃v′1 ·(S1(p1, v1, v
′
1)) (2.3)

FISevt2 : FISevt2H ` FISevt2G ≡ I2(v2) ∧G2(p2, v2) ` ∃v′2 ·(S2(p2, v2, v
′
2)) (2.4)

FISevt1‖evt2 : FISevt1‖evt2H ` FISevt1‖evt2G ≡ (2.5)

ICM (v1, v2) ∧ I1(v1) ∧ I2(v2)

∧G1(p1, v1) ∧G2(p2, v2)

` ∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)).

Assume: FISevt1 and FISevt2.

Prove: FISevt1‖evt2.

Proof. Assume the hypotheses of FISevt1‖evt2 (FISevt1‖evt2H):

ICM (v1, v2)

I1(v1) ∧G1(p1, v1) (2.6)

I2(v2) ∧G2(p2, v2). (2.7)
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Prove:

∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)).

The proof proceeds as follows:

∃v′1, v′2 ·(S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2))

≡ ∃v′1 ·(S1(p1, v1, v
′
1))

∧ ∃v′2 ·(S2(p2, v2, v
′
2)) {disjoint v1 and v2}

⇐ (FISevt1G ∧ FISevt2G). {(2.3)+(2.6),(2.4)+(2.7)}

Another consistency PO is invariant preservation. In the composed machine, invariant

preservation PO INVCM corresponds to the invariant preservation in all events from

the individual machines that are composed. The invariant preservation proof obligation

for the composed event evt1 ‖ evt2 is INVevt1‖evt2. Note that i(v′) denotes the result of

the substitution of variable v by the corresponding before-after predicate v′ in invariant

i.

Theorem 2.2. Let INVevt1 and INVevt2 be the invariant preservation proof obligations

for two different events evt1 and evt2. Then for each individual predicate i1, i2 and iCM

from the set of invariants I in a composed machine, INVevt1‖evt2 holds if both INVevt1

and INVevt2 also hold plus the composition invariant ICM (v1, v2) holds.

From (1.3):

INVevt1 : INVevt1H ` INVevt1G ≡ I1(v1) ∧G1(p1, v1) ∧ S1(p1, v1, v
′
1) ` i1(v′1) (2.8)

INVevt2 : INVevt2H ` INVevt2G ≡ I2(v2) ∧G2(p2, v2) ∧ S2(p2, v2, v
′
2) ` i2(v′2) (2.9)

INVevt1‖evt2 : INVevt1‖evt2H ` INVevt1‖evt2G ≡ (2.10)

ICM (v1, v2) ∧ I1(v1) ∧ I2(v2)

∧G1(p1, v1) ∧G2(p2, v2)

∧ S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)

` i1(v′1) ∧ i2(v′2) ∧ iCM (v′1, v
′
2).

Assume: INVevt1 and INVevt2.

Prove: INVevt1‖evt2.

Proof. Assume the hypotheses of INVevt1‖evt2:

ICM (v1, v2)

I1(v1) ∧G1(p1, v1) ∧ S1(p1, v1, v
′
1) (2.11)

I2(v2) ∧G2(p2, v2) ∧ S2(p2, v2, v
′
2) (2.12)

Prove:

i1(v′1) ∧ i2(v′2) ∧ iCM (v′1, v
′
2).
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The proof proceeds as follows:

i1(v′1) ∧ i2(v′2) ∧ iCM (v′1, v
′
2)

⇐ INVevt1G

∧ INVevt2G
∧ iCM (v′1, v

′
2). {(2.8)+(2.11),(2.9)+(2.12)}

In other words, composition invariants ICM (v1, v2) need to be verified but the invariant

POs of the individual machines hold without having to be re-verified.

Well-definedness POs are also applicable to the composed machines. Nevertheless in

practice, well-definedness POs are only generated for ICM (v1, v2). Other expressions

(guards, actions, etc) are verified in the individual machines [10].

2.3.3.2 Refinement

The refinement POs are only required when the composed machine refines an abstract

machine. Machine M0 with variables v0, invariant I0(v0) and abstract event evt0 is

refined by composed machine CM defined by abstract machines M1 with variables

w1, invariant I1(w1), event evt1, M2 (w2 ; I2(w2); evt2) and composition invariant

JCM (v0, w1, w2). The composed event evt1 ‖ evt2 refines the abstract event evt0. The

refinement PO for a composed machine REFCM results from the verification of the com-

position invariant preservation JCM (v′0, w
′
1, w

′
2), the verification of guard strengthening

for G0(p0, v0) and simulation S0(p0, v0, v
′
0) for each refined event.

Theorem 2.3. Let composed event evt1 ‖ evt2 refine abstract event evt0. Then the

refinement REF PO for evt1 ‖ evt2 consists in proving the guard strengthening of

abstract guards, proving the simulation of the abstract variables (v′0) and preserving the

gluing invariant (JCM (v′0, w
′
1, w

′
2)) in the composed machine.

From (1.5):

INVevt1 : I1(w1) ∧H1(q1, w1) ∧ T1(q1, w1, w
′
1) ` i1(w′

1) (2.13)

INVevt2 : I2(w2) ∧H2(q2, w2) ∧ T2(q2, w2, w
′
2) ` i2(w′

2) (2.14)

REFevt0v(evt1‖evt2) : I0(v0) ∧ I1(w1) ∧ I2(w2) ∧ JCM (v0, w1, w2)

∧H1(q1, w1) ∧H2(q2, w2)

∧ T1(q1, w1, w
′
1) ∧ T2(q2, w2, w

′
2)

` ∃v′0 ·G0(p0, v0) ∧ S0(p0, v0, v
′
0) ∧ i1(w′

1) ∧ i2(w′
2) ∧ JCM (v′0, w

′
1, w

′
2).

(2.15)

Assume: INVevt1 (2.13) and INVevt2 (2.14).

Prove: REFevt0v(evt1‖evt2).
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Proof. Assume the hypotheses of REFevt0v(evt1‖evt2):

I0(v0) ∧ JCM (v0, w1, w2)

I1(w1) ∧H1(q1, w1) ∧ T1(q1, w1, w
′
1)

I2(w2) ∧H2(q2, w2) ∧ T2(q2, w2, w
′
2)

Prove:

` ∃v′0 ·G0(p0, v0) ∧ S0(p0, v0, v
′
0) ∧ I1(w′1) ∧ I2(w′2) ∧ JCM (v′0, w

′
1, w

′
2).

The proof proceeds as follows:

∃v′0 ·G0(p0, v0) ∧ S0(p0, v0, v
′
0)

∧ I1(w′
1) ∧ I2(w′

2) ∧ JCM (v′0, w
′
1, w

′
2)

≡ G0(p0, v0) ∧ I1(w′
1) ∧ I2(w′

2)

∧ ∃v′0 ·(S0(p0, v0, v
′
0) ∧ JCM (v′0, w

′
1, w

′
2)) {∧ goal; v0, w

′
1, w

′
2 are free variables}

⇐ G0(p0, v0)

∧ ∃v′0 ·(S0(p0, v0, v
′
0) ∧ JCM (v′0, w

′
1, w

′
2)) {from (2.13) and (2.14)}

As mentioned in Sect. 1.5.3, the refinement POs can be slit into separated POs using wit-

nesses: guard strengthening, simulation and gluing invariant preservation. We separate

the above refinement proof into these three kind of proof obligations.

Guard Strengthening For each composed event evt1 ‖ evt2, the guard strengthening

PO GRDCM refers to the relation between the conjunction of the guards of the composed

event H1(q1, w1) ∧H2(q2, w2) and the guard of the abstract event evt0: G0(p0, v0).

For each abstract guard g0 from the set of guards G0 in an abstract machine, the GRD

PO for each event requires verification that the concrete guards H1(q1, w1)∧H2(q2, w2)

are stronger than the abstract ones G0(p0,v0).

From (1.8), the proof rule to be verified is:

GRDevt0v(evt1‖evt2) : I0(v0) ∧ I1(w1) ∧ I2(w2) ∧ JCM (v0, w1, w2)

∧H1(q1, w1) ∧H2(q2, w2)

∧W1(p0, w1, w2, q1, q2)

` g0(p0,v0).

Gluing Invariant Preservation For composed events, the gluing invariant preserva-

tion PO INVCM requires that all the gluing invariants are preserved for each composed

event (similar to the invariant preservation described in Sect. 2.3.3.1).
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Theorem 2.4. Let the invariant in the composed machine be I1(w1)∧I2(w2)∧JCM (v0, w1, w2).

Then for each composed event evt1 ‖ evt2, only each predicate from the set of gluing

invariants JCM (v0, w1, w2) needs to be verified if INVevt1 and INVevt2 hold.

From (1.7):

INVevt1‖evt2 : I0(v0) ∧ I1(w1) ∧ I2(w2) ∧ JCM (v0, w1, w2)

∧H1(q1, w1) ∧H2(q2, w2)

∧W2(v′0, w1, w2, q1, q2, w
′
1, w

′
2)

∧ T1(q1, w1, w
′
1) ∧ T2(q2, w2, w

′
2)

` i1(w′
1) ∧ i2(w′

2) ∧ jCM (v′0, w
′
1, w

′
2). (2.16)

Assume: INVevt1 (2.13) and INVevt2 (2.14).

Prove: INVevt1‖evt2.

The proof proceeds as follows:

i1(w′
1) ∧ i2(w′

2) ∧ jCM (v′0, w
′
1, w

′
2)

≡ jCM (v′0, w
′
1, w

′
2)) {from (2.13) and (2.14)}

Simulation To verify the simulation PO SIMCM , each action executed in a composed

event evt1 ‖ evt2 must not contradict the corresponding actions in the abstract event

evt0.

For a concrete composed event evt1 ‖ evt2 refining event evt0, the simulation PO re-

quires that each concrete action T1(q1, w1, w
′
1) ∧ T2(q2, w2, w

′
2) simulates the abstract

ones S0(p0, v0, v
′
0).

From (1.9), the proof rule that needs to be verified is:

SIMevt0v(evt1‖evt2) : I0(v0) ∧ I1(w1) ∧ I2(w2) ∧ JCM (v0, w1, w2)

∧H1(q1, w1) ∧H2(q2, w2)

∧W1(p0, w1, w2, q1, q2, w
′
1, w

′
2)

∧W2(v′0, w1, w2, q1, q2, w
′
1, w

′
2)

∧ T1(q1, w1, w
′
1) ∧ T2(q2, w2, w

′
2)

` S0(p0, v0, v
′
0).

These are the required POs to verify composed machines. Next we show that composed machines

are monotonic which allows further refinements of sub-components while preserving refinement

of the composition.
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2.3.4 Monotonicity of Shared Event Composition for Composed Ma-

chines

An important property of the shared event composition in Event-B is monotonicity. Here we

prove by means of refinement POs that the composition is monotonic confirming the result

described by Butler [53] using actions systems and CSP. Figure 2.2 shows abstract specification

M1 composed with other specification N1, creating a composed model M1 ‖ N1. M1 is refined

by M2 and N1 by N2 respectively:

• M1 is characterised by variables vM , invariants IM (vM ) and event evtM1.

• M2 is characterised by variables wM , gluing invariants JM (vM , wM ) and event evtM2.

• N1 is characterised by variables vN , invariants IN (vN ) and event evtN1.

• N2 is characterised by variables wN , gluing invariants JN (vN , wN ) and event evtN2.

Monotonicity allows us to say that CM1 is refined by CM2. In other words, once we compose

specifications M1 and N1, discharge the required composed POs, M1 and N1 can be refined

individually while the composition properties are preserved without the need to recompose re-

finements M2 and N2. We want to formally prove the monotonicity property through refinement

Figure 2.2: Refinement of composed machine CM1 =̂ M1 ‖ N1 by CM2 =̂ M2 ‖ N2

POs between composed machines (in Fig. 2.2 between CM1 and CM2). Therefore if the refine-

ment POs hold between CM1 and CM2, we can say that CM2 refines CM1: CM1 v CM2.

An event evtM1 in machine M1 is represented as:

evtM1 =̂ANY pM WHERE GM (pM , vM )THEN SM (pM , vM , v
′
M ) END.

An event evtM2 in machine M2 refining abstract event evtM1 is represented as:

evtM2 =̂ANY qM WHERE HM (qM , wM )THEN TM (qM , wM , w
′
M ) END.

The gluing invariant of the refinement between M1 and M2 is expressed as JM (vM , wM )

relating the states ofM1 andM2: M1 vJM M2. From (1.5) we can derive the refinement
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PO between M2 and M1 for the concrete event evtM2 refining abstract event evtM1.

REFevtM1vevtM2
: REFevtM1vevtM2H ` REFevtM1vevtM2G

≡ IM (vM ) ∧ JM (vM , wM )

∧GM (pM , vM ) ∧HM (qM , wM )

∧ SM (pM , vM , v
′
M ) ∧ TM (qM , wM , w

′
M )

` ∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v
′
M ) ∧ JM (v′M , w

′
M ). (2.17)

Similarly for machines N1 and N2, the gluing invariant is expressed as JN (vN , wN )

relating the states of N1 and N2: N1 vJN N2. Furthermore, the refinement PO for

concrete event evtN2 refining abstract event evtN1 is expressed as:

REFevtN1vevtN2
: REFevtN1vevtN2H ` REFevtN1vevtN2G

≡ IN (vN ) ∧ JN (vN , wN )

∧GN (pN , vN ) ∧HN (qN , wN )

∧ SN (pN , vN , v
′
N ) ∧ TN (qN , wN , w

′
N )

` ∃v′N ·GN (pN , vN ) ∧ SN (pN , vN , v
′
N ) ∧ JN (v′N , w

′
N ). (2.18)

We refine an abstract event in CM1 by a concrete one in CM2 and verify that the

refinement POs for each individual machine hold for the composition. Event evtM1

from machine M1 and event evtN1 from machine N1 are composed, resulting in the

abstract composed event evtM1 ‖ evtN1 in CM1 from Fig. 2.2. Such abstract composed

event is represented as:

evtM1 ‖ evtN1 =̂ANY pM , pN WHERE GM (pM , vM ) ∧GN (pN , vN )

THEN SM (pM , vM , v
′
M ) ‖ SN (pN , vN , v

′
N ) END.

A concrete composed event between M2 and N2 in CM2 (evtM2 ‖ evtN2), refining the

abstract event evtM1 ‖ evtN1, is represented as:

evtM2 ‖ evtN2 =̂ANY qM , qN WHERE HM (qM , wM ) ∧HN (qN , wN )

THEN TM (qM , wM , w
′
M ) ‖ TN (qN , wN , w

′
N ) END.

The gluing invariant relating the states of CM1 and CM2 is expressed as the conjunction

of the gluing invariants between M1/M2 and N1/N2:

JCM (vM , vN , wM , wN ) = JM (vM , wM ) ∧ JN (vN , wN ) (2.19)

Theorem 2.5. Let composed machine CM1 be defined by machines M1 and N1 and

composed event evtM1 ‖ evtN1. Then composed machine CM2 is a valid refinement of

CM1 if the refinement proof obligations between machines M2 and N2 and machines

M1 and N1 hold respectively for each concrete composed event evtM2 ‖ evtN2 that

refines abstract composed event evtM1 ‖ evtN1.

From (2.15), the refinement PO between concrete composed event evtM2 ‖ evtN2 and
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abstract composed event evtM1 ‖ evtN1 is:

REF(evtM1‖evtN1)v(evtM2‖evtN2) : IM (vM ) ∧ IN (vN ) ∧ JCM (vM , vN , wM , wN )

∧HM (qM , wM ) ∧HN (qN , wN )

∧ TM (qM , wM , w
′
M ) ∧ TN (qN , wN , w

′
N )

` ∃v′M , v′N ·GM (pM , vM ) ∧GN (pN , vN )

∧ SM (pM , vM , v
′
M ) ∧ SN (pN , vN , v

′
N ) ∧ JCM (v′M , v

′
N , w

′
M , w

′
N ).

Assume: REFevtM1vevtM2 and REFevtN1vevtN2 .

Prove: REF(evtM1‖evtN1)v(evtM2‖evtN2).

Proof. Assume the hypotheses of REF(evtM1‖evtN1)v(evtM2‖evtN2):

JCM (vM , vN , wM , wN ) ≡ JM (vM , wM ) ∧ JN (vN , wN ) {expanding JCM from (2.19)}
IM (vM ) ∧HM (qM , wM ) ∧ TM (qM , wM , w

′
M ) (2.20)

IN (vN ) ∧HN (qN , wN ) ∧ TN (qN , wN , w
′
N ) (2.21)

Prove:

∃v′M , v′N ·GM (pM , vM ) ∧GN (pN , vN ) ∧ SM (pM , vM , v
′
M ) ∧ SN (pN , vN , v

′
N )

∧ JCM (v′M , v
′
N , w

′
M , w

′
N ).

The proof proceeds as follows:

∃v′M , v′N ·GM (pM , vM ) ∧GN (pN , vN )

∧ SM (pM , vM , v
′
M ) ∧ SN (pN , vN , v

′
N )

∧ JCM (v′M , v
′
N , w

′
M , w

′
N )

≡ ∃v′M , v′N ·GM (pM , vM ) ∧GN (pN , vN )

∧ SM (pM , vM , v
′
M ) ∧ SN (pN , vN , v

′
N )

∧ JM (v′M , w
′
M ) ∧ JN (v′N , w

′
N ) {expanding JCM from (2.19)}

≡ ∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v
′
M ) ∧ JM (v′M , w

′
M )

∧ ∃v′N ·GN (pN , vN ) ∧ SN (pN , vN , v
′
N ) ∧ JN (v′N , w

′
N ) {disjoint v′M ,v′N}

⇐ REFevtM1vevtM2G

∧REFevtN1vevtN2G {(2.17)+(2.20),(2.18)+(2.21)}

The refinement POs for composed machines is expressed as the conjunction of the re-

finement POs for the individual machines. Therefore the monotonicity property holds

if the refinement POs of individual machines hold.
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2.3.4.1 Monotonicity of Non-Composed Events for Composed Machines

We also need to prove the monotonicity for non-composed events that appear at both

levels of abstraction. We shall prove it using machines M1 and CM2 as seen in Fig. 2.3

(similar for N1 and CM2).

Figure 2.3: Refinement of composed machine CM1 =̂ M1 by CM2 =̂ M2 ‖ N2

Theorem 2.6. Let an event evtM1 in machine M1 be refined by a composed event evtM2 ‖
evtN2 in composed machine CM2. Assuming that machine M1 is refined by machine

M2 and INVevtN2 holds, then the monotonicity is preserved and event M1 is refined by

the composed event M2 ‖ N2.

Assume: REFevtM1vevtM2 and INVevtN2 .

Prove: REFevtM1v(evtM2‖evtN2).

In this case, the gluing invariant described in (2.19) does not use neither the variables

(vN ) neither the invariants (IN ). Therefore it can be simplified and rewritten as:

JCM (vM , wM , wN ) = JM (vM , wM ) ∧ JN (wN ) (2.22)

From (2.15), the refinement PO between concrete composed event evtM2 ‖ evtN2 and

abstract event evtM1:

REFevtM1v(evtM2‖evtN2) : IM (vM ) ∧ JCM (vM , wM , wN )

∧HM (qM , wM ) ∧HN (qN , wN )

∧ TM (qM , wM , w
′
M ) ∧ TN (qN , wN , w

′
N )

` ∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v
′
M ) ∧ JCM (v′M , w

′
M , w

′
N ).

Proof. Assume the hypotheses of REFevtM1v(evtM2‖evtN2):

JCM (vM , wM , wN ) ≡ JM (vM , wM ) ∧ JN (wN ) {expanding JCM from (2.22)}.
IM (vM ) ∧HM (qM , wM ) ∧ TM (qM , wM , w

′
M )

HN (qN , wN ) ∧ TN (qN , wN , w
′
N )
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And assume INVevtN2 :

INVevtN2
: INVevtN2H ` INVevtN2G

≡ JN (wN ) ∧HN (qN , wN ) ∧ TN (qN , wN , w
′
N )

` jN (w′
N ). (2.23)

The proof proceeds as follows:

∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v
′
M ) ∧ JCM (v′M , w

′
M , w

′
N )

≡ ∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v
′
M )

∧ JM (v′M , w
′
M ) ∧ JN (w′

N ) {expanding JCM from (2.22)}
⇐ REFevt M1vevt M2G

∧ JN (w′
N ) { (2.17)}

⇐ REFevt M1vevt M2G

∧ INVevt N2G { (2.23)}

2.3.4.2 New Events

New events must refine event skip and their state space include only new variables

w; abstract variables v do not change state. Nevertheless new composed events must

respect the refinement POs.

Theorem 2.7. Let evtM2 be a new (composed) event in CM2 refining skip. If we assume

that the invariant proof obligation for event evtM2 holds, then the monotonicity property

is preserved (i.e. REFskipvevtM2
holds).

From (2.15), the refinement PO for new event evtM2 is necessary to be verified to ensure

that monotonicity is preserved. It can be expressed as:

REFskipvevtM2
: REFskipvevtM2H ` REFskipvevtM2G

≡ IM (vM ) ∧ JCM (vM , wM , wN )

∧HM (qM , wM ) ∧ TM (qM , wM , w
′
M )

` ∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v
′
M ) ∧ JCM (v′M , w

′
M , w

′
N ).

And assume INVevtM2 :

INVevtM2
: INVevtM2H ` INVevtM2G

≡ JM (vM , wM ) ∧HM (qM , wM ) ∧ TM (qM , wM , w
′
M )

` jM (vM , w
′
M ). (2.24)

Moreover, since evtM2 is a new event refining skip (event with guard always TRUE and
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without actions), then:

JCM (vM , wM , wN ) = JM (vM , wM ) (2.25)

GM (pM , vM ) = TRUE (2.26)

SM (pM , vM , v
′
M ) = ∅. (2.27)

Assume: INVevtM2

Prove: REFskipvevtM2
.

The proof proceeds as follows:

Proof.

∃v′M ·GM (pM , vM ) ∧ SM (pM , vM , v
′
M ) ∧ JCM (v′M , w

′
M , w

′
N )

≡ ∃v′M ·JCM (v′M , w
′
M , w

′
N ) {(2.26) and (2.27)}

≡ ∃v′M ·JM (v′M , w
′
M ) { (2.25)}

⇐ INVevt M2G { (2.24)}

Next section presents the application of the shared event composition to a more complex

case study whose architecture is a distributed system: file transfer system.

2.4 File Access Management case study

A distributed system is presented where two component specifications are composed in

the style defined in Fig. 1.11. A specification of a file management system is developed:

files containing DATA can be created, read, overwritten, deleted and sent to other users.

Another separated specification deals with the access management of files in which each

file has an owner. The owners are users with clearance level from 1 to 10 where 10 is

the highest level. A super user exists with clearance level 10. Moreover, files have a

classification level varying from 1 to 10. Permission is needed in order to read, modify

or delete a file. When the permission is granted, the requested action can take place.

The first specification is defined as machine FileManagement M0 and variables user,

file, fileData and fileStatus (defines the status of a file operation and can have the states

SUCCESS or FAILED) as depicted in Fig. 2.4. After a file is created or sent, variable

fileStatus is updated accordingly to the result of the operation. In order to allow a new

operation in the same file, the state of that file must be reset in event clearFileStatus. The

file operations are defined by events createF ile, readF ile, overwriteF ile, deleteF ile,

sendFile and clearF ileStatus as seen in Fig. 2.4. The access management specifica-
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FileManagement

machine FileManagement_M0
sees FileManagement_C0 User_C0

variables user file fileData fileStatus

invariants

  @inv1 file ! FILE

  @inv2 user ! USER

  @inv3 fileData " file ! DATA

  @inv4 fileStatus " file ! STATUS

  @inv5 ran(fileStatus) ! {SUCCESS, FAILED}

events

  event INITIALISATION
    then

      @act1 user # {super}

      @act2 file # $

      @act3 fileData # $

      @act4 fileStatus # $

  end

  event addUser
    any uu
        masterUser // user that creates uu
    where

      @grd1 uu % user

      @grd2 masterUser " user

    then

      @act1 user # user & {uu}

  end

  event createFile
    any " // file to be added
        dd // content DATA of the file
        fStatus
        u // file owner
    where

      @grd1 " " FILE#file

      @grd2 dd " DATA

      @grd3 fStatus "  {SUCCESS}
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FileManagement

  event createFile
    any ! // file to be added
        dd // content DATA of the file
        fStatus
        u // file owner
    where

      @grd1 ! ! FILE"file

      @grd2 dd ! DATA

      @grd3 fStatus !  {SUCCESS}

      @grd4 u ! user

    then

      @act1 file"file # {!}

      @act2 fileData(!)"dd

      @act3 fileStatus(!) " fStatus

  end

  event readFile
    any ! // file to be read
        dd // data of the file
        u // user that reads the file
    where

      @grd1 ! ! file

      @grd2 dd = fileData(!)
      @grd3 u ! user

  end

  event overwriteFile
    any ! dd
    where

      @grd1 ! ! file

      @grd2 dd ! DATA

      @grd3 dd # fileData(!)
    then

      @act1 fileData(!)"dd

  end

  event deleteFile
    any ! // file to be deleted
        u // user that will execute the action

    where

Page 2
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  event deleteFile
    any ! // file to be deleted
        u // user executes the action
    where

      @grd1 ! ! file

      @grd2 u ! user

    then

      @act1 file"file"{!}

      @act2 fileData"{!}#fileData

      @act3 fileStatus"{!}#fileStatus

  end

  event sendFile
    any ! recipient u fs
    where

      @grd1 ! ! file

      @grd2 u ! user

      @grd3 recipient ! user

      @grd4 ! $ dom(fileStatus)

      @grd5 fs ! {SUCCESS,FAILED}

      @grd6 u # recipient
    then

      @act1 fileStatus(!) " fs

  end

  event clearFileStatus
    any !

    where

      @grd1 ! ! dom(fileStatus)

      @grd2 fileStatus(!)!{SUCCESS,FAILED}

    then

      @act1 fileStatus " {!}#fileStatus

  end

end

Page 3

Figure 2.4: Machine FileManagement M0

tion is defined by machine AccessManagement M0 and variables userClearanceLevel,

permission, fileClassification and fileOwner as seen in Fig. 2.5. A user can change the

clearance of another user as long as the former has a clearance level superior to the lat-

ter as described in event changeClearance (guard grd5 ). For all the other operations,

permission is needed given by the non-deterministic action in event requestPermission.

With permission granted, a file can be read, modified or deleted. Moreover, only users

with a clearance level superior to the file classification can modify a file (guard grd7 in

event modifyFile). To delete a file, described in event deleteFile, the user must be the

owner of the file or the super user as described by guard grd5.

These two specifications were developed in two different machines as they deal with dif-

ferent contexts: machine FileManagement M0 handles the physical creation and modi-

fication of files and respective data. Machine AccessManagement M0 handles the con-

ditions in which a reading and a modification can occur. By composing these two

specifications and respective events, we explore the development of a composed specifi-

cation that is constrained by the other. The composed machine FileAccessManagement

can be seen in Fig. 2.6. Modifying, overwriting, sending or deleting a file must be au-

thorised (request permission) and only a defined set of users are allowed to do it (in

opposition to what happens in machine FileManagement M0 ); events corresponding to

the creation of users and change of clearance are synchronised and occur in parallel. The

conjunction of the guards of each event (Def. (1.2)) restrains the conditions to enable the

composed event. Nevertheless some events are not composed such as requestPermission

or clearFileStatus. Moreover, additional invariants are added allowing the interaction of
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machine AccessManagement_M0 
sees User_C0 AccessManagement_C0 FileManagement_C0 
 
variables userClearanceLevel permission fileClassification fileOwner 
 
invariants 

  @inv1 userClearanceLevel ! USER ! ClearanceLevel 

  @inv2 permission ! PERMISSION 

  @inv3 fileClassification ! FILE ! Classification 

  @inv4 fileOwner ! FILE ! USER 
  @inv5 dom(fileClassification) = dom(fileOwner) 
 
events 
  event INITIALISATION 
    then 
      @act1 userClearanceLevel " {super#10} 
      @act2 permission " OFF 

      @act3 fileClassification " " 

      @act4 fileOwner " " 

  end 
 
  event changeClearance 
    any uu // changed user 
        masterUser // user who will make the change to uu 
        newUserClearanceLevel // new user ClearanceLevel 
    where 

      @grd1 masterUser ! USER 

      @grd2 uu ! USER 

      @grd3 uu ! dom(userClearanceLevel) 

      @grd4 newUserClearanceLevel ! ClearanceLevel 
      @grd5 newUserClearanceLevel < userClearanceLevel(masterUser) 
      @grd6 uu ! super 
     then 
      @act1 userClearanceLevel(uu)" newUserClearanceLevel 
  end 
 
  event readOperation 
    any u // user that wants to modify the file 
        ff 
    where 
      @grd1 permission = ALLOWED 

      @grd2 u ! USER 

      @grd3 u!dom(userClearanceLevel) 

      @grd4 ff!dom(fileClassification) 

      @grd5 ff ! FILE 
      @grd6 userClearanceLevel(u)"fileClassification(ff) 
    then 
      @act1 permission " OFF 

  end 
 
 
  event requestPermission 
    where 
      @grd1 permission ! ALLOWED 

  event requestPermission 
    where 
      @grd1 permission ! ALLOWED 
    then 
      @act1 permission:! PERMISSION"{OFF} 

  end 
 
  event modifyFile 
    any ff cl 
        u // owner of the file 
    where 
      @grd1 u!dom(userClearanceLevel) 

      @grd2 ff ! FILE 

      @grd3 cl ! Classification 

      @grd4 permission = ALLOWED 
      @grd5 ff ! dom(fileClassification) " cl = fileClassification(ff) 

      @grd6 u ! USER 

      @grd7 userClearanceLevel(u)>cl 
    then 
      @act1 fileClassification(ff)! cl 
      @act2 permission ! OFF 
      @act3 fileOwner(ff)! u 
  end 
 
  event deleteFile 
    any ff u 
    where 
      @grd1 ff ! FILE 

      @grd2 permission = ALLOWED 
      @grd3 u ! USER 

      @grd4 ff ! dom(fileOwner) 

      @grd5 u ! {super,fileOwner(ff)} 

    then 
      @act1 fileClassification!{ff}"fileClassification 
      @act2 permission ! OFF 
      @act3 fileOwner!{ff}"fileOwner 
  end 
end 
!

Figure 2.5: Machine AccessManagement M0

states but still without possibility to share variables. Among the added invariants, the

most important is the one that requires the classification of a file to be lower than the

clearance level of its owner (@inv4 ).

As aforementioned in a shared event composition, the composed events communicate

through value passing. The value passing is allowed when composed events have param-

eters with the same name and compatible types (cf. (1.20)). For instance, the composed

event createFile results from the composition of events AccessManagement M0.modifyFile

and FileManagement M0.createFile. AccessManagement M0.modifyFile has parame-

ters ff of type FILE, u of type USER and cl of type Classification. FileManage-

ment M0.createFile has parameters ff of type FILE, dd of type DATA, u of type USER

and fStatus of type STATUS. When these two events are synchronised, parameters ff

and u are shared as seen in Fig. 2.7 (the labels of the guards and actions, starting with

’@’, define their source). Although not explicitly defined, parameter ff inputs an element

of FILE (guards FileManagement M0\grd1 and AccessManagement M0\grd2 ) that will

be added to the variable file in action FileManagement M0\act1. Similarly, parameter

u behaves as an input parameter. The respective actions occur in parallel: when a file is

created, its content is defined by parameter dd and the resulting state of the operation

is updated by fStatus; also the file is classified according to the parameter cl and has an
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COMPOSED MACHINE FileAccessManagement
INCLUDES

AccessManagement M0, FileManagement M0
INVARIANTS

@inv1: dom(userClearanceLevel) = user
@inv2: dom(fileClassification) = file
@inv3: fileOwner ∈ file→ user
@inv4: ∀f ·f ∈ file⇒ userClearanceLevel(fileOwner(f)) > fileClassification(f)

EVENTS
addUser

Combines Events AccessManagement M0.changeClearance ‖ FileManagement M0.addUser
modifyUser

Combines Events AccessManagement M0.changeClearance
createFile

Combines Events AccessManagement M0.modifyF ile ‖ FileManagement M0.createF ile
readFile

Combines Events AccessManagement M0.readOperation ‖ FileManagement M0.readF ile
overwriteFile

Combines Events AccessManagement M0.modifyF ile ‖ FileManagement M0.overwriteF ile
deleteFile

Combines Events AccessManagement M0.deleteF ile ‖ FileManagement M0.deleteF ile
sendFile

Combines Events AccessManagement M0.modifyF ile ‖ FileManagement M0.sendF ile
requestPermission

Combines Events AccessManagement M0.requestPermission
clearFileStatus

Combines Events FileManagement M0.clearF ileStatus

Figure 2.6: Composed machine FileAccessManagement

owner u. The others composed events behave similarly.

  event createFile 
    any ff // file to be added 
        dd // content DATA of the file 
        fStatus 
        u // file owner 
        cl 
    where 
      @FileManagement_M0\grd1 ff ! FILE!file 

      @FileManagement_M0\grd2 dd ! DATA 

      @FileManagement_M0\grd3 fStatus !  {SUCCESS} 

      @FileManagement_M0\grd4 u ! user 

      @AccessManagement_M0\grd1 u!dom(userClearanceLevel) 

      @AccessManagement_M0\grd2 ff ! FILE 

      @AccessManagement_M0\grd3 cl ! Classification 

      @AccessManagement_M0\grd4 permission = ALLOWED 
      @AccessManagement_M0\grd5 ff ! dom(fileClassification) " cl =fileClassification(ff) 

@AccessManagement_M0\grd6 u ! USER      

@AccessManagement_M0\grd7 userClearanceLevel(u)>cl 
    then 

      @FileManagement_M0\act1 file!file ! {ff} 
      @FileManagement_M0\act2 fileData(ff)!dd 
      @FileManagement_M0\act3 fileStatus(ff) ! fStatus 
      @AccessManagement_M0\act1 fileClassification(ff)! cl 
      @AccessManagement_M0\act2 permission ! OFF 
      @AccessManagement_M0\act3 fileOwner(ff)! u 
  end 
 
  event readFile 
    any ff // file to be read 
        dd // data of the file 
        u // user that reads the file 
 
    where 
      @[FileManagement]FileManagement_M0\grd1 ff ! file 

      @[FileManagement]FileManagement_M0\grd2 dd = fileData(ff) 
      @[FileManagement]FileManagement_M0\grd3 u ! user 

      @[FileManagement]AccessManagement_M0\grd1 permission = ALLOWED 
      @[FileManagement]AccessManagement_M0\grd2 u ! USER 

      @[FileManagement]AccessManagement_M0\grd3 u!dom(userClearanceLevel) 

      @[FileManagement]AccessManagement_M0\grd4 ff!dom(fileClassification) 

      @[FileManagement]AccessManagement_M0\grd5 ff ! FILE 

      @[FileManagement]AccessManagement_M0\grd6 
userClearanceLevel(u)"fileClassification(ff) 
    then 
      @[FileManagement]AccessManagement_M0\act1 permission ! OFF 
  end 
 
  event overwriteFile 
    any ff dd cl 
        u // owner of the file 
 
    where 
      @[FileManagement]FileManagement_M0\grd1 ff ! file 

Figure 2.7: “Expanded” event createFile from composed machine FileAccessManage-
ment

The composed machine needs to be verified to ensure that the properties of the model

are preserved. The verification is accomplished by discharging the proof obligations as

described in Sect. 2.3.3. Moreover, the additional invariants must also be preserved by all

the events in the composed machine. After the generation of the proof obligations for the

composed machine FileAccessManagement only one proof obligation is not automatically
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discharged: it is a composition gluing invariant preservation PO referring to inv4 in

event modifyUser. After analysing the event, it is easy to understand why the PO

cannot be discharged: there is no information in the event that guarantees that the

files owned by uu have a classification that is inferior to the new user’s clearance. To

discharge this PO, it is necessary to add a guard to the composed event modifyFile that

guarantees that all the files owned by uu have a classification that is inferior than the

new clearance. But the composition of machines is structural and therefore no guards

can be added directly to the composed machine. Instead a new guard needs to be added

to the original event changeClearance in the included machine AccessManagement M0

from where the composed event modifyUser comes from (cf. Fig. 2.6). Guard grd8 is

added in event changeClearance of machine AccessManagement M0 as seen in Fig. 2.8.

After changing the event changeClearance, the proof obligations can be re-generated

event changeClearance 
    any uu // changed user 
        masterUser // user who will make the change to uu 
        newUserClearanceLevel // new user ClearanceLevel 
    where 

      @grd1 masterUser ! USER 

      @grd2 uu ! USER 

      @grd3 uu ! dom(userClearanceLevel) 

      @grd4 newUserClearanceLevel ! ClearanceLevel 
      @grd5 newUserClearanceLevel < userClearanceLevel(masterUser) 
      @grd6 uu ! super 

      @grd7 "f·f ! dom(fileClassification) ! fileOwner(f)=uu  

          # newUserClearanceLevel>fileClassification(f) 
  then 
      @act1 userClearanceLevel(uu)! newUserClearanceLevel 
  end 
 
!

Figure 2.8: Event changeClearance from machine AccessManagement with added
guard grd8

for the composed machine and as expected, all the POs are automatically discharged.

Moreover, no changes were made directly in the composed machine. In this manner,

there is more flexibility in the interaction of specifications as the changes in the individual

sub-components are directly reflected in the composed machines.

One of the properties of the shared event composition is monotonicity. Therefore sub-

components can be further refined independently preserving the verified properties while

composed. For instance, machine AccessManagement M0 can be refined by defining a

more deterministic event requestPermission based on the kind of operation and the user

that intends to execute the operation. For machine FileManagement M0, the event

sendFile can be further refined by introducing a queue where events would be stored

before being processed (creating a new file own by the file recipient). The independent

refinement of the sub-components results in a separation of behaviours and properties

that can be verified without the interference of other sub-components.
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2.5 Related Work

Composition allows the interaction of sub-components and usually occurs through vari-

able sharing, event sharing or a combination of both. Back [23], Abadi and Lamport[1]

studied the interaction of components through shared variable composition. Jones [187]

also proposes a shared variable composition for VDM by restricting the behaviour of the

environment and the operation itself in order to consider the composition valid using

rely-guarantee conditions.

CSP [92] allows the specification of distributed systems from an event-based viewpoint.

Processes and environment behaviours can be composed using the parallel composition

operator ‖. They interact by synchronisation of common events within the respective

alphabets (interaction) and stop if any of the involved processes deadlocks. Another

option is to have processes with different alphabets: concurrency exists when inde-

pendent events occur in parallel. On the one hand, when the alphabets of processes

P and Q do not have common events, αP ∩ αQ = {}, then the alphabet is given as

α(P ‖ Q) = αP ∪ αQ and the traces of P ‖ Q are pure interleavings between events of

both processes: traces(P ‖ Q) = {s | ∃ t : traces(P );u : traces(Q)·s interleaves(t, u)}.
On the other hand, when the alphabets of P and Q are exactly the same, αP = αQ,

then traces(P ‖ Q) = traces(P ) ∩ traces(Q). Communication is a special class of event

described by a pair c.v where c corresponds to the name of the channel and v corre-

sponds to the value of the message which passes. Channels can be considered members

of the alphabet of the process and used for communication in only one direction and

between two processes [92]. If two processes P and Q are composed in parallel and both

have a common channel c, interaction happens whenever both processes are ready to

engage in the common channel. If P is ready for c!v and process Q is ready for c?x, v

can be passed from P to Q [41]: (c!v →P ) ‖ (c?x →Qx) = c!.v →(P ‖ Qv). The result

is an output channel and the process Q receives the value v. This can also be applied

for channels with input-input behaviour. Our approach is similar to CSP concurrency

where events from different machines can be composed and interact, similar to what

happens between events of different processes.

In Z, composition can be achieved by combining schemas. Two signatures of different

schemas can be combined if they are type compatible: each variable common to the two

has the same type in both of them. The result is a larger signature which contains

all the variables of each of them. The properties of each of the schemas can be con-

nected through logical connectives such as ∨, ∧, ⇒ or ≡ [173]. Still combining schemas,

views [34, 99] allow the development of partial specifications that can interact through

invariants that relate their state or by operations’ synchronisation. Views are similar

to our composition as it allows the exploration of sub-components interaction without

variable sharing.

In Circus [186, 155] (that combines Z and CSP), processes may be defined explicitly
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or in terms of other processes (compound processes). Compound processes are defined

using the CSP operators of sequence, external and internal choice, parallelism and in-

terleaving, or their corresponding iterated operators, event hiding, or indexed operators,

which are particular to Circus specifications. An action can be a schema, a guarded

command, an invocation of another action, or a combination of these constructs using

CSP operators. Communication is achieved by parallelism and interleaving of actions

declaring a synchronisation channel set and two sets that partition all the variables. In

the parallelism A1Jns1|cs|ns2KA2 , the actions A1 and A2 synchronise on the channels

in set cs. Both A1 and A2 have access to the initial values of all variables in both ns1

and ns2. However, A1 and A2 may modify only the values of the variables in ns1 and

ns2, respectively. The changes made by A1 in variables in ns1 are not seen by A2,

and vice-versa. Oliveira et al [132] make use of the Circus communication system to

specify a distributed fire protection system divided into fire detection and gas discharge

covering two different separate zones. In our composition machine, the included ma-

chines communicate by synchronised events similar to channels in Circus. Similarly, the

included machines can only modify their own variables but can read the other variables

in a composed event.

CSP-OZ [167] (CSP combined with Object-Z) and TCOZ [142, 118, 117] (Timed Com-

municating Object-Z that is an integration of Object-Z and Timed CSP) use Object-Z

data structure and the CSP structure for the control flow of a system. The Z math-

ematical toolkit is extended with object oriented structuring techniques. Timed CSP

has strong process control modelling capabilities. The multi-threading and synchro-

nisation primitives of CSP are extended with timing primitives. In CSP-OZ, classes

in Object-Z and processes in CSP are given an identical failure divergence semantics

(history of class objects corresponds to traces of processes in CSP) which allows the

development of communication through synchronised operations with the same name in

a similar style as it happens with channels in CSP: local parameters to operations can be

passed via message passing [167, 75]. The sequencing of operation events is determined

by the preconditions of the individual events, at each time the object participates in

any event which is currently enabled [117]. Nevertheless such an approach is not well

suited for considering multi-threading and real-time due to the restriction of operations

to atomic events. TCOZ identifies operation schemas with terminating CSP processes

that perform only state updates: rather than treating operation as atomic events, they

are treated as sequences of abstract state-update events [117]. TCOZ specifications have

the same strcuture as Object-Z ones except in the structure of the class definition that

may include CSP channels and processes definitions. The Z operation schema is the only

way to describe a state change in TCOZ and it is not responsible for communicating

inputs and outputs. Composition occurs using communicating CSP-style channels be-

tween class objects: state, initialisation schemas are conjoined; operation schemas with

the same name are also conjoined resulting in compositive objects. The behaviour of an

(active) compositive is defined by the construct MAIN along with the channel construct
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chan. Active objects are modelled as pure (non-terminating) CSP processes, using the

basic infinite timed failures semantics [117]. For synchronisation, channel renaming may

be required where input and output parameters can be passed similar to the original

CSP. Intermediate channels can be introduced as internal interfaces between objects.

The internal interfaces are protected from environment by hiding them [118]. Another

approach for describing the semantics of TCOZ is given by Qin et al [142]: using uni-

fying theories of programming (UTP), a unified semantic model for both channel and

sensor/actuators based communications in TCOZ is defined. Unlike our approach, we

do not blend different formalisms and define the corresponding semantics: we keep the

Event-B semantics and inspired by the CSP, we build a correspondence between events’

composition with possible value-passing communication and the synchronisation of pro-

cesses using CSP channels. Just like in CSP, there is different semantics between input

and output channels. For our composition, input and output parameters also have dif-

ferent semantics expressed by enabledness POs (cf. Definition 1.20 and Sect. 1.5.3.3).

Note that these POs are currently not implemented in the Rodin platform.

In classical B the composition [4, 140, 158] uses keywords like Includes to extend a

machine, not allowing writing access to variables in the included machine or keyword

Sees used to complement machines. Although systems are developed in single machines

in classical B, Bellegarde et at [32] suggest a composition by rearranging the separated

machines and synchronising their operations under feasibility conditions. The behaviour

of a component composition is seen as a labelled transition system using weakest precon-

ditions, where a set of authorised transitions are defined. The objective is to verify the

refinement of synchronised parallel composition between components but it is limited to

finite state transitions and a finite number of components. This work differs from ours

as it uses a labelled transition system while we use synchronisation and communication

in the CSP style. Variable sharing is also possible unlike our shared event composition.

Butler and Walden [52] discuss a combination of action systems and classical B by com-

posing machines using parallel systems in an action systems style and preserving the

invariants of the individual machines. This approach allows the classical B to derive

parallel and distributed systems and since the parallel composition of action systems

is monotonic, the sub-systems in a parallel composition may be refined independently.

This work is closely related to our work as it follows a CSP style to compose actions

with similar underlying semantics and notion of refinement. Combining state machine

diagrams and classical B, Papatsaras and Stoddart [135] manually decompose a global

a system into sub-components. The sub-components are then composed in classical B

using the Includes keyword. Similarly to our approach, sub-components communicate

via shared parameters. Since there is not a formal methodology to follow, the resulting

composition needs to be proved to be a valid refinement of the global system which is

not the case in our work, where we prove the monotonicity of our composition. Abrial et

al [124, 15] propose a state-based decomposition for Event-B introducing the notion of

shared variables and external events as described in Sect. 1.6.1. Although this approach
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and our work are both monotonic and sub-components can be refined independently,

their respective nature is suitable for different kind of systems: parallel programs for

shared variable and distributed systems for shared event [42]. Sorge et al [172] propose

a feature composition in Event-B and define composition proof obligations to ensure its

consistency. In the feature composition approach, exploration of specifications’ compo-

sition with possible variable sharing (similar to the shared variable style) is allowed but

no refinement is defined which differs from our work. Nevertheless similar to our work,

sub-components POs are reused to avoid re-proving composition POs.

2.6 Conclusions

Based on the close relation between action systems and Event-B plus the correspon-

dence between action systems and CSP [53], we define our Event-B composition with an

event-based behaviour. Shared event composition is proved to be monotonic by means of

proof obligations. Consequently sub-components can be further refined independently.

Refinement in a “top-down” style for developing specifications is allowed including the

generation of POs. During composition, sub-components interact through event parame-

ters by value-passing. We extend Event-B to support shared event composition, allowing

combination and reuse of existing sub-components through the introduction of composed

machines. Required static checks are developed and POs are generated to validate the

composition. Such an approach seems suitable for modelling distributed systems, where

the system can be seen as a combination of interacting parts (sub-components). This

work is the result of the exploration of specifications’ composition in a shared event style.

A methodology for the composition is defined including the verification of properties

through the generation of proof obligations. We do not address the step corresponding

to the translation of this composition exploration to an implementation and it is a study

that needs to be carried out in the future. A tool was developed to support composition

in the Rodin platform. Although we have defined the required POs for composition,

currently they are not implemented in the tool. At the moment, the generation of a

new machine (that is the expansion of the sub-components) is required to validate the

composition. A file transfer case study defined as a distributed system is modelled using

the composition tool. We intend to carry on developing the shared event composition

approach by adding the enabledness POs when available for the Rodin platform. With

the developed work, we have the necessary conditions to develop another reuse technique

that can be seen as the inverse operation of composition: decomposition. This is further

discussed in Chapter 4.
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Generic Instantiation

It is believed that reusability in formal development should reduce the time and cost

of formal modelling within a production environment. Along with the ability to reuse

formal models, it is desirable to avoid unnecessary re-proof when reusing models. Event-

B supports generic developments through the context construct. However Event-B lacks

the ability to instantiate and reuse generic developments in other formal developments.

We propose a methodology to instantiate generic models and extend the instantiation to

a chain of refinements. We define sufficient proof obligations to ensure that the proofs

associated to a generic development remain valid in an instantiated development thus

avoiding re-proofs. This chapter is based on the paper [163] that appeared in the ICFEM

(International Conference in Formal Engineering Methods) 2009.

3.1 Introduction

Reusability has always been sought in several areas as a way to reduce time, cost and

improve the productivity of developments [176]. Examples can be found in areas such

as software, mathematics and even formal methods. Generic instantiation can be seen

as a way of reusing components and solving difficulties raised by the construction of

large and complex models [124, 15]. The goal is to reuse generic developments (single

model or a chain of refinements) and create components with similar properties instead

of starting from scratch. Reusability is applied through the use of a pattern as the basic

structure and afterwards each new component is generated through parameterisation.

We propose a generic instantiation approach for Event-B by instantiating machines. The

instances inherit properties from the generic development (pattern) and afterwards are

parameterised by renaming/replacing those properties to more specific names according

to the instance. Proof obligations are generated to ensure that assumptions used in the

pattern are satisfied in the instantiation. In that sense our approach avoids re-proof of

73
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pattern proof obligations in the instantiation. The models are developed in the Rodin

platform. A simple case study modelling a protocol communication is described to

illustrate the use of instantiation.

Section 3.2 defines how generic instantiation is interpreted by us. In Sect. 3.3 instan-

tiated machines are introduced. Section 3.4 gives an application of instantiation in

combination with shared event composition. The application of instantiation to a chain

of refinements is described in Sect. 3.5. Section 3.6 discusses an open question that

arises when instantiating theorems and invariants in a pattern. Conclusions are drawn

in Sect. 3.7.

3.2 Generic Instantiation

In order to explain our approach for Generic Instantiation we use a simple case study. A

protocol is modelled between two entities, Source and Destination which communicate

by sending messages through a channel. The content of the channel has a maximum

dimension. To send a message it is necessary to add the content of the message to the

channel. Based on the proposed requirements it is possible to create a context Chan-

nelParameters to model the channel as seen in Fig. 3.1(b). The content of the message
!Channel

!1 !machine Channel sees ChannelParameters

!2 !

!3 !variables channel

!4 !

!5 !invariants

!6 !  @inv1 channel ! Message

!7 !  @inv3 finite(channel)

!8 !  @inv2 card(channel) " max_size

!9 !

!10 !events

!11 !  event INITIALISATION

!12 !    then

!13 !      @act1 channel ! "

!14 !  end

!15 !

!16 !  event Send

!17 !    any m

!18 !    where

!19 !      @grd1 m # Message

!20 !      @grd2 card(channel) < max_size

!21 !    then

!22 !      @act1 channel ! channel # {m}

!23 !  end

!24 !

!25 !  event Receive

!26 !    any m

!27 !    where

!28 !      @grd1 m # channel

!29 !    then

!30 !      @act1 channel ! channel${m}

!31 !  end

!32 !end

!33 !

!Page 1

(a)

!ChannelParameters

!1 !context ChannelParameters

!2 !

!3 !constants max_size 

!4 !

!5 !sets Message 

!6 !

!7 !axioms

!8 !  @axm1 max_size ! !

!9 !end

!10 !

!Page 1

(b)

Figure 3.1: Machine Channel and respective context ChannelParameters

is of type Message and has a maximum dimension max size. Figure 3.1(a) represents

the machine side where a variable channel stores all the sent/received messages. The

channel messages have type Message and the number of messages in the channel is

limited. Messages are introduced in the channel to be sent as seen in event Send. The
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event Receive models the reception of the message in the destination by extracting the

messages from the channel. Elements in ChannelParameters context are the parameters

(type and constant) for the Channel machine.

Now suppose we wish to model a bi-directional communication between two entities using

two channels. Both channels are similar so an option is to instantiate machine Channel

twice to create two instances: one channel called Request and the other Response. The

protocol, represented in Fig. 3.2 starts by a message being sent from the Source. After

arriving at the Destination, the reception of the message is acknowledged in the Source.

Then a response is sent from the Destination and after arriving at the Source, it is also

acknowledged in the Destination.

Figure 3.2: Protocol diagram

The instantiation of Channel is achieved by applying machine instantiation. An instance

of the pattern Channel is created with more specific properties. A detailed description

of the machine instantiation is described in Sect. 3.3. Moreover, a context containing

the specific instances properties is required to model the protocol. In our case study we

use the context ProtocolTypes in Fig. 3.3, where types Request and Response replace the

more generic type Message and constants qmax size and pmax size replace max size.

This context must be provided by the modeller/developer.
!ProtocolTypes

!1 !context ProtocolTypes

!2 !

!3 !constants qmax_size pmax_size 

!4 !

!5 !sets Request Response 

!6 !

!7 !axioms

!8 !  @axm1 qmax_size ! !

!9 !  @axm2 pmax_size ! !

!10 !end

!11 !

!Page 1

Figure 3.3: ProtocolTypes Context

Abrial and Hallerstede [15] and Métayer et al [124] propose the use of generic instan-

tiation for Event-B. It is suggested that the contexts of a development (equivalent to

the pattern) can be merged and reused through instantiation in other developments.

That proposal lacks a mechanism to apply the instantiation from the pattern to the in-

stances. Therefore our work proposes a mechanism to instantiate machines and extend

the instantiation to a refinement chain. The reusability of a development is expressed

by instantiating a development (pattern) according to a more specific problem.
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3.3 Generic Instantiation and Instantiated Machines

Inspired by the previous case study and having the ability to compose machines (Shared

Event Composition plug-in [162]) and rename elements (Refactory plug-in [160] and

Sect. 5.4) on the Rodin platform, we propose an approach to instantiate machines. As

mentioned the context plays an important role while instantiating since this is where the

specific properties of the instance are defined (parameterisation). The use of context is

briefly discussed before instantiated machines are introduced.

3.3.1 Contexts

As aforementioned, contexts in Event-B are the static part of a model containing prop-

erties of the modelled system through the use of axioms and theorems. Having a closer

look at the possible usage of contexts, there are two possible viewpoints:

Parameterisation : the context is seen only by one machine (or one chain of machine

refinements) and defines specific properties for that machine (sets, constants, ax-

ioms, theorems). These properties are unique for that machine and any other

machine would have different properties.

Sharing : a context is seen by several machines and there are some properties (sets,

constants, axioms, theorems) shared by the machines. Therefore the context is

used to share properties.

Several model developments mix the usage for the same context. For the ordinary

modeller this distinction is not very clear and perhaps not so important. Our approach

of generic instantiation reuses components and personalises each instance implying the

use of Parameterisation .

3.3.2 Example of Instantiated Machine

An instantiated machine instantiates a generic machine (pattern). If the generic machine

sees a context, then the context elements (sets and constants) have to be replaced by

instance elements. The instance elements must already exist in a context seen by the

instantiated machine (in our case study, this corresponds to ProtocolTypes - see Fig. 3.3).

In the case study, the instantiated machine QChannel, that is an instance of the machine

Channel for requests, is represented in Fig. 3.4. Note that ChannelParameters elements

(sets and constants) are replaced because the replacement elements are already defined

in ProtocolTypes. Machine elements (variables, parameters and events) are renamed

since they did not exist before. The instantiated machine PChannel, an instance of

Channel for responses, is similar.
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INSTANTIATED MACHINE QChannel

INSTANTIATES Channel VIA ChannelParameters

SEES ProtocolTypes /* context containing the instance properties*/

REPLACE /* replace parameters in ChannelParameters*/

SETS Message := Request

CONSTANTS max size := qmax size

RENAME /* rename variables and events in machine Channel*/

VARIABLES channel := qchannel

EVENTS Send := QSend

m := q /*optional:rename parameter m in event Send */

Receive := Receive

m := q /*optional:rename parameter m in event Receive */

END

Figure 3.4: Instantiated Machine: QChannel instantiates Channel

Pattern Assumptions and Instance Theorems: Axioms in contexts are assump-

tions about a system and are used to help discharge proofs obligations. When instanti-

ating, we need to show that assumptions in the pattern are satisfied by the replacement

sets and constants. A possible solution is to convert the pattern axioms into instantiated

machine theorems after the replacement is applied. A theorem has a proof obligation

associated with it. By ensuring that a proof obligation related to each axiom is gener-

ated and discharged when instantiating a machine, we are confirming the correctness of

the instantiation by satisfying the pattern assumptions (see Theorem thm1 in Fig. 3.5).

In this manner, the theorem is automatically generated in the instantiated machine

and does not need to be manually added in the pattern context. “Expanded” machine

QChannel can be seen in Fig. 3.5.

!QChannel

!1 !machine QChannel sees ProtocolTypes

!2 !

!3 !variables qchannel

!4 !

!5 !invariants

!6 !  @inv1 qchannel ! Request

!7 !  @inv3 finite(qchannel)

!8 !  @inv2 card(qchannel) " qmax_size

!9 !  theorem @thm1 qmax_size ! !

!10 !

!11 !events

!12 !  event INITIALISATION

!13 !    then

!14 !      @act1 qchannel " #

!15 !  end

!16 !

!17 !  event QSend

!18 !    any q

!19 !    where

!20 !      @grd1 q ! Request

!21 !      @grd2 card(qchannel) < qmax_size

!22 !    then

!23 !      @act1 qchannel " qchannel # {q}

!24 !  end

!25 !

!26 !  event Receive

!27 !    any q

!28 !    where

!29 !      @grd1 q ! qchannel

!30 !    then

!31 !      @act1 qchannel " qchannel${q}

!32 !  end

!33 !end

!34 !

!Page 1

!QChannel

!1 !machine QChannel sees ProtocolTypes

!2 !

!3 !variables qchannel

!4 !

!5 !invariants

!6 !  @inv1 qchannel ! Request

!7 !  @inv3 finite(qchannel)

!8 !  @inv2 card(qchannel) " qmax_size

!9 !  theorem @thm1 qmax_size ! !

!10 !

!11 !events

!12 !  event INITIALISATION

!13 !    then

!14 !      @act1 qchannel " #

!15 !  end

!16 !

!17 !  event QSend

!18 !    any q

!19 !    where

!20 !      @grd1 q ! Request

!21 !      @grd2 card(qchannel) < qmax_size

!22 !    then

!23 !      @act1 qchannel " qchannel # {q}

!24 !  end

!25 !

!26 !  event Receive

!27 !    any q

!28 !    where

!29 !      @grd1 q ! qchannel

!30 !    then

!31 !      @act1 qchannel " qchannel${q}

!32 !  end

!33 !end

!34 !

!Page 1

Figure 3.5: Expanded version of instantiated machine QChannel

The instance QChannel sees the context ProtocolTypes (provided by the modeller/de-

veloper) that contains the context information for the instances. The type Message

in context ChannelParameters is replaced by Request in ProtocolTypes, the constant

max size is replaced by qmax size, the variable channel in Channel is renamed qchannel

and event Send is renamed QSend. The axiom that exists in ChannelParameters is

converted into a theorem in QChannel (but easily discharged by the axioms in Proto-
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colTypes). We convert the axiom axm1 from the generic context ChannelParameters:

@axm1 max size ∈ N

into the theorem thm1 in the instance QChannel :

@thm1 qmax size ∈ N

This results from the replacement of the constant max size by qmax size. For a machine

theorem, the respective proof obligation is [9]:

Axioms

Invariants

`
Theorem

For theorem thm1, the proof obligation to be generated is the following:

qmax size ∈ N /*axiom from ProtocolTypes */

pmax size ∈ N /* axiom from ProtocolTypes */

qchannel ⊆ Request /*invariant from QChannel */

. . .

`
qmax size ∈ N

The first axiom of ProtocolTypes easily discharges this proof obligation. Note the ex-

pansion of QChannel is not required in practice. We use it to show the meaning of an

instantiated machine.

3.3.3 Definition of Generic Instantiation of Machines

Based on the instantiated machine QChannel, a general definition for generic instanti-

ation of machines can be drawn. Considering Context Ctx and machine M in Fig. 3.6

together as a pattern, we can create a generic instantiatiated machine IM as seen in

Fig. 3.7.

CONTEXT Ctx
SETS S1...Sm

CONSTANTS C1...Cn

AXIOMS Ax1...Axp

(a)

MACHINE M
SEES Ctx
VARIABLES v1...vq
EVENTS ev1...evr

(b)

Figure 3.6: Generic view of a context and a machine

The context D contains the replacement properties (sets DS1, . . . , DSm and constants

DC1, . . . , DCn) for the elements in context Ctx. The variables, events and parameters
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INSTANTIATED MACHINE IM
INSTANTIATES M VIA Ctx
SEES D /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets */
CONSTANTS C1 := DC1, . . . , Cn := DCn /* Constants */

RENAME /*rename elements in machine M */
VARIABLES v1 := nv1, . . . , vq := nvq /* optional */
EVENTS ev1 := nev1 /* optional */

p1 := np1, . . . , ps := nps /* parameters: optional */
:
evr := nevr

END

Figure 3.7: An Instantiated Machine

are also renamed by new variables nv1, . . . , nvq, new events nev1, . . . , nevr and new

parameters np1, . . . , nps. From the pattern we are able to create several instances that

can be used in a more specific problem. During the creation of instances validity checks

are required:

1. A static validation of replaced elements is required, e.g., a type must be replaced

by a type and a constant with a constant.

2. All sets and constants should be replaced, i.e., no uninstantiated parameters.

3. Renaming the constants, variables, events must be injective (not introducing name

clashes) in order to reuse all the existing proof obligations.

4. Replacing sets does not have to be injective. Different sets in the pattern can be

replaced by the same instance set.

5. Only given sets (defined by the user) can be replaced. Built-in types such as integer

numbers Z and boolean BOOL cannot be replaced.

3.3.4 Avoiding re-proofs

As described above, a proof obligation is a sequent of the form H ` G (where H

represents some hyphoteses and G represents a goal). Renaming variable (or replacing

constant) v with w and type (carrier set) S to T results in instantiated POs as follows:

[v := w] (H ` G) (variable/constant instantiation)
[S := T ] (H ` G) (type instantiation)

H ` G is valid means that the proof has been constructed. We must ensure if H `
G is valid, then any instantiation of H ` G that avoids name clashes is also valid.

Instantiation of variables and constants maintains validity since a sequent is implicitly

universally quantified over its free variables and quantified variables may be renamed

provided there are no name clashes.
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Schmalz [156, 157], inspired by term rewriting in the Rodin platform, describe a theoret-

ical foundation of term rewriting for logics of partial functions as well as the semantics

of Event-B logic based on Isabelle/HOL [85, 130]. [157] describes the rewriting and in-

stantiation of proof rules as redundant inference rules that may be derived from a given

valid proof rule while preserving soundness. Existing generic proofs can be reused in the

instances following some side-conditions as described below. A general inference rule is

written as:

` H1 . . . Hn

` G r (x fresh)
(3.1)

where H1 . . . Hn, n > 0, are a sequence of (possible empty) sequents called antecedents, G

is a sequent called consequent, has an optional name r and x are possible empty freshness

conditions (the variables introduced as part of a proof rule step like ∀goal). Variables

in x are pairwise distinct and do not occur free in G. Furthermore, by convention, type

variables are considered free in the sequents in Event-B [156]. Two kind of substitution

are considered:

Ordinary (bound variable) Substituition: σ1 replaces ordinary variables y by vari-

ables u (called the right-hand side of σ1). It is denoted as: σ1 = [y := u] where

y is a sequence of pairwise distinct variables and u a sequence of variables of the

same length and type as y.

Type Substitution: σ2 substitutes type variables µ for type variables α. It is denoted

as: σ2 = [α := µ] where α is a sequence of pairwise distinct type variables and

µ a sequence of types having the same length as α.

The instantiation of inference rule r for ordinary and type substitution can be expressed

as:

` H1σ . . . Hnσ
` Gσ r (xσ fresh)

(3.2)

where σ is a substitution over Σ (type signature containing the set of all types). In

an ordinary substitution, the right-hand side of σ corresponds to ordinary variables.

Moreover, the instantiation is possible if the following side-conditions on σ hold [156]:

• The variables in xσ are pairwise distinct. Moreover, for type substitution, variables

in x cannot have the same name and different types.

• If a variable x is free in one of H1 . . . Hn and xσ belongs to xσ, then x belongs to

x.
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POs in the generic model (pattern) are sequents of the form:

A, I,H `D G (3.3)

where A represents the axioms, I represents the invariants and H represents the guards.

The substitution σ results in A being replaced by B, where B is the specific axioms and

we have that

B `D Aσ (3.4)

From (3.3) and [157], we have that

Aσ, Iσ,Hσ `D Gσ (3.5)

i.e, variable and type substitution preserves validity. Then from (3.4) and (3.5), we have:

B, Iσ,Hσ `D Gσ (3.6)

(3.3) is the form that a PO takes in the pattern machine, (3.6) is the form a PO takes

in the specific machine and we have shown that (3.6) follows from (3.3).

3.4 Example of Instantiation and Composition

The creation of the instances is an intermediate step in the overall model development.

In our case study we model a protocol between entities that sends and receives messages.

By using the created instances and the shared event composition plug-in, we share events

between Request and Response and model the protocol. A composed machine Protocol

modelling this system can be seen in Fig. 3.8.

COMPOSED MACHINE Protocol
REFINES -
INCLUDES

QChannel
PChannel

EVENTS
SendRequest

Combines Events QChannel.QSend
RecvReq SendResp

Combines Events QChannel.Receive ‖ PChannel.Send
RecvResp

Combines Events combines PChannel.Receive
END

Figure 3.8: Composed Machine Protocol

As seen in Fig. 3.2, while composing the instance machines QChannel and PChannel we

add the events that are unique for each entity (SendRequest and RecvResp). In Fig. 3.8,

event SendRequest sends a message through the channel from Source to Destination.
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RecvResp models the reception of the response in the Source after being sent by Des-

tination. Moreover the event that relates the communication between the two entities

is also modelled (RecvReq SendResp). The request is received and acknowledged and

the response to that request is sent in parallel (from this combined event, a possible

refinement is processing the request message before sending the response). We opt not

to refine an abstract machine in Fig. 3.8 (REFINES clause is empty: “-”) although it

is possible. The composed machine Protocol corresponds to the expanded machine in

Fig. 3.9.
!Protocol

!1 !machine Protocol sees ProtocolTypes

!2 !

!3 !variables qchannel pchannel

!4 !

!5 !invariants

!6 !  @inv1 qchannel ! Request

!7 !  @inv2 pchannel ! Response

!8 !  @inv3 card(pchannel) " pmax_size

!9 !  @inv4 card(qchannel) " qmax_size

!10 !  theorem @QChannel/thm1 qmax_size ! !

!11 !  theorem @PChannel/thm2 pmax_size ! !

!12 !

!13 !events

!14 !  event INITIALISATION

!15 !    then

!16 !      @act1 qchannel " #

!17 !      @act2 pchannel " #

!18 !  end

!19 !

!20 !  event SendRequest

!21 !    any q

!22 !    where

!23 !      @grd1 q ! Request

!24 !      @grd2 card(qchannel) < qmax_size

!25 !    then

!26 !      @act1 qchannel " qchannel # {q}

!27 !  end

!28 !

!29 !  event RecvReq_SendResp

!30 !    any q p

!31 !    where

!32 !      @grd1 q ! qchannel

!33 !      @grd2 p ! Response

!34 !      @grd3 card(pchannel) < pmax_size

!35 !    then

!36 !      @act1 pchannel " pchannel # {p}

!37 !  end

!38 !

!39 !  event RecvResp

!40 !    any p

!41 !    where
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!Protocol

!42 !

!43 !  event SendRequest

!44 !    any q

!45 !    where

!46 !      @grd1 q ! Request

!47 !      @grd2 card(qchannel) < qmax_size

!48 !    then

!49 !      @act1 qchannel " qchannel ! {q}

!50 !  end

!51 !

!52 !  event RecvReq_SendResp

!53 !    any q p

!54 !    where

!55 !      @grd1 q ! qchannel

!56 !      @grd2 p ! Response

!57 !      @grd3 card(pchannel) < pmax_size

!58 !    then

!59 !      @act1 pchannel " pchannel ! {p}

!60 !      @act2 qchannel " qchannel"{q}

!61 !  end

!62 !

!63 !  event RecvResp

!64 !    any p

!65 !    where

!66 !      @grd1 p ! pchannel

!67 !    then

!68 !      @act1 pchannel " pchannel"{p}

!69 !  end

!70 !end

!71 !
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!Protocol

!42 !

!43 !  event SendRequest

!44 !    any q

!45 !    where

!46 !      @grd1 q ! Request

!47 !      @grd2 card(qchannel) < qmax_size

!48 !    then

!49 !      @act1 qchannel " qchannel ! {q}

!50 !  end

!51 !

!52 !  event RecvReq_SendResp

!53 !    any q p

!54 !    where

!55 !      @grd1 q ! qchannel

!56 !      @grd2 p ! Response

!57 !      @grd3 card(pchannel) < pmax_size

!58 !    then

!59 !      @act1 pchannel " pchannel ! {p}

!60 !      @act2 qchannel " qchannel"{q}

!61 !  end

!62 !

!63 !  event RecvResp

!64 !    any p

!65 !    where

!66 !      @grd1 p ! pchannel

!67 !    then

!68 !      @act1 pchannel " pchannel"{p}

!69 !  end

!70 !end

!71 !

!Page 2

Figure 3.9: “Expanded” machine Protocol

The two instances of machine Channel model a bi-directional communication channel

between two entities. This allows us to express the applicability of generic instantiation

for modelling distributed systems. Nevertheless generic instantiation is not restricted to

this kind of systems. When modelling a finite number of similar components with some

specific individual properties, instantiated machines are a suitable option (as described

in our case study in Chapter 6).

3.5 Generic Instantiation applied to a chain of refinements

The above sections describe generic instantiation applied to individual machines. Al-

though it is already an interesting way of reusing, the instantiation of a chain of machines

in a large model would be more interesting. In other words, we instantiate a chain of

refinements. Suppose we have a development Dv containing several refinement levels

(Dv1, Dv2, . . . , Dvn). The most concrete model Dvn matches a generic model (pattern)

P1 that is part of a chain of refinements P1, P2, . . . , Pm as seen in Fig. 3.10. By applying

generic instantiation we instantiate the pattern P1 according to Dvn. That instantiation

is a refinement of Dvn and it is called Dvn+m abs (the suffix abs stands for abstract). In
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Figure 3.10: Instantiation of a generic chain of refinements

addition we can extend the instantiation to one of the refinement layers of the pattern

and apply it to the development Dv. The outcome is a further refinement layer for Dvn

for free ( Dvn+m abs corresponds to the instantiation of P1 and Dvn+m corresponds to

the instantiation of Pm). The refinement between Dvn+m abs and Dvn+m does not in-

troduce refinement proof obligations since the proof obligations were already discharged

in the pattern chain. This follows from the instantiated machines where the re-proof

of pattern proof obligations is avoided. Afterwards Dvn+m can be further refined to

Dvn+m+z. For a better understanding of this approach, we will refine our case study

and apply an instantiation over the pattern chain.

3.5.1 Refinement of the Channel case study

We refine the Channel machine. For the first refinement, the requirement is to include

buffers before and after adding a message to the channel. A second refinement specifies

the type Message. In particular, Message will be divided in two parts: header and

body. The header of the Message contains the destination identification and the body

represents the content of the message (data). header and body are based on the records

proposal for Event-B suggested by Evans and Butler [69] and also in work developed by

Rezazadeh et al. [150].

The first refinement requires the introduction of two new variables sendingBuffer and

receivingBuffer and a new event addMessageBuffer that loads the message to sending-
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Buffer before being introduced in the channel in the Send event. The latter event reflects

the introduction of the buffers. In the event Receive, messages in channel are extracted

and loaded to receivingBuffer as seen in Fig. 3.11.
!Channel_M1

!1 !machine Channel_M1 refines Channel

!2 !sees ChannelParameters

!3 !

!4 !variables channel sendingBuffer

!5 ! ! !  receivingBuffer

!6 !

!7 !invariants

!8 !  @inv1 sendingBuffer " Message

!9 !  @inv2 receivingBuffer " Message

!10 !

!11 !events

!12 !  event INITIALISATION

!13 !    then

!14 !      @act1 channel ! "

!15 !      @act2 sendingBuffer ! "

!16 !      @act3 receivingBuffer ! "

!17 !  end

!18 !

!19 !  event addMessageBuffer

!20 !    any m

!21 !    where

!22 !      @grd1 m # Message

!23 !      @grd2 m $ sendingBuffer

!24 !    then

!25 !      @act1 sendingBuffer!sendingBuffer#{m}

!26 !  end

!27 !

!28 !  event Send refines Send

!29 !    any m

!30 !    where

!31 !      @grd1 sendingBuffer $ "

!32 !      @grd2 m # sendingBuffer

!33 !      @grd3 card(channel) < max_size

!34 !    then

!35 !      @act1 channel ! channel # {m}

!36 !      @act2 sendingBuffer!sendingBuffer%{m}

!37 !  end

!38 !

!39 !  event Receive refines Receive

!40 !    any m

!41 !    where
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!Channel_M1

!42 !

!43 !  event Send refines Send

!44 !    any m

!45 !    where

!46 !      @grd1 sendingBuffer ! !

!47 !      @grd2 m " sendingBuffer

!48 !      @grd3 card(channel) < max_size

!49 !    then

!50 !      @act1 channel # channel " {m}

!51 !      @act2 sendingBuffer#sendingBuffer#{m}

!52 !  end

!53 !

!54 !  event Receive refines Receive

!55 !    any m

!56 !    where

!57 !      @grd1 m " channel

!58 !      @grd2 m $ receivingBuffer

!59 !    then

!60 !      @act1 channel # channel#{m}

!61 !      @act2 receivingBuffer#receivingBuffer"{m}

!62 !  end

!63 !end

!64 !
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Figure 3.11: Channel M1 : refinement of Channel

The second refinement is a data refinement over the type Message by dividing it into

header and body. The header contains the destination identification and the body con-

tains the data of the message. Constants header and body are defined in the context

ChannelParameters C2 as in Fig. 3.12.
!ChannelParameters_C2

!1 !context ChannelParameters_C2 extends ChannelParameters 

!2 !

!3 !constants header body 

!4 !

!5 !sets DATA DESTINATION 

!6 !

!7 !axioms

!8 !  @axm3 header ! Message ! DESTINATION

!9 !  @axm4 body ! Message ! DATA

!10 !end

!11 !
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Figure 3.12: Context ChannelParameters C2

In Fig. 3.13 the machine Channel M2 data refines the variable channel and introduces

a new event, processMessage that processes the received message after being retrieved

from the receiving buffer. A variable storeDATA is also introduced to store the data

that each destination receives.

3.5.2 Instantiation of a chain of refinements

We can consider the chain of refinements of Channel as a pattern. In that case, having all

the proof obligations discharged we can reuse this pattern in a more specific development.

The chain of refinements is seen as a single entity where it is possible to choose an initial

and a final refinement level. Using our case study, we intend to instantiate and refine
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!Channel_M2

!1 !machine Channel_M2 refines Channel_M1

!2 !sees ChannelParameters_C2

!3 !

!4 !variables channel sendingBuffer

!5 ! ! !  receivingBuffer storeDATA

!6 !

!7 !invariants

!8 !  @inv1 storeDATA ! DESTINATION ! "(DATA)

!9 !

!10 !events

!11 !  event INITIALISATION

!12 !    then

!13 !      @act1 channel " #

!14 !      @act2 sendingBuffer " #

!15 !      @act3 receivingBuffer " #

!16 !      @act4 storeDATA " DESTINATION " {#}

!17 !  end

!18 !

!19 !  event addMessageBuffer

!20 !  refines addMessageBuffer

!21 !    any h b m

!22 !    where

!23 !      @grd1 header(m) = h

!24 !      @grd2 body(m) = b

!25 !      @grd3 m $ sendingBuffer

!26 !    then

!27 !      @act4 sendingBuffer"sendingBuffer#{m}

!28 !  end

!29 !

!30 !  event send refines Send

!31 !    any m

!32 !    where

!33 !      @grd1 sendingBuffer $ #

!34 !      @grd2 m ! sendingBuffer

!35 !      @grd3 card(channel) < max_size

!36 !    then

!37 !      @act1 channel " channel # {m}

!38 !      @act2 sendingBuffer"sendingBuffer%{m}

!39 !  end

!40 !

!41 !  event receive refines Receive
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!Channel_M2

!42 !

!43 !

!44 !  event send refines Send

!45 !    any m

!46 !    where

!47 !      @grd1 sendingBuffer ! !

!48 !      @grd2 m " sendingBuffer

!49 !      @grd3 card(channel) < max_size

!50 !    then

!51 !      @act1 channel # channel " {m}

!52 !      @act2 sendingBuffer#sendingBuffer#{m}

!53 !  end

!54 !

!55 !  event receive refines Receive

!56 !    any m

!57 !    where

!58 !      @grd1 m " channel

!59 !      @grd2 m $ receivingBuffer

!60 !    then

!61 !      @act1 channel # channel#{m}

!62 !      @act2 receivingBuffer#receivingBuffer"{m}

!63 !  end

!64 !

!65 !  event processMessage

!66 !    any m dest d

!67 !    where

!68 !      @grd1 m " receivingBuffer

!69 !      @grd3 header(m) = dest

!70 !      @grd4 d = body(m)

!71 !      @grd5 dest " dom(storeDATA)

!72 !    then

!73 !      @act1 storeDATA(dest)#storeDATA(dest)"{d}

!74 !  end

!75 !end

!76 !
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Figure 3.13: Channel M2 : refinement of Channel M1

QChannel with the chain of refinements of machine Channel, selecting Channel and

Channel M2 as our initial and final refinement levels respectively. In Fig. 3.14 the

shaded chain of refinement is seen as a single entity. After the selection of the two

refinement levels to be instantiated, QChannel M2 abs and QChannel M2 are created.

QChannel M2 is treated as a refinement of QChannel M2 abs as a consequence of the

instantiation. Subsequently, QChannel M2 can be further refined to QChannel Mz.

Figure 3.14: Instantiation of a chain of refinements: Channel to Channel M2

The refinement relationship between Channel and Channel M2 is ensured by discharg-

ing all the proof obligations in the chain of refinement (all the proofs are discharged

automatically in the Rodin platform). By instantiating Channel and Channel M2 im-

plicitly we are also referring to Channel M1. Some of the properties of Channel M2 are
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inherited from Channel M1 (for instance the buffers) but for the instantiation purpose

it is not necessary to incorporate Channel M1 explicitly. The instantiation of a chain of

refinements follows the instantiation of a single machine as seen in Fig. 3.15.

INSTANTIATED REFINEMENT QChannel M2
INSTANTIATES Channel M2 VIA ChannelParameters C2
REFINES -
SEES ProtocolTypes C2
REPLACE

SETS Message := Request
CONSTANTS max size := qmax size

header := qHeader
body := qBody

RENAME
VARIABLES channel := qchannel

receivingBuffer := qReceivingBuffer
sendingBuffer := qSendingBuffer

EVENTS Send := QSend
m := q
receive := Receive
m := q

END

Figure 3.15: Instantiation of a chain of refinements

The initial refinement level corresponds to the most abstract machine of the pattern.

Therefore it is not necessary to explicitly refer to it. The final refinement level is any

of the other refinement levels in the chain. The replacement and renaming is applied to

the occurrences in both instances whenever applicable. Once again it is not necessary to

“expand” QChannel M2 but that can be seen in Fig. 3.16. In an instantiation of a chain

of refinements, the pattern context is seen as a flat context comprising all the properties

seen by the refinements until the selected final refinement level is reached. Therefore

context ProtocolTypes C2 is the parameterisation context for QChannel M2 and extends

ProtocolTypes, similarly to the relation between contexts ChannelParameters C2 and

ChannelParameters. As before, axioms in ProtocolTypes C2 must be respected in the

instance, so axioms are converted in theorems in QChannel M2.

3.5.3 Definition of Generic Instantiation of Refinements

From the case study it is possible to draw a generic definition for the instantiation of a

chain of refinements. If we consider a pattern that consists of a chain of refinements M1,

M2, . . . Mt, we can create a generic instantiated refinement IR as seen in Fig. 3.17. The

instantiated refinement IR instantiates one of the refinements of the pattern Mt via the

parameterisation context Ctxt. IR refines an abstract machine IR0 and sees the context

Dw containing the instance properties. The replacement and renaming are similar to

the machine instantiation but apply to both M1 and Mt. The initial level does not

need to be explicitly defined since the most abstract level of the chain is automatically

considered. Therefore M1 is automatically defined as the initial level. In addition to the

validity checks for instantiated machines, instantiated refinements require:
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!QChannel_M2

!1 !machine QChannel_M2 refines QChannel_M1

!2 !sees ProtocolTypes_C2

!3 !

!4 !variables qchannel qReceivingBuffer

!5 ! ! !  qSendingBuffer qStoreDATA

!6 !

!7 !invariants

!8 !  @inv1 qStoreDATA ! DESTINATION ! "(DATA)

!9 !  theorem @theo1 qHeader ! Request " DESTINATION

!10 !  theorem @theo2 qBody ! Request " DATA

!11 !

!12 !events

!13 !  event INITIALISATION

!14 !    then

!15 !      @act1 qchannel " #

!16 !      @act2 qSendingBuffer " #

!17 !      @act3 qReceivingBuffer " #

!18 !      @act4 qStoreDATA " DESTINATION # {#}

!19 !  end

!20 !

!21 !  event AddMessageBuffer

!22 !  refines qAddMessageBuffer

!23 !    any h b m

!24 !    where

!25 !      @grd1 qHeader(m) = h

!26 !      @grd2 qBody(m) = b

!27 !      @grd3 m $ qSendingBuffer

!28 !    then

!29 !      @act1 qSendingBuffer " qSendingBuffer${m}

!30 !  end

!31 !

!32 !  event QSend refines QSend

!33 !    any q

!34 !    where

!35 !      @grd1 qSendingBuffer % #

!36 !      @grd2 q ! qSendingBuffer

!37 !      @grd3 card(qchannel) < qmax_size

!38 !    then

!39 !      @act1 qchannel " qchannel $ {q}

!40 !      @act2 qSendingBuffer"qSendingBuffer&{q}

!41 !  end
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!QChannel_M2

!42 !

!43 !  event QSend refines QSend

!44 !    any q

!45 !    where

!46 !      @grd1 qSendingBuffer ! !

!47 !      @grd2 q " qSendingBuffer

!48 !      @grd3 card(qchannel) < qmax_size

!49 !    then

!50 !      @act1 qchannel # qchannel " {q}

!51 !      @act2 qSendingBuffer#qSendingBuffer#{q}

!52 !  end

!53 !

!54 !  event Receive refines Receive

!55 !    any q

!56 !    where

!57 !      @grd1 q " qchannel

!58 !      @grd2 q $ qReceivingBuffer

!59 !    then

!60 !      @act1 qchannel # qchannel#{q}

!61 !      @act2 qReceivingBuffer#qReceivingBuffer"{q}

!62 !  end

!63 !

!64 !  event processMessage

!65 !    any m dest d

!66 !    where

!67 !      @grd1 m " qReceivingBuffer

!68 !      @grd2 qHeader(m) = dest

!69 !      @grd3 d = qBody(m)

!70 !      @grd4 qHeader(m) " dom (qStoreDATA)

!71 !    then

!72 !      @act1 qStoreDATA(dest)#qStoreDATA(dest)"{d}

!73 !  end

!74 !end

!75 !
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(a)!ProtocolTypes_C2

!1 !context ProtocolTypes_C2 extends ProtocolTypes 

!2 !

!3 !constants qHeader qBody pHeader pBody 

!4 !

!5 !sets DATA DESTINATION 

!6 !

!7 !axioms

!8 !  @axm3 qHeader ! Request ! DESTINATION

!9 !  @axm4 qBody ! Request ! DATA

!10 !  @axm5 pHeader ! Response ! DESTINATION

!11 !  @axm6 pBody ! Response ! DATA

!12 !end

!13 !
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(b)

Figure 3.16: Expanded version of instantiated machine QChannel M2 (a) and context
ProtocolTypes C2 (c)

1. A static validation for the existence of a chain of refinements for M

(M1,M2, . . . ,Mt).

2. The types and constants in the contexts seen by the initial and final level of

refinement should be instantiated.

The instantiation of refinements reuses the pattern proof obligations in the sense that

the instantiation renames and replaces elements in the model but does not change the

model itself (nor the respective properties). The correctness of the refinement instantia-

INSTANTIATED REFINEMENT IR
INSTANTIATES Mt VIA Ctxt
REFINES IR0 /* abstract machine */
SEES Dw /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets */
CONSTANTS C1 := DC1, . . . , Cn := DCn /* Constants */

RENAME /*rename variables, events and params in M1 to Mt */
VARIABLES v1 := nv1, . . . , vq := nvq
EVENTS ev1 := nev1 / ∗ optional ∗ /

p1 := np1, . . . , ps := nps / ∗ parameters :optional ∗ /
. . .

evr := nevr
END

Figure 3.17: An Instantiated Refinement
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tion relies in reusing the pattern proof obligations and ensuring the assumptions in the

context parameterisation are satisfied in the instantiation.

3.6 Instantiating Theorems and Invariants

Theorems in contexts and machines are assertions about characteristics and properties

of the system. Theorems have associated proof obligations that are discharged based

on the model assumptions (axioms and invariants) . Once the theorems are discharged,

they can be used as hypotheses for discharging other proof obligations in the model,

since they work as a consequence of the assumptions.

An interesting question arises when a pattern is instantiated and contains theorems and

invariants. If a proof obligation of a theorem is discharged by creating an instance we

would not want to re-prove the theorem proof. Regarding the invariants and respective

proof obligations we would have a similar situation where we would not want to dis-

charge proof obligations in the instance if they were already discharged in the pattern.

Ideally we would like to add to the instance the assumptions and assertions given by

the theorems and invariants without re-proving them. Although addressed here as an

open question, this situation suggests a different kind of theorem that does not exist in

Event-B, a pre-proved theorem to be used in the instance. A pre-proved theorem would

be similar to a theorem but it would not have an associated proof obligation. The in-

variants imported from the pattern fall under the same category, where the respective

proof obligations should not be re-generated. Informally the instances are just renaming

and replacing elements without changing the semantics under the original pattern (if the

validity checks are followed) so theorems and invariants would work as assumptions in

the instantiated machine. The assumptions in the pattern (axioms) need to be satisfied

by the instances through the generation of proof obligations but the same does not apply

for invariants and theorems that are assertions in the pattern.

3.7 Conclusions

Reusability is of significant interest in the general software engineering research com-

munity. Reuse has its advantages and disadvantages discussed by Standish [176] and

Cheng [55]. Reusing patterns in a style similar to design patterns is proposed in [63]

using the KAOS specification language and temporal logic. KAOS goals are combined

with existing patterns, that are already proved correct and complete and proofs can

be reused. Sabatier [154] discusses the reuse of formal models as a detailed component

specification or a high level requirement, and presents some real project examples. In

classical B [158, 4], reuse is expressed using the keywords INCLUDES and USES where

an existing machine can be used in other developments. Instantiation is a way of reusing.
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Instantiation is well-established in areas such as mathematics and other formal methods

like classical B or theorem provers such as Isabelle [137]. Blazy et al. [33] reuse Gang of

Four (GoF) design pattern adapted to formal specifications (denominated specification

patterns) for classical B. Several reuse mechanisms are suggested like instantiation, com-

position and extension. Proof obligations are also reused when the patterns are applied.

Focusing on the instantiation, this is achieved by renaming sets (machine parameters),

variables and operations. Unlike our work, this approach only defines patterns as a

single abstract machine whereas we define the parameterisation in contexts and extend

the pattern to a chain of refinements.

Abrial and Hallerstede [15] and Métayer et al [124] make use of generic instantiation

for Event-B. The flattening of the context is proposed in a way that the contexts of

the pattern are merged and the reuse by instantiating the flat context is suggested.

Following and extending that approach, we:

• propose a methodology for the implementation of generic instantiation.

• define a generic instantiation mechanism for a machine as an instantiated machine.

• define a generic instantiation mechanism for a chain of refinement as an instantiated

refinement.

• show that that generic proofs can be reused in specific instances under the condi-

tions described in Sects. 3.3.3, 3.3.4 and 3.5.3.

The motivation for such implementation is concerned with reusability of components

and existing developments. By creating an instance from a generic model, a new pa-

rameterised model is created based on the pattern with new specific properties.

Event-B supports generic developments but lacks the capacity to instantiate and reuse

those generic developments. As a solution, generic instantiation is applied to patterns

and as an outcome instantiated machines are created and parameterised. An instan-

tiated machine instantiates a generic machine, is parameterised by a context and the

pattern elements are renamed/replaced according to the instance. In a similar style,

an instantiated refinement instantiates a chain of refinements reusing the pattern proof

obligations assuming that the instantiated proof obligations are as valid as the pattern

ones. By quantifying the variables, constants and types we want to ensure that pattern

proof obligations remain valid when instantiating. Event-B is not a higher-order for-

malism: although it is possible to quantify over expression, it is not possible to directly

quantify types. Nevertheless instantiation of sequences (hypotheses and goal) is possible

as long as is done in an alpha-congruent manner. Therefore the generic proofs can be

instantiated and be used in the instance since they will also hold. A renaming plug-

in was developed supporting the renaming of Event-B elements and respective proofs.

Optimisation at level of proof renaming will be investigated in the future as it may be
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a slow operation for large proof trees. A practical case that models a communication

protocol between two entities illustrates the advantages of using generic instantiation

and in particular how to use our approach in the Rodin platform. Although a simple

case study, we believe that it can be applied to more complex cases.

Further study is required to determine if context instantiation similar to instantiated

machines is a worthwhile approach while modelling (for instance, to instantiate sets into

implementable types) Some methodological points will arise in a possible implementation

of instantiated machines and refinements in the Rodin platform. As an example, Section

3.6 addresses the situation of instantiating theorems and invariants and is left as an open

question. A future step for the instantiation of a chain of refinements is to study the

possibility of selecting any of the refinement levels as the initial refinement level giving

more freedom to the modeller. In a long term perspective, any refinement chain could be

considered a pattern. Moreover a library of patterns could be provided when modelling:

whenever a formal development fits in a pattern, instantiation could be applied taking

advantage of the reusability of the model and respective proof obligations.



Chapter 4

Decomposition

In the previous chapters we defined mechanisms for reusability. Still following that line

of work, we propose decomposition as another approach for reusing. Decomposition is

motivated by the possibility of breaking a complex problem or system into parts that are

easier to conceive, manage and maintain. The partition of a model into sub-components

can also be seen as a design/architectural decision and the further development of the

sub-components in parallel is possible. Two methods have been identified for Event-B

model decomposition: shared variable and shared event. Besides alleviating the com-

plexity for large systems and respective proofs, decomposition allows team development

in parallel over the same model which is very attractive in the industrial environment.

Moreover the proof obligations of the original (non-decomposed) model can be reused

by the sub-components. This chapter describes the work on decomposition, which is one

of the main goals of this thesis. Part of this work was accepted as a workshop paper

in Workshop on Tool Building in Formal Methods as [165] in the conference ABZ 2010

and afterwards selected to be extended and appear in a special edition of the journal

Software: Practice and Experience as [166]. This work was carried out in collaboration

with Thai Son Hoang and Carine Pascal. Our contribution was the development of the

shared event approach in terms of methodology and in terms of tool support. This is

described in more detail in Chapter 5. The decomposition tool developed for the Rodin

platform has been successfully used in several case studies such as a flash system de-

velopment [62, 60], decomposition of a space craft system [73], development of a cruise

control system, development of a pipeline system, among other works.

4.1 Introduction

The “top-down” style of development used in Event-B allows the introduction of new

events and data-refinement of variables during refinement steps. A consequence of this

development style is an increasing complexity of the refinement process when dealing

91
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with many events and state variables. The main purpose of the model decomposition

is precisely to address such difficulty by cutting a large model into smaller components.

The complexity of the whole model (also referred as original model) is decreased by

studying, and thus refining, each part independently of the others [124]. Two methods

have been identified for the Event-B decomposition: shared variable [15, 8] and shared

event [45, 47]. Moreover the decomposition also partitions the POs which are expected

to be easier to be discharged in the sub-components. From another point of view, shared

event decomposition is the inverse operation of shared event composition described in

Chapter 2. There it was proved that the shared approach is monotonic and therefore the

resulting sub-components could be further refined. That proof is applied to decomposi-

tion in a similar fashion following the failure-divergence definition of CSP as described

in Sect. 1.6.2. The properties of parallel composition in CSP are also the properties of

shared event decomposition. The most relevant property is monotonicity: as long as the

partition of events maintains the original events interface, the decomposition properties

hold which allow the independent refinement of sub-components. For the shared variable

composition, the monotonicity is proved in [8]. Therefore we can introduce team devel-

opment: several developers share parts of the same model but work independently and

in parallel. We propose a plug-in developed in the Rodin platform [151] that supports

these two decomposition methods for Event-B.

Section 4.2 introduces decomposition using a simple example, describing how model

properties are partition, proof obligations are split and the possibility of refining sub-

components. The definition and validity of the decomposition is illustrated in Sect. 4.3.

Section 4.4 describes the limitations of this approach. We conclude this chapter in

Sect. 4.5 with a summary of this study, discussion about related work, applications and

future work.

4.2 Decomposition Styles

The discussion about the two styles of decomposition was introduced in Sect. 1.7. The

semantics of decomposition is the syntactic composition of M1 and M2 and the proof obli-

gations for M are then derived via that syntactic composition. Consequently, machines

M1 and M2 are constructed according to descriptions in Sect. 1.7.1 and Sect. 1.7.2. The

definition of decomposition is described in Sect. 4.3. Here an example is presented to

illustrate the use of both kind of decompositions. A simple communication process is

modelled. The abstract model can be seen in Fig. 4.1.

The variable a is initialised with the constant d0 and variable b is assigned a value

non-deterministically. The initial model contains only the event copy that copies the

value of a to variable b in one single step as described in Fig. 4.2(a). A refinement

of Communication (Communication M1 ) introduces a middleware entity that stores
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!Communication_M0

!machine Communication_M0

!

!sees Communication_C0

!

!variables a b

!

!invariants

!  @inv1 a ! DATA

!  @inv2 b ! DATA

!

!events

!  event INITIALISATION

!    then

!      @act1 a " d0

!      @act2 b :! DATA

!  end

!

!  event copy

!    then

!      @act1 b " a

!  end

!end

!

!Page 1

(a) Machine Communication M0

!Communication_C0

!context Communication_C0

!

!constants d0 

!

!sets DATA 

!

!axioms

!  @axm1 d0 ! DATA

!end

!

!Page 1

(b) Context Communication C0

Figure 4.1: Event-B model of the Communication example

temporarily the value of a before copying it to b as seen in Fig. 4.2(b). Variable m

represents the middleware.

(a) Diagram of abstract ma-
chine Communication M0

(b) Diagram of Communication M1, refine-
ment of Communication M0

Figure 4.2: Diagrams corresponding to the Simple Communication example

Butler [47, 46] suggests an event refinement diagram to decompose atomicity and we use

it to show the refinement relationship between the events in Communication M0 and

Communication M1 as seen in Fig. 4.3. In fact we are decomposing the initial single

atomic operation into two steps using a middleware. The diagram is read from left to

Figure 4.3: Event refinement diagram illustrating atomicity decomposition

right and that indicates its sequential control. In other words, the abstract event copy

is refined by first executing the initialisation event (Init), then event copy 1 and after-

wards copy 2. In the same figure, the lines that link the events are relevant: a dashed

line represents events that refine skip (such as Init and copy 1(p)). A solid line defines

a refinement relation between events. Thus event copy 2 must be proved to refine copy.

The refinement Communication M1 can be seen in Fig. 4.4. Note that a control variable
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ctrl is introduced to ensure when the content of m can be copied to b. Invariant inv3 ex-
!Communication_M1

!machine Communication_M1 refines Communication_M0

!

!sees Communication_C0

!

!variables a b m ctrl

!

!invariants

!  @inv1 m ! DATA

!  @inv2 ctrl ! BOOL

!  @inv3 ctrl = TRUE ⇒ m = a
!

!variant {ctrl,TRUE}

!

!events

!  event INITIALISATION

!    then

!      @act1 a " d0

!      @act2 b :! DATA

!      @act3 m :! DATA

!      @act4 ctrl " FALSE

!  end

!

!  convergent event copy_1

!    any p

!    where

!      @grd1 p = a

!      @grd2 ctrl = FALSE

!    then

!      @act1 m " p

!      @act2 ctrl " TRUE

!  end

!

!  event copy_2 refines copy

!    where

!      @grd1 ctrl = TRUE

!    then

!      @act1 b " m

!      @act2 ctrl " FALSE

!  end

!end

!
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!Communication_M1

!machine Communication_M1 refines Communication_M0

!

!sees Communication_C0

!

!variables a b m ctrl

!

!invariants

!  @inv1 m ! DATA

!  @inv2 ctrl ! BOOL

!  @inv3 ctrl = TRUE ⇒ m = a
!

!variant {ctrl,TRUE}

!

!events

!  event INITIALISATION

!    then

!      @act1 a " d0

!      @act2 b :! DATA

!      @act3 m :! DATA

!      @act4 ctrl " FALSE

!  end

!

!  convergent event copy_1

!    any p

!    where

!      @grd1 p = a

!      @grd2 ctrl = FALSE

!    then

!      @act1 m " p

!      @act2 ctrl " TRUE

!  end

!

!  event copy_2 refines copy

!    where

!      @grd1 ctrl = TRUE

!    then

!      @act1 b " m

!      @act2 ctrl " FALSE

!  end

!end

!

!Page 1
Figure 4.4: Machine Communication M1 refinement of Communication M0

presses that when variable ctrl is true, the value of the middleware m corresponds to the

value of source a. This invariant can be seen as a requirement for the refinement between

abstract event Communication M0.copy and concrete event Communication M1.copy 2.

The convergent event copy 1 requires a variant that guarantees that this event is not

enabled forever. Such variant is expressed as {ctrl, TRUE} which means that eventually

the control variable ctrl will be TRUE and in that case copy 1 event is not enabled.

Depending on the chosen decomposition style, a system can be decomposed into different

number of sub-components as seen in the following sections. In the rest of this section, we

give an informal introduction to the two decomposition styles using a running example.

In Sect. 4.3 we give decomposition a precise definition and show that they represent

valid refinements.

4.2.1 Shared Event Decomposition of Communication

From the modeller’s point of view, the decomposition starts by defining which sub-

components will be generated. The following step is to define the partition of variables

over the sub-components. The rest of the model decomposition (events, parameters,

invariants, contexts) is a consequence of the variables allocation as defined below. For

the shared event decomposition, we decompose Communication M1 in three parts: MA,

MB and MM as seen in Fig. 4.5.

Variable a is allocated to machine MA, variables m and ctrl to machine MM and variable

b to machine MB. It follows that event copy 1 is split between MA and MM and event

copy 2 is split between MB and MM. The resulting machines can be seen in Fig. 4.6.

Next we describe the steps for a machine decomposition focusing on invariants, events,
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Figure 4.5: Decomposition of Communication M1 into machines MA,MB and MM

!MA

!machine MA

!

!sees Communication_C0

!

!variables a

!

!invariants

! !@inv1 a ! DATA

!

!events

!  event INITIALISATION

!    then

!      @act1 a " d0

!  end

!

!  event copy_1

!    any

!    !p

!    when

!       @grd1 p = a

!  end

!

!end

!

!Page 1

(a) Machine MA

!MM

!machine MM

!

!sees Communication_C0

!

!variables m ctrl

!

!invariants

!    @inv1 m ! DATA

! !@inv2 ctrl ! BOOL

!

!events

!  event INITIALISATION

!    then

!      @act1 m :! DATA

!      @act2 ctrl " FALSE

!  end

!

!  event copy_1

!    any p

!    where

!      @grd1 p ! DATA

!      @grd2 ctrl = FALSE

!    then

!      @act1 m " p

!      @act2 ctrl " TRUE

!  end

!

!  event copy_2

!    any p

!    where

!      @grd1 ctrl = TRUE

!      @grd2 p = m

!    then

!      @act2 ctrl " FALSE

!  end

!end

!
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(b) Machine MM

!MB

!machine MB

!

!sees Communication_C0

!

!variables b

!

!invariants

! !@inv1 b ! DATA

!

!events

!  event INITIALISATION

!    then

!      @act2 b :! DATA

!   end

!

!  event copy_2

!    any

!     !p

!    when

!      @grd1 p ! DATA

!    then

!      @act1 b " p

!  end

!end

!

!Page 1

(c) Machine MB

Figure 4.6: Machines MA, MM and MB

variant and contexts. The initial partition of variables between the sub-components

defines the rest of the decomposition as detailed below.

Invariants: The decomposition of the invariants depends on the scope of the variables.

Therefore the minimal set of invariants must include the variable type definitions

as illustrated by inv1 and inv2 in Communication M1 (Fig. 4.4) or inv1 and inv2

in MM (Fig. 4.6(b)). And these are the required invariants for a valid refinement.

Additional ones depend on the user, as they may be useful in later refinements

or to help in reusing the sub-components. An example of partition of invariants

among the sub-components is inv3 in Communication M1 :
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ctrl = TRUE⇒m = a

This invariant contains three variables: ctrl, m and a. According to the defined

decomposition, ctrl and m are variables of MM and a is a variable of MA. This

suggests that inv3 can be a constraint of the composition of the sub-components

and not a constraint of the individual sub-components. As a result, invariant

clause inv3 in Communication M1 is not part of any of the sub-components. Al-

ternatively when an invariant clause is demanded and uses variables placed outside

the scope of a sub-component, a further refinement of the composed component

might be required to make an explicit separation of the variables. If we consider

again inv3 and we would like to add this invariant to the sub-components, we

would need to find a rewrite that invariant without including variables ctrl, m and

a in the same predicate.

Events: The partition of the events depends on the partition of the variables. For

instance, variables m and ctrl are part of MM so their initialisation is allocated

to the same sub-component. Event copy 1 in machine Communication M1 has a

parameter p. When the decomposition occurs, that parameter is shared between

the decomposed events. But the guards referring to that parameter are different

in each decomposed event: in MA the guard is similar to Communication M1

(p = a); in MM only the type of the parameter p is defined (p ∈ DATA). The

type of p is an implicit guard in the original event and during the decomposition,

the type of p is made explicit:

p = a⇔ p ∈ DATA ∧ p = a

The guards of a decomposed event inherits the guards on the composed event

according to the variable partition. Variable a is not within the scope of machine

MM so only the type of p is defined in the guard of MM.copy 1.

A different situation occurs for event copy 2 in machine Communication M1. Al-

though the original event does not have parameters, the decomposed events have

a new parameter p. Action act1 in Communication M1.copy 2 refers to two vari-

ables (b and m) belonging to two different sub-components:

@act1 b := m

This assignment needs to be rewritten in a way that these variables are not part

of the same expression. A solution is to refine this event in a way that the guards

and actions do not refer to variables allocated to different sub-components. Before

the decomposition, we refine event copy 2 by adding parameter p:

copy 2 =̂ ANY p WHERE ctrl = TRUE ∧ p = m THEN b := p ‖ ctrl := FALSE END.
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Parameter p receives the value of variable m. Then the value of p is assigned to

variable b. Whereas variable m is within the scope of MM only, the guard p = m

is added to MM.copy 2 while MB.copy 2 contains the guard p ∈ DATA and the

action b := p.

Non-shared parameters do not need to be maintained in the sub-components. Since

parameters are local to events, only parameters explicitly used in guards or actions

are included in the sub-events.

Variant: Variant is only necessary when new events are introduced in a refinement.

Decomposed events in sub-components are inherit from the composed component

so no new events are introduced meaning that variants are not required.

Contexts: The context Communication C0 used in the example is shared between all

the machines. That context (and possible others) can be flattened into a single

context and decomposed. The context decomposition results from the exclusion

of elements (sets, constants, axioms) that are not used by the sub-component

that sees that context. On the one hand, decomposing contexts can inadvertently

remove relevant information. On the other hand, not decomposing it can add

too many (not relevant and unnecessary) hypotheses which is not beneficial for

the proofs: on the contrary, it might be harmful and complicate the discharge

of proofs. Therefore, the context decomposition is optional as it varies with the

system being modelled.

The events in the sub-components maintain the interface of the original events. By event

interface we refer to the structure of the original event excluding elements referring to

variables not in the scope of the sub-event.

4.2.1.1 Refinement of Sub-Components

An advantage of the decomposition is the possibility to further refine sub-components

independently from the original component and other partitions. This advantage leads

to the concept of team development over the same model by different modellers which

it is an attractive option, in particular for the industry. In this section we introduce

a database table as a refinement of the sub-component MB (resulting from the shared

event decomposition of Communication M1 ) to store the received values (registries).

The database table contains three fields: REGID, DATA and PRIORITY. The new

fields are introduced in the new context MB C0 as seen in Fig. 4.7. REGID is the iden-

tification field of all elements in the table of the database. It is defined as a constant and

represented by a subset of natural numbers (axiom axm1 in Fig. 4.7). The PRIORITY

field corresponds to the priority that a registry is processed: LOW, MEDIUM or HIGH.

The constants id0 and p0 initialise the database fields. New variables are introduced

to represent the database registries: idR and priority. An auxiliary boolean variable
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!MB_C0

!context MB_C0

!

!constants REGID LOW MEDIUM HIGH id0 p0

!

!sets PRIORITY

!

!axioms

!  @axm1 REGID ! !

!  @axm2 partition(PRIORITY, {LOW}, {MEDIUM}, {HIGH})

!  @axm3 id0 ! REGID

!  @axm4 p0 ! PRIORITY

!end

!

!Page 1

Figure 4.7: Context MB C0 seen by refinement of MB

processQueue is used as a flag to enable the enqueueing of a registry in the database

when a new value is copied to b as seen in Fig. 4.8.

!MB_1

!machine MB_1 refines MB sees Communication_C0 MB_C0

!

!variables b idR processQueue priority

!

!invariants

!  @inv1 idR ! REGID ! DATA

!  @inv2 processQueue ! BOOL

!  @inv4 priority ! dom(idR) ! PRIORITY

!

!variant {processQueue,FALSE}

!

!events

!  event INITIALISATION

!    then

!      @act1 b :! DATA

!      @act2 processQueue " FALSE

!      @act3 idR " id0 " {d0}

!      @act4 priority " id0 " {p0}

!  end

!

!  event copy_2 refines copy_2

!    any p

!    where

!      @grd1 p ! DATA

!      @grd2 processQueue = FALSE

!    then

!      @act1 b " p

!      @act2 processQueue " TRUE

!  end

!

!   convergent event enqueueDB

!  #any i p

!    where

!      @grd1 processQueue = TRUE

!      @grd2 p ! PRIORITY

!      @grd3 i ! REGID$dom(idR)

!    then

!      @act1 processQueue"FALSE

!      @act3 priority(i)"p

!      @act4 idR(i)"b

!  end

!Page 1

!MB_1

!machine MB_1 refines MB sees Communication_C0 MB_C0

!

!variables b idR processQueue priority

!

!invariants

!  @inv1 idR ! REGID ! DATA

!  @inv2 processQueue ! BOOL

!  @inv4 priority ! dom(idR) ! PRIORITY

!

!variant {processQueue,FALSE}

!

!events

!  event INITIALISATION

!    then

!      @act1 b :! DATA

!      @act2 processQueue " FALSE

!      @act3 idR " id0 " {d0}

!      @act4 priority " id0 " {p0}

!  end

!

!  event copy_2 refines copy_2

!    any p

!    where

!      @grd1 p ! DATA

!      @grd2 processQueue = FALSE

!    then

!      @act1 b " p

!      @act2 processQueue " TRUE

!  end

!

!   convergent event enqueueDB

!  #any i p

!    where

!      @grd1 processQueue = TRUE

!      @grd2 p ! PRIORITY

!      @grd3 i ! REGID$dom(idR)

!    then

!      @act1 processQueue"FALSE

!      @act3 priority(i)"p

!      @act4 idR(i)"b

!  end

!Page 1

Figure 4.8: Machine MB 1 which is a refinement of MB

After event copy 2 is executed, new event enqueueDB adds an element to the database.

The added registry must have a fresh identification (not used before in the idR function)

and the priority of the registry is defined non-deterministically in guard grd2. A variant

is necessary for the new convergent event enqueueDB which is easily found by defining

that eventually processQueue is FALSE. A possible refinement for the current model is to

process the registries according to the priority. The priority field can also be defined more

deterministically according to the message data. In a team development environment,

the middleware could be refined while in parallel with other sub-components.

4.2.2 Shared Variable Decomposition of Communication

For the shared variable approach, we decide to do a further refinement. After copying

the values, they are processed by being stored in a simple database similar to the one

used in the shared event refinement described by context Communication C1 (equal to

MB C0 in Fig. 4.7). A boolean variable processQueue and new event enqueueDB are

also introduced as seen in Fig. 4.9. Concrete event copy 2 extends the abstract copy 2,

meaning that the concrete event is a copy of the abstract one plus additional concrete

guards, actions, parameters.
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!Communication_M2

!1 !machine Communication_M2 refines Communication_M1

!2 !sees Communication_C0 Communication_C1

!3 !

!4 !variables a b m ctrl idR processQueue priority

!5 !

!6 !invariants
!7 !  @inv1 idR ! REGID ! DATA

!8 !  @inv2 processQueue ! BOOL

!9 !  @inv4 priority!dom(idR) ! PRIORITY

!10 !

!11 !variant {processQueue,FALSE}

!12 !

!13 !events
!14 !  event INITIALISATION extends INITIALISATION

!15 !    then
!16 !      @act5 processQueue " FALSE

!17 !      @act6 idR " id0 " {d0}

!18 !      @act7 priority " id0 " {p0}

!19 !  end
!20 !

!21 !  event copy_2 extends copy_2

!22 !    where
!23 !      @grd3 processQueue = FALSE

!24 !    then
!25 !      @act3 processQueue " TRUE

!26 !  end
!27 !

!28 !  convergent event enqueueDB

!29 !    any i p
!30 !    where
!31 !      @grd1 processQueue = TRUE

!32 !      @grd2 p ! PRIORITY

!33 !      @grd3 i ! REGID#dom(idR)

!34 !    then
!35 !      @act1 processQueue"FALSE

!36 !      @act3 priority(i)"p

!37 !      @act4 idR(i)"b

!38 !  end

!Page 1

!Communication_M2

!1 !machine Communication_M2 refines Communication_M1

!2 !sees Communication_C0 Communication_C1

!3 !

!4 !variables a b m ctrl idR processQueue priority

!5 !

!6 !invariants
!7 !  @inv1 idR ! REGID ! DATA

!8 !  @inv2 processQueue ! BOOL

!9 !  @inv4 priority!dom(idR) ! PRIORITY

!10 !

!11 !variant {processQueue,FALSE}

!12 !

!13 !events
!14 !  event INITIALISATION extends INITIALISATION

!15 !    then
!16 !      @act5 processQueue " FALSE

!17 !      @act6 idR " id0 " {d0}

!18 !      @act7 priority " id0 " {p0}

!19 !  end
!20 !

!21 !  event copy_2 extends copy_2

!22 !    where
!23 !      @grd3 processQueue = FALSE

!24 !    then
!25 !      @act3 processQueue " TRUE

!26 !  end
!27 !

!28 !  convergent event enqueueDB

!29 !    any i p
!30 !    where
!31 !      @grd1 processQueue = TRUE

!32 !      @grd2 p ! PRIORITY

!33 !      @grd3 i ! REGID#dom(idR)

!34 !    then
!35 !      @act1 processQueue"FALSE

!36 !      @act3 priority(i)"p

!37 !      @act4 idR(i)"b

!38 !  end

!Page 1(a)

Figure 4.9: Excerpt of machine Communication M2

Communication M2 is shared variable decomposed by separating the copy of the values

and the processing, described by machines MCopy and MProcess respectively. Events

copy 1 and copy 2 are allocated to MCopy while event enqueueDB is allocated to MPro-

cess. The variables separation depends on the event allocation leading to private vari-

ables (accessed by a single sub-component) or shared variables (accessed by multiple

sub-components). The shared variables are used in events copy 2 and enqueueDB : pro-

cessQueue and b. All the other variables are private. The invariants splitting depends

on the initial separation of variables, similar to the shared event approach.

The following step is to separate the private events and create the external events. Pri-

vate events are allocated according to the user’s choice. External events are based on the

original events, preserving the shared variables and turning private variables into event

parameters. If an original event depends on a shared variable, then an external event

is created in the sub-components that use that variable. Events copy 2 and enqueueDB

use shared variables and consequently external events are required. An external event

copy 2 is created in MProcess using the shared variable b. The other variables used by

the original copy 2 become parameters in the external event as they are not in the scope

of that sub-component (ctrl and m). Event enqueueDB is similarly built. The resulting

machines can be seen in Fig. 4.10.

4.3 Definition and Validity of Decomposition

We want to formally prove that a machine M can be decomposed into machines M1

and M2. We shall prove through refinement POs that M v M1 ‖ M2. The proofs are

described in the following sections.
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DECOMPOSITION TOOL FOR EVENT-B 11

!MCopy

!1 !machine MCopy sees Communication_C0 Communication_C1
!2 !

!3 !variables m // Private variable
!4 !          a // Private variable
!5 !          ctrl // Private variable
!6 !          processQueue // Shared variable, DO NOT REFINE
!7 !          b // Shared variable, DO NOT REFINE
!8 !

!9 !invariants
!10 !  theorem @typing_m m ! DATA

!11 !  theorem @typing_a a ! DATA

!12 !  theorem @typing_ctrl ctrl ! BOOL

!13 !  theorem @typing_processQueue processQueue ! BOOL

!14 !  theorem @typing_b b ! DATA

!15 !  @Communication_M0_inv1 a ! DATA

!16 !  @Communication_M0_inv2 b ! DATA

!17 !  @Communication_M1_inv1 m ! DATA

!18 !  @Communication_M1_inv2 ctrl ! BOOL

!19 !  @Communication_M1_inv3 ctrl = TRUE ⇒ m = a

!20 !  @Communication_M2_inv2 processQueue ! BOOL

!21 !

!22 !events
!23 !  event INITIALISATION
!24 !    then
!25 !      @act1 a " d0

!26 !      @act2 b :! DATA

!27 !      @act3 m :! DATA

!28 !      @act4 ctrl " FALSE

!29 !      @act5 processQueue " FALSE

!30 !  end
!31 !

!32 !  event copy_1
!33 !    any p
!34 !    where
!35 !      @grd1 p = a
!36 !      @grd2 ctrl = FALSE
!37 !    then
!38 !      @act1 m " p

!39 !      @act2 ctrl " TRUE

!40 !  end
!41 !

!42 !

!43 !

!44 !

!45 !

!Page 1

!MCopy

!1 !machine MCopy sees Communication_C0 Communication_C1
!2 !

!3 !variables m // Private variable
!4 !          a // Private variable
!5 !          ctrl // Private variable
!6 !          processQueue // Shared variable, DO NOT REFINE
!7 !          b // Shared variable, DO NOT REFINE
!8 !

!9 !invariants
!10 !  theorem @typing_m m ! DATA

!11 !  theorem @typing_a a ! DATA

!12 !  theorem @typing_ctrl ctrl ! BOOL

!13 !  theorem @typing_processQueue processQueue ! BOOL

!14 !  theorem @typing_b b ! DATA

!15 !  @Communication_M0_inv1 a ! DATA

!16 !  @Communication_M0_inv2 b ! DATA

!17 !  @Communication_M1_inv1 m ! DATA

!18 !  @Communication_M1_inv2 ctrl ! BOOL

!19 !  @Communication_M1_inv3 ctrl = TRUE ⇒ m = a

!20 !  @Communication_M2_inv2 processQueue ! BOOL

!21 !

!22 !events
!23 !  event INITIALISATION
!24 !    then
!25 !      @act1 a " d0

!26 !      @act2 b :! DATA

!27 !      @act3 m :! DATA

!28 !      @act4 ctrl " FALSE

!29 !      @act5 processQueue " FALSE

!30 !  end
!31 !

!32 !  event copy_1
!33 !    any p
!34 !    where
!35 !      @grd1 p = a
!36 !      @grd2 ctrl = FALSE
!37 !    then
!38 !      @act1 m " p

!39 !      @act2 ctrl " TRUE

!40 !  end
!41 !

!42 !

!43 !

!44 !

!45 !
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!MCopy

!46 !  event copy_2
!47 !    any p
!48 !    where
!49 !      @grd1 ctrl = TRUE
!50 !      @grd2 p = m
!51 !      @grd3 processQueue = FALSE
!52 !    then
!53 !      @act1 b ! p

!54 !      @act2 ctrl ! FALSE

!55 !      @act3 processQueue ! TRUE

!56 !  end
!57 !

!58 !  event enqueueDB // External event, DO NOT REFINE
!59 !    any i p idR
!60 !    where
!61 !      @typing_idR idR " !(" ! DATA)

!62 !      @grd1 processQueue = TRUE
!63 !      @grd2 p " PRIORITY

!64 !      @grd3 i " REGID"dom(idR)

!65 !    then
!66 !      @act1 processQueue!FALSE

!67 !  end
!68 !end
!69 !

!Page 2

(a)

(b)

Figure 10. Excerpt of the output of shared variable decomposition of
Communication M2 : MCopy and MProcess

automatic decomposition method using LOTOS [16]: the correctness is ensured if the combined
behavior of decomposed sub-specifications is the same as the system’s behavior before the
decomposition. The method decomposes a process into two processes composed by the parallel
operator and automatically generates an additional process that gives some information about
the synchronization. The additional process corresponds to the middleware in a shared event
decomposition in Event-B.

There is a need for modularisation and reuse of sub-components in order to model large
systems and manage better the respective POs. Event-B lacks a sub-component mechanism so
we propose to tackle that problem through the decomposition of a system by their events
or variables. The shared variable (state-based) approach is suitable for designing parallel
algorithms while the shared event (event-based) is suitable for message-passing distributed
systems [10]. [3] suggests the shared variable decomposition where variables are shared
and introduces the notion of external events. [10] suggests the shared event decomposition
where events are partition through the sub-components and the interaction occurs via shared
parameters. The work developed by Butler in [7] for action system is strongly related with
the same approach for shared event decomposition in Event-B [10] as both approaches are

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
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(a)

!MProcess

!1 !machine MProcess sees Communication_C0 Communication_C1
!2 !

!3 !variables processQueue // Shared variable, DO NOT REFINE
!4 !          b // Shared variable, DO NOT REFINE
!5 !          priority // Private variable
!6 !          idR // Private variable
!7 !

!8 !

!9 !invariants
!10 !  theorem @typing_processQueue processQueue ! BOOL

!11 !  theorem @typing_b b ! DATA

!12 !  theorem @typing_priority priority ! !(" ! PRIORITY)

!13 !  theorem @typing_idR idR ! !(" ! DATA)

!14 !  @Communication_M0_inv2 b ! DATA

!15 !  @Communication_M2_inv1 idR ! REGID # DATA

!16 !  @Communication_M2_inv2 processQueue ! BOOL

!17 !  @Communication_M2_inv4 priority!dom(idR) " PRIORITY

!18 !

!19 !events
!20 !  event INITIALISATION
!21 !    then
!22 !      @act2 b :! DATA

!23 !      @act5 processQueue " FALSE

!24 !      @act6 idR " id0 ! {d0}

!25 !      @act7 priority " id0 ! {p0}

!26 !  end
!27 !

!28 !  event copy_2 // External event, DO NOT REFINE
!29 !    any p ctrl m
!30 !    where
!31 !      @typing_ctrl ctrl ! BOOL

!32 !      @typing_m m ! DATA

!33 !      @grd1 ctrl = TRUE
!34 !      @grd2 p = m
!35 !      @grd3 processQueue = FALSE
!36 !    then
!37 !      @act1 b " p

!38 !      @act3 processQueue " TRUE

!39 !  end
!40 !

!41 !

!42 !

!43 !

!44 !

!45 !

!46 !  event enqueueDB
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!MProcess

!1 !machine MProcess sees Communication_C0 Communication_C1
!2 !

!3 !variables processQueue // Shared variable, DO NOT REFINE
!4 !          b // Shared variable, DO NOT REFINE
!5 !          priority // Private variable
!6 !          idR // Private variable
!7 !

!8 !

!9 !invariants
!10 !  theorem @typing_processQueue processQueue ! BOOL

!11 !  theorem @typing_b b ! DATA

!12 !  theorem @typing_priority priority ! !(" ! PRIORITY)

!13 !  theorem @typing_idR idR ! !(" ! DATA)

!14 !  @Communication_M0_inv2 b ! DATA

!15 !  @Communication_M2_inv1 idR ! REGID # DATA

!16 !  @Communication_M2_inv2 processQueue ! BOOL

!17 !  @Communication_M2_inv4 priority!dom(idR) " PRIORITY

!18 !

!19 !events
!20 !  event INITIALISATION
!21 !    then
!22 !      @act2 b :! DATA

!23 !      @act5 processQueue " FALSE

!24 !      @act6 idR " id0 ! {d0}

!25 !      @act7 priority " id0 ! {p0}

!26 !  end
!27 !

!28 !  event copy_2 // External event, DO NOT REFINE
!29 !    any p ctrl m
!30 !    where
!31 !      @typing_ctrl ctrl ! BOOL

!32 !      @typing_m m ! DATA

!33 !      @grd1 ctrl = TRUE
!34 !      @grd2 p = m
!35 !      @grd3 processQueue = FALSE
!36 !    then
!37 !      @act1 b " p

!38 !      @act3 processQueue " TRUE

!39 !  end
!40 !

!41 !

!42 !

!43 !

!44 !

!45 !

!46 !

!Page 1

!MProcess

!47 !  event enqueueDB
!48 !    any i p
!49 !    where
!50 !      @grd1 processQueue = TRUE
!51 !      @grd2 p ! PRIORITY

!52 !      @grd3 i ! REGID!dom(idR)

!53 !    then
!54 !      @act1 processQueue"FALSE

!55 !      @act3 priority(i)"p

!56 !      @act4 idR(i)"b

!57 !  end
!58 !end
!59 !

!Page 2

(b)

Figure 10. Excerpt of the output of shared variable decomposition of
Communication M2 : MCopy and MProcess

automatic decomposition method using LOTOS [16]: the correctness is ensured if the combined
behavior of decomposed sub-specifications is the same as the system’s behavior before the
decomposition. The method decomposes a process into two processes composed by the parallel
operator and automatically generates an additional process that gives some information about
the synchronization. The additional process corresponds to the middleware in a shared event
decomposition in Event-B.

There is a need for modularisation and reuse of sub-components in order to model large
systems and manage better the respective POs. Event-B lacks a sub-component mechanism so
we propose to tackle that problem through the decomposition of a system by their events
or variables. The shared variable (state-based) approach is suitable for designing parallel
algorithms while the shared event (event-based) is suitable for message-passing distributed
systems [10]. [3] suggests the shared variable decomposition where variables are shared
and introduces the notion of external events. [10] suggests the shared event decomposition
where events are partition through the sub-components and the interaction occurs via shared
parameters. The work developed by Butler in [7] for action system is strongly related with
the same approach for shared event decomposition in Event-B [10] as both approaches are
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(b)

Figure 4.10: Excerpt of the output of shared variable decomposition of Communica-
tion M2 : MCopy and MProcess

4.3.1 Shared Event Style

Assume a machine M with two set of disjoint variables v1, v2. For the shared event

decomposition, events can be categorised in 3 ways: evt1(p1, v1), evt2(p2, v2) and

evt3(p3, v1, v2). evt1(p1, v1) is local toM1, evt2(p2, v2) is local toM2 and evt3(p3, v1, v2)

is split into evt3′(p3, v1) and evt3′′(p3, v2). The invariant ofM is represented by I(v1, v2)

(for simplicity we exclude the use of context elements). Machine M1 is represented by

variable v1, w1 and events evt1(p1, v1) and evt3′(p3, v1). The invariant of M1 is rep-

resented by J1(v1, w1). Machine M2 is similar to M1 with variable v2, w2, events

evt2(p2, v2), evt3′′(p3, v2) and invariant J2(v2, w2).

We want to prove that M1 and M2 when composed in parallel are a valid refinement

of M . The refinement POs need to be verified for M1 ‖ M2 in order to ensure that is

a concrete refinement of the abstraction M : M v M1 ‖ M2. Events of the form evt3

have the following shape:

evt3 =̂ ANY p3 WHERE G31(p3, v1) ∧G32(p3, v2) THEN S31(p3, v1, v
′
1) ‖ S32(p3, v2, v

′
2) END.

Definition 4.1. After the decomposition, event evt3 is decomposed into events evt3′
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and evt3′′ that are defined as:

evt3′ =̂ ANY p3 WHERE G31(p3, v1) THEN S31(p3, v1, v
′
1) END

evt3′′ =̂ ANY p3 WHERE G32(p3, v2) THEN S32(p3, v2, v
′
2) END.

in a way such that evt3 v evt3′||evt3′′.

Abstract machine M(v1, v2) is decomposed into machines M1(v1) and M2(v2). When

the events resulting from the shared event decomposition are composed, they are a valid

refinement of the respective abstract event. Abstract event evt3(p3, v1, v2) is decomposed

into events evt3′(p3, v1) and evt3′′(p3, v2) as long as the set of variables v1 and v2 are

disjoint. Moreover, the guards and actions of events evt3′(p3, v1) and evt3′′(p3, w2) result

from the original abstract event referring only to their respective set of variables. The

set of parameters p3 is the same for the three events. We consider that sub-components

do not introduce additional invariants.

Theorem 4.1. If M1 and M2 are the resulting machines from shared event decomposition

of M , then M vM1 ‖M2. In other words, REFevtiv(evti′‖evti′′) holds, where evti is an

abstract event, evti′ is the resulting decomposed event in machine M1 and evti′′ is the

resulting decomposed event in machine M2.

From the refinement PO for machines (1.5), we need to prove that the resulting events

after the decomposition refine the original abstract ones. Sub-components do not intro-

duce additional invariants. Consequently J1(v1, w1) = J2(v2, w2) = TRUE. For events

of form evt1 and evt2, the resulting events are exactly the same as the original ones.

For events of form evt3:

REFevt3v(evt3′‖evt3′′) : I1(v1, v2)

∧ J1(v1, w1) ∧ J2(v2, w2)

∧H31(p3, v1) ∧H32(p3, v2)

∧ T31(p3, v1, v
′
1) ∧ T32(p3, v2, v

′
2)

` ∃v′1, v′2 ·G31(p3, v1) ∧G32(p3, v2)

∧ S31(p3, v1, v
′
1) ∧ S32(p3, v2, v

′
2)

∧ J1(v′1, w
′
1) ∧ J2(v′2, w

′
2), (4.1)

w1 and w2 are concrete variables in the refinement.
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Also assume:

v1 ∩ v2 = ∅

J1(v1, w1) = TRUE (4.2)

J2(v2, w2) = TRUE (4.3)

H31(p3, v1) = G31(p3, v1) (4.4)

H32(p3, v2) = G32(p3, v2) (4.5)

T31(p3, v1, v
′
1) = S31(p3, v1, v

′
1) (4.6)

T32(p3, v2, v
′
2) = S32(p3, v2, v

′
2) (4.7)

Prove: REFevt3v(evt3′‖evt3′′).

Proof. Assume the hypotheses of REFevt1v(evt1′‖evt1′′):

I1(v1, v2)

J1(v1, w1) ∧ J2(v2, w2) ≡ TRUE {From (4.2) and (4.3)} (4.8)

H31(p3, v1) ∧H32(p3, v2) ≡ G31(p3, v1) ∧G32(p3, v2) {From (4.4) and (4.5)} (4.9)

T31(p3, v1, v
′
1) ∧ T32(p3, v2, v

′
2)

≡ S31(p3, v1, v
′
1) ∧ S32(p3, v2, v

′
2) {From (4.6) and (4.7)} (4.10)

Prove:

` ∃v′1, v′2 ·G31(p3, v1) ∧G32(p3, v2) ∧ S31(p3, v1, v
′
1) ∧ S32(p3, v2, v

′
2) ∧ J1(v′1, w

′
1) ∧ J2(v′2, w

′
2).

The proof proceeds as follows:

∃v′1, v′2 ·G31(p3, v1) ∧G32(p3, v2)

∧ S31(p3, v1, v
′
1) ∧ S32(p3, v2, v

′
2)

∧ J1(v′1, w
′
1) ∧ J2(v′2, w

′
2)

≡ ∃v′1, v′2 ·G31(p3, v1) ∧G32(p3, v2)

∧ S31(p3, v1, v
′
1) ∧ S32(p3, v2, v

′
2)

∧ TRUE {From (4.8)}
≡ G31(p3, v1) ∧G32(p3, v2)

∧ ∃v′1, v′2 ·S31(p3, v1, v
′
1) ∧ S32(p3, v2, v

′
2) {G1 and G2 have free vars}

≡ TRUE

∧ TRUE {From hypotheses (4.9) and (4.10)}

M1 ‖ M2 is a valid refinement of M . In fact, they are syntactically the same apart

from the invariants that can be lost during the decomposition: M 6= M1 ‖ M2 but

M vM1 ‖M2.
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4.3.2 Shared Variable Style

Abrial and Hallerstede [15] use refinement POs to prove that the shared variable de-

composition is monotonic. In Fig. 4.111, machine M is decomposed into N and P

(represented by the diagonal arrows) which are further refined by NR and PR respec-

tively (vertical arrows). Afterwards, NR and PR are composed originating MR. To prove

monotonicity, it is necessary to prove that MR is a valid refinement of M.
J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, and Instantiation of Discrete Models 1025

Clearly NR and PR are refined byMR, but it is not obvious thatM is refined byMR, this is precisely what we have
to prove. The situation is illustrated in the following diagram, where the arrows indicates a refinement relationship:

N P

↖ ↗
↑ M ↑

NR ↑ ? PR

↖ ↗
MR

In what follows we shall prove that, provided e1r and e2r are refinements of e1 and e2 respectively in NR,
then they also are correct refinements of e1 and e2 inMR. Similar proofs can be conducted for the other events of
MR. We first treat the case e1. We have to show that e1r is also a refinement of e1 inMR. The correct refinement
condition REF1 (Section 5.2) of e1 to e1r within NR is the following:

J(v1, w1, v2) ∧ G1r(w1) ∧ E1r(w1, w1′)

⇒
G1(v1) ∧ ∃ v1′ · ( E1(v1, v1′) ∧ J(v1′, w1′, v2) )

Under this hypothesis, the following correct refinement condition of e1 to e1r withinMR clearly holds:

J(v1, w1, v2) ∧ K(v3, w3, v2) ∧ G1r(w1) ∧ E1r(w1, w1′)

⇒
G1(v1) ∧ ∃ v1′ · ( E1(v1, v1′) ∧ J(v1′, w1′, v2) ∧ K(v3, w3, v2) )

As can be seen, condition K(v3, w3, v2) can be extracted from the existential quantification in the consequent of
this implication (this is so because variable v1′ does not occur free in it). It is then easily discharged because it is
already present in the antecedent of the implication.

The situation is a bit different in the case of the event e2: this is because this event modifies variable v2. We
have to prove that e2r is a refinement of e2 in MR. Next is the correct refinement condition REF1 (Section 5.2)

of e2 into e2r within NR:

J(v1, w1, v2) ∧ G2r(w1, v2) ∧ E2r(w1, w1′, v2, v2′)

⇒
G2(v1, v2) ∧ ∃ v1′ · ( E2(v1, v1′, v2, v2′) ∧ J(v1′, w1′, v2′) )

The correct refinement condition of e2 into e2r withinMR is:

Figure 4.11: Shared Variable Decomposition Diagram

Abrial [8] proves this property by means of state relations between the original machine

and sub-components.

4.4 Limitations

The decomposition should have a final goal: a misleading decomposition may harm the

development of a system instead of helping. For the shared variable decomposition the

partition of events is always possible in the sense that it is always possible to gener-

ate sub-components. On the other hand, that decomposition might be less significant

despite being possible: a further refinement may be more complex and not benefit the

development. The point of decomposition (correct abstraction level) is important, since

if it is done too early, the sub-component might be too abstract and will not be able to

be refined (without knowing more about the other sub-systems). If the system is de-

composed too late, it will not benefit from the approach anymore. For the shared event

decomposition, the partition of variables is not always possible for all developments.

An additional “preparation step” may be required to solve complex predicates (invari-

ants, guards, axioms) or assignments (actions) involving variables allocated to different

sub-components. This step can be achieved through refinement. Another limitation is

that the overlapping of elements in the sub-components is not allowed which sometimes

may be useful. Even in the shared variable approach, the overlapped (shared) elements

cannot be further refined independently.

1Extracted from [15]
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4.5 Conclusions

This chapter presents the decomposition of Event-B models and tool support in the

Rodin platform. Decomposition can advantageously be used to decrease the complexity

and increase the modularity of large systems, especially after several refinements. Main

benefits are the distribution of POs over the sub-components which are expected to be

easier to be discharged and the further refinement of independent sub-components in

parallel introducing team development of a model. Our goal is to develop a robust tool

to model distributed systems that can be used by academic institution and industrial

companies.

The decomposition benefits has been exploited as seen in the literature: [30, 29] study

the formal development of MAS (Multi-Agent Systems) which are complex distributed

systems to be used for critical applications using abstraction and decomposition for clas-

sical B and Event-B. Lanoix [110] also studies MAS using shared variable decomposition

to model a platoon of vehicles using Event-B. Butler [44] uses the shared event approach

in classical B to decompose a railway system into three sub-components: Train, Track

and Communication. The system is modelled and reasoned as a whole in an event-

based approach, both the physical system and the desired control behaviour.Go and

Shiratori [83] propose an automatic decomposition method using LOTOS [98]: the cor-

rectness is ensured if the combined behavior of decomposed sub-specifications is the

same as the system’s behavior before the decomposition. The method decomposes a

process into two processes composed by the parallel operator and automatically gener-

ates an additional process that gives some information about the synchronization. The

additional process corresponds to the middleware in a shared event decomposition in

Event-B. Rezazadeh and Butler [148] use classical B to model a distributed monitoring

and control system for vehicles entering and leaving a controlled area. After some refine-

ments, the model is decomposed into asynchronous sub-systems. Rezazadeh [147] and

Butler [149] introduce some guidelines for formal development of web-based applications

(distributed systems that can be accessed using a Web browser) in B-method. That for-

mal modelling considers only safety properties and a decomposition is suggested based

on the CSP style message-passing channels. Iliasov [96] suggests a kind of decomposition

based on modularization. The modules are introduced as a special case of shared vari-

able decomposition by modelling sequential systems and Event-B is extended to model a

system in the space domain. Separation logic [146, 144], an extension of the Hoare logic,

supports reasoning about shared mutable data structures in a “bottom-up” approach

where sub-components are put together and some composition properties can be proved.

Such an approach is different from ours: we follow a “top-down” approach proving the

global properties in the abstraction and decomposing only after proving the composi-

tion properties. Nevertheless Hoare and O’Hearn [93] combine the concurrent separation

logic (CSL) and CSP aiming to reason about the communication between concurrent

processes. In this work, trace semantics of parallel composition uses a composition op-
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eration on traces that partition channel ends between processes. The communication

occurs via point to point channels with value passing messages not covering divergence

nor refusals. The traces of parallel processes correspond to the separation conjunction

of the processes traces: traces(P ‖ Q) = traces(P ) ∗ traces(Q) where the alphabet

of processes P and Q are disjoint. Comparing to our shared event decomposition also

based in the CSP, value passing channels correspond to sub-components events that

communicate via shared parameters.

There is a need for modularisation and reuse of sub-components in order to model large

systems and manage better the respective POs. Event-B lacks a sub-component mech-

anism. Thus we propose to tackle that problem through the decomposition of a system

by their events or variables. The shared variable (state-based) approach is suitable

for designing parallel algorithms while the shared event (event-based) is suitable for

message-passing distributed systems [45]. Following any of these two approaches, the

parallel components of a distributed system can be refined and decomposed separately

without making any assumptions about the rest of the system. The shared variable

style relies on the work of Abrial and Hallerstede [15] where variables are shared and

exists the notion of external events. Butler [45] suggests the shared event decomposition

where events are partitioned through the sub-components and the interaction occurs via

shared parameters. The work developed by Butler in [40] for action system is strongly

related with the same approach for shared event decomposition in Event-B [45] as both

approaches are state-based formalism combined with event-based CSP. The end-user

chooses a decomposition style depending on specific systems and on its modelling pref-

erences. The decomposition configuration is stored persistently for replaying/editing

although further study is still required for this matter. We present an example of the

different styles of decomposition. A tool was developed to model distributed systems

in the Rodin platform that can be used by the industry (cf. Sect. 5.5). A visualisation

view for decomposition seems intuitive and we intend to explore it using GMF [82].





Chapter 5

Tool Support

The adoption of a technology or even a theory in detriment of another can rely on the

tool support [89]. The efficiency of the tool, how practical it is, the range of problems

it can solve and user support are some of the important points when developing a

tool. Formal methods are not different: tool support is important to add automation,

efficiency and ease the task of developing formal models. Mathematical rigour enables

modellers to analyse and verify models at any part of the program lifecycle: requirements

engineering, specification, architecture, design, implementation, testing, maintenance,

and evolution [188]. To a long time, formal methods has been primarily restricted to

various research organisations. However, it is becoming apparent that formal methods

is in the transition process from academic research to industrial application. Formal

methods tools are also in the process of transition from academic toys to industrial-

strength tools [58]. In this document we address this topic by giving tool support to the

previous described techniques: composition, decomposition and generic instantiation.

5.1 Introduction

In the previous chapters, three techniques that help the modelling of complex systems

were described. The semantics behind each one of the techniques and their advan-

tages/disadvantages were explained with the usage of small examples. Nevertheless the

broad usage of such techniques requires tool support to allow automation, to ease the

user’s effort of applying the techniques and to be more efficient. Moreover, the tool

implementation ofter unveils constraints that are not taken into account while study-

ing the techniques such as scaling, optimisation or miscellaneous other issues. A user

friendly tool can be a powerful support to a defined theory and often is the reason why

the theory may be adopted or not. Therefore we strive to have suitable tool support not

only to more easily test the strength of the technique but also to allow others to quickly

use it.

107
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As aforementioned, the Rodin platform [151] is the result of an EU research project.

It is a software toolset, based on modern software programming tools developed to use

Event-B notation. It is open source, based on Eclipse Platform [66] and it works has

a complement for rigorous modelling developments [49]. The aim is to benefit industry

by permitting the integration of any necessary functionality in the same tool. Rodin

contains a Static Checker that analyses Event-B components for syntactical errors (well-

formedness and typing of models), a Proof Obligation Generator for generating PO and

these obligations can be discharged by a theorem prover. An important Rodin feature is

the high level of extensibility reflected by, for instance, the ability to contribute plug-ins.

Plug-ins are components providing a certain type of service within the context of the

Eclipse workbench. By components here we mean objects that may be configured into a

system at system deployment time [66], such as the default theorem prover (B4free [21])

or model checking systems (ProB [141]). Three tools (plug-ins) resulted from the study

of the three previous techniques: shared event composition plug-in, refactory plug-in

and decomposition plug-in. These were developed for the Rodin platform although the

methodology behind them could be implemented in other platforms and even for other

formalisms.

This chapter is organised as follows: we described the tool support for shared event

composition in Section 5.2. After the generic instantiation (Section 5.3) and refactory

(Section 5.4) are outlined. Section 5.5 illustrates the decomposition tool before the

conclusions in Section 5.6.

5.2 Shared Event Composition Plug-in

A plug-in for composed machines was developed to support the shared event composition.

We extend the Rodin static checker to validate composed machines based on checks

defined in Sect. 2.3.2. POs ought to be automatically generated over the composed

machines. Currently this feature is not available but we will address this issue in the

future. The current solution to address POs is to generate a standard machine from

the composed machine. In Fig. 5.1(a), composed machine cM2 includes machines M3

and M4. cM2 is then “expanded” as a standard machine M2′ which itself refines

abstract machine M1. The composition POs (including refinement) are generated in

M2′. Generating a new machine allows the further development of the composed model.

Moreover the inspection of the composed events is beneficial based on the experience of

using the tool. In the future, we would like to still have the option to generate a new

machine, but the POs should be discharged at the composed machine as depicted in

Fig. 5.1(b).
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(a) (b)

Figure 5.1: Composition structure: current(a) and future(b)

5.2.1 Composed Machines

The tool implementation follows the structure described in Sect. 2.3.1 as seen in Fig. 5.2.

A new constructor is added to the Event-B syntax. This constructor, composed machine,

allows standard machines to be included : they are structured and saved in a single file.

The interaction between standard machines occur by defining which events are composed

in parallel. Moreover additional invariants, can be added to composed machine. This

is the only way to relate the state space of the included machines, since the machines

remain independent of each other. Composed machines can refine standard machines.

Consequently the abstract events must be refined by concrete ones to comply with the

refinement proof obligations.

In Fig. 5.2, composed machine Carriage M1 cmp (extracted from the case study in Chap-

ter 6) refines machine Carriage M1 and sees context Train C4. Moreover two machines

are included: Doors and CarriageInterface. In other words, we want to express that

Carriage M1 v Carriage M1 cmp ∧ Carriage M1 cmp ≡ (Doors ‖ CarriageInterface).

Moreover invariant inv1 is an additional invariant for this composed machine. There-

fore ICM (v Doors, v CarriageInterface) = I(v Doors) ∧ I(v CarriageInterface) ∧
carriage door = ∅, where v Doors, v CarriageInterface are the variables of machine

Doors and CarriageInterface respectively. The label in the front (Invariant not in-

cluded) means that the invariant clauses of the individual machines will not be in-

cluded if this composed machine is “expanded” as explained in Sect. 5.2. The interac-

tion is achieved with the composition of events: the initialisation events are composed

in parallel; also the composed event openDoors result from the composition of event

Doors.openDoors and CarriageInterface.openDoors. This composed event refines

the abstract event Carriage M1.openDoors. More composed events can be added in

a similar fashion. As future work, proof obligations should be generated directly for

composed machines.
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Figure 5.2: Pretty print of the composed machine tool

5.3 Generic Instantiation Plug-in

Generic instantiation is a technique to help the development of models. In particular

if a development matches or fits an existing pattern, that pattern (and possibly its

refinement chain) can be instantiated and reused. This is particular interesting when

we are targeting multiple instances of a generic pattern because we can benefit from the

existing proofs of the pattern (that are expected to be discharged) and customise the

instance according to a particular purpose.

In Sects. 3.3.3 and 3.5.3, we suggest a methodology for the implementation of the generic

instantiation of Event-B machines through instantiated machine (Fig. 5.3) and instan-

tiated refinement 5.4 files. The instantiation is a result of the mandatory replacement

of pattern’s sets and constants and the optional renaming of variables, parameters and

events. The user needs to supply an instance context to be used for the replacement of

sets and constants (context D in Fig. 5.3). Furthermore if the instance corresponds to a

refinement of an existing development, the abstract machine (M0) needs to be specified.

Consequently, refinement proof obligations are generated and need to be discharged by

the user.

For instantiated refinements, a pattern refinement chain is instantiated. We define as the
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INSTANTIATED MACHINE IM
INSTANTIATES M VIA Ctx
REFINES M0 /* abstract machine */
SEES D /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets */
CONSTANTS C1 := DC1, . . . , Cn := DCn /* Constants */

RENAME /*rename elements in machine M */
VARIABLES v1 := nv1, . . . , vq := nvq /* optional */
EVENTS ev1 := nev1 /* optional */

p1 := np1, . . . , ps := nps /* parameters: optional */
:
evr := nevr

END

Figure 5.3: An Instantiated Machine

INSTANTIATED REFINEMENT IR
INSTANTIATES Mt VIA Ctxt
REFINES IR0 /* abstract machine */
SEES Dw /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets */
CONSTANTS C1 := DC1, . . . , Cn := DCn /* Constants */

RENAME /*rename variables, events and params in M1 to Mt */
VARIABLES v1 := nv1, . . . , vq := nvq
EVENTS ev1 := nev1 / ∗ optional ∗ /

p1 := np1, . . . , ps := nps / ∗ parameters :optional ∗ /
. . .

evr := nevr
END

Figure 5.4: An Instantiated Refinement

starting point of the instantiation the most abstract machine of the refinement chain (in

the future, the abstract machine selection might be more flexible). Besides the instance

context (Dw in Fig. 5.4), the mandatory replacement of sets and constants and the

definition of the abstract machine (IR0), the modeller is given the choice to explicitly

define the last refinement machine to be refined (machine Mt).

The output of the instantiation is a new Event-B machine/refinement chain similar to

the pattern apart from the differences originated by the renaming and replacements

according to instantiated machine/refinement. Moreover to reuse the pattern proofs,

pattern axioms must be preserved in the instance and therefore theorems (refactored

from the pattern axioms) are automatically generated in the instances.

Although the structure of instantiated machines and instantiated refinements are de-

fined, we were not able to develop the tool support for instantiation due to time con-

straints. We also intend to build a library of patterns that could easily be instantiated.

This library should be categorised according to the formal modelling pattern as sug-

gested by Stepney [178]. Nevertheless the need to rename Event-B model elements, in

particular when the renaming involved a refinement chain, was strong enough for tool

support to be developed. That tool is intended to be used as part of generic instantiation

tool support. The renaming refactory framework is described in more detail in the next

section.
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5.4 Renaming Refactory Framework

The instantiation implies the renaming/replacing of some properties in the pattern. A

renaming supporting tool is required in a tool implementation of generic instantiation.

Moreover one of the most recurring requirements from users of the Rodin platform is

to have simple means for renaming modelling elements. Users want to have a unique

operation that will rename an element both at its declaration and all its occurrences. A

renaming operation entails that the renaming of an element does not modify its existing

proof state (no loss of proof) [160]. These requirements fall in the more general context

of refactoring. In software engineering, “refactoring source code” means improving the

source code without changing its overall results, and is sometimes informally referred

to as “cleaning it up”. In the case of the Rodin platform, the refactoring framework

is not intended to change the overall behaviour of the files/elements nor losing proofs.

Note that this tool is also useful for the shared event composition (Sect. 5.2) where

the occurrence of variables with the same name results in the renaming of at least one

of them (shared variables are not allowed). This section describes the developed work

for the renaming/refactory framework, giving an overview of the architecture and how

the framework works. Initially the renaming framework was designed and developed by

Stefan Hallerstede and Sonja Holl [94].

The basic requirement for the renaming framework is the ability to rename Event-

B elements. Moreover renamings involving machine refinements or context extensions

should propagate through all the occurrences of the elements even in different files

keeping the consistency of the model. “Renaming” simply renames the free identifiers

and by checking possible renaming clashes we ensure that we are not changing the

meaning of the model (apart from the change of names or labels). As a consequence,

the overall proof obligations state should not change after the renaming.

Figure 5.51 shows the renaming framework architecture. It is considered a framework

because it is designed in a generic way allowing the incorporation of other languages

(i.e. not restricted to Event-B).

The renaming framework is an Eclipse plug-in [66, 36]. The renaming operation starts

at the RefactoryManager which loads the refactoring tree in the extension points. The

refactoring tree corresponds to the structure of the language to be used: that structure

is used to navigate and find occurrences in the files. Afterwards Operation Scheduler re-

trieves the related files, the symbols (possible name clashes) and the individual renaming

operations (renaming operation is different for each element) to be applied. The run()

method checks for possible clashes, returns a clash report and requests a confirmation

before executing the renaming. Upon confirmation, the renaming is propagated in a

“top-down” style (from the abstract to the concrete level) throughout the model and

1Extracted from [160] and designed by Stefan Hallerstede and Sonja Holl
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Figure 5.5: Renaming/Refactory Architecture

related files. The possible clashes are overestimated: if the files are somehow related (for

instance, two machines share the same context but are not a refinement of each other)

a clash can be reported. Currently the refactory plug-in also uses the Rodin Indexer

plug-in [184] to accelerate the search of elements and find clashes.

The renaming can be applied to the following Event-B elements:

• variables

• carrier sets

• constants

• event parameters

• labelled elements like events, invariants, actions, guards, axioms

• machines

• contexts

Figure 5.62 represents the refactory trees when an invariant label is renamed.

The renaming operation creates a list of related files and proofs to be renamed according

to the refactory tree in the extension points.

2Extracted from [160] and designed by Hallerstede and Sonja Holl
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Figure 5.6: Refactoring Trees after processing the extension points

5.4.1 User interface

This section briefly describes how the renaming plug-in is used. After installing this plug-

in (available under the main Rodin Update site http://rodin-b-sharp.sourceforge.

net/updates) in the Event-B explorer perspective, the user selects the element to re-

name as seen in Fig. 5.7(a). After the introduction of the new name (Fig. 5.7(b)), a

list of related files is created and the possible clashes are reported as seen in Fig. 5.7(c).

Thereafter the user decides to proceed or not by confirming the renaming execution.

5.4.2 Renaming Proof Obligations

One of the initial requirements for the renaming plug-in is the renaming of proofs.

The current version (v1.1.0) supports the renaming of proofs including the renaming of

carrier sets (that was not possible in previous versions). In the Rodin platform, proof

obligations for a model are divided in three different files: Proof Obligation file (bpo),

Proof file (bpr) and Proof Status file (bps). The proof obligation (bpo) contains the

proof obligations generated by the Proof Generator (Sect. 1.5.7) for a model. The proof

file (bpr) contains the proof tree for each proof obligation including generated hypotheses

to be discharged, applied proof rules (device used to construct proofs of sequents) and

the elements (variables, carrier sets, constants, etc) that are part of the proof. Finally

the proof status file (bps) contains the state of the proof obligation: not proved or

discharged. Any change in the model regenerates a new bpo and bps file. The bpr files

are heavier (proof tree needs to be reconstructed and loaded to memory) so the proof

trees are reused whenever possible. For the renaming of proof obligation, three possible

solutions arised:

• Adding new hypotheses: after the renaming execution terminates, the proof obli-

http://rodin-b-sharp.sourceforge.net/updates
http://rodin-b-sharp.sourceforge.net/updates
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(a) Refactory menu

(b) New name wizard

(c) Report wizard

Figure 5.7: Refactory User Interface

gation files are updated by adding new hypotheses (something like old name =

new name) to the proof trees (in bpr files). This approach has its advantages

(fast, since proofs do not have to be replayed) and disadvantages (it is not really

refactoring since you can still see the old variables in the refactored proof). Also

it does not work for carrier sets (in Event-B, two carrier sets are always distinct).

• Renaming the proof obligation: the occurrences of the names to be changed

(old name) in the proof obligations are renamed to the new name (new name).

There are two possible implementations of this option:
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– Renaming proof tree: The occurrences of the old name are replaced with

new name at the level of the proof tree. The reasoners (generates proof

rules) for those proofs are rerun returning a new (renamed) version of the

original proof rule. The reasoners input elements in the style old name →
new name, which will be used to re-compute the reasoners recursively when

replaying the proof tree [123].

– Renaming proof files: just as machine and context files, the structure of

proof files is added to the plug-in extension-points (corresponding to bpr).

The result is renaming the occurrences directly over bpr whenever necessary.

The disadvantage of using this approach is the dependence on the proof file

structure: changes in the proof file structure would require the change of the

plug-in which is cumbersome.

We opt to use the second solution where proof trees are renamed. The leaves of the trees

need to be explored to find and rename all the occurrences but in the end, the proof

trees completely reflect the renamed element. The disadvantage is that the operation

can take some time to finish when there are many proof trees with several long leaves

(complex proofs). We intend to work on an optimisation of such renaming in the future.

5.5 Decomposition tool

Using the extensibility of the Rodin platform, a plug-in was developed for the semi-

automatic decomposition of models. The tool allows shared event and shared variable

decomposition. This work was developed in collaboration with Thai Son Hoang and

Carine Pascal. With Michael Butler, we agreed that the correct methodology to sup-

port decomposition should be different for each style: for shared variable decomposition,

the events to be allocated to each sub-component should be selected by the user; for the

shared event decomposition, variables instead are selected by the user; as much as pos-

sible, the rest of the decomposition process should not require the user’s input. Hoang

started the development of the tool by creating the interface corresponding to the de-

composition for the shared variable decomposition. Pascal continued that development

by introducing the required validations, creation of external external and shared vari-

ables. Our contribution was the development of the shared event approach in terms of

validations, splitting events, validating predicates and generating the sub-components.

Moreover, we developed the persistency file where the decomposition configuration can

be saved and re-run as many times as desired.

The decomposition originates sub-components according to the decomposition configu-

ration (allocation of variables). That configuration is stored persistently in a composed

machine (cf. Chapter 2 and [162]) for possible future reuse or editing as seen in Fig. 5.8.
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(a)

COMPOSED MACHINE CM
REFINES Mn

INCLUDES
N
P
Q

EVENTS
evt 1 REFINES Mn.evt 1

Combines Events N.evt 1 ‖ P.evt 1
. . .
evt n REFINES Mn.evt n

Combines Events P.evt n ‖ Q.evt n
END

(b)

Figure 5.8: Decomposition tool diagram for a machine Mn and composed machine
CM

The input for the decomposition is a machine of a given Rodin project selected by the

end-user. After the selection of decomposition configuration, the tool generates the

sub-components automatically. The steps to be followed in order to decompose are (we

decompose machine Mn in Fig. 5.8(a)):

1. End-user selects a machine Mn to decompose.

2. End-user defines sub-components to be generated: N, P, Q . . . .

3. End-user selects the decomposition style to use:

Shared Variable: end-user selects the events to be allocated to sub-components.

The tool automatically decomposes the rest of the model according to the

event partition (shared/private variables, external events).

Shared Event: the end-user selects the variables to be allocated for each sub-

component. The rest is done automatically.

4. The end-user can opt to decompose the seen contexts into the sub-components

similarly to the machine decomposition.

5. Sub-components are fulfilled according to the decomposition configuration. Invari-

ants depending on variables allocated to a single sub-component (private variables)

are automatically added.

6. The decomposition configuration is stored as a composed machine.

7. Sub-components N, P, Q . . . can be further refined.

For the shared event decomposition, a validation might be required to ensure that the

selected machine (Machine Mn) does not have complex predicates or assignments in-
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Figure 5.9: Graphical User Interface for the Decompositon tool

volving variables of different sub-components. That would be a hint that a further

requirement is required in the model before the decomposition.

The decomposition configuration is performed through a wizard using the Rodin’s Graph-

ical User Interface as depicted in Fig. 5.9. The decomposition configuration is stored

persistently for replaying/editing although further study is still required for this matter.

A visualisation view for decomposition seems intuitive and we intend to explore it using

GMF [82].

5.6 Conclusions

The progression and the maturity of formal methods shifted the way they are applied

nowadays. In the 1980s the application of the Z notation to the IBM CICS transaction

processing system was recognised as a major (award-winning) technical achievement,

but it is significant that it used only very simple tools: syntax and type-checkers. In the

1990s, the Mondex project was largely a paper-and-pencil exercise, but it still achieved

the highest level of certification [188]. Modelling and proving manually by hand it is still

possible but slowly the need for less error-prone methodologies, in particular for repet-

itive tasks, requires the use of tools. Developing tools to support the formal methods

process has been an activity that started with the first developments of formal methods

technology. Both the underlying formal methods technology and formal methods tools

have evolved substantially over the past four decades [58]. Today many people feel that

it would be inconceivable not to use some kind of verification tool [188]. Consequently

the tool development in formal methods and best practices to reach it are currently

subject of study within our community [107].

In this document, we address this topic by envisaging tool support to the previous

described techniques: composition, decomposition and generic instantiation. In all tech-

niques we have suggested methodologies for the implementation of tools. Nevertheless

due to time constraints, only composition and decomposition have more elaborated tool
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support. As a result of our study, we addressed the need of other tools (such as refac-

toring of Event-B elements throughout refinement chain while maintaining the validity

of discharged proofs). Our goal was to develop prototype tools that with experience and

application to more complex case studies, could become more mature and robust. Con-

sequently further challenges regarding formal modelling to be found and tackled. And

even as prototypes, the developed plug-ins have been used already to model different

systems such as flash systems [62, 60], a spacecraft system [73] or cruise control sys-

tem [190], among others with success. With the received feedback, the tools undertook

several changes resulting in performance improvements, becoming more user friendly

and sometimes having additional features. There are still plenty of tool challenges to be

explored and developed as described in Chapter 7.





Chapter 6

Case Study

A case study involving the specification and refinement of an Event-B model is presented.

This chapter describes how the techniques presented in the previous chapters may be

used in practice. Throughout the case study, some design rules for Event-B are presented.

These rules are specialisations of Event-B techniques already presented. These rules were

suggested by the needs of the case study, but are general enough to be useful in other

cases.

6.1 Introduction

Case studies can be described as a process or record of research in which detailed con-

sideration is given to the development of a particular matter over a period of time. They

have two main purposes: the explanation and description of the application of a par-

ticular technique (illustration purposes) and to validate the usefulness of the technique

in a variety of systems (validation purpose). The described case study fulfils the first

purpose: modelling a complex system from an abstraction to a more concrete model.

Consequently the number of events, variables and proof obligations increase in a way

that the model starts becoming hard to manage. Therefore a suitable solution at this

stage is to use our decomposition technique. This procedure is repeatedly applied to

the rest of the refinements. The application of decomposition in simple, abstract cases

has very little or no real advantage. As aforementioned in Section. 4.4, the point of

decomposition (correct abstraction level) is important, since if it is done too early, the

sub-component might be too abstract and will not be able to be refined (without know-

ing more about the other sub-systems); if the system is decomposed too late, it will not

benefit from the approach anymore. Therefore the application of decomposition only

occurs after several refinements as expected.

The second purpose of case studies is usually achieved through the development of

different models that represent different kind of systems. Their application allows the

121
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assessment of techniques, their suitability, advantages and disadvantages when applied

in different manners. Besides the case study in this chapter, the presented techniques

have already been used for different systems:

• Flash System Development [62, 60]: use of shared event composition and decom-

position.

• Decomposition of a Spacecraft System [73]: use of shared event decomposition.

• Development of a Cruise Control System [190]: use of shared event composition

and decomposition.

• Development of a Pipeline System [56, 12]: use of shared event composition and

decomposition.

• Development of Parallel Programs [90]: use of shared variable decomposition over

shared data accessed by different components.

• Development of a Multi-directional Communication Channel [163]: use of generic

instantiation.

Here, a safety-critical metro system case study is developed. This version is a simplified

version of a real system but tackles points where there the model becomes complex and

where the presented techniques are suitable: stepwise incrementation of the complexity

of the system being modelled, sub-components communication, stepwise addition of

requirements at each refinement level, refinement of decomposed sub-components. We

develop a metro system model introducing several details including notion of tracks,

switches, several safety measures and doors functionality among others. If the presented

techniques were not used, the metro system model would be extremely complex and hard

to manage after the inclusion of all the requirements due to the high number of variables,

events, properties to be added and proof obligations to be discharged. Decomposition

and generic instantiation alleviate that issue by introducing modularity and reusing

existing sub-components allowing further manageable refinements to be reached.

The metro doors requirements are based on real requirements. The case study is devel-

oped in the Rodin platform using the developed tools whenever possible. We use the

shared event composition/decomposition and generic instantiation. The metro system

can be seen as a distributed system. Nevertheless the modelling style suggested can be

applied to a more general use.
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6.2 Overview of the safety-critical metro system

The safety-critical metro system case study describes a formal approach for the devel-

opment of embedded controllers for a metro system1. Butler [44] makes a description

of embedded controllers for a railway using classical B. The railway system is based

on the french train system and it was subject of study as part of the european project

MATISSE [121]. Our starting point is based on that work but applied to a metro sys-

tem. That work goes as far as our first decomposition originating three sub-components.

We augment that work by refining each sub-component, introducing further details and

more requirements to the model. Moreover in the end we instantiate emergency and

service doors for the metro system.

The metro system is characterised by trains, tracks circuits (also called sections or

CDV:Circuit De Voie, in French) and a communication entity that allows the interaction

between trains and tracks. The trains circulate in sections and before a train enters or

leaves a section, a permission notification must be received. In case of a hazard situation,

trains receive a notification to brake. The track is responsible for controlling the sections,

changing switch directions (switch is a special track that can be divergent or convergent

as seen in Fig. 6.1) and sending signalling messages to the trains.

(a) Divergent Switch (b) Convergent Switch

Figure 6.1: Different types of Switches: divergent and convergent

Figure 6.22 shows a schematic representation of the metro system decomposed into three

sub-components. Initially the metro system is modelled as a whole. Global properties

are introduced and proved to be preserved throughout refinement steps. The abstract

model is refined in three levels (MetroSystem M0 to MetroSystem M3 ) before we apply

the first decomposition. We follow a general top-down guideline to apply decomposition:

Stage 1 : Model system abstractly, expressing all the relevant global system properties.

Stage 2 : Refine the abstract model to fit the decomposition (preparation step).

Stage 3 : Apply decomposition.

Stage 4 : Develop independently the decomposed parts.

1A version of this model is available online at http://eprints.ecs.soton.ac.uk/23135/
2Image extracted from [44]

http://eprints.ecs.soton.ac.uk/23135/
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For instance, Stage 1 is expressed by refinements MetroSystem M0 to MetroSystem M3.

MetroSystem M3 is also used as the preparation step before the decomposition corre-

sponding to Stage 2. The model is decomposed into three parts: Track, Train and

Middleware as described in Stage 3. This step allows further refinements of the indi-

vidual sub-components corresponding to Stage 4. The following decompositions follow

a similar pattern.

 

  

 AcceptMsg DeliverMsg 

ChangeSwitchDiv 

ChangeSwitchCnv 

EnterSection 

LeaveSection 

SendTrainMsg 

COMMS 

TRACK TRAINS 

Check 

Brake 

Figure 6.2: Components of metro system

An overview of the entire development can be seen in Fig. 6.3. After the first decompo-

sition, sub-components can be further refined. Train global properties are introduced in

Train leading to several refinements until Train M4 is reached. Train M4 is decomposed

into LeaderCarriage and Carriage. We are interested in refining the sub-component cor-

responding to carriages in order to introduce doors requirements. These requirements

are extracted from real requirements for metro carriage doors.Carriage is refined and

decomposed until it fits in a generic model GCDoor corresponding to a Generic Carriage

Door development as seen in Fig. 6.4. We then instantiate GCDoor into two instances:

EmergencyDoors and ServiceDoors benefiting from the refinements in the pattern. We

describe in more detail each of the development steps in the following sections.

6.3 Abstract Model: MetroSystem M0

We model a system constituted by trains that circulate in tracks. The tracks are di-

vided into smaller parts called sections. The most important (safety) global property

introduced at this stage states that two trains cannot be in the same section at the same

time (which would mean that the trains had clashed).

We need to ensure some properties regarding the routes (set of track sections):

• Route sections are all connected: sections should be all connect and cannot have

empty spaces between them.
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Figure 6.3: Overall view of the safety-critical metro system development

Figure 6.4: Carriage Refinement Diagram and Door Instantiation
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• There are no loops in the route sections: sections cannot be connected to each

other and cannot introduce loops.

These properties can be preserved if we represent the routes as a transitive closure

relation. We use the no-loop property proposed by Abrial [9] applied to model a tree

structured file system in Event-B [61]: a context is defined and this property is proved

over track section relations and functions. The reason we choose this formulation, instead

of transitive closure which is generally used is to make the model simpler and easier to

prove. Context TransitiveClosureCtx containing the transitive closure property can

be seen in Fig. 6.5.

context TransitiveClosureCtx  
 
constants cdvrel // type of relation on sections 
          tcl // transitive closure of an cdvrel 
          cdvfn // type of function on sections */ 
 
sets CDV // Track Sections 
 
axioms 
  @axm1 cdvrel = CDV ! CDV 
  @axm2 cdvfn = CDV " CDV 
  @axm3 tcl # cdvrel $ cdvrel 
  @axm4 %r·(r#cdvrel & r ' tcl(r)) // r included in tcl(r) 
  @axm5 %r·(r#cdvrel &r;tcl(r) ' tcl(r)) // unfolding included in tcl(r) 
  @axm6 %r,t·(r#cdvrel ( r't ( r;t't & tcl(r)'t) // tcl(r) is least 
  theorem @thm1 cdvfn ' cdvrel 
  theorem @thm2 %r·r#cdvrel & tcl(r) = r ) (r;tcl(r)) // tcl(r) is a fixed 
point 
  theorem @thm3 %t·t#cdvfn((%s·s't*[s]&s=+)&tcl(t),(CDV - id)=+  
theorem @thm4 tcl(+) = + 
end 
!

Figure 6.5: Context TransitiveClosureCtx

Set CDV represents all the track sections in our model. Constant tcl which is a transitive

closure, it is defined as a total function mapped from CDV ↔ CDV to CDV ↔ CDV .

Giving r ∈ CDV ↔ CDV , the transitive closure of r is the least x satisfying x =

r∪r;x [61]. Difficult transitive closure proofs in machines are avoided by using theorems

such as theorem thm3 shown in Fig. 6.5: for s ⊆ CDV and t as a partial function

CDV 7→CDV , s ⊆ t−1[s] means that s contains a loop in the t relationship. Hence, this

states that the only such set that can exist is the empty set and thus the t structure

cannot have loops. This theorem has been proved using the interactive prover of Rodin.

The strategy to prove this theorem is to use proof by contradiction [61].

We define the environment of the case study (static part) with context MetroSystem C0

that extends TransitiveClosureCtx as seen in Fig. 6.6. Set TRAIN represent all the

trains in our model. Several track properties are described in the axioms:

• The constant net represents the total possible connectivity of sections (all possible

routes subject to the switches positions) defined as relation CDV ↔CDV (axm1).

No circularity is allowed as described by axm2. Moreover, the no loop property
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context MetroSystem_C0 extends TransitiveClosureCtx 
 
constants aig_cdv // Switches 
          net // Total connectivity of sections */ 
          div_aig_cdv // divergent switches 1->2 
          cnv_aig_cdv // convergent switches 2->1 
          next0 
 
sets TRAIN 
 
axioms 
  @axm1 net ! CDV " CDV // net represents the connectivity between track sections /* 
  @axm2 net #(CDV $ id)=% // no cdv is connected to itself 
  @axm3 aig_cdv & CDV // aig_cdv is a subset of CDV representing cdv that are switches 
  @axm4 div_aig_cdv  & aig_cdv // div_aig_cdv ! aig_cdv 
  @axm5 cnv_aig_cdv & aig_cdv 
  @axm6 div_aig_cdv # cnv_aig_cdv = % 
  @axm7 finite(net) // explicite declaration to simplify the proving 
  @axm8 (aig_cdv ' aig_cdv) # net = % // switches are not directly connected 
  @axm9 (cc·(cc ! (CDV)aig_cdv) * card(net[{cc}]) +1 , card(net-[{cc}])+1) // non 
switch cdv has at most one successor and at most one predecessor 
  @axm10 (cc·( cc ! aig_cdv * ( (card(net[{cc}])+2 , card(net-[{cc}])+1) . ( 
card(net[{cc}]) +1 , card( net-[{cc}])+2 ))) // switch cdv has at most two predecessors  
and one successor or one predecessor and two successors 
  @axm11 tcl(net)#id=% // No-loop property 
  theorem @thm1 tcl(net) = net / (net;tcl(net))// the transitive closure of net is 
equal to net " net;tcl(net) 
end 
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 6.6: Context MetroSystem C0

for net is expressed by axiom axm11. Theorems thm1 states that net preserves

transitive closure.

• Switches (aiguillages in French) are sections (axm3) that cannot be connected

to each others (axm6). They are represented by aig cdv divided into two kinds:

div aig cdv for divergence switches and cnv aig cdv for convergent switches. More-

over switches have at most two predecessors and one successor or one predecessor

and two successors (axm10).

• Non-switches have at most one successor and at most one predecessor (axm9).

Besides the global property described before defined by invariant inv13 in Fig. 6.7(a),

some other properties of the system are added:

1. The trains (variable trns) circulate in tracks. The current route based on current

positions of switches is defined by next: a partial injection CDV 7� CDV . next

is a subset of net (inv1) preserving the transitive closure property as described

by theorem thm1,thm2 and does not have loops (thm3). Sections occupied by

trains are represented by variable occp. These sections also preserve the transitive

closure property as seen by thm4.

2. A train occupies at least one section and the section corresponding to the beginning

and end of the train is represented by variables occpA and occpZ respectively. Note

that next does not indicate the direction that a train is moving in: the direction

can be occpA to occpZ or occpZ to occpA. These two variables point to the same

section if the train only occupies one section (inv11).
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The system proceeds as follows: trains modelled in the system circulate by entering and

leaving sections (events enterCDV and leaveCDV in Fig. 6.7(b)), ensuring that the

next section is not occupied (grd9 in enterCDV ) and updating all the sections occupied

by the train (act1 and act2 in both events). At this abstract level, event modifyTrain

modifies a train defining the set of occupied sections for a train t. A train changes speed,

brakes or stops braking in events changeSpeed, brake and stopBraking. When event

brake occurs, train t is added to a set of braking trains (variable braking). Variable

next represents the current connectivity of the trail based on the positions of switches.

The current connectivity can be updated by changing convergent/divergent switches in

events switchChangeDiv and switchChangeCnv as seen in Fig. 6.7(b).

6.4 First Refinement: MetroSystem M1

MetroSystem M1 refines MetroSystem M0, incorporating the communication layer and

an emergency button for each train. The communication work as follows: a message is

sent from the tracks, stored in a buffer and read in the recipient train. The properties

to be preserved for this refinement are:

1. Messages are exchanged between trains and tracks. If a train intends to move to

an occupied section, track sends a message negating the access to that section and

the train should brake.

2. As part of the safety requirements, all trains have an emergency button.

3. While the emergency button is enabled, the train continues braking and cannot

speed up.

Now the system proceeds as follows: trains that enter and leave sections must take

into account the messages sent by the tracks. Therefore events corresponding to enter

and leaving section need to be strengthened to preserve this property. The requirement

concerning the space required for the train to halt is a simplification of a real metro

system and could require adjustments to replicate the real behaviour (for instance the

occupied sections of a train could be defined as the sum of the sections directly occupied

by the train and the sections indirectly occupied by the same train that correspond to the

sections required for the train to halt). Nevertheless in real systems, trains can have in-

built a way to detect the required space to break. For instance in Communication Based

Train Control (CBTC [97, 72]) systems, that is called the stopping distance downstream.

The messages are represented by variables tmsgs that stores the messages (buffer) sent

from the tracks and permit that receives the message in the train, expressing property

1. At this level, the messages are just boolean values assessing if a train can move to the
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machine MetroSystem_M0 sees MetroSystem_C0 
 
variables next // Currrent connectivity based on switch positions 
          trns // Set of trains on network 
          occp // Occupancy function for section 
          occpA // Initial cdv occupied by train 
          occpZ // Final   cdv occupied by train 
          braking speed 
 
invariants 
  @inv1 next ! net 
  @inv2 next " CDV # CDV 
  @inv3 trns ! TRAIN 
  @inv4 occp " CDV $ trns 
  @inv5 occpA " trns % CDV 
  @inv6 &tt·(tt"trns ' occpA(tt) " occp([{tt}]) 
  @inv7 occpZ " trns % CDV 
  @inv8 &tt·(tt"trns ' occpZ(tt) " occp([{tt}]) 
  @inv9 braking ! trns 
  @inv10 speed " trns % ) 
  @inv11 &tt·tt"trns * card(occp([{tt}])>1 ' occpA(tt) + occpZ(tt)  
  @inv12 finite(occp() 
  @inv13 &t1,t2·t1"trns * t2"trns * t1+t2 ' occp([{t1}],occp([{t2}]=- 
  theorem @thm1 next " cdvfn 
  theorem @thm2 tcl(next) = next . (next;tcl(next)) // tcl(next) is a fixed 
point 
  theorem @thm3 (&s·s!next([s]'s=-)'tcl(next),(CDV / id)=- // next has no 
loops 
  theorem @thm4 &tt,s·tt"trns * s ! next0occp([{tt}] ' tcl(s) = s .  
(s;tcl(s)) 
 
events 
  event INITIALISATION 
    then 
      @act1 next 1 next0 
      @act2 trns 1 - 
      @act3 occp 1 - 
      @act4 occpA 1 - 
      @act5 occpZ 1 - // occpZ ! " 
      @act6 braking 1 - 
      @act7 speed 1 - 
  end 
 
 
 
 
 
 
 
 
 
 

(a) Variables, invariants in MetroSystem M0

  event enterCDV 

    any t1 c1 c2 

    where 

      @grd1 t1 ! trns 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd5 c1 = occpZ(t1) 

      @grd6 c1!dom(next) 

      @grd7 c2 = next(occpZ(t1))  

      @grd8 "tt·tt!trns # card((occp $ {c2 % t1})&[{tt}])>1  

            ' (occpZ({t1 % c2})(tt) ) occpA(tt)  

      @grd9 c2 * dom(occp) 

    then 

      @act1 occpZ(t1) + c2 

      @act2 occp+occp $ { c2 % t1} 

  end 

 

  event leaveCDV 

    any t1 c1 c2 

    where 

      @grd1 t1 ! trns 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd5 c1!dom(next) 

      @grd6 c1=occpA(t1) 

      @grd7 c2=next(c1) 

      @grd8 occpA(t1))occpZ(t1) 

      @grd9 c2 ! (occp,{c1%t1})&[{t1}] 

      @grd10 "tt·tt!trns # card(((occp , {c1 % t1}))&[{tt}])>1  

             ' (occpA({t1 % c2})(tt))occpZ(tt) 

    then 

      @act1 occpA(t1)+c2 

      @act2 occp + occp,{c1%t1} 

  end 

 

  event changeSpeed 

    any t1 s1 

    where 

      @grd1 t1 ! trns 

      @grd2 s1 ! - 

      @grd3 t1! braking ' s1<speed(t1) 

    then 

      @act1 speed(t1) + s1 

  end 

 

 

 

 

 

 

  event brake 

    any t1 

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!trns"braking 

    then 

      @act1 braking#braking$ {t1} 

  end 

 

  event stopBraking 

    any t1 

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!braking 

    then 

      @act1 braking#braking"{t1} 

  end 

 

  event switchChangeDiv 

    any ac c1 c2 

    where 

      @grd1 ac ! div_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd8 c2 % ran (next) 

      @grd4 (ac & c1) ! next 

      @grd5 (ac & c2) ! net 

      @grd6 c1 ' c2 

      @grd7 ac % dom(occp) 

    then 

      @act1 next # next ( {ac & c2} 

  end 

 

  event switchChangeCnv 

    any ac c1 c2 

    where 

      @grd1 ac ! cnv_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd8 c2 % dom (next) 

      @grd4 (c1 & ac) ! next 

      @grd5 (c2 & ac) ! net 

      @grd6 c1 ' c2 

      @grd7 ac % dom (occp) 

    then 

      @act1 next # ({c1})next) $ {c2 & ac} 

  end 

 

 

 

 

 

  event addTrain 

    any t oc 

    where 

      @grd1 t ! TRAIN"trns 

      @grd2 oc ! CDV 

      @grd3 oc # dom(occp) 

    then 

      @act1 trns$trns %{t} 

      @act2 speed(t)$0 

      @act3 occpA(t) $ oc 

      @act4 occpZ(t) $ oc 

      @act5 occp $ occp % {oc&t} 

  end 

 

  event modifyTrain 

    any t ocA oc 

    where 

      @grd1 ocA!dom(next) 

      @grd2 t ! trns 

      @grd3 oc ' CDV 

      @grd4 ocA ! oc 

      @grd5 oc ( dom(occp)=) 

      @grd6 finite(oc) 

      @grd7 occpZ(t)!dom(next) 

      @grd8 card(oc)=0 *ocA = occpZ(t) 

      @grd9 card(oc)+1  

            * occpZ(t) , ocA - next(occpZ(t))!oc 

      @grd10 next(ocA)#oc 

    then 

      @act1 occpA(t) $ ocA 

      @act2 occp $ occp % (oc.{t}) 

   end 

end 
!

(b) Events of MetroSystem M0

Figure 6.7: Variables, invariant and events of MetroSystem M0
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following section (check if the section is free): if TRUE the train can move; if FALSE the

next section is occupied and the train should brake. New event sendTrainMsg models

the message sending. The reception of messages is modelled in event recvTrainMsg

where the message is stored in permit before tmsgs is reset. The guards of event

brake are strengthened to allow a train to brake when permit(t) = FALSE or when

the emergency button is activated (guard grd3 in Fig. 6.8(b)). Property 2 is expressed

by adding variable emergency button. The activation/deactivation of the emergency

button occurs in the new event toggleEmergencyButton. Property 3 is expressed by

guard grd3 in event stopBraking: a train can only stop braking if the emergency button

is not enabled.

machine MetroSystem_M1 refines MetroSystem_M0  sees MetroSystem_C0  

 

variables next trns occp occpA occpZ  

           braking speed  

           tmsgs permit emergency_button  

 

invariants 

  @inv1 tmsgs ! trns " #(BOOL) 

  @inv2 permit ! trns " BOOL 

  @inv3 emergency_button ! trns " BOOL 

 

events 

  event INITIALISATION 

    then 

      @act1 next $ next0 

      @act2 trns $ % 

      @act3 occp $ % 

      @act4 occpA $ % 

      @act5 occpZ $ % 

      @act6 braking $ % 

      @act7 speed $ % 

      @act8 tmsgs $ % 

      @act9 permit $ % 

      @act12 emergency_button $ % 

  end 

 

  event enterCDV refines enterCDV  

    any t1 c1 c2  

    where 

      @grd1 t1 ! trns 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd5 c1 = occpZ(t1) 

      @grd6 c1!dom(next) 

      @grd7 c2 = next(occpZ(t1))  

      @grd8 &tt·tt!trns ' card((occp ( {c2 ) t1})*[{tt}])>1  

            + (occpZ,{t1 ) c2})(tt) - occpA(tt)  

      @grd9 c2 . dom(occp) 

      @grd10 permit(t1)=TRUE 

    then 

      @act1 occpZ(t1) $ c2 

      @act2 occp$occp ( { c2 ) t1} 

  end 

 

  event leaveCDV refines leaveCDV  

    any t1 c1 c2  

(a) Variables and invariants in MetroSystem M1

  event brake refines brake 

    any t1 

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!trns"braking 

      @grd3 permit(t1) = FALSE  

            # emergency_button(t1)=TRUE 

    then 

      @act1 braking$braking % {t1} 

  end 

 

  event stopBraking refines stopBraking 

    any t1 

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!braking 

      @grd3 emergency_button(t1) = FALSE 

    then 

      @act1 braking$braking"{t1} 

  end 

 

  event sendTrainMsg 

    any t1 

    where 

      @grd1 t1 ! trns 

      @grd2 tmsgs(t1) = & 

    then 

      @act1 tmsgs(t1)$ {bool( 

           occpZ(t1)!dom(next) 

           'next(occpZ(t1)) ( dom(occp))} 

  end 

 

  event recvTrainMsg 

    any t1 bb 

    where 

      @grd1 t1 ! trns 

      @grd2 bb ! tmsgs(t1) 

    then 

      @act1 permit(t1) $ bb 

      @act2 tmsgs(t1) $ & 

  end 

 

  event switchChangeDiv refines switchChangeDiv 

    any ac c1 c2 

    where 

      @grd1 ac ! div_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 ( ac ) c1 ) ! next 

      @grd5 ( ac ) c2 ) ! net 

      @grd6 c2 ( ran (next) 

      @grd7 c1 * c2 

      @grd8 ac ( dom (occp) 

    then 

      @act1 next $ next + {ac ) c2} 

  end 

 

  event switchChangeCnv refines switchChangeCnv 

    any ac c1 c2 

event sendTrainMsg 

    any t1 

    where 

      @grd1 t1 ! trns 

      @grd2 tmsgs(t1) = " 

    then 

      @act1 tmsgs(t1)# {bool( 

           occpZ(t1)!dom(next) 

           $next(occpZ(t1)) % dom(occp))} 

  end 

 

event recvTrainMsg 

    any t1 bb 

    where 

      @grd1 t1 ! trns 

      @grd2 bb ! tmsgs(t1) 

    then 

      @act1 permit(t1) # bb 

      @act2 tmsgs(t1) # " 

  end 

 

  event toggleEmergencyButton 

    any t value 

    where 

      @guard t ! trns 

      @guard1 value ! BOOL 

    then 

      @act1 emergency_button(t)# value 

  end 

 

  event addTrain extends addTrain 

    then 

      @act6 tmsgs(t)#" 

      @act7 permit(t)#FALSE 

      @act8 emergency_button(t)#FALSE 

  end 

 

  event modifyTrain extends modifyTrain 

  end 

end 
!

event sendTrainMsg 

    any t1 

    where 

      @grd1 t1 ! trns 

      @grd2 tmsgs(t1) = " 

    then 

      @act1 tmsgs(t1)# {bool( 

           occpZ(t1)!dom(next) 

           $next(occpZ(t1)) % dom(occp))} 

  end 

 

event recvTrainMsg 

    any t1 bb 

    where 

      @grd1 t1 ! trns 

      @grd2 bb ! tmsgs(t1) 

    then 

      @act1 permit(t1) # bb 

      @act2 tmsgs(t1) # " 

  end 

 

  event toggleEmergencyButton 

    any t value 

    where 

      @guard t ! trns 

      @guard1 value ! BOOL 

    then 

      @act1 emergency_button(t)# value 

  end 

 

  event addTrain extends addTrain 

    then 

      @act6 tmsgs(t)#" 

      @act7 permit(t)#FALSE 

      @act8 emergency_button(t)#FALSE 

  end 

 

  event modifyTrain extends modifyTrain 

  end 

end 
!

(b) Some events of MetroSystem M1

Figure 6.8: Excerpt of MetroSystem M1

6.5 Second Refinement: MetroSystem M2

In this refinement, we introduce train doors and platforms where the trains can stop to

load/unload. When stopped, a train can open its doors. The properties to be preserved

are:

1. If a train door is opened, then the train is stopped. In contrast, if the train is

moving, then its doors are closed.
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2. If a train door is opened, that either means that the train is in a platform or there

was an emergency and the train had to stop suddenly.

3. A train door cannot be allocated to different trains.

We consider that platforms are represented by single sections. A train is in a platform

if one of the occupied sections correspond to a platform. Doors are introduced as illus-

trated in Fig. 6.9(a) by sets DOOR and their states are represented by DOOR STATE.

Variables door and door state represent the train doors and their current states as seen

in Fig. 6.9(b): all trains have allocated a subset of doors (inv2). Several invariants are

introduced to preserve the desired properties: property 1 is defined by invariants inv4

and inv5; property 2 is defined by invariant inv7; property 3 is stated by inv3; theorem

thm1 is used for proving purposes (if no doors are open, then all doors are closed).

To preserve inv5, the guards of changeSpeed (in Fig. 6.8(b)) are strengthened by

grd4 ensuring that whilst the train is moving, the train doors are closed. Also events

that model entering and leaving sections are affected, with the introduction of a sim-

ilar guard (grd11 in leaveCDV ). Adding/removing train doors is modelled in events

addDoorTrain and removeDoorTrain respectively: to add/remove a door, the respec-

tive train must be stopped. If the train is stopped and either one of the occupied sections

corresponds to a platform or the emergency button is activated (guard grd3), doors can

be opened as seen in event openDoor. For safety reasons, event toggleEmergencyButton

is strengthened by guard grd3 to activate the emergency button whenever doors are open

and the train is not in a platform.

6.6 Third Refinement and First Decomposition: MetroSys-

tem M3

This refinement does not introduce new details to the model. It corresponds to the prepa-

ration step before the decomposition. We want to implement a three way shared event

decomposition and therefore we need to separate the variables that will be allocated to

each sub-component. In particular for exchanged messages between the sub-components,

the protocol will work as follows: messages are sent from Track and stored in the Mid-

dleware. After receiving the message, the Middleware forwards it to the corresponding

Train. Train reads the message and processes it according to the content. This protocol

allows a separation between Train and Track with the Middleware working as a bridge

between these two sub-components.

The decomposition follows the steps described in Sect. 5.5. Variables are distributed

according to Fig. 6.10. To avoid constraints during the decomposition process, predi-

cates and assignments containing variables that belong to different sub-components are

rearranged in this refinement step.
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MetroSystem_C1

context MetroSystem_C1 extends MetroSystem_C0 

constants OPEN CLOSED PLATFORM 

sets DOOR_STATE DOOR 

axioms

  @axm1 partition(DOOR_STATE, {OPEN}, {CLOSED})

  @axm2 PLATFORM ! CDV

end

Page 1

(a) Context MetroSystem C1

machine MetroSystem_M2 refines MetroSystem_M1  sees MetroSystem_C1 

 

variables next trns occp occpA occpZ  

           braking speed tmsgs permit 

           door door_state emergency_button 

 

invariants 

  @inv1 door_state ! DOOR " DOOR_STATE 

  @inv2 door ! trns " #(DOOR) 

  @inv3 $t1,t2·t1 ! dom(door) % t2 ! dom(door) % t1 &t2  

        ' door(t1) ( door(t2) = ) 

  @inv4 $t·t ! dom(door) '(*d·d+door(t) % door_state[d]={OPEN}  

        ' speed(t)=0)  

  @inv5 $t·t ! dom(door) % speed(t) > 0  

        ' door(t) + door_state,[{CLOSED}]  

  @inv6 $t,d·t ! dom(door) % d ! door(t) % PLATFORM ( occp,[{t}]&)  

        ' door_state(d) ! {OPEN, CLOSED}  

  @inv7 $t·t ! dom(door) % door(t) ( door_state,[{OPEN}] & )  

        ' PLATFORM ( occp,[{t}]&) - emergency_button(t) = TRUE 

  theorem @thm1 $t·t ! dom(door) % door(t) ( door_state,[{OPEN}] =)  

           ' door(t)+door_state,[{CLOSED}] 

   

events 

  event INITIALISATION extends INITIALISATION 

    then 

      @act13 door .) 

      @act14 door_state . DOOR / {CLOSED} 

  end 

 

  event enterCDV refines enterCDV 

    any t1 

        /* Start occupying the successor of occpZ, i.e., 

           change from 

           ... -> 0 -> t1 -> ... -> t1 -> 0  -> 0 -> ... 

           to 

           ... -> 0 -> t1 -> ... -> t1 -> t1 -> 0 -> ... */ 

        c1 c2 

    where 

      @grd1 t1 ! trns 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd5 c1 = occpZ(t1) 

      @grd6 c1!dom(next) 

      @grd7 c2 = next(occpZ(t1)) // card(occp![{t1}])>1 " 

next(occpZ(t1)) # occpA(t1) 

      @grd8 $tt·tt!trns % card((occp 0 {c2 1 t1}),[{tt}])>1 ' 

(b) Variables, invariants in MetroSystem M2

  event toggleEmergencyButton  

  refines toggleEmergencyButton 

    any t value 

    where 

      @grd1 t ! dom(door) 

      @grd2 value ! BOOL 

      @grd3 door(t) " door_state#[{OPEN}] $ % 

            & PLATFORM " occp#[{t}]=%  

            ' value = TRUE 

    then 

      @act1 emergency_button(t)( value 

  end 

 

  event openDoor 

    any t ds 

    where 

      @grd1 t ! dom(door) 

      @grd2 speed(t) = 0 

      @grd3 occp#[{t}] " PLATFORM $ %  

            ) emergency_button(t) = TRUE 

      @grd4 ds * door(t) 

      @grd5 +d·d!ds'door_state(d)=CLOSED 

      @grd6 ds$% 

    then 

      @act1 door_state( door_state , (ds-{OPEN}) 

  end 

 

  event closeDoor 

    any t ds 

    where 

      @grd1 t ! dom(door) 

      @grd2 speed(t) = 0 

      @grd3 ds * door(t) 

      @grd4 door_state[ds]={OPEN} 

      @grd5 ds$% 

    then 

      @act1 door_state( door_state , (ds-{CLOSED}) 

  end 

 

 

 

 

 

 

 

 

 

  event addDoorTrain 

    any t d  

    where 

      @grd1 t ! trns 

      @grd2 d " DOOR 

      @grd3 #tr·tr!dom(door) $ tr%t  

         $ door(tr)%&'d(door(tr)=& 

      @grd5 speed(t)=0  

      @grd7 d(door(t)=& 

    then 

      @act1 door(t))door(t)*d  

      @act2 door_state) 

           door_state+(d,{CLOSED}) 

  end 

 

  event removeDoorTrain 

    any t d  

    where 

      @grd1 t ! dom(door) 

      @grd2 d " DOOR 

      @grd3 d " door(t)  

      @grd4 door_state[d]={CLOSED} 

      @grd5 speed(t)=0 

    then 

      @act1 door(t) ) door(t)-d 

  end 

 

  event addTrain extends addTrain  

    then 

      @act9 door(t))& 

  end 

 

  event modifyTrain extends modifyTrain  

  end 

end 
!

  event leaveCDV refines leaveCDV  
    any t1 c1 c2  

    where 

      @grd1 t1 ! dom(door) 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd5 c1!dom(next) 

      @grd6 c1=occpA(t1) 

      @grd7 c2=next(c1) 

      @grd8 occpA(t1)"occpZ(t1) 

      @grd9 c2 ! (occp#{c1$t1})%[{t1}] 

      @grd10 &tt·tt!trns  

      ' card(((occp # {c1 $ t1}))%[{tt}])>1  

      ( (occpA){t1 $ c2})(tt)"occpZ(tt) 

      @grd11 door(t1)*door_state%[{OPEN}]=+ 

      @grd12 permit(t1)=TRUE 

    then 

      @act1 occpA(t1),c2 

      @act2 occp , (occp#{c1$t1}) 

  end 

 

  event changeSpeed refines changeSpeed  

    any t1 s1  

    where 

      @grd1 t1 ! dom(door) 

      @grd2 s1 ! - 

      @grd3 t1! braking ( s1<speed(t1)  

      @grd4 door(t1)*door_state%[{OPEN}]=+ 

    then 

      @act1 speed(t1) , s1 

  end 

 

  event brake refines brake  

    any t1  

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!trns#braking 

      @grd3 permit(t1) = FALSE .  emergency_button(t1)=TRUE 

    then 

      @act1 braking,braking / {t1} 

  end 

 

  event stopBraking refines stopBraking  

    any t1  

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!braking 

      @grd3 emergency_button(t1) = FALSE 

    then 

      @act1 braking,braking#{t1} 

  end 

 

  event sendTrainMsg extends sendTrainMsg  

  end 

 

  event recvTrainMsg extends recvTrainMsg  

  end 

 

(c) Some events of MetroSystem M2

Figure 6.9: Excerpt of MetroSystem M2
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Figure 6.10: MetroSystem M3 (shared event) decomposed into Track, Train and
Middleware

Some guards need to be rewritten in the refined events. For instance, guard grd10

in event leaveCDV needs to be rewritten in order not to include both variables trns

(sub-component Train) and occp (sub-component Track). Therefore it is changed from:

∀tt·tt ∈ trns ∧ card((occp ∪ {c2 7→ t1})−1[{tt}]) > 1⇒ (occpZ �− {t1 7→ c2})(tt) 6= occpA(tt)

to:

∀tt·tt ∈ dom(occpZ)∧ card((occp ∪ {c2 7→ t1})−1[{tt}]) > 1⇒ (occpZ�−{t1 7→ c2})(tt) 6= occpA(tt) (Fig. 6.11).

Both predicates represent the same property since trns corresponds to the domain

of variable occpZ (see inv7 in Fig. 6.7(a)). In Fig. 6.11, the original guard grd3 in

toggleEmergencyButton is rewritten to separate variables occp and door. In this case,

an additional parameter occpTrns representing the variable occp is added (grd4). This

additional parameter will represent the value passing between the resulting decomposed

events: parameter occpTrns is written the value of occp and afterwards it is read in

guard grd3. Similarly guard grd4 in event openDoor must not include variables occp

and emergency button and consequently parameter occpTrns is added.

Sub-components Train, Track and Middleware are described in the following sec-

tions. The composed machine corresponding to the defined decomposition can be seen

in Fig. 6.12 where it is illustrated how the original events are decomposed.

6.6.1 Machine Track

Machine Track contains the properties concerning the sections in the metro system.

Events corresponding to entering, leaving tracks and changing switch positions are part

of this sub-component resulting from the variables allocation for this sub-component:

next, occp, occpA and occpZ. Event sendTrainMsg is also added since the messages are
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event toggleEmergencyButton  

refines toggleEmergencyButton 

    any t value occpTrns 

    where 

      @grd1 t ! dom(door) 

      @grd2 value ! BOOL 

      @grd3 door(t) " door_state#[{OPEN}] $ %  

            & PLATFORM " occpTrns=%  

            ' value = TRUE 

      @grd4 occpTrns = occp#[{t}] 

    then 

      @act1 emergency_button(t)( value 

  end 

 

 event openDoor refines openDoor 

    any t occpTrns ds 

    where 

      @grd1 t ! dom(door) 

      @grd2 speed(t) = 0 

      @grd3 occpTrns = occp#[{t}] 

      @grd4 occpTrns " PLATFORM $ %  

            ) emergency_button(t) = TRUE 

      @grd5 ds * door(t) 

      @grd6 +d·d!ds'door_state(d)=CLOSED 

      @grd7 ds$% 

    then 

      @act1 door_state( door_state , (ds-{OPEN}) 

  end 

 

  event closeDoor refines closeDoor  

    any t ds  

    where 

      @grd1 t ! dom(door) 

      @grd2 speed(t) = 0 

      @grd3 ds * door(t) 

      @grd4 door_state[ds]={OPEN} 

    then 

      @act1 door_state! door_state , (ds-{CLOSED}) 

  end 

 

  

  event addDoorTrain extends addDoorTrain  

  end 

 

  event removeDoorTrain extends removeDoorTrain  

  end 

end 
!

 event leaveCDV refines leaveCDV 

    any t1 c1 c2 

    where 

      @grd1 t1 ! dom(door) 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd5 c1!dom(next) 

      @grd6 c1=occpA(t1) 

      @grd7 c2=next(c1) 

      @grd8 occpA(t1)"occpZ(t1) 

      @grd9 c2 ! (occp#{c1$t1})%[{t1}] 

      @grd10 &tt·tt!dom(occpZ)  

             ' card(((occp # {c1 $ t1}))%[{tt}])>1  

             ( (occpA){t1 $ c2})(tt)"occpZ(tt) 

      @grd11 door(t1)*door_state%[{OPEN}]=+ 

      @grd13 permit(t1)=TRUE 

    then 

      @act1 occpA(t1),c2 

      @act2 occp , (occp#{c1$t1}) 

  end 

 

  event switchChangeDiv refines switchChangeDiv  

    any ac c1 c2  

    where 

      @grd1 ac!div_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 (ac ! c1) ! next 

      @grd5 (ac ! c2) ! net 

      @grd6 c2 " ran (next) // Added for helping the proving. Confirms that 

section(CDV) c2 is not the end connected of any other section 

      @grd7 c1 " c2 

      @grd8 ac " dom (occp) 

    then 

      @act1 next " next ) {ac ! c2} 

  end 

 

  event switchChangeCnv refines switchChangeCnv  

    any ac c1 c2  

    where 

      @grd1 ac ! cnv_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 c2 " dom (next) 

      @grd5 c1 ! ac ! next 

      @grd6 c2 ! ac ! net 

      @grd7 c1 " c2 

      @grd8 ac " dom (occp) 

    then 

      @act1 next " (({c1}#next) - {c2 ! ac}) 

  end 

Figure 6.11: Preparation step before decomposition of MetroSystem M3

sent from the tracks as seen in Fig. 6.13. The original events toggleEmergencyButton

and openDoor require occp in their guards. Consequently part of these original events

are included in this sub-component.

Note that the invariants defining the variables may change: in MetroSystem M1 variable

occp is defined as occp ∈ CDV ↔ trns (inv4 in Fig. 6.7(a)); in Track is occp ∈ CDV ↔
TRAIN (which is the same as theorem typing occp : occp ∈ P(CDV × TRAIN) in

Fig. 6.13). This is a consequence of the variable partition since trns is not part of

Track and therefore the occp relation is updated with trns’s type: TRAIN (cf. inv3 in

Fig. 6.7(a)). Variables occpA and occpZ are subject to the same procedure where the

original invariant is a total function trns→CDV and in the sub-component both become

P(TRAIN×CDV ). The sub-components invariants are derived from the different initial

abstract models (cf. their labels in Fig. 6.13). Invariants that only restrain the sub-

component variables are automatically included although additional ones can be added

manually.

6.6.2 Machine Train

Machine Train models the trains in the metro system. Trains entering/leaving a sec-

tion, modelled by events enterCDV and leaveCDV are part of this sub-component,

in spite of the decomposed events do not execute any actions (see Fig. 6.14(b)). The

interaction with sub-component Track occurs through parameters t1, c1 and c2 (see

events Track.leaveCDV in Fig. 6.13). Variables door and door state are part of this

sub-component and consequently the events that modify these variables: openDoor and

closeDoor. Moreover, since the emergency button is part of a train, the respective vari-

able emergencyButton (and the modification event toggleEmergencyButton) is also

included in this sub-component. Event recvTrainMsg receives messages sent to the
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COMPOSED MACHINE MetroSystem M3 cmp
REFINES MetroSystem M3
INCLUDES

Track Train Middleware
EVENTS

addTrain refines addTrain
Combines Events Train.addTrain ‖ Middleware.addTrain ‖Track.addTrain

modifyTrain refines modifyTrain
Combines Events Train.modifyTrain ‖Track.modifyTrain

sendTrainMsg refines sendTrainMsg
Combines Events Track.sendTrainMsg ‖ Middleware.sendTrainMsg

recvTrainMsg refines recvTrainMsg
Combines Events Train.recvTrainMsg ‖ Middleware.recvTrainMsg

changeSpeed refines changeSpeed
Combines Events Train. changeSpeed

brake refines brake
Combines Events Train.brake

stopBraking refines stopBraking
Combines Events Train.stopBraking

enterCDV refines enterCDV
Combines Events Train.enterCDV ‖ Track.enterCDV

leaveCDV refines leaveCDV
Combines Events Train.leaveCDV ‖ Track.leaveCDV

openDoor refines openDoor
Combines Events Train.openDoor ‖ Track.openDoor

closeDoor refines closeDoor
Combines Events Train.closeDoor

toggleEmergencyButton refines toggleEmergencyButton
Combines Events Train.toggleEmergencyButton ‖ Track.toggleEmergencyButton

addDoorTrain refines addDoorTrain
Combines Events Train.addDoorTrain

removeDoorTrain refines removeDoorTrain
Combines Events Train.removeDoorTrain

switchChangeDiv refines switchChangeDiv
Combines Events Track.switchChangeDiv

switchChangeCnv refines switchChangeCnv
Combines Events Track.switchChangeCnv

END

Figure 6.12: Composed machine tool view corresponding to MetroSystem M3 decom-
position

trains and the content is stored in the variable permit. Although variable permit is set

based on the content of the messages exchanged between Train and Track, that variable

is read by trains. This is the reason why it is allocated to this sub-component. The

events that change the speed of the train are also included in this sub-component: brake,

stopBraking, changeSpeed due to variables speed and braking as depicted in Fig. 6.14.

6.6.3 Machine Middleware

Finally the communication layer in modelled by Middleware as seen in Fig. 6.15. Mid-

dleware bridges Track and Trains, by receiving messages (sendTrainMsg) from the

tracks and delivering to the trains (recvTrainMsg). Variable tmsgs is used as a buffer.

Benefiting from the monotonicity of the shared event approach, the resulting sub-

components can be further refined. Following Fig. 6.3, Train is refined as described
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machine Track sees MetroSystem_C1  

 

variables next occp occpA occpZ  

 

invariants 

  theorem @typing_occpZ occpZ ! !(TRAIN " CDV) 

  theorem @typing_occp occp ! !(CDV " TRAIN) 

  theorem @typing_next next ! !(CDV " CDV) 

  theorem @typing_occpA occpA ! !(TRAIN " CDV) 

  @MetroSystem_M0_inv1 next # net 

  @MetroSystem_M0_inv2 next ! CDV ! CDV 

  @MetroSystem_M0_inv12 finite(occp$) 

 

  event sendTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

      @grd3 bb = bool (occpZ(t1)!dom(next)  

            % next(occpZ(t1))"dom(occp) ) 

  end 

 

events 

  event INITIALISATION 

    then 

      @act6 next " # 

      @act7 occp " # 

      @act8 occpA " # 

      @act9 occpZ " # 

  end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 event enterCDV 

    any t1 c1 c2  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd5 c1 = occpZ(t1) 

      @grd6 c1!dom(next) 

      @grd7 c2 = next(occpZ(t1)) 

      @grd8 "tt·tt!dom(occpZ)  

            # card((occp $ {c2 % t1})&[{tt}])>1  

            ' (occpZ({t1 % c2})(tt) ) occpA(tt) 

      @grd9 c2*dom(occp) 

    then 

      @act1 occpZ(t1) + c2 

      @act2 occp+occp $ { c2 % t1} 

  end 

 

  event leaveCDV 

    any t1 c1 c2  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd5 c1!dom(next) 

      @grd6 c1=occpA(t1) 

      @grd7 c2=next(c1) 

      @grd8 occpA(t1))occpZ(t1) 

      @grd9 c2 ! (occp,{c1%t1})&[{t1}] 

      @grd10 "tt·tt!dom(occpZ)  

             # card(((occp , {c1 % t1}))&[{tt}])>1  

             ' (occpA({t1 % c2})(tt))occpZ(tt) 

    then 

      @act1 occpA(t1)+c2 

      @act2 occp + (occp,{c1%t1}) 

  end 

 

  event switchChangeDiv 

    any ac c1 c2  

    where 

      @typing_ac ac ! CDV 

      @grd1 ac!div_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 (ac ! c1) ! next 

      @grd5 (ac ! c2) ! net 

      @grd6 c2 " ran (next) 

      @grd7 c1 ) c2 

      @grd8 ac " dom (occp) 

    then 

      @act1 next " next ( {ac ! c2} 

  event switchChangeCnv 

    any ac c1 c2  

    where 

      @typing_ac ac ! CDV 

      @grd1 ac ! cnv_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 c2 " dom (next) 

      @grd5 c1 ! ac ! next 

      @grd6 c2 ! ac ! net 

      @grd7 c1 ! c2 

      @grd8 ac " dom (occp) 

    then 

      @act1 next " (({c1}#next) " {c2 ! ac}) 

  end 

 

event openDoor 

    any t occpTrns ds  

    where 

      @typing_t t # TRAIN 

      @typing_occpTrns occpTrns # $(CDV) 

      @typing_ds ds # $(DOOR) 

      @grd3 occpTrns = occp%[{t}] 

      @grd7 ds!& 

  end 

 

  event toggleEmergencyButton 

    any t value occpTrns  

    where 

      @typing_t t # TRAIN 

      @typing_occpTrns occpTrns # $(CDV) 

      @grd2 value # BOOL 

      @grd4 occpTrns = occp%[{t}] 

  end  

end 

!

 

 event enterCDV 

    any t1 c1 c2  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd5 c1 = occpZ(t1) 

      @grd6 c1!dom(next) 

      @grd7 c2 = next(occpZ(t1)) 

      @grd8 "tt·tt!dom(occpZ)  

            # card((occp $ {c2 % t1})&[{tt}])>1  

            ' (occpZ({t1 % c2})(tt) ) occpA(tt) 

      @grd9 c2*dom(occp) 

    then 

      @act1 occpZ(t1) + c2 

      @act2 occp+occp $ { c2 % t1} 

  end 

 

  event leaveCDV 

    any t1 c1 c2  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd5 c1!dom(next) 

      @grd6 c1=occpA(t1) 

      @grd7 c2=next(c1) 

      @grd8 occpA(t1))occpZ(t1) 

      @grd9 c2 ! (occp,{c1%t1})&[{t1}] 

      @grd10 "tt·tt!dom(occpZ)  

             # card(((occp , {c1 % t1}))&[{tt}])>1  

             ' (occpA({t1 % c2})(tt))occpZ(tt) 

    then 

      @act1 occpA(t1)+c2 

      @act2 occp + (occp,{c1%t1}) 

  end 

 

  event switchChangeDiv 

    any ac c1 c2  

    where 

      @typing_ac ac ! CDV 

      @grd1 ac!div_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 (ac ! c1) ! next 

      @grd5 (ac ! c2) ! net 

      @grd6 c2 " ran (next) 

      @grd7 c1 ) c2 

      @grd8 ac " dom (occp) 

    then 

      @act1 next " next ( {ac ! c2} 

  event switchChangeCnv 

    any ac c1 c2  

    where 

      @typing_ac ac ! CDV 

      @grd1 ac ! cnv_aig_cdv 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 c2 " dom (next) 

      @grd5 c1 ! ac ! next 

      @grd6 c2 ! ac ! net 

      @grd7 c1 ! c2 

      @grd8 ac " dom (occp) 

    then 

      @act1 next " (({c1}#next) " {c2 ! ac}) 

  end 

 

event openDoor 

    any t occpTrns ds  

    where 

      @typing_t t # TRAIN 

      @typing_occpTrns occpTrns # $(CDV) 

      @typing_ds ds # $(DOOR) 

      @grd3 occpTrns = occp%[{t}] 

      @grd7 ds!& 

  end 

 

  event toggleEmergencyButton 

    any t value occpTrns  

    where 

      @typing_t t # TRAIN 

      @typing_occpTrns occpTrns # $(CDV) 

      @grd2 value # BOOL 

      @grd4 occpTrns = occp%[{t}] 

  end  

end 

!

Figure 6.13: Excerpt of Track

in the following section.

6.7 Refinement of Train : Train M1

In Train M1, carriages are introduced as parts of a train. Each carriage has an individual

alarm that when activated, triggers the train alarm (enables the emergency button of

the train). Each train has a limited number of carriages. Each carriage has a set of

doors and the sum of carriage doors corresponds to the doors of a train. The properties

to be preserved are:

1. There is a limit to the number (MAX NUMBER CARRIAGE) of carriages per

train.

2. Whenever a carriage alarm is activated, then the emergency button of that same

train is activated.

3. The sum of carriage doors corresponds to the doors of a train.

The definition of these requirements require the introduction of some static elements

like a carrier set CARRIAGE, constants MAX NUMBER CARRIAGE and

DOOR CARRIAGE (function between DOOR and CARRIAGE ). The latter is defined

as a constant because the number of doors in a carriage does not change. Context
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machine Train sees MetroSystem_C1  

 

variables trns speed permit braking emergency_button door_state door  

 

invariants 

  theorem @typing_trns trns ! "(TRAIN) 

  theorem @typing_door_state door_state ! "(DOOR # DOOR_STATE) 

  theorem @typing_braking braking ! "(TRAIN) 

  theorem @typing_speed speed ! "(TRAIN # $) 

  theorem @typing_permit permit ! "(TRAIN # BOOL) 

  theorem @typing_door door ! "(TRAIN # "(DOOR)) 

  theorem @typing_emergency_button emergency_button ! "(TRAIN # BOOL) 

  @MetroSystem_M0_inv3 trns % TRAIN 

  @MetroSystem_M0_inv9 braking % trns 

  @MetroSystem_M0_inv10 speed ! trns & ' 

  @MetroSystem_M1_inv2 permit ! trns & BOOL 

  @MetroSystem_M1_inv7 emergency_button ! trns & BOOL 

  @MetroSystem_M2_inv1 door_state ! DOOR & DOOR_STATE 

  @MetroSystem_M2_inv2 door ! trns & "(DOOR) 

  @MetroSystem_M2_inv3 (t1,t2·t1 ! dom(door) ) t2 ! dom(door) ) t1 *t2 + door(t1) , door(t2) = - 

  @MetroSystem_M2_inv4 (t·t ! dom(door) +(.d·d%door(t) ) door_state[d]={OPEN} + speed(t)=0) 

  @MetroSystem_M2_inv5 (t·t ! dom(door) ) speed(t) > 0 + door(t) % door_state/[{CLOSED}] 

  theorem @MetroSystem_M2_thm1 (t·t ! dom(door) ) door(t) , door_state/[{OPEN}] =-  

                                + door(t)%door_state/[{CLOSED}] 

 

events 

  event INITIALISATION 

    then 

      @act2 trns 0 - 

      @act3 speed 0 - 

      @act4 permit 0 - 

      @act5 braking 0 - 

      @act10 door 0- 

      @act11 emergency_button 0 - 

      @act12 door_state 0 DOOR # {CLOSED} 

  end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  event recvTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

(a) Variables and invariants in Train

  event recvTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

    then 

      @act2 permit(t1)"bb 

  end 

 

  event changeSpeed 

    any t1 s1  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_s1 s1 ! # 

      @grd1 s1 ! $ 

      @grd2 t1 ! dom(door) 

      @grd3 t1 ! braking % s1 < speed (t1) 

      @grd4 door(t1) & door_state'[{OPEN}] =( 

    then 

      @act1 speed (t1) " s1 

  end 

 

  event brake 

    any t1  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd1 t1 ! trns)braking 

      @grd2 t1 ! dom(emergency_button) 

      @grd3 permit(t1) = FALSE  

            * emergency_button(t1)=TRUE 

    then 

      @act1 braking " braking + {t1} 

  end 

 

event leaveCDV 

    any t1 c1 c2  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd1 t1 ! dom(door) 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd11 door(t1)&door_state'[{OPEN}]=( 

      @grd12 permit(t1)=TRUE 

  end 

 

 

  event stopBraking 

    any t1  

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!braking 

      @grd3 emergency_button(t1) = FALSE 

    then 

      @act1 braking"braking){t1} 

  end 

 

  event enterCDV 

    any t1 c1 c2  

  event leaveCDV 

    any t1 c1 c2  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd1 t1 ! dom(door) 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd11 door(t1)"door_state#[{OPEN}]=$ 

      @grd12 permit(t1)=TRUE 

  end 

 

  event openDoor 

    any t occpTrns ds  

    where 

      @typing_t t ! TRAIN 

      @typing_occpTrns occpTrns ! %(CDV) 

      @typing_ds ds ! %(DOOR) 

      @grd1 t ! dom(door) 

      @grd2 speed(t) = 0 

      @grd4 occpTrns " PLATFORM & $  

            ' emergency_button(t) = TRUE 

      @grd5 ds ( door(t) 

      @grd6 )d·d!ds*door_state(d)=CLOSED 

      @grd7 ds&$ 

    then 

      @act1 door_state+ door_state , (ds-{OPEN}) 

  end 

 

  event closeDoor 

    any t ds  

    where 

      @typing_t t ! TRAIN 

      @typing_ds ds ! %(DOOR) 

      @grd1 t ! dom(door) 

      @grd2 speed(t) = 0 

      @grd3 ds ( door(t) 

      @grd4 door_state[ds]={OPEN} 

      @grd5 ds&$ 

    then 

      @act1 door_state+ door_state , (ds-{CLOSED}) 

  end 

 

  event toggleEmergencyButton 

    any t value occpTrns  

    where 

      @typing_t t ! TRAIN 

      @typing_occpTrns occpTrns ! %(CDV) 

      @grd1 t ! dom(door) 

      @grd2 value ! BOOL 

      @grd3 door(t) " door_state#[{OPEN}] & $  

            . PLATFORM " occpTrns=$  

            * value = TRUE 

    then 

      @act1 emergency_button(t)+ value 

  end 

 

  event addDoorTrain 

    any t d  

event addDoorTrain 

    any t d  

    where 

      @typing_d d ! "(DOOR) 

      @typing_t t ! TRAIN 

      @grd1 t ! trns 

      @grd2 d # DOOR 

      @grd3 $tr·tr!dom(door) % tr&t  

            % door(tr)&' ( d)door(tr)=' 

      @grd5 speed(t)=0 

      @grd7 d)door(t)=' 

    then 

      @act1 door(t)*door(t)+d 

      @act2 door_state*door_state,(d-{CLOSED}) 

  end 

 

  event removeDoorTrain 

    any t d  

    where 

      @typing_d d ! "(DOOR) 

      @typing_t t ! TRAIN 

      @grd1 t ! dom(door) 

      @grd2 d # DOOR 

      @grd3 d # door(t) 

      @grd4 door_state[d]={CLOSED} 

      @grd5 speed(t)=0 

    then 

      @act1 door(t) * door(t).d 

  end 

 

  event addTrain 

    any t oc  

    where 

      @typing_t t ! TRAIN 

      @guard t ! TRAIN.trns 

      @grd1 oc ! CDV 

    then 

      @act1 trns*trns +{t} 

      @act2 speed(t)*0 

      @act7 permit(t)*FALSE 

      @act8 emergency_button(t)*FALSE 

      @act9 door(t)*' 

  end 

 

  event modifyTrain 

    any t ocA oc  

    where 

      @typing_ocA ocA ! CDV 

      @typing_oc oc ! "(CDV) 

      @typing_t t ! TRAIN 

      @grd2 t ! trns 

      @grd3 oc # CDV 

      @grd4 ocA ! oc 

      @grd6 finite(oc) 

      @grd10 speed(t)=0 

  end 

end 
!

  event recvTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

    then 

      @act2 permit(t1)"bb 

  end 

 

  event changeSpeed 

    any t1 s1  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_s1 s1 ! # 

      @grd1 s1 ! $ 

      @grd2 t1 ! dom(door) 

      @grd3 t1 ! braking % s1 < speed (t1) 

      @grd4 door(t1) & door_state'[{OPEN}] =( 

    then 

      @act1 speed (t1) " s1 

  end 

 

  event brake 

    any t1  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd1 t1 ! trns)braking 

      @grd2 t1 ! dom(emergency_button) 

      @grd3 permit(t1) = FALSE  

            * emergency_button(t1)=TRUE 

    then 

      @act1 braking " braking + {t1} 

  end 

 

event leaveCDV 

    any t1 c1 c2  

    where 

      @typing_t1 t1 ! TRAIN 

      @grd1 t1 ! dom(door) 

      @grd2 c1 ! CDV 

      @grd3 c2 ! CDV 

      @grd4 speed(t1)>0 

      @grd11 door(t1)&door_state'[{OPEN}]=( 

      @grd12 permit(t1)=TRUE 

  end 

 

 

  event stopBraking 

    any t1  

    where 

      @grd1 t1 ! TRAIN 

      @grd2 t1!braking 

      @grd3 emergency_button(t1) = FALSE 

    then 

      @act1 braking"braking){t1} 

  end 

 

  event enterCDV 

    any t1 c1 c2  

(b) Some events of Train

Figure 6.14: Excerpt of Train

Train C2 is depicted in Fig. 6.16(a). Several variables are added such as train carriage

relating carriages with trains and carriage alarm that is a total function between

CARRIAGE and BOOL, illustrated in Fig. 6.16(b). Property 1 is expressed by invari-

ant inv6 stating that trains have a maximum of MAX NUMBER CARRIAGE carriages.

Property 2 is defined in inv7 as seen in Fig. 6.16(b). Events activateEmergencyCarriage-

Button and deactivateEmergencyTrainButton refine abstract event toggleEmergencyBut-

ton: the first event enables a carriage alarm and consequently enables the emergency

button of the train; the later occurs when the emergency button of a train is active
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machine Middleware sees MetroSystem_C1  

 

variables tmsgs  

 

invariants 

  theorem @typing_tmsgs tmsgs ! "(TRAIN # "(BOOL)) 

 

events 

  event INITIALISATION 

    then 

      @act1 tmsgs $ % 

  end 

 

  event sendTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

      @grd1 t1 ! dom(tmsgs) 

      @grd2 tmsgs(t1)=% 

    then 

      @act1 tmsgs(t1) $ {bb} 

  end 

 

  event recvTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

      @grd1 t1 ! dom(tmsgs) 

      @grd2 bb ! tmsgs(t1) 

    then 

      @act1 tmsgs(t1)$% 

  end 

 

  event addTrain 

    any t oc  

    where 

      @typing_t t ! TRAIN 

      @grd1 oc ! CDV 

    then 

      @act6 tmsgs(t)$% 

  end 

end 

!

machine Middleware sees MetroSystem_C1  

 

variables tmsgs  

 

invariants 

  theorem @typing_tmsgs tmsgs ! "(TRAIN # "(BOOL)) 

 

events 

  event INITIALISATION 

    then 

      @act1 tmsgs $ % 

  end 

 

  event sendTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

      @grd1 t1 ! dom(tmsgs) 

      @grd2 tmsgs(t1)=% 

    then 

      @act1 tmsgs(t1) $ {bb} 

  end 

 

  event recvTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

      @grd1 t1 ! dom(tmsgs) 

      @grd2 bb ! tmsgs(t1) 

    then 

      @act1 tmsgs(t1)$% 

  end 

 

  event addTrain 

    any t oc  

    where 

      @typing_t t ! TRAIN 

      @grd1 oc ! CDV 

    then 

      @act6 tmsgs(t)$% 

  end 

end 

!

Figure 6.15: Machine Middleware

and corresponds to the deactivation of the last enabled carriage alarm which results in

deactivating the emergency button; a new event deactivateEmergencyCarriageButton

is added to model the deactivation of a carriage alarm when there is still another alarm

enabled for the same train (guards grd4 and grd5). The allocation and removal of

carriages (events allocateCarriageTrain and removeCarriageTrain) refine addDoorTrain

and removeDoorTrain respectively. In these two events, the parameter d representing

a set of doors, is replaced in the witness section by the doors of the added/removed

carriage: d = DOOR CARRIAGE−1[{c}]. We continue the refinement of Train in the

following section.

6.8 Second Refinement of Train : Train M2

In this refinement of Train, carriages requirements are added. We specify carriage

doors instead of the more abstract train doors. As a consequence, variable doors is

data refined and disappears. Each train contains two cabin carriages (type A) and two

ordinary carriages (type B) allocated as follows: A+B+B+A. Only one of the two cabin

carriages is set to be the leader carriage controlling the set of carriages and the moving

direction. Trains have states defining if they are in maintenance or if they are being

driven manually or automatically. More safety requirements are introduced: if the speed

of a train exceeds the safety maximum speed, the emergency brake for that train must

be activated. The abstract event representing the change of speed is refined by several

concrete events and includes the behaviour of the system when a train is above the

maximum speed. The properties to be preserved in this refinement are:

1. If a train is not in maintenance, then it must have the correct number of carriages

and the leader carriage must be defined already. Consequently, this is a condition

to be verified before the train can change speed.
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context Train_C1 extends MetroSystem_C1 

 

constants MAX_NUMBER_CARRIAGE  

           DOOR_CARRIAGE 

 

sets CARRIAGE 

 

axioms 

  @axm1 MAX_NUMBER_CARRIAGE ! "1  

  @axm2 DOOR_CARRIAGE ! DOOR#CARRIAGE 

  @axm3 $c·c!ran(DOOR_CARRIAGE) 

                %DOOR_CARRIAGE&[{c}]'( 

end 
!

(a) Context Train C1

machine Train_M1 refines Train  sees Train_C1  

 

variables trns speed permit braking door_state door emergency_button  

          train_carriage carriage_alarm  

 

invariants 

  @inv1 finite(trns) 

  @inv2 carriage_alarm ! CARRIAGE " BOOL 

  @inv3 train_carriage ! CARRIAGE # trns 

  @inv4 finite(train_carriage) 

  @inv5 finite(dom(train_carriage)) 

  @inv6 $t·t ! trns % card(train_carriage&[{t}])'MAX_NUMBER_CARRIAGE 

  @inv7 (c·(c ! dom(train_carriage) ) carriage_alarm(c) = TRUE  

  * c ! dom(train_carriage) ) emergency_button(train_carriage(c))= TRUE) 

  @inv8 $t·t!dom(door) % door(t)=DOOR_CARRIAGE&[train_carriage&[{t}]] 

 

events 

  event INITIALISATION 

    then 

      @act1 trns + , 

      @act2 speed + , 

      @act3 permit + , 

      @act4 braking + , 

      @act5 door +, 

      @act6 door_state + DOOR - {CLOSED} 

      @act7 carriage_alarm+ CARRIAGE - {FALSE} 

      @act8 train_carriage + , 

      @act9 emergency_button + , 

  end 

 

    event recvTrainMsg refines recvTrainMsg  

    any t1 bb  

    where 

      @typing_t1 t1 ! trns 

      @typing_bb bb ! BOOL 

    then 

      @act2 permit(t1)+bb 

  end 

 

  event changeSpeed refines changeSpeed  

    any t1 s1  

    where 

      @grd1 t1 ! TRAIN 

      @grd2 s1 ! . 

      @grd3 s1 ! / 

      @grd4 t1 ! dom(door) 

      @grd5 t1 ! braking % s1 < speed (t1) 

      @grd6 door(t1) 0 door_state&[{OPEN}] =, 

      @grd7 door(t1)1, 

    then 

      @act1 speed (t1) + s1 

  end 

 

  event brake extends brake  

  end 

 

  event stopBraking refines stopBraking  

    any t1  

    where 

(b) Variables and Invariants of Train M1

  event activateEmergencyCarriageButton  

  refines toggleEmergencyButton  

    any c occpTrns  

    where 

      @grd1 occpTrns ! "(CDV)  

      @grd2 c ! dom(train_carriage)  

      @grd3 carriage_alarm(c) = FALSE 

    with 

      @value value = TRUE 

      @t t = train_carriage(c) 

    then 

      @act1 carriage_alarm(c) # TRUE 

      @act2 emergency_button(train_carriage(c)) # TRUE 

  end 

 

  event deactivateEmergencyCarriageButton 

    any c  

    where 

      @grd1 c ! dom(train_carriage) 

      @grd2 emergency_button(train_carriage(c)) = TRUE 

      @grd3 carriage_alarm(c) = TRUE 

      @grd4 {c} $ (dom(carriage_alarm % {TRUE})  

                 & train_carriage'[{train_carriage(c)}])  

      @grd5 card(train_carriage%{train_carriage(c)})>1 

    then 

      @act1 carriage_alarm(c)# FALSE 

  end 

 

  event deactivateEmergencyTrainButton  

  refines toggleEmergencyButton  

    any c occpTrns  

    where 

      @grd1 occpTrns ! "(CDV)  

      @grd2 c ! dom(train_carriage)  

      @grd3 emergency_button(train_carriage(c)) = TRUE 

      @grd4 carriage_alarm(c) = TRUE 

      @grd5 {c} = (dom(carriage_alarm % {TRUE})  

                  & train_carriage'[{train_carriage(c)}]) 

      @grd6 door(train_carriage(c))&door_state'[{OPEN}] = (  

    with 

      @value value = FALSE 

      @t t = train_carriage(c) 

    then 

      @act1 carriage_alarm(c)# FALSE 

      @act2 emergency_button(train_carriage(c)) # FALSE 

  end 

 

  event alocateCarriageTrain refines addDoorTrain  

    any c t  

    where 

      @grd1 c ! CARRIAGE)dom(train_carriage) 

      @grd2 carriage_alarm[{c}]= {FALSE} 

      @grd4 *tr·tr!dom(door) + tr$t + door(tr)$( , DOOR_CARRIAGE'[{c}]&door(tr)=( 

      @grd5 t ! trns 

      @grd6 emergency_button(t) = FALSE 

      @grd7 finite(train_carriage'[{t}]) 

      @grd8 card(dom(train_carriage % {t}))<MAX_NUMBER_CARRIAGE 

      @grd9 speed(t)=0 

      @grd10 DOOR_CARRIAGE'[{c}] & door(t)=( // @grd11 t ! dom(door) " 

  event alocateCarriageTrain refines addDoorTrain 

    any c t 

    where 

      @grd1 c ! CARRIAGE"dom(train_carriage) 

      @grd2 carriage_alarm[{c}]= {FALSE} 

      @grd3 #tr·tr!dom(door) $ tr%t $ door(tr)%&  

            ' DOOR_CARRIAGE([{c}])door(tr)=& 

      @grd4 t ! trns 

      @grd5 emergency_button(t) = FALSE 

      @grd6 finite(train_carriage([{t}]) 

      @grd7 card(dom(train_carriage * {t})) 

                             <MAX_NUMBER_CARRIAGE 

      @grd8 speed(t)=0 

      @grd9 DOOR_CARRIAGE([{c}] ) door(t)=& 

    with 

      @d d=(DOOR_CARRIAGE([{c}]) 

    then 

      @act1 train_carriage(c)+ t 

      @act2 door(t)+door(t) , DOOR_CARRIAGE([{c}] 

      @act3 door_state+ 

        door_state-(DOOR_CARRIAGE([{c}].{CLOSED}) 

  end 

 

  event removeCarriageTrain refines removeDoorTrain 

    any c t 

    where 

      @grd1 t ! dom(door) 

      @grd2 c/t ! train_carriage 

      @grd3 carriage_alarm(c) = FALSE 

      @grd4 emergency_button(t) = FALSE 

      @grd5 speed(t)=0 

      @grd6 DOOR_CARRIAGE([{c}]0door(t) 

      @grd7 DOOR_CARRIAGE([{c}]%& 

      @grd8 door_state[DOOR_CARRIAGE([{c}]]={CLOSED} 

    with 

      @d d = (DOOR_CARRIAGE([{c}]) 

    then 

      @act1 train_carriage + {c}1train_carriage 

      @act2 door(t)+door(t)"DOOR_CARRIAGE([{c}] 

  end 

 

  event addTrain extends addTrain 

  end 

 

  event modifyTrain extends modifyTrain 

  end 

end 
!

(c) Some events of Train M1

Figure 6.16: Excerpt of machine Train M1

2. If a train is in maintenance, then it must be stopped.

3. If the speed of a train exceeds the maximum speed, the emergency brake must be

activated.

Figure 6.17(a) illustrates two new carrier sets: SIDE corresponding to which side a car-

riage door or a platform is located (constants LEFT or RIGHT ) and TRAIN STATE

that defines the state of a train (MAINTENANCE, MANUAL or AUTOMATIC).

There are some new constants added as well: CABIN CARRIAGE defined as a sub-
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set of CARRIAGE, NUMBER CABIN CARRIAGE defining the number of cabin

carriages allowed per train, DOOR SIDE defined as a total function between DOOR

and SIDE representing which side a door is located, MAX SPEED defining the up-

per speed limit for running a train before the activation of the emergency brake and

PLATFORM SIDE defining the side of a platform.

Figure 6.17 shows Train M2 where several new variables are introduced: leader carriage

defining the leader carriage for a train (inv6), trns state defining the state of a train

(inv8), emergency brake that defines which trains have the emergency brake activated

(inv11) and carriage door state defining the state of the carriage doors (inv15). More-

over door train carriage defines the train doors based on the carriages (inv2, inv3 and

inv4) and each door belongs to at most one train (inv4) although a train can have

several doors (inv2). This variable refines door that disappears in this refinement level,

plus some gluing invariants: inv1, inv5 and theorem thm2 state that the range of door

for a train t is the same as the range of door train carriage as long as t has doors.

Property 1 is expressed by inv9. Property 2 is expressed by inv10 and property 3

by inv12. inv13 and inv14 state that the doors in the domain of door state are the

same as the ones in carriage door state and therefore their state must match. Theorem

thm1 relates the carriages doors with variables door train carriage and train carriage.

Theorem thm3 states that the domain of carriage door state is a subset of the domain

of door state since both variables refer to the same set of doors.

New events are added defining the allocating of a leader carriage to a train (event

allocateLeaderCabinCarriageTrain in Fig. 6.17(c)). This event is enabled only if the

train is in maintenance (grd5), already has the required number of carriages (grd6)

but does not have a leader carriage yet (grd7). To deallocate the leader carriage in

event deallocateLeaderCabinCarriageTrain, the train must be in maintenance. A

train change state in event modifyTrain: to change to MAINTENANCE, the train

must be stopped (grd2); for the other states, the number of cabin carriages must be

NUMBER CABIN CARRIAGE and a leading carriage have to be allocated already

(grd3). Abstract event changeSpeed is refined by four events: two to increase the

speed (increaseSpeed and increaseMaxSpeed in Fig. 6.17(c)) and two to reduce the

speed (reduceSpeed and reduceMaxSpeed). If the speed of a train is increasing in a

way that is superior to MAX SPEED, event increaseMaxSpeed is enabled and if it

occurs, the emergency brake is activated. If the current speed of a train is superior to

MAX SPEED but the new speed is decreasing in a way that is inferior to the maximum

speed then the emergency brake can be deactivated (event reduceMaxSpeed).
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context Train_C2 extends Train_C1  

 

constants CABIN_CARRIAGE NUMBER_CABIN_CARRIAGE  

           LEFT RIGHT DOOR_SIDE PLATFORM_SIDE 

           MAINTENANCE MANUAL AUTOMATIC MAX_SPEED  

 

sets SIDE TRAIN_STATE  

 

axioms 

  @axm1 CABIN_CARRIAGE ! CARRIAGE 

  @axm2 NUMBER_CABIN_CARRIAGE " #1 

  @axm3 DOOR_SIDE " DOOR $ SIDE 

  @axm4 partition(SIDE, {LEFT}, {RIGHT}) 

  @axm5 partition(TRAIN_STATE, {MAINTENANCE}, 

        {MANUAL},{AUTOMATIC}) 

  @axm6 MAX_SPEED " #1 

  @axm7 PLATFORM_SIDE " PLATFORM $ SIDE 

  @axm8 finite(CABIN_CARRIAGE) 

  @axm9 PLATFORM %& 

  @axm10 CABIN_CARRIAGE%& 

  @axm11 CABIN_CARRIAGE! ran(DOOR_CARRIAGE) 

end 
!

(a) Context Train C2

machine Train_M2 

/* Introduction of more details about doors in the carriages. 

   Doors of a train is defined by the doors of each carriage that is part of that train 

   Each train contains two cabin carriages (A) and two ordinary carriages (B): A+B+B+A. 

   From the cabin carriages, only one is the leaderCarriage (all trains have a leaderCarriage when not in 

maintenance) 

   if the speed of a train is superior MAX_SPEED, then the emergency brake for that train should be 

activated 

   Based on the requirements sent by Dinho (Aryldo Russo) for Door System. */ 

 refines Train_M1  sees Train_C2 

 

variables trns speed permit braking door_state emergency_button train_carriage carriage_alarm 

leader_carriage trns_state emergency_brake carriage_door_state door_train_carriage 

 

invariants 

  @inv1 !t·t" dom(door_train_carriage) # t " dom(door) $ door(t) = door_train_carriage[{t}] $ door(t)%& 

  @inv2 door_train_carriage " trns ' DOOR 

  @inv3 door_train_carriage = (DOOR_CARRIAGE;train_carriage)( 

  @inv4 door_train_carriage(" DOOR ) trns 

  @inv5 !t·t" dom(door) $ door(t)%& # door(t) = door_train_carriage[{t}]  

  @inv6 leader_carriage " trns ) CABIN_CARRIAGE 

  @inv7 finite(leader_carriage) 

  @inv8 trns_state " trns * TRAIN_STATE 

  @inv9 !t,c·t"ran(train_carriage) $ trns_state(t)%MAINTENANCE $ c = train_carriage([{t}]  

        $ finite(CABIN_CARRIAGE) $ t " dom(leader_carriage) 

        # card(c+CABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE $ leader_carriage(t) " c 

  @inv10 !t·t"trns $ trns_state(t)=MAINTENANCE # speed(t)=0 

  @inv11 emergency_brake ,trns  

  @inv12 !t·((t"trns $ speed(t)>MAX_SPEED) # t " emergency_brake)  

  @inv13 carriage_door_state " DOOR_CARRIAGE * DOOR_STATE 

  @inv14 !d·d " dom(door_state) $ door_state(d)=OPEN # carriage_door_state(d-DOOR_CARRIAGE(d))=OPEN 

  @inv15 !d·d"dom(door_state)$door_state(d)=CLOSED # carriage_door_state(d-DOOR_CARRIAGE(d))=CLOSED    

  theorem @thm1 !c·c"ran(DOOR_CARRIAGE) $ c"dom(train_carriage)  

                 # DOOR_CARRIAGE([{c}],door_train_carriage[{train_carriage(c)}] 

  theorem @thm2 !c·c " dom(train_carriage) $ door(train_carriage(c)) + door_state([{OPEN}]=&  

           $ door(train_carriage(c))%& # DOOR_CARRIAGE([{c}],door(train_carriage(c))  

           $ DOOR_CARRIAGE([{c}] + door_state([{OPEN}]=&  

  theorem @thm3 dom(dom(carriage_door_state)) , dom(door_state) 

 

events 

  event INITIALISATION 

    then 

      @act1 trns . & 

      @act2 speed . & 

      @act3 permit . & 

      @act4 braking . & 

      @act5 door_state . DOOR / {CLOSED} 

      @act6 carriage_alarm . CARRIAGE / {FALSE} 

      @act7 train_carriage . & 

      @act8 emergency_button . & 

      @act9 leader_carriage . & 

      @act10 trns_state .& 

      @act11 emergency_brake .& 

      @act12 carriage_door_state . DOOR_CARRIAGE / {CLOSED} 

      @act13 door_train_carriage . & 

  end 

 

  event recvTrainMsg extends recvTrainMsg 

  end 

(b) Variables and Invariants

 

  event increaseMaxSpeed refines changeSpeed 

    any t1 s1 

    where 

      @grd1 s1 ! " 

      @grd2 t1 ! dom(door_train_carriage)#braking 

      @grd3 trns_state(t1) $ MAINTENANCE 

      @grd4 s1 > MAX_SPEED 

      @grd5 speed(t1)<s1 

      @grd6 t1 % emergency_brake 

      @grd7 speed(t1)& MAX_SPEED 

      @grd8 door_train_carriage[{t1}]  

            ' door_state([{OPEN}] =) 

      @grd9 door_train_carriage[{t1}]$) 

      @grd10 permit(t1)=TRUE 

    then 

      @act1 speed (t1) * s1 

      @act2 emergency_brake *emergency_brake + {t1} 

  end 

 

  event modifyTrain refines modifyTrain 

    any t state 

    where 

      @grd1 t ! trns 

      @grd2 state = MAINTENANCE , speed(t)=0 

      @grd3 card(train_carriage([{t}]'CABIN_CARRIAGE) 

             =NUMBER_CABIN_CARRIAGE  

             - t ! dom(leader_carriage)  

            - leader_carriage(t) ! train_carriage([{t}] 

      @grd4 state ! TRAIN_STATE  

      @grd5 state $ trns_state(t)  

    then 

      @act1 trns_state(t)*state 

  end 

end 
!

  end 

 

  event deactivateEmergencyCarriageButton extends deactivateEmergencyCarriageButton 

  end 

 

  event deactivateEmergencyTrainButton refines deactivateEmergencyTrainButton 

    any c 

    where 

      @grd2 c ! dom(train_carriage) // @grd5 t = train_carriage(c) 

      @grd3 emergency_button(train_carriage(c)) = TRUE 

      @grd4 carriage_alarm(c) = TRUE 

      @grd5 {c} = (dom(carriage_alarm " {TRUE}) # train_carriage$[{train_carriage(c)}]) 

      @grd6 ((DOOR_CARRIAGE);train_carriage)$[{train_carriage(c)}] # 

door_state$[{OPEN}] = % // doors must be closed to deactivate emergency button 

    then 

      @act1 carriage_alarm(c)& FALSE 

      @act2 emergency_button(train_carriage(c)) & FALSE 

  end 

 

  event allocateLeaderCabinCarriageTrain 

    any c 

    where 

      @grd1 c ! dom(train_carriage) 

      @grd2 finite(train_carriage$[{train_carriage(c)}]) 

      @grd3 c ! CABIN_CARRIAGE 

      @grd4 c ! dom(train_carriage " {train_carriage(c)}) 

      @grd5 trns_state(train_carriage(c))=MAINTENANCE 

      @grd6 card(dom(train_carriage " {train_carriage(c)})) 

            =MAX_NUMBER_CARRIAGE 

      @grd7 train_carriage(c) ' dom(leader_carriage) 

    then 

      @act1 leader_carriage(train_carriage(c)) & c 

  end 

 

  event deallocateLeaderCabinCarriageTrain 

    any t 

    where 

      @grd1 t ! dom(leader_carriage) 

      @grd2 finite(train_carriage$[{t}]) 

      @grd3 trns_state(t)=MAINTENANCE 

      @grd4 card(dom(train_carriage " {t})) 

            =MAX_NUMBER_CARRIAGE 

    then 

      @act1 leader_carriage & {t}(leader_carriage 

  end 

 

  event allocateCarriageTrain refines alocateCarriageTrain 

    any c t 

    where 

      @grd1 c ! CARRIAGE)dom(train_carriage) 

      @grd2 carriage_alarm[{c}]= {FALSE} 

      @grd4 *tr·tr ! dom(door_train_carriage) + tr,t  

         - DOOR_CARRIAGE$[{c}]#door_train_carriage[{tr}]=% 

      @grd5 t ! trns 

      @grd6 emergency_button(t) = FALSE 

      @grd7 finite(train_carriage$[{t}]) 

      @grd8 card(dom(train_carriage " {t}))<MAX_NUMBER_CARRIAGE 

      @grd9 speed(t)=0 

      @grd10 DOOR_CARRIAGE$[{c}] # door_train_carriage[{t}]=% // @grd11 t ! 

(c) Some events of Train M2

Figure 6.17: Excerpt of machine Train M2



142 Chapter 6 Case Study

6.9 Third Refinement of Train : Train M3

As a continuation of the refinement of the train doors by carriage, we data refine vari-

able door state. The opening doors event needs to be strengthened to specify which

doors to open when a train is stopped in a platform. Figure 6.18 shows an excerpt of

Train M3. Some additional properties related to the allocation of the leader carriage

are defined: when a train has already allocated a leader carriage, then it has the cor-

rect number of carriages (inv2) and the leader carriage belongs to the set of carriage

of that train (inv3). These two invariants could have been included in the previous

refinement. Nevertheless due to the high number of proof obligations already existing

in the previous refinement, they were added later. Variable door state disappears being

refined by door carriage state and gluing invariants inv1 and thm2. Theorem thm1

is added to help with the proofs: the carriage doors of a train t are the same as the

doors defined by the constant DOOR CARRIAGE restricted to the carriages. Some

existing events are strengthened in this refinement to be consistent with the invariants

as illustrated in Fig. 6.18(b). Due to inv2, event allocateLeaderCabinCarriageTrain

needs to be strengthened by adding guard grd8: this event is only enabled if the number

of carriages for that train is equal to NUMBER CABIN CARRIAGE. Also events

allocateCarriageTrain and removeCarriageTrain require an additional guard (grd4

and grd11 respectively) stating that the events are only enabled if train t does not have

a leader carriage yet. Therefore we reinforce some ordering in the events: first car-

riages are allocated/removed; after the leader carriage can be allocated. Refined event

openDoors is strengthened with the inclusion of guard grd8: the set of carriage doors

ds that are opened are located in the same side as the platform.

6.10 Fourth Refinement of Train and Second Decomposi-

ton: Train M4

The fourth refinement of Train corresponds to the preparation step before the decom-

position. Context Train C4, illustrated in Fig. 6.19(a), introduces an enumerated car-

rier set TRAIN MOV ING STATE defining the moving state of a train: MOV ING,

NOT READY (not ready to move) and NEUTRAL (not moving but ready to move).

We use additional control variables to help in the separation of aspects resulting in

adding variables ready train and train doors closed. Both are total functions between

trns and BOOL (inv1 and inv2 in Fig. 6.19(b)). ready train defines trains that are

ready to move or moving (which therefore have a leader carriage and the correct number

of carriages to move (inv3)); train doors closed defines trains that have all their doors

closed (inv4). These variables are somehow redundant and are mainly added as a prepa-

ration for the shared event decomposition: they will be allocated to LeaderCarriage and

represent a combination of states defined by Carriage variables. They also simplify
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machine Train_M3 refines Train_M2  sees Train_C2 

 

variables trns speed permit braking emergency_button train_carriage carriage_alarm leader_carriage  

           trns_state emergency_brake carriage_door_state door_train_carriage 

 

invariants 

  @inv1 !d,ds·d " dom(door_state) # ds " DOOR_STATE # carriage_door_state(d$DOOR_CARRIAGE(d))=ds % door_state(d)=ds 

  @inv2 !t·t"trns # t " dom(leader_carriage) # card(train_carriage&[{t}])=MAX_NUMBER_CARRIAGE  

        # card(train_carriage&[{t}]'CABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE 

  @inv3 !t·t"trns # t " dom(leader_carriage) ( leader_carriage(t) " train_carriage&[{t}] 

  theorem @thm1 !t·t"dom(door_train_carriage) ( door_train_carriage[{t}]=DOOR_CARRIAGE&[train_carriage&[{t}]] 

  theorem @thm2 !d,ds·d ) dom(door_state) # ds " DOOR_STATE # carriage_door_state[d*DOOR_CARRIAGE[d]]={ds} 

                 %door_state[d]={ds} 

 

events 

  event INITIALISATION 

    then 

      @act1 trns + , 

      @act2 speed + , 

      @act3 permit + , 

      @act4 braking + , 

      @act5 carriage_alarm + CARRIAGE * {FALSE} 

      @act6 train_carriage + , 

      @act7 emergency_button + , 

      @act8 leader_carriage + , 

      @act9 trns_state +, 

      @act10 emergency_brake +, 

      @act11 carriage_door_state + DOOR_CARRIAGE * {CLOSED} 

      @act12 door_train_carriage + , 

  end 

 

  event reduceSpeed refines reduceSpeed 

    any t1 s1 

    where 

      @grd1 s1 " - 

      @grd2 t1 " dom((DOOR_CARRIAGE;train_carriage)&) 

      @grd4 trns_state(t1) . MAINTENANCE 

      @grd5 speed(t1) / MAX_SPEED 

      @grd6 speed(t1)>s1 

      @grd7 !d·d "  door_train_carriage[{t1}] ( 

carriage_door_state(d$DOOR_CARRIAGE(d)).OPEN 

      @grd8 door_train_carriage[{t1}]., 

    then 

      @act1 speed (t1) + s1 

  end 

 

  event brake refines brake 

    any t1 

    where 

      @grd1 t1 " trns 

      @grd2 permit(t1) = FALSE 0 emergency_button(t1)=TRUE 

      @grd3 t1 1 braking 

    then 

      @act1 braking + braking 2 {t1} 

  end 

 

  event enterCDV refines enterCDV 

    any t1 c1 c2 

    where 

      @grd1 c2 " CDV 

(a) Variables and invariants

  event allocateLeaderCabinCarriageTrain  

  refines allocateLeaderCabinCarriageTrain 

    any c 

    where 

      @grd1 c ! dom(train_carriage) 

      @grd2 finite(train_carriage"[{train_carriage(c)}]) 

      @grd3 c ! CABIN_CARRIAGE 

      @grd4 c ! dom(train_carriage # {train_carriage(c)}) 

      @grd5 trns_state(train_carriage(c))=MAINTENANCE 

      @grd6 card(train_carriage"[{train_carriage(c)}]) 

            =MAX_NUMBER_CARRIAGE 

      @grd7 train_carriage(c) $ dom(leader_carriage) 

      @grd8 card(train_carriage"[{train_carriage(c)}]%CABIN_CARRIAGE) 

            =NUMBER_CABIN_CARRIAGE 

    then 

      @act1 leader_carriage(train_carriage(c)) & c 

  end 

 

  event allocateCarriageTrain refines allocateCarriageTrain 

    any c t 

    where 

      @grd1 c ! CARRIAGE'dom(train_carriage) 

      @grd2 carriage_alarm[{c}]= {FALSE} 

      @grd3 (tr·tr ! dom(door_train_carriage) ) tr*t  

            + DOOR_CARRIAGE"[{c}]%door_train_carriage[{tr}]=, 

      @grd4 t ! trns'dom(leader_carriage) 

      @grd5 emergency_button(t) = FALSE 

      @grd6 finite(train_carriage"[{t}]) 

      @grd7 card(dom(train_carriage # {t}))<MAX_NUMBER_CARRIAGE 

      @grd8 speed(t)=0 

      @grd9 DOOR_CARRIAGE"[{c}] % door_train_carriage[{t}]=,  

      @grd10 trns_state(t)=MAINTENANCE 

    then 

      @act1 train_carriage(c)& t 

      @act2 door_train_carriage & door_train_carriage  

                                  - ({t} . DOOR_CARRIAGE"[{c}]) 

      @act3 carriage_door_state& carriage_door_state  

                                / ((DOOR_CARRIAGE#{c}).{CLOSED}) 

  end 

 

  event removeCarriageTrain refines removeCarriageTrain 

    any c t 

    where 

      @grd1 t ! dom(door_train_carriage) 

      @grd2 c0t ! train_carriage 

      @grd3 carriage_alarm(c) = FALSE 

      @grd4 emergency_button(t) = FALSE 

      @grd5 trns_state(t)=MAINTENANCE 

      @grd6 speed(t)=0 

      @grd8 carriage_door_state[DOOR_CARRIAGE#{c}]={CLOSED} // !d·d"DOOR_CARRIAGE#[{c}] 

$ carriage_door_state(d%DOOR_CARRIAGE(d))=CLOSED // 

door_state[door_train_carriage[{t}]]={CLOSED} 

      @grd10 (d·d!DOOR_CARRIAGE"[{c}] + t = door_train_carriage"(d) 

      @grd11 c ! ran(DOOR_CARRIAGE) 

      @grd12 DOOR_CARRIAGE"[{c}]1door_train_carriage[{t}] 

      @grd13 t $ dom(leader_carriage) // no leader carriage allocated 

    then 

      @act1 train_carriage & {c}2train_carriage 

      @act2 door_train_carriage & door_train_carriage 3DOOR_CARRIAGE"[{c}] 

    where 

      @grd1 c ! CARRIAGE"dom(train_carriage) 

      @grd2 carriage_alarm[{c}]= {FALSE} 

      @grd3 #tr·tr ! dom(door_train_carriage) $ tr%t  

            & DOOR_CARRIAGE'[{c}](door_train_carriage[{tr}]=) 

      @grd4 t ! trns"dom(leader_carriage) 

      @grd5 emergency_button(t) = FALSE 

      @grd6 finite(train_carriage'[{t}]) 

      @grd7 card(dom(train_carriage * {t}))<MAX_NUMBER_CARRIAGE 

      @grd8 speed(t)=0 

      @grd9 DOOR_CARRIAGE'[{c}] ( door_train_carriage[{t}]=)  

      @grd10 trns_state(t)=MAINTENANCE 

    then 

      @act1 train_carriage(c)+ t 

      @act2 door_train_carriage + door_train_carriage  

                                  , ({t} - DOOR_CARRIAGE'[{c}]) 

      @act3 carriage_door_state+ carriage_door_state  

                                . ((DOOR_CARRIAGE*{c})-{CLOSED}) 

  end 

 

event openDoors refines openDoors 

    any t occpTrns platform ds 

    where 

      @grd1 t ! TRAIN 

      @grd2 occpTrns ! /(CDV) 

      @grd3 platform ! PLATFORM 

      @grd4 platform ! (occpTrns ( PLATFORM) 

      @grd5 t ! dom((DOOR_CARRIAGE;train_carriage)') 

      @grd6 speed(t) = 0 

      @grd7 ({platform} % )) 0 emergency_button(t) = TRUE  

      @grd8 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

      @grd9 ds 1 DOOR_CARRIAGE'[train_carriage'[{t}]]        

      @grd10 #d·d!ds  

             &carriage_door_state[{d}2DOOR_CARRIAGE]={CLOSED} 

      @grd11 ds%) 

    then 

      @act1 carriage_door_state+ carriage_door_state  

                          . ((ds2DOOR_CARRIAGE)-{OPEN})  

  end 

 

  event removeCarriageTrain refines removeCarriageTrain 

    any c t 

    where 

      @grd1 t ! dom(door_train_carriage) 

      @grd2 c3t ! train_carriage 

      @grd3 carriage_alarm(c) = FALSE 

      @grd4 emergency_button(t) = FALSE 

      @grd5 trns_state(t)=MAINTENANCE 

      @grd6 speed(t)=0 

      @grd7 carriage_door_state[DOOR_CARRIAGE*{c}]={CLOSED}  

      @grd8 #d·d!DOOR_CARRIAGE'[{c}]  

            & t = door_train_carriage'(d) 

      @grd9 c ! ran(DOOR_CARRIAGE) 

      @grd10 DOOR_CARRIAGE'[{c}]1door_train_carriage[{t}] 

      @grd11 t 4 dom(leader_carriage) 

    then 

      @act1 train_carriage + {c}5train_carriage 

      @act2 door_train_carriage + door_train_carriage  

                                  6DOOR_CARRIAGE'[{c}] 

(b) Refinement of some events in Train M3

Figure 6.18: Excerpt of machine Train M3

the event splitting by replacing predicates that contain variables related to carriages.

For instance, in Fig. 6.19(c) guard grd8 of event increaseMaxSpeed replaces guard

grd8 in the abstract event (Fig. 6.17(c)): this event does not need to refer to variable

door train carriage since it is only required to ensure that all the train doors are closed

when a train increases its speed (train doors closed(t1) = TRUE). The consequence of

adding these variables is that they need to be consistent throughout the events. For in-

stance, act2 needs to be added to the actions of deallocateLeaderCabinCarriageTrain

when a leader carriage is deallocated from a train which implies that the train is no

longer ready to move (Fig. 6.19(c)). Therefore these control variables should be added

with care in particular when it is intended to further refine the resulting sub-events after

an event decomposition. Invariants inv5 and inv6 are gluing invariants resulting from

the added variables: the first states that if a train has its doors opened, then the train

must be stopped; the second states that if a train is ready, then the set of carriages for
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that train is not empty. All other events are updated reflecting the introduction of the

new variables.

context Train_C4 extends Train_C2  

 

constants MOVING NOT_READY NEUTRAL  

 

sets TRAIN_MOVING_STATE  

 

axioms 

  @axm1 partition(TRAIN_MOVING_STATE, {MOVING}, {NOT_READY}, {NEUTRAL}) 

end 

!

(a) Context Train C4

machine Train_M4 refines Train_M3  sees Train_C4  

 

variables trns speed permit braking emergency_button train_carriage  

carriage_alarm leader_carriage trns_state emergency_brake  

carriage_door_state door_train_carriage ready_train train_doors_closed  

 

invariants 

  @inv1 ready_train ! trns " BOOL 

  @inv2 train_doors_closed ! trns " BOOL 

  @inv3 #t·t!dom(ready_train) $ ready_train(t) = TRUE % t!trns  

         $ card(train_carriage&[{t}])=MAX_NUMBER_CARRIAGE  

         $ card(train_carriage&[{t}]'CABIN_CARRIAGE) 

           =NUMBER_CABIN_CARRIAGE  

         $ t ! dom(leader_carriage) 

  @inv4 #t·t!dom(train_doors_closed)  

        $ train_doors_closed(t) = TRUE  

        % (#d·d !door_train_carriage[{t}]  

            % carriage_door_state(d(DOOR_CARRIAGE(d)))OPEN) 

  @inv5 #t·t!dom(train_doors_closed)  

        $ train_doors_closed(t) = FALSE % speed(t) = 0    

  @inv6 #t·t!dom(ready_train) $ ready_train(t) = TRUE  

        % DOOR_CARRIAGE*train_carriage&[{t}])+ 

 

events 

  event INITIALISATION 

    then 

      @act1 trns , + 

      @act2 speed , + 

      @act3 permit , + 

      @act4 braking , + 

      @act5 carriage_alarm , CARRIAGE - {FALSE} 

      @act6 train_carriage , + 

      @act7 emergency_button , + 

      @act8 leader_carriage , + 

      @act9 trns_state ,+ 

      @act10 emergency_brake ,+ 

      @act11 carriage_door_state , DOOR_CARRIAGE - {CLOSED} 

      @act12 door_train_carriage , + // @act13 train_moving_state !" 

      @act14 ready_train , + 

      @act15 train_doors_closed , + 

  end 

 

  event recvTrainMsg extends recvTrainMsg  

    where 

      @grd3 train_doors_closed(t1) = TRUE  

      /* @grd3 (#d·d $ door_train_carriage[{t1}] % 

carriage_door_state(d&DOOR_CARRIAGE(d))'OPEN) 

         @grd4 train_moving_state(t1)=MOVING */ 

  end 

 

 

 

 

 

 

 

 

 

 

(b) Variables and invariants

event increaseMaxSpeed refines increaseMaxSpeed  

    any t1 s1  

    where 

      @grd1 s1 ! " 

      @grd2 t1 ! trns 

      @grd3 t1 # braking 

      @grd4 trns_state(t1) $ MAINTENANCE 

      @grd5 s1 > MAX_SPEED 

      @grd6 speed(t1)<s1 

      @grd7 t1 # emergency_brake 

      @grd8 speed(t1)% MAX_SPEED 

      @grd9 train_doors_closed(t1) = TRUE 

      @grd10 permit(t1)=TRUE 

      @grd11 speed(t1)>0 

      @grd12 ready_train(t1) = TRUE 

    then 

      @act1 speed (t1) & s1 

      @act2 emergency_brake & emergency_brake ' {t1} 

  end 

 

event deallocateLeaderCabinCarriageTrain  

refines deallocateLeaderCabinCarriageTrain  

  any t lc  

  where 

    @grd1 t ! dom(leader_carriage)  

    @grd2 finite(train_carriage([{t}]) 

    @grd3 trns_state(t)=MAINTENANCE 

    @grd4 card(dom(train_carriage ) {t}))=MAX_NUMBER_CARRIAGE 

    @grd5 lc = leader_carriage  

  then 

    @act1 leader_carriage & {t}*leader_carriage 

    @act2 ready_train(t) & FALSE 

end 

 

  event addTrain refines addTrain  

    any t oc  

    where 

      @typing_t t ! TRAIN 

      @guard t ! TRAIN+trns 

      @grd1 oc ! CDV 

    then 

      @act1 trns&trns '{t} 

      @act2 speed(t)&0 

      @act7 permit(t)&FALSE 

      @act8 emergency_button(t)&FALSE 

      @act9 trns_state(t)&MAINTENANCE // @act10 train_moving_state(t)!NOT_READY 

      @act11 ready_train(t) & FALSE 

      @act12 train_doors_closed(t)&TRUE 

  end 

 

  event modifyTrain refines modifyTrain  

    any t ocA oc state  

    where 

      @typing_ocA ocA ! CDV 

      @typing_oc oc ! ,(CDV) 

      @typing_t t ! TRAIN 

      @grd1 t ! trns 

      @grd2 ocA ! oc 

      @grd3 finite(oc) 

event increaseMaxSpeed refines increaseMaxSpeed  

    any t1 s1  

    where 

      @grd1 s1 ! " 

      @grd2 t1 ! trns 

      @grd3 t1 # braking 

      @grd4 trns_state(t1) $ MAINTENANCE 

      @grd5 s1 > MAX_SPEED 

      @grd6 speed(t1)<s1 

      @grd7 t1 # emergency_brake 

      @grd8 speed(t1)% MAX_SPEED 

      @grd9 train_doors_closed(t1) = TRUE 

      @grd10 permit(t1)=TRUE 

      @grd11 speed(t1)>0 

      @grd12 ready_train(t1) = TRUE 

    then 

      @act1 speed (t1) & s1 

      @act2 emergency_brake & emergency_brake ' {t1} 

  end 

 

event deallocateLeaderCabinCarriageTrain  

refines deallocateLeaderCabinCarriageTrain  

  any t lc  

  where 

    @grd1 t ! dom(leader_carriage)  

    @grd2 finite(train_carriage([{t}]) 

    @grd3 trns_state(t)=MAINTENANCE 

    @grd4 card(dom(train_carriage ) {t}))=MAX_NUMBER_CARRIAGE 

    @grd5 lc = leader_carriage  

  then 

    @act1 leader_carriage & {t}*leader_carriage 

    @act2 ready_train(t) & FALSE 

end 

 

  event addTrain refines addTrain  

    any t oc  

    where 

      @typing_t t ! TRAIN 

      @guard t ! TRAIN+trns 

      @grd1 oc ! CDV 

    then 

      @act1 trns&trns '{t} 

      @act2 speed(t)&0 

      @act7 permit(t)&FALSE 

      @act8 emergency_button(t)&FALSE 

      @act9 trns_state(t)&MAINTENANCE // @act10 train_moving_state(t)!NOT_READY 

      @act11 ready_train(t) & FALSE 

      @act12 train_doors_closed(t)&TRUE 

  end 

 

  event modifyTrain refines modifyTrain  

    any t ocA oc state  

    where 

      @typing_ocA ocA ! CDV 

      @typing_oc oc ! ,(CDV) 

      @typing_t t ! TRAIN 

      @grd1 t ! trns 

      @grd2 ocA ! oc 

      @grd3 finite(oc) 

(c) Refinement of some events in Train M4

Figure 6.19: Excerpt of machine Train M4

Now we are ready to proceed to the next decomposition as described in Fig. 6.3. We want

to separate the aspects related to carriages from the aspects related to leader carriages:

Leader Carriage: Allocates the leader carriage, controls the speed of the train, modi-

fies the state of the train, receives the messages sent from the central, handles the

emergency button of the train.

Carriage: Add and removes carriages, opens and closes carriage doors, handles the

carriage alarm.
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The decomposition is summarised in Table 6.1 (equivalent to view of Fig. 6.12 with the

addition of the variable partition):

LeaderCarriage Carriage
Variables trns, permit, braking, emergency button carriage alarm, leader carriage

trns state, speed, emergency brake carriage door state, door train carriage
ready train, train doors closed train carriage

Events openDoors, closeDoors openDoors, closeDoors
activateEmergencyCarriageButton activateEmergencyCarriageButton
deactivateEmergencyCarriageButton deactivateEmergencyCarriageButton
deactivateEmergencyTrainButton deactivateEmergencyTrainButton
allocateLeaderCabinCarriageTrain allocateLeaderCabinCarriageTrain
deallocateLeaderCabinCarriageTrain deallocateLeaderCabinCarriageTrain

allocateCarriageTrain allocateCarriageTrain
modifyTrain, removeCarriageTrain modifyTrain, removeCarriageTrain
increaseSpeed, increaseMaxSpeed
reduceSpeed, reduceMaxSpeed

recvTrainMsg, brake, stopBraking
addTrain, enterCDV, leaveCDV

Table 6.1: Decomposition summary of Train M4

6.10.1 Machine LeaderCarriage

Machine LeaderCarriage contains the variables that are not related to the carriages

(Fig. 6.20(a)). Some events are only included in this sub-component: events dealing

with the speed changes, entering and leaving sections, receiving messages and adding

trains. All the other events are shared between the two sub-components.

6.10.2 Machine Carriage

The variables related to carriages are included in sub-component Carriage (Fig. 6.20(b)).

All the events of Carriage result from splitting the original events as described in Ta-

ble. 6.1. We are interested in adding more details about the carriage doors, therefore we

further refine Carriage.

6.10.3 Refinement of Carriage and Decomposition: Carriage M1

This refinement is a preparation step before the next decomposition. We intend to

use an existing generic development of carriage doors as a pattern and apply a generic

instantiation to our model. We use the shared event decomposition to adjust our current

model to fit the first machine of the pattern. Carriage M1 refines Carriage and after is

decomposed in a way that one of the resulting sub-components fits the generic model of

carriage doors. The generic model is described in Sect. 6.11.

Two variables are introduced in this refinement, representing the carriage doors (carriage door)

and their respective state (carriage ds) as seen in Fig. 6.21(a). The last variable is used
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machine LeaderCarriage sees LeaderCarriage_C0 

 

variables trns speed permit braking emergency_button trns_state  

           emergency_brake ready_train train_doors_closed  

 

invariants 

  theorem @typing_train_doors_closed train_doors_closed ! "(TRAIN # BOOL) 

  @Train_MetroSystem_M0_inv3 trns $ TRAIN 

  @Train_MetroSystem_M0_inv9 braking $ trns 

  @Train_MetroSystem_M0_inv10 speed ! trns % & 

  @Train_MetroSystem_M1_inv2 permit ! trns % BOOL 

  @Train_MetroSystem_M1_inv3 emergency_button ! trns % BOOL 

  @Train_M1_inv1 finite(trns) 

  @Train_M2_inv8 trns_state ! trns % TRAIN_STATE 

  @Train_M2_inv10 't·t!trns ( trns_state(t)=MAINTENANCE ) speed(t)=0 

  @Train_M2_inv11 emergency_brake $trns 

  @Train_M2_inv12 't·((t!trns ( speed(t)>MAX_SPEED) ) t ! emergency_brake) 

  @Train_M4_inv14 ready_train ! trns % BOOL 

  @Train_M4_inv16 train_doors_closed ! trns % BOOL 

  @Train_M4_inv18 't·t!dom(train_doors_closed) ( train_doors_closed(t) = FALSE  

                  ) speed(t) = 0 

  theorem @WD_Train_M4_inv6 't·t!dom(ready_train))ready_train!TRAIN * BOOL 

 

events 

  event INITIALISATION 

    then 

      @act1 trns + , 

      @act2 speed + , 

      @act3 permit + , 

      @act4 braking + , 

      @act7 emergency_button + , 

      @act9 trns_state +, 

      @act10 emergency_brake +, 

      @act14 ready_train + , 

      @act15 train_doors_closed + , 

  end 

 

  event recvTrainMsg 

    any t1 bb  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_bb bb ! BOOL 

      @grd1 bb ! BOOL 

      @grd2 t1 ! trns 

      @grd3 train_doors_closed(t1) = TRUE 

    then 

      @act1 permit(t1)+bb 

  end 

 

  event increaseSpeed 

    any t1 s1  

    where 

      @typing_t1 t1 ! TRAIN 

      @typing_s1 s1 ! - 

      @grd1 s1 ! & 

      @grd2 t1 ! trns 

      @grd3 t1 . braking 

      @grd4 trns_state(t1) / MAINTENANCE 

      @grd5 s1 0 MAX_SPEED 

(a) sub-component LeaderCarriage

machine Carriage sees Carriage_C0  

 

variables train_carriage carriage_alarm leader_carriage carriage_door_state  

           door_train_carriage  

 

invariants 

  theorem @typing_leader_carriage leader_carriage ! "(TRAIN # CARRIAGE) 

  theorem @typing_door_train_carriage door_train_carriage ! "(TRAIN # DOOR) 

  theorem @typing_train_carriage train_carriage ! "(CARRIAGE # TRAIN) 

  theorem @typing_carriage_alarm carriage_alarm ! "(CARRIAGE # BOOL) 

  @Train_M1_inv2 carriage_alarm ! CARRIAGE $ BOOL 

  @Train_M1_inv4 finite(train_carriage) 

  @Train_M1_inv5 finite(dom(train_carriage)) 

  @Train_M2_inv3 door_train_carriage = (DOOR_CARRIAGE;train_carriage)% 

  @Train_M2_inv7 finite(leader_carriage) 

  @Train_M2_inv13 carriage_door_state ! DOOR_CARRIAGE $ DOOR_STATE 

  theorem @Train_M2_thm1 &c·c!ran(DOOR_CARRIAGE) ' c!dom(train_carriage)  

          ( DOOR_CARRIAGE%[{c}])door_train_carriage[{train_carriage(c)}] 

  theorem @Train_M3_thm1 &t·t!dom(door_train_carriage) 

          ( door_train_carriage[{t}]=DOOR_CARRIAGE%[train_carriage%[{t}]] 

 

events 

  event INITIALISATION 

    then 

      @act5 carriage_alarm * CARRIAGE # {FALSE} 

      @act6 train_carriage * + 

      @act8 leader_carriage * + 

      @act11 carriage_door_state * DOOR_CARRIAGE # {CLOSED} 

      @act12 door_train_carriage * + 

  end 

 

  event openDoors 

    any t occpTrns platform ds  

    where 

      @typing_platform platform ! CDV 

      @typing_ds ds ! "(DOOR) 

      @grd1 t ! TRAIN 

      @grd2 occpTrns ! "(CDV) 

      @grd3 platform ! PLATFORM 

      @grd4 platform ! (occpTrns , PLATFORM) 

      @grd5 t ! dom((DOOR_CARRIAGE;train_carriage)%) 

      @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

      @grd8 ds ) DOOR_CARRIAGE%[train_carriage%[{t}]] 

      @grd10 &d·d!ds(carriage_door_state[{d}-DOOR_CARRIAGE]={CLOSED} 

    then 

      @act1 carriage_door_state* carriage_door_state . ((ds-DOOR_CARRIAGE)#{OPEN}) 

  end 

 

  event closeDoors 

    any t ds closed  

    where 

      @typing_closed closed ! BOOL 

      @typing_ds ds ! "(DOOR) 

      @grd1 t ! TRAIN 

      @grd2 t ! dom(((train_carriage%);(DOOR_CARRIAGE%))) 

      @grd4 ds ) ((train_carriage%);(DOOR_CARRIAGE%))[{t}] 

      @grd5 ds ) DOOR_CARRIAGE%[train_carriage%[{t}]] 

      @grd6 carriage_door_state[ds#DOOR_CARRIAGE[ds]]={OPEN} 

      @grd7 (/d·d!DOOR_CARRIAGE%[train_carriage%[{t}]]0ds ' 

carriage_door_state[{d}-DOOR_CARRIAGE]1{CLOSED}) 2 closed = FALSE 

    then 

(b) sub-component Carriage

Figure 6.20: Variables and invariants of LeaderCarriage and Carriage

to data refine carriage door state that disappears. The gluing invariant for this data

refinement is expressed by inv4: the state of all the doors in carriage ds match the state

of the same door in carriage door state. As a result, some events need to be refined to

fit the new variables. For instance, in Fig. 6.21(b), act1 in event openDoors updates

variable carriage ds instead of the abstract variable carriage door state. Also when

carriage doors are allocated, both new variables are assigned as seen in actions act3 and

act4 of event allocateCarriageTrain (similar for removeCarriageTrain).

Comparing with the generic model of carriage doors, the relevant events to fit the instan-

tiation are openDoors, closeDoors, allocateCarriageTrain and removeCarriageTrain.

Not by coincidence, these events manipulate variables carriage ds and carriage door

that will instantiate generic variables generic door state and generic door respectively.

The decomposition summary is described in Table 6.2.

6.10.4 Machine CarriageInterface

Machine CarriageInterface contains the variables that are not related to the carriage

doors. This machine handles the activation/deactivation of the carriage alarm, the deac-



Chapter 6 Case Study 147

machine Carriage_M1 refines Carriage sees Carriage_C0 

 

variables carriage_alarm leader_carriage train_carriage carriage_door carriage_ds door_train_carriage 

 

invariants 

  @inv1 carriage_door ! DOOR 

  @inv2 carriage_ds " carriage_door # DOOR_STATE 

  @inv3 $c·c"dom(train_carriage) % DOOR_CARRIAGE&[{c}]!carriage_door  

  @inv4 $d,c·d'c"dom(carriage_door_state) ( d " dom(carriage_ds) ( d"ran(door_train_carriage)      

        %carriage_ds(d)=carriage_door_state(d'c) 

  @inv5 door_train_carriage&"DOOR ) TRAIN 

  @inv6 $d·d"ran(door_train_carriage) % d " carriage_door 

 

events 

  event INITIALISATION 

    then 

      @act5 carriage_alarm * CARRIAGE + {FALSE} 

      @act6 train_carriage * , 

      @act8 leader_carriage * , 

      @act12 door_train_carriage * , 

      @act13 carriage_door *, 

      @act14 carriage_ds *, 

  end 

 

  event openDoors refines openDoors 

    any t occpTrns platform ds 

    where 

      @typing_platform platform " CDV 

      @typing_ds ds " -(DOOR) 

      @grd1 t " TRAIN 

      @grd2 occpTrns " -(CDV) 

      @grd3 platform " PLATFORM 

      @grd4 platform " (occpTrns . PLATFORM) 

      @grd5 t " dom((DOOR_CARRIAGE;train_carriage)&) 

      @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

      @grd8 ds ! DOOR_CARRIAGE&[train_carriage&[{t}]] // @grd10 

!d·d"ds#carriage_door_state[{d}$DOOR_CARRIAGE]={CLOSED} 

      @grd11 ds ! dom(carriage_ds) 

      @grd12 carriage_ds[ds]={CLOSED} 

    then 

      @act2 carriage_ds*carriage_ds/ (ds+{OPEN}) // @act1 carriage_door_state% 

carriage_door_state & ((ds$DOOR_CARRIAGE)'{OPEN}) 

  end 

 

  event closeDoors refines closeDoors 

    any t ds closed cds 

    where 

      @typing_closed closed " BOOL 

      @typing_ds ds " -(DOOR) 

      @grd1 t " TRAIN 

      @grd2 t " dom(((train_carriage&);(DOOR_CARRIAGE&))) 

      @grd4 ds ! ((train_carriage&);(DOOR_CARRIAGE&))[{t}] 

      /* @grd5 ds ( DOOR_CARRIAGE)[train_carriage)[{t}]] 

         @grd6 carriage_door_state[ds'DOOR_CARRIAGE[ds]]={OPEN} */ 

      @gd13 cds = carriage_ds 

      @grd7 (0d·d"DOOR_CARRIAGE&[train_carriage&[{t}]]1ds ( cds(d)2CLOSED) 3 closed = 

FALSE // (*d·d"DOOR_CARRIAGE)[train_carriage)[{t}]]+ds , 

carriage_door_state[{d}$DOOR_CARRIAGE]-{CLOSED}) . closed = FALSE 

      @grd11 ds ! dom(carriage_ds) 

      @grd12 carriage_ds[ds]={OPEN} 

(a) Variables and invariants

machine Carriage_M1 refines Carriage  sees Train_C4 

 

variables carriage_alarm leader_carriage train_carriage  

            carriage_door carriage_ds door_train_carriage 

 

invariants 

  @inv1 carriage_door ! DOOR 

  @inv2 carriage_ds " carriage_door # DOOR_STATE 

  @inv3 $c·c"dom(train_carriage) % DOOR_CARRIAGE&[{c}]!carriage_door  

  @inv4 $d,c·d'c"dom(carriage_door_state) ( d " dom(carriage_ds)  

        ( d"ran(door_train_carriage)  

        % carriage_ds(d)= carriage_door_state(d'c)  

  @inv6 door_train_carriage&"DOOR ) TRAIN 

  @inv7 $d·d"ran(door_train_carriage) % d " carriage_door 

events 

  event INITIALISATION 

    then 

      @act5 carriage_alarm * CARRIAGE + {FALSE} 

      @act6 train_carriage * , 

      @act8 leader_carriage * , 

      @act12 door_train_carriage * , 

      @act13 carriage_door *, 

      @act14 carriage_ds *, 

  end 

 

  event openDoors refines openDoors 

    any t occpTrns platform ds 

    where 

      @typing_platform platform " CDV 

      @typing_ds ds " -(DOOR) 

      @grd1 t " TRAIN 

      @grd2 occpTrns " -(CDV) 

      @grd3 platform " PLATFORM 

      @grd4 platform " (occpTrns . PLATFORM) 

      @grd5 t " dom((DOOR_CARRIAGE;train_carriage)&) 

      @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

      @grd7 ds ! DOOR_CARRIAGE&[train_carriage&[{t}]]  

      @grd8 ds ! dom(carriage_ds) 

      @grd9 carriage_ds[ds]={CLOSED} 

    then 

      @act1 carriage_ds*carriage_ds/ (ds+{OPEN})  

  end 

 

  event closeDoors refines closeDoors 

    any t ds closed cds 

    where 

      @typing_closed closed " BOOL 

      @typing_ds ds " -(DOOR) 

      @grd1 t " TRAIN 

      @grd2 t " dom(((train_carriage&);(DOOR_CARRIAGE&))) 

      @grd3 ds ! ((train_carriage&);(DOOR_CARRIAGE&))[{t}] 

      @grd4 cds = carriage_ds 

      @grd5 (0d·d"DOOR_CARRIAGE&[train_carriage&[{t}]]1ds  

             ( cds(d)2CLOSED) 3 closed = FALSE  

      @grd6 ds ! dom(carriage_ds) 

      @grd7 carriage_ds[ds]={OPEN} 

    then 

      @act2 carriage_ds*carriage_ds / (ds+{CLOSED})  

  end 

  end 

 

  event allocateCarriageTrain refines allocateCarriageTrain 

    any c t ds 

    where 

      @typing_t t ! TRAIN 

      @typing_c c ! CARRIAGE 

      @grd1 c ! CARRIAGE"dom(train_carriage) 

      @grd2 carriage_alarm[{c}]= {FALSE} 

      @grd3 t ! dom(door_train_carriage) 

      @grd4 #tr·tr ! dom(door_train_carriage) $ tr%t  

            & DOOR_CARRIAGE'[{c}](door_train_carriage[{tr}]=) 

      @grd5 finite(train_carriage'[{t}]) 

      @grd6 card(dom(train_carriage * {t}))<MAX_NUMBER_CARRIAGE 

      @grd7 DOOR_CARRIAGE'[{c}] ( door_train_carriage[{t}]=)  

      @grd8 t+dom(leader_carriage) 

      @grd9 ds = DOOR_CARRIAGE'[{c}] 

      @grd10 ds(dom(carriage_ds)=) 

    then 

      @act1 train_carriage(c), t 

      @act2 door_train_carriage , door_train_carriage  

            - ({t} . DOOR_CARRIAGE'[{c}]) 

      @act3 carriage_door , carriage_door - ds 

      @act4 carriage_ds , carriage_ds - (ds.{CLOSED}) 

  end 

 

  event removeCarriageTrain refines removeCarriageTrain 

    any c t ds 

    where 

      @typing_t t ! TRAIN 

      @typing_c c ! CARRIAGE 

      @grd1 t ! dom(door_train_carriage) 

      @grd2 c/t ! train_carriage 

      @grd3 carriage_alarm(c) = FALSE 

      @grd16 t ! dom(door_train_carriage)  

      @grd10 #d·d!DOOR_CARRIAGE'[{c}]  

             & t = door_train_carriage'(d) 

      @grd11 c ! ran(DOOR_CARRIAGE) 

      @grd12 t + dom(leader_carriage) 

      @grd13 ds = DOOR_CARRIAGE'[{c}] 

      @grd14 ds0carriage_door 

      @grd15 carriage_ds[DOOR_CARRIAGE'[{c}]] = {CLOSED} 

    then 

      @act1 train_carriage , {c}1train_carriage 

      @act2 door_train_carriage ,  

                door_train_carriage 2DOOR_CARRIAGE'[{c}] 

      @act3 carriage_door , carriage_door " ds 

      @act4 carriage_ds , ds1carriage_ds 

  end 

 

  event deallocateLeaderCabinCarriageTrain refines deallocateLeaderCabinCarriageTrain 

    any t lc 

    where 

      @typing_t t ! TRAIN 

      @typing_lc lc ! 3(TRAIN . CARRIAGE) 

      @grd5 t ! dom(leader_carriage) 

      @grd2 finite(train_carriage'[{t}]) 

      @grd4 card(dom(train_carriage * {t}))=MAX_NUMBER_CARRIAGE 

      @grd6 lc = leader_carriage 

(b) Refinement of some events in Carriage M1

Figure 6.21: Excerpt of machine Carriage M1

tivation of the emergency button and the allocation/deallocation of the leader cabin car-

riage. Events openDoors, closeDoors, allocateCarriageTrain and removeCarriageTrain

are shared with CarriageDoor.

6.10.5 Machine CarriageDoor

CarriageDoors contains the variables related to carriage doors and the events resulting

from splitting the original events as described in Table 6.2. The resulting sub-events can

be seen in Fig. 6.22.
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CarriageInterface CarriageDoor
Variables carriage alarm, leader carriage carriage doors, carriage ds

train carriage, door train carriage
Events openDoors, closeDoors openDoors, closeDoors

allocateCarriageTrain allocateCarriageTrain
removeCarriageTrain removeCarriageTrain

activateEmergencyCarriageButton
deactivateEmergencyCarriageButton
deactivateEmergencyTrainButton
allocateLeaderCabinCarriageTrain
deallocateLeaderCabinCarriageTrain

modifyTrain

Table 6.2: Decomposition summary of Carriage M1

machine CarriageDoors sees CarriageDoors_C0  
 
variables carriage_door carriage_ds  
 
invariants 
  theorem @typing_carriage_door carriage_door ! ℙ(DOOR) 
  theorem @typing_carriage_ds carriage_ds ! ℙ(DOOR × DOOR_STATE) 
  @Carriage_M1_inv1 carriage_door ⊆ DOOR 
  @Carriage_M1_inv2 carriage_ds ! carriage_door " DOOR_STATE 
 
events 
  event INITIALISATION 
    then 
      @act13 carriage_door #$ 
      @act14 carriage_ds #$ 
  end 
 
  event openDoors 
    any t occpTrns platform ds  
    where 
      @typing_platform platform ! CDV 
      @typing_ds ds ! ℙ(DOOR) 
      @grd1 t ! TRAIN 
      @grd2 occpTrns ! ℙ(CDV) 
      @grd3 platform ! PLATFORM 
      @grd4 platform ! (occpTrns ∩ PLATFORM) 
      @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 
      @grd11 ds ⊆ dom(carriage_ds) 
      @grd12 carriage_ds[ds]={CLOSED} 
    then 
      @act2 carriage_ds#carriage_ds  (ds×{OPEN}) 
  end 
 
  event closeDoors 
    any t ds closed cds  
    where 
      @typing_cds cds ! ℙ(DOOR × DOOR_STATE) 
      @typing_closed closed ! BOOL 
      @typing_ds ds ! ℙ(DOOR) 
      @grd1 t ! TRAIN 
      @gd13 cds = carriage_ds 
      @grd11 ds ⊆ dom(carriage_ds) 
      @grd12 carriage_ds[ds]={OPEN} 
    then 
      @act2 carriage_ds#carriage_ds  (ds×{CLOSED}) 
  end 
 
  event allocateCarriageTrain 
    any c t ds  
    where 
      @typing_ds ds ! ℙ(DOOR) 
      @typing_t t ! TRAIN 
      @typing_c c ! CARRIAGE 
      @grd14 ds = DOOR_CARRIAGE∼[{c}] 
      @grd15 ds∩dom(carriage_ds)=$ 
    then 
      @act3 carriage_door # carriage_door ∪ ds 
      @act4 carriage_ds # carriage_ds ∪ (ds×{CLOSED}) 
  end 
 

  event allocateCarriageTrain 
    any c t ds  
    where 
      @typing_ds ds ! ℙ(DOOR) 
      @typing_t t ! TRAIN 
      @typing_c c ! CARRIAGE 
      @grd14 ds = DOOR_CARRIAGE∼[{c}] 
      @grd15 ds∩dom(carriage_ds)=" 
    then 
      @act3 carriage_door # carriage_door ∪ ds 
      @act4 carriage_ds # carriage_ds ∪ (ds×{CLOSED}) 
  end 
 
  event removeCarriageTrain 
    any c t ds  
    where 
      @typing_ds ds ! ℙ(DOOR) 
      @typing_t t ! TRAIN 
      @typing_c c ! CARRIAGE 
      @grd11 c ! ran(DOOR_CARRIAGE) 
      @grd13 ds = DOOR_CARRIAGE∼[{c}] 
      @grd14 ds⊆carriage_door 
      @grd15 carriage_ds[DOOR_CARRIAGE∼[{c}]] = {CLOSED} 
    then 
      @act3 carriage_door # carriage_door ∖ ds 
      @act4 carriage_ds # ds!carriage_ds 
  end 
end 
!

Figure 6.22: Events of sub-component CarriageDoors

There are two kind of carriage doors: emergency doors and service doors. We intend to

instantiate twice the generic doors development, one per kind of door (the developments

are similar for both kind of doors). Specific details for each kind of door are added

as additional refinements later on. We describe the generic model and afterwards the

instantiation.

6.11 Generic Model: GCDoor

The generic model for the carriage doors is based in three refinements: GCDoor M0,

GCDoor M1 and GCDoor M2. In each refinement step, more requirements and details

are introduced.
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6.11.1 Abstract machine GCDoor M0

We start by adding the carriage doors and respective states. Four events model carriage

doors. The properties to be preserved are:

1. Doors can be added or removed.

2. Doors can be in an opening or closing state. Doors can only be open if the train

is in a platform.

3. When adding/removing doors, they are closed by default for safety reasons.

The static part of the generic development is initially divided in two parts: context

GCDoor C0 for the doors and context GCTrack C0 for the tracks as seen in Fig. 6.23.

context GCDoor_C0 extends GCTrack_C0 

 

constants GEN_DOOR_CARRIAGE 

           DOOR_SIDE 

           OPEN CLOSED 

 

sets DOOR DOOR_STATE 

     GEN_CARRIAGE 

     

axioms 

  @axm1 partition(DOOR_STATE, {OPEN}, {CLOSED}) 

  @axm2 GEN_DOOR_CARRIAGE ! DOOR " GEN_CARRIAGE 

  @axm3 DOOR_SIDE ! DOOR " SIDE 

end 
!

(a) Context GCDoor C0

context GCTrack_C0 

 

constants RIGHT PLATFORM LEFT PLATFORM_SIDE  

 

sets SIDE TRACK  

 

axioms 

  @axm1 PLATFORM ! TRACK 

  @axm2 partition(SIDE, {LEFT}, {RIGHT}) 

  @axm3 PLATFORM_SIDE " PLATFORM # SIDE 

end 
!

(b) Context GCTrack C0

Figure 6.23: Generic contexts

Context GCDoor C0 contains setsDOOR, DOOR STATE andGEN DOOR CARRIAGE,

representing carriage doors, defining if a door is opened or closed and defining the car-

riages to which a door belongs to, respectively. Context GCTrack C0 contains sets

SIDE and TRACK, defining the side (LEFT or RIGHT ) of a door or platform

and each section of the track, respectively. Machine GCDoor M0 contains variables

generic door and generic door state. The invariants of this abstraction are quite weak

since we just add the type variables as can be seen in Fig. 6.24(a).

Property 1 is expressed by events addDoor and removeDoor. Property 2 is expressed by

variable generic door state and events openDoors and closeDoors. Event openDoors is

only enabled if the set of doors ds is closed and if the parameter occpTrns, corresponding

to the sections occupied by the carriage, intersects a platform. Doors are removed in

event removeDoor, if they are CLOSED confirming property 3. Next section describes

the refinement of this machine.
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machine GCDoor_M0 sees GCDoor_C0 

 

variables generic_door generic_door_state 

 

invariants 

  @inv1 generic_door ! DOOR 

  @inv2 generic_door_state " generic_door # DOOR_STATE 

 

event openDoors 

    any ds platform occpTrns 

    where 

      @grd ds ! DOOR 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 generic_door_state[ds]={CLOSED} 

      @grd3 platform " PLATFORM 

      @grd4 platform " (occpTrns $ PLATFORM) 

      @grd5 ds %& 

      @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

    then 

      @act1 generic_door_state'generic_door_state ( (ds){OPEN}) 

  end 

 

  event closeDoors 

    any ds 

    where 

      @grd ds ! DOOR 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 generic_door_state[ds]={OPEN} 

      @grd3 ds %& 

    then 

      @act1 generic_door_state'generic_door_state  

                                     ( (ds){CLOSED}) 

  end 

 

  event addDoor 

    any ds c 

    where 

      @grd1 ds $ generic_door = & 

      @grd2 ds % & 

      @grd3 ds = GEN_DOOR_CARRIAGE*[{c}] 

    then 

      @act1 generic_door ' generic_door + ds 

      @act2 generic_door_state ' generic_door_state  

                                     + (ds){CLOSED}) 

  end 

 

  event removeDoor 

    any ds c 

    where 

      @grd1 ds ! generic_door 

      @grd2 ds % & 

      @grd3 generic_door_state[ds]={CLOSED} 

      @grd4 ds = GEN_DOOR_CARRIAGE*[{c}] 

    then 

      @act1 generic_door ' generic_door , ds 

      @act2 generic_door_state '  

                          ds-generic_door_state 

  end 

 

(a) Variables, invariants and event openDoors

machine GCDoor_M0 sees GCDoor_C0 

 

variables generic_door generic_door_state 

 

invariants 

  @inv1 generic_door ! DOOR 

  @inv2 generic_door_state " generic_door # DOOR_STATE 

 

event openDoors 

    any ds platform occpTrns 

    where 

      @grd ds ! DOOR 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 generic_door_state[ds]={CLOSED} 

      @grd3 platform " PLATFORM 

      @grd4 platform " (occpTrns $ PLATFORM) 

      @grd5 ds %& 

      @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

    then 

      @act1 generic_door_state'generic_door_state ( (ds){OPEN}) 

  end 

 

  event closeDoors 

    any ds 

    where 

      @grd ds ! DOOR 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 generic_door_state[ds]={OPEN} 

      @grd3 ds %& 

    then 

      @act1 generic_door_state'generic_door_state  

                                     ( (ds){CLOSED}) 

  end 

 

  event addDoor 

    any ds c 

    where 

      @grd1 ds $ generic_door = & 

      @grd2 ds % & 

      @grd3 ds = GEN_DOOR_CARRIAGE*[{c}] 

    then 

      @act1 generic_door ' generic_door + ds 

      @act2 generic_door_state ' generic_door_state  

                                     + (ds){CLOSED}) 

  end 

 

  event removeDoor 

    any ds c 

    where 

      @grd1 ds ! generic_door 

      @grd2 ds % & 

      @grd3 generic_door_state[ds]={CLOSED} 

      @grd4 ds = GEN_DOOR_CARRIAGE*[{c}] 

    then 

      @act1 generic_door ' generic_door , ds 

      @act2 generic_door_state '  

                          ds-generic_door_state 

  end 

 

(b) Some events in GCDoors M0

Figure 6.24: Machine GCDoors M0

6.11.2 Second refinement of GCDoor : GCDoor M1

In this refinement more details are introduced about the possible behaviour of the doors.

The properties to be preserved are:

1. The actions involving the doors may result from commands sent from the central

door control. These commands have a type (OPEN RIGHT DOORS,

OPEN LEFT DOORS, CLOSE RIGHT DOORS, CLOSE LEFT DOORS,

ISOLATE DOORS, REMOV E ISOLATION DOORS), a state (START , FAIL,

SUCCESS and EXECUTED) and a target (set of doors).

2. After the doors are closed, they must be locked for the train to move.

3. If a door is open, then an opening device was used: MANUAL PLATFORM if

opened manually in a platform, MANUAL INTERNAL if opened inside the car-

riage manually and AUTOMATIC CENTRAL DOOR if opened automatically

from the central control.

4. Doors can get obstructed when closed automatically (people/object obstruction).

If an obstruction is detected then it should be tried to close the doors again.

The context used in this refinement (GCDoor C1 ) extends the existing one as seen in

Fig. 6.25(a). Abstract events are refined to include the properties defined above. Some
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context GCDoor_C1 extends GCDoor_C0 

 

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR START FAIL SUCCESS EXECUTED 

OPEN_RIGHT_DOORS OPEN_LEFT_DOORS CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS 

 

sets OPENING_DEVICE COMMAND_STATE COMMAND_TYPE COMMAND 

 

axioms 

  @axm1 partition(OPENING_DEVICE, {MANUAL_PLATFORM}, {MANUAL_INTERNAL}, {AUTOMATIC_CENTRAL_DOOR}) 

  @axm2 partition(COMMAND_STATE, {START}, {FAIL}, {SUCCESS},{EXECUTED}) 

  @axm3 partition(COMMAND_TYPE, {OPEN_RIGHT_DOORS}, {OPEN_LEFT_DOORS}, {CLOSE_RIGHT_DOORS},  

                                  {CLOSE_LEFT_DOORS}, {ISOLATE_DOORS}, {REMOVE_ISOLATION_DOORS}) 

end 
!

(a) Context GCDoors C1

machine GCDoor_M1 refines GCDoor_M0  sees GCDoor_C1 

 

variables generic_door generic_door_state locked_doors door_opening_device obstructed_door command  

           command_doors command_type command_state 

 

invariants 

  @inv1 locked_doors ! DOOR 

  @inv2 "d·d#locked_doors $ d # dom(generic_door_state) % generic_door_state(d)&{OPEN} 

  @inv3 door_opening_device # generic_door '  OPENING_DEVICE 

  @inv4 "d·d#generic_door $ generic_door_state(d)=OPEN %d#dom(door_opening_device) 

  @inv5 obstructed_door ! dom(generic_door_state)  

  @inv6 command ! COMMAND 

  @inv7 command_type # command ( COMMAND_TYPE 

  @inv8 command_state # command ( COMMAND_STATE 

  @inv9 command_doors # command ( )(generic_door)  

  @inv10 "dos·dos#ran(command_doors) % dos *+ 

  @inv11 "d,opDev·d # generic_door $ opDev # OPENING_DEVICE $ (d,opDev)#door_opening_device  

         $ opDev=AUTOMATIC_CENTRAL_DOOR (-cmd·cmd#command $ d # command_doors(cmd)) 

 

events 

  event INITIALISATION extends INITIALISATION 

    then 

      @act1 locked_doors.+ 

      @act2 door_opening_device.+ 

      @act3 obstructed_door.+ 

      @act4 command . + 

      @act5 command_doors .+ 

      @act6 command_type .+ 

      @act7 command_state .+ 

  end 

 

  event commandCloseDoors 

    any doors cmd cmd_type 

    where 

      @guard doors ! generic_door 

      @guard1 generic_door_state[doors]*{CLOSED} 

      @guard2 cmd_type # {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 

      @guard3 cmd # COMMAND/command 

      @grd4 doors *+ 

    then 

      @act1 command_state(cmd).START 

      @act2 command_doors(cmd).doors 

      @act3 command . command 0 {cmd} 

      @act4 command_type(cmd).cmd_type 

  end 

 

 

 

 

 

 

 

 

 

 

 

 

event commandOpenDoors 

    any doors cmd cmd_type 

    where 

      @grd doors ! generic_door 

(b) Variables, invariants

Figure 6.25: Excerpt of machine GCDoors M1

new invariants are added as seen in Fig. 6.25(b). Property 1 is defined by new variables

command, command type, command state and command doors (see invariants inv6

to inv9). Property 2 is defined by invariant inv2 (if a door is locked, then the door

is not opened) and events lockDoor/unlockDoor. Property 3 is defined by variables

door opening device, inv3 and inv11 (if a door is opened automatically, then a com-

mand has been issued to do so). Property 4 is defined by variable obstructed door, inv5

and events doorIsObstructed and closeObstructedDoor. The system works as follows:

doors can be opened/closed manually or automatically. To open/close a door automati-

cally, a command must be issued from the central door control defining which doors are

affected (for instance, to open a door automatically, event commandOpenDoors needs

to occur). A command starts with state START which can lead to a successful result

(SUCCESS) or failure (FAIL). Either way, it finishes with state EXECUTED. Ab-

stract event otherCommandDoors refers to commands not defined in this refinement. If

a door gets obstructed when being closed automatically (event doorIsObstructed) then

event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

The system works as follows: doors can be opened/closed manually or automatically. If

it is done automatically, a command sent from the central door control is issued defin-

ing which doors are affected (for instance, event commandOpenDoors, illustrated in

Fig. 6.26, issues a command to open a set of doors automatically). Event otherCommandDoors

is left abstract the enough in order to refer to commands not defined in this refinement.

If a door gets obstructed when closing automatically (event doorIsObstructed) then
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event commandOpenDoors 

    any doors cmd cmd_type 

    where 

      @grd doors ! generic_door 

      @grd1 generic_door_state[doors]={CLOSED} 

      @grd2 cmd_type  

          " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS} 

      @grd3 cmd " COMMAND#command 

      @grd4 doors $% 

    then 

      @act1 command_state(cmd)&START 

      @act2 command_doors(cmd)&doors 

      @act3 command & command ' {cmd} 

      @act4 command_type(cmd)&cmd_type 

  end 

 

  event otherCommandDoors 

    any doors cmd cmd_type 

    where 

      @grd doors ! generic_door 

      @grd1 cmd_type " COMMAND_TYPE 

      @grd3 cmd " COMMAND#command 

      @grd4 doors $% 

    then 

      @act1 command_state(cmd)&START 

      @act2 command_doors(cmd)&doors 

      @act3 command & command ' {cmd} 

      @act4 command_type(cmd)&cmd_type 

  end 

 

event doorIsObstructed 

    any ds cmd 

    where 

      @grd ds !  DOOR#(locked_doors ' obstructed_door) 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 cmd " command 

      @grd3 command_type(cmd)  

            " {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 

      @grd4 command_state(cmd)"{START,FAIL} 

      @grd5 ds ! command_doors(cmd) 

      @grd6 ds $% 

      @grd7 generic_door_state[ds]={OPEN} 

    then 

      @act1 obstructed_door & obstructed_door ' ds 

      @act2 command_state(cmd)&FAIL 

  end 

 

  event updateCmdState 

    any state cmd 

    where 

      @guard3 cmd " command 

      @guard state " COMMAND_STATE#{START} // @guard1 command_state(cmd)=START 

    then 

      @act1 command_state(cmd)&state 

  end 

event openDoorAutomatically  

refines openDoors 

 any ds cmd 

 where 

  @grd ds ! generic_door"locked_doors 

  @grd1 ds ! dom(generic_door_state) 

  @grd2 generic_door_state[ds]={CLOSED} 

  @grd3 cmd # command 

  @grd4 command_type(cmd) # 

    {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS} 

  @grd5 command_state(cmd)=START 

  @grd6 ds ! command_doors(cmd) 

  @grd7 ds $% 

 then 

  @act1 generic_door_state& 

          generic_door_state ' (ds({OPEN}) 

  @act2 door_opening_device & door_opening_device  

                ' (ds({AUTOMATIC_CENTRAL_DOOR}) 

 end 

 

  event closeObstructedDoor  

  refines closeDoors 

   any ds cmd st 

   where 

      @grd ds ! obstructed_door 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 cmd # command 

      @grd3 command_type(cmd)# 

      {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 

      @grd4 command_state(cmd)=FAIL 

      @grd5 ds ! command_doors(cmd) 

      @grd6 ds $% 

      @grd7 generic_door_state[ds]={OPEN} 

      @grd8 st # {SUCCESS,FAIL} 

      @grd9 st = SUCCESS ) command_doors(cmd)"ds=%  

            * generic_door_state[command_doors(cmd)"ds] 

            ={CLOSED}        

    then 

      @act1 generic_door_state& 

                  generic_door_state'(ds({CLOSED}) 

      @act2 obstructed_door & obstructed_door " ds 

      @act3 command_state(cmd)&st 

  end 

 

  event lockDoor 

    any d 

    where 

      @guard d # generic_door"locked_doors 

      @guard1 generic_door_state(d)=CLOSED 

    then 

      @act1 locked_doors&locked_doors + {d} 

  end 

 

  event unlockDoor 

    any d 

    where 

      @guard2 d # generic_door 

      @guard d # locked_doors 

    then 

  event lockDoor 

    any d 

    where 

      @grd d ! generic_door"locked_doors 

      @grd1 generic_door_state(d)=CLOSED 

    then 

      @act1 locked_doors#locked_doors $ {d} 

  end 

 

  event unlockDoor 

    any d 

    where 

      @grd1 d ! generic_door 

      @grd2 d ! locked_doors 

    then 

      @act1 locked_doors#locked_doors " {d} 

  end 

 

event openDoorManually refines openDoors 

    any ds open_device platform occpTrns 

    where 

      @guard ds % generic_door"locked_doors 

      @guard1 ds % dom(generic_door_state) 

      @guard2 generic_door_state[ds]&{OPEN} 

      @guard3 open_device ! {MANUAL_PLATFORM,MANUAL_INTERNAL} 

      @grd3 platform ! PLATFORM 

      @grd4 platform ! (occpTrns ' PLATFORM) 

      @grd5 ds &( 

      @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

    then 

      @act1 generic_door_state#generic_door_state ) (ds*{OPEN}) 

      @act2 door_opening_device # door_opening_device ) (ds*{open_device}) 

  end 

 

  event closeDoors refines closeDoors 

    any ds cmd 

    where 

      @guard ds % DOOR 

      @guard1 ds % dom(generic_door_state) 

      @guard2 generic_door_state[ds]={OPEN} 

      @guard3 cmd ! command 

      @guard4 command_type(cmd) ! {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 

      @guard5 command_state(cmd)=START 

      @guard6 ds % command_doors(cmd) 

      @grd3 ds &( 

    then 

      @act1 generic_door_state#generic_door_state ) (ds*{CLOSED}) 

  end 

 

 

  event addDoor extends addDoor 

  end 

 

  event removeDoor extends removeDoor 

    where 

      @grd6 ds'dom(door_opening_device)=( 

      @grd5 +dos·dos!ran(command_doors) , ds'dos=( 

  end 

end 

 

 

 

 

event commandOpenDoors 

    any doors cmd cmd_type 

    where 

      @grd doors ! generic_door 

      @grd1 generic_door_state[doors]={CLOSED} 

      @grd2 cmd_type  

          " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS} 

      @grd3 cmd " COMMAND#command 

      @grd4 doors $% 

    then 

      @act1 command_state(cmd)&START 

      @act2 command_doors(cmd)&doors 

      @act3 command & command ' {cmd} 

      @act4 command_type(cmd)&cmd_type 

  end 

 

  event otherCommandDoors 

    any doors cmd cmd_type 

    where 

      @grd doors ! generic_door 

      @grd1 cmd_type " COMMAND_TYPE 

      @grd3 cmd " COMMAND#command 

      @grd4 doors $% 

    then 

      @act1 command_state(cmd)&START 

      @act2 command_doors(cmd)&doors 

      @act3 command & command ' {cmd} 

      @act4 command_type(cmd)&cmd_type 

  end 

 

event doorIsObstructed 

    any ds cmd 

    where 

      @grd ds !  DOOR#(locked_doors ' obstructed_door) 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 cmd " command 

      @grd3 command_type(cmd)  

            " {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 

      @grd4 command_state(cmd)"{START,FAIL} 

      @grd5 ds ! command_doors(cmd) 

      @grd6 ds $% 

      @grd7 generic_door_state[ds]={OPEN} 

    then 

      @act1 obstructed_door & obstructed_door ' ds 

      @act2 command_state(cmd)&FAIL 

  end 

 

  event updateCmdState 

    any state cmd 

    where 

      @guard3 cmd " command 

      @guard state " COMMAND_STATE#{START} // @guard1 command_state(cmd)=START 

    then 

      @act1 command_state(cmd)&state 

  end 

event openDoorAutomatically  

refines openDoors 

 any ds cmd 

 where 

  @grd ds ! generic_door"locked_doors 

  @grd1 ds ! dom(generic_door_state) 

  @grd2 generic_door_state[ds]={CLOSED} 

  @grd3 cmd # command 

  @grd4 command_type(cmd) # 

    {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS} 

  @grd5 command_state(cmd)=START 

  @grd6 ds ! command_doors(cmd) 

  @grd7 ds $% 

 then 

  @act1 generic_door_state& 

          generic_door_state ' (ds({OPEN}) 

  @act2 door_opening_device & door_opening_device  

                ' (ds({AUTOMATIC_CENTRAL_DOOR}) 

 end 

 

  event closeObstructedDoor  

  refines closeDoors 

   any ds cmd st 

   where 

      @grd ds ! obstructed_door 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 cmd # command 

      @grd3 command_type(cmd)# 

      {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 

      @grd4 command_state(cmd)=FAIL 

      @grd5 ds ! command_doors(cmd) 

      @grd6 ds $% 

      @grd7 generic_door_state[ds]={OPEN} 

      @grd8 st # {SUCCESS,FAIL} 

      @grd9 st = SUCCESS ) command_doors(cmd)"ds=%  

            * generic_door_state[command_doors(cmd)"ds] 

            ={CLOSED}        

    then 

      @act1 generic_door_state& 

                  generic_door_state'(ds({CLOSED}) 

      @act2 obstructed_door & obstructed_door " ds 

      @act3 command_state(cmd)&st 

  end 

 

  event lockDoor 

    any d 

    where 

      @guard d # generic_door"locked_doors 

      @guard1 generic_door_state(d)=CLOSED 

    then 

      @act1 locked_doors&locked_doors + {d} 

  end 

 

  event unlockDoor 

    any d 

    where 

      @guard2 d # generic_door 

      @guard d # locked_doors 

    then 

Figure 6.26: Some events in GCDoors M1

event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

6.12 Third refinement of GCDoor : GCDoor M2

In the third refinement, malfunctioning doors can be isolated and in that case, they

ignore the commands issued by the central command. Isolated doors can be either

opened or closed. After the execution of a command, the corresponding state is updated

according to the success/failure of the command. The properties to be preserved are:
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1. Doors can be isolated (independently of the respective door state) in case of mal-

function or safety reasons.

2. If a command is successful, it means that the command already occurred.

3. Two commands cannot have the same door as target except if the command has

already been executed.

4. If a door is obstructed, then it must be in a state corresponding to OPEN .

The properties to be preserved are mainly defined as invariants. Property 1 is de-

fined by new variable isolated door, inv1, inv6 and events commandIsolationDoors,

isolateDoor and removeIsolatedDoor as seen in Fig. 6.27(b). Property 2 is defined by

several invariants depending on the command: inv2 for opening doors, inv3 for closing

doors, inv4 to isolate doors, inv5 to lift the isolation from a door. Property 3 is defined

by inv7 and the last property by inv8.

An excerpt of GCDoors M2 is depicted in Fig. 6.27. New event commandIsolationDoors

models a command to add/remove doors from isolation refining the abstract event

otherCommandDoors. After this command is issued, the actual execution (or not) of

the command dictates the command state at refined event updateIsolationCmdState.

A command log is created corresponding to the end of the command’s task in event

executeLogCmdState. Other commands could be added in a similar manner but we

restrict to these commands for now. The state update of other commands (opening and

closing doors) follows the same behaviour as the isolation one.

This model has three refinement layers with all the proof obligations discharged. We

instantiate this model, benefiting from the discharged proof obligations and refinements

to model emergency and service doors.

6.13 Instantiation of Generic Carriage Door

We use the GCDoor development as a pattern to model emergency and service doors.

The instantiation is similar for both kind of doors: specific details for each type of door

are added later. We abstract ourselves from these details and focus in the instantiation

of one of the doors: emergency doors.

The pattern context is defined by contexts GCDoor C0 (and context GCTrack C0)

in Fig. 6.23 and GCDoor C1 in Fig. 6.25(a). The parameterisation context seen by

the instance results from the context seen by the abstract machine CarriageDoors as

illustrated in Fig. 6.28(a). CarriageDoors C0 does not contain all the sets and constants

that need to be instantiated. Therefore CarriageDoors C1 is created based on the

pattern context GCDoor C1 (Fig. 6.28(b)).
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machine GCDoor_M2 refines GCDoor_M1  sees GCDoor_C1 

 

variables generic_door generic_door_state isolated_door locked_doors door_opening_device obstructed_door  

           command command_doors command_type command_state 

 

invariants 

  @inv1 isolated_door ! DOOR 

  @inv2 "cmd,d·cmd # command $ command_type(cmd)#{OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}  

        $d # DOOR$d # command_doors(cmd)$command_state(cmd)=SUCCESS $ d % isolated_door& generic_door_state(d)=OPEN 

  @inv3 "cmd,d·cmd # command $ command_type(cmd)#{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}  

        $ d # DOOR $ d # command_doors(cmd)$command_state(cmd)=SUCCESS$d % isolated_door& generic_door_state(d)=CLOSED 

  @inv4 "cmd,d·cmd # command $ command_type(cmd)=ISOLATE_DOORS $ d # DOOR  

        $ d # command_doors(cmd) $ command_state(cmd)=SUCCESS & d# isolated_door 

  @inv5 "cmd,d·cmd # command $ command_type(cmd)=REMOVE_ISOLATION_DOORS  

        $ d # DOOR $ d # command_doors(cmd) $ command_state(cmd)=SUCCESS & d% isolated_door 

  @inv6 "d·d#isolated_door $ d # dom(generic_door_state)&  generic_door_state(d)#{OPEN, CLOSED} 

  @inv7 "cmd1,cmd2·cmd1#command $ cmd2#command $ cmd1'cmd2  

        $ command_state(cmd1)'EXECUTED $ command_state(cmd2)'EXECUTED &command_doors(cmd1)(command_doors(cmd2)=)  

  @inv8 "d·d#obstructed_door & generic_door_state(d)=OPEN 

 

events 

  event INITIALISATION extends INITIALISATION 

    then 

      @act3 isolated_door *) 

  end 

 

  event commandOpenDoors refines commandOpenDoors 

    any doors cmd cmd_type 

    where 

      @guard doors ! generic_door 

      @guard1 generic_door_state[doors]={CLOSED} 

      @guard2 cmd_type # {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS} 

      @guard3 cmd # COMMAND+command 

      @guard4 "cmd1·cmd1#command $ command_state(cmd1)'EXECUTED&doors(command_doors(cmd1)=) 

      @grd4 doors ') 

    then 

      @act1 command_state(cmd)*START 

      @act2 command_doors(cmd)*doors 

      @act3 command * command , {cmd} 

      @act4 command_type(cmd)*cmd_type 

  end 

 

  event commandCloseDoors refines commandCloseDoors 

    any doors cmd cmd_type 

    where 

      @guard doors ! generic_door 

      @guard1 generic_door_state[doors]={OPEN} 

      @guard2 cmd_type # {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 

      @guard3 cmd # COMMAND+command 

      @guard4 "cmd1·cmd1#command $ command_state(cmd1)'EXECUTED&doors(command_doors(cmd1)=) 

      @grd4 doors ') 

    then 

      @act1 command_state(cmd)*START 

      @act2 command_doors(cmd)*doors 

      @act3 command * command , {cmd} 

      @act4 command_type(cmd)*cmd_type 

  end 

 

  

  event updateSuccessOpenDoorCmdState refines updateCmdState 

    any cmd 

(a) Variables, invariants
  end 

 

event commandIsolationDoors refines otherCommandDoors 

    any doors cmd cmd_type 

    where 

      @grd doors ! generic_door 

      @grd1 cmd_type " {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} 

      @grd2 cmd " COMMAND#command 

      @grd3 $cmd1·cmd1"command  

              % command_state(cmd1)&EXECUTED 

            'doors(command_doors(cmd1)=) 

      @grd4 doors &) 

      @grd5 cmd_type = ISOLATE_DOORS * (doors(isolated_door = ) ) 

      @grd6 cmd_type = REMOVE_ISOLATION_DOORS * isolated_door&)  

            % doors(isolated_door&) 

    then 

      @act1 command_state(cmd)+START 

      @act2 command_doors(cmd)+doors 

      @act3 command + command , {cmd} 

      @act4 command_type(cmd)+cmd_type 

  end 

 

  event updateIsolationCmdState refines updateCmdState 

    any state cmd 

    where 

      @grd cmd " command 

      @grd1 state " COMMAND_STATE#{START,EXECUTED} 

      @grd2 command_state(cmd)=START 

      @grd3 command_type(cmd)  

              " {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} 

      @grd4 (command_type(cmd) = ISOLATE_DOORS  

            % (-d·d"command_doors(cmd) % d .isolated_door))  

            / (command_type(cmd) = REMOVE_ISOLATION_DOORS  

            % (-d·d"command_doors(cmd) % d "isolated_door))  

            * state = FAIL 

    then 

      @act1 command_state(cmd)+state 

  end 

 

  event executedLogCmdState refines updateCmdState 

    any cmd 

    where 

      @guard3 cmd " command 

      @guard1 command_state(cmd)"{FAIL,SUCCESS} 

    with 

      @state state = EXECUTED 

    then 

      @act1 command_state(cmd)+EXECUTED 

  end 

 

  event openDoorAutomatically refines openDoorAutomatically 

    any ds cmd platform occpTrns 

    where 

      @guard ds ! generic_door#(isolated_door , locked_doors) 

      @guard1 ds ! dom(generic_door_state) 

      @guard2 generic_door_state[ds]&{OPEN} 

      @guard3 cmd " command 

      @guard4 command_type(cmd) " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS} 

      @guard5 command_state(cmd)=START 

event executedLogCmdState refines updateCmdState 

    any cmd 

    where 

      @guard3 cmd ! command 

      @guard1 command_state(cmd)!{FAIL,SUCCESS} 

    with 

      @state state = EXECUTED 

    then 

      @act1 command_state(cmd)"EXECUTED 

  end 

  

 event isolateDoor 

    any d cmd 

    where 

      @grd d ! generic_door#isolated_door  

      @grd1 cmd ! command 

      @grd2 command_state(cmd)=START 

      @grd3 d ! command_doors(cmd) 

      @grd4 command_type(cmd) = ISOLATE_DOORS 

      @grd5 generic_door_state(d)!{OPEN, CLOSED} 

    then 

      @act1 isolated_door" isolated_door $ {d} 

  end 

 

  event removeIsolatedDoor 

    any d cmd 

    where 

      @grd d ! isolated_door 

      @grd1 cmd ! command 

      @grd3 d ! command_doors(cmd) 

      @grd4 command_type(cmd) = REMOVE_ISOLATION_DOORS 

      @grd2 command_state(cmd)=START 

      @grd5 generic_door_state(d)!{OPEN, CLOSED} 

    then 

      @act1 isolated_door" isolated_door # {d} 

  end 

 

  event addDoor extends addDoor 

  end 

 

  event removeDoor extends removeDoor 

  end 

end 
!

(b) Some events in GCDoor M2

Figure 6.27: Excerpt of machine GCDoor M2

Following the steps suggested in Sect. 3.5.2, we create the instantiation refinement for

emergency carriage doors as seen in Fig. 6.29. As expected, the generic sets and con-

stants are replaced by the instance sets existing in contexts CarriageDoors C0 and

CarriageDoors C1. Moreover, generic variables are renamed to fit the instance and be

a refinement of abstract machine CarriageDoors. The same happens to generic events

addDoor and removeDoor.

Comparing the abstract machine of the pattern GCDoor M0 and the last refinement of

our initial development CarriageDoors, we realise that they are similar but not a perfect

match. CarriageDoors events contains some additional parameters and guards result-

ing from the previous refinements. For instance, event closeDoors in CarriageDoors

(Fig. 6.30(b)) contains an additional parameter cds compared to event closeDoors in
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context CarriageDoor_C0 

 

constants PLATFORM DOOR_SIDE PLATFORM_SIDE CLOSED OPEN  

           DOOR_CARRIAGE  

 

sets DOOR DOOR_STATE CDV SIDE CARRIAGE  

 

axioms 

  @MetroSystem_C1_axm1 partition(DOOR_STATE, {OPEN}, {CLOSED}) 

  @MetroSystem_C1_axm2 PLATFORM ! CDV 

  @Train_C1_axm2 DOOR_CARRIAGE " DOOR # CARRIAGE 

  @Train_C1_axm3 $c·c"ran(DOOR_CARRIAGE)%DOOR_CARRIAGE&[{c}]'( 

  @Train_C2_axm4 DOOR_SIDE " DOOR # SIDE 

  @Train_C2_axm5 PLATFORM_SIDE " PLATFORM # SIDE 

  @Train_C2_axm6 PLATFORM '( 

end 
!

(a) Context CarriageDoors C0

context CarriageDoor_C1 extends CarriageDoor_C0 

 

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR  

START FAIL SUCCESS EXECUTED OPEN_RIGHT_DOORS OPEN_LEFT_DOORS  

CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS 

 

sets OPEN_DEV COMD_ST COMD_TYPE COMD 

 

axioms 

 @axm1 partition(OPEN_DEV, {MANUAL_PLATFORM}, {MANUAL_INTERNAL}, 

                                                     {AUTOMATIC_CENTRAL_DOOR}) 

  @axm2 partition(COMD_ST, {START}, {FAIL}, {SUCCESS},{EXECUTED}) 

  @axm3 partition(COMD_TYPE,{OPEN_RIGHT_DOORS},{OPEN_LEFT_DOORS}, 

                   {CLOSE_RIGHT_DOORS}, {CLOSE_LEFT_DOORS},{ISOLATE_DOORS},   

                  {REMOVE_ISOLATION_DOORS}) 

end 
!

!
(b) Context CarriageDoors C1

Figure 6.28: Parameterisation context CarriageDoors C0 plus additional context
CarriageDoors C1

INSTANTIATED REFINEMENT IEmergencyDoor M2
INSTANTIATES GCDoors M2 VIA GCDoor C0 GCDoor C1
REFINES CarriageDoors /* abstract machine */
SEES CarriageDoors C0 CarriageDoors C1 /* instance contexts */
REPLACE

SETS GEN CARRIAGE := CARRIAGE DOOR := DOOR
DOOR STATE := DOOR STATE SIDE := SIDE
OPENING DEV ICE := OPEN DEV COMMAND STATE := COMD ST
COMMAND := COMD COMMAND TY PE := COMD TY PE

CONSTANTS GEN DOOR CARRIAGE := DOOR CARRIAGE
OPEN := OPEN PLATFORM := PLATFORM
CLOSED := CLOSED PLATFORM SIDE := PLATFORM SIDE
. . .

RENAME /*rename variables, events and params*/
VARIABLES generic doors := carriage doors generic door state := carriage ds
EVENTS addDoor := allocateCarriageTrain removeDoor := removeCarriageTrain

END

Figure 6.29: Instantiated Refinement IEmergencyDoor M2

GCDoor M0 (Fig. 6.30(a)). Some customisation is tolerable in the generic event to en-

sure that the instantiation of GCDoor M0.closeDoors refines CarriageDoors.closeDoors

by adding a parameter that match cds and respective guard grd13.

The customisation can be realised by a (shared event) composition of event

GCDoor M0.closeDoors with another event that introduces the additional parameter

cds and guard cds = carriage ds. The monotonicity of the shared event composition

allows the composed pattern to be instantiated as initially desired. Another option is

to introduce an additional step: the last machine of the refinement chain before the
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machine GCDoor_M0 sees GCDoor_C0 

 

variables generic_door generic_door_state 

 

invariants 

  @inv1 generic_door ! DOOR 

  @inv2 generic_door_state " generic_door # DOOR_STATE 

 

event openDoors 

    any ds platform occpTrns 

    where 

      @grd ds ! DOOR 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 generic_door_state[ds]={CLOSED} 

      @grd3 platform " PLATFORM 

      @grd4 platform " (occpTrns $ PLATFORM) 

      @grd5 ds %& 

      @grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

    then 

      @act1 generic_door_state'generic_door_state ( (ds){OPEN}) 

  end 

 

  event closeDoors 

    any ds 

    where 

      @grd ds ! DOOR 

      @grd1 ds ! dom(generic_door_state) 

      @grd2 generic_door_state[ds]={OPEN} 

      @grd3 ds %& 

    then 

      @act1 generic_door_state'generic_door_state  

                                     ( (ds){CLOSED}) 

  end 

 

  event addDoor 

    any ds c 

    where 

      @grd1 ds $ generic_door = & 

      @grd2 ds % & 

      @grd3 ds = GEN_DOOR_CARRIAGE*[{c}] 

    then 

      @act1 generic_door ' generic_door + ds 

      @act2 generic_door_state ' generic_door_state  

                                     + (ds){CLOSED}) 

  end 

 

  event removeDoor 

    any ds c 

    where 

      @grd1 ds ! generic_door 

      @grd2 ds % & 

      @grd3 generic_door_state[ds]={CLOSED} 

      @grd4 ds = GEN_DOOR_CARRIAGE*[{c}] 

    then 

      @act1 generic_door ' generic_door , ds 

      @act2 generic_door_state '  

                          ds-generic_door_state 

  end 

 

(a) Event GCDoor M0.closeDoors

machine CarriageDoors sees Train_C4  

 

variables carriage_door carriage_ds  

 

invariants 

  theorem @typing_carriage_door carriage_door ! "(DOOR) 

  theorem @typing_carriage_ds carriage_ds ! "(DOOR # DOOR_STATE) 

  @Carriage_M1_inv1 carriage_door $ DOOR 

  @Carriage_M1_inv2 carriage_ds ! carriage_door % DOOR_STATE 

 

events 

  event INITIALISATION 

    then 

      @act13 carriage_door &' 

      @act14 carriage_ds &' 

  end 

 

  event openDoors 

    any occpTrns platform ds  

    where 

      @typing_platform platform ! CDV 

      @typing_ds ds ! "(DOOR) 

      @grd2 occpTrns ! "(CDV) 

      @grd3 platform ! PLATFORM 

      @grd4 platform ! (occpTrns ( PLATFORM) 

      @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 

      @grd11 ds $ dom(carriage_ds) 

      @grd12 carriage_ds[ds]={CLOSED} 

    then 

      @act2 carriage_ds&carriage_ds) (ds#{OPEN}) 

  end 

 

  event closeDoors 

    any ds cds  

    where 

      @typing_cds cds ! "(DOOR # DOOR_STATE) 

      @typing_ds ds ! "(DOOR) 

      @grd11 ds $ dom(carriage_ds) 

      @grd12 carriage_ds[ds]={OPEN} 

      @grd13 cds = carriage_ds 

    then 

      @act2 carriage_ds&carriage_ds ) (ds#{CLOSED}) 

  end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Event CarriageDoors.closeDoors

machine CarriageDoorsInst_M0 refines CarriageDoors  sees CarriageDoors_C0  
 
variables carriage_door carriage_ds  
 
events 
  event INITIALISATION 
    then 
      @act13 carriage_door !" 
      @act14 carriage_ds !" 
  end 
 
  event openDoors refines openDoors  
    any occpTrns platform ds  
    where 
      @typing_platform platform # CDV 
      @typing_ds ds # !(DOOR) 
      @grd2 occpTrns # !(CDV) 
      @grd3 platform # PLATFORM 
      @grd4 platform # (occpTrns " PLATFORM) 
      @grd7 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)} 
      @grd11 ds # dom(carriage_ds) 
      @grd12 carriage_ds[ds]={CLOSED} 
    with 
      @t t # TRAIN 
    then 
      @act2 carriage_ds!carriage_ds$ (ds%{OPEN}) 
  end 
 
  event closeDoors refines closeDoors  
    any ds  
    where 
      @typing_ds ds # !(DOOR) 
      @grd11 ds # dom(carriage_ds) 
      @grd12 carriage_ds[ds]={OPEN} 
    with 
      @cds cds = carriage_ds 
      @t t # TRAIN 
      @closed closed # BOOL 
    then 
      @act2 carriage_ds!carriage_ds $ (ds%{CLOSED}) 
  end 
 
  event allocateCarriageTrain refines allocateCarriageTrain  
    any c ds  
    where 
      @typing_ds ds # !(DOOR) 
      @typing_c c # CARRIAGE 
      @grd14 ds = DOOR_CARRIAGE&[{c}] 
      @grd15 ds"dom(carriage_ds)=" 
    with 
      @t t # TRAIN 
    then 
      @act3 carriage_door ! carriage_door ' ds 
      @act4 carriage_ds ! carriage_ds ' (ds%{CLOSED}) 
  end 
 
  event removeCarriageTrain refines removeCarriageTrain  
    any c ds  
    where 

(c) Event CarriageDoorsInst M0.closeDoors

Figure 6.30: Event closeDoors in the pattern and instance; they differ in the param-
eters, guards and witnesses

instantiation (in our case study, machine CarriageDoors) is refined. The resulting re-

finement machine (CarriageDoorsInst M0) refines the first instantiation machine (i.e.

CarriageDoors v CarriageDoorsInst M0 v EmergencyDoors M0) “customising”

the instantiation. Therefore the additional parameters (and respective guards) can dis-

appear by means of witnesses as can be seen in Fig. 6.30(c). Ideally we aim to have a

syntactic match (after instantiation) between the pattern and the initial instantiantion.

Nevertheless a valid refinement is enough to apply the instantiation.

An instance machine EmergencyDoor M2 (Fig. 6.31) is similar to GCDoor M2 apart

from the replacements and renaming applied in IEmergencyDoor M2 (cf. Figs. 6.27,

Fig. 6.29 and Fig. 6.31). That machine can be further refined (and decomposed) intro-

ducing the specific details related to emergency doors. The instantiation of the service

doors follows the same steps.

Statistics: In Table 6.3, we describe the statistics of the development in terms of vari-

ables, events and proof obligations (and how many POs were automatically discharged

by the theorem prover of the Rodin platform) for each refinement step. Almost 3/4 of

the proof obligations are automatically discharged.

This case study was carried out under the following conditions:

• Rodin v2.1

• Shared Event Composition plug-in v1.3.1
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machine EmergencyDoors_M2 refines EmergencyDoors_M1  sees CarriageDoors_C1  
 
variables carriage_door carriage_ds isolated_door locked_doors door_opening_device obstructed_door 
command command_doors command_type command_state  
 
invariants 
  @inv1 isolated_door ⊆ DOOR 
  @inv2 !cmd,d·cmd " command ∧ command_type(cmd)"{OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}  
           ∧ d " DOOR ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS  
           ∧ d # isolated_door$ carriage_ds(d)=OPEN 
  @inv3 !cmd,d·cmd " command ∧ command_type(cmd)"{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}     
           ∧ d " DOOR ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS  
           ∧ d # isolated_door$ carriage_ds(d)=CLOSED 
  @inv4 !d·d"isolated_door ∧ d " dom(carriage_ds)$  carriage_ds(d)"{OPEN, CLOSED} 
  @inv5 !cmd1,cmd2·cmd1"command ∧ cmd2"command ∧ cmd1≠cmd2  
            ∧ command_state(cmd1)≠EXECUTED  
            ∧ command_state(cmd2)≠EXECUTED $command_doors(cmd1)∩command_doors(cmd2)=%  
  @inv6 !cmd,d·cmd " command ∧ command_type(cmd)=ISOLATE_DOORS ∧ d " DOOR  
            ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS $ d" isolated_door 
  @inv7 !cmd,d·cmd " command ∧ command_type(cmd)=REMOVE_ISOLATION_DOORS  
            ∧ d " DOOR ∧ d " command_doors(cmd) ∧ command_state(cmd)=SUCCESS $ d# isolated_door 
  @inv8 !d·d"obstructed_door $ carriage_ds(d)=OPEN 
 
events 
  event INITIALISATION extends INITIALISATION  
    then 
      @act3 isolated_door &% 
  end 
 
  event commandOpenDoors refines commandOpenDoors  
    any doors cmd cmd_type  
    where 
      @guard doors ⊆ carriage_door 
      @guard1 carriage_ds[doors]={CLOSED} 
      @guard2 cmd_type " {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS} 
      @guard3 cmd " COMD∖command 
      @guard4 !cmd1·cmd1"command ∧ 
command_state(cmd1)≠EXECUTED$doors∩command_doors(cmd1)=% 
      @grd4 doors ≠% 
    then 
      @act1 command_state(cmd)&START 
      @act2 command_doors(cmd)&doors 
      @act3 command & command ∪ {cmd} 
      @act4 command_type(cmd)&cmd_type 
  end 
 
  event commandCloseDoors refines commandCloseDoors  
    any doors cmd cmd_type  
    where 
      @guard doors ⊆ carriage_door 
      @guard1 carriage_ds[doors]={OPEN} 
      @guard2 cmd_type " {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} 
      @guard3 cmd " COMD∖command 
      @guard4 !cmd1·cmd1"command ∧ 
command_state(cmd1)≠EXECUTED$doors∩command_doors(cmd1)=% 
      @grd4 doors ≠% 
    then 
      @act1 command_state(cmd)&START 
      @act2 command_doors(cmd)&doors 
      @act3 command & command ∪ {cmd} 

(a) Variables, invariants      @act4 command_type(cmd)!cmd_type 
  end 
 
  event commandIsolationDoors refines otherCommandDoors  
    any doors cmd cmd_type  
    where 
      @guard doors ⊆ carriage_door 
      @guard1 cmd_type  

" {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} 
      @guard3 cmd " COMD∖command 
      @guard4 #cmd1·cmd1"command  
                    ∧ command_state(cmd1)≠EXECUTED 
                $doors∩command_doors(cmd1)=% 
      @grd4 doors ≠% 
      @grd5 cmd_type = ISOLATE_DOORS & (doors∩isolated_door = % ) 
      @grd6 cmd_type = REMOVE_ISOLATION_DOORS & isolated_door≠%  
                ∧ doors∩isolated_door≠% 
    then 
      @act1 command_state(cmd)!START 
      @act2 command_doors(cmd)!doors 
      @act3 command ! command ∪ {cmd} 
      @act4 command_type(cmd)!cmd_type 
  end 
 
  event updateIsolationCmdState refines updateCmdState  
    any state cmd  
    where 
      @guard3 cmd " command 
      @guard state " COMD_ST∖{START,EXECUTED} 
      @guard1 command_state(cmd)=START 
      @guard5 command_type(cmd)  
                         " {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} 
      @grd3 (command_type(cmd) = ISOLATE_DOORS  
               ∧ ('d·d"command_doors(cmd) ∧ d (isolated_door))  
               ∨ (command_type(cmd) = REMOVE_ISOLATION_DOORS  
               ∧ ('d·d"command_doors(cmd) ∧ d "isolated_door))  
               & state = FAIL 
    then 
      @act1 command_state(cmd)!state 
  end 
 
 
  event updateSuccessOpenDoorCmdState refines updateCmdState  
    any cmd  
    where 
      @guard3 cmd " command 
      @guard1 command_state(cmd)=START 
      @guard5 command_type(cmd)"{OPEN_LEFT_DOORS,OPEN_RIGHT_DOORS} 
      @guard4 #d·d"command_doors(cmd)∧ d(isolated_door$carriage_ds(d)=OPEN 
      @grd6 command_doors(cmd)∖isolated_door≠% 
    with 
      @state state = SUCCESS 
    then 
      @act1 command_state(cmd)!SUCCESS 
  end 
 
  event updateFailOpenDoorCmdState refines updateCmdState  
    any cmd  
    where 
      @guard3 cmd " command 

  event executedLogCmdState refines updateCmdState  
    any cmd  
    where 
      @guard3 cmd ! command 
      @guard1 command_state(cmd)!{FAIL,SUCCESS} 
    with 
      @state state = EXECUTED 
    then 
      @act1 command_state(cmd)"EXECUTED 
  end 
 
 
  event isolateDoor 
    any d cmd  
    where 
      @guard d ! carriage_door∖isolated_door 
      @guard1 cmd ! command 
      @guard2 command_state(cmd)=START 
      @guard3 d ! command_doors(cmd) 
      @guard4 command_type(cmd) = ISOLATE_DOORS 
      @guard5 carriage_ds(d)!{OPEN, CLOSED} 
    then 
      @act1 isolated_door" isolated_door ∪ {d} 
  end 
 
  event removeIsolatedDoor 
    any d cmd  
    where 
      @guard d ! isolated_door 
      @guard1 cmd ! command 
      @guard3 d ! command_doors(cmd) 
      @guard4 command_type(cmd) = REMOVE_ISOLATION_DOORS 
      @guard2 command_state(cmd)=START 
      @guard5 carriage_ds(d)!{OPEN, CLOSED} 
    then 
      @act1 isolated_door" isolated_door ∖ {d} 
  end 
 
  event allocateCarriageTrain extends allocateCarriageTrain  
  end 
 
  event removeCarriageTrain extends removeCarriageTrain  
  end 
end 
!

(b) Some events in EmergencyDoor M2

Figure 6.31: Excerpt of instantiated machine EmergencyDoor M2

• Model Decomposition plug-in v1.2.1

• Instantiation was done manually (currently tool support is not available).

• ProB v2.1.2

• Camille Text Editor 2.0.1

Although we are interested mainly interested in safety properties, the model checker

ProB [141] proved to be very useful as a complementary tool during the development

of this case study. In some stages of the development, all the proof obligations were
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Variables Events ProofObligations/Auto
TransitiveClosureCtx − − 10/10
MetroSystem C0 − − 5/3
MetroSystem C1 − − 0/0
MetroSystem M0 7 10 75/64
MetroSystem M1 10 13 17/17
MetroSystem M2 12 17 78/57
MetroSystem M3 12 17 24/22
Track 4 10 0/0
Train 7 14 0/0
Middleware 1 4 0/0
Train M1 9 16 74/52
Train M2 13 21 155/79
Train M3 12 21 65/24
Train M4 14 21 119/89
LeaderCarriage 9 21 0/0
Carriage 5 11 0/0
Carriage M1 6 11 28/21
CarriageInterface 4 11 0/0
CarriageDoors 2 5 0/0
CarriageDoorsInst M0 2 5 2/1
GCDoor M0 2 5 6/6
GCDoor M1 9 15 81/80
GCDoor M2 10 22 170/153
Total 909/678(74.6%)

Table 6.3: Statistics of the metro system case study

discharged but with ProB we discovered that the system was deadlocked due to some

missing detail. In large developments, these situations possibly occur more frequently.

Therefore we suggest discharging the proof obligations to ensure the safety properties

are preserved and run the ProB model checker to confirm that the system actually is

free from deadlocks.

6.14 Discussion: Conclusions and Lessons Learned

We modelled a metro system case study, starting by proving its global properties through

several refinement steps. Afterwards, due to an architectural decision and to alleviate

the problem of modelling and handling a large system in one single machine, the system

is decomposed in three sub-components. We further refine one of the resulting sub-

components (Train), introducing several details in four refinements levels. Then again,

due to the number of proof obligations, to achieve separation of aspects and to ease the

further developments, we decompose it into two sub-components: LeaderCarriage and

Carriage. Since we are interested in modelling carriage doors, sub-component Carriage

is refined and afterwards decomposed originating sub-component CarriageDoors. Ben-

efiting from an existing generic development for carriage doors GCDoor, we consider

this development as a pattern and instantiate two kind of carriage doors: service and

emergency doors. Although the instantiation is similar for both types of doors, the

resulting instances can be further refined independently. Using generic instantiation, we

avoid having to prove the proof obligations regarding the pattern GCDoor : GCDoor M0,

GCDoor M1 and GCDoor M2 (in the overall 257 POs). This figure only considers the

instantiation of emergency doors (the instantiation of service doors would imply twice
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the number of POs).

From the experience of other developments involving a large number of refinements lev-

els or refinements with large models, the development tools reach a point where it is not

possible to edit the model due to the high amount of resources required to do it (or it

is done very slowly). The decomposition is a possible solution that alleviates this issue

by splitting the model into more tool manageable dimensions. Following a top-down

approach, developed models become more complex in each refinement step. Neverthe-

less by applying decomposition, we alleviate the consequences of such complexity by

separating concerns (architecture approach), decreasing the number of events and vari-

ables per sub-component which results in models that are more manageable from a tool

point of view. Moreover, for each refinement, the properties (added as requirements)

are preserved. Using generic instantiation, we avoid proving the pattern proof obliga-

tions GCDoor. Therefore we reach our goal of reusing existing developments as much as

possible and discharge as little proof obligations as possible. Even the interactive proofs

were relatively easy to discharge once the correct tactic was discovered. This task would

be more difficult without the decomposition due to the elevated number of hypotheses

to considered for each PO. Nevertheless we believe that the effort of discharging proof

obligations could be minimised by having a way to reuse tactics. In particular when the

same steps are followed to discharge similar POs.

In a combination of refinement and instantiation, we learned that the abstract machine

and the abstract pattern do not necessarily match perfectly. In particular, some extra

guards and parameters may exist resulting from previous refinements in the instance.

Nevertheless the generic model can still be reused. We can (shared event) compose the

pattern with another machine in a way that the resulting events include the additional

parameters and guards to guarantee a valid refinement. Another interesting conclusion is

that throughout an instantiation, it is possible not to use all the generic events. A subset

of generic events can be instantiated in opposition to instantiate all. This a consequence

of the event refinements that only depend on abstract and concrete events. Nevertheless

this only applies for safety properties. If we are interested in liveness properties, the

exclusion of a generic event may result in a system deadlock.

With this case study we aim to illustrate the application of decomposition and generic

instantiation as techniques to help the development of formal models. Following these

techniques, the development is structured in a way that simplifies the model by sepa-

rating concerns and aspects and decreases the number of proof obligations to be dis-

charged. Although we use Event-B, these techniques are generic enough to suit other

formal notations and other case studies. Formal methods has been widely used to val-

idate requirements of real systems. The systems are formally described and properties

are checked to be preserved whenever a system transition occurs. Usually this result

in complex models with several properties to be preserved, therefore structuring and

reusability are pursued to facilitate the development. Lutz [114] describes the reuse of
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formal methods when analysing the requirements and designing the software between

two spacecrafts’ formal models. Stepney et al. [177, 178] propose patterns to be applied

to formal methods in system engineering. Using the Z notation, several patterns (and

anti-patterns) are identified and catalogued to fit particular kind of models. These pat-

terns introduce structure to the models and aim to aid formal model developers to choose

the best approach to model a system, using some examples. Although the patterns are

expressed for Z, they are generic enough to be applied to other notations. Comparing

with the development of our case study, the instantiation of service and emergency doors

corresponds to the Z promotion, where a global system is specified in terms of multiple

instances of local states and operations. Although there is not an explicit separation of

local and global states in our case study, service and emergency doors states are con-

nected to the state of CarriageDoor and we even use decomposition, instantiation and

refactoring (called meaning preservation refactoring steps in Z promotion) to fit into a

specific pattern. [177] suggests template support and architecture patterns to be sup-

ported by tools, something that currently does not happen. We have a similar viewpoint

and we would like to address this issue in the future. Templates could be customised

according to the modeller’s needs and selected from an existing list, perhaps categorised

as suggested in [177].

Butler [44] uses the shared event approach in classical B to decompose a railway system

into three sub-components: Train, Track and Communication. The system is modelled

and reasoned as a whole in an event-based approach, both the physical system and

the desired control behaviour. Our case study follows a similar methodology applied

to a metro system following the same shared event style. Moreover we introduce more

requirements regarding the trains and the carriage doors, expressed through the use of

decomposition and generic instantiation.
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Conclusions and Future Work

In this chapter we wrap up the contributions of this thesis and outline our objectives for

the future. We aim to introduce reusability and modularity mechanisms when developing

system specifications in particular large systems that become cumbersome to manage

when scaling. For that we propose the use of composition, decomposition and generic

instantiation to facilitate the development of large systems. We use the Event-B formal

notation and the Rodin platform for the development of these techniques and respective

tool support. We separate the conclusions and future work into three main topics giving

more detail about each as follows.

7.1 Composition

Based on the close relation between action systems and Event-B plus the correspon-

dence between action systems and CSP [53], we define our Event-B composition with an

event-based behaviour. Shared event composition is proved to be monotonic by means of

proof obligations. Consequently sub-components can be further refined independently.

Refinement in a “top-down” style for developing specifications is allowed including the

generation of POs. During composition, sub-components interact through event pa-

rameters by value-passing. We extend Event-B to support shared event composition,

allowing combination and reuse of existing sub-components through the introduction

of composed machines. Required static checks are defined and POs are generated to

validate the composition. Such an approach seems suitable for modelling distributed

systems, where the system can be seen as a combination of sub-components.

Currently we have developed a plug-in that allows shared event composition using Event-

B in the Rodin platform. Some of the proofs to be generated are also generated in the

included machines. By identifying the similarities between proofs, we have established

that we can reuse proof obligations and reduce the effort of discharging proof obligations

161
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that are already done in the included machines. The shared event composition tool gen-

erates a new (composed) machine to ensure the validity of the composition using the

already existing validation scheme for machines (generation of proof obligations). In the

future the composed machine generation should be optional since this validation should

be done directly over the composition file. Although the shared variable composition

was not in the initial plans for this thesis, the close relation with our work suggested

a deeper understanding of that style. During that study, we discovered a close relation

between the rely/guarantee composition for VDM and the shared variable composition

for Event-B that is also mentioned in Hoang and Abrial’s work [90]. It should be possible

to create a correspondence between these two approaches and we intend to investigate

this in the future. Schneider et al [159] define a CSP semantics for Event-B as described

in Sect. 1.5.6. Following that work, we define as future work the derivation the CSP

semantics for Event-B machines to define the composition of machines in terms of traces,

failures, divergences and infinite traces. A paper was accepted for the B workshop run-

ning in parallel with FM 2011 (International Symposium on Formal Methods) [161] and

another to FMCO 2010 (International Symposia on Formal Methods for Components

and Objects) based on shared event composition [164] and we gave a presentation about

this work in the Rodin Workshop 2009.

To summarize, we list the future work for composition below:

• Generation of proof obligations for shared event composition directly rather than

indirectly by expanding machine compositions.

• Further investigation on reuse of proofs obligations in the Rodin platform.

• Can rely/guarantee for VDM be applied to (Abrial) shared variable composition

for Event-B?

• Adding enabledness POs when available for the Rodin platform.

• Derivation of CSP semantics for Event-B machines described by Schneider et

al [159] to define the composition of machines in terms of traces, failures, di-

vergences and infinite traces.

7.2 Generic Instantiation

The generic instantiation work was a result of the achievements towards composition and

decomposition. The possibility to have patterns that can be reused in another develop-

ments seems very attractive while creating specifications in particular in a top-bottom

style. Event-B supports generic developments but lacks the capacity to instantiate and

reuse those generic developments. As a solution, generic instantiation is applied to

patterns and as an outcome instantiated machines are created and parameterised. An
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instantiated machine instantiates a generic machine, is parameterised by a context and

the pattern elements are renamed/replaced according to the instance. In a similar style,

an instantiated refinement instantiates a chain of refinements reusing the pattern proof

obligations assuming that the instantiated proof obligations are as valid as the pattern

ones. By quantifying the variables, constants and types we ensure that pattern proof

obligations remain valid when instantiating. A renaming plug-in was developed sup-

porting the renaming of Event-B elements and respective proofs. Optimisation at level

of proof renaming will be investigated in the future as it may become a slow operation

for large proof trees. A paper was accepted at ICFEM 2009 (International Conference

on Formal Engineering Methods) [163] describing this work. In the future, we intend

to have tool support for generic instantiation as described in Chapter 3. With larger

and relevant cases studies we should improve the tool and publish a paper with the re-

sults and conclusions. Moreover a library of patterns could be provided when modelling,

divided according to the categories are suggested in [178].

To summarize, we list the future work for generic instantiation below:

• Optimisation of proof renaming

• Tool development in collaboration with ETH Zurich.

• Application of a large case study to and test the scalability and improve the tool.

• Definition of a categorised pattern library and customisable templates.

• Writing and submitting a paper as a continuation of the initial study describing

the tool support and conclusions of application of a case study.

7.3 Decomposition

There is a need for modularisation and reuse of sub-components in order to model

large systems and manage better the respective POs. Event-B lacks a sub-component

mechanism. Thus we propose to tackle that problem through the decomposition of

a system by their events or variables. The shared variable (state-based) approach is

suitable for designing parallel algorithms while the shared event (event-based) is suitable

for message-passing distributed systems [45]. Following any of these two approaches, the

parallel components of a distributed system can be refined and decomposed separately

without making any assumptions about the rest of the system. The shared variable

style relies on the work of Abrial and Hallerstede [15] where variables are shared and

exists the notion of external events. Butler [45] suggests the shared event decomposition

where events are partition through the sub-components and the interaction occurs via

shared parameters. The work developed by Butler in [40] for action system is strongly
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related with the same approach for shared event decomposition in Event-B [45] as both

approaches are state-based formalism combined with event-based CSP.

We have collaborated in the tool support development for the decomposition technique

in the Rodin platform, being responsable for the shared event approach development.

The tool allows the semi-automatic decomposition in a shared variable and shared event.

An initial study of such work has been accepted as a workshop paper for the ABZ 2010

conference [165] and an extended version of that paper was published in the journal

Software: Practise and Experience expressing our results [166]. With the application of

more case studies, we should have more results and conclusions that can be published.

As described in Chapter 4, the decomposition tool has been widely used with positive

feedback. Some improvements on the tool have been suggested and we intend to carry

them out in the future. A large case study based on some real requirements is described

in Chapter 6 and shows a practical implementation of the technique, the possible com-

bination with generic instantiation and respective tool support. To summarize, we list

the future work for decomposition below:

• Tool development and improvements.

• Extension of the composed machine plug-in to support the shared variable com-

position in order to store the decomposition configuration.

• Application of a large case study to test scalability.

• Writing and submitting a paper with the results of the application of decomposition

in scalable systems.

7.4 Future Work

In the previous sections we described the future related to each technique that we studied

in this document. Although they are powerful techniques that help the formal modelling

of large and/or complex systems, there is still plenty to be studied and researched when

it comes to the reusability of models. In particular, there is a need to decrease the

user’s effort when developing models, in particular, for the reuse of proofs. From our

own experience, discussions with other formal developers and even for the industrial

companies that use formal methods, often the time spent discharging proofs is greater

than the time spent modelling the system itself. The same model can be developed in

many different manners but the generated number of proofs and the ease to discharge

them vary. Therefore although the outcome may be the same, the properties to be proved

may be harder to achieve. This situation somehow suggests the need for guidelines

on how to achieve the same goal in a simpler, cleaner and possible easier in terms of

discharging proofs. These guidelines could be arranged by some modelling patterns that
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tend to occur even when different kind of systems are being developed. We intend to

research these modelling patterns and come up with practical guidelines that can be

easily applied to existing developments (in a way, it is a different continuation path

from generic instantiation).

The reuse of proofs is another topic that also requires further study. Currently the

Rodin platform allows the reuse of existing proofs to be applied to other proofs but these

usually fail if the structure of the proof is slightly different. We need more powerful proof

patterns that can be applied that are less sensitive to the structure. The modelling tactics

often are repeated throughout a development and consequently results in similar kind

of proof obligations to be discharged. Ideally once these kind of proofs are discharged,

that proof tactic should easily be applied to the rest of the family of proof obligations.

What happens at the moment is cumbersome where the user has to redo and re-apply

the proofs steps instead of tackling more interesting and challenging proofs. This topic

is quite broad but we intend to investigate to come up with more possible reuse of proofs

techniques.

More recently, code generation [67] has been proposed for Event-B following the path

of classical B. But this approach is more flexible as it allows the user to define tasking

machines [68] to define how the model can be implemented. Tasking machines can be

periodic, triggered by an event or happen only once (one shot). Moreover the implemen-

tation allows the definition of tasks that model or simulate the environment (Environ

machine) and the definition of data that can be accessed by different threads (Shared

machine). The communication and implementation of these different machines use the

shared event composition to structure them in one single place. Another powerful option

is to define the implementation data structure according to the target language to be

implemented. As future work, we intend to extend the existing theory plug-in [115] to

allow the mapping of new (or existing) theories into executable code. The intention is

to let the user define new Event-B data structures (since they are not fixed) and map to

the corresponding implementation for the specific target language. At the moment only

Ada and C are supported, although in the future other target languages will supported.
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