HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Supporting Development of
Event-B Models

by

Renato Alexandre da Cruz Silva

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

May 2012

http://www.soton.ac.uk
mailto:ras07r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Renato Alexandre da Cruz Silva

We believe that the task of developing large systems requires a formal approach. The
complexity of these systems demands techniques and tool support to simplify the task of
formal development. Often large systems are a combination of sub-components that can
be seen as modules. Event-B is a formal methodology that allows the development of
distributed systems. Despite several benefits of using Event-B, modularisation and reuse
of existing models are not fully supported. We propose three techniques supporting the
reuse of models and their respective proof obligations in order to develop specifications
of large systems: composition, generic instantiation and decomposition. Such techniques
are studied and tool support is defined as plug-ins by taking advantage of the extensi-
bility features of the Event-B toolset (Rodin platform).

Composition allows the combination of different sub-components and refinement is
possible. A shared event approach is followed where sub-components events are com-
posed, communicating via common parameters and without variable sharing. By reusing
sub-components, proof obligations required for a valid composition are expressed and
we show that composition is monotonic. A tool is developed reinforcing the conditions
that allow the monotonicity and generating the respective proof obligations.

Generic Instantiation allows a generic model (a machine or a refinement chain) to
be instantiated into a suitable development. Generic model proof obligations are reused,
avoiding re-proof and its refinement comes for free. An instantiation constructor is de-
veloped where the generic free identifiers (variables and constants) are renamed and
carrier sets are replaced to fit the instance.

Decomposition allows the splitting of a model into several sub-components in a
shared event or shared variable style. Both styles are monotonic and sub-components
can be further refined independently, allowing team development. Proof obligations of
the original model are split into the different sub-components which usually results in
simpler and easier to discharge proof obligations. Decomposition is supported by a prac-
tical tool permitting the use of both styles.

We expect to close the gap between the use of formal methods in academia and
industry. In this thesis we address the important aspect of having tools supporting

well-studied formal techniques that are easy to use by model developers.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ras07r@ecs.soton.ac.uk

Contents

Acknowledgements XV
1 Introduction 3
1.1 Thesis contribution 3
L1T Overview o o 3

1.1.2 Contributions 4

1.2 Formal Methods 4
1.3 Overview of some formal methods 6
1.3.1 Communicating Sequential Processes - CSP 7
1.3.2 Vienna Development Method - VDM 9
1.3.3 Action Systems 10
1.34 Classical B e 12
135 Zoo o 12

1.4 Refinement 14
1.5 Event-B 15
1.5.1 Preliminaries 17
1.5.1.1 Notation 18

1.5.1.2 Types . . . o o oo 18

1.5.1.3 Functions 19

1.5.1.4 Well-Definedness 19

1.5.2 Events e 21
1.5.3 Proof obligations oo 23
1.5.3.1 Consistency POs L. 24

1.5.3.2 Refinement POs 25

1.5.3.3 Enabledness PO 29

1.5.4 Feasibility and Initialisation 30

1.5.5 Event-B and Action Systems 31
1.5.6 CSP Semantics for Event-B Machines 32
1.5.7 Rodin Platform 33

1.6 Composition L 35
1.6.1 Shared State Composition L. 36
1.6.2 Shared Event Composition 39
1.6.3 Fusion Composition oo 43

1.7 Decomposition 44
1.7.1 Shared Event Decomposition 45

1.7.2 Shared Variable Decomposition 47

A

vi CONTENTS
2 Shared Event Composition for Event-B 49
2.1 Introduction e 49
2.2 Shared Event Approach o 50
2.3 Composed Machines: Composition and Refinement 51
2.3.1 Structure of Composed Machines 52
2.3.2 Static Checks 52
2.3.3 Proof Obligations 53
2.3.3.1 Consistency L 54
2.3.3.2 Refinement 56
2.3.4 Monotonicity of Shared Event Composition for Composed Machines 59

2.3.4.1 Monotonicity of Non-Composed Events for Composed
Machineso 62
2342 NewEvents., 63
2.4 File Access Management case study 64
2.5 Related Work e 69
2.6 Conclusions e e e 72
3 Generic Instantiation 73
3.1 Introduction e 73
3.2 Generic Instantiation L L o 74
3.3 Generic Instantiation and Instantiated Machines 76
3.3.1 Contexts e 76
3.3.2 Example of Instantiated Machine 76
3.3.3 Definition of Generic Instantiation of Machines 78
3.3.4 Avoiding re-proofso 79
3.4 Example of Instantiation and Composition 81
3.5 Generic Instantiation applied to a chain of refinements 82
3.5.1 Refinement of the Channel case study 83
3.5.2 Instantiation of a chain of refinements 84
3.5.3 Definition of Generic Instantiation of Refinements 86
3.6 Instantiating Theorems and Invariants 88
3.7 Conclusions e 88
4 Decomposition 91
4.1 Introduction e 91
4.2 Decomposition Styles 92
4.2.1 Shared Event Decomposition of Communication 94
4.2.1.1 Refinement of Sub-Components 97
4.2.2 Shared Variable Decomposition of Communication 98
4.3 Definition and Validity of Decomposition 99
4.3.1 Shared Event Styleo oo 100
4.3.2 Shared Variable Style 0. 103
4.4 Limitations e e e 103
4.5 Conclusions e 104
5 Tool Support 107
5.1 Introduction e 107

CONTENTS vii
5.2 Shared Event Composition Plug-in, 108
5.2.1 Composed Machines, 109

5.3 Generic Instantiation Plug-in o o0 110
5.4 Renaming Refactory Framework 112
5.4.1 Userinterface 114

5.4.2 Renaming Proof Obligations 114

5.5 Decomposition tool 116
5.6 Conclusions e e e 118

6 Case Study 121
6.1 Introduction L 121
6.2 Overview of the safety-critical metro system 123
6.3 Abstract Model: MetroSystem MO 124
6.4 First Refinement: MetroSystem_M1 128
6.5 Second Refinement: MetroSystem_M2 130
6.6 Third Refinement and First Decomposition: MetroSystem_M3 131
6.6.1 Machine Track 133

6.6.2 Machine Train 134

6.6.3 Machine Middleware 135

6.7 Refinement of Train: Train M1 136
6.8 Second Refinement of Train: Train-M2 138
6.9 Third Refinement of Train: Train.M3 142
6.10 Fourth Refinement of Train and Second Decompositon: Train_M/ . 142
6.10.1 Machine LeaderCarriage o 145

6.10.2 Machine Carriage L 145

6.10.3 Refinement of Carriage and Decomposition: Carriage-M1 145

6.10.4 Machine Carriagelnterface 146

6.10.5 Machine CarriageDoor o 147

6.11 Generic Model: GCDoor 148
6.11.1 Abstract machine GCDoor_ MO 149

6.11.2 Second refinement of GCDoor: GCDoor M1 150

6.12 Third refinement of GCDoor: GCDoor M2 152
6.13 Instantiation of Generic Carriage Door 153
6.14 Discussion: Conclusions and Lessons Learned 158

7 Conclusions and Future Work 161
7.1 Composition 161
7.2 Generic Instantiationo oo 162
7.3 Decomposition 163
7.4 Future Work e 164
Bibliography 167

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.10
1.11

1.12
1.13

1.14
1.15

1.16

2.1

2.2
2.3
2.4
2.5
2.6
2.7

2.8

3.1
3.2
3.3
3.4
3.5

Context BirthdayBook CO 15
Machine BirthdayBook MO o oL 16
Machine and context refinement 16
Machine BirthdayBook M1o . 17
Context Ctzr seen by machine M and respective refinement N 24
Machine M and events Add1, Add2 and Add3 29
The Proof Obligation Perspective 34
The Event-B Perspective oo 35
Shared Variable Decomposition of Machine S in Machines T and W with

shared variable v2 38
Shared Variable Decomposition Result 38
Shared Event Composition of machines M1 and M2 into M with compo-

sition of events e2 and e8 Lo 41
Fusion Composition of machines M1 and M2 into machine M 43
Shared event decomposition of machine M into machines M1 and M2

with shared event evt2 45
Decomposition, Recomposition and Refinement 46
Machines M1 and M2 resulting from the shared event decomposition of

machine M 47
Machines M1 and M2 resulting from the shared variable decomposition

of machine Mo 48

Composed machine CM composing machines M1 to Mm seeing context

7 52
Refinement of composed machine CM1= M1 || N1 by CM2= M2 || N2 59
Refinement of composed machine CM1 = M1 by CM2=M2| N2 ... 62
Machine FileManagement MO 65
Machine AccessManagement MO L. 66
Composed machine FileAccessManagement 67
“Expanded” event createF'ile from composed machine FileAccessManage-

MENT « © o o o o e e e e e e e e 67
Event changeClearance from machine AccessManagement with added guard
grdS . .o e e e e 68
Machine Channel and respective context ChannelParameters 74
Protocol diagram L L Lo 75
ProtocolTypes Context 75
Instantiated Machine: QChannel instantiates Channel 7
Expanded version of instantiated machine QChannel 77

ix

LIST OF FIGURES

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Generic view of a context and a machine 78
An Instantiated Machine 79
Composed Machine Protocol, 81
“Expanded” machine Protocol L 82
Instantiation of a generic chain of refinements 83
Channel_M1: refinement of Channel 84
Context ChannelParameters_.C2 84
Channel_M2: refinement of Channel M1 85
Instantiation of a chain of refinements: Channel to Channel_ M2 85
Instantiation of a chain of refinements 86
Expanded version of instantiated machine QChannel_M2(a) and context

ProtocolTypes-C2(c) o o o i v i 87
An Instantiated Refinement 87
Event-B model of the Communication example 93
Diagrams corresponding to the Simple Communication example 93
Event refinement diagram illustrating atomicity decomposition 93
Machine Communication_M1 refinement of Communication M0 94
Decomposition of Communication_M1 into machines MA,MB and MM . 95
Machines MA, MM and MB 95
Context MB_C0 seen by refinement of MB 98
Machine MB_1 which is a refinement of MB 98
Excerpt of machine Communication.M2 99
Excerpt of the output of shared variable decomposition of Communica-

tion-M2: MCopy and MProcess 100
Shared Variable Decomposition Diagram 103
Composition structure: current(a) and future(b) 109
Pretty print of the composed machine tool 110
An Instantiated Machine 111
An Instantiated Refinement L. 111
Renaming/Refactory Architecture 113
Refactoring Trees after processing the extension points 114
Refactory User Interface oo 115
Decomposition tool diagram for a machine M,, and composed machine CM117
Graphical User Interface for the Decompositon tool 118
Different types of Switches: divergent and convergent 123
Components of metro system 124
Overall view of the safety-critical metro system development 125
Carriage Refinement Diagram and Door Instantiation 125
Context TransitiveClosureCtr 126
Context MetroSystem_CO e 127
Variables, invariant and events of MetroSystem_M0O 129
Excerpt of MetroSystem_M1 o 130
Excerpt of MetroSystem M2 oo 132

MetroSystem_MS3 (shared event) decomposed into Track, Train and Mid-
dleware e 133

LIST OF FIGURES xi
6.11 Preparation step before decomposition of MetroSystem_-M3 134
6.12 Composed machine tool view corresponding to MetroSystem_M3 decom-

position e 135
6.13 Excerpt of Track 136
6.14 Excerpt of Train e 137
6.15 Machine Middleware 138
6.16 Excerpt of machine Train M1 139
6.17 Excerpt of machine Train-.M2 141
6.18 Excerpt of machine Train M8 143
6.19 Excerpt of machine Train.Mj 144
6.20 Variables and invariants of LeaderCarriage and Carriage 146
6.21 Excerpt of machine Carriage M1 147
6.22 Events of sub-component CarriageDoors 148
6.23 Generic contexts e 149
6.24 Machine GCDoors MO e 150
6.25 Excerpt of machine GCDoors_-M1 151
6.26 Some events in GCDoors_ M1 152
6.27 Excerpt of machine GCDoor M2 154
6.28 Parameterisation context CarriageDoors_C0 plus additional context Car-

riageDoors_C1 155
6.29 Instantiated Refinement IEmergencyDoor-M2 155
6.30 Event closeDoors in the pattern and instance; they differ in the param-

eters, guards and witnesses L Lo oo 156
6.31 Excerpt of instantiated machine EmergencyDoor-M2 157

List of Tables

1.1
1.2

6.1
6.2
6.3

Some expressions and respective well-definedness conditions 20
Event-B assignments oo o oo 22
Decomposition summary of Train . Mj 145
Decomposition summary of Carriage. M1 148
Statistics of the metro system case study 158

xiii

Acknowledgements

First of all, I would like to thank my parents Anténio and Idalina Silva for their support when
I decided to jump to this PhD adventure. The adventure required me to move to a different
country and you always supported me whenever I needed: MUITO OBRIGADO PAI e MAE.

In terms of work, I cannot express my gratitude enough to my supervisor Michael Butler for
the inspiration, guidance, cordiality, support and patience throughout the PhD: THANK YOU
VERY VERY MUCH Prof. Michael! T also would like to thank Stefan Hallerstede, Laurent
Voisin, Thai Son Hoang, Nicolas Beauger, Carine Pascal, Jean-Raymond Abrial, Issam Maamria
and Matthias Schmalz. Moreover John Colley, Lucas Cordeiro, Abdolbaghi Rezazadeh and Colin
Snook for the valuable discussions. Professor Benedita Malheiro at ISEP was my inspiration to
follow this path in my career which probably would not have happened without the support
of Jose Manuel Baptista, also my professor at ISEP: thank you to both. A special thanks
to Aryldo Russo (Dinho) for the interesting discussions about railways and for providing the
requirements used in the case study chapter. I would also like to acknowledge my examiners,
Jim Woodcock and Julian Rathke for their valuable review and suggestions for the improvement
of this document. This work would not have been possible without the financial support of

Fundagéao Ciéncia e Tecnologia (FCT-Portugal) through a Doctoral Degree Grant.

My family in general was very supportive and for that I thank them. In particular my younger
sister Eluisa Vanessa Silva, my brother Edson Cldudio Ferreira and Manuela Silva. Also my
cousins Bruno Correia, Paulo Silva, Mério Silva, my sisters in law Ana Cotovio, Ménica Cotovio
and Raquel Silva not forgetting my beautiful nieces Alexia Silva, Paula Silva, Sarah Ferreira and

more recently Debora Silva.

I want to thank my close friends which I consider as my brothers. Despite the distance they
always believed that I could do it: Renato Gongalves, Pedro Sousa, Bruno Rodrigues, Anténio

Quiemba, Miguel Kay, Edson Miranda and Tassia Carvalho.

My friends that helped and made my days so much better, for their friendship and for being the
way they are: Vasthi Alonso, Erofili Grapsa, Alinne Veiga and more recently Mac Adamarczuk
you all are stars! Also I would like to thank my dear friend Rosélia Peixoto for the support despite
the distance. My lunch buddies Matthew Jones and David Davies for the amazing entertaining
time spent. In general the Southampton University Volleyball Club and Solent SGTV Volleyball
Club squads: thanks for everything.

Last but not least I would also like to thank my girlfriend (future Dr.) Hannah Warren for
the love and support during the PhD. You are definitely one of a kind and I am sure my path

without you would not have been the same.

XV

To life and death: my niece Sarah Silva born in the first year of my
PhD and my beloved uncle Manuel Silva that past away in the last
year of my PhD

Xvii

Chapter 1

Introduction

This thesis investigates techniques that allow support of formal developments in Event-
B [3, 9]. In particular we focus in reuse of developments, in the avoidance of re-proofs
and respective tool support. We begin by studying other formal languages and the
respective formal support for three techniques: composition, generic instantiation and
decomposition. Afterwards and based on the previous study we apply the use of such
techniques to Event-B. Case studies and respective tool support for each technique are

developed in the Rodin platform, an application targeting developments in Event-B.

1.1 Thesis contribution

1.1.1 Overview

We believe that the development of large, complex and/or critical systems should be
done using formal methodology. The development of such systems usually is complex
and they must be ensured to work as desired avoiding failures that could lead to se-
rious consequences or even life-threatening situations. Formal methods are used to
help the development and modelling of these systems, which itself can be a hard task
to accomplish. Several formal notations can be used for modelling systems. We use
Event-B, a recent formal method with growing popularity used for modelling discrete
systems. Event-B results from an evolution of other formal methods notations like the
B-Method [158] and Action Systems [26]. Event-B is suitable for modelling parallel,
reactive and distributed system and not restricted to software development unlike the
“parent” B-method, including a richer notion of refinement. As we are mostly interested

in distributed systems, this seems a suitable notation to be used.

However as a recent notation, Event-B lacks some features and mechanisms. We address

in particular the lack of reusability mechanisms like avoiding proof obligations (POs)

3

4 Chapter 1 Introduction

re-proof. We believe that reusability is very useful specially in large developments and

we address these missing mechanisms.

1.1.2 Contributions

This thesis contributes to the development of systems, in particular large, distributed
systems. It is necessary to envisage mechanisms that simplify the correct development
of large systems according to their specifications and having tool support eases such a
complex task. We propose three techniques for Event-B that help the development of
these kind of systems: composition, generic instantiation and decomposition. Individual
models can be composed in a shared event style through the composition technique.
Proof obligations in the individual models can be reused to minimise the proof effort on
the resulting composed model. Through generic instantiation an existing model can be
used as generic and instantiated to be used in other developments. The new instances
inherit the generic properties and respective POs. Decomposition allows the partitioning
of a model into several sub-models as an architecture feature and/or to simplify and more
easily discharge POs. The three techniques support reuse of existing sub-components
taking advantage of their properties (reuse of models and avoiding re-proof). Necessary
POs are defined and simplified using the existing POs associated to the individual sub-
components. The Rodin platform serves as a host for the plug-ins developed to give tool
support to each of the techniques. We present the work developed for these techniques
starting from the theory behind each one of them, the application to case studies and

the extension to tool support.

This chapter introduces the contribution of this thesis and the necessary background to
understand the rest of the document. The technical details start with the introduction of
formal methods in Sect. 1.2. Several formal methods relevant to our thesis are introduced
in Sect. 1.3. Refinement is briefly covered including a comparison to different formal
methods in Sect. 1.4. Section 1.5 introduces the formal method that we use for our work
as well as a brief view of the Rodin platform, the toolset for Event-B. We finish this
chapter by covering the background related to our contribution: composition in Sect. 1.6

and decomposition in Sect. 1.7.

Next we describe in more detail what formal methods are and show some examples.

1.2 Formal Methods

Formal Methods use rigorous mathematical techniques to reason about systems’ be-
haviour. It can be applied to software and hardware systems and formal specification

expresses, in precise mathematical terms, whether a future computer based system or

Chapter 1 Introduction 5

program is working correctly. Formal methods ensures that a program fulfills its for-
mal specification. This is specially important in the development of critical safety sys-
tems [38]. On a top-down development, the application of formal methods can be divided

into 3 steps [5]:

e Creation of requirement documents

e Development of the Abstraction Model (first model representing a system through
the use of formal notation) and the steps toward the Concrete Model (model which

is closer to what the system will be, but still represented by formal notation)

e Converting the Concrete Model into an Implementation. On a programming soft-

ware project, there already exist tools that automatically do this task.

[5, 7] use some formal methods case studies in industry and discuss how requirement

documents, system models and executable code fit on a project’s life cycle.

Formal methods can differ in several aspects, like syntax (specification language), seman-
tics or applications. Classifications can be drawn from the different notations. A possible
classification is to distinguish formal methods in terms of behaviour, i.e. state-based or

event-based approaches [1, 35, 74]:

e State-Based behaviour: the system is described by a sequence of state changes. A
state is a set of assignments to a set of components (frequently variables). This kind
of systems usually are rooted in logic and close to how imperative programming
languages that deal with state. This approach forces a close examination of how
the real system is represented in the model [1, 31]. Examples of formal methods
with a state-based behaviour are Z [173], VDM [105] or B [4].

e Event-Based behaviour: the system is described by a sequence of operations. The
specification is manipulated algebraically while defining the actions [1]. Event-
based systems are used to develop and integrate systems that are loosely coupled
(suitable for large-scale distributed applications). The integrated systems can
communicate by generating and receiving event notifications [74]. Examples of
formal methods with a event-based behaviour are CSP (Communicating System

Processes) [92] or CCS (Calculus of Communicating Systems) [126].

A state-based system usually changes state through the execution of events. An event-
based approach expresses the evolution of the system by defining the enabled operations.
Event-based view is suitable for message-passing distributed systems while state-based
view is suitable for design of parallel algorithms [42]. Not always it is possible to make
a very clear distinction of these two situations: depending on the viewpoint a formal

notation is seen, it can show both characteristics.

6 Chapter 1 Introduction

[112, 113] suggest another classification for formal notations based on common charac-

teristic of modelling languages from a system re-engineering point of view:

e Model based: a system is described by explicitly defining state and operations.
It progresses through the execution of operations that change the system from
one state to another. There is no explicit representation of concurrency and some
functional requirements cannot be expressed (temporal requirements). Several
stated-based formal methods are also model based as are the examples of Z, VDM,
B or Event-B [9].

e Logic based: Logics are used to describe desirable properties of the system such
as specification, temporal or probabilistic behaviour. The validity of these prop-
erties relies on the associated axiom system. The final executable specification
can be used for simulation and prototype construction. Logic can be augmented
with some concrete programming constructs to obtain a wide-spectrum formalism.
In that case, correctness refinement steps are applied during the construction of
such systems. Examples of logic based modelling languages are Hoare Logic [65],
Weakest Precondition Calculus [64], Modal Logic [133] or Temporal Logic [119].

e Algebraic Approach: Explicit definition of operations is given by describing the
behaviour of different operations without any definition of state. Like model-based
notations, concurrency it is not explicitly expressed. Examples are OBJ [84] or
LARCH [86].

e Process Algebra Approach: Concurrent systems are explicitly represented.
The system behaviour is constrained by all observable communication between pro-
cesses. Examples are: CSP, CCS, ACP (Algebra of Communicating Processes) [28]
or LOTOS (Language of Temporal Ordering Specification) [98].

e Net based: Graphical languages are combined with formal semantics, bringing
some advantages to system creation/development. Graphical notation are popular
resulting from the simplicity of defining specifications for systems without requiring
a deep understanding of the underlaying framework. Examples are: Petri Net [143],
StateCharts [95] or UML-B [170].

The classification of the formal notation helps when deciding which formal methods is

suitable for a particular system development. The next section gives an overview of

other formal methods (related to Event-B or) relevant to our developed work.

1.3 Overview of some formal methods

Event-B is a formal method that allows the specification and modelling of reactive sys-

tems (see Sect. 1.5). Nevertheless other formal methods are available for implementing

Chapter 1 Introduction 7

different kind of systems. We overview some formal methods related to Event-B and in

particular to our work:

e CSP

e VDM

Action Systems

Classical B

o 7/

These formal notations are briefly introduced in the following sections.

1.3.1 Communicating Sequential Processes - CSP

CSP is a process algebra formal method that allows modelling of parallel processing and
interaction between systems [91]. The basic concept in CSP considers a process as a
mathematical abstraction of interactions between the system and its environment. The
behaviour of the system is described through independent Processes in an event-based
view. A set of events in which a process P can engage is called its alphabet, written
aP and represents the visible interface between the process and its environment [53].
The processes are constrained in the way they can engage in the events of its alphabet,
using CSP process term language [43]. A process interacts with its environment by
synchronously engaging in atomic events. A sequence of events is described using a
prefix operator '—’. For instance, a— P describes the process that engages in the event
a and then behaves as process P. The environment can decide between two processes
using the choice operator ’[|’. For instance, P [] Q) represents the process that offers the
choice to the environment between behaving as process P or as process (). There is also
a non-deterministic choice operator T1: P M @ represents the process that internally
chooses between behaving as P or (), without any environment control. There are
several operations that can be applied to traces [92] like concatenation, interleaving,
subscripting, reversal among others. We describe here in more detail the concatenation

and interleaving operations as they will be used later on.

Concatenation Let s be a sequence, each of whose elements is itself a sequence.
Then /s is obtained by concatenating all the elements together in the original order.

A definition can be given by means of the following laws (distributive operator) [92]:

8 Chapter 1 Introduction

o« “/(sTt)=("/s) " (T/1)

Interleaving A sequence s is an interleaving of two sequences t and w if it can be split
into a series of subsequences, with alternate subsequences extracted from ¢ and u. For
example s = (1,6,3,1,5,4,2,7) is an interleaving of ¢ and u, where ¢t = (1,6,5,2,7) and

u=(3,1,4). A recursive definition can be given by means of the following laws [92]:

o () interleaves (t,u) = (t= () Au=))
o s interleaves (t,u) = s interleaves (u,t)

o ((x) 7 s) interleaves (t,u) = (t # () At0 =z A s interleaves (t ,u)) V
(u# () Aul =z A s interleaves (t,u')),

where t (same for «) is the tail of sequence ¢ (u).

CSP allows the refinement of models. The refinement depends on the semantic model

of the language which is used [153] and respective granularity:

e Traces refinement: The coarsest used relationship is based on the sequences of
events which a process can perform (the traces of the process). A process @ is
a traces refinement of another, P, if all the possible sequences of communications
which @ can do are also possible for P. The previous trace refinement can be
expressed as P Cp @ = traces(Q) C traces(P).

e Failures refinement: A finer distinction between processes can be made by con-
straining events. An implementation can constrain events permitted to block as
well as events that can be performed. A failure is a pair (s, X), where s is a
trace of the process and X is a set of events the process can refuse to perform
at that point (refusal). A state of a process is deadlocked if it can refuse to do
every event and STOP is the simplest deadlocked process. Deadlock is also com-
monly introduced when parallel processes do not succeed in synchronising on the
same event. Failures refinement between processes P and () can be expressed as
P Cr Q = failures(Q) C failures(P).

e Failures-Divergences refinement: The failures model does not model processes
that might livelock (i.e., perform an infinite sequence of internal actions) and
so may never subsequently engage in a visible event. The failures-divergences
model meets this requirement by adding the concept of divergences. The diver-
gences of a process are the set of traces after which the process may livelock.
This gives two major enhancements: the ability to analyse systems which have
the potential to never perform another visible event and assert this does not oc-
cur in the situations being considered; and use divergence in the specification

to describe “do not care” situations. Formally, after a divergence, a process

Chapter 1 Introduction 9

is considered as acting chaotically and is able to do or refuse anything. This
means that processes are considered to be identical after they have diverged. A
failures-divergences refinement between processes P and () can be expressed as
P Cpp Q = failures(Q) C failures(P) A divergences(Q) C divergences(P).

e Infinite traces refinement: The infinite-traces model of CSP was introduced by
Roscoe [152]. It extends the failures-divergences model by including all possible
infinite behaviours of a process. A process model now has components (A, F, D, I)
where A, F and D are as in the failures-divergences model and I is some subset
of A%, the set of infinite sequences of elements of A, the alphabet of the process.
An infinite traces refinement between processes P and) can be expressed as
P Crpr Q = failures(Q) C failures(P) A divergences(Q) C divergences(P) A
infinites(Q) C infinites(P).

The semantics of an expression P is written (a(P), F[P], D[P],Z[P]), or [P] for short.

The semantics function is used to justify the algebraic laws: for expressions P, @, P = Q)

iff [P] = [Q] [53].

There are some tools available for CSP. FDR2 (Failures/Divergence Refinement 2) is a
refinement checker for establishing properties of models expressed in CSP. Also ProBE,
an animator for CSP processes, allows the user to explore the behaviour of models
interactively. These two tools are developed by Formal Systems Europe [80]. Adelaide
Refinement Checker (ARC) [136] is a CSP refinement checker developed by the Formal
Modelling and Verification Group at The University of Adelaide. Occam Transformation

System is an automated tool to assist in carrying out algebraic transformations.

1.3.2 Vienna Development Method - VDM

Vienna Development Method (VDM) is a model-oriented notation developed while a
research group of IBM laboratory in Vienna was working on compiler developments
and language designs. It consists of a formal modelling language, VDM-SL, which is
a combination of data definitions, state variables and a set of operations describing
the specification of systems and state variables invariants verified before and after the
execution of an operation [111]. Unlike other notations like Z or B, VDM has a three
values logic which allows explicit treatment of undefinedness. The VDM syntax can be
described using ASCII or mathematic notation. More recently an extension of VDM
was developed, VDM™ T, supporting object-oriented design, concurrency and capable of

modelling real-time distributed systems [77].

A VDM development is made up of state descriptions at successive levels of abstraction
and implementation steps which link to the state description. The implementation of

an abstract state description S, by means of a more concrete one S, describes [111]:

10 Chapter 1 Introduction

e cither a data reification, i.e. how the state variables of S, implement the ones of
Sa

e or an operation decomposition, i.e. how the operations of S. implement the ones

of S, into a computer language algorithm (implementation).

While modelling a specification using VDM, in particular for the operations, predicates
precondition and postcondition are written explicitly. The state of variables before
and after an operation usually is defined. To refer to a before value it is used the “7”
decoration on the relevant variable [77]. VDM objects must be validated by proof obliga-
tions [111] and for an operation to be valid, the satisfiability rule (a sentence is satisfiable
if there is some interpretation under which it is true) must be met [101]. VDM formal
development uses data reification from abstract to concrete model [equivalent to data
refinement] but also uses operation decomposition to develop (abstract) implicit speci-
fications of operations and functions into algorithms that can be directly implemented
in a computer language of choice. In general operation decomposition it is applied after
the data reification [101].

In terms of tools, VDMTools [59] is the leading commercial tool for VDM-SL and
VDM developed by CSK Systems. Overture [134] is a community-based open source
initiative aimed at providing free tool support for VDM™*™ on top of the Eclipse plat-
form. Its aim is to develop a framework for interoperable tools that may be useful for

industrial application, research and education.

1.3.3 Action Systems

Action Systems was introduced by Back and Kurki-Suonio [26]. It provides a general
description of reactive systems, capable of modelling terminating, aborting and infinitely
repeating systems. Arbitrary sequential programs can be used to describe an atomic
action. A basic action system P = (A,v, P;, P,) consists of a list of labels A, a list of
variables v, a set of labelled statements (actions) P, = {P, | « € A} and an initialisation
statement P;. Each action o € A is of the form [26]:

action o : go(z) =y := S(z,y). (1.1)

The action guard g, is a condition that the enabling variables must satisfy for action
a to be enabled. The effect of the action is to assign new values S(z,y) to the update
variables y. Actions are atomic which means that when an action is executing no other
action of the system occurs until the first action is complete. Taking the view that
an action system engages in an action jointly with the surrounding environment allows
the environment to observe the executed actions and not the state of the action system
itself [41].

Chapter 1 Introduction 11

Back and von Wright [27] describe how Action Systems can be used on parallel and
distributed systems in a stepwise manner by giving a behavioural semantics in terms of
execution traces. Back [24] suggests that sequential programs could also be implemented
in a parallel fashion: two or more actions can be executed in parallel, as long as the
(atomic) actions do not have variables in common. Butler [41] exposes a composition
using Action Systems from an event-based point of view based on CSP synchronisation.
Woodcock and Morgan [189] give two proof methods which are sound and jointly com-
plete in terms of CSP failure-divergences semantics for state-based concurrent systems
using the weakest precondition wp approach proposed by Morgan [129]. The weakest

precondition is briefly explained below.

Weakest Precondition For guarded command G, command com, and postcondition

Q:
wp(G — com, Q) = G = wp(com, Q).

Whereas wp(com, Q) characterises the states from which com is certain to establish @,
we need the states from which com could possibly establish . Morgan [129] defined

the conjugate weakest precondition as follows:

—nup(com, _‘Q)

because in those states it is not certain that com will establish =Q). Note that we are
taking the view that an aborting command could possibly establish anything. Therefore

we can say that:
Wh(com, Q) = —wp(com, ~Q) (1.2)

Although wp(com, true) implies termination of com, (1.2) shows that wp(com, true)

does not. For any action « let G be its guard. Then

G = wp(a, true).

Butler [53] augments Back and von Wright [27] and Woodcock and Morgan [189] works
by defining the semantics of Action Systems in terms of the CSP infinite-traces semantic

model:
Definition 1.1. For action system P = (A,v, P;, P,),
{P} = (A, F{Pl, DAIPL, Z{P]})

A failure is a pair of the form (s, X), where s € A* (set of finite sequences of elements of
A) is an event-trace and X C A is a refusal set. If (s, X) is in P after initialisation,then
P could engage in the action trace s and then refuse all actions X. Trace s is a divergence
if P;); aborts. For an infinite trace u € A" (A" is the set of infinite traces for alphabet
A) and P, = (i | i € N-P,,), Z{{P]}) are those u € A" in which the execution of all the

12 Chapter 1 Introduction

Py, in sequence is possible. Operationally, for this to be possible in some state it must
be the case that state Sy is enabled and that execution of Sy could result in a state in
which S is enabled and so on for each S; [53].

Event-B is inspired by Action Systems and as a consequence several similarities can be
drawn (atomic actions, state based, modelling reactive systems) for these two formal

methodologies. More information regarding composition follows in Sect. 1.6.

1.3.4 Classical B

Classical B (or B-Method) [4] created by Abrial is a formal approach for the specifica-
tion and development of computer software systems [158] and can be seen as a parent
of Event-B. A system specification is defined by machines that have variables defin-
ing the state space. The state progresses with the execution of operations. Operations
can have preconditions, guards (or both) and postconditions. Properties of the sys-
tem can be expressed by means of predicates called invariants. The B-Method can be
seen as both state-based (explicit notion of “state” expressed by variables) or event-
based (operations occurring nondeterministically). The development of models usually
follows a top-bottom style (Event-B inherits this style as seen in Sect. 1.5) where the
most abstract model is simple. More details and complexity are added throughout
stepwise refinements. Classical B defines three basic components: abstract machine, re-
finement and implementation. The last component, implementation, is a special kind of
refinement machine from which code can be produced, respecting the original abstract
specification. The refinement in Classical B is one to one: one abstract operation is re-
fined by one concrete operation and it is not possible to introduce new operations unlike
Event-B. Classical B has been used widely in both academic [169, 17] and industrial

developments [5].

Different ways and different tools exist for generating the output code like the B-
Toolkit [20] or Atelier B [19]. The B-Method focus on software systems and conse-
quently the final result - implementation model - although similar to other refinement
steps, includes programming constructs for common languages (e.g. C and Ada) with

some restrictions on the used syntax.

1.3.5 Z

The Z notation [173] is a state-based formal method, which uses mathematical tech-
niques to represent and describe computing systems: hardware and software. A system
contains a set of state variables and some operations that change the variables values.
A model that is characterised by the operations is called an Abstract Data Type (ADT)

and Z follows this style. Z can be used to describe object-oriented programs since the

Chapter 1 Introduction 13

state variables and operations can be compared to instance variables and methods, re-
spectively [100]. Z serves as basis for other notations (for instance, classical B) and
several variants adapted to object-oriented programming (an example is Object-Z [168]
which is an object-oriented extension of Z). Z includes two notations [100]: notation for
ordinary discrete mathematics and notation that provides structure to the mathemat-
ical text - paragraphs. The most important and more used paragraph is a macro-like
abbreviation and naming construct called schema. 7 defines the requirements through
the use of mathematic entities such as sets, relations/functions or sequences. A schema
consists of three parts: name which identifies the schema and it is used when composed
with other schemas; signature which is a collection of variables introducing data types
and created by declarations and providing a vocabulary for making mathematical state-
ments; predicate (or constraint) that defines relations between signatures elements using
predicates (describing abstractly the effect of each operation in the proposed system).
One of the ways to represent a schema StateSpace is represented here (the shortest one)
[37]: StateSpace = [x1 : Si;..5mn + Sy | Inv(xy,...,2p)]. 21...x, are state variables,
Sj...Sy, are expressions that represent variable types. Inv(xi,...,x,) are the state in-
variants. Schemas are used to define the static and dynamic feature of a system. The
static part includes the possible states and rules that should be preserved during the
system execution (invariant clauses). The dynamic part consists of available operations
and changes on the state after the execution of an operation, as well as on relationships

between input and output.

Research has been undertaken to adjust Z to model concurrent systems [37, 76]. Some
of these results are: Fischer’s CSP-OZ [75] developed to combine CSP properties with
Object-Z; Circus [186, 185], developed by Woodcock and Cavalcanti providing formal
support for the specification of data, behaviour aspects of concurrent systems and allow-
ing refinement through the use of a syntactical approach in opposition to a semantic one;
TLZ [109] developed by Lamport that combines Temporal Logic of Actions (TLA) [108]
and Z; Taguchi and Araki [179] combine Z and CCS to specify concurrent systems,

among others.

The Community Z Tools (CZT) project [57] is an open source project providing an
integrated toolset to support Z, with some support for Z extensions such as Object-
Z, Circus, and TCOZ. Another Z tool is Fastest [79] which is a model-based testing
tool. The tool receives a Z specification and generates (almost automatically) test cases
derived from the specification. fuzz [175, 174] is Spivey’s typechecker for the original
Z language. It includes style files for LaTeX and it is available as part of the Z Word
Tools [180].

All the previous formal methods have something in common: the use of refinement to
describe a specification. Refinement plays an important role in formal developments in
particular on a top-down style. Initially we have an initial abstract and simplistic view

of the modelled system. Refinement allows the introduction of more details in the state

14 Chapter 1 Introduction

system respecting the initial abstract view. We discuss more about refinement in the

next section.

1.4 Refinement

Refinement allows the construction of a model in a gradual way, making it closer to
an implementation [15]. At same time, the overall correctness of the system should
be preserved. A property P’ is said to refine a property P if P’ C P. The initial
model is defined as the abstract model. A model that maintains the properties of the
abstract model and adds more details is defined as a concrete model. The states in the
abstract model are linked to the concrete ones. The refinement process can be repeated
so it can be applied over a concrete model generating an even more concrete model.
All formal notations presented in the previous sections have the notion of refinement
although sometimes named differently (in VDM it is known as reification). Operations
in B, VDM and Z are “refined” on a one-to-one basis: one abstract operation is refined
by only one concrete operation. Event-B, as it will be seen in the Sect. 1.5, is more
flexible as it inherits a refinement property from Action Systems and CSP where it is
possible to introduce new events during the stepwise refinement steps. Gluing invariants
are predicates used to link the abstract and concrete states. In Event-B, refinement can
also be applied to a machine and respective context(s) separately. It is possible to eztend
contexts by adding new sets, constants or axioms to an existing context as long as the

abstract context properties are kept [150] (see Sect. 1.5).

Proof obligations are generated and discharged during the refinement process to preserve
the abstract properties in the concrete model: concrete events must keep the behaviour
of the respective abstract ones; the new model should not introduce divergence and
the invariants of the concrete model should be preserved for every event enabled (the
semantic of these proof obligations are described in Sect. 1.5.3). New events refining an
implicit event which does nothing (skip) [15] can be added in a refinement step. All the
abstract events must be refined in the concrete model. A constraint for the refinement
is that the concrete machine should not deadlock before the abstract machine, other-
wise the concrete machine might not achieve what the abstract machine had previously

required. The formalization of the described constraints can be found in [15].

Next section focus on the Event-B language and properties which will help understand
the rest of the document. The refinement POs for Event-B are also described in the

following section.

Chapter 1 Introduction 15

1.5 Event-B

Event-B is a formal methodology that uses mathematical techniques based on set theory
and first order logic. It is a notation and method used for modelling discrete systems
resulting from an evolution of other formal methods notations like classical B and Action
Systems. The justifications and explanations for such notation can be found in [87].
Event-B is suitable for modelling parallel, reactive and distributed systems and can be
seen as a state-based formal method due to the close relation to classical B. Event-
B models can be developed in the Rodin modelling tool [151, 71] and we discuss it
briefly in Sect. 1.5.7. The semantics of a model developed in Event-B is given by means
of its proof obligations (cf. Sect. 1.5.3). These obligations have to be discharged to
show consistency of the model with respect to some behavioural semantics. Abrial [9]

expresses these behavioural semantics as state trace semantics.

An abstract Event-B specification is divided into two parts: a static part called context
and a dynamic part called machine. A context Ctx consists of carrier sets s (similar to
types [15]), constants ¢, arioms (assertions constraining constants and carriers sets) and
theorems A(s,c) . (Identifiers occurring free in a formula are indicated in parentheses).

An example of a context can be seen in Fig. 1.1.

context BirthdayBook_C@

constants
pQ@
do

sets PERSON DATE

axioms
p@ < PERSON
do < DATE
end

FiGure 1.1: Context BirthdayBook_C0

A model is defined by a machine M that sees a context Ctx. A machine usually contains
global state variables v as well as invariants and (machine) theorems I(s, c,v) that define
the dynamic properties of the specification by constraining v. Possible state changes are
described by means of events: when their conditions are satisfied, optional local variables
(parameters) can be used and state variables may be updated. An example of a birthday

book machine can be seen in Fig. 1.2.

An abstract Event-B specification can be refined by adding more details and becoming

more concrete (see Fig. 1.3 where machine N refines machine M).

Refinement allows the introduction of more details in small steps. Otherwise the speci-
fication development would have to be done in one single step with the possible conse-

quence of becoming complicated, hard to reason about (dealing with all the details of

16 Chapter 1 Introduction

machine BirthdayBook_M@ sees BirthdayBook_C@
variables birthday

invariants
birthday e PERSON -+ DATE

events
event INITIALISATION
then
birthday = {p0»do}
end

event AddBirthday

any p d
where
p € PERSON
d e DATE
p ¢ dom (birthday)
then
birthday = birthday v {p » d}
end

end

FicURE 1.2: Machine BirthdayBook MO0

Variables Sets
sees
ABSTRACT Invariants ——— Constants ABSTRACT
MACHINE CONTEXT
M Events Axioms C
A A
refines extends
Variables Sets
CONCRETE sees Constant CONCRETE
1 ——
MACHINE | [nvariants onstamts 1 CONTEXT
N D
Events Axioms

FIGURE 1.3: Machine and context refinement

implementation at once) and most important, hard to understand [88]. Concrete mod-
els are expressed through the refinement of events, introduction of new variables w and
consequently the introduction of gluing invariants: invariants that relate abstract and
concrete states (variables). Therefore abstract variables can exist in a concrete model
or disappear and be replaced by a concrete variables. In that case, a gluing invariant
is required to relate the abstract and concrete variable. Abstract contexts can be ez-
tended by concrete contexts allowing the introduction of new carrier sets, constants and
axioms. As an example, see Fig. 1.4 where machine BirthdayBook_MO0 is refined with
the introduction of a new variable reminder (relation between variable birthday and
a reminding date; the same birthday can have multiple reminding dates). Note that

we do not change the original abstract event: we only “extend” it; the abstract event

Chapter 1 Introduction 17

AddBirthday is extended by appending a concrete guard grd4 and a concrete action
act4.

machine BirthdayBook_M1 refines BirthdayBook_M@
sees BirthdayBook_C@

variables birthday reminder

invariants
reminder € birthday « DATE

events
event INITIALISATION extends INITIALISATION
then
reminder =@
end

event AddBirthday extends AddBirthday

any r
when
r € DATE
then
reminder(ppd)=r
end
end

FIGURE 1.4: Machine BirthdayBook M1

Proof obligations arise to verify the consistency of a model. For instance, there are
proof obligations to establish the refinement relationship between two machines, and to
establish invariant preservation by the events. We reason about a system specification
through its proof obligations. The reasoning verifies that the specification is sound wrt
some behavioural semantic and that system properties are always satisfied [88]. The logic
used in Event-B is typed set theory built on first-order predicate logic, and allows the
definition of partial functions. As such, it is necessary that the used proof system handles
well-definedness. In [122], it is shown that it is possible to reason about partiality without
abandoning the well-understood domain of two-valued predicate logic. In that approach,
the reasoning is achieved by extending the standard calculus with derived proof rules
that preserve well-definedness across proofs [116]. The proof calculus outlined in [122]

is the one used to reason in Event-B.

1.5.1 Preliminaries

A full definition of the mathematical language of Event-B may be found in [16]. Here we
give a very brief overview of the structure of the mathematical language to help motivate

the remaining sections and chapters.

Event-B distinguishes predicates and expressions as separate syntactic categories. Pred-
icates are defined in term of the usual basic predicates (T,L1,A = B,x € S,y < z,
etc), predicate combinators (—, A, V, etc) and quantiers (V,3). Expressions are defined
in terms of constants (0, @, etc), (logical) variables (x, y, etc) and operators (4, U,

etc). Basic predicates have expressions as arguments. For example in the predicate

18 Chapter 1 Introduction

E € S5, both E and S are expressions. Expression operators may have expressions as
arguments. For example, the set union operator has two expressions as arguments, i.e.,
S UT. Expression operators may also have predicates as arguments. For example, set

comprehension is defined in terms of a predicate P , i.e., { x | P } [11].

1.5.1.1 Notation

The naming conventions that we use throughout this thesis are shown in the following

tables:

Contoxt i Machine M
— L Abstract Variable v
Constant c -
Carrier Set S Concrete Variable w
Axiom Theorem | A(c, 5) (Abstract) Invariant/Theorem | I(c,s,v)
: (Concrete) Invariant/Theorem | J(c, s, v, w)

(a) Context Elements

(b) Machine Elements

Event evt
(Abstract) Parameter D
(Concrete) Parameter q

(Abstract) Guard G(c, s,p,v)
(Concrete) Guard H(c,s,q,w)

Parameter Witness W{(e,s,p,q, w,w")
Variable Witness W{(e,s,q,v",w,w")
(Abstract) Action S(e, s,p,v,0")
(Concrete) Action T(c,s,q,w,w)

(c) Event Elements

1.5.1.2 Types
All expressions have a type which is one of three forms:

e a basic set, that is a predefined set (Z or BOOL) or a carrier set provided by the

user (i.e., an identifier);
e a power set of another type, P(«);

e a cartesian product of two types, a X 8

These are the types currently built-in to the Rodin tool [11]. User-defined types can be
defines as carrier sets and the only implicit assumption is that they are not empty [156].
An expression E has a type type(FE) provided E satisfies typing rules. Each expression
operator has a typing rule which we write in the form of an inference rule. For example,
the following typing rule for the set union operator specifies that S U T has type (P«)
provided both S and T have type P(«):

Chapter 1 Introduction 19

type(S) =P(a) type(T) = P(a)
type(SU T) = P(a)

This rule is polymorphic on the type variable a which means that union is a polymorphic
operator. It should be noted that an expression of type BOOL is not a predicate. The
type BOOL consists of the values TRUE and FALSE, both of which are expressions.
These are different to the basic predicates T and L. The bool operator is used to
convert a predicate into a boolean expression, i.e., bool(x > y). A boolean expression E
is converted to a predicate by writing F = TRUE. We have that bool(T) = TRUE.

1.5.1.3 Functions

There exists a relation between operators and function application in Event-B. The
type of an Event-B function f is P(type(A) x type(B)). The functionality of a partial

function f € A+ B is specified with an additional property and a uniqueness condition:
Ve,y,y c—=yefre—y ef=y=1y

The domain of f, written dom(f), is the set {x | Jy-x — y € f}. Application of f
to x is written f(z) which is well-defined provided = € dom(f). Note that f is not
an operator itself: it is simply an expression. The operator involved here is implicit:
it is the function application operator that takes two arguments, f and x. An explicit
operator for a function application could have been written as apply(f,x), where apply
is the operator and f and x are the arguments. But in the Rodin tool, the shorthand
f(x) must be used.

Variables in the mathematical language are typed by set expressions. This means, for
example, that a variable may represent a function since a function is a special case of
a set (of pairs). Variables may not represent expression operators or predicates in the
mathematical language. This means that, while we can quantify over sets (including

functions), we cannot quantify over operators or predicates.

1.5.1.4 Well-Definedness

Ill-defined terms arise in the presence of partial functions. They result from the applica-
tion of functions to terms outside their domain. When ill-definedness is a concern, the
adopted reasoning framework has to cope with it. Different approaches exist to reason
in the presence of partial functions. Each of these approaches has its own specialised
proof calculus. In [122], it is shown that it is possible to reason about partiality without
abandoning the well-understood domain of two-valued predicate logic. In that approach,
the reasoning is achieved by extending the standard calculus with derived proof rules

that preserve well-definedness across proofs [116].

20 Chapter 1 Introduction

Along with typing rules as defined above, all expression operators come with well-
definedness predicates. We write WD(E) for the well-definedness predicate of expres-
sion F. Table 1.1 gives examples of well-definedness conditions for several operators,

including the function application operator.

Expression Well-Definedness Conditions
F(E) WD(F),WD(E),F € x -y, E € dom(F)
F/E WD(F),WD(E),E #0
card(E) WD(E), finite(E)
SuT WD(S), WD(T)
F mod E WD(F),WD(E),E #0
min(S) WD(S),S # @,3z-(Vn-n € S=x <n))
max(S) WD(S),S # @,3z-(Vn-n € S=x >n))

TABLE 1.1: Some expressions and respective well-definedness conditions

From the Table 1.1, it can be seen that an expression F(E) is well-defined provided
both F' and F are well-defined, that F' is a partial function and that F is in the do-
main of F. In the Rodin tool, well-definedness conditions give rise to proof obligations
for expressions that appear in models. The well-definedness conditions are themselves
written as predicates in the Event-B mathematical language. [125] gives the full list of
expression, predicates and respective well-definedness conditions available in the Rodin
tool. A well-defined sequent of the form H Fp G is defined as follows:

HbtpG=D(H),DG),HF G.

That is, the well-definedness of H and G is assumed when proving H + G. Generally
speaking, when proving a sequent H G, the approach suggests proving its validity as

well as its well-definedness:

WDp: FpD(HFG)
Validityp: HbFp G

where D(H - G) is defined as D(Vz-H = G) such that = are the free variables of H and
G [116]. A proof rule is said to preserve well-definedness (WD) iff its consequent and
antecedents only contain well-defined sequents (i.e., Fp sequents). For a generic proof
rule where Hj ... H, (standing for a conjunction), n > 0, are a sequence of (possible

empty) sequents and G is also a sequent, with an optional name r:

FH,...H,
G

then, the same proof rule can be rewritten including the well-definedness conditions (and

Chapter 1 Introduction 21

the well-definedness operator D [122]) as:

Fp D(Hy)...D(H,)
Fp D(Hy ... H,)

Agoalp o w

G D

Additional details about the use of well-definedness in a first order predicate calculus
can be found in [122].

Other works also study the well-definedness of partial functions: Fitzgerald and Jones [78]
discuss a connection between the classical First-order Predicate Calculus(FoPC) and the
Logic of Partial Functions (LPF). It is claimed that theorems in LPF using weak equality
can be straightforwardly translated into ones that are true in FoPC; translation in the
other direction results, in general, in more complicated expressions but in many cases
these can be readily simplified. [18, 120] discuss the semantics of Z in relation to first

order logic, particularly regarding undefinedness and proofs.

With regard to recursive functions, they are not supported in the Rodin platform. The
theory plug-in [115] that allows the extension of the mathematical language [11, 51],
allows the definition of new (possibly recursive) operators as well as the necessary well-

definedness conditions. Nevertheless this is currently work in progress.

Next we extend this initial description by focusing on the kind of events, the types of vari-
ables assignments and parameters. In the end we outline the existing proof obligations

for Event-B models. These details are necessary further on to explain our contributions.

1.5.2 Events

In Event-B, events specify changes to variables and the conditions under which they
may occur. Events occur as soon, and as long, as its firing condition (guards) are set [3].
An event evt is expressed by parameters (local variables to the event) p, by guards
G(s,¢,p,v) and actions S(s,c,p,v,v):

evt = ANY p WHERE G(s, ¢, p,v) THEN S(s,c,p,v,v") END.

When the guard G(s, ¢, p, v) is true then the event evt is enabled and therefore the action
S(s, ¢, p,v,v") can update the set of variables v to v’ (after-state of v). A more general
definition is as follows: events may occur atomically when its guards are true and as
a result the state is updated through the execution of actions. The guard of an event
states the necessary conditions under which an event may occur and an action describes
how the state variables evolve when an event occurs [88]. A mandatory event called
INITIALISATION, with TRUE as guard, defines the initial state of the machine. The
system state progresses when events are enabled and occur. More details about events,

guards and actions can be found in [15].

22 Chapter 1 Introduction

We consider three kind of events depending on when they are introduced during the

development of a model:

e convergent: new events introduced after a refinement. These kind of events refine

skip and require a variant (see Section 1.5.3.2) to ensure non-divergence.

e anticipated: event declared in anticipation that does not need to decrease a variant
(but must not increase it either); it only decreases the variant when it becomes

convergent in a further refinement [9].

e ordinary: neither convergent nor anticipated.

The majority of developments use ordinary or convergent events but anticipated events
can be useful when modelling. Anticipated events are used to avoid a technical difficulty
of using abstract variables in a new event during a refinement step. By declaring the
new event in anticipation in an abstract refinement, this technicality is circumvented. As
mentioned, new events can be introduced in a refinement of an abstract model (similar
to CSP hiding operator where some events are hidden from the environment) repre-
senting internal events. These new events may (optionally) be defined as convergent or

anticipated.

For variable assignments in an action, there are three simple forms [13] described in

Table 1.2. v and v; are some variables, E(...) denotes an expression, p are parameters

Assignment | Before-After Predicate (BAP)
v:= E(p,v1) v = E(p,v1)

v:€ E(p,v1) v':€ E(p,v1)
v:| S(p,v1,0") S(p,v1,0)

TABLE 1.2: Event-B assignments

and S(...) is a predicate. The before-after predicate (BAP) denotes the relationship
holding between the state variables of the model just before (denoted by v) and just
after (denoted by v’) applying a substitution. The first row in Tab. 1.2 corresponds to
a deterministic substitution while the other two are non-deterministic substitutions. In
the second row, the assignment is non-deterministic and based on the expression E(...)
(for instance, assigning a value to v from a non-empty set). The third row assigns a
value to v according to the predicate defined and it is also considered non-deterministic.
Variables that do not appear on the left-hand side of an assignment of an action are not
changed (variables v1). The last row is the most general form of assignment and all the

other assignments can be expressed in this manner.

Concrete models are expressed through the refinement of events. An abstract event
evt] is refined by evt2 if the guard H (s, ¢, q,w) of evt2 is stronger (guard strengthening)

Chapter 1 Introduction 23

than the guard G(s,c,p,v) of evtl and the gluing invariant J(s,c,v,w) establishes a
simulation of evt2 (T'(s,c,p,w,w’)) by evtl (S(s,c,p,v,v")):

evtl = ANY p WHERE G(s,¢,p,v) THEN S(s,c¢,p,v,v") END
evt2 = ANY ¢ WHERE H (s, ¢, q,w)
WITH p: Wi(p, s, c,w,q)
v Wa(v' s, cw, g, w')

THEN T'(s,¢,p,w,w’) END.

The gluing invariant must be preserved by all events: invariants are supposed to hold
whenever a variable value changes in an event (invariant preservation PO). Moreover
the guard strengthening PO is preserved as follows: when a concrete event is enabled,
then so it is the corresponding abstract one. Finally the simulation PO is proved if the
occurrence of the concrete event does not contradict what the corresponding abstract
event does. In addition, for event refinements it must be shown that it is possible to
choose a value for the abstract parameter p such that G(s, ¢, p,v) holds and the gluing
invariant J(s,c,v,w) is re-established. Possible values of the abstract parameter p are
given as witness predicates Wi(p, s, ¢,q, w) in concrete events [90, 87]. A witness is
necessary for each disappearing abstract parameter of an abstract event in the abstract
event. Moreover a witness Wa(v', s, ¢, w, g, w’) is needed for each disappearing abstract
variable v' that has a non-deterministic assignment (see the third row of Table 1.2) [9].
New events can be introduced in a refinement of an abstract machine. They must
refine the implicit abstract dummy event skip and it may be proved that they do not
collectively diverge by being always enabled and preventing abstract events to occur.
The divergence is avoided if each new event decreases a variant [14]. The variant must
be well-founded, may be an integer or a finite set and it is bounded. One variant per
event that must be decremented by that same event. To preserve refinement, consistency

proof obligations are defined as described in Sect. 1.5.3.

1.5.3 Proof obligations

Proof obligations have a two-fold purpose. On the one hand, they show that a model
is sound with respect to some behavioural semantics. On the other hand, they serve
to verify properties of the model [88]. In Event-B, there are different kind of proof
obligations generated during a model development. A list of standard POs for contexts
and machines is defined in [9, 88, 87]. Here we only cover the relevant POs for our work.
In Event-B, refinement is defined in terms of POs and these correspond to standard
forward simulation [10]. We shall use a generic model illustrated in Fig. 1.5 to describe

the POs. Backward simulation is currently not supported.

Context Ctz is characterised by constants ¢, carrier sets s and axioms A(s,c). This

context is seen by all the involved machines. The abstract machine M contains a set of

24 Chapter 1 Introduction

MACHINE N REFINES M

SEES Ctx

VARIABLES w

INVARIANT J(s,c,v,w)

VARIANT n(s,c,w)

EVENT evtl REFINES evt =
ANY q WHERE

MACHINE M SEES Ctx
VARIABLES v

H(q,s,c,w)
CONTEXT Ctx g\rf‘éﬁgANE I(s,¢,v) WITH
CONSTANTS ¢ evt = p: Wilp,s,c,w,q)
ANY p WHERE , 195 6 W, ,
SETS s G v Wa (v, s, ¢ w, g, w')
AXIOMS A(s, ¢) (P, 5,¢,0) THEN
THEN T ,
(d) Context Ctx v:| S(p, s,c,v,0) w:| T(g,s,c,w,w’)
END END
Nachine I convergent EVENT evt2 =
(e) Machine ANY ¢ WHERE
H2(q7 S? C? w)
THEN
w | Ta(q, s, ¢, w,w')
END

(f) Machine N

FiGURE 1.5: Context Ctx seen by machine M and respective refinement N

variables v, a list of invariants and local theorems I(s,c,v) and an event evt defined by
the parameter p, guards G(p,s,c,v) and before-after predicates S(p, s, ¢, v,v") [considered
in the non-deterministic form as defined in the third row of Table 1.2] over the set of
variables v. Machine N refining M, contains a set of variables w and a set of additional
(concrete) invariants and theorems J(s,c,v,w). Event evt! refines abstract event evt
and a new convergent event evt?2 is introduced in this refinement. We assume that
variables v and w are pairwise disjoint and the same happens to parameters p and q. A

proof obligation is a sequent of the shape:

Hypotheses
F Goal

Hypotheses and goal are defined by predicates such as invariants, theorems, axioms
or guards. Based on the previous, we define the standard proof obligations in Event-
B [9]. These proof obligations are divided into consistency POs and refinement POs as

described below.

1.5.3.1 Consistency POs

Consistency POs are required to be always verified for each machine. Consistency is
expressed by the feasibility and invariant preservation POs for each event [88]. Moreover
well-definedness POs are generated for each potential ill-defined term (such as axioms,

theorems, invariants, variant, guards, actions).

Invariant Preservation (INV): This kind of proof obligation ensures that each in-

variant is preserved by each event. The hypotheses include axioms, invariants,

Chapter 1 Introduction 25

local theorems, guards and before-after predicates of that event. The goal is each
individual invariant from the set of existing invariants. In Fig. 1.5(e), for event evt
and each of the invariants i(s, ¢, v) in I(s,c,v), the respective proof obligation rule

is given by (1.3).

A(s,c)
I(s,c,v)
evt/inv/INV: G(p,s,c,v) (1.3)
S(p, s,c,v,0)
Fi(s,c,v)

i(s,c,v") is one of the invariants where variables v are modified to v’.

Feasibility (FIS): It ensures that each non-deterministic action is feasible for a partic-
ular event. The hypotheses include axioms, invariants, local theorems and guards
of that event. The goal ensures that values exist for variables v" such that the
before-after predicate S(p, s, c,v,v’) is feasible. In Fig. 1.5(e), for event evt and

each of the actions act, this proof obligation is given by (1.4).

A(s, c)

I(s,c,v)
G(p,s,c,v)
F3v'-S(p, s, c,v,0")

evt/act/FIS:

Well-Definedness (WD) It ensures that any axiom (W D/AX M), theorem (WD /THM),
invariant(WD/INV), guard(W D/GRD), action(W D /ACT), variant(W D /VW D)
or witness p in an event evt(evt/p/WW D) is indeed well-defined. It varies with
the potentially ill-defined expression as seen in Table 1.1. An important property
for WD proof obligations is that they are ordered. For example, the WD condi-
tions for an invariant depends only on the previous defined invariants: for the WD
of i, which is the invariant k from the set of invariants I, the hypotheses that can

be assumed are iy ...0,_1.

1.5.3.2 Refinement POs

The refinement POs are required when the an abstract machine is refined by a more
concrete one. Besides the consistency POs, refinement POs are additional obligations
required to be discharged to ensure valid refinements. As mentioned in Section 1.4,
in Event-B refinement requires concrete events to keep the behaviour of the respective

abstract ones. Proof rule (1.5) expresses the refinement PO for each concrete event.

26 Chapter 1 Introduction

Refinement (REF): For each concrete event, the refinement PO reinforces that ab-

stract actions are simulated by the concrete ones, that each abstract guard is at

least as weak as the concrete one and that when an abstract variable is data refined

by a concrete one and disappears, gluing invariants exist linking the abstract and

concrete variables.

A(s,c)

I(s,c,v)

J(s,c,v,w)

H(g,s,c,w)

T(q,s,c,w,w")

F3v'-G(p,s,c,v) AS(p,s,c,v,v") A J(s,e,v,w)

evtl /REF:

(1.5)

The use of witnesses (cf. Sect. 1.5.2) allows the separation of the previous proof rule

in three parts: proof rules Gluing Invariant Preservation (1.7), Guard Strengthen-

ing (1.8) and Simulation (1.9). In practice, when discharging POs, it is simpler to

deal with one part of the refinement PO at a time instead of dealing with all at

once. We do not address the technical parts about the partition of the refinement

POs but more details can be found in [10]. When non-deterministic witnesses are

used, a proof obligation is generated to ensure that the witness is feasible.

Non-Deterministic Witness (WFIS): It ensures that each witness proposed in the

concrete event indeed exists, in particular when the witness is a non-deterministic

predicate. Witness are used when an abstract parameter is refined and disappears

(being replaced by another parameter, a variable or an expression) or when an

abstract variable that is assigned non-determistically is refined and disappears.

In both cases, witnesses should related the refined element with a concrete repre-

sentation (parameter, variable, expression) and this proof obligation ensures that

the substitution is indeed feasible. The hypotheses include axioms, invariants and

theorems (abstract and concrete), concrete guards and before-after predicate for

witness. The goal is to confirm that the witness indeed exists. In Fig. 1.5(f), for

convergent event evt?2 and witness p, this proof obligation is given by (1.6).

A(s,)
I(s,c,v)

J
evt2/p/WFIS: (8,¢,v,w)
H2 (qv S, C, U))

T(q7 87 C7 w7 w/)

F Hp-Wl(p,S,c,w,q)

(1.6)

With the use of witnesses, the refinement PO (1.5) can be split in three parts

(which in practice makes the POs easier to manage and discharge). These three

proof rules are presented below.

Chapter 1 Introduction 27

Gluing Invariant Preservation (INV): In a refinement, concrete invariants must
be preserved for each concrete event. The hypotheses include axioms, abstract
invariants and theorems plus concrete invariants and theorems, concrete guards,
witnesses predicates for variables and concrete before-after predicates. The goal is
each concrete invariant from the set of invariants in the refinement. In Fig. 1.5(f),
for event evt! and each of the invariants j(s, ¢, v, w) in J(s,c,v,w), the respective

proof obligation rule is given by (1.7).

A(s,c)
I(s,c,v)
J(s,c,v,w)
evt/inv/INV: H(q,s,c,w) (1.7)
Wa(v', s, ¢, w, q,w’)
T(q,s,c,w,w")

F (s, e, v w')

Guard Strengthening (GRD): It ensures that each abstract guard is at least as weak
as the concrete one in the refining event. As a consequence, when a concrete event
is enabled, the corresponding abstract one is also enabled. The hypotheses include
axioms, abstract invariants and theorems, concrete invariants and theorems, con-
crete guards and witness predicates for parameters. The goal is each individual
abstract guard from the set of abstract guards. In Fig. 1.5(f), for event evt! and
each of the abstract guards g(p,s,c,v), this proof obligation is given by (1.8).

A(s,)
I(s,c,v)
J(s,¢c,v,w)
H(q,s,c,w)
Wi(p, s, c,w,q)
Fg(p,s,c,v)

evtl /grd/GRD: (1.8)

Simulation (SIM): It ensures that each action in a concrete event simulates the corre-
sponding abstract action. When a concrete action is executed, the corresponding
abstract one should not be contradicted. The hypotheses include axioms, abstract
invariants and theorems, concrete invariants and theorems, concrete guards, wit-
ness predicates for refined parameters, witness predicate for refined abstract vari-
ables and the concrete before-after predicate for each concrete event. The goal
is each individual abstract before-after predicate from the set of abstract assign-
ments. In Fig. 1.5(f), for event evt! and one of the respective actions act, this

proof obligation is given by (1.9).

28 Chapter 1 Introduction

A(s,c)
I(s,c,v)
J(s,c,v,w)
H(g,s,c,w)

evtl /act/SIM:
/ / Wl(pasacvwaq)

(1.9)

WQ(vlv s,c,w,(q, ’LU/)
T(q7 s, C, W, ’UJ/)
F S(pa s,C, 0, ’U/)

When dealing with convergency and divergency, a variant is required to ensure
that new events are not enabled forever. Otherwise, that possibly would not allow
abstract events to occur resulting in the introduction of divergency to the model.

The solution for this situation is the addition of a variant as described below.

Numeric Variant (NAT): It ensures that under the guards of each convergent or
anticipated event, a proposed numeric variant is indeed a natural number. Also
applicable to finiteness of set variants (FIN). The hypotheses include axioms, in-
variants and theorems (abstract and concrete) and guards for each convergent (or
anticipated) event. The goal is to prove that the numeric variant is a natural
number. In Fig. 1.5(f), for convergent event evt2, this proof obligation is given by
(1.10).

A(s,c)
I(s,c,v)
evt2/NAT: J(s,c,v,w) (1.10)
Hy(q,s,c,w)
Fn(s,c,w) €N

Numeric Variant Decreasing (VAR): It ensures that convergent events decrease
the proposed numeric variant. Also applicable to finiteness of set variants (FIN).
The hypotheses include axioms, invariants and theorems (abstract and concrete)
and guards for each convergent (or anticipated) event. The goal is to prove that
after the assignments the numeric variant decreases. In Fig. 1.5(f), for convergent

event evt2, this proof obligation is given by (1.11).

A(s, c)
I(s,c,v)

J N)
etz vaAR: 50 (1.11)

HZ(Q7 S, C, UJ)
T(q,s,c,w,w')

Fn(s,c,w") < n(s,c,w)

Chapter 1 Introduction 29

1.5.3.3 Enabledness PO

All the previous proof obligations are supported by the Event-B tool (Rodin platform
described in Sect. 1.5.7). Nevertheless there is another proof obligation that is not
supported by Rodin but it can be important when modelling a system: enabledness.
Following the CSP notation for channels [153], we distinguish between parameters with
an input (represented in CSP as “!”) or output (represented in CSP as “?”) behaviour.
This distinction is important in particular for the generation of enabledness proof obli-
gations during refinements. The enabledness proof obligation is given by [41] (described

in that work as the progress condition):

| GAJ=HV Hy (1.12)

where G are the abstract guards, J are the gluing invariants, H are the concrete guards
of refined events and Hy are the guards of the new events. The guards of the abstract
event imply the guards of the concrete event or any of the new events guards. If an event
is disabled in the concrete model, it should be disabled in the abstract model. Reducing
the nondeterminism of individual events may result in reducing internal nondeterminism.
The choice between a range of output values may be reduced during a refinement because
the external choice is preserved. But the range of input values in a refinement must be
preserved [41]. Using an example, let us consider event Add! in machine M illustrated
by Fig. 1.6(a).

MACHINE M
VARIABLES s
INVARIANT s C N EVENT Add2 = EVENT Add3 =
ANY pWHERE ANY pWHERE
EVENT Addl = pe€0.5 peED
ANY p WHERE THEN THEN
p€0.9 s:=sU{p} s:=sU{p}
THEN END END
s:=sU{p} (b) Event Add2 (c) Event Add3
END

(a) Machine S and event Add1

FI1GURE 1.6: Machine M and events Add1, Add2 and AddS3

If we consider that parameter p is an input parameter and that event Add2 refines Add1,

the enabledness PO resulting from (1.12) is given by:
pe0.9AsCN=pe0..5

The previous PO cannot be proved and therefore the enabledness is violated. The
concrete guard is strengthened and some abstract conditions (z € 6..9) are not accepted
in the concrete event. If we consider p as an output parameter and again Add2 refining

Add1, the enabledness proof obligations is:

p€e0.INsCN=Tppel.b

30 Chapter 1 Introduction

which can be easily proved as there exists a value for p between 0..5 from the hypotheses
(p € 0..9). But if we consider Add3 as a refinement of Add2, the enabledness proof

obligation is:
p€0.5AsCN= (Ipp €).

The enabledness is violated because we cannot prove this PO: there is no value of p that

satisfies the concrete guard.

1.5.4 Feasibility and Initialisation

Contexts contain the static part of an Event-B model. It may contain carrier sets,
constants, axioms and theorems. Carrier sets, that are user-defined types, only have a
built-in assumption that they are not empty. Other assumptions about it can be added

as axioms (e.g. carrier set s is finite: finite(s)).

An Event-B model is initialised by an event initialisation with no guards. This event
does not have guards because the initialisation must always be possible. Moreover the
expressions on the right-hand side of the initialisation actions cannot refer to any variable
of the model, since the model is being initialised [9]. Returning to the birthday book

example in Sect. 1.5, this action is a valid initialisation:
e birthday :| birthday = {p0 — d0}
and this is an invalid initialisation:

e birthday :| birthday' = birthday U {p0 — d0}, because the right-hand side of the

assignment refers to state birthday that have not been initialised yet.

The initialisation event cannot preserve the invariants because before that event, the
system state does not exist; the initialisation event must establish the invariant for
the first time. Thus, the other events, that are only possible after initialisation has
taken place, can be enabled when the invariants hold. The invariant proof obligation
for this invariant establishment is almost identical to the proof obligation rule INV
(see Sect. 1.5.3) except that the invariants are not mentioned in the hypotheses of the
sequent as described by PO rule (1.13) [9]. The initialisation provides a witness for the

satisfiability of the invariants.

A(s,c)
INITIALISATION/inv/INV: S(s,c,v’) (1.13)

Fi(s, e, v’)

Chapter 1 Introduction 31

Note that axioms in contexts do not generate proof obligations. Consequently they
can introduce false assumptions and in that case, anything can be proved. To tackle
this issue, sanity tests such as checking if a predicate that is clearly false can be dis-
charged (e.g., (1 = 0)) can be used. If yes, a false predicate exists in the model and
the properties and assertions may not hold. Note that this situation is different from
introducing an invariant or a theorem that are clearly false: the corresponding PO for

that invariant/theorem should not be found provable.

Events have feasibility proof obligations for non-deterministic actions as seen in Sect. 1.5.3.
Moreover, the introduction of a guard that is always false results in that event being
always disabled. Currently proof obligations are only generated for safety properties.
Because the enabledness property is a liveness property, no proof obligation is generated
to verify that situation. Nevertheless ProB [141], that is a model checker for the Rodin
platform (see Sect. 1.5.7) allows the verification of enabledness considering small finite

sets.

1.5.5 Event-B and Action Systems

In Event-B a system is specified as an abstract machine consisting of some state vari-
ables and some events (guarded actions) acting on that state. This is essentially the
same structure as an action system which describes the behaviour of a parallel reactive
system in terms of the guarded actions that can take place during its execution. As
described in Sect. 1.3.3, an action in Action Systems is a predicate transformer that
maps postconditions to preconditions. Event-B events are similar but from a more spe-
cific view where guards correspond to preconditions and the occurrence of the event
lead to postconditions. We can compare both by defining the weakest preconditions (as
described in Sect. 1.3.3) for events and actions respectively. We write wps(a, Q) for
the weakest precondition guaranteeing that the event with label a € A (A being the
finite set of labels of machine M) will establish postcondition (). An event labelled «
from machine M has a canonical form in terms of a guard and a before-after predicate
as follows [9]:

event « = WHEN G(v) THEN v :| BA(v,v") END.
The weakest precondition of this canonical form is [48]:
wpar(, Q) = G(v) = (W' BA(v,v') = Q' /v]). (1.14)

An action « from a basic action system P = (A, v, P;, P,), where a € A has a canonical

form in terms of a guard and a before-after predicate as follows [26]:

action a: G(v) — v := BA(v,v").

32 Chapter 1 Introduction

The weakest precondition of this canonical form is [128, 129]:

wp(G(v) = BA(v,v), Q) = G(v) = wp(BA(v,v"), Q' /v])
= G(v) = Vv-BA(v,v") = Q@' /v]). (1.15)

The weakest precondition semantics (1.14) and (1.15) are equivalent. This occurs be-
cause Event-B can be seen as a realisation of the generic Action Systems formalism:

both are predicate transformers mapping preconditions to postconditions.

1.5.6 CSP Semantics for Event-B Machines

Morgan’s CSP semantics for Action Systems [129] allows traces, failures and divergences
to be defined for action systems in terms of sequences of actions that can and cannot
engage in. Butler [53] extends that work to include unbounded nondeterminism and
defines the infinite traces for Action Systems. Schneider et al [159] developed a CSP
viewpoint of Event-B refinement for traces, divergences and infinite traces (TDI). The
notion of traces here refers to a finite sequence of events from a machine’s alphabet (e.g.
tr € aM™), where alphabet are the observations of possible occurrences of events of M.
The CSP semantics is also based on the weakest precondition semantics of events. The
syntax used is slightly different from Sect. 1.3.3. For example, a sequence of actions
(actl, act2) occurs in exactly those states satisfying wp(actl; act2, true). That could be

also expressed as [129, 159]:
—lactl, act2] false = wp(actl; act2, true).

Let S be a statement (of an event). Then [S]Q denotes the weakest precondition for
statement S to establish postcondition). Observe that for the case Q) = true we have
[when G(v) then v : |BA(v,v") end]true = true. The semantics of machine M can be

defined in terms of:

Traces The traces of a machine M are those sequences of events tr = (al, ..., an) which

are possible for M (after initialisation init): those that do not establish false:

traces(M) = {tr | —[init; tr] false} (1.16)

Divergences A sequence of events tr is a divergence if the sequence of events is not

guaranteed to terminate, i.e. —[init;tr]true. Thus
divergences(M) = {tr | =[init; tr|true} (1.17)

Any Event-B machine M with events of the form given above in Sect. 1.5.2 is

divergence-free (use of anticipated, convergence clause). This is because [evt|true =

Chapter 1 Introduction 33

true for such events (and for init), and so [init; tr]true = true. Thus no potential

divergence tr meets the condition —[init; tr|true.

Infinite Traces An infinite sequence of events u = (u0,ul,...) is an infinite trace of M
if there is an infinite sequence of predicates Pi such that —[init](—FP) (i.e. some
execution of init reaches a state where Py holds), and P; = —[ui](—F;41) for each

i (i.e. if P; holds then some execution of ui can reach a state where P;;; holds).

z'nfz'm'tes(M) = {u | E|<Pi>i€N'—\[init](—|P0) AVi-P;, = —\[ui](—\ i+1) (1.18)
Moreover, the failures semantics of machine M can also be defined.

Failures A failure is a pair comprising a trace and a refusal; a refusal is a set of actions.
Let R be a refusal. The behaviour (¢r, R) is observed whenever the process first
engages in all the actions in ¢r and then may refuse any action in R. The failures
tr: A*; R : A of the action system (A, init) are those for which

failures(M) = {tr | —[init; tr|gd(R)} (1.19)

is true initially, where A* is a set of sequences with elements in A and gd(R) is the
disjunction of the guards of the actions in R. Thus R can be refused if init then

tr can reach a state in which no guard of any action in R is true [129].

Like some other formal notations, Event-B has tool support. The tool is called Rodin

and it is briefly described below.

1.5.7 Rodin Platform

The Rodin platform [151] is the result of an EU research project!. It is a software tool,
based on modern software programming tools developed to use Event-B notation [49, 13].
DEPLOY? is a continuation of this project and addresses scaling methodologies in re-
quirements validation, requirements evolution, reuse, resilience, and scaling tooling in
simulation, analysis and verification of formal models. Rodin was created to help the
development of specifications based on the idea that a large complex or critical project
should be started by modelling and reasoning about the specification. Moreover, formal
reasoning is achieved through the generation of proof obligations. The (ambitious) pur-
pose is to give more options to the industry when using formal methods and decrease
the criticism that affects the formal methods [6]. Rodin strives to be a high usabil-

ity tool showing that modelling does not have to be cumbersome nor hard to achieve.

'RODIN - Rigorous Open Development Environment for Open Systems: EU IST Project IST-511599

2DEPLOY - Industrial deployment of system engineering methods providing high dependability and
productivity (2008 - 2011): FP VII Project 214158 under Strategic Objective IST-2007.1.2. Further
information and downloadable tools are available at http://www.deploy-project.eu/

34 Chapter 1 Introduction

Besides formally validating the specifications according to some user defined proper-
ties (invariants), the main idea is to increase the understanding of the system that is
being modelled. Therefore discharging the proof obligations correspond to the formal

validation that the created system matches the requirements [49)].

Rodin is an open source tool, based on the Eclipse Platform [66] and a complement
for a rigorous modelling development [49]. The intention is to allow the tool to be
customised according to the industry requirements by permitting the integration of
functionalities considered necessary. Rodin supports a Static Checker that validates
model properties. A Proof Generator is used to generate proofs obligations and these
proofs can be discharged by an Automatic Prover (which is a theorem prover that
discharges automatically as many proofs as possible as seen in Fig. 1.7). Proofs that are
not automatically discharged have to be proved interactively. Another Rodin feature
is the high level of extensibility reflected by, for instance, the ability to extend the
default theorem prover (B4free provers provided by ClearSy [21]), model checking (ProB
provided by University of Diisserdorf [141]) or even animate models (Brama provided by
ClearSy [39] and ProB). Applying the UML framework using Event-B, it is also another
approach developed using plug-in technology, where the concept of object oriented and
classes are introduced and “merged” with Event-B notation [182, 170, 169, 171]. Figure

1.8 shows a screenshot of the user interface for Rodin Platform.

Ir- o110 #7199 125 v e

g

it Proof Tree £3 AEE

= ¥ = 0|(@ Protocol

[@cm1 [@ Response

(@ cm2

[@ comms_Mo

[© *comms_mo

[© Railway_M2 2

v on rewrites : vet (occpuic
v @) eh (clmoccpz(tl)) ¢ (et tretrs=sfinite((occpu{c2

v @) en (c2next(occpz(tl))) : (¥et-tretrns=>finite(

v @ & goal : (¥Et-ttetms=finite((occpuinext(o

v @ ¥ goal (frees tt) : vet-ttetrns=finite

v @ = goal : tretrs=finite((occpuine
v @ finite of relational inage : f
v @) simplification rewrites : f
@ typ : tinite(occp)

v @ ¥ goal (frees tt) : VEt-ttetrsacard((o
v @ = geal : ttetrnsacard (occpu{next(
v @ Agoal : tredon(ocepze{tl » nex
ttedon(occpze{tl » nex
occpze{tl » next(occp?

tredon(occpa)
@ functional goal : occpAcTRA

—)

EnterCDV/Track_MO0/grd7/WD

crecov
c2ecov
tletrs
cleoccpz(t)
speea(t1)>0
1eTRAIN

cledon(next)

282888888

c2enext(c1)

10

State|

(% Goal &2\

S=g

Ve
® ¢

tretrs

finite((occpu{c2 » t11)~[{tt}])) A
(teen

etrns n
card((occpufc2 » t1})~[{tt}])>1
-
ttedom(occpZe{tl » c2}) A
ccoze(t] » C2VETRAIN = COV A

(% Proof Control £ [Statistics| . Rodin Problems|

®~=0

% @~ wov @ o |

<

D0

o

£ [15Resource | ¢ Proving & Event-B

(£ Event-B Expl 52 @ Proof Inform | = O
e

B | &8 B

J 9

v @ Proof Obligations

@" INITIALISATION/Trains_MO/i
@ INITIALISATION /Trains_MO/i
@ INITIALISATION/Trains_MO/i
@" INITIALISATIONTrains_MO/i
@ INITIALISATION /Trains_MO/i
@" INITIALISATION /Trains_MO/i
@" INITIALISATION/Trains_MO/i
@" INITIALISATIONTrains_MO/i
" INITIALISATION/Comms_MoO.
@ INITIALISATION/RailWayCorr

@ INITIALISATION/RaiWayCor
@ INITIAUISATION/inv1 /INV
@" sendTrainMsg/Track_MO/g1
@ sendTrainMsg/Comms_MO/
@ sendTrainMsg/act1/SIM
" RecvTrainMsg/Comms_MO/fp)
@" RecvTrainMsg/Comms_MO/|
@’ RecvTrainMsg/Trains_MO/ir]
@' RecvTrainMsg/grd2 /GRD
@" ChangeSpeed /Trains_MO/i
@" Brake/Trains_MO/inv9/INV
" EnterCOV/Trains_M0/grd5.
@" EnterCDV/Track_M0/grd6/
@ EnterCDV/Track_M0/grd7/
@" EnterCDV/Trains_MO/inv4 /|
@" EnterCDV/Trains_MO/inv6 /|
@" EnterCDV/RailWayComposi|
@ EnterCDV/grd7/GRD
@" LeaveCDV/Trains_M0/grd5
@" LeaveCDV/Trains_M0/grd1
@" LeaveCDV/Trains_MO /inv4 |
@" LeaveCDV/Trains_MO/invS /|
@" LeaveCDV/RailWayComposi
@" switchChangeDiv1/grd9/GR|

> @, RailWay_Manual_M2

> @ switch MO

> @ Track MO

» @ Trains_MO

» & SignalEvaluationCruiseControl J
v & SimpleComposition
> @ m

> @ ax

(g T New current obligation

FIGURE 1.7: The Proof Obligation Perspective: on the left, it is shown the proof tree
of the selected PO; on the middle, on the top window are the hypotheses of the selected
PO and just below the respective goal. Below the goal window are the buttons used
to interactively discharge a PO; on the right, are the list of generated POs. Having all

the POs green, it means that all the POs are discharged.

Chapter 1 Introduction 35

| s~ 2] | [&1+ Gl v v [v it v o Ik [} [(Resource ¢ Proving ® Event-B

L Event-B 2\ _[(Project | = O|(@ Protocol @cml (@Response (@ cm2 (@ Comms MO @ "Comms MO [RailWay_M2 |@ RailWay_M2 @ RailWay_M2 (@ eml 825 ~10 = O](8 Outline 3 _ = 8
2@ e 7 @ g mome e, N
oy
J © o
» & Generic 4 2
> Quiz D REFINES - i
» & Quiz_vl » 4% INITIALISATION
> = Quiz_v2 D SEES » 4 transfer
» = Railway
» i SignalEvaluationCruiseControl < VARIABLES
¥ & SimpleComposition o
o omPesI ® o
> D em
»Q oo &
> @
> @ 2 o I
> @ mi
> @ m2 ® o0
< INVARTANTS
® o
4+ @ [ora2] ;. KeN theorem| 7/ [
v @ [N [theorem| //
+ @ [im3] : Ry=-10 theorem| 7/
0
[VARIANT
< EvenTs
® L
D 4% © [INTALSATION : notextended v ordinary v| //
J
Dl # @ [transfer] : [notextended v| lordinary v //
Pretty Print |Edit| Synthesis | Dependencies [Events |
21 Rodin Problems 53"\ Properties | v/ Tasks| € Progress| B
0 errors, 0 warnings, 0 infos
| Description & Resource Path Location

FIGURE 1.8: The Event-B Perspective: on the left, the list of projects where the last

one is expanded, showing several machines and a context; in the middle window, a view

of a machine cm1 where the sections of variables, invariants and events are expanded
and can be edited.

Next we cover the background of some of our contributions: composition and decompo-

sition.

1.6 Composition

Composition has several definitions depending on the context. In a computer science
context, (functional) composition can be defined as the act or mechanism of combining
simple functions to build more complicated ones. It derives from a usual mathematical
step of composing functions where the result of each function is passed as the argu-
ment of the next, and the result of the last one is the result of the whole. Engineering
suggests another perspective of composition: ability to interact with sub-components.
It is possible to represent concurrently-executing systems. In the formal methods con-
text, in particular specifications, composition is the capacity to model the interaction
of sub-components generating larger and more concrete specifications. Several formal
methods define the interaction of specifications based on shared state or shared events
(operations) [53]. Another possibility is a combination of the previous two approaches
(sometimes called fusion composition [25]). The next sub-sections describe these differ-

ent kind of interactions in different formal methodologies.

36 Chapter 1 Introduction

1.6.1 Shared State Composition

Shared state composition allows the interaction of sub-components by state sharing.
Because variables usually define the state of a system, this composition is also known
as shared variable. Back [23] using Action Systems applies the interaction of sub-
components through external variables sharing. In that work, local variables are kept
distinct and the global variables are shared among the processes in the parallel com-
position. Composing action systems P = (v, Py;, Pa,) and Q = (w,Qp;, @p) can be

represented as follows:

Pl Q= ((v,w),Pa; UQpBi, PAUQB)

The set of variables v and w are merged and the actions of both action systems (Py4; and
@ p; for the initialisation plus P4 and Q) are executed in parallel. The actions of P || @
are the union of both sets of actions and the interaction occurs when global variables
are shared. Furthermore, under certain conditions parallel composition is considered
monotonic w.r.t. data refinement [24]. If P’ is a refinement of P, then P’ || Q is a
refinement of P || () under a condition R (abstraction relation) as long as the interleaved

execution of actions from @ preserves R.

Abadi and Lamport in [1] propose a shared variable composition as a conjunction of
properties. Composition of systems means interaction within their environments and a
system behaves properly only if its environment does. A system guarantees the prop-
erties M and L only under the environment assumption E. This can be described as
E= M nN L, where M and L are the safety and liveness properties of the system respec-
tively.

There are some approaches for the development of composition using VDM [111, 77, 101].
One of the approaches is based on rely /guarantee conditions [104] where two state pred-
icates are added as pre and postconditions of a specification, allowing interference be-
tween systems. This extension of VDM developed by Jones [103] permits the specifica-
tion and development of concurrent shared-variable systems [187]. In this approach, a

specification can then be described as:

(P7 R7 G? Q)

where P corresponds to the precondition and is a condition describing a set of states,
while R,G,(Q are rely-condition, guarantee-condition and postcondition respectively.
The last three are conditions of state-transitions (predicates of two states: before and
after state). A rely-condition states the postcondition that the rest of the system may
achieve for any atomic step. Similarly, the guarantee-condition is the postcondition for

any atomic step made by the operation itself [187]. The guarantee condition of parallel

Chapter 1 Introduction 37

processes should imply the guarantee condition of the overall operation. [183] describes
further work for composition using VDM combining ideas in concurrent separation logic
and the rely/guarantee formalism. Assume-guarantee [81] is a similar style to rely-

guarantee.

The B-Method includes a syntax for composition. There are some keywords that can be
used to compose models like Includes, Imports, Sees and Uses. [158] describes the use
of such keywords and restrictions. When a machine has a number of included machines
(using the Includes keyword), several operations from different machines can be called
in parallel. Combining operations results in the conjunction of the preconditions and
the body of the parallel combination will be the parallel combination of all the bodies.

This can be expressed as follows:

PRE P1 THEN S1 END || PRE P2 THEN S2 END
= PRE P1 A P2 THEN S1 || S2 END

where P1, P2 are preconditions and S1, .52 are operation statements. The preconditions
are conjoined and the postconditions are called in parallel. Potet and Rouzaud [140] use
some of these keywords to prove the correctness of composed specifications under certain
restrictions. Blazy et al [33] use classical B to define specification patterns to be used
as reuse mechanisms. One of the reuse mechanisms is composition where two patterns
can be associated using the keyword Extends and proof obligations are generated when
necessary for each kind of composition: juxtaposition (patterns are composed without
defining any link between them), composition with inter-pattern links (relations between
variables of the composed patterns can be added) and unification (some variables of the

composed patterns can be merged and shared).

More recently, Abrial et al [124, 15] proposed a state-based decomposition for Event-B
where the splitting of a system in sub-components (machines) is achieved using vari-
ables. In this case, decomposition is considered the inverse operation of composition
and one can go from one to another and vice-versa. Figure 1.9 shows the decomposition
of machine M (Fig. 1.9(a)) into machines M1(Fig. 1.9(b)) and M2(Fig. 1.9(c)). In a
shared variable decomposition, just like the name suggests, variables can be shared as
a consequence of the events’ decomposition. Therefore, the events evtl and evt2 from
machine M are allocated to machine M1 and the rest of the events (evt3 and evtd) are
allocated to machine M2. Variable v2 (Fig. 1.9(a)) is shared by events evt2 and evt3
that belong to different sub-components after decomposition (Figs. 1.9(b) and 1.9(c)
respectively). Therefore v2 is considered a shared variable. In addition to the events
allocated to each sub-component, it is necessary to introduce additional external events
to each sub-component, to simulate how the shared variable is handled in the other sub-
component. An external event is created based on the original event but only referring
to shared variables. They have to be refined by the original events [15]. Other variables

become parameters in that same event. evt3_ext is added to machine M1 and evi2_ext

38 Chapter 1 Introduction

is added to machine M2, respectively. Sub-components M1 and M2 can be refined
independently but shared variables must always be present and cannot be data-refined.
The re-composition of the (refined) sub-components should always be possible (although

not necessary) resulting in a refinement of the original system [124].

Machine M
evtl | evt2 | 1| evt3 | evtd |
v v3
(a)
Machine M1 Machine M2
P 1 r==-=-=- ':
evtl evt2 levt3_ext evt2_ext: | evt3 evtd

FIGURE 1.9: Shared Variable Decomposition of Machine .S in Machines 7" and W with
shared variable v2

While studying the several approaches for the composition of systems, we realised that
there is a strong similarity between the rely/guarantee approach proposed by Jones
and the shared variable decomposition for Event-B proposed by Abrial. The constraint
originated by the shared variables and external events corresponds to the rely condition

while the internal events correspond to the guarantee conditions as depicted in Fig. 1.10.

Machine M

evtl evt2 : evt3 evtd

decomposes N\

de(omposes
Machine M1 Machme M2

&
>,

FIGURE 1.10: Shared Variable Decomposition Result

From M1 viewpoint (similar for M2), evt3_ext is the rely condition that modifications
in the state in event evt3 are preserved in M1 and consequently evt2 is guaranteed to
behave as the original one. Thus it is possible to make a correlation between these two
approaches. Further study is required to use the developed worked on rely/guarantee
for VDM in the shared variable decomposition for Event-B and we intend to do it in the

future.

Chapter 1 Introduction 39

1.6.2 Shared Event Composition

The shared event approach is suitable for the development of distributed systems [42]:
sub-components interact through synchronised events in parallel. Even for formal no-
tation where the models have an explicit state space, the communication occurs at
the event/operation level. CSP is an event-based methodology used for modelling dis-
tributed systems. Because of CSP’s stateless approach, several works try to combine
state-based and event-based approaches, as are the examples of combining CSP and
B [43, 50, 181] or combining CSP with object oriented classes [75, 131]. The parallel
composition of two processes P and () is expressed as P || Q. Events for process P are
represented by their alphabet aP (similar to @)). The interaction happens by synchro-
nising common events in aPNa@), while events not in aPNa@ can occur independently.

An example of a synchronisation between events is represented as follows [53]:

(@ =P) [l (a=Q) =a=(P[Q)

Events common to P and @ become single events in P || Q. In CSP there exists a special
class of events known as communication which is an event described by a pair c.v: ¢ is
the name of the channel on which the communication occurs and v is the value of the
message to be communicated. A process ready to input (receives) any value z on the
channel ¢, and then behave like () can be described as: c?x —@Q,. Similarly a process
that outputs (sends) a value v on the channel ¢ and then behaves like P can be defined
as: clv —P [153]. Channels can be considered members of the alphabet of the process
and used for communication in only one direction and between two processes [92]. If
two processes P and () are composed in parallel and both have a common channel
¢, interaction happens whenever both processes are ready to engage in the common

channel. If P is ready for clv and process @ is ready for ¢?x, v can be passed from P to

Q [41]:

(clv =P) || (c?x -Qz) = clv = (P || Qu)

As expected the result is an output channel and the process @ receives the value v. This
can also be applied for channels with input-input behaviour. The laws that govern the
behaviour of P || @ are simple and regular. Some of these laws are described below

although there are more properties defined in [92]:

e Commutativity: P || Q@ = @Q || P, there is a logical symmetry between a process

and its environment.

e Associativity: (P | Q) || R= P | (Q || R), so when three processes are assembled,

it does not matter in which order they are put together.

40 Chapter 1 Introduction

e Monotonicity: If P C P’ then P || Q C P' || @', for any Q. Components that are
part of the parallel operation can be refined independently while preserving the

parallel relationship.

In 7, it is possible to create big schemas based on small ones. That can be seen as compo-
sition, where specifications are reused, creating more complex systems. Since Z permits
the refinement of specifications, composition and refinement can be applied at the same
time to a model. [173] describes how the combination of schemas can be achieved, as-
suming that overloading - possibility that two distinct variables in the same scope might
have identical names - is forbidden. The piping operator (>>) is used to describe op-
erations that have almost independent effects on two disjoint sets of state variables. If
we compose the schemas Opl and Op2 using the piping operator: Opl > Op2, the
output parameters of Opl are matched with the inputs of Op2 and hidden, while the
other components are merged as they would be in Opl A Op2. Another approach for the
composition is through the use of views [34, 99]. A view is a partial specification of the
entire system and can be evaluated directly from the requirements. Partial means that
unnecessary details of the system’s behaviour tackled by other views should be omit-
ted. An advantage of views is that they can be constructed and analysed independently
of other views. The interaction between views uses the schema calculus and standard
logic operators. Views can be connected by an invariant relating their state (state-based
approach), or connected by synchronising their operations (event-based approach) or
a mix of both. [34] discusses a similar approach using views, but the composition is
through coupling schemas (relation between different state spaces). By relating several
state schemas and respecting some properties, it is described how the composition can
be achieved based on three techniques: data refinement, view composition and viewpoint
unification. Circus (that combines Z and CSP) programs are sequences of paragraphs:
channel declarations, channel set definitions, Z paragraphs, or process definitions. A
system is defined as a process that encapsulates some state and communicates through
channels. The generic channel declaration channel[T|c : T' declares a family of channels
c and [T] determines the type of the values that are communicated through channel c.
An action can be a schema, a guarded command, an invocation of another action, or a
combination of these constructs using CSP operators. The CSP operators of sequence,
external and internal choice, parallelism, interleaving, their corresponding iterated op-
erators, and hiding can be used to compose actions [54, 155]. The prefixing operator
is standard, but a guard construction may be associated with it. For instance, given
a Z predicate p , if the condition p is true , the action p & ¢’z — A inputs a value
through channel ¢ and assigns it to the variable x , and then behaves like A, which has
the variable = in scope. If, however, the condition p is false , the same action blocks.
Such enabling conditions like p may be associated with any action. The CSP operators
of sequence, external and internal choice, parallelism, interleaving, their corresponding

iterated operators, and hiding may also be used to compose actions.

Chapter 1 Introduction 41

Butler [45] proposes a shared event composition for Event-B inspired by CSP and Action
Systems with event sharing as seen in Fig. 1.11. In this kind of composition, machines
with independent state spaces (variable sharing is not permitted) can be composed by
sharing events. Since it is based on CSP synchronisation, this composition also inher-

its the CSP properties for the channel communication described above. As aforemen-

Machine M1 Machine M2
e2 = ANY p
el &2 e3 o4 5 WHERE pe NAvl =0
+ THEN vl :=p
\5 \g \O O i
vs WHERE v2 =p
1 THEN 22 :=0
Machine M
e2 || e3= ANY p
el e2//e3 ed e5 WHERE pe NAvl=0Av2=p

THEN v2:=0 | vl:=p

NN

FIGURE 1.11: Shared Event Composition of machines M1 and M2 into M with com-
position of events e2 and e3

tioned in Sect. 1.5.5, Action Systems and Event-B are related. Based on that relation,
Butler [42, 45] defined the relation between the parallel composition of actions (includ-
ing composition with Value-Passing) in Action Systems and the B operations/Event-B
events. This definition is described by Definition 1.2 as described below. In Fig. 1.11,
machine M1 has events el and e2 and variable vi. Machine M2 has events e3, e/ and
ed and variables v2 and v3. These two machines can be composed originating machine
M. In particular, events e2 and e3 can be composed. Moreover, in case both events
have a common parameter p, this can be used for message passing between machines
M1 and M2. The composition of synchronised Action Systems actions (using Event-B
syntax for actions) generates a new action whose guard is the conjunction of the original

guards and the actions are executed in parallel [42]:

Definition 1.2. If both events evtl and evt2 have a parameter p:

evtl = ANY p?,2 WHERE p? € C A G(p?,z,m) THEN S(p?,2,m) END
evt2 = ANY pl,y WHERE H (p!,y,n) THEN T(pl,y,n) END

then:

evtl || evt2 =
ANY pl,z,y WHERE p! € C AG(pl,z,m) N H(pl,y,n)
THEN S(pl,z,m) || T(p!,y,n) END

42 Chapter 1 Introduction

where x,y, p are sets of parameters from each of the actions evtl and evt2. Action evtl
has p? as an input parameter and evt2 has p! as an output parameter and the resulting
composition is p! itself an output parameter (like in CSP). This property can be used to
model value-passing systems: the parameter p! is written in evt2 and its value is used as
input for parameter p? to be used in G(p?,z,m) and S(p?,z,m). An interpretation of
this composition is that the value p is sent from evt2 and received in evtl. The fusion of
parameters in only possible if the types of the shared parameter match or are a subset

of each other:
peCAp?le D=CND#o (1.20)

where C' and D are types (carrier sets). Actions with shared parameters of type input
can also be composed and the shared parameter has input behaviour. Actions with
shared parameters of type output cannot be composed since this could lead to a deadlock
state [42].

A relation between the infinite-traces semantics of CSP and Action Systems is defined in
Definition 1.1. Based on that definition, the event-based parallel composition of action
systems can be shown to correspond to the CSP parallel-composition of processes as
described by Theorem 1.1 and proved in [53]: the infinite-traces semantic of syntactic
parallel composition of actions is equal to the infinite-traces semantic composition of

individual actions.

Theorem 1.1 (see [53, Theorem 5.17]). Let {{M]} represent the infinite-traces semantics
of action system M (similar for {{N]} and action system N). Then the infinite-traces
semantics of CSP can be applied to Action Systems according to Definition 1.1: the

infinite-traces semantics of action system M in parallel with N, M || N is given as 3:

{M || NIy = {IM]} [{INT; (1.21)

In order to give a CSP semantics to Event-B we simply treat an Event-B machine as
an action system. Doing this just requires treating an Event-B event as a predicate
transformer as shown previously in Section 1.5.5. Therefore with respect to infinite-
traces semantics, the parallel composition of action systems corresponds to the parallel
composition of Event-B events. Moreover the properties of the parallel composition
of action systems are also inherited in the parallel composition of machines. The most
relevants are commutativity along with monotonicity: if M and N are Event-B machines
and M C M’ then M || N C M’ || N, for any N. Therefore machines M and N can
be refined independently while the properties of the parallel composition M || N are
still preserved. This is one of the most important and powerful properties that shared
event composition in Event-B inherits from Action Systems and CSP. The monotonicity

property for the shared event composition in Event-B is proved by means of proof

3This theorem is shown and proved in [53], theorem 5.17 on page 67.

Chapter 1 Introduction 43

obligations in Sect. 2.3.4.

1.6.3 Fusion Composition

Fusion composition is another kind of composition which can be seen as a combination
of the previous two approaches. Back and Butler [25] extend the notion of a product
operator for refinement calculus of Back [22]. The fusion operator is introduced as a
generalisation of the product operator preserving the monotonicity and conjunctivity
properties. The fusion operator can be used to conjoin two specifications into a larger
specification that refines both specifications within their combined termination condi-
tion. As a result the non-determinism is reduced on the termination behaviour of both
specifications. Poppleton [138] follows the previous work by proposing a composition
using the fusion operator as a way to reuse existing models for Event-B. A proposal for
development of feature oriented specifications [139, 70] uses the fusion operator. Con-
sider machines M1 and M2 in Fig. 1.12 which are fused by combining variables and
events, generating machine M. Machine M1 has a set of variables v (variables x are
assigned in the event e and variables y are kept unchanged), a context defined by carrier
sets s, constant ¢, axioms A; and invariant [;. Similarly, machine M2 has variables z
(divided in a and b) and same context properties except the axioms Ay and invariant Is.
The union of the variables of each model corresponds to the set of variables of machine
M. The common events (we consider that events e and f are common) are composed

similarly to shared event composition described in Sect. 1.6.2.

Machine M1 Machine M2

v=aUy / * variables * / z=aUb / *variables * /
s, ¢, A1(s,c) / * context x / s, ¢, Aa(s, c) / * context x /
I (s,¢,v) / * invariant x / Iz(s, ¢, 2) / * invariant x /
event : e = event : f =

ANY pl WHERE G (pl,v) ANY p2 WHERE G2 (p2, z)

THEN z := S1(pl,v) END THEN a := S2(pl,z) END

(a) (b)
Machine M

v,z=axzUyUaUb / * variables * /
s,¢, A1(s,c) N Aa(s,c)] * context * [
I (s,c,v) AN2(s,c,2) [*invariant * /
event:e@® f =
ANY pl,p2 WHERE G1(pl,v) A G2(p2, z)
THEN z := Si(pl,v) || a:= Sa2(pl,z) END

()

F1GURE 1.12: Fusion Composition of machines M1 and M2 into machine M

Event fusion preserves the refinement properties of the model [138] and as a requirement,

shared variables should be refined in the same functional manner in both machines.

Decomposition, that can be seen as the inverse operation of composition, is briefly

discussed in the next section.

44 Chapter 1 Introduction

1.7 Decomposition

The development of specifications in a “top-down” style starts with an abstract model of
the envisaged system. Throughout refinements the initial model becomes less abstract
and more concrete, closer to an implementation. As a consequence, there is a better view
of the system as a whole and design decisions can be taken. Nonetheless refinements of
a system bring complexity and tractability problems when the model augments in a way
that becomes cumbersome to manage [124]. Decomposition is precisely the process by
which a single model can be split into various sub-components in a systematic fashion.
The complexity of the whole model is decreased by studying, and thus refining, each
sub-component independently of the others [124]. The independent sub-components
can be developed in parallel which is attractive in an industrial environment. As a
result of the attractive benefits of decomposition, it is a topic of interest that has been
explored in several areas like mathematics, in different areas of engineering and also
in different formal methodologies. There is a strong relation between composition and
decomposition: they can be seen as the inverse operation of each other. Therefore the

related work is very often interleaved as we present below.

Abadi and Lamport [2] suggest a decomposition of concurrent systems (interleaving
and non-interleaving representation) in the style of “composition is conjunction” using
TLA [108]. The goal is to facilitate the decomposition of complete systems and respective
proofs by reasoning about the sub-components when the environment conditions are

safety properties.

Moore [127] suggests a decomposition of system requirements and respective proofs us-
ing the CSP Trace Model. The method emphasizes the decomposition of high-level
requirements and reasons about the safety of non-divergent processes. The only way a
process can communicate with another process executing concurrently is through CSP-
like communication channels; no shared variables are permitted. The method proceeds
iteratively, until the appropriate requirements for the component processes and the min-

imal set of synchronization requirements are found.

Jian [101] uses a combination of data reification and operation decomposition in VDM
(DD-VDM) to reason about data decomposition. Data decomposition is based on the
ideas of model splitting, modularisation and operation decomposition. The operations
in the sub-models are viewed as the operations working on the whole model and rules
are added in DD-VDM concerning the interaction of several sub-models. [102] is the
continuation of that work by developing parallel object-oriented programs in the VDM

framework.

Butler [40] suggests a decomposition approach for Action Systems with value-passing,
internal actions and parallel composition as described in Sect. 1.6.2. As a continuation

of that approach, Butler and Waldén [52] combine Action Systems and classical B to

Chapter 1 Introduction 45

derive parallel and distributed systems.

Two methods have been identified for the Event-B decomposition: shared variable
(Fig. 1.9) and shared event (Fig. 1.13). The shared event decomposition can be seen as
the inverse operation of the shared event composition described in Sect. 1.6.2. In this
case, the decomposition requires the definition of which variables are allocated to which
sub-component (in Fig. 1.13, vl is allocated to machine M1 and variables v2,v3 are
allocated to machine M2). Event evt2 is shared since uses variables v1 and v2 allocated
to different sub-components. During the decomposition, evt2 is decomposed into evt2’
(containing only guards and actions related to v1) and evt2” (containing only guards
and actions related to v2). We follow the shared event decomposition approach and in a
pragmatic way, we aim to study and specify a decomposition tool. Because shared-event
decomposition is monotonic [45], the generated sub-components can be further refined
independently. So M1 and M2 can be refined independently into M11, M12...and
M21, M22...respectively . Therefore we can introduce team development: several de-
velopers share parts of the same model and can work independently in parallel (we show
this option is our case study in Chapter 6). Besides alleviating problems when dealing
with complex specifications, decomposition also partition the proof obligations which are
expected to be easier to be discharged in the sub-components. Next we discuss in more

detail the shared event decomposition before introducing our contribution in Chapter 4.

1.7.1 Shared Event Decomposition

In Event-B, decomposition of a component (specification) corresponds to distributing
events and variables among the sub-components. Shared event decomposition does not
permit variable sharing and an event can be split into different sub-components as seen
in Fig. 1.13. The sub-components can be further refined independently according to the

monotonicity property of decomposition [45].

Machine M
evtl e}"t2 evt3 evt4
v1 H v2 v3
(a)
Machine M1 Machine M2
evtl evt2' evt2" evt3 evtd

- v2 V3

(b) (c)

FIGURE 1.13: Shared event decomposition of machine M into machines M1 and M2
with shared event evt2

46 Chapter 1 Introduction

The decomposition can be seen as syntactic and semantic: syntactic because the sub-
components are a consequence of the syntactic partition of the component ; semantic in
the sense that the sub-components can lose some information (invariants that relate sub-
components) but the behaviour of the recomposed sub-components is the same as the
non-decomposed component (i.e. the recomposition is a valid refinement of the abstract

component).

Figure 1.14 shows the decomposition of machines M1 into M3_0 and M4_0. M3_0 and
M4_0 are refined independently until M3_m and M/_n are reached. It should be possible
to recompose M3_m and M4_n into cM2 and proved that c¢M2 is a refinement of M1.

This is equivalent to express the monotonicity property of decomposition as:

M1C (M3.0 || M4.0) C (M3.m || M4.n)

The shared event parallel composition of M3_0 and M/_0 refines M1. Also the par-
allel composition of the individual refinements of M3-0 and M4-0 (M3-m and Mj-n

respectively) are a refinement of the M1.

M1
decomposes decomposes
M3_0 M4_0
refines
refines refines
M3_m M4 _n
composes composes
cM2

FIGURE 1.14: Decomposition, Recomposition and Refinement

Consider machine M in Fig. 1.15(a) containing variables v, z and events evt;, evty and
evt3. Each event has a parameter p;, guards G;; and assignments to variables using
predicates S;;, where ¢ and j are indexes corresponding to events elements. Machine M
is decomposed into machines M1 and M2 as seen in Fig. 1.15. Variable v is allocated to
machine M1 and variable z is allocated to machine M2 meaning that event evt; (that
only depends on that variable) is part of M1 and event evty (only dependent on z) is

part of M2. Event evts uses both variables so the event is split in two parts: guards

Chapter 1 Introduction 47
MACHINE M
VARIABLES v, z
EVENT evt; =
ANY pl WHERE
G1(v,pl) MACHINE M1 MACHINE M2
THEN VARIABLES v VARIABLES =z
v := S1(v,pl) EVENT evt; = EVENT evty =
END ANY pl WHERE ANY p2 WHERE
EVENT evty = G1(v,pl) Ga(z,p2)
ANY p2 WHERE THEN THEN
Gao(z,p2) v := S1(v,pl) z := S;(z,p2)
THEN END END
z 1= Sa(z,p2) EVENT evt3 = EVENT evtz =
END ANY p3 WHERE ANY p3 WHERE
EVENT evtz = G31(v,p3) G32(z,p3)
ANY p3 WHERE THEN THEN
G31(v,p3) v := S31(v,p3) z 1= S32(z,p3)
G32(z,p3) END END
THEN (b) Machine M1 (¢) Machine M2
v = Sgl(v,p?))
z := S32(z,p3)
END

(a) Machine M

FIGURE 1.15: Machines M1 and M2 resulting from the shared event decomposition of
machine M

and actions related with variable v are decomposed into machine M1 and guards and

actions related to variable z are stored in machine M2.

Event evts from machine M has a parameter p3. During the decomposition p3 is shared
between the sub-events and allows the interaction between the sub-components M1 and
M?2. This correspond to modelling value-passing systems as described in [40, 41] for
Action Systems or in [42] for B and in [45] for Event-B.

1.7.2 Shared Variable Decomposition

In Event-B, the shared variable decomposition allows variable sharing and external
events are introduced in the sub-components to ensure that the behaviour of the shared
variables is maintained in all sub-components. Such approach is suitable for designing
parallel algorithms [42] (an example can be found in [90]). The re-composition of the
(refined) sub-components should always be possible resulting in a refinement of the orig-
inal system. Therefore what was described in Fig. 1.14 can also be applied to the shared

variable decomposition and it is proved in [8].

Consider again machine M in Fig. 1.16(a) containing variables v,z and events evty,
evts and evts. Machine M is shared variable decomposed into machines M1 and M2.
Event evt; is allocated to machine M1 and events evts, evts are allocated to machine
M2. Consequently variable v is shared. Event evts_ext must be added to machine M1
to ensure that the behaviour of (shared) variable v in the machine M is preserved in
that sub-component. Similarly, in machine M2, event evt;_ext is added to simulate
the behaviour of v from the machine M2. Machines M1 and M2 can be further refined

Chapter 1 Introduction

MACHINE M MACHINE M2
VARIABLES v, z VARIABLES =z
EVENT evt; = v /*shared var*/
ANY pl WHERE EVENT evtq_ext =
G1(v,pl) MACHINE M1 ANY pl WHERE
THEN VARIABLES v /*shared var*/ G1(v,pl)
v := S1(v,pl) EVENT evt; = THEN
END ANY pl WHERE v = S1(v,pl)
EVENT evty = G1(v,p) EVENT evty =
ANY p2 WHERE THEN ANY p2 WHERE
G2(z,p2) v := S1(v,p) G2(z,p2)
THEN END THEN
z 1= Sa(z,p2) EVENT evtz_ext = z 1= Sa(z,p2)
END ANY p3 WHERE END
EVENT evts = G31(v,p3) EVENT evis =
ANY p3 WHERE THEN ANY p3 WHERE
G31(v,p3) v := S3(v, p3) G31(v,p3)
G32(z,p3) END G32(z,p3)
THEN (b) Machine M1 THEN
v := S31(v,p3) v := S31(v,p3)
z := S32(z,p3) z := S32(z,p3)
END END

(a) Machine M

(c) Machine M2

FIGURE 1.16: Machines M1 and M2 resulting from the shared variable decomposition

of machine M

independently as long as the external events and shared variables are present. Moreover,

the shared variables and the external events cannot be refined.

The following chapters describe our work applied to three reuse mechanisms: composi-
tion, generic instantiation and decomposition. Each chapter contains a small case study
applying the respective mechanism. A more complex case study is presented in the end

to illustrate the use of the reuse mechanisms when developing models.

Chapter 2

Shared Event Composition for
Event-B

The development of a system can start with the creation of a specification. Following
this viewpoint, we claim that often a specification can be constructed from the combi-
nation of specifications. The combination of specifications can be seen as composition.
Event-B is a formal method that allows modelling and refinement of systems. The com-
bination, reuse and validation of component specifications is not currently supported
in Event-B. We extend the Event-B formalism using shared event composition as an
option for developing distributed systems. Refinement is used in the development of
specifications using composed machines and we prove that properties and proof obliga-
tions of specifications can be reused to ensure valid composed specifications. The main
contribution of this work is the Event-B extension to support shared event composition
including the definition of static checks and proof obligations (POs) for a composed
machine. Composition and refinement are coupled to gradually develop a model in a
stepwise manner. Moreover, composition is the preliminary work towards decomposition
(described in Chapter 4) as it defines a methodology for (de)composing specifications.
We explore the composition of specifications by defining properties and (reuse of) proof
obligations. These contributions are supported by a tool developed in the Rodin plat-
form (parallel composition plug-in [162]). This chapter is based on papers accepted for
the B workshop running in parallel with FM 2011 (International Symposium on Formal
Methods) [161] and in FMCO 2010 (International Symposia on Formal Methods for
Components and Objects) [164].

2.1 Introduction

In a “top-down” style, the initial model abstracts the most important behaviour and

state of the system. Systems can often be seen as a combination and interaction of sev-

49

50 Chapter 2 Shared Event Composition for Event-B

eral sub-specifications (hereafter called sub-components) where each sub-component has
its own functionality aspect. This view introduces modularity in the system: different
sub-components represent a particular functionality and changes in the sub-components
are accommodated more gracefully [99] in the system specification. We use composition
to structure specifications through the interaction of sub-components seen as indepen-
dent modules. This use of composition is not new in other formal notations: exam-
ples are [191, 106, 138] as described in Sect. 1.6. Here we express how we can (re)use
composition for building specifications in Event-B through sub-components (modules)
interaction, benefiting from their properties and proof obligations inspired by views in
Z 199]. The interesting part of composition involves the interaction of sub-components
which occurs by shared state, shared operations or a combination of both (for exam-
ple, fusion composition) as discussed in Chapter 1. Although sub-components usually
have states, in our approach we mainly focus on their (visible) operations similar to the
CSP view [129, 53]. Therefore we follow a shared event composition approach where
events/operations from different sub-components are synchronised in parallel. We con-
strain sub-components to have independent state spaces and consequently avoid dealing
with sub-components that have intersecting states like it happens in a shared state
approach [144, 145].

This chapter is structured as follows: Sect. 2.2 introduces the notion and properties for
shared event composition. The notion of composed machine, respective static checks,
proof obligations and the monotonicity property are introduced in Sect. 2.3. Section 2.4
illustrates the application of the shared event composition to a distributed system case
study: file transfer system. Related work is described in Sect. 2.5. Conclusions and

future work are drawn in Sect. 2.6.

2.2 Shared Event Approach

Sub-component specifications, that are part of a full system specification, deal with a
particular aspect of the system being modelled. Sub-component interaction must be
verified to comply with the desired behavioural semantic of the system. The interaction
usually occurs as a shared state, shared event or a combination of both as described in
Sect. 1.6. The kind of interaction usually depends on the characteristics of the specified
system. For instance, when specifying an automated teller machine (ATM) system, user
and cashMachine can have separate specifications. Both specifications can define vari-
ables to describe the used debit/credit cards for the transactions and the composition of
these two specifications can interact through shared variables: the variables representing
the cards. On the other hand, a shared event composition allows sub-components to
interact through synchronised events. The specification user can have an event that
defines the personal identification number (PIN) of the card: user_defines_PIN. cashMa-

chine can contain an event that changes the card PIN: change_PIN_card. Furthermore an

Chapter 2 Shared Event Composition for Event-B 51

additional sub-component serverBankValidation can have events defining when a bank
operation is enabled. One of these events can be wvalidate_user_operation_card. A shared
event composition of these specifications results in a new event user_change_PIN that
allows the introduction of a new PIN for a particular card when the conditions defined
in validate_user_operation_card are enabled. Such event could be specified by composing

events user_define_PIN, change_PIN_card and validate_user_operation_card.

Here we focus on the developments using shared event composition only, where com-
position is treated as the conjunction of individual elements’ properties: conjunction
of individual invariants, union of variables and synchronisation of events. Events when
synchronised are composed as described in Def. 1.2. Machine properties are merged by

the conjunction of invariants as seen in Def. 2.1.

Definition 2.1. Let machines M1 ... Mm have variables vl ...vm respectively. Then
if machines M1 ... Mm are composed in parallel, the invariant of the composed machine
M1 ...|| Mm is given as:

I(M1| - || Mm) = I (s,¢,v1) A -+ A L, (s, ¢,um). (2.1)

When sub-components are composed it is desirable to define properties that relate the in-
dividual sub-components allowing interactions. These properties are expressed by adding
composition invariants Icp(s,c,vl, ..., vm) to the composed machine constraining the
variables of all machines being composed. Therefore a more complete version of the

conjunction of invariants is described in Def. 2.2.

Definition 2.2. The invariant of the parallel composition of machines M1 to Mm with
variables v1 to vm respectively is the conjunction of the individual invariants (Def. 2.1)
and the composition invariant Ioa(s,c,vl, ..., om):

I(M1 |- || Mm) = I(s,¢,v1) A -+« A L (s, c,om) Alopr(s, ¢, vl, ... om). (2.2)

In Fig. 1.11, composed machine M can have as invariant the conjunction of the individual
invariants as defined by Def. 2.2: I(M1 || M2) = Inm(s,c,vl) A Ipa(s, c,v2,v3) plus

possible composition invariant Iop(s, ¢, vl, v2,v3).

2.3 Composed Machines: Composition and Refinement

We define a new construct composed machine, representing the shared event composi-
tion of Event-B machines. We aim to have a construct that remains reactive to changes
in the sub-components in a way that has a minimal effect on the entire specification.

Consequently this representation of the composition is structural. The interaction of

52 Chapter 2 Shared Event Composition for Event-B

sub-components, following a “top-down” approach, can represent a refinement of an
existing abstraction. In that case, to formalise the composition, it is necessary to de-
fine composition POs plus refinement POs. In the following sections, we introduce the
structure of a composed machine, respective POs, prove the monotonicity property for

shared event composition and describe the required static checks.

2.3.1 Structure of Composed Machines

A shared event composed machine is expressed as the parallel conjunction of sub-
component properties. Composed machine C'M defined by machines M1,..., Mm can
be seen in Fig. 2.1. Machines are composed in parallel including their properties and
events: CM = M1 || --- || Mm. Moreover:

e The composed machine variables are all the sub-component variables (v; from M1,
vy from M2, ..., v, from Mm) and are state-space disjoint.
e The invariants of the composed machine are defined as Def. 2.2.

e The composed events are defined according to Def. 1.2.

COMPOSED MACHINE CM SEES Ctx

INCLUDES M, ..., My,

VARIABLES v1, ..., um

INVARIANTS I (s, ¢, v1,v2,...,0m)

EVENTS
INITIALISATION = M1.INITIALISATION || ... Mm.INITIALISATION
evt11 = M1l.evt1 || ... Mm.evtm
evt1p = Ml.evtip || ... Mm.evtm evtip

END

FIiGURE 2.1: Composed machine CM composing machines M1 to Mm seeing context
Ctx

Ionr(s, e v1,v9, ..., vy) expresses the properties relating the states of sub-components.
When a composed machine is used as a combination of composition and refinement, it
refines an abstract model and just like in an ordinary machine, abstract events must be
refined. For instance, a composed machine CM refining abstract machine M0 can be
expressed as (MO C CM) = (MOC M1 || --- || Mm). The next section discusses static

checks that are required in order to implement a tool for composition.

2.3.2 Static Checks

For the implementation of a tool for composition (Sect. 5.2), composed machines need
to be validated against some well-formedness conditions. The shared event composition

relies on these definitions:

Chapter 2 Shared Event Composition for Event-B 53

e The state space of the composed machine is defined as the composition of the

sub-components’ state space.

e The invariant of the composed machine is defined as the conjunction of the indi-

vidual invariants plus possible additional composition invariants.
e Sub-components can communicate via shared parameters during the parallel oc-

currence of events (composed events).

We distinguish between necessary technical conditions for the composition and method-
ological conditions (convenient and for simplicity). The technical conditions are as

follows:

e Sub-component variables cannot be shared.
e A composed event is defined by events of the different sub-components.

e The same event can be composed more than once. It corresponds to different

events’ synchronisations.

The methodological conditions are:

e A composed machine is defined by at least one sub-component.

e Composed machines refining an abstraction do not introduce new events. For
simplicity we restrict the introduction of new events during the composition since
adding new events before or after the composition has a similar outcome to adding

them during the composition.

e Variants are not required for composed machines. Only new events require variants

and they are not allowed, as justified in the previous point.
e A composed event is defined by at least one event.
e When the composed machine refines an abstraction, the rules and refinement POs

are applied similarly to standard machines.

These are the required conditions to build a valid composed machine. Next we present

the required POs to verify composed machines.

2.3.3 Proof Obligations

POs play an important role in Event-B developments. For simplicity we define POs in

terms of a composition of two machines M (v1) and Ms(v2) that refine machine My(v0),

54 Chapter 2 Shared Event Composition for Event-B

but the rules generalise easily to the composition of n machines. Furthermore context
elements in the formulas (s, ¢, A(s,c)) are not considered. The same proof obligations
defined for standard machines (invariant preservation, well-definedness, refinement, etc)
are defined for composed machines. We simplify the composed machines POs by assum-
ing that the POs of the individual machines already hold. We just define the additional
POs necessary to ensure that the composed machine satisfies all the standard POs.
Therefore we consider that the POs of the machines to be composed (M; and Ma)
hold. The same applies for the abstract machine My. Following the POs described
in Sect. 1.5.3 for standard machines, the respective composition POs are described as

follows.

2.3.3.1 Consistency

Consistency POs are required to be always verified. Consistency is expressed by the
feasibility and invariant preservation POs for each composed event. In the composed
machine, feasibility PO FIScjs corresponds to the feasibility of all events from the
individual machines that are composed. To show the feasibility proof obligation for a
composed event, we compose event evtl from machine M1 and event evt2 from machine
M2: evtl || evt2. The feasibility proof obligation for the composed event evtl || evt2 is
FIS ut1)evt2-

Theorem 2.1. Let F1S¢,;1 and F1S,2 be the feasibility proof obligations for two dif-
ferent events evtl and evt2 operating on disjoint variables v; and vo respectively. Then
FIScyt1)|evt2 holds if both F'ISe, and F'ISey2 also hold.

From (1.4):

FISew1: FISepiig b FISepiic = I(v1) A Gi(p1,v1) F 3vy-(S1(p1, v1,v7)) (2.3)
FISepi2: FISepiom b FISeping = Ia(v2) A Ga(p2,v2) F b - (Sa(p2, v2,vh)) (2.4)
FISevtlHeth : FISevtlHethH = FISevtlneutzG = (2.5)
Ton (vi,v2) A Ii(v1) A Ia(v2)
A G1(p1,v1) A Ga(p2, v2)
F 30, vh - (S1(p1, v1,vh) A Sa(p2, v2, v5)).

Assume: FISey1 and FISey0.
Prove: FISc1)evi2-
Proof. Assume the hypotheses of F'ISc1|jcora (F1Sevti||evt2r):

Ion (v, v2)
Ii(v1) A Gi(p1,v1) (2.6)
Ir(v2) A Ga(p2,v2). (2.7)

Chapter 2 Shared Event Composition for Event-B 55

Prove:

Elvllv ’Ué'(sl(pla U1, Ull) A S2(p27 v2, Ué))

The proof proceeds as follows:

v, vy (S1(p1, v1,01) A S2(p2,v2,v5))
= Juy-(S1(p1,v1,v1))
A Fvy-(Sa(p2, v2,v3)) {disjoint v1 and v2}
< (FISunc A FISewic). ((2.3)4(2.6),(2.4)+(2.7)}

O]

Another consistency PO is invariant preservation. In the composed machine, invariant
preservation PO INVgys corresponds to the invariant preservation in all events from
the individual machines that are composed. The invariant preservation proof obligation
for the composed event evtl || evt2 is IN V4 |jevro- Note that i(v’) denotes the result of
the substitution of variable v by the corresponding before-after predicate v’ in invariant
i.

Theorem 2.2. Let INVgy1 and INV,ye be the invariant preservation proof obligations
for two different events evtl and evt2. Then for each individual predicate i1, i2 and icps
from the set of invariants I in a composed machine, I N Ve, |eps2 holds if both TN Veyn

and I N Vg also hold plus the composition invariant Iops(v1, ve) holds.

From (1.3):

INVeyir : INVepi B INVeynia = Li(v1) A Gr(pr,v1) A Si(pr,v1,v1) Fin(vy) (2.8)
INVeyia : INVeyson = INVepiag = I2(v2) A Go(p2, v2) A Sa(pa, va, v5) Fig(vy) (2.9)
INVeitjevt2 : INVeptijjevizr = INVeytijevizg = (2.10)
Ton(v1,v9) Ay (v1) A Io(vg)
A Gi(p1,v1) A Ga(p2, vz2)
A S1(p1,v1,01) A S2(p2, v2,v5)

Fir(v]) Ada(vh) Adcoa (v, vh).

Assume: INVg,1 and INV,o.
Prove: INV, 1 evt2-

Proof. Assume the hypotheses of INV,_,1|jevt2:

I (vi,v2)
Il(vl)/\Gl(p1,v1)/\Sl(pl,vl,v;) (2.11)
IQ(’UQ) /\GQ(pQ,Ug) /\SQ(pQ,UQ,U/Q) (212)

Prove:

i1(v]) Ada(vh) Adon (v,).

56 Chapter 2 Shared Event Composition for Event-B

The proof proceeds as follows:

i1 (v1) Ada(vy) Adcar (v, v3)
<= INVeyiic
N INVeuiaa
Ndcn (v, vh). {(2.8)+(2.11),(2.9)+(2.12)}

In other words, composition invariants I (v1,v2) need to be verified but the invariant

POs of the individual machines hold without having to be re-verified. O

Well-definedness POs are also applicable to the composed machines. Nevertheless in
practice, well-definedness POs are only generated for Icps(vy,v2). Other expressions

(guards, actions, etc) are verified in the individual machines [10].

2.3.3.2 Refinement

The refinement POs are only required when the composed machine refines an abstract
machine. Machine M, with variables vy, invariant Iy(vg) and abstract event evtq is
refined by composed machine C'M defined by abstract machines M; with variables
w1, invariant Ij(wq), event evt;, My (we ; Iz(ws); evty) and composition invariant
Jom (vo, wi, wz). The composed event evtl || evt2 refines the abstract event evty. The
refinement PO for a composed machine RE Fo s results from the verification of the com-
position invariant preservation Jeas(v)), wh, wh), the verification of guard strengthening

for Go(po, vo) and simulation So(po, vo, vj) for each refined event.

Theorem 2.3. Let composed event evtl || evt2 refine abstract event evt0. Then the
refinement REF PO for evtl || evt2 consists in proving the guard strengthening of
abstract guards, proving the simulation of the abstract variables (v()) and preserving the

gluing invariant (Joas(v), wi, w))) in the composed machine.
From (1.5):

INVeyr o Ii(wi) A Hy(qr,wr) A Ti(qr, wy,wy) F g (w)) (2.13)
INVeyo o Ia(wa) A Ha(qo, wa) A Ta(qa, wa, wh) = ig(w)) (2.14)
REFeuoc (evtifjevt2) © Lo(vo) A Ti(wi) A Ta(wa) A Jonr (vo, wr, w2)
A Hi(gr, wi) A Ha (g2, w2)
ATy (q1, w1, wy) A Ta(ge, wa, wh)

F Jvg-Go(po, vo) A So(pos vo, vh) Adr(w]) Ade(wh) A Jonr (vh, wi, wh).
(2.15)

Assume: TNV (2.13) and IN Ve (2.14).

Prove: REFevtOE(evtl |levt2)-

Chapter 2 Shared Event Composition for Event-B 57

Proof. Assume the hypotheses of REF,,0c (cvt1||evt2):

In(vo) A Jon (vo, wi, wa)
I (w1) A Hy (g1, w1) AT (qr, wr, wy)
Ir(w2) A Ha(g2, wa) A Ta(g2, wa, wh)

Prove:
F Jv-Go(po, vo) A So(po, vo, v)) A I (wh) A Ia(wh) A Jon(vh, wh, wh).

The proof proceeds as follows:

3v6~G0(po7 UO) A SO(p07 Vo, ’Ué))
A T (wy) A Ioy(wh) A Jeon (vh, wh, wh)
= Go(po,vo) AN Iy (wh) A Ip(wh)

A Fvj- (So(po, vo, vh) A Jon (vh, wh, wh)) {A goal; vo, w}, ws are free variables}
< Go(po, o)
A Fvj- (So(po, vo, vh) A Jon (vh, wh, wh)) {from (2.13) and (2.14)}

As mentioned in Sect. 1.5.3, the refinement POs can be slit into separated POs using wit-
nesses: guard strengthening, simulation and gluing invariant preservation. We separate

the above refinement proof into these three kind of proof obligations.

Guard Strengthening For each composed event evtl || evt2, the guard strengthening
PO GRDc¢y refers to the relation between the conjunction of the guards of the composed
event Hi(qi,wi) A Ha(g2, w2) and the guard of the abstract event evt0: Go(po, vo)-

For each abstract guard gg from the set of guards Gy in an abstract machine, the GRD
PO for each event requires verification that the concrete guards Hy(q1,w1) A Ha(g2, w2)

are stronger than the abstract ones Go(po vo).

From (1.8), the proof rule to be verified is:

GRD.yroc(evti|jevt2) © Lo(vo) A Ti(wi) A Ia(wa) A Jon(vo, wr, wo)
A Hi(q1,w1) A Ha (g2, w2)
A Wi(po, w1, we, q1, G2)
F go(po,vo)-

Gluing Invariant Preservation For composed events, the gluing invariant preserva-
tion PO I NV requires that all the gluing invariants are preserved for each composed

event (similar to the invariant preservation described in Sect. 2.3.3.1).

58 Chapter 2 Shared Event Composition for Event-B

Theorem 2.4. Let the invariant in the composed machine be I1 (w1) Als(w2) AJdoar (vo, wi, we).
Then for each composed event evtl || evt2, only each predicate from the set of gluing

invariants Jeoas(vo, w1, we) needs to be verified if TN Ve and TN Ve hold.

From (1.7):

INVeyijevt2 : Lo(vo) A Ti(wr) A Ip(w2) A Jon (vo, wi, wa)
A Hi(qr,w1) A Ha (g2, ws)
A Wa(vh, w1, we, q1, g2, W, wh)
ATy (qr,wy, wh) A Ta(ge, we, wh)
F g (w) Ada(wh) A jon (v, wl, wh). (2.16)

Assume: TNV (2.13) and IN Ve (2.14).
Prove: INV 1 evt2-

The proof proceeds as follows:

ir(wy) Ada(wh) A gon (vg, w, ws)
= jom (vh, wh,w))) {from (2.13) and (2.14)}

Simulation To verify the simulation PO SIM¢ys, each action executed in a composed

event evtl || evt2 must not contradict the corresponding actions in the abstract event

evt0.

For a concrete composed event evtl || evt2 refining event evt0, the simulation PO re-
quires that each concrete action 77 (g1, w1, w]) A Ta(ge, we,w)) simulates the abstract

ones Sy (po, vo, vg)-

From (1.9), the proof rule that needs to be verified is:

SIM eytoc(evtrflevt2) © Lo(vo) A T1(wi) A Ix(wa) A Jon (vo, wi, w2)
A Hy(q1,w1) A Ha(ga, wo)
AW1(po, w1, wa, q1, g2, W}, wy)

AW (vh, w1, ws, q1, g2, WY, W)

ATy (qr,wr, wh) A Ta(ge, wa, wh)

F SO(pO,’U07v(/))'

These are the required POs to verify composed machines. Next we show that composed machines

are monotonic which allows further refinements of sub-components while preserving refinement

of the composition.

Chapter 2 Shared Event Composition for Event-B 59

2.3.4 Monotonicity of Shared Event Composition for Composed Ma-

chines

An important property of the shared event composition in Event-B is monotonicity. Here we
prove by means of refinement POs that the composition is monotonic confirming the result
described by Butler [53] using actions systems and CSP. Figure 2.2 shows abstract specification
M1 composed with other specification N1, creating a composed model M1 || N1. M1 is refined
by M2 and N1 by N2 respectively:

M1 is characterised by variables vy, invariants I (vas) and event evt .

M2 is characterised by variables wys, gluing invariants Jys (var, was) and event evtpyo.

e N1 is characterised by variables vy, invariants Iy (vy) and event evtpy.

N2 is characterised by variables wy, gluing invariants Jy (vy,wy) and event evtya.

Monotonicity allows us to say that C M1 is refined by CM2. In other words, once we compose
specifications M1 and N1, discharge the required composed POs, M1 and N1 can be refined
individually while the composition properties are preserved without the need to recompose re-

finements M2 and N2. We want to formally prove the monotonicity property through refinement

CM1

FIGURE 2.2: Refinement of composed machine CM1 = M1 || N1 by CM2 = M2 || N2

POs between composed machines (in Fig. 2.2 between CM1 and CM2). Therefore if the refine-
ment POs hold between CM1 and C M2, we can say that C M2 refines CM1: CM1 E CM2.

An event evtp;, in machine M1 is represented as:
evtyrr =ANY pyy WHERE G (par, var) THEN Sys(par, var, vy) END.
An event evtyrs in machine M2 refining abstract event evtys; is represented as:
evtprs =ANY gy WHERE Hyy(qar, wa) THEN Ty (gar, war, wh,) END.

The gluing invariant of the refinement between M1 and M2 is expressed as Jas(vas, war)
relating the states of M1 and M2: M1 C;,, M2. From (1.5) we can derive the refinement

60 Chapter 2 Shared Event Composition for Event-B

PO between M2 and M1 for the concrete event evt o refining abstract event evtpsg.

REFevtMlgevth : REFevtMlgevthH = REFevtMlgevtNmG
= In(var) A Jnr(var, war)
NG (par,vn) A Hayr(qar, war)
A Snr(par,vars Vi) A T (g, war, wiy)

F 3l Gar(par, var) A Sar(Dars var, Vi) A Jar (Ui, why)- (2.17)

Similarly for machines N1 and N2, the gluing invariant is expressed as Jy(vy,wy)
relating the states of N1 and N2: N1 C;, N2. Furthermore, the refinement PO for
concrete event evtyo refining abstract event evtyq is expressed as:

REF ety Cevtns © REFeyiy Cevina H T REFeyt v, CevtnaG
= In(vn) A In(on, wN)
NGN(pn,vN) AN Hy(gn, wn)
ASn(pN, vn, V) AT (gn, Wi, W)

F vav‘GN(pN,UN) N SN(pN,UN,U;\/) AN JN(’UEV,U};V). (218)

We refine an abstract event in CM1 by a concrete one in C'M2 and verify that the
refinement POs for each individual machine hold for the composition. Event evts
from machine M1 and event evtpy; from machine N1 are composed, resulting in the
abstract composed event evtys || evtng in CM1 from Fig. 2.2. Such abstract composed
event is represented as:

evtp || evty; =EANY pyv,pn WHERE GM(p]\/[,’UM) A GN(pN,UN)
THEN SM(pJVIaUMfU;w) || SN(pN,”UN,”U;V) END.

A concrete composed event between M2 and N2 in CM?2 (evtyrs || evtng), refining the
abstract event evtys || evt N1, is represented as:

evt o || evtys =ANY qv, gy WHERE HM(qM,wM) /\HN(qN,wN)
THEN TM(qM,’LUM,wﬁw) H TN(L]N,’LUN,U)EV) END.

The gluing invariant relating the states of CM1 and C'M?2 is expressed as the conjunction
of the gluing invariants between M1/M?2 and N1/N2:

Jorv (var, vn, war, wn) = Iy (var, war) A Iy (on, wa) (2.19)

Theorem 2.5. Let composed machine CM1 be defined by machines M1 and N1 and
composed event evtys || evtyi. Then composed machine C' M2 is a valid refinement of
CM1 if the refinement proof obligations between machines M2 and N2 and machines
M1 and N1 hold respectively for each concrete composed event evtpro || evtng that

refines abstract composed event evtys || evtns.

From (2.15), the refinement PO between concrete composed event evtpss || evtye and

Chapter 2 Shared Event Composition for Event-B 61

abstract composed event evtyr || eviyg is:

REF vty |leviny)C(evtarallevins) Aar(var) AIn(vn) A Jom (va, vn, war, wi)
AN Hy(guswa) A Hy (g, wi)
A T (qar, war, why) AT (gn, wy, why)
F 3y, vy Gar(parsvar) A Gy (N, o)

A Sy (par, var, Vi) A SN (PN, N, V) A Jon (Vg Vs Why, wiy)-

Assume: REFevtMIEeUtMQ and REFE’UtngG’UtNQ'
Prove: REF|

evtpr|levint)CE(evtpralleving)*

Proof. Assume the hypotheses of REF (1), |levtn1)E(evtarallevtns):

Jom(uar, vy, war, wy) = Jayr (v, war) A In (v, wi) {expanding Jeps from (2.19)}

Ine(vnr) A Ha(gars wae) A Toa (g was wiy) (2.20)
In(vn) A Hy(gn, wn) AT (g, wy, why) (2.21)
Prove:

Iy, Vv -Grr(par, vr) A G (pns o) A Syv(par, var, Vi) A Sy (pw, vn, vy)
A Jonm (Vi Uy, why, why).

The proof proceeds as follows:

i, Vv G (Par, o) A G (piv, o)

A Snr(par,vars viy) A SN (PN, UN, V)

A Jon (U, vy, why, why)
= 'y, VN -Gar(par, var) A Gy (pn, on)

A Sn(parsvar, Vi) A Sy (pn, vn, vly)

A Jar (Vg why) A N (U, wy) {expanding Jops from (2.19)}
= - Gar(par, var) A Sar(par, var, Vi) A Jar (W, why)

AT -GN (pn,vN) A SN (PN, vN, V) A In (U, wiy) {disjoint v, v\ }
< REFeyt,,CevtarsG

NREFeyiy CevtnaG {(2.17)+(2.20),(2.18)+(2.21)}

The refinement POs for composed machines is expressed as the conjunction of the re-
finement POs for the individual machines. Therefore the monotonicity property holds

if the refinement POs of individual machines hold.

62 Chapter 2 Shared Event Composition for Event-B

2.3.4.1 Monotonicity of Non-Composed Events for Composed Machines

We also need to prove the monotonicity for non-composed events that appear at both
levels of abstraction. We shall prove it using machines M1 and C'M?2 as seen in Fig. 2.3
(similar for N1 and CM2).

CM1

[ou1]

JMAJIN JM

][]

CM2

FIGURE 2.3: Refinement of composed machine CM1 = M1 by CM2 = M2 || N2

Theorem 2.6. Let an event evtps; in machine M1 be refined by a composed event evt o ||
evtys in composed machine C'M2. Assuming that machine M1 is refined by machine
M?2 and I N Vg, holds, then the monotonicity is preserved and event M1 is refined by
the composed event M2 || N2.

Assume: REFeyt,, Cevtpn a0d TN Veyi -
Prove: REF,

3yat E(e’l)tMg He’UtNQ) .

In this case, the gluing invariant described in (2.19) does not use neither the variables
(vn) neither the invariants (I). Therefore it can be simplified and rewritten as:

Jom (o, war, wn) = Iy (v, war) A In(ww) (2.22)

From (2.15), the refinement PO between concrete composed event evtpss || evtne and
abstract event evtjq:

REF@’Ut]\JlE(C’UtMQHL”UtNQ) : IM(UM) A JCM(UM7 W, wN)
N Huy(gar, war) A Hy (g, wi)
AN Tr(gae, war, wiy) AT gy, wn, wy)

F J0h-Gar(parsvar) A Sar(pars var, Vi) A Jon (Vs why, why).

Proof. Assume the hypotheses of REF,,;,, c

(evtrrallevtnz)

Jom(var, war, wy) = Iy (v, war) A In (wp) {expanding Jeps from (2.22)}.
Ing(var) A Hyr(qae, war) A Tar (gar, wag, wiy)

Hy(gn,wn) ATN(gn, wn, wy)

Chapter 2 Shared Event Composition for Event-B 63

And assume INVeyy,:

INVE’UtNQ . INVe’UtNQH l_ IN‘/;'UtNQG
= Jn(wn) A Hy(gv, wn) ATN(gn, wi, wy)

- (i) 22)

The proof proceeds as follows:

Fh - Gar(ar, var) A Snr(Par, var, Vi) A Jon (U, why, wy)

= Wi -Gu(pars var) A Sa(par, var, Vi)

A In (Vhy, wiy) Ay (wy) {expanding Jeo from (2.22)}
< REF.pt_ M1Cevt-M2G

A I (wiy) {210}
< REFyt M1Cevt_M2G

ANV 26 t@23)}

2.3.4.2 New Events

New events must refine event skip and their state space include only new variables
w; abstract variables v do not change state. Nevertheless new composed events must

respect the refinement POs.

Theorem 2.7. Let evtpro be a new (composed) event in C'M2 refining skip. If we assume
that the invariant proof obligation for event evt ;o holds, then the monotonicity property

is preserved (i.e. REF ipCevt,,, holds).

From (2.15), the refinement PO for new event evt s is necessary to be verified to ensure
that monotonicity is preserved. It can be expressed as:

REFskip;evtMg : REFskip;evtMgH F REFskip;evtMgG
= Iu(vm) A Jom (v, war, wN)
A Har(gar, war) A Tor(qar, war, wiy)

F 30 Gar(par, var) A Sar(par, var, Vi) A Joa (Vi Wi, wiy)-

And assume INV,

vt pro -

INVE’Ut]V]Q : IN%’Ut]\/jQH F IN‘/E’UtMQG
= Jur(var, war) A Har(qar, war) A Tag (qar, war, why)

 gn (var, wiy). (2.24)

Moreover, since evt s is a new event refining skip (event with guard always TRUE and

64 Chapter 2 Shared Event Composition for Event-B

without actions), then:

Jonv (var, war, wn) = Jay(var, war) (2.25)
Gu(pav,vm) =TRUE (2.26)
S (par, v Vi) = 9. (2.27)

Assume: TN Ve,

Prove: REFskipgevt]uQ .

The proof proceeds as follows:

Proof.

- Gr (Par, var) A Saa(pars vars Vi) A Jenr (Ui, why, wy)

= - Jom (Vi Wiy, wiy) {(2.26) and (2.27)}
= Fviy - Iar (Vi wiy) { (2.25)}
< INVevt_m2c {(2.24)}

Next section presents the application of the shared event composition to a more complex

case study whose architecture is a distributed system: file transfer system.

2.4 File Access Management case study

A distributed system is presented where two component specifications are composed in
the style defined in Fig. 1.11. A specification of a file management system is developed:
files containing DATA can be created, read, overwritten, deleted and sent to other users.
Another separated specification deals with the access management of files in which each
file has an owner. The owners are users with clearance level from 1 to 10 where 10 is
the highest level. A super user exists with clearance level 10. Moreover, files have a
classification level varying from 1 to 10. Permission is needed in order to read, modify

or delete a file. When the permission is granted, the requested action can take place.

The first specification is defined as machine FileManagement_MO and variables user,
file, fileData and fileStatus (defines the status of a file operation and can have the states
SUCCESS or FAILED) as depicted in Fig. 2.4. After a file is created or sent, variable
fileStatus is updated accordingly to the result of the operation. In order to allow a new
operation in the same file, the state of that file must be reset in event clearFileStatus. The
file operations are defined by events createFile, readFile, overwriteF'ile, deleteF'ile,

sendF'ile and clear FileStatus as seen in Fig. 2.4. The access management specifica-

Chapter 2 Shared Event Composition for Event-B

65

machine FileManagement_MO
sees FileManagement_CO User_CO

invariants
@inv1 file ¢ FILE
@inv2 user ¢ USER
@inv3 fileData € file - DATA
@inv4 fileStatus e file +» STATUS

events
event INITIALISATION
then
@actl user = {super}
@act? file = @
@act3 fileData = @
@act4 fileStatus = @
end

event addUser
any uu
masterUser
where
@grd1 uu ¢ user
@grd2 masterUser e user
then
@actl user = user v {uu}
end

variables user file fileData fileStatus

@inv5 ran(fileStatus) ¢ {SUCCESS, FAILED}

event createFile
any ff
dd
fStatus
u
where
@grd1 ff e FILE\file
@grd2 dd e DATA
@grd3 fStatus e {SUCCESS}
@grd4 u e user
then
@act1 file=file v {ff}
@act2 fileData(ff)=dd
@act3 fileStatus(ff) = fStatus
end

event readFile
any ff
dd
u
where
@grd1 ffefile
@grd2 dd = fileData(ff)
@grd3 u e user
end

event overwriteFile
any ffdd
where
@grd1 ffe file
@grd2 dd e DATA
@grd3 dd # fileData(ff)
then
@act1 fileData(ff)=dd
end

event deleteFile
any ff
u
where
agrdl ffe file
agrd?2 u e user
then
@actl file=file\{ff}
@act2 fileData:={ff}<fileData
(@act3 fileStatus={ff}<fileStatus
end

event sendFile
any ff recipient u fs
where
@grd1 ffefile
@grd2 u e user
@grd3 recipient € user
@grd4 ff ¢ dom(fileStatus)
@grd5 fs e {SUCCESS,FAILED}
@grd6 u # recipient
then
@actl fileStatus(ff) = fs
end

event clearFileStatus
any ff
where
@grd1 ffe dom(fileStatus)
@grd? fileStatus(ff)e{SUCCESS,FAILED}
then
@act1 fileStatus = {ff}<fileStatus
end

FIGURE 2.4: Machine FileManagement_MO

tion is defined by machine AccessManagement MO and variables wuserClearanceLevel,
permission, fileClassification and fileOwner as seen in Fig. 2.5. A user can change the
clearance of another user as long as the former has a clearance level superior to the lat-
ter as described in event changeClearance (guard grd5). For all the other operations,
permission is needed given by the non-deterministic action in event requestPermission.
With permission granted, a file can be read, modified or deleted. Moreover, only users
with a clearance level superior to the file classification can modify a file (guard grd7 in
event modifyFile). To delete a file, described in event deleteFile, the user must be the

owner of the file or the super user as described by guard grdJ.

These two specifications were developed in two different machines as they deal with dif-
ferent contexts: machine FileManagement_M(O handles the physical creation and modi-
fication of files and respective data. Machine AccessManagement_M0 handles the con-
ditions in which a reading and a modification can occur. By composing these two
specifications and respective events, we explore the development of a composed specifi-
cation that is constrained by the other. The composed machine FileAccessManagement
can be seen in Fig. 2.6. Modifying, overwriting, sending or deleting a file must be au-
thorised (request permission) and only a defined set of users are allowed to do it (in
opposition to what happens in machine FileManagement_M0); events corresponding to
the creation of users and change of clearance are synchronised and occur in parallel. The
conjunction of the guards of each event (Def. (1.2)) restrains the conditions to enable the
composed event. Nevertheless some events are not composed such as requestPermission

or clearFileStatus. Moreover, additional invariants are added allowing the interaction of

66 Chapter 2 Shared Event Composition for Event-B

machine AccessManagement_MO
sees User_CO AccessManagement_CO FileManagement_CO

variables userClearancelLevel permission fileClassification fileOwner

invariants
@inv1 userClearancelLevel € USER + ClearanceLevel event requestPermission
@inv2 permission € PERMISSION where
@inv3 fileClassification € FILE + Classification @grd1 permission # ALLOWED
@inv4 fileOwner € FILE - USER then o
@inv5 dom(fileClassification) = dom(fileOwner) :Mﬂ permission:€ PERMISSION\{OFF}
en
events
event INITIALISATION event modifyFile
then any ffcl
@actl userClearanceLevel = {super-10} u
@act2 permission = OFF where

@grd1 vedom(userClearancelLevel)

grd2 ffE€ FILE

grd3 c/ € Classification

grd4 permission = ALLOWED

grd5 ffe dom(fileClassification) = ¢/ = fileClassification(ff

@act3 fileClassification = &
@act4 fileOwner = @ by
end

event changeClearance

any uu @grd6 u e USER
masterUser @grd7 userClearancelLevel(u)>c/
newUserClearancelLevel then
where @act1 fileClassification(ff= c/
@grd1 masterUser € USER act2 permission = OFF
@grd2 uu € USER @act3 fileOwner(ff)= u

@grd3 uu € dom(userClearancelevel) end
rd4 newUserClearancelLevel € ClearancelLevel

dS newUserClearancelevel < userClearancelLevel(masterUser) event deleteFile

@grd6 uu * super any ffu
then where
@act1 userClearancelevel(uu)= newUserClearanceLevel @grd1 ff€ FILE
end @grd?2 permission = ALLOWED
@grd3 u € USER
event readOperation @grd4 ffe dom(fileOwner)
any u agrd5 u € {super,fileOwner(ff)}
ff then
where @act1 fileClassification={ff}<fileClassification

@grd1 permission = ALLOWED @act2 permission = OFF

rd2 u € USER @act3 fileOwner={ff}<fileOwner
rd3 uedom(userClearancelevel) end

rd4 ffedom(fileClassification)

rd5 ffe FILE

rd6 userClearancelLevel(u)=fileClassification(ff)

@g

then

@act1 permission = OFF
end

FIGURE 2.5: Machine AccessManagement_MO

states but still without possibility to share variables. Among the added invariants, the
most important is the one that requires the classification of a file to be lower than the

clearance level of its owner (@inv/).

As aforementioned in a shared event composition, the composed events communicate
through value passing. The value passing is allowed when composed events have param-
eters with the same name and compatible types (cf. (1.20)). For instance, the composed
event createF'ile results from the composition of events AccessManagement_MO.modifyFile
and FileManagement_MO0.createFile. AccessManagement_M0.modifyFile has parame-
ters ff of type FILE, u of type USER and cl of type Classification. FileManage-
ment_MO0.createFile has parameters ff of type FILE, dd of type DATA, u of type USER
and fStatus of type STATUS. When these two events are synchronised, parameters ff
and u are shared as seen in Fig. 2.7 (the labels of the guards and actions, starting with
'@’ define their source). Although not explicitly defined, parameter ff inputs an element
of FILE (guards FileManagement_MO\ grd1 and AccessManagement_M0\grd2) that will
be added to the variable file in action FileManagement_MO\act!. Similarly, parameter
u behaves as an input parameter. The respective actions occur in parallel: when a file is
created, its content is defined by parameter dd and the resulting state of the operation

is updated by fStatus; also the file is classified according to the parameter ¢/ and has an

Chapter 2 Shared Event Composition for Event-B

67

COMPOSED MACHINE FileAccessManagement
INCLUDES

AccessManagement_MO, FileManagement_MO
INVARIANTS

@invl: dom(userClearanceLevel) = user

@inv2: dom(fileClassification) = file

@inv3: fileOwner € file — user

Qinv4: Vf-f € file = userClearanceLevel(fileOwner(f)) > fileClassification(f)

EVENTS

addUser

Combines Events AccessManagement_MO0.changeClearance || FileManagement_M0.addU ser

modifyUser

Combines Events AccessManagement_MO0.changeClearance
createFile

Combines Events AccessManagement_MO0.modifyFile || FileManagement_MO0.createFile
readFile

Combines Events AccessManagement_MO.readOperation || FileManagement_MO.readFile
overwriteFile

Combines Events AccessManagement_MO0.modifyFile || FileManagement_MO0.overwriteFile

deleteFile

Combines Events AccessManagement_MO.deleteF'ile || FileManagement_MO.deleteFile
sendFile

Combines Events AccessManagement_-MO0.modifyFile || FileManagement-MO.sendFile
requestPermission

Combines Events AccessManagement_MO.request Permission
clearFileStatus

Combines Events FileManagement_MO.clear FileStatus

FI1GURE 2.6: Composed machine FileAccessManagement

owner u. The others composed events behave similarly.

event createFile
any ff
dd
fStatus
u
cl
where
@FileManagement_MO0\grd1 ffe FILE\file
@FileManagement_MO0\grd2 dd € DATA
@FileManagement_MO\grd3 fStatus € {SUCCESS}
@FileManagement_MO0\grd4 u € user
@AccessManagement_MO\grd1 uedom(userClearanceLevel)
@AccessManagement_MO0\grd2 ff€ FILE
@AccessManagement_MO0\grd3 ¢/ € Classification
@AccessManagement_MO\grd4 permission = ALLOWED
@AccessManagement_MO\grd5 ff& dom(fileClassification) = ¢/ =fileClassification(ff)
@AccessManagement_MO0\grd6 u € USER
@AccessManagement_MO\grd7 userClearanceLevel(u)>c/
then
@FileManagement_MO0\act1 file=file u {ff}
@FileManagement_MO0\act2 fileData(ff)=dd
@FileManagement_MO0\act3 fileStatus(ff) = fStatus
@AccessManagement_MO\act1 fileClassification(ff)= c/
@AccessManagement_MO\act2 permission = OFF
@AccessManagement_MO0\act3 fileOwner(fi= u
end

F1cURE 2.7: “Expanded” event createFile from composed machine FileAccessManage-
ment

The composed machine needs to be verified to ensure that the properties of the model
are preserved. The verification is accomplished by discharging the proof obligations as
described in Sect. 2.3.3. Moreover, the additional invariants must also be preserved by all
the events in the composed machine. After the generation of the proof obligations for the

composed machine FileAccessManagement only one proof obligation is not automatically

68 Chapter 2 Shared Event Composition for Event-B

discharged: it is a composition gluing invariant preservation PO referring to inv4 in
event modifyUser. After analysing the event, it is easy to understand why the PO
cannot be discharged: there is no information in the event that guarantees that the
files owned by wu have a classification that is inferior to the new user’s clearance. To
discharge this PO, it is necessary to add a guard to the composed event modifyF'ile that
guarantees that all the files owned by wu have a classification that is inferior than the
new clearance. But the composition of machines is structural and therefore no guards
can be added directly to the composed machine. Instead a new guard needs to be added
to the original event changeClearance in the included machine AccessManagement_M0O
from where the composed event modifyUser comes from (cf. Fig. 2.6). Guard grd8 is
added in event changeClearance of machine AccessManagement_MO as seen in Fig. 2.8.

After changing the event changeClearance, the proof obligations can be re-generated

event changeClearance
any uu
masterUser
newUserClearancelLevel
where
@grd1 masterUser € USER
@grd?2 uu € USER
@grd3 wu € dom(userClearancelLevel)
@grd4 newUserClearancelLevel € ClearanceLevel
@grd5 newUserClearancelevel < userClearancelLevel(masterUser)
@grd6 uu + super
@grd7 V£-f € dom(fileClassification) A fileOwner(f)=uu
= newlUserClearancelLevel>fileClassification(f)
then
@act1 userClearancelevel(uu)= newUserClearancelevel
end

Ficure 2.8: Event changeClearance from machine AccessManagement with added
guard grd8

for the composed machine and as expected, all the POs are automatically discharged.
Moreover, no changes were made directly in the composed machine. In this manner,
there is more flexibility in the interaction of specifications as the changes in the individual

sub-components are directly reflected in the composed machines.

One of the properties of the shared event composition is monotonicity. Therefore sub-
components can be further refined independently preserving the verified properties while
composed. For instance, machine AccessManagement_M0 can be refined by defining a
more deterministic event requestPermission based on the kind of operation and the user
that intends to execute the operation. For machine FileManagement M0, the event
sendFile can be further refined by introducing a queue where events would be stored
before being processed (creating a new file own by the file recipient). The independent
refinement of the sub-components results in a separation of behaviours and properties

that can be verified without the interference of other sub-components.

Chapter 2 Shared Event Composition for Event-B 69

2.5 Related Work

Composition allows the interaction of sub-components and usually occurs through vari-
able sharing, event sharing or a combination of both. Back [23], Abadi and Lamport][1]
studied the interaction of components through shared variable composition. Jones [187]
also proposes a shared variable composition for VDM by restricting the behaviour of the
environment and the operation itself in order to consider the composition valid using

rely-guarantee conditions.

CSP [92] allows the specification of distributed systems from an event-based viewpoint.
Processes and environment behaviours can be composed using the parallel composition
operator ||. They interact by synchronisation of common events within the respective
alphabets (interaction) and stop if any of the involved processes deadlocks. Another
option is to have processes with different alphabets: concurrency exists when inde-
pendent events occur in parallel. On the one hand, when the alphabets of processes
P and Q do not have common events, P N a@ = {}, then the alphabet is given as
a(P || Q) = aP U aQ and the traces of P ||) are pure interleavings between events of
both processes: traces(P || Q) = {s |3t : traces(P);u : traces(Q)-s interleaves(t,u)}.
On the other hand, when the alphabets of P and Q are exactly the same, aP = a@),
then traces(P || Q) = traces(P) Ntraces(Q). Communication is a special class of event
described by a pair c.v where ¢ corresponds to the name of the channel and v corre-
sponds to the value of the message which passes. Channels can be considered members
of the alphabet of the process and used for communication in only one direction and
between two processes [92]. If two processes P and () are composed in parallel and both
have a common channel ¢, interaction happens whenever both processes are ready to
engage in the common channel. If P is ready for clv and process @) is ready for c?x, v
can be passed from P to @ [41]: (clv =P) || (c?x =Qz) = cl.v =(P || Q). The result
is an output channel and the process () receives the value v. This can also be applied
for channels with input-input behaviour. Our approach is similar to CSP concurrency
where events from different machines can be composed and interact, similar to what

happens between events of different processes.

In Z, composition can be achieved by combining schemas. Two signatures of different
schemas can be combined if they are type compatible: each variable common to the two
has the same type in both of them. The result is a larger signature which contains
all the variables of each of them. The properties of each of the schemas can be con-
nected through logical connectives such as Vv, A, = or = [173]. Still combining schemas,
views [34, 99] allow the development of partial specifications that can interact through
invariants that relate their state or by operations’ synchronisation. Views are similar
to our composition as it allows the exploration of sub-components interaction without

variable sharing.

In Circus [186, 155] (that combines Z and CSP), processes may be defined explicitly

70 Chapter 2 Shared Event Composition for Event-B

or in terms of other processes (compound processes). Compound processes are defined
using the CSP operators of sequence, external and internal choice, parallelism and in-
terleaving, or their corresponding iterated operators, event hiding, or indexed operators,
which are particular to Circus specifications. An action can be a schema, a guarded
command, an invocation of another action, or a combination of these constructs using
CSP operators. Communication is achieved by parallelism and interleaving of actions
declaring a synchronisation channel set and two sets that partition all the variables. In
the parallelism Al[nsl|cs|ns2] A2 , the actions A1 and A2 synchronise on the channels
in set cs. Both A1 and A2 have access to the initial values of all variables in both nsl
and ns2. However, Al and A2 may modify only the values of the variables in nsl and
ns2, respectively. The changes made by Al in variables in nsl are not seen by A2,
and vice-versa. Oliveira et al [132] make use of the Circus communication system to
specify a distributed fire protection system divided into fire detection and gas discharge
covering two different separate zones. In our composition machine, the included ma-
chines communicate by synchronised events similar to channels in Circus. Similarly, the
included machines can only modify their own variables but can read the other variables

in a composed event.

CSP-OZ [167] (CSP combined with Object-Z) and TCOZ [142, 118, 117] (Timed Com-
municating Object-Z that is an integration of Object-Z and Timed CSP) use Object-Z
data structure and the CSP structure for the control flow of a system. The Z math-
ematical toolkit is extended with object oriented structuring techniques. Timed CSP
has strong process control modelling capabilities. The multi-threading and synchro-
nisation primitives of CSP are extended with timing primitives. In CSP-OZ, classes
in Object-Z and processes in CSP are given an identical failure divergence semantics
(history of class objects corresponds to traces of processes in CSP) which allows the
development of communication through synchronised operations with the same name in
a similar style as it happens with channels in CSP: local parameters to operations can be
passed via message passing [167, 75]. The sequencing of operation events is determined
by the preconditions of the individual events, at each time the object participates in
any event which is currently enabled [117]. Nevertheless such an approach is not well
suited for considering multi-threading and real-time due to the restriction of operations
to atomic events. TCOZ identifies operation schemas with terminating CSP processes
that perform only state updates: rather than treating operation as atomic events, they
are treated as sequences of abstract state-update events [117]. TCOZ specifications have
the same strcuture as Object-Z ones except in the structure of the class definition that
may include CSP channels and processes definitions. The Z operation schema is the only
way to describe a state change in TCOZ and it is not responsible for communicating
inputs and outputs. Composition occurs using communicating CSP-style channels be-
tween class objects: state, initialisation schemas are conjoined; operation schemas with
the same name are also conjoined resulting in compositive objects. The behaviour of an

(active) compositive is defined by the construct MAIN along with the channel construct

Chapter 2 Shared Event Composition for Event-B 71

chan. Active objects are modelled as pure (non-terminating) CSP processes, using the
basic infinite timed failures semantics [117]. For synchronisation, channel renaming may
be required where input and output parameters can be passed similar to the original
CSP. Intermediate channels can be introduced as internal interfaces between objects.
The internal interfaces are protected from environment by hiding them [118]. Another
approach for describing the semantics of TCOZ is given by Qin et al [142]: using uni-
fying theories of programming (UTP), a unified semantic model for both channel and
sensor /actuators based communications in TCOZ is defined. Unlike our approach, we
do not blend different formalisms and define the corresponding semantics: we keep the
Event-B semantics and inspired by the CSP, we build a correspondence between events’
composition with possible value-passing communication and the synchronisation of pro-
cesses using CSP channels. Just like in CSP, there is different semantics between input
and output channels. For our composition, input and output parameters also have dif-
ferent semantics expressed by enabledness POs (cf. Definition 1.20 and Sect. 1.5.3.3).
Note that these POs are currently not implemented in the Rodin platform.

In classical B the composition [4, 140, 158] uses keywords like Includes to extend a
machine, not allowing writing access to variables in the included machine or keyword
Sees used to complement machines. Although systems are developed in single machines
in classical B, Bellegarde et at [32] suggest a composition by rearranging the separated
machines and synchronising their operations under feasibility conditions. The behaviour
of a component composition is seen as a labelled transition system using weakest precon-
ditions, where a set of authorised transitions are defined. The objective is to verify the
refinement of synchronised parallel composition between components but it is limited to
finite state transitions and a finite number of components. This work differs from ours
as it uses a labelled transition system while we use synchronisation and communication
in the CSP style. Variable sharing is also possible unlike our shared event composition.
Butler and Walden [52] discuss a combination of action systems and classical B by com-
posing machines using parallel systems in an action systems style and preserving the
invariants of the individual machines. This approach allows the classical B to derive
parallel and distributed systems and since the parallel composition of action systems
is monotonic, the sub-systems in a parallel composition may be refined independently.
This work is closely related to our work as it follows a CSP style to compose actions
with similar underlying semantics and notion of refinement. Combining state machine
diagrams and classical B, Papatsaras and Stoddart [135] manually decompose a global
a system into sub-components. The sub-components are then composed in classical B
using the Includes keyword. Similarly to our approach, sub-components communicate
via shared parameters. Since there is not a formal methodology to follow, the resulting
composition needs to be proved to be a valid refinement of the global system which is
not the case in our work, where we prove the monotonicity of our composition. Abrial et
al [124, 15] propose a state-based decomposition for Event-B introducing the notion of

shared variables and external events as described in Sect. 1.6.1. Although this approach

72 Chapter 2 Shared Event Composition for Event-B

and our work are both monotonic and sub-components can be refined independently,
their respective nature is suitable for different kind of systems: parallel programs for
shared variable and distributed systems for shared event [42]. Sorge et al [172] propose
a feature composition in Event-B and define composition proof obligations to ensure its
consistency. In the feature composition approach, exploration of specifications’ compo-
sition with possible variable sharing (similar to the shared variable style) is allowed but
no refinement is defined which differs from our work. Nevertheless similar to our work,

sub-components POs are reused to avoid re-proving composition POs.

2.6 Conclusions

Based on the close relation between action systems and Event-B plus the correspon-
dence between action systems and CSP [53], we define our Event-B composition with an
event-based behaviour. Shared event composition is proved to be monotonic by means of
proof obligations. Consequently sub-components can be further refined independently.
Refinement in a “top-down” style for developing specifications is allowed including the
generation of POs. During composition, sub-components interact through event parame-
ters by value-passing. We extend Event-B to support shared event composition, allowing
combination and reuse of existing sub-components through the introduction of composed
machines. Required static checks are developed and POs are generated to validate the
composition. Such an approach seems suitable for modelling distributed systems, where
the system can be seen as a combination of interacting parts (sub-components). This
work is the result of the exploration of specifications’ composition in a shared event style.
A methodology for the composition is defined including the verification of properties
through the generation of proof obligations. We do not address the step corresponding
to the translation of this composition exploration to an implementation and it is a study
that needs to be carried out in the future. A tool was developed to support composition
in the Rodin platform. Although we have defined the required POs for composition,
currently they are not implemented in the tool. At the moment, the generation of a
new machine (that is the expansion of the sub-components) is required to validate the
composition. A file transfer case study defined as a distributed system is modelled using
the composition tool. We intend to carry on developing the shared event composition
approach by adding the enabledness POs when available for the Rodin platform. With
the developed work, we have the necessary conditions to develop another reuse technique
that can be seen as the inverse operation of composition: decomposition. This is further

discussed in Chapter 4.

Chapter 3

Generic Instantiation

It is believed that reusability in formal development should reduce the time and cost
of formal modelling within a production environment. Along with the ability to reuse
formal models, it is desirable to avoid unnecessary re-proof when reusing models. Event-
B supports generic developments through the context construct. However Event-B lacks
the ability to instantiate and reuse generic developments in other formal developments.
We propose a methodology to instantiate generic models and extend the instantiation to
a chain of refinements. We define sufficient proof obligations to ensure that the proofs
associated to a generic development remain valid in an instantiated development thus
avoiding re-proofs. This chapter is based on the paper [163] that appeared in the ICFEM

(International Conference in Formal Engineering Methods) 2009.

3.1 Introduction

Reusability has always been sought in several areas as a way to reduce time, cost and
improve the productivity of developments [176]. Examples can be found in areas such
as software, mathematics and even formal methods. Generic instantiation can be seen
as a way of reusing components and solving difficulties raised by the construction of
large and complex models [124, 15]. The goal is to reuse generic developments (single
model or a chain of refinements) and create components with similar properties instead
of starting from scratch. Reusability is applied through the use of a pattern as the basic

structure and afterwards each new component is generated through parameterisation.

We propose a generic instantiation approach for Event-B by instantiating machines. The
instances inherit properties from the generic development (pattern) and afterwards are
parameterised by renaming/replacing those properties to more specific names according
to the instance. Proof obligations are generated to ensure that assumptions used in the

pattern are satisfied in the instantiation. In that sense our approach avoids re-proof of

73

74 Chapter 3 Generic Instantiation

pattern proof obligations in the instantiation. The models are developed in the Rodin
platform. A simple case study modelling a protocol communication is described to

illustrate the use of instantiation.

Section 3.2 defines how generic instantiation is interpreted by us. In Sect. 3.3 instan-
tiated machines are introduced. Section 3.4 gives an application of instantiation in
combination with shared event composition. The application of instantiation to a chain
of refinements is described in Sect. 3.5. Section 3.6 discusses an open question that
arises when instantiating theorems and invariants in a pattern. Conclusions are drawn

in Sect. 3.7.

3.2 Generic Instantiation

In order to explain our approach for Generic Instantiation we use a simple case study. A
protocol is modelled between two entities, Source and Destination which communicate
by sending messages through a channel. The content of the channel has a maximum
dimension. To send a message it is necessary to add the content of the message to the
channel. Based on the proposed requirements it is possible to create a context Chan-

nelParameters to model the channel as seen in Fig. 3.1(b). The content of the message

machine Channel sees ChannelParameters
variables channel

invariants
@invl channel ¢ Message
@inv3 finite(channel)
»inv2 card(channel) < max_size

events
event INITIALISATION
then context ChannelParameters
@actl channel = @
end

constants max_size

event Send
any m
where .
@grdl m e Message axioms .
@grd2 card(channel) < max_size @axml max_size e N
then end
@actl channel = channel u {m}

end (b)

event Receive
any m
where
@grdl m e channel
then
@actl channel = channel\{m}
end
end

sets Message

(a)

FI1GURE 3.1: Machine Channel and respective context ChannelParameters

is of type Message and has a maximum dimension maz_size. Figure 3.1(a) represents
the machine side where a variable channel stores all the sent/received messages. The
channel messages have type Message and the number of messages in the channel is

limited. Messages are introduced in the channel to be sent as seen in event Send. The

Chapter 3 Generic Instantiation 75

event Receive models the reception of the message in the destination by extracting the
messages from the channel. Elements in ChannelParameters context are the parameters

(type and constant) for the Channel machine.

Now suppose we wish to model a bi-directional communication between two entities using
two channels. Both channels are similar so an option is to instantiate machine Channel
twice to create two instances: one channel called Request and the other Response. The
protocol, represented in Fig. 3.2 starts by a message being sent from the Source. After
arriving at the Destination, the reception of the message is acknowledged in the Source.
Then a response is sent from the Destination and after arriving at the Source, it is also

acknowledged in the Destination.

Protocol
R st = -
Source eques! Destlnatlon
f{ee‘:]‘lilest [I:|
Response Send_Resp
Receive
Resp -t

FIGURE 3.2: Protocol diagram

The instantiation of Channel is achieved by applying machine instantiation. An instance
of the pattern Channel is created with more specific properties. A detailed description
of the machine instantiation is described in Sect. 3.3. Moreover, a context containing
the specific instances properties is required to model the protocol. In our case study we
use the context ProtocolTypes in Fig. 3.3, where types Request and Response replace the
more generic type Message and constants gmaz_size and pmaz_size replace maz_size.

This context must be provided by the modeller/developer.

context ProtocolTypes
constants gmax_size pmax_size
sets Request Response
axioms

gmax_size e N

pmax_size e N
end

FI1GURE 3.3: ProtocolTypes Context

Abrial and Hallerstede [15] and Métayer et al [124] propose the use of generic instan-
tiation for Event-B. It is suggested that the contexts of a development (equivalent to
the pattern) can be merged and reused through instantiation in other developments.
That proposal lacks a mechanism to apply the instantiation from the pattern to the in-
stances. Therefore our work proposes a mechanism to instantiate machines and extend
the instantiation to a refinement chain. The reusability of a development is expressed

by instantiating a development (pattern) according to a more specific problem.

76 Chapter 3 Generic Instantiation

3.3 Generic Instantiation and Instantiated Machines

Inspired by the previous case study and having the ability to compose machines (Shared
Event Composition plug-in [162]) and rename elements (Refactory plug-in [160] and
Sect. 5.4) on the Rodin platform, we propose an approach to instantiate machines. As
mentioned the context plays an important role while instantiating since this is where the
specific properties of the instance are defined (parameterisation). The use of context is

briefly discussed before instantiated machines are introduced.

3.3.1 Contexts

As aforementioned, contexts in Event-B are the static part of a model containing prop-
erties of the modelled system through the use of axioms and theorems. Having a closer

look at the possible usage of contexts, there are two possible viewpoints:

Parameterisation : the context is seen only by one machine (or one chain of machine
refinements) and defines specific properties for that machine (sets, constants, ax-
ioms, theorems). These properties are unique for that machine and any other

machine would have different properties.

Sharing : a context is seen by several machines and there are some properties (sets,
constants, axioms, theorems) shared by the machines. Therefore the context is

used to share properties.

Several model developments mix the usage for the same context. For the ordinary
modeller this distinction is not very clear and perhaps not so important. Our approach
of generic instantiation reuses components and personalises each instance implying the

use of Parameterisation.

3.3.2 Example of Instantiated Machine

An instantiated machine instantiates a generic machine (pattern). If the generic machine
sees a context, then the context elements (sets and constants) have to be replaced by
instance elements. The instance elements must already exist in a context seen by the

instantiated machine (in our case study, this corresponds to ProtocolTypes - see Fig. 3.3).

In the case study, the instantiated machine QChannel, that is an instance of the machine
Channel for requests, is represented in Fig. 3.4. Note that ChannelParameters elements
(sets and constants) are replaced because the replacement elements are already defined
in ProtocolTypes. Machine elements (variables, parameters and events) are renamed
since they did not exist before. The instantiated machine PChannel, an instance of

Channel for responses, is similar.

Chapter 3 Generic Instantiation 77

INSTANTIATED MACHINE QChannel
INSTANTIATES Channel VIA ChannelParameters
SEES ProtocolTypes /* context containing the instance properties*/
REPLACE /* replace parameters in ChannelParameters™®/
SETS Message := Request
CONSTANTS maz_size := gmaz_size
RENAME /* rename variables and events in machine Channel*/
VARIABLES channel := gchannel
EVENTS Send := QSend
m :=q /*optional:rename parameter m in event Send*/
Recetve := Receive

m := q /¥optional:rename parameter m in event Receive™/

END

FIGURE 3.4: Instantiated Machine: QChannel instantiates Channel

Pattern Assumptions and Instance Theorems: Axioms in contexts are assump-
tions about a system and are used to help discharge proofs obligations. When instanti-
ating, we need to show that assumptions in the pattern are satisfied by the replacement
sets and constants. A possible solution is to convert the pattern axioms into instantiated
machine theorems after the replacement is applied. A theorem has a proof obligation
associated with it. By ensuring that a proof obligation related to each axiom is gener-
ated and discharged when instantiating a machine, we are confirming the correctness of
the instantiation by satisfying the pattern assumptions (see Theorem thm! in Fig. 3.5).
In this manner, the theorem is automatically generated in the instantiated machine
and does not need to be manually added in the pattern context. “Expanded” machine

QChannel can be seen in Fig. 3.5.

event QSend
machine QChannel sees ProtocolTypes any g
where
variables qchannel g < Request
card(gchannel) < gmax_size
invariants then
gchannel < Request gchannel = qchannel u {qg}
finite(qchannel) end
card(gchannel) < gmax_size
theorem gmax_size € N event Receive
any q
events where
event INITIALISATION g € qchannel
then then
qchannel = o gqchannel = gqchannel\{g}
end end

FiGURE 3.5: Expanded version of instantiated machine QChannel

The instance QChannel sees the context ProtocolTypes (provided by the modeller/de-
veloper) that contains the context information for the instances. The type Message
in context ChannelParameters is replaced by Request in ProtocolTypes, the constant
mazx_size is replaced by gmax_size, the variable channel in Channel is renamed gchannel
and event Send is renamed @Send. The axiom that exists in ChannelParameters is

converted into a theorem in QChannel (but easily discharged by the axioms in Proto-

78 Chapter 3 Generic Instantiation

colTypes). We convert the axiom azml from the generic context ChannelParameters:
Qaxml max_size € N

into the theorem thmI in the instance QChannel:
@thml gmax_size € N

This results from the replacement of the constant maz_size by gmaz_size. For a machine

theorem, the respective proof obligation is [9]:

Axioms
Invariants

l_

Theorem

For theorem thm1, the proof obligation to be generated is the following:

gmazr_size € N /*axiom from ProtocolTypes*/
pmax_size € N /* axiom from ProtocolTypesx*/

gchannel C Request /*invariant from {Channel */

l_

qgmax_size € N

The first axiom of ProtocolTypes easily discharges this proof obligation. Note the ex-
pansion of QQChannel is not required in practice. We use it to show the meaning of an

stantiated machine.

3.3.3 Definition of Generic Instantiation of Machines

Based on the instantiated machine ()Channel, a general definition for generic instanti-
ation of machines can be drawn. Considering Context Ctz and machine M in Fig. 3.6
together as a pattern, we can create a generic instantiatiated machine IM as seen in
Fig. 3.7.

CONTEXT Ctx MACHINE M
SETS S1...5m SEES Ctx
CONSTANTS C;...Cp, VARIABLES v;...v4
AXIOMS Az;i...Azyp EVENTS ev;...ev,

(a) (b)

FIGURE 3.6: Generic view of a context and a machine

The context D contains the replacement properties (sets DSy, ..., DS, and constants

DCy,...,DC,) for the elements in context Ctz. The variables, events and parameters

Chapter 3 Generic Instantiation 79

INSTANTIATED MACHINE IM
INSTANTIATES M VIA Ctx
SEES D /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS Sy := DS1,...,S8m := DSy, /* Carrier Sets */

CONSTANTS C; := DC4,...,Cp := DCy, /* Constants */
RENAME /*rename elements in machine M */

VARIABLES vy := nuvy,...,0q := nvg /* optional */

EVENTS ev; := nevy /* optional */

p1i=npi,...,Ps := NPs /* parameters: optional */

evy 1= nevy

END

FIGURE 3.7: An Instantiated Machine

are also renamed by new variables nvy,...,nv,, new events nevy,...,nev, and new
parameters np1,...,nps. From the pattern we are able to create several instances that
can be used in a more specific problem. During the creation of instances validity checks

are required:

1. A static validation of replaced elements is required, e.g., a type must be replaced

by a type and a constant with a constant.
2. All sets and constants should be replaced, i.e., no uninstantiated parameters.

3. Renaming the constants, variables, events must be injective (not introducing name

clashes) in order to reuse all the existing proof obligations.

4. Replacing sets does not have to be injective. Different sets in the pattern can be

replaced by the same instance set.

5. Only given sets (defined by the user) can be replaced. Built-in types such as integer

numbers Z and boolean BOOL cannot be replaced.

3.3.4 Avoiding re-proofs

As described above, a proof obligation is a sequent of the form H + G (where H
represents some hyphoteses and G represents a goal). Renaming variable (or replacing
constant) v with w and type (carrier set) S to T results in instantiated POs as follows:

[v:=w] (H F G) (variable/constant instantiation)
[S:=T] (H+ G) (type instantiation)

H F G is valid means that the proof has been constructed. We must ensure if H +
G is valid, then any instantiation of H + G that avoids name clashes is also valid.
Instantiation of variables and constants maintains validity since a sequent is implicitly
universally quantified over its free variables and quantified variables may be renamed

provided there are no name clashes.

80 Chapter 3 Generic Instantiation

Schmalz [156, 157], inspired by term rewriting in the Rodin platform, describe a theoret-
ical foundation of term rewriting for logics of partial functions as well as the semantics
of Event-B logic based on Isabelle/HOL [85, 130]. [157] describes the rewriting and in-
stantiation of proof rules as redundant inference rules that may be derived from a given
valid proof rule while preserving soundness. Existing generic proofs can be reused in the
instances following some side-conditions as described below. A general inference rule is

written as:

FHy ... H,
FG

r (x fresh) (3.1)

where Hy ... H,, n > 0, are a sequence of (possible empty) sequents called antecedents, G
is a sequent called consequent, has an optional name r and x are possible empty freshness
conditions (the variables introduced as part of a proof rule step like Vgoal). Variables
in x are pairwise distinct and do not occur free in G. Furthermore, by convention, type
variables are considered free in the sequents in Event-B [156]. Two kind of substitution

are considered:

Ordinary (bound variable) Substituition: o replaces ordinary variables y by vari-
ables u (called the right-hand side of ¢1). It is denoted as: o1 = [y := u| where
y is a sequence of pairwise distinct variables and u a sequence of variables of the

same length and type as y.

Type Substitution: o9 substitutes type variables u for type variables a. It is denoted
as: 03 = [a := p] where o is a sequence of pairwise distinct type variables and

1 a sequence of types having the same length as a.

The instantiation of inference rule r for ordinary and type substitution can be expressed

as:

FHo ... H,o
FGo

r (zo fresh) (3.2)

where o is a substitution over X (type signature containing the set of all types). In
an ordinary substitution, the right-hand side of o corresponds to ordinary variables.

Moreover, the instantiation is possible if the following side-conditions on ¢ hold [156]:

e The variables in xo are pairwise distinct. Moreover, for type substitution, variables

in x cannot have the same name and different types.

e If a variable x is free in one of Hy ... H, and zo belongs to zo, then x belongs to

x.

Chapter 3 Generic Instantiation 81

POs in the generic model (pattern) are sequents of the form:
A ILHFp G (3.3)

where A represents the axioms, I represents the invariants and H represents the guards.

The substitution o results in A being replaced by B, where B is the specific axioms and

we have that
BFp Ao (3.4)
From (3.3) and [157], we have that
Ao, Io,Ho Fp Go (3.5)
i.e, variable and type substitution preserves validity. Then from (3.4) and (3.5), we have:
B,Io,Ho Fp Go (3.6)

(3.3) is the form that a PO takes in the pattern machine, (3.6) is the form a PO takes

in the specific machine and we have shown that (3.6) follows from (3.3).

3.4 Example of Instantiation and Composition

The creation of the instances is an intermediate step in the overall model development.
In our case study we model a protocol between entities that sends and receives messages.
By using the created instances and the shared event composition plug-in, we share events
between Request and Response and model the protocol. A composed machine Protocol

modelling this system can be seen in Fig. 3.8.

COMPOSED MACHINE Protocol
REFINES -
INCLUDES
QChannel
PChannel
EVENTS
SendRequest
Combines Events QChannel.QSend
RecvReq-SendResp
Combines Events QChannel.Receive || PChannel.Send
RecvResp
Combines Events combines PChannel.Receive

END

FiGure 3.8: Composed Machine Protocol

As seen in Fig. 3.2, while composing the instance machines QChannel and PChannel we
add the events that are unique for each entity (SendRequest and RecvResp). In Fig. 3.8,

event SendRequest sends a message through the channel from Source to Destination.

82 Chapter 3 Generic Instantiation

RecvResp models the reception of the response in the Source after being sent by Des-
tination. Moreover the event that relates the communication between the two entities
is also modelled (RecvReq-SendResp). The request is received and acknowledged and
the response to that request is sent in parallel (from this combined event, a possible
refinement is processing the request message before sending the response). We opt not
to refine an abstract machine in Fig. 3.8 (REFINES clause is empty: “-”) although it
is possible. The composed machine Protocol corresponds to the expanded machine in
Fig. 3.9.

machine Protocol sees ProtocolTypes event RecvReq_SendResp
any g p
where
@grdl g e qchannel
@grd2 p e Response

variables qgchannel pchannel

invariants

2invl qchannel € Request .
@inv2 pchannel € Response @grd3 card(pchannel) < pmax_size
@inv3 card(pchannel) < pmax_size then
2inv4 card(qchannel) < gmax_size @actl pchannel = pchannel v {p}
theorem @)Channel/thml gqmax_size e @act? qchannel = qchannel\{q}
theorem @PChannel/thm2 pmax_size e N end
events event RecvResp
event INITIALISATION any p
then where
@actl qchannel = @ @grdl p e pchannel
@act2 pchannel = o then
end @ -
event SendRequest ond actl pchannel = pchannel\{p}
any g
where

@grdl g e Request
@grd2 card(qchannel) < gmax_size
then
@actl gchannel = gchannel u {qg}
end

FiGURE 3.9: “FExpanded” machine Protocol

The two instances of machine Channel model a bi-directional communication channel
between two entities. This allows us to express the applicability of generic instantiation
for modelling distributed systems. Nevertheless generic instantiation is not restricted to
this kind of systems. When modelling a finite number of similar components with some
specific individual properties, instantiated machines are a suitable option (as described

in our case study in Chapter 6).

3.5 Generic Instantiation applied to a chain of refinements

The above sections describe generic instantiation applied to individual machines. Al-
though it is already an interesting way of reusing, the instantiation of a chain of machines
in a large model would be more interesting. In other words, we instantiate a chain of
refinements. Suppose we have a development Dv containing several refinement levels
(Dvy, Dvg, ..., Dvy,). The most concrete model Dv,, matches a generic model (pattern)
P, that is part of a chain of refinements Py, Ps, ..., P, as seen in Fig. 3.10. By applying
generic instantiation we instantiate the pattern P; according to Dv,. That instantiation

is a refinement of Dv,, and it is called Dvj,1,-abs (the suffix abs stands for abstract). In

Chapter 3 Generic Instantiation 83

Dvi

refinement

DVn

A
refinement

instantiation
DVn+n1_abS

refinement

instantiation

refinement

Dvn+m+z

FIGURE 3.10: Instantiation of a generic chain of refinements

addition we can extend the instantiation to one of the refinement layers of the pattern
and apply it to the development Dv. The outcome is a further refinement layer for Duv,
for free (Dvyqm-abs corresponds to the instantiation of P; and Dvy,, corresponds to
the instantiation of P,;,). The refinement between Duvy, 4y, -abs and Duvy,y, does not in-
troduce refinement proof obligations since the proof obligations were already discharged
in the pattern chain. This follows from the instantiated machines where the re-proof
of pattern proof obligations is avoided. Afterwards Duv,4,, can be further refined to
Duvpym+,. For a better understanding of this approach, we will refine our case study

and apply an instantiation over the pattern chain.

3.5.1 Refinement of the Channel case study

We refine the Channel machine. For the first refinement, the requirement is to include
buffers before and after adding a message to the channel. A second refinement specifies
the type Message. In particular, Message will be divided in two parts: header and
body. The header of the Message contains the destination identification and the body
represents the content of the message (data). header and body are based on the records
proposal for Event-B suggested by Evans and Butler [69] and also in work developed by
Rezazadeh et al. [150].

The first refinement requires the introduction of two new variables sendingBuffer and

recetvingBuffer and a new event addMessageBuffer that loads the message to sending-

84 Chapter 3 Generic Instantiation

Buffer before being introduced in the channel in the Send event. The latter event reflects
the introduction of the buffers. In the event Receive, messages in channel are extracted

and loaded to receivingBuffer as seen in Fig. 3.11.

machine Channel_M1 refines Channel
sees ChannelParameters

variables channel sendingBuffer event Send refines Send
receivingBuffer any m
where
invariants @grdl sendingBuffer = o
@invl sendingBuffer ¢ Message @grd2 m e sendingBuffer
@inv2 receivingBuffer < Message @grd3 card(channel) < max_size
then
events @actl channel = channel u {m}
event INITIALISATION @act? sendingBuffer=sendingBuffer\{m}
then end
@actl channel = o
@act? sendingBuffer = o event Receive refines Receive
@act3 receivingBuffer = o any m
end where
@grdl m e channel
event addMessageBuffer @grd2 m ¢ receivingBuffer
any m then
where @actl channel = channel\{m}
@grdl m e Message @act? receivingBuffer=receivingBufferu{m}
@grd2 m ¢ sendingBuffer end
then
@actl sendingBuffer=sendingBufferu{m}
end

FIGURE 3.11: Channel_M1: refinement of Channel

The second refinement is a data refinement over the type Message by dividing it into
header and body. The header contains the destination identification and the body con-
tains the data of the message. Constants header and body are defined in the context
ChannelParameters_-C2 as in Fig. 3.12.

context ChannelParameters_C2 extends ChannelParameters
constants header body
sets DATA DESTINATION
axioms
@axm3 header e Message » DESTINATION

@axm4 body e Message -» DATA
end

FIcure 3.12: Context ChannelParameters_C2

In Fig. 3.13 the machine Channel_ M2 data refines the variable channel and introduces
a new event, processMessage that processes the received message after being retrieved
from the receiving buffer. A variable storeDATA is also introduced to store the data

that each destination receives.

3.5.2 Instantiation of a chain of refinements

We can consider the chain of refinements of Channel as a pattern. In that case, having all
the proof obligations discharged we can reuse this pattern in a more specific development.
The chain of refinements is seen as a single entity where it is possible to choose an initial

and a final refinement level. Using our case study, we intend to instantiate and refine

Chapter 3 Generic Instantiation 85

event send refines Send
any m
where
@grdl sendingBuffer = o
@grd2 m e sendingBuffer
@grd3 card(channel) < max_size
then
@actl channel = channel v {m}

machine Channel_M2 refines Channel_M1
sees ChannelParameters_C2

variables channel sendingBuffer
receivingBuffer storeDATA

invariants _ . -
@invl storeDATA e DESTINATION -» P(DATA) end Gact2 sendingBuffer=sendingBuffer\{n}
events . . .
f R
event INITIALISATION ev::; ;ecelve refines Receive
thf':n where
@actl channel = @ @grdl m e channel
@ i - -
act2 sendingBuffer ~ 2 @grd2 m ¢ receivingBuffer
@act3 receivingBuffer = o then
@act4 storeDATA = DESTINATION x {o} @actl channel = channel\{m}
end @act? receivingBuffer=receivingBufferu{m}

n
event addMessageBuffer end

refines addMessageBuffer
any h b'm
where
@grdl header(m) = h
@grd2 body(m) = b

event processMessage
any m dest d
where
@grdl m e receivingBuffer
@grd3 header(m) = dest

@grd3 m ¢ sendingBuffer @grd4 d = body(m)
then -
@grd5 dest e d t DATA
@act4 sendingBuffer=sendingBufferu{m} their est ¢ dom(store)
end @actl storeDATA(dest)=storeDATA(dest)u{d}
end

FIGURE 3.13: Channel_M2: refinement of Channel_ M1

QChannel with the chain of refinements of machine Channel, selecting Channel and
Channel_M2 as our initial and final refinement levels respectively. In Fig. 3.14 the
shaded chain of refinement is seen as a single entity. After the selection of the two
refinement levels to be instantiated, QChannel_M2_abs and QChannel_ M2 are created.
QChannel_M?2 is treated as a refinement of QChannel_M2_abs as a consequence of the
instantiation. Subsequently, QChannel_ M2 can be further refined to QChannel M.

instantiation

QChannel_M2_absl

refinement

instantiation

QChannel_M2

refinement

QChannel_Mz

FIGURE 3.14: Instantiation of a chain of refinements: Channel to Channel M2

The refinement relationship between Channel and Channel_M2 is ensured by discharg-
ing all the proof obligations in the chain of refinement (all the proofs are discharged
automatically in the Rodin platform). By instantiating Channel and Channel M2 im-
plicitly we are also referring to Channel_M1. Some of the properties of Channel M2 are

86 Chapter 3 Generic Instantiation

inherited from Channel M1 (for instance the buffers) but for the instantiation purpose
it is not necessary to incorporate Channel_M1 explicitly. The instantiation of a chain of

refinements follows the instantiation of a single machine as seen in Fig. 3.15.

INSTANTIATED REFINEMENT QChannel M2
INSTANTIATES Channel M2 VIA ChannelParameters_C2
REFINES -
SEES ProtocolTypes_C2
REPLACE

SETS Message := Request

CONSTANTS max_size := gmaz_size

header := qHeader

body := qBody
RENAME
VARIABLES channel := qchannel
recetwingBuffer := qReceivingBuffer

sendingBuffer := gSendingBuffer
EVENTS Send := QSend

m:=gq
receive := Receive
m:=gq

END

FIGURE 3.15: Instantiation of a chain of refinements

The initial refinement level corresponds to the most abstract machine of the pattern.
Therefore it is not necessary to explicitly refer to it. The final refinement level is any
of the other refinement levels in the chain. The replacement and renaming is applied to
the occurrences in both instances whenever applicable. Once again it is not necessary to
“expand” QQChannel_M2 but that can be seen in Fig. 3.16. In an instantiation of a chain
of refinements, the pattern context is seen as a flat context comprising all the properties
seen by the refinements until the selected final refinement level is reached. Therefore
context ProtocolTypes_C2 is the parameterisation context for QChannel_M2 and extends
ProtocolTypes, similarly to the relation between contexts ChannelParameters_C2 and
ChannelParameters. As before, axioms in Protocol Types-C2 must be respected in the

instance, so axioms are converted in theorems in QQChannel_M2.

3.5.3 Definition of Generic Instantiation of Refinements

From the case study it is possible to draw a generic definition for the instantiation of a
chain of refinements. If we consider a pattern that consists of a chain of refinements M1,
M2, ... Mt, we can create a generic instantiated refinement IR as seen in Fig. 3.17. The
instantiated refinement IR instantiates one of the refinements of the pattern M; via the
parameterisation context C'tz;. IR refines an abstract machine I Ry and sees the context
D,, containing the instance properties. The replacement and renaming are similar to
the machine instantiation but apply to both M; and M;. The initial level does not
need to be explicitly defined since the most abstract level of the chain is automatically
considered. Therefore M; is automatically defined as the initial level. In addition to the

validity checks for instantiated machines, instantiated refinements require:

Chapter 3 Generic Instantiation

87

machine QChannel_M2 refines QChannel_M1
sees ProtocolTypes_C2

variables qchannel gReceivingBuffer
qSendingBuffer gStoreDATA

invariants
@invl qStoreDATA e DESTINATION -+ P(DATA)
theorem @theol qHeader e Request - DESTINATION
theorem @theo? qBody e Request - DATA
events
event INITIALISATION
then

@actl gchannel = @

@act2 gSendingBuffer = o

@c 3 gReceivingBuffer = o

@act4 qStoreDATA = DESTINATION x {o}
end

event AddMessageBuffer
refines gAddMessageBuffer
any h bm
where
@grdl qHeader(m) = h
@grd2 qBody(m) = b
@grd3 m ¢ gSendingBuffer
then
@actl gSendingBuffer = gSendingBufferu{m}

event QSend refines QSend
any gq
where

gqSendingBuffer = o
@grd2 g e gSendingBuffer
@grd3 card(qchannel) < gmax_size

qchannel = gchannel u {q}
? qSendingBuffer=qSendingBuffer\{qg}

event Receive refines Receive
any gq
where
@grdl g e gchannel
@grd2 g ¢ qReceivingBuffer
then
@actl gchannel = gchannel\{g}
@act2 gReceivingBuffer=qReceivingBufferu{qg}
end

event processMessage

any m dest d

where
@grdl m e gReceivingBuffer
@grd2 qHeader(m) = dest
grd3 d = qBody(m)

@grd4 qHeader(m) e dom (qStoreDATA)
then

@actl qStoreDATA(dest)=qStoreDATA(dest)u{d}

end end

(a)

context ProtocolTypes_(2 extends ProtocolTypes

constants qHeader qBody pHeader pBody
sets DATA DESTINATION
axioms
@axm3 gHeader e Request » DESTINATION
@axm4 qBody e Request > DATA

@axm5 pHeader e Response » DESTINATION
@axm6 pBody e Response » DATA

(b)

FIGURE 3.16: Expanded version of instantiated machine QChannel_M2(a) and context
Protocol Types_C2(c)

1. A static validation for the existence of a chain of refinements for M
(My, My, ..., M).

2. The types and constants in the contexts seen by the initial and final level of

refinement should be instantiated.

The instantiation of refinements reuses the pattern proof obligations in the sense that
the instantiation renames and replaces elements in the model but does not change the

model itself (nor the respective properties). The correctness of the refinement instantia-

INSTANTIATED REFINEMENT IR
INSTANTIATES M; VIA Ctx
REFINES IRy /* abstract machine */
SEES D,, /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */
SETS 51 := DS1,...,Sm := DSy /* Carrier Sets */
CONSTANTS C; := DC4,...,Cp := DCyp, /* Constants */
RENAME /*rename variables, events and params in M; to M; */
VARIABLES v; :=nv1,...,0q = nyg
EVENTS ev; := nevy / * optional x /
Pl i=MNpPil,...,Ps := NPs / * parameters :optional* /

evy 1= nevy

END

FIGURE 3.17: An Instantiated Refinement

88 Chapter 3 Generic Instantiation

tion relies in reusing the pattern proof obligations and ensuring the assumptions in the

context parameterisation are satisfied in the instantiation.

3.6 Instantiating Theorems and Invariants

Theorems in contexts and machines are assertions about characteristics and properties
of the system. Theorems have associated proof obligations that are discharged based
on the model assumptions (axioms and invariants) . Once the theorems are discharged,
they can be used as hypotheses for discharging other proof obligations in the model,

since they work as a consequence of the assumptions.

An interesting question arises when a pattern is instantiated and contains theorems and
invariants. If a proof obligation of a theorem is discharged by creating an instance we
would not want to re-prove the theorem proof. Regarding the invariants and respective
proof obligations we would have a similar situation where we would not want to dis-
charge proof obligations in the instance if they were already discharged in the pattern.
Ideally we would like to add to the instance the assumptions and assertions given by
the theorems and invariants without re-proving them. Although addressed here as an
open question, this situation suggests a different kind of theorem that does not exist in
Event-B, a pre-proved theorem to be used in the instance. A pre-proved theorem would
be similar to a theorem but it would not have an associated proof obligation. The in-
variants imported from the pattern fall under the same category, where the respective
proof obligations should not be re-generated. Informally the instances are just renaming
and replacing elements without changing the semantics under the original pattern (if the
validity checks are followed) so theorems and invariants would work as assumptions in
the instantiated machine. The assumptions in the pattern (axioms) need to be satisfied
by the instances through the generation of proof obligations but the same does not apply

for invariants and theorems that are assertions in the pattern.

3.7 Conclusions

Reusability is of significant interest in the general software engineering research com-
munity. Reuse has its advantages and disadvantages discussed by Standish [176] and
Cheng [55]. Reusing patterns in a style similar to design patterns is proposed in [63]
using the KAOS specification language and temporal logic. KAOS goals are combined
with existing patterns, that are already proved correct and complete and proofs can
be reused. Sabatier [154] discusses the reuse of formal models as a detailed component
specification or a high level requirement, and presents some real project examples. In
classical B [158, 4], reuse is expressed using the keywords INCLUDES and USES where

an existing machine can be used in other developments. Instantiation is a way of reusing.

Chapter 3 Generic Instantiation 89

Instantiation is well-established in areas such as mathematics and other formal methods
like classical B or theorem provers such as Isabelle [137]. Blazy et al. [33] reuse Gang of
Four (GoF) design pattern adapted to formal specifications (denominated specification
patterns) for classical B. Several reuse mechanisms are suggested like instantiation, com-
position and extension. Proof obligations are also reused when the patterns are applied.
Focusing on the instantiation, this is achieved by renaming sets (machine parameters),
variables and operations. Unlike our work, this approach only defines patterns as a
single abstract machine whereas we define the parameterisation in contexts and extend

the pattern to a chain of refinements.

Abrial and Hallerstede [15] and Métayer et al [124] make use of generic instantiation
for Event-B. The flattening of the context is proposed in a way that the contexts of
the pattern are merged and the reuse by instantiating the flat context is suggested.

Following and extending that approach, we:

e propose a methodology for the implementation of generic instantiation.
e define a generic instantiation mechanism for a machine as an instantiated machine.

e define a generic instantiation mechanism for a chain of refinement as an instantiated

refinement.

e show that that generic proofs can be reused in specific instances under the condi-
tions described in Sects. 3.3.3, 3.3.4 and 3.5.3.

The motivation for such implementation is concerned with reusability of components
and existing developments. By creating an instance from a generic model, a new pa-

rameterised model is created based on the pattern with new specific properties.

Event-B supports generic developments but lacks the capacity to instantiate and reuse
those generic developments. As a solution, generic instantiation is applied to patterns
and as an outcome instantiated machines are created and parameterised. An instan-
tiated machine instantiates a generic machine, is parameterised by a context and the
pattern elements are renamed/replaced according to the instance. In a similar style,
an instantiated refinement instantiates a chain of refinements reusing the pattern proof
obligations assuming that the instantiated proof obligations are as valid as the pattern
ones. By quantifying the variables, constants and types we want to ensure that pattern
proof obligations remain valid when instantiating. Event-B is not a higher-order for-
malism: although it is possible to quantify over expression, it is not possible to directly
quantify types. Nevertheless instantiation of sequences (hypotheses and goal) is possible
as long as is done in an alpha-congruent manner. Therefore the generic proofs can be
instantiated and be used in the instance since they will also hold. A renaming plug-
in was developed supporting the renaming of Event-B elements and respective proofs.

Optimisation at level of proof renaming will be investigated in the future as it may be

90 Chapter 3 Generic Instantiation

a slow operation for large proof trees. A practical case that models a communication
protocol between two entities illustrates the advantages of using generic instantiation
and in particular how to use our approach in the Rodin platform. Although a simple

case study, we believe that it can be applied to more complex cases.

Further study is required to determine if context instantiation similar to instantiated
machines is a worthwhile approach while modelling (for instance, to instantiate sets into
implementable types) Some methodological points will arise in a possible implementation
of instantiated machines and refinements in the Rodin platform. As an example, Section
3.6 addresses the situation of instantiating theorems and invariants and is left as an open
question. A future step for the instantiation of a chain of refinements is to study the
possibility of selecting any of the refinement levels as the initial refinement level giving
more freedom to the modeller. In a long term perspective, any refinement chain could be
considered a pattern. Moreover a library of patterns could be provided when modelling:
whenever a formal development fits in a pattern, instantiation could be applied taking

advantage of the reusability of the model and respective proof obligations.

Chapter 4
Decomposition

In the previous chapters we defined mechanisms for reusability. Still following that line
of work, we propose decomposition as another approach for reusing. Decomposition is
motivated by the possibility of breaking a complex problem or system into parts that are
easier to conceive, manage and maintain. The partition of a model into sub-components
can also be seen as a design/architectural decision and the further development of the
sub-components in parallel is possible. Two methods have been identified for Event-B
model decomposition: shared variable and shared event. Besides alleviating the com-
plexity for large systems and respective proofs, decomposition allows team development
in parallel over the same model which is very attractive in the industrial environment.
Moreover the proof obligations of the original (non-decomposed) model can be reused
by the sub-components. This chapter describes the work on decomposition, which is one
of the main goals of this thesis. Part of this work was accepted as a workshop paper
in Workshop on Tool Building in Formal Methods as [165] in the conference ABZ 2010
and afterwards selected to be extended and appear in a special edition of the journal
Software: Practice and Experience as [166]. This work was carried out in collaboration
with Thai Son Hoang and Carine Pascal. Our contribution was the development of the
shared event approach in terms of methodology and in terms of tool support. This is
described in more detail in Chapter 5. The decomposition tool developed for the Rodin
platform has been successfully used in several case studies such as a flash system de-
velopment [62, 60], decomposition of a space craft system [73], development of a cruise

control system, development of a pipeline system, among other works.

4.1 Introduction

The “top-down” style of development used in Event-B allows the introduction of new
events and data-refinement of variables during refinement steps. A consequence of this

development style is an increasing complexity of the refinement process when dealing

91

92 Chapter 4 Decomposition

with many events and state variables. The main purpose of the model decomposition
is precisely to address such difficulty by cutting a large model into smaller components.
The complexity of the whole model (also referred as original model) is decreased by
studying, and thus refining, each part independently of the others [124]. Two methods
have been identified for the Event-B decomposition: shared variable [15, 8] and shared
event [45, 47]. Moreover the decomposition also partitions the POs which are expected
to be easier to be discharged in the sub-components. From another point of view, shared
event decomposition is the inverse operation of shared event composition described in
Chapter 2. There it was proved that the shared approach is monotonic and therefore the
resulting sub-components could be further refined. That proof is applied to decomposi-
tion in a similar fashion following the failure-divergence definition of CSP as described
in Sect. 1.6.2. The properties of parallel composition in CSP are also the properties of
shared event decomposition. The most relevant property is monotonicity: as long as the
partition of events maintains the original events interface, the decomposition properties
hold which allow the independent refinement of sub-components. For the shared variable
composition, the monotonicity is proved in [8]. Therefore we can introduce team devel-
opment: several developers share parts of the same model but work independently and
in parallel. We propose a plug-in developed in the Rodin platform [151] that supports

these two decomposition methods for Event-B.

Section 4.2 introduces decomposition using a simple example, describing how model
properties are partition, proof obligations are split and the possibility of refining sub-
components. The definition and validity of the decomposition is illustrated in Sect. 4.3.
Section 4.4 describes the limitations of this approach. We conclude this chapter in
Sect. 4.5 with a summary of this study, discussion about related work, applications and

future work.

4.2 Decomposition Styles

The discussion about the two styles of decomposition was introduced in Sect. 1.7. The
semantics of decomposition is the syntactic composition of M1 and M2 and the proof obli-
gations for M are then derived via that syntactic composition. Consequently, machines
M1 and M2 are constructed according to descriptions in Sect. 1.7.1 and Sect. 1.7.2. The
definition of decomposition is described in Sect. 4.3. Here an example is presented to
illustrate the use of both kind of decompositions. A simple communication process is

modelled. The abstract model can be seen in Fig. 4.1.

The variable a is initialised with the constant d0 and variable b is assigned a value
non-deterministically. The initial model contains only the event copy that copies the
value of a to variable b in one single step as described in Fig. 4.2(a). A refinement

of Communication (Communication_M1) introduces a middleware entity that stores

Chapter 4 Decomposition

93

sees Communication_C0@
variables a b
invariants

@invl a e DATA
@invZ b e DATA

machine Communication_M@

events
event INITIALISATION
then
@actl a = do context Communication_C0@
@act2 b :e DATA
end constants do
event copy sets DATA
then
@actl b = a axioms
end @axml d@ e DATA
end end

(a) Machine Communication-M0 (b) Context Communication-C0

FIGURE 4.1: Event-B model of the Communication example

temporarily the value of a before copying it to b as seen in Fig. 4.2(b). Variable m

represents the middleware.

Ceopy 1) Ceopy
[] (b]

(a) Diagram of abstract ma- (b) Diagram of Communication M1, refine-
chine Communication_.M0 ment of Communication_M0

FIGURE 4.2: Diagrams corresponding to the Simple Communication example

Butler [47, 46] suggests an event refinement diagram to decompose atomicity and we use
it to show the refinement relationship between the events in Communication_M0O and
Communication_M1 as seen in Fig. 4.3. In fact we are decomposing the initial single

atomic operation into two steps using a middleware. The diagram is read from left to

[Tnit | [copy_1 | [copy_2]

FIGURE 4.3: Event refinement diagram illustrating atomicity decomposition

right and that indicates its sequential control. In other words, the abstract event copy
is refined by first executing the initialisation event (Init), then event copy-1 and after-
wards copy_2. In the same figure, the lines that link the events are relevant: a dashed
line represents events that refine skip (such as Init and copy-1(p)). A solid line defines
a refinement relation between events. Thus event copy_2 must be proved to refine copy.

The refinement Communication_M1 can be seen in Fig. 4.4. Note that a control variable

94

Chapter 4 Decomposition

ctrl is introduced to ensure when the content of m can be copied to b. Invariant inv3 ex-

machine Communication_M1 refines Communication_M@

sees Communication_C@

variables a b m ctrl

convergent event copy_1

any p
) . where
invariants p=a
m e DATA ctrl = FALSE
ctrl e BOOL then
ctrl = TRUE = m = a me=p
ctrl = TRUE
variant {ctrl,TRUE} end

events event copy_2 refines copy
event INITIALISATION where
then ctrl = TRUE

a = do then
b :e DATA b =m
m :e DATA ctrl = FALSE
ctrl = FALSE end

end end

FIGURE 4.4: Machine Communication_M1 refinement of Communication_MO

presses that when variable ctrl is true, the value of the middleware m corresponds to the
value of source a. This invariant can be seen as a requirement for the refinement between
abstract event Communication_M0.copy and concrete event Communication_M1.copy_2.
The convergent event copy_1 requires a variant that guarantees that this event is not
enabled forever. Such variant is expressed as {ctrl, TRU E'} which means that eventually

the control variable ctrl will be TRUE and in that case copy_1 event is not enabled.

Depending on the chosen decomposition style, a system can be decomposed into different
number of sub-components as seen in the following sections. In the rest of this section, we
give an informal introduction to the two decomposition styles using a running example.
In Sect. 4.3 we give decomposition a precise definition and show that they represent

valid refinements.

4.2.1 Shared Event Decomposition of Communication

From the modeller’s point of view, the decomposition starts by defining which sub-
components will be generated. The following step is to define the partition of variables
over the sub-components. The rest of the model decomposition (events, parameters,
invariants, contexts) is a consequence of the variables allocation as defined below. For
the shared event decomposition, we decompose Communication_M1 in three parts: MA,
MB and MM as seen in Fig. 4.5.

Variable a is allocated to machine MA, variables m and ctrl to machine MM and variable
b to machine MB. It follows that event copy_1 is split between MA and MM and event
copy_2 is split between MB and MM. The resulting machines can be seen in Fig. 4.6.

Next we describe the steps for a machine decomposition focusing on invariants, events,

Chapter 4 Decomposition 95

Machine MA Machine MB
variables a variables b
INITIALISATION INITIALISATION

copy_1 copy 2

copy_1| Machine MM

variables m, ctrl
INITIALISATION

copy_2

FI1GURE 4.5: Decomposition of Communication_M1 into machines MA,MB and MM

machine MM
sees Communication_C@
variables m ctrl

invariants
@invl m e DATA
@invZ2 ctrl e BOOL

events
event INITIALISATION
then machine MB
machine MA @actl m :e DATA
@act2 ctrl = FALSE

sees Communication_C@
sees Communication_C@ end
variables b
variables a event copy_1
any p invariants
invariants where @invl b e DATA

@invl a e DATA

events
event INITIALISATION
then
@actl a = dO
end

@grdl p e DATA
@grd2 ctrl = FALSE
then
@actl m = p
@act2 ctrl = TRUE
end

event copy_2

events
event INITIALISATION
then
@act2 b :e DATA
end

event copy_2

event copy_1 any p any
any where p
p @grdl ctrl = TRUE when
when @grd2 p =m @grdl p e DATA
@grdl p = a then then
end @act? ctrl = FALSE @actl b = p
end end
end end end

(a) Machine MA (b) Machine MM (¢) Machine MB

FIGURE 4.6: Machines MA, MM and MB

variant and contexts. The initial partition of variables between the sub-components

defines the rest of the decomposition as detailed below.

Invariants: The decomposition of the invariants depends on the scope of the variables.
Therefore the minimal set of invariants must include the variable type definitions
as illustrated by inv! and inv2 in Communication-M1 (Fig. 4.4) or invl and inv2
in MM (Fig. 4.6(b)). And these are the required invariants for a valid refinement.
Additional ones depend on the user, as they may be useful in later refinements
or to help in reusing the sub-components. An example of partition of invariants

among the sub-components is inv3 in Communication_M1:

96 Chapter 4 Decomposition

crl=TRUE =m =a

This invariant contains three variables: ctrl, m and a. According to the defined
decomposition, ctrl and m are variables of MM and a is a variable of MA. This
suggests that inv3 can be a constraint of the composition of the sub-components
and not a constraint of the individual sub-components. As a result, invariant
clause inv3 in Communication_M1 is not part of any of the sub-components. Al-
ternatively when an invariant clause is demanded and uses variables placed outside
the scope of a sub-component, a further refinement of the composed component
might be required to make an explicit separation of the variables. If we consider
again invd and we would like to add this invariant to the sub-components, we
would need to find a rewrite that invariant without including variables ctrl, m and

a in the same predicate.

Events: The partition of the events depends on the partition of the variables. For
instance, variables m and ctrl are part of MM so their initialisation is allocated
to the same sub-component. Event copy_1 in machine Communication_M1 has a
parameter p. When the decomposition occurs, that parameter is shared between
the decomposed events. But the guards referring to that parameter are different
in each decomposed event: in MA the guard is similar to Communication_M1
(p = a); in MM only the type of the parameter p is defined (p € DATA). The
type of p is an implicit guard in the original event and during the decomposition,

the type of p is made explicit:
p=aspe DATAANDp=a

The guards of a decomposed event inherits the guards on the composed event
according to the variable partition. Variable a is not within the scope of machine
MM so only the type of p is defined in the guard of MM.copy_1.

A different situation occurs for event copy_2 in machine Communication_M1. Al-
though the original event does not have parameters, the decomposed events have
a new parameter p. Action act! in Communication_M1.copy_2 refers to two vari-

ables (b and m) belonging to two different sub-components:

Qactl b:=m

This assignment needs to be rewritten in a way that these variables are not part
of the same expression. A solution is to refine this event in a way that the guards
and actions do not refer to variables allocated to different sub-components. Before
the decomposition, we refine event copy_2 by adding parameter p:

copy2 = ANY p WHERE ctrl = TRUE A p = m THEN b :=p || ctrl := FALSE END.

Chapter 4 Decomposition 97

Parameter p receives the value of variable m. Then the value of p is assigned to
variable b. Whereas variable m is within the scope of MM only, the guard p =m
is added to MM.copy_2 while MB.copy_2 contains the guard p € DAT A and the

action b :=p.

Non-shared parameters do not need to be maintained in the sub-components. Since
parameters are local to events, only parameters explicitly used in guards or actions

are included in the sub-events.

Variant: Variant is only necessary when new events are introduced in a refinement.
Decomposed events in sub-components are inherit from the composed component

S0 no new events are introduced meaning that variants are not required.

Contexts: The context Communication-C0 used in the example is shared between all
the machines. That context (and possible others) can be flattened into a single
context and decomposed. The context decomposition results from the exclusion
of elements (sets, constants, axioms) that are not used by the sub-component
that sees that context. On the one hand, decomposing contexts can inadvertently
remove relevant information. On the other hand, not decomposing it can add
too many (not relevant and unnecessary) hypotheses which is not beneficial for
the proofs: on the contrary, it might be harmful and complicate the discharge
of proofs. Therefore, the context decomposition is optional as it varies with the

system being modelled.

The events in the sub-components maintain the interface of the original events. By event
interface we refer to the structure of the original event excluding elements referring to

variables not in the scope of the sub-event.

4.2.1.1 Refinement of Sub-Components

An advantage of the decomposition is the possibility to further refine sub-components
independently from the original component and other partitions. This advantage leads
to the concept of team development over the same model by different modellers which
it is an attractive option, in particular for the industry. In this section we introduce
a database table as a refinement of the sub-component MB (resulting from the shared
event decomposition of Communication_M1) to store the received values (registries).
The database table contains three fields: REGID, DATA and PRIORITY. The new
fields are introduced in the new context MB_C0 as seen in Fig. 4.7. REGID is the iden-
tification field of all elements in the table of the database. It is defined as a constant and
represented by a subset of natural numbers (axiom axm! in Fig. 4.7). The PRIORITY
field corresponds to the priority that a registry is processed: LOW, MEDIUM or HIGH.
The constants id0 and p0 initialise the database fields. New variables are introduced

to represent the database registries: idR and priority. An auxiliary boolean variable

98

Chapter 4 Decomposition

context MB_CO

sets PRIORITY

axioms
@axml REGID € N

@axm3 1d@ ¢ REGID
@axm4 p@ e PRIORITY
end

constants REGID LOW MEDIUM HIGH id@ p@

@axm?2 partition(PRIORITY, {LOW}, {MEDIUM}, {HIGH})

FIGURE 4.7: Context MB_C0 seen by refinement of MB

processQueue is used as a flag to enable the enqueueing of a registry in the database

when a new value is copied to b as seen in Fig. 4.8.

an;
machine MB_1 refines MB sees Communication_C@ MB_C@ thrZ
grdl p e DATA
variables b idR processQueue priority @grd2 processQueue = FALSE
then
invariants @actl b = p

@invl idR e REGID + DATA
@inv2 processQueue e BOOL
@inv4 priority e dom(idR) » PRIORITY

variant {processQueue,FALSE}

events
event INITIALISATION
then

@actl b :e DATA
@act2 processQueue = FALSE
@act3 idR = 1d@ x {d0}
@act4 priority = id@ x {p@}

end

event copy_2 refines copy_2

@act2 processQueue = TRUE
end

convergent event enqueueDB
any i p
where
@grdl processQueue = TRUE
@grd2 p e PRIORITY
@grd3 i e REGID\dom(idR)
then
@actl processQueue=FALSE
@act3 priority(i)=p
vact4 1dR(i)=b
end

FIGURE 4.8: Machine MB_1 which is a refinement of MB

After event copy_2 is executed, new event enqueueDB adds an element to the database.
The added registry must have a fresh identification (not used before in the idR function)
and the priority of the registry is defined non-deterministically in guard grd2. A variant
is necessary for the new convergent event enqueueDB which is easily found by defining
that eventually processQueue is FALSE. A possible refinement for the current model is to
process the registries according to the priority. The priority field can also be defined more
deterministically according to the message data. In a team development environment,

the middleware could be refined while in parallel with other sub-components.

4.2.2 Shared Variable Decomposition of Communication

For the shared variable approach, we decide to do a further refinement. After copying
the values, they are processed by being stored in a simple database similar to the one
used in the shared event refinement described by context Communication-C1 (equal to
MB_C0 in Fig. 4.7). A boolean variable processQueue and new event enqueueDB are
also introduced as seen in Fig. 4.9. Concrete event copy_2 extends the abstract copy_2,
meaning that the concrete event is a copy of the abstract one plus additional concrete

guards, actions, parameters.

Chapter 4 Decomposition 99

machine Communication_M2 refines Communication_M1

sees Communication_CO Communication_C1 event copy_2 extends copy_2
where
variables a b m ctrl idR processQueue priority @grd3 processQueue = FALSE
then
invariants @act3 processQueue = TRUE
@invl idR e REGID + DATA end
@inv2 processQueue € BOOL
@inv4 priorityedom(idR) — PRIORITY convergent event enqueueDB
anyip

where
@grd1 processQueue = TRUE
@grd2 p e PRIORITY

variant {processQueue,FALSE}

events

event INITIALISATION extends INITIALISATION 2grd3 i e REGID\dom(idR)
then then
@act5 processQueue = FALSE @actl processQueue=FALSE
@act6 idR = id0 x {d0} @act3 priority()=p
@act7 priority = id0 x {p0} @act4 idR()=b
end end

(a)

FIGURE 4.9: Excerpt of machine Communication_M2

Communication_M2 is shared variable decomposed by separating the copy of the values
and the processing, described by machines MCopy and MProcess respectively. Events
copy_1 and copy_2 are allocated to MCopy while event enqueueDB is allocated to MPro-
cess. The variables separation depends on the event allocation leading to private vari-
ables (accessed by a single sub-component) or shared variables (accessed by multiple
sub-components). The shared variables are used in events copy_2 and enqueueDB: pro-
cessQueue and b. All the other variables are private. The invariants splitting depends

on the initial separation of variables, similar to the shared event approach.

The following step is to separate the private events and create the external events. Pri-
vate events are allocated according to the user’s choice. External events are based on the
original events, preserving the shared variables and turning private variables into event
parameters. If an original event depends on a shared variable, then an external event
is created in the sub-components that use that variable. Events copy_2 and enqueueDB
use shared variables and consequently external events are required. An external event
copy_2 is created in MProcess using the shared variable b. The other variables used by
the original copy_2 become parameters in the external event as they are not in the scope
of that sub-component (ctrl and m). Event enqueueDB is similarly built. The resulting

machines can be seen in Fig. 4.10.

4.3 Definition and Validity of Decomposition

We want to formally prove that a machine M can be decomposed into machines M1
and M2. We shall prove through refinement POs that M T M1 || M2. The proofs are

described in the following sections.

100

Chapter 4 Decomposition

machine MCopy sees Communication_C0 Communication_C1

variables m
a
ctrl
processQueue
b
event copy_1
any p
where
@grdl p=a
@grd2 ctrl = FALSE
then
@actlm=p
@act2 ctrl = TRUE
end
event copy_2
any p
where
@grd1 ctrl = TRUE
@grd2 p=m
@grd3 processQueue = FALSE
then
@actlb=p
@act2 ctrl = FALSE
@act3 processQueue = TRUE
end

event enqueueDB
any i p idR
where

atyping_idR idR e P(Z x DATA)
@grd1 processQueue = TRUE
@grd2 p e PRIORITY
@grd3 je REGIDNdom(idR)

then
@actl processQueue=FALSE

machine MProcess sees Communication_C0 Communication_C1
variables processQueue
b

priority
idR
event copy_2
any p ctrlm
where
@typing_ctrl ctrle BOOL
@typing_m me DATA
@grd1 ctrl= TRUE
@grd2 p=m
@grd3 processQueue = FALSE
then
@actlb=p
@act3 processQueue = TRUE
end
event enqueueDB
any i p
where
@grd1 processQueue = TRUE
@grd2 p e PRIORITY
@grd3 ie REGIDN\dom(idR)
then
@actl processQueue=FALSE
@act3 priority()=p
@act4 idR()=b
end

(a)

(b)

FI1GURE 4.10: Excerpt of the output of shared variable decomposition of Communica-
tion_M2: MCopy and MProcess

4.3.1 Shared Event Style

Assume a machine M with two set of disjoint variables v1,v2. For the shared event
decomposition, events can be categorised in 3 ways: evtl(pl,vl), evt2(p2,v2) and
evt3(p3,vl,v2). evtl(pl,vl)islocal to M1, evt2(p2,v2) is local to M2 and evt3(p3, v, v2)
is split into evtd’(p3, v1) and evt3” (p3,v2). The invariant of M is represented by I (v1,v2)
(for simplicity we exclude the use of context elements). Machine M1 is represented by
variable v1,wl and events evtl(pl,vl) and evt3’(p3,v1). The invariant of M1 is rep-
resented by J1(vl,wl). Machine M2 is similar to M1 with variable v2,w2, events
evt2(p2,v2), evtd”(p3,v2) and invariant J2(v2, w2).

We want to prove that M1 and M2 when composed in parallel are a valid refinement
of M. The refinement POs need to be verified for M1 || M2 in order to ensure that is
a concrete refinement of the abstraction M: M C M1 || M2. Events of the form evt3
have the following shape:

evt3 = ANY P3 WHERE G31(p37’l)1) A\ G32(p3,’U2) THEN Sgl(pg,ﬂl, ’Ull) || 532(p37’()271)/2) END.

Definition 4.1. After the decomposition, event evt3 is decomposed into events evt3’

Chapter 4 Decomposition 101

and evt3” that are defined as:

evt3’ = ANY pP3 WHERE Ggl(pg, 1)1) THEN Sgl(pg, v, ’Ui) END
€Ut3” = ANY D3 WHERE G32(p3, 1)2) THEN Sgg(pg, V2, Ué) END.

in a way such that evt3 C evt3’||evt3”.

Abstract machine M (vy,v2) is decomposed into machines M1(v;) and M2(vy). When
the events resulting from the shared event decomposition are composed, they are a valid
refinement of the respective abstract event. Abstract event evt3(ps, v1,v2) is decomposed
into events evt3’(ps,v1) and evt3”(ps,v2) as long as the set of variables v; and vo are
disjoint. Moreover, the guards and actions of events evt3’(p3,v1) and evt3”(ps, ws) result
from the original abstract event referring only to their respective set of variables. The
set of parameters p3 is the same for the three events. We consider that sub-components

do not introduce additional invariants.

Theorem 4.1. If M1 and M2 are the resulting machines from shared event decomposition
of M, then M & M1 || M2. In other words, REFey;c(cvti’||evtir) holds, where evti is an
abstract event, evti’ is the resulting decomposed event in machine M1 and evti” is the

resulting decomposed event in machine M?2.

From the refinement PO for machines (1.5), we need to prove that the resulting events
after the decomposition refine the original abstract ones. Sub-components do not intro-
duce additional invariants. Consequently Jj(vi,w1) = Ja(ve, ws) = TRUE. For events
of form ewvtl and evt2, the resulting events are exactly the same as the original ones.
For events of form ewt3:

REF i3 (evts||evtry - T1(v1,v2)
A Jy(v1,w1) A Ja(va, we)
A Hsz1(ps,v1) A Hza(ps3, va)
A Ts1(p3, v1,v1) A T32(p3, v2, v5)
= 30, vy-Ga1(ps3, v1) A Gaa(ps, va)
A S31(p3, v1,v]) A Ssa(ps, v2, vy)
A J1 (v, wy) A Jo(vh, wh), (4.1)

wl and w2 are concrete variables in the refinement.

102

Chapter 4 Decomposition

Also assume:

v Nuy =9

Ji(vy, wy

Jo(v2, wa

) =
)
H31(ps, v1)
H3a(ps, v2)
)
vy)

!
T31(p3,v1,v;
A
2

T32(ps3, v2, v

Prove: REF ,i3C (cvt3||evt3”)-

Proof. Assume the hypotheses of REF, 1 (cvt1/||evt17):

I (v1,v9)

J1(vi,wr) A Jo(ve, we) = TRUE
H31(ps,v1) A Haa(ps, va2) =
T31(p3, v1,v1) A Tsa(p3, v2, vs)

= S31(p3, v1, 1) A S32(p3, v2, vy)

Prove:

G31(p3,v1) A G3a(ps3, v2)

TRUE (4.2)
TRUE (4.3)
G31(p3; v1) (4.4)
G32(ps, v2) (4.5)
S31(p3,v1,v7) (4.6)
S32(p3, v2,v5) (4.7)
{From (4.2) and (4.3)} (4.8
{From (4.4) and (4.5)} (4.9
{From (4.6) and (4.7)} (4.10)

F 301, vy -Gs1(ps, v1) A Gsa(ps, v2) A S31(ps, v1,v7) A Ss2(ps, v2,v5) A J1(v], w)) A Ja(vh, wh).

The proof proceeds as follows:

Fuy, vy-Ga1(p3, v1) A Gaa(ps, v2)

A S31(ps, v1,v]) A Saa(ps, va, v)

A Ji(vh, wh) A Ja(vh, wh)
= 3v,v5-G31(p3, v1) A Gaz(ps, v2)

A S31(p3; vi,v1) A Ssa(ps, v2, v3)

A TRUE
= G31(p3, v1) A Gsa(ps, v2)

A), vy-S31(p3, v1, V1) A S3a(ps3, v2, vy)
= TRUE

A TRUE

{From (4.8)}

{G1 and G5 have free vars}

{From hypotheses (4.9) and (4.10)}

M1 || M2 is a valid refinement of M. In fact, they are syntactically the same apart
from the invariants that can be lost during the decomposition: M # M1 || M2 but
MC M1 || M2.

Chapter 4 Decomposition 103

4.3.2 Shared Variable Style

Abrial and Hallerstede [15] use refinement POs to prove that the shared variable de-
composition is monotonic. In Fig. 4.11', machine M is decomposed into N and P
(represented by the diagonal arrows) which are further refined by NR and PR respec-
tively (vertical arrows). Afterwards, NR and PR are composed originating MR. To prove

monotonicity, it is necessary to prove that MR is a valid refinement of M.

N P
N 7
T M T
NR 12 PR
N Ve
MR

FIGURE 4.11: Shared Variable Decomposition Diagram

Abrial [8] proves this property by means of state relations between the original machine

and sub-components.

4.4 Limitations

The decomposition should have a final goal: a misleading decomposition may harm the
development of a system instead of helping. For the shared variable decomposition the
partition of events is always possible in the sense that it is always possible to gener-
ate sub-components. On the other hand, that decomposition might be less significant
despite being possible: a further refinement may be more complex and not benefit the
development. The point of decomposition (correct abstraction level) is important, since
if it is done too early, the sub-component might be too abstract and will not be able to
be refined (without knowing more about the other sub-systems). If the system is de-
composed too late, it will not benefit from the approach anymore. For the shared event
decomposition, the partition of variables is not always possible for all developments.
An additional “preparation step” may be required to solve complex predicates (invari-
ants, guards, axioms) or assignments (actions) involving variables allocated to different
sub-components. This step can be achieved through refinement. Another limitation is
that the overlapping of elements in the sub-components is not allowed which sometimes
may be useful. Even in the shared variable approach, the overlapped (shared) elements

cannot be further refined independently.

'"Extracted from [15]

104 Chapter 4 Decomposition

4.5 Conclusions

This chapter presents the decomposition of Event-B models and tool support in the
Rodin platform. Decomposition can advantageously be used to decrease the complexity
and increase the modularity of large systems, especially after several refinements. Main
benefits are the distribution of POs over the sub-components which are expected to be
easier to be discharged and the further refinement of independent sub-components in
parallel introducing team development of a model. Our goal is to develop a robust tool
to model distributed systems that can be used by academic institution and industrial

companies.

The decomposition benefits has been exploited as seen in the literature: [30, 29] study
the formal development of MAS (Multi-Agent Systems) which are complex distributed
systems to be used for critical applications using abstraction and decomposition for clas-
sical B and Event-B. Lanoix [110] also studies MAS using shared variable decomposition
to model a platoon of vehicles using Event-B. Butler [44] uses the shared event approach
in classical B to decompose a railway system into three sub-components: Train, Track
and Communication. The system is modelled and reasoned as a whole in an event-
based approach, both the physical system and the desired control behaviour.Go and
Shiratori [83] propose an automatic decomposition method using LOTOS [98]: the cor-
rectness is ensured if the combined behavior of decomposed sub-specifications is the
same as the system’s behavior before the decomposition. The method decomposes a
process into two processes composed by the parallel operator and automatically gener-
ates an additional process that gives some information about the synchronization. The
additional process corresponds to the middleware in a shared event decomposition in
Event-B. Rezazadeh and Butler [148] use classical B to model a distributed monitoring
and control system for vehicles entering and leaving a controlled area. After some refine-
ments, the model is decomposed into asynchronous sub-systems. Rezazadeh [147] and
Butler [149] introduce some guidelines for formal development of web-based applications
(distributed systems that can be accessed using a Web browser) in B-method. That for-
mal modelling considers only safety properties and a decomposition is suggested based
on the CSP style message-passing channels. Iliasov [96] suggests a kind of decomposition
based on modularization. The modules are introduced as a special case of shared vari-
able decomposition by modelling sequential systems and Event-B is extended to model a
system in the space domain. Separation logic [146, 144], an extension of the Hoare logic,
supports reasoning about shared mutable data structures in a “bottom-up” approach
where sub-components are put together and some composition properties can be proved.
Such an approach is different from ours: we follow a “top-down” approach proving the
global properties in the abstraction and decomposing only after proving the composi-
tion properties. Nevertheless Hoare and O’Hearn [93] combine the concurrent separation
logic (CSL) and CSP aiming to reason about the communication between concurrent

processes. In this work, trace semantics of parallel composition uses a composition op-

Chapter 4 Decomposition 105

eration on traces that partition channel ends between processes. The communication
occurs via point to point channels with value passing messages not covering divergence
nor refusals. The traces of parallel processes correspond to the separation conjunction
of the processes traces: traces(P || Q) = traces(P) * traces(Q)) where the alphabet
of processes P and () are disjoint. Comparing to our shared event decomposition also
based in the CSP, value passing channels correspond to sub-components events that

communicate via shared parameters.

There is a need for modularisation and reuse of sub-components in order to model large
systems and manage better the respective POs. Event-B lacks a sub-component mech-
anism. Thus we propose to tackle that problem through the decomposition of a system
by their events or variables. The shared variable (state-based) approach is suitable
for designing parallel algorithms while the shared event (event-based) is suitable for
message-passing distributed systems [45]. Following any of these two approaches, the
parallel components of a distributed system can be refined and decomposed separately
without making any assumptions about the rest of the system. The shared variable
style relies on the work of Abrial and Hallerstede [15] where variables are shared and
exists the notion of external events. Butler [45] suggests the shared event decomposition
where events are partitioned through the sub-components and the interaction occurs via
shared parameters. The work developed by Butler in [40] for action system is strongly
related with the same approach for shared event decomposition in Event-B [45] as both
approaches are state-based formalism combined with event-based CSP. The end-user
chooses a decomposition style depending on specific systems and on its modelling pref-
erences. The decomposition configuration is stored persistently for replaying/editing
although further study is still required for this matter. We present an example of the
different styles of decomposition. A tool was developed to model distributed systems
in the Rodin platform that can be used by the industry (cf. Sect. 5.5). A visualisation

view for decomposition seems intuitive and we intend to explore it using GMF [82].

Chapter 5
Tool Support

The adoption of a technology or even a theory in detriment of another can rely on the
tool support [89]. The efficiency of the tool, how practical it is, the range of problems
it can solve and user support are some of the important points when developing a
tool. Formal methods are not different: tool support is important to add automation,
efficiency and ease the task of developing formal models. Mathematical rigour enables
modellers to analyse and verify models at any part of the program lifecycle: requirements
engineering, specification, architecture, design, implementation, testing, maintenance,
and evolution [188]. To a long time, formal methods has been primarily restricted to
various research organisations. However, it is becoming apparent that formal methods
is in the transition process from academic research to industrial application. Formal
methods tools are also in the process of transition from academic toys to industrial-
strength tools [58]. In this document we address this topic by giving tool support to the

previous described techniques: composition, decomposition and generic instantiation.

5.1 Introduction

In the previous chapters, three techniques that help the modelling of complex systems
were described. The semantics behind each one of the techniques and their advan-
tages/disadvantages were explained with the usage of small examples. Nevertheless the
broad usage of such techniques requires tool support to allow automation, to ease the
user’s effort of applying the techniques and to be more efficient. Moreover, the tool
implementation ofter unveils constraints that are not taken into account while study-
ing the techniques such as scaling, optimisation or miscellaneous other issues. A user
friendly tool can be a powerful support to a defined theory and often is the reason why
the theory may be adopted or not. Therefore we strive to have suitable tool support not
only to more easily test the strength of the technique but also to allow others to quickly

use it.

107

108 Chapter 5 Tool Support

As aforementioned, the Rodin platform [151] is the result of an EU research project.
It is a software toolset, based on modern software programming tools developed to use
Event-B notation. It is open source, based on Eclipse Platform [66] and it works has
a complement for rigorous modelling developments [49]. The aim is to benefit industry
by permitting the integration of any necessary functionality in the same tool. Rodin
contains a Static Checker that analyses Event-B components for syntactical errors (well-
formedness and typing of models), a Proof Obligation Generator for generating PO and
these obligations can be discharged by a theorem prover. An important Rodin feature is
the high level of extensibility reflected by, for instance, the ability to contribute plug-ins.
Plug-ins are components providing a certain type of service within the context of the
Eclipse workbench. By components here we mean objects that may be configured into a
system at system deployment time [66], such as the default theorem prover (B4free [21])
or model checking systems (ProB [141]). Three tools (plug-ins) resulted from the study
of the three previous techniques: shared event composition plug-in, refactory plug-in
and decomposition plug-in. These were developed for the Rodin platform although the
methodology behind them could be implemented in other platforms and even for other

formalisms.

This chapter is organised as follows: we described the tool support for shared event
composition in Section 5.2. After the generic instantiation (Section 5.3) and refactory
(Section 5.4) are outlined. Section 5.5 illustrates the decomposition tool before the

conclusions in Section 5.6.

5.2 Shared Event Composition Plug-in

A plug-in for composed machines was developed to support the shared event composition.
We extend the Rodin static checker to validate composed machines based on checks
defined in Sect. 2.3.2. POs ought to be automatically generated over the composed
machines. Currently this feature is not available but we will address this issue in the
future. The current solution to address POs is to generate a standard machine from
the composed machine. In Fig. 5.1(a), composed machine cM2 includes machines M3
and M4. cM?2 is then “expanded” as a standard machine M?2' which itself refines
abstract machine M 1. The composition POs (including refinement) are generated in
M?2'. Generating a new machine allows the further development of the composed model.
Moreover the inspection of the composed events is beneficial based on the experience of
using the tool. In the future, we would like to still have the option to generate a new
machine, but the POs should be discharged at the composed machine as depicted in
Fig. 5.1(b).

Chapter 5 Tool Support 109

1
Y M1
»
S
& 1
< M3 Refnes | M3
h A A
, | w A\
M2 Expand
Expanded | T| CM2 cM2
' 2 4
ey, 2y,
1 g, g,
1 Ss. s
! M4 M4
—> Composition - First Phase ————> Composition - First Phase
——> Intermediate step for proving and compose Future work

(a) (b)

FIGURE 5.1: Composition structure: current(a) and future(b)

5.2.1 Composed Machines

The tool implementation follows the structure described in Sect. 2.3.1 as seen in Fig. 5.2.
A new constructor is added to the Event-B syntax. This constructor, composed machine,
allows standard machines to be included: they are structured and saved in a single file.
The interaction between standard machines occur by defining which events are composed
in parallel. Moreover additional invariants, can be added to composed machine. This
is the only way to relate the state space of the included machines, since the machines
remain independent of each other. Composed machines can refine standard machines.
Consequently the abstract events must be refined by concrete ones to comply with the

refinement proof obligations.

In Fig. 5.2, composed machine Carriage_M1_cmp (extracted from the case study in Chap-
ter 6) refines machine Carriage_M1 and sees context Train-C4. Moreover two machines
are included: Doors and Carriagelnterface. In other words, we want to express that
Carriage-M1 T Carriage-M1_cmp N Carriage_-M1_cmp = (Doors || Carriagelnterface).
Moreover invariant invl is an additional invariant for this composed machine. There-
fore Icn(v-Doors,v_Carriagelnter face) = I(v_Doors) A I(v_Carriagelnter face) N
carriage_door = &, where v_Doors,v_Carriagelnter face are the variables of machine
Doors and _Carriagelnter face respectively. The label in the front (Invariant not in-
cluded) means that the invariant clauses of the individual machines will not be in-
cluded if this composed machine is “expanded” as explained in Sect. 5.2. The interac-
tion is achieved with the composition of events: the initialisation events are composed
in parallel; also the composed event openDoors result from the composition of event
Doors.openDoors and Carriagelnter face.openDoors. This composed event refines
the abstract event Carriage_M1.openDoors. More composed events can be added in
a similar fashion. As future work, proof obligations should be generated directly for

composed machines.

110 Chapter 5 Tool Support

COMPOSED MACHINE
Carriage_M1_cmp
REFINES
Carriage_M1
SEES
Train_C4
INCLUDES
[Carriage] Doors (Invariant not included)
[Carriage] Carriagelnterface (Invariant not included)
INVARIANTS
invl : carriage door :=g
COMPOSES EVENTS
INITIALISATION =
STATUS
ordinary
COMBINES EVENT
[Carriage] Doors.INITIALISATION || [Carriage] CarriageInterface.INITIALISATION

openDoors =]
STATUS
ordinary
COMBINES EVENT
[Carriage] Doors.openDoors || [Carriage] CarriageIlnterface.openDoors
REFINES
openDoors

FIGURE 5.2: Pretty print of the composed machine tool

5.3 Generic Instantiation Plug-in

Generic instantiation is a technique to help the development of models. In particular
if a development matches or fits an existing pattern, that pattern (and possibly its
refinement chain) can be instantiated and reused. This is particular interesting when
we are targeting multiple instances of a generic pattern because we can benefit from the
existing proofs of the pattern (that are expected to be discharged) and customise the

instance according to a particular purpose.

In Sects. 3.3.3 and 3.5.3, we suggest a methodology for the implementation of the generic
instantiation of Event-B machines through instantiated machine (Fig. 5.3) and instan-
tiated refinement 5.4 files. The instantiation is a result of the mandatory replacement
of pattern’s sets and constants and the optional renaming of variables, parameters and
events. The user needs to supply an instance context to be used for the replacement of
sets and constants (context D in Fig. 5.3). Furthermore if the instance corresponds to a
refinement of an existing development, the abstract machine (Mp) needs to be specified.
Consequently, refinement proof obligations are generated and need to be discharged by

the user.

For instantiated refinements, a pattern refinement chain is instantiated. We define as the

Chapter 5 Tool Support 111

INSTANTIATED MACHINE IM
INSTANTIATES M VIA Ctx
REFINES My /* abstract machine */
SEES D /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */
SETS 57 := DS1,...,S8m := DSy, /* Carrier Sets */
CONSTANTS C; := DC4,...,Cp := DCy, /* Constants */
RENAME /*rename elements in machine M */
VARIABLES v :=nuvy,...,vq := nvg /* optional */
EVENTS evy := nevy /* optional */
p1i=npi,...,Ps := NPs /* parameters: optional */

evy 1= nevy

END

FIGURE 5.3: An Instantiated Machine

INSTANTIATED REFINEMENT IR
INSTANTIATES M; VIA Ctx
REFINES IRy /* abstract machine */
SEES Dy, /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */
SETS 51 := DSi,...,Sm := DSy /* Carrier Sets */
CONSTANTS C; := DC4,...,Cp := DCy /* Constants */
RENAME /*rename variables, events and params in M; to M; */
VARIABLES v :=nv1,...,vq := nyg
EVENTS ev; := nevy / * optional x /
P1 = MNP1,...,Ps 1= NPs / * parameters :optional* /

evy 1= nevy

END

FIGURE 5.4: An Instantiated Refinement

starting point of the instantiation the most abstract machine of the refinement chain (in
the future, the abstract machine selection might be more flexible). Besides the instance
context (D,, in Fig. 5.4), the mandatory replacement of sets and constants and the
definition of the abstract machine (IRy), the modeller is given the choice to explicitly

define the last refinement machine to be refined (machine M;).

The output of the instantiation is a new Event-B machine/refinement chain similar to
the pattern apart from the differences originated by the renaming and replacements
according to instantiated machine/refinement. Moreover to reuse the pattern proofs,
pattern axioms must be preserved in the instance and therefore theorems (refactored

from the pattern axioms) are automatically generated in the instances.

Although the structure of instantiated machines and instantiated refinements are de-
fined, we were not able to develop the tool support for instantiation due to time con-
straints. We also intend to build a library of patterns that could easily be instantiated.
This library should be categorised according to the formal modelling pattern as sug-
gested by Stepney [178]. Nevertheless the need to rename Event-B model elements, in
particular when the renaming involved a refinement chain, was strong enough for tool
support to be developed. That tool is intended to be used as part of generic instantiation
tool support. The renaming refactory framework is described in more detail in the next

section.

112 Chapter 5 Tool Support

5.4 Renaming Refactory Framework

The instantiation implies the renaming/replacing of some properties in the pattern. A
renaming supporting tool is required in a tool implementation of generic instantiation.
Moreover one of the most recurring requirements from users of the Rodin platform is
to have simple means for renaming modelling elements. Users want to have a unique
operation that will rename an element both at its declaration and all its occurrences. A
renaming operation entails that the renaming of an element does not modify its existing
proof state (no loss of proof) [160]. These requirements fall in the more general context
of refactoring. In software engineering, “refactoring source code” means improving the
source code without changing its overall results, and is sometimes informally referred
to as “cleaning it up”. In the case of the Rodin platform, the refactoring framework
is not intended to change the overall behaviour of the files/elements nor losing proofs.
Note that this tool is also useful for the shared event composition (Sect. 5.2) where
the occurrence of variables with the same name results in the renaming of at least one
of them (shared variables are not allowed). This section describes the developed work
for the renaming/refactory framework, giving an overview of the architecture and how
the framework works. Initially the renaming framework was designed and developed by
Stefan Hallerstede and Sonja Holl [94].

The basic requirement for the renaming framework is the ability to rename Event-
B elements. Moreover renamings involving machine refinements or context extensions
should propagate through all the occurrences of the elements even in different files
keeping the consistency of the model. “Renaming” simply renames the free identifiers
and by checking possible renaming clashes we ensure that we are not changing the
meaning of the model (apart from the change of names or labels). As a consequence,

the overall proof obligations state should not change after the renaming.

Figure 5.5 shows the renaming framework architecture. It is considered a framework
because it is designed in a generic way allowing the incorporation of other languages

(i.e. not restricted to Event-B).

The renaming framework is an Eclipse plug-in [66, 36]. The renaming operation starts
at the RefactoryManager which loads the refactoring tree in the extension points. The
refactoring tree corresponds to the structure of the language to be used: that structure
is used to navigate and find occurrences in the files. Afterwards Operation Scheduler re-
trieves the related files, the symbols (possible name clashes) and the individual renaming
operations (renaming operation is different for each element) to be applied. The run()
method checks for possible clashes, returns a clash report and requests a confirmation
before executing the renaming. Upon confirmation, the renaming is propagated in a

“top-down” style (from the abstract to the concrete level) throughout the model and

'"Extracted from [160] and designed by Stefan Hallerstede and Sonja Holl

Chapter 5 Tool Support

113

Input.Element, File

Refactory
Manager

Output: Problems

ashMap:

run()

File -= List of Problems

Extension Refactoring
]

Tree

_| Operation

HashMap:
File -» List of Operations

Scheduler

|

Get

Get

Operations() Symbols()

‘\l//

Get
Related
Files()

Refactoring
Tree

FIGURE 5.5: Renaming/Refactory Architecture

related files. The possible clashes are overestimated: if the files are somehow related (for

instance, two machines share the same context but are not a refinement of each other)

a clash can be reported. Currently the refactory plug-in also uses the Rodin Indexer

plug-in [184] to accelerate the search of elements and find clashes.

The renaming can be applied to the following Event-B elements:

e variables

e carrier sets

e constants

e event parameters

e labelled elements like events, invariants, actions, guards, axioms

e machines

e contexts

Figure 5.6° represents the refactory trees when an invariant label is renamed.

The renaming operation creates a list of related files and proofs to be renamed according

to the refactory tree in the extension points.

*Extracted from [160] and designed by Hallerstede and Sonja Holl

114 Chapter 5 Tool Support

File which
shall be
modified

Machine. Proofs

etRelatedMachines etRelatedMachine
GetRelatedP roofs GetRelatedProofs

Refactoring Refactoring

Saved
Extension
Operations

FIGURE 5.6: Refactoring Trees after processing the extension points
5.4.1 User interface

This section briefly describes how the renaming plug-in is used. After installing this plug-
in (available under the main Rodin Update site http://rodin-b-sharp.sourceforge.
net/updates) in the Event-B explorer perspective, the user selects the element to re-
name as seen in Fig. 5.7(a). After the introduction of the new name (Fig. 5.7(b)), a
list of related files is created and the possible clashes are reported as seen in Fig. 5.7(c).

Thereafter the user decides to proceed or not by confirming the renaming execution.

5.4.2 Renaming Proof Obligations

One of the initial requirements for the renaming plug-in is the renaming of proofs.
The current version (v1.1.0) supports the renaming of proofs including the renaming of
carrier sets (that was not possible in previous versions). In the Rodin platform, proof
obligations for a model are divided in three different files: Proof Obligation file (bpo),
Proof file (bpr) and Proof Status file (bps). The proof obligation (bpo) contains the
proof obligations generated by the Proof Generator (Sect. 1.5.7) for a model. The proof
file (bpr) contains the proof tree for each proof obligation including generated hypotheses
to be discharged, applied proof rules (device used to construct proofs of sequents) and
the elements (variables, carrier sets, constants, etc) that are part of the proof. Finally
the proof status file (bps) contains the state of the proof obligation: not proved or
discharged. Any change in the model regenerates a new bpo and bps file. The bpr files
are heavier (proof tree needs to be reconstructed and loaded to memory) so the proof
trees are reused whenever possible. For the renaming of proof obligation, three possible

solutions arised:

e Adding new hypotheses: after the renaming execution terminates, the proof obli-

http://rodin-b-sharp.sourceforge.net/updates
http://rodin-b-sharp.sourceforge.net/updates

Chapter 5 Tool Support

115

| Event-B Expl &3\ ({5 Project Explo] =8¢
B~
J |®
¥ =% Generic
» @ ChannelParameters
» & protocol
» @ ProtocolTypes
» @ Source
> @ Target
> @ ax
» @ Channel
» @ PChannel
v @ Protocol
¥ © Variables
@ qgchannel
© pchannel .
» < Invariants Properties
* Theorems
> 3 Events
» @ Proof Obligati Purge Proofs...
» @ QChannel —

(a) Refactory menu

Rename Component

This wizard renames an existing component in an Event-B Project

New Name: [qchannel

(b) New name wizard

600

Report Refactory Component

Report for the specified renaming operation in an Event-B Project

Report:

File protocoll:

problem: The name ‘qchannel’ could create name clashes in 'INITIALISATION/
QChannel/actl’

problem: The name 'qchannel’ could create name clashes

problem: The name ‘qchannel’ could create name clashes in 'SendRequest/QChannel/
actl’

problem: The name ‘gchannel' could create name clashes in 'RecvReq_SendResp/
QChannel/grd1"

problem: The name ‘qchannel’ could create name clashes in 'SendRequest/QChannel/

grd2']

< Back Next > (" Cancel) (Finish

)

(¢) Report wizard

FIGURE 5.7: Refactory User Interface

gation files are updated by adding new hypotheses (something like old_name =

new_name) to the proof trees (in bpr files). This approach has its advantages

(fast, since proofs do not have to be replayed) and disadvantages (it is not really

refactoring since you can still see the old variables in the refactored proof). Also

it does not work for carrier sets (in Event-B, two carrier sets are always distinct).

e Renaming the proof obligation:

the occurrences of the names to be changed

(old_name) in the proof obligations are renamed to the new name (new_name).

There are two possible implementations of this option:

116 Chapter 5 Tool Support

— Renaming proof tree: The occurrences of the old_name are replaced with
new_name at the level of the proof tree. The reasoners (generates proof
rules) for those proofs are rerun returning a new (renamed) version of the
original proof rule. The reasoners input elements in the style old_name —
new_name, which will be used to re-compute the reasoners recursively when

replaying the proof tree [123].

— Renaming proof files: just as machine and context files, the structure of
proof files is added to the plug-in extension-points (corresponding to bpr).
The result is renaming the occurrences directly over bpr whenever necessary.
The disadvantage of using this approach is the dependence on the proof file
structure: changes in the proof file structure would require the change of the

plug-in which is cumbersome.

We opt to use the second solution where proof trees are renamed. The leaves of the trees
need to be explored to find and rename all the occurrences but in the end, the proof
trees completely reflect the renamed element. The disadvantage is that the operation
can take some time to finish when there are many proof trees with several long leaves

(complex proofs). We intend to work on an optimisation of such renaming in the future.

5.5 Decomposition tool

Using the extensibility of the Rodin platform, a plug-in was developed for the semi-
automatic decomposition of models. The tool allows shared event and shared variable
decomposition. This work was developed in collaboration with Thai Son Hoang and
Carine Pascal. With Michael Butler, we agreed that the correct methodology to sup-
port decomposition should be different for each style: for shared variable decomposition,
the events to be allocated to each sub-component should be selected by the user; for the
shared event decomposition, variables instead are selected by the user; as much as pos-
sible, the rest of the decomposition process should not require the user’s input. Hoang
started the development of the tool by creating the interface corresponding to the de-
composition for the shared variable decomposition. Pascal continued that development
by introducing the required validations, creation of external external and shared vari-
ables. Our contribution was the development of the shared event approach in terms of
validations, splitting events, validating predicates and generating the sub-components.
Moreover, we developed the persistency file where the decomposition configuration can

be saved and re-run as many times as desired.

The decomposition originates sub-components according to the decomposition configu-
ration (allocation of variables). That configuration is stored persistently in a composed

machine (cf. Chapter 2 and [162]) for possible future reuse or editing as seen in Fig. 5.8.

Chapter 5 Tool Support 117

M
,1 COMPOSED MACHINE CM
; REFINES M,
[refines INCLUDES
N
Mn P
Q
EVENTS

evt.1 REFINES M, .evt_1
Combines Events N.evt_1 || P.evt_1

evt_.n REFINES M, .evt_n

N P Q Combines Events P.evt.n || Q.evt_n
. END
f refines I refines] refines (b)

(a)

F1GURE 5.8: Decomposition tool diagram for a machine M,, and composed machine
CM

The input for the decomposition is a machine of a given Rodin project selected by the
end-user. After the selection of decomposition configuration, the tool generates the
sub-components automatically. The steps to be followed in order to decompose are (we

decompose machine M,, in Fig. 5.8(a)):

1. End-user selects a machine M,, to decompose.
2. End-user defines sub-components to be generated: N, P, Q

3. End-user selects the decomposition style to use:

Shared Variable: end-user selects the events to be allocated to sub-components.
The tool automatically decomposes the rest of the model according to the

event partition (shared/private variables, external events).

Shared Event: the end-user selects the variables to be allocated for each sub-

component. The rest is done automatically.

4. The end-user can opt to decompose the seen contexts into the sub-components

similarly to the machine decomposition.

5. Sub-components are fulfilled according to the decomposition configuration. Invari-
ants depending on variables allocated to a single sub-component (private variables)

are automatically added.
6. The decomposition configuration is stored as a composed machine.

7. Sub-components N, P, Q ...can be further refined.

For the shared event decomposition, a validation might be required to ensure that the

selected machine (Machine M,,) does not have complex predicates or assignments in-

118 Chapter 5 Tool Support

Event-B Decomposition
Decomposing an Event-B model into sub-models
Event-B Decomposition
i X Identifying the machine to be decomposed
Decomposing an Event-B model into sub-models
Project | Generic B

Specifying the decomposition style Machine [Mn B

Decomposition Style | Shared events (B-style)

: (" Add)

Q (" Edit)

¥ Decompose contexts

Remove

~)\
@ < Bac (Next>) Cancel

@ (<Back) [Nex Cancel) (Finish)

FIGURE 5.9: Graphical User Interface for the Decompositon tool

volving variables of different sub-components. That would be a hint that a further

requirement is required in the model before the decomposition.

The decomposition configuration is performed through a wizard using the Rodin’s Graph-
ical User Interface as depicted in Fig. 5.9. The decomposition configuration is stored
persistently for replaying/editing although further study is still required for this matter.
A visualisation view for decomposition seems intuitive and we intend to explore it using

GMF [82].

5.6 Conclusions

The progression and the maturity of formal methods shifted the way they are applied
nowadays. In the 1980s the application of the Z notation to the IBM CICS transaction
processing system was recognised as a major (award-winning) technical achievement,
but it is significant that it used only very simple tools: syntax and type-checkers. In the
1990s, the Mondex project was largely a paper-and-pencil exercise, but it still achieved
the highest level of certification [188]. Modelling and proving manually by hand it is still
possible but slowly the need for less error-prone methodologies, in particular for repet-
itive tasks, requires the use of tools. Developing tools to support the formal methods
process has been an activity that started with the first developments of formal methods
technology. Both the underlying formal methods technology and formal methods tools
have evolved substantially over the past four decades [58]. Today many people feel that
it would be inconceivable not to use some kind of verification tool [188]. Consequently
the tool development in formal methods and best practices to reach it are currently

subject of study within our community [107].

In this document, we address this topic by envisaging tool support to the previous
described techniques: composition, decomposition and generic instantiation. In all tech-
niques we have suggested methodologies for the implementation of tools. Nevertheless

due to time constraints, only composition and decomposition have more elaborated tool

Chapter 5 Tool Support 119

support. As a result of our study, we addressed the need of other tools (such as refac-
toring of Event-B elements throughout refinement chain while maintaining the validity
of discharged proofs). Our goal was to develop prototype tools that with experience and
application to more complex case studies, could become more mature and robust. Con-
sequently further challenges regarding formal modelling to be found and tackled. And
even as prototypes, the developed plug-ins have been used already to model different
systems such as flash systems [62, 60], a spacecraft system [73] or cruise control sys-
tem [190], among others with success. With the received feedback, the tools undertook
several changes resulting in performance improvements, becoming more user friendly
and sometimes having additional features. There are still plenty of tool challenges to be

explored and developed as described in Chapter 7.

Chapter 6

Case Study

A case study involving the specification and refinement of an Event-B model is presented.
This chapter describes how the techniques presented in the previous chapters may be
used in practice. Throughout the case study, some design rules for Event-B are presented.
These rules are specialisations of Event-B techniques already presented. These rules were
suggested by the needs of the case study, but are general enough to be useful in other

cases.

6.1 Introduction

Case studies can be described as a process or record of research in which detailed con-
sideration is given to the development of a particular matter over a period of time. They
have two main purposes: the explanation and description of the application of a par-
ticular technique (illustration purposes) and to validate the usefulness of the technique
in a variety of systems (validation purpose). The described case study fulfils the first
purpose: modelling a complex system from an abstraction to a more concrete model.
Consequently the number of events, variables and proof obligations increase in a way
that the model starts becoming hard to manage. Therefore a suitable solution at this
stage is to use our decomposition technique. This procedure is repeatedly applied to
the rest of the refinements. The application of decomposition in simple, abstract cases
has very little or no real advantage. As aforementioned in Section. 4.4, the point of
decomposition (correct abstraction level) is important, since if it is done too early, the
sub-component might be too abstract and will not be able to be refined (without know-
ing more about the other sub-systems); if the system is decomposed too late, it will not
benefit from the approach anymore. Therefore the application of decomposition only

occurs after several refinements as expected.

The second purpose of case studies is usually achieved through the development of

different models that represent different kind of systems. Their application allows the

121

122 Chapter 6 Case Study

assessment of techniques, their suitability, advantages and disadvantages when applied
in different manners. Besides the case study in this chapter, the presented techniques

have already been used for different systems:

e Flash System Development [62, 60]: use of shared event composition and decom-

position.

e Decomposition of a Spacecraft System [73]: use of shared event decomposition.

e Development of a Cruise Control System [190]: use of shared event composition

and decomposition.

e Development of a Pipeline System [56, 12]: use of shared event composition and

decomposition.

e Development of Parallel Programs [90]: use of shared variable decomposition over

shared data accessed by different components.

e Development of a Multi-directional Communication Channel [163]: use of generic

instantiation.

Here, a safety-critical metro system case study is developed. This version is a simplified
version of a real system but tackles points where there the model becomes complex and
where the presented techniques are suitable: stepwise incrementation of the complexity
of the system being modelled, sub-components communication, stepwise addition of
requirements at each refinement level, refinement of decomposed sub-components. We
develop a metro system model introducing several details including notion of tracks,
switches, several safety measures and doors functionality among others. If the presented
techniques were not used, the metro system model would be extremely complex and hard
to manage after the inclusion of all the requirements due to the high number of variables,
events, properties to be added and proof obligations to be discharged. Decomposition
and generic instantiation alleviate that issue by introducing modularity and reusing

existing sub-components allowing further manageable refinements to be reached.

The metro doors requirements are based on real requirements. The case study is devel-
oped in the Rodin platform using the developed tools whenever possible. We use the
shared event composition/decomposition and generic instantiation. The metro system
can be seen as a distributed system. Nevertheless the modelling style suggested can be

applied to a more general use.

Chapter 6 Case Study 123

6.2 Overview of the safety-critical metro system

The safety-critical metro system case study describes a formal approach for the devel-

opment of embedded controllers for a metro system®.

Butler [44] makes a description
of embedded controllers for a railway using classical B. The railway system is based
on the french train system and it was subject of study as part of the european project
MATISSE [121]. Our starting point is based on that work but applied to a metro sys-
tem. That work goes as far as our first decomposition originating three sub-components.
We augment that work by refining each sub-component, introducing further details and
more requirements to the model. Moreover in the end we instantiate emergency and

service doors for the metro system.

The metro system is characterised by trains, tracks circuits (also called sections or
CDV:Circuit De Voie, in French) and a communication entity that allows the interaction
between trains and tracks. The trains circulate in sections and before a train enters or
leaves a section, a permission notification must be received. In case of a hazard situation,
trains receive a notification to brake. The track is responsible for controlling the sections,
changing switch directions (switch is a special track that can be divergent or convergent

as seen in Fig. 6.1) and sending signalling messages to the trains.

R % i
s - s

(a) Divergent Switch (b) Convergent Switch

FIGURE 6.1: Different types of Switches: divergent and convergent

Figure 6.22 shows a schematic representation of the metro system decomposed into three
sub-components. Initially the metro system is modelled as a whole. Global properties
are introduced and proved to be preserved throughout refinement steps. The abstract
model is refined in three levels (MetroSystem_M0 to MetroSystem_M3) before we apply
the first decomposition. We follow a general top-down guideline to apply decomposition:
Stage 1 : Model system abstractly, expressing all the relevant global system properties.
Stage 2 : Refine the abstract model to fit the decomposition (preparation step).

Stage 3 : Apply decomposition.

Stage 4 : Develop independently the decomposed parts.

LA version of this model is available online at http://eprints.ecs.soton.ac.uk/23135/
*Image extracted from [44]

http://eprints.ecs.soton.ac.uk/23135/

124 Chapter 6 Case Study

For instance, Stage 1 is expressed by refinements MetroSystem_M0O to MetroSystem_M35.
MetroSystem_M3 is also used as the preparation step before the decomposition corre-
sponding to Stage 2. The model is decomposed into three parts: Track, Train and
Middleware as described in Stage 3. This step allows further refinements of the indi-
vidual sub-components corresponding to Stage 4. The following decompositions follow

a similar pattern.

TRACK TRAINS
EnterSection
—{ChangeSwitchDiv Brake ———
— ChangeSwitchCnv LeaveSection
SendTrainMsg Check
AcceptMsg DeliverMsg
COMMS

FI1GURE 6.2: Components of metro system

An overview of the entire development can be seen in Fig. 6.3. After the first decompo-
sition, sub-components can be further refined. Train global properties are introduced in
Train leading to several refinements until Train_M/ is reached. Train_M} is decomposed
into LeaderCarriage and Carriage. We are interested in refining the sub-component cor-
responding to carriages in order to introduce doors requirements. These requirements
are extracted from real requirements for metro carriage doors.Carriage is refined and
decomposed until it fits in a generic model GCDoor corresponding to a Generic Carriage
Door development as seen in Fig. 6.4. We then instantiate GCDoor into two instances:
EmergencyDoors and ServiceDoors benefiting from the refinements in the pattern. We

describe in more detail each of the development steps in the following sections.

6.3 Abstract Model: MetroSystem_ MO

We model a system constituted by trains that circulate in tracks. The tracks are di-
vided into smaller parts called sections. The most important (safety) global property
introduced at this stage states that two trains cannot be in the same section at the same

time (which would mean that the trains had clashed).

We need to ensure some properties regarding the routes (set of track sections):

e Route sections are all connected: sections should be all connect and cannot have

empty spaces between them.

Chapter 6 Case Study 125

MetroSystem_MO

MetroSystem_M3

decomposes decomposes

Train | | Middleware | | Track
Treﬁnes : :
Treﬁnes

| Leader Carriage | | Carriage |
: :
o N >
; | EmergencyDoor | ! i | ServiceDoor | :
i Treﬁnes i E Treﬁnes i
' ji i

FIGURE 6.3: Overall view of the safety-critical metro system development

decomposes decomposes
| Leader Carriage | | Carriage |
H Treﬁnes
H

P ——

I EmergencyDoor_MO0

.\‘

Treﬁnes |
B
I |ServiceD00r_M1 |

|- ServiceDoor_M0 | \'\. :

I
} Treﬁnes

| EmergencyDoor_M1 |

I
refines o Treﬁnes
I

ServiceDoor_M2 | _' .
./

Ik
' | EmergencyDoor_MZl i‘\
\ i

[PUIp P Py gy P -

Instance - Instance Pattern

FIGURE 6.4: Carriage Refinement Diagram and Door Instantiation

126 Chapter 6 Case Study

e There are no loops in the route sections: sections cannot be connected to each

other and cannot introduce loops.

These properties can be preserved if we represent the routes as a transitive closure
relation. We use the no-loop property proposed by Abrial [9] applied to model a tree
structured file system in Event-B [61]: a context is defined and this property is proved
over track section relations and functions. The reason we choose this formulation, instead
of transitive closure which is generally used is to make the model simpler and easier to
prove. Context TransitiveClosureCtxr containing the transitive closure property can

be seen in Fig. 6.5.

context TransitiveClosureCtx

constants cdvrel
tcl
cdvfn

sets CDV

axioms
@axml cdvrel = CDV < CDV
@axm2 cdvfn = CDV -» CDV
@axm3 tcl € cdvrel — cdvrel
@axm4 Yr-(recdvrel = r c tcl(r))
@axm5 Yr-(recdvrel =r;tcl(r) c tcl(r))
@axmb Vr,t-(recdvrel A rct A r;tct = tcl(r)ct)
theorem @thml cdvfn c cdvrel
theorem @thm2 Vr-recdvrel = tcl(r) = r v (r;tcl(r))

theorem @thm3 Vt-tecdvfna(Vs:sct~[s]=s=g)=tcl(t)n(CDV < id)=o
theorem @thm4 tcl(e) = o
end

FIGURE 6.5: Context TransitiveClosureCtx

Set C DV represents all the track sections in our model. Constant tcl which is a transitive
closure, it is defined as a total function mapped from CDV « CDV to CDV + CDV.
Giving r € CDV « CDV, the transitive closure of r is the least = satisfying x =
rUr;z [61]. Difficult transitive closure proofs in machines are avoided by using theorems
such as theorem thm3 shown in Fig. 6.5: for s C CDV and t as a partial function
CDV +CDV, s C t~![s] means that s contains a loop in the ¢ relationship. Hence, this
states that the only such set that can exist is the empty set and thus the ¢ structure
cannot have loops. This theorem has been proved using the interactive prover of Rodin.

The strategy to prove this theorem is to use proof by contradiction [61].

We define the environment of the case study (static part) with context MetroSystem_C0
that extends TransitiveClosureCtr as seen in Fig. 6.6. Set TRAIN represent all the

trains in our model. Several track properties are described in the axioms:

e The constant net represents the total possible connectivity of sections (all possible
routes subject to the switches positions) defined as relation CDV <> CDV (axml).

No circularity is allowed as described by axm?2. Moreover, the no loop property

Chapter 6 Case Study 127

context MetroSystem CO extends TransitiveClosureCtx

constants aig_cdv
net
div_aig_cdv
cnv_aig_cdv
next®

sets TRAIN

axioms
@axml net € CDV < CDV
@axm2 net n(CDV < id)=g
@axm3 aig_cdv c CDV
@axm4 div_aig_cdv ¢ aig_cdv
@axm5 cnv_aig_cdv c aig_cdv
@axm6 div_aig_cdv n cnv_aig_cdv = o
@axm7 finite(net)
@axm8 (aig_cdv x aig_cdv) n net = ¢
@axm9 Vcc-(cc € (CDVN\aig_cdv) = card(net[{cc}]) =1 A card(net~[{cc}])=1)

@axml0 Ycc-(cc € aig_cdv = ((card(net[{cc}])=2 A card(net~[{cc}])=<1) v (
card(net[{cc}]) <1 A card(net~[{cc}])=2)))

@axmll tcl(net)nid=o
theorem @thml tcl(net) = net u (net;tcl(net))

end

FIGURE 6.6: Context MetroSystem_C0

for net is expressed by axiom axmll. Theorems thml states that net preserves

transitive closure.

e Switches (aiguillages in French) are sections (axm3) that cannot be connected
to each others (axm6). They are represented by aig_cdv divided into two kinds:
div_aig_cdv for divergence switches and cnv_aig_cdv for convergent switches. More-
over switches have at most two predecessors and one successor or one predecessor

and two successors (axml0).

e Non-switches have at most one successor and at most one predecessor (axm9).

Besides the global property described before defined by invariant inv13 in Fig. 6.7(a),

some other properties of the system are added:

1. The trains (variable trns) circulate in tracks. The current route based on current
positions of switches is defined by next: a partial injection CDV »» CDV. next
is a subset of met (invl) preserving the transitive closure property as described
by theorem thml,thm2 and does not have loops (thm3). Sections occupied by
trains are represented by variable occp. These sections also preserve the transitive

closure property as seen by thm4.

2. A train occupies at least one section and the section corresponding to the beginning
and end of the train is represented by variables occpA and ocepZ respectively. Note
that next does not indicate the direction that a train is moving in: the direction
can be ocepA to ocepZ or ocepZ to ocepA. These two variables point to the same

section if the train only occupies one section (inv1l).

128 Chapter 6 Case Study

The system proceeds as follows: trains modelled in the system circulate by entering and
leaving sections (events enterC' DV and leaveCDV in Fig. 6.7(b)), ensuring that the
next section is not occupied (grd9 in enterC'DV') and updating all the sections occupied
by the train (actl and act2 in both events). At this abstract level, event modifyTrain
modifies a train defining the set of occupied sections for a train t. A train changes speed,
brakes or stops braking in events changeSpeed, brake and stopBraking. When event
brake occurs, train t is added to a set of braking trains (variable braking). Variable
next represents the current connectivity of the trail based on the positions of switches.
The current connectivity can be updated by changing convergent/divergent switches in

events switchChangeDiv and switchChangeCnv as seen in Fig. 6.7(b).

6.4 First Refinement: MetroSystem_M1

MetroSystem_M1 refines MetroSystem_MO0, incorporating the communication layer and
an emergency button for each train. The communication work as follows: a message is
sent from the tracks, stored in a buffer and read in the recipient train. The properties

to be preserved for this refinement are:

1. Messages are exchanged between trains and tracks. If a train intends to move to
an occupied section, track sends a message negating the access to that section and
the train should brake.

2. As part of the safety requirements, all trains have an emergency button.

3. While the emergency button is enabled, the train continues braking and cannot

speed up.

Now the system proceeds as follows: trains that enter and leave sections must take
into account the messages sent by the tracks. Therefore events corresponding to enter
and leaving section need to be strengthened to preserve this property. The requirement
concerning the space required for the train to halt is a simplification of a real metro
system and could require adjustments to replicate the real behaviour (for instance the
occupied sections of a train could be defined as the sum of the sections directly occupied
by the train and the sections indirectly occupied by the same train that correspond to the
sections required for the train to halt). Nevertheless in real systems, trains can have in-
built a way to detect the required space to break. For instance in Communication Based

Train Control (CBTC [97, 72]) systems, that is called the stopping distance downstream.

The messages are represented by variables tmsgs that stores the messages (buffer) sent
from the tracks and permit that receives the message in the train, expressing property

1. At this level, the messages are just boolean values assessing if a train can move to the

Chapter 6 Case Study

129

variables next
trns
occp
occpA
occpZ
braking speed

invariants
@invl next ¢ net
@inv2 next € CDV »» CDV
@inv3 trns ¢ TRAIN
@inv4 occp € CDV < trns
@inv5 occpA € trns — CDV
@invé
@inv7 occpZ € trns — CDV
@inv8

@inv9 braking c trns
@inv10 speed € trns — N

machine MetroSystem MO sees MetroSystem_CO

Vtt-(ttetrns = occpA(tt) € occp~[{tt}])

Vtt-(ttetrns = occpZ(tt) € occp~[{tt}])

@invll Vtt-ttetrns A card(occp~[{tt}]1)>1 = occpA(tt) # occpZ(tt)
@inv12 finite(occp~)
@invl3 VtI,t2-tletrns A t2etrns A t1#t2 = occp~[{tI}]noccp~[{t2}]=0

theorem
theorem

theorem

theorem
(s;tcl(s))

@thml next € cdvfn
@thm2 tcl(next) = next u (next;tcl(next))

@thm3 (Vs-scnext~[s]=>s=g)=>tcl(next)n(CDV < id)=s

@thm4 Vtt,s-ttetrns A s ¢ nextroccp~[{tt}] = tcl(s) = s v

(a) Variables, invariants in MetroSystem_M0

event enterCDV

event brake

any tl cl c2 any t1 event addTrain
where where any t oc
@grdl t1 e trns @grdl t1 e TRAIN where
@grd2 cI € CDV @grd2 tletrns\braking @grdl t € TRAIN\trns
@grd3 c2 € CDV then @grd2 oc € CDV
@grd4 speed(tI)>0 @actl braking=brakingu {tI} @grd3 oc & dom(occp)
@grd5 cI = occpZ(tl) end then
@grd6 cledom(next) @actl trns=trns u{t}
@grd7 c2 = next(occpZ(tl)) event stopBraking @act2 speed(t)=0
@grd8 Vtt-ttetrns A card((occp u {c2 » tI})~[{tt}])>1 any tI @act3 occpA(t) oc
= (occpZe{tl » c2})(tt) # occpA(tt) where @act4 occpZ(t) = oc
@grd9 c2 & dom(occp) @rdl t1 € TRAIN @act5 occp = occp u {ocwt}
then @grd2 tlebraking end
@actl occpZ(tl) = c2 then
@act2 occp=occp u { ¢c2 » tI} @actl braking=braking\{t1} event modifyTrain
end end any t ocA oc
where
event leaveCDV event switchChangeDiv @grdl ocAedom(next)
any t1 cl c2 any ac cl c2 @grd2 t e trns
where where @grd3 oc ¢ CDV
@grdl t1 e trns @grdl ac € div_aig_cdv @grd4 ocA e oc
@grd2 c1 e CDV @yrd2 cl e CDV @grd5 oc n dom(occp)=g
@grd3 c2 € CDV @yrd3 c2 e CDV @grd6 finite(oc)
@grd4 speed(t1)>0 @grds c2 e ran (next) @grd7 occpZ(t)edom(next)
@grd5 cledom(next) @yrd4 (ac » cl) e next @grd8 card(oc)=0 =>0cA = occpZ(t)
@grd6 cl=occpA(tl) @grd5 (ac » c2) € net @grd9 card(oc)=1
@grd7 c2=next(cl) @rd6 cl # c2 = occpZ(t) # ocA A next(occpZ(t))eoc
@grd8 occpA(tl)#occpZ(tl) @grd7 ac & dom(occp) @grd10 next(ocA)eoc
@grd9 c2 e (occp\{cIptI})~[{tI}] then then
@grdlo Ytt-ttetrns A card(((occp \ {cI» tI}))~[{tt}])>1 @actl next = next < {ac » c2} @actl occpA(t) = ocA

= (occpA<{tl » c2})(tt)zoccpZ(tt) end @act2 occp = occp u (ocx{t})
then end
@actl occpA(tl)=c2 event switchChangeCnv
@act2 occp = occp\{cI»tI} any ac cl c2
end where
@grdl ac € cnv_aig_cdv
event changeSpeed @grd2 cI € CDV
any tlI sl @grd3 c2 € CDV
where @grd8 c2 ¢ dom (next)
@grdl t1 e trns @grd4 (clI » ac) € next
@grd2 sI1 e N @grd5 (c2 » ac) € net
@grd3 tle braking = sl<speed(tI) @grd6 cl # c2
then @grd7 ac & dom (occp)
@actl speed(tl) = si then
end @actl next = ({cI}<next) u {c2 » ac}
end

FIGURE 6.7:

(b) Events of MetroSystem_MO0

Variables, invariant and events of MetroSystem_M0

130 Chapter 6 Case Study

following section (check if the section is free): if TRUE the train can move; if FALSE the
next section is occupied and the train should brake. New event sendl'rainM sg models
the message sending. The reception of messages is modelled in event recvlrainMsg
where the message is stored in permit before tmsgs is reset. The guards of event
brake are strengthened to allow a train to brake when permit(t) = FALSE or when
the emergency button is activated (guard grd3 in Fig. 6.8(b)). Property 2 is expressed
by adding variable emergency_button. The activation/deactivation of the emergency
button occurs in the new event toggle EmergencyButton. Property 3 is expressed by
guard grd3 in event stopBraking: a train can only stop braking if the emergency button

is not enabled.

machine MetroSystem_M1 refines MetroSystem M0 sees MetroSystem CO

variables next trns occp occpA occpZ
braking speed
tmsgs permit emergency button

invariants
@invl tmsgs € trns — P(BOOL)
@inv2 permit € trns — BOOL
@inv3 emergency button € trns — BOOL

(a) Variables and invariants in MetroSystem_M1

event brake refines brake event sendTrainMsg
any til any tl
where where
@grdl t1 € TRAIN @grdl tl1 € trns
@grd2 tletrns\braking @grd2 tmsgs(tl) = @
@grd3 permit(tl) = FALSE then
v emergency button(tI)=TRUE @actl tmsgs(tl)= {bool(
then occpZ(tl)edom(next)
@actl braking=braking u {tI} Anext(occpZ(tl)) & dom(occp))}
end end

event stopBraking refines stopBraking eyent recvTrainMsg

any tl any tI bb event toggleEmergencyButton
where where any t value
@yrdl t1 e TRAIN @rdl t1 e trns where
@grd2 tlebraking @yrd2 bb e tmsgs(tl) @guard t € trns
@grd3 emergency button(tl) = FALSE then @guardl value € BOOL
then @actl permit(tl) = bb then
@actl braking=braking\{tI1} @act2 tmsgs(tl) = o @actl emergency button(t)= value
end end end

(b) Some events of MetroSystem_M1

FIGURE 6.8: Excerpt of MetroSystem_M1

6.5 Second Refinement: MetroSystem_M2

In this refinement, we introduce train doors and platforms where the trains can stop to
load /unload. When stopped, a train can open its doors. The properties to be preserved

are:

1. If a train door is opened, then the train is stopped. In contrast, if the train is

moving, then its doors are closed.

Chapter 6 Case Study 131

2. If a train door is opened, that either means that the train is in a platform or there

was an emergency and the train had to stop suddenly.

3. A train door cannot be allocated to different trains.

We consider that platforms are represented by single sections. A train is in a platform
if one of the occupied sections correspond to a platform. Doors are introduced as illus-
trated in Fig. 6.9(a) by sets DOOR and their states are represented by DOOR_STATE.
Variables door and door_state represent the train doors and their current states as seen
in Fig. 6.9(b): all trains have allocated a subset of doors (inv2). Several invariants are
introduced to preserve the desired properties: property 1 is defined by invariants inv4
and inwvb; property 2 is defined by invariant inv7; property 3 is stated by inv3; theorem

thm1 is used for proving purposes (if no doors are open, then all doors are closed).

To preserve invb, the guards of changeSpeed (in Fig. 6.8(b)) are strengthened by
grd4 ensuring that whilst the train is moving, the train doors are closed. Also events
that model entering and leaving sections are affected, with the introduction of a sim-
ilar guard (grdll in leaveCDV'). Adding/removing train doors is modelled in events
addDoorTrain and removeDoorTrain respectively: to add/remove a door, the respec-
tive train must be stopped. If the train is stopped and either one of the occupied sections
corresponds to a platform or the emergency button is activated (guard grd3), doors can
be opened as seen in event openDoor. For safety reasons, event toggle EmergencyButton
is strengthened by guard grd3 to activate the emergency button whenever doors are open

and the train is not in a platform.

6.6 Third Refinement and First Decomposition: MetroSys-
tem_M3

This refinement does not introduce new details to the model. It corresponds to the prepa-
ration step before the decomposition. We want to implement a three way shared event
decomposition and therefore we need to separate the variables that will be allocated to
each sub-component. In particular for exchanged messages between the sub-components,
the protocol will work as follows: messages are sent from Track and stored in the Mid-
dleware. After receiving the message, the Middleware forwards it to the corresponding
Train. Train reads the message and processes it according to the content. This protocol
allows a separation between Train and Track with the Middleware working as a bridge

between these two sub-components.

The decomposition follows the steps described in Sect. 5.5. Variables are distributed
according to Fig. 6.10. To avoid constraints during the decomposition process, predi-
cates and assignments containing variables that belong to different sub-components are

rearranged in this refinement step.

132

Chapter 6 Case Study

context MetroSystem C1 extends MetroSystem CO
constants OPEN CLOSED PLATFORM
sets DOOR_STATE DOOR
axioms
@axml partition(DOOR_STATE, {OPEN}, {CLOSED})

@axm2 PLATFORM c CDV
end

machine MetroSystem M2 refines MetroSystem M1 sees MetroSystem C1
variables next trns occp occpA occpZ

braking speed tmsgs permit

door door_state emergency button

invariants
@invl door_state € DOOR — DOOR_STATE
@inv2 door € trns — P(DOOR)
@inv3 Vtl1,t2-tl1 € dom(door) A t2 e dom(door) A tI #t2
= door(tl) n door(t2) = o
Vt-t e dom(door) =>(3d-dcdoor(t) A door_state[d]={OPEN}
= speed(t)=0)
Vt-t € dom(door) A speed(t) > 0
= door(t) c door state~[{CLOSED}]
Vt,d-t € dom(door) A d € door(t) A PLATFORM n occp~[{t}]#e
= door_state(d) € {OPEN, CLOSED}
Vt-t e dom(door) A door(t) n door state~[{OPEN}] # &
=> PLATFORM n occp~[{t}]#e v emergency button(t) = TRUE
theorem @thml Vt-t € dom(door) A door(t) n door state~[{OPEN}] =¢
= door(t)cdoor state~[{CLOSED}]

@inv4
@inv5s
@invé

@inv7

(a) Context MetroSystem_C1

(b) Variables, invariants in MetroSystem_M2

event toggleEmergencyButton
refines toggleEmergencyButton
any t value

where
@grdl t e dom(door)
@grd2 value € BOOL
@grd3 door(t) n door state~[{OPEN}] # o
A PLATFORM n occp~[{t}]=o
= value = TRUE
then
@actl emergency button(t)= value
end

event openDoor

event closeDoor
any t ds
where
@grdl
@grd2
@grd3
@grd4
@grd5
then
@actl
end

t € dom(door)

speed(t) =0

ds c door(t)
door_state[ds]={OPEN}
ds#o

any t ds event removeDoorTrain @grd12 permit(t1)=TRUE
where any td then

@grdl t e dom(door) where @actl occpA(tl)=c2

@grd2 speed(t) = 0 @grdl t e dom(door) @act2 occp = (occp\{cIptl})

@grd3 occp~[{t}] n PLATFORM = o @grd2 d c DOOR end

v emergency button(t) = TRUE @grd3 d ¢ door(t) ,
@grdd ds ¢ door(t; @grd4 door_state[d]={CLOSED} event changeSpeed refines changeSpeed
o = any tI sl

@grds 3d-deds=>door_state(d)=CLOSED s speed(0)=0 There

@grd6 ds#e @act1 door(t) = door(t)\d @grdl t1 e dom(door)
then end @yrd2 sl e N

@actl door_state= door_state < (dsx{OPEN}) @grd3 tle braking = sl<speed(tl)

end @grd4 door(tl)ndoor state~[{OPEN}]=g¢

door state= door state < (dsx{CLOSED})

event addDoorTrain event leaveCDV refines leaveCDV

any td any tl cl c2
where where
@grdl t € trns @grdl tl1 e dom(door)
@grd2 d ¢ DOOR @grd2 cl e CDV
@grd3 Ytr-tredom(door) A tret @grd3 c2 € CDV
A door(tr)#e=>dndoor(tr)=e @grd4 speed(t1)>0
@grd5 speed(t)=0 @grd5 cledom(next)
@grd7 dndoor(t)=o @grd6 cl=occpA(tl)
e e
@qgr occ #0CC
@actl door(t)=door(t)ud @ZrdQ 2 2 (occp\{cgwtl})—-[{tl)]

@act2 door_state=

dlo Vtt-ttet
door states(dx{CLOSED}) °" e

A card(((occp \ {cI » tI}))~[{tt}])>1
= (occpA<{tl » c2})(tt)#occpZ(tt)
@grd11l door(tl)ndoor state~[{OPEN}]=g

end

then
@actl speed(tl) = s1
end

(c) Some events of MetroSystem_M2

FIGURE 6.9: Excerpt of MetroSystem_M2

Chapter 6 Case Study 133

MetroSystem_M3

variables

trns speed permit braking
next occp occpA occpZ
tmsgs emergency_button
door door_state

decompose
decompose
decompose
Track Train Middleware
variables variables variables
next occp occpA occpZ trns speed permit braking tinsgs
door door_state

FIGURE 6.10: MetroSystem_M3 (shared event) decomposed into Track, Train and
Middleware

Some guards need to be rewritten in the refined events. For instance, guard grdl0
in event leaveC DV needs to be rewritten in order not to include both variables trns

(sub-component T'rain) and occp (sub-component Track). Therefore it is changed from:

Vtt-tt € trns A card((occp U {c2 — t1}) " [{#t}]) > 1= (occpZ <+ {t1 — c2})(tt) # occpA(tt)
to:

Vtt-tt € dom(ocepZ) A card((ocep U {c2 + t1}) " [{tt}]) > 1= (ocepZ < {t1 — c2})(tt) # occpA(tt) (Fig. 6.11).

Both predicates represent the same property since trns corresponds to the domain
of variable occpZ (see inv7 in Fig. 6.7(a)). In Fig. 6.11, the original guard grd3 in
toggle EmergencyButton is rewritten to separate variables occp and door. In this case,
an additional parameter occpTrns representing the variable occp is added (grd4). This
additional parameter will represent the value passing between the resulting decomposed
events: parameter occpT'rns is written the value of occp and afterwards it is read in
guard grd3. Similarly guard grd4 in event openDoor must not include variables occp

and emergency_button and consequently parameter occpTrns is added.

Sub-components Train, Track and Middleware are described in the following sec-
tions. The composed machine corresponding to the defined decomposition can be seen

in Fig. 6.12 where it is illustrated how the original events are decomposed.

6.6.1 Machine Track

Machine Track contains the properties concerning the sections in the metro system.
Events corresponding to entering, leaving tracks and changing switch positions are part
of this sub-component resulting from the variables allocation for this sub-component:

next, occp, occpA and ocepZ. Event sendTrainMsg is also added since the messages are

134

Chapter 6 Case Study

event toggleEmergencyButton
refines toggleEmergencyButton
any t value occpTrns
where
@yrdl t e dom(door)
@rd2 value € BOOL

TRUE
occp~[{t}]

= value
@grd4 occpTrns

@yrd3 door(t) n door_state~[{OPEN}] # &
A PLATFORM n occpTrns=o

event leaveCDV refines leaveCDV
any tl cl c2
where
@yrdl tI € dom(door)
d2 ¢l e CDV

@rd3 c2 e CDV
@yrd4 speed(t1)>0
agrd5 cledom(next)
@yrd6 cl=occpA(tl)
c2=next(cl)

then
@actl emergency button(t)= value
end

8 occpA(tl)#occpZ(tl)

d9 c2 € (occp\{cIpti})~[{tI}]

d10 Vtt- ttedom(occpZ)

A card(((occp \ {cI» ti}))~[{tt}])>1
= (occpA<{tl » c2})(tt)#occpZ(tt)

event openDoor refines openDoor

any t occpTrns ds @yrd1l door(tI)ndoor state~[{OPEN}]=2
where @yrdl13 permit(t1)=TRUE

@yrdl t € dom(door) then

@grd2 speed(t) = 0 @actl occpA(tl)=c2

@yrd3 occpTrns = occp~[{t}] @act2 occp = (occp\{cI»tI})

@grd4 occpTrns n PLATFORM # o end
v emergency button(t) = TRUE
agrd5 ds ¢ door(t)
@yrd6 3d-deds=door_state(d)=CLOSED
@grd7 dsze
then
@actl door state= door state < (dsx{OPEN})
end

FIGURE 6.11: Preparation step before decomposition of MetroSystem_M3

sent from the tracks as seen in Fig. 6.13. The original events toggle EmergencyButton
and openDoor require occp in their guards. Consequently part of these original events

are included in this sub-component.

Note that the invariants defining the variables may change: in MetroSystem_M1 variable
ocep is defined as occp € CDV < trns (invj in Fig. 6.7(a)); in Track is occp € CDV
TRAIN (which is the same as theorem typing-occp : occp € P(CDV x TRAIN) in
Fig. 6.13). This is a consequence of the variable partition since trns is not part of
Track and therefore the occp relation is updated with trns’s type: TRAIN (cf. inv3 in
Fig. 6.7(a)). Variables occpA and occpZ are subject to the same procedure where the
original invariant is a total function trns— C DV and in the sub-component both become
P(TRAIN xCDV). The sub-components invariants are derived from the different initial
abstract models (cf. their labels in Fig. 6.13). Invariants that only restrain the sub-
component variables are automatically included although additional ones can be added

manually.

6.6.2 Machine Train

Machine Train models the trains in the metro system. Trains entering/leaving a sec-
tion, modelled by events enterCDV and leaveC' DV are part of this sub-component,
in spite of the decomposed events do not execute any actions (see Fig. 6.14(b)). The
interaction with sub-component Track occurs through parameters t1, ¢l and ¢2 (see
events T'rack.leaveCDV in Fig. 6.13). Variables door and door_state are part of this
sub-component and consequently the events that modify these variables: openDoor and
closeDoor. Moreover, since the emergency button is part of a train, the respective vari-
able emergencyButton (and the modification event toggle EmergencyButton) is also

included in this sub-component. Event recvlrainMsg receives messages sent to the

Chapter 6 Case Study 135

COMPOSED MACHINE MetroSystem_M3_cmp
REFINES MetroSystem_M3

INCLUDES
Track Train Middleware
EVENTS

addTrain refines addTrain
Combines Events Train.addTrain || Middleware.addTrain || Track.addTrain
modifyTrain refines modifyTrain
Combines Events Train.modifyTrain ||Track.modifyTrain
send TrainMsg refines sendTrainMsg
Combines Events Track.sendTrainMsg || Middleware.send TrainMsg
recvTrainMsg refines recvTrainMsg
Combines Events Train.recvTrainMsg || Middleware.recvTrainMsg
changeSpeed refines changeSpeed
Combines Events Train. changeSpeed
brake refines brake
Combines Events Train.brake
stopBraking refines stopBraking
Combines Events Train.stopBraking
enterCDV refines enterCDV
Combines Events Train.enterCDV || Track.enterCDV
leaveCDV refines leaveCDV
Combines Events Train.leaveCDV || Track.leaveCDV
openDoor refines openDoor
Combines Events Train.openDoor || Track.openDoor
closeDoor refines closeDoor
Combines Events Train.closeDoor
toggleEmergencyButton refines toggleEmergencyButton
Combines Events Train.toggleEmergencyButton || Track.toggleEmergencyButton
addDoorTrain refines addDoorTrain
Combines Events Train.addDoorTrain
removeDoorTrain refines removeDoorTrain
Combines Events Train.removeDoorTrain
switchChangeDiv refines switchChangeDiv
Combines Events Track.switchChangeDiv
switchChangeCnv refines switchChangeCnv
Combines Events Track.switchChangeCnv
END

FIGURE 6.12: Composed machine tool view corresponding to MetroSystem_M3 decom-
position

trains and the content is stored in the variable permit. Although variable permit is set
based on the content of the messages exchanged between Train and Track, that variable
is read by trains. This is the reason why it is allocated to this sub-component. The
events that change the speed of the train are also included in this sub-component: brake,

stopBraking, changeSpeed due to variables speed and braking as depicted in Fig. 6.14.

6.6.3 Machine Middleware

Finally the communication layer in modelled by Middleware as seen in Fig. 6.15. Muid-
dleware bridges Track and Trains, by receiving messages (sendTrainMsg) from the

tracks and delivering to the trains (recvTrainMsg). Variable tmsgs is used as a buffer.

Benefiting from the monotonicity of the shared event approach, the resulting sub-

components can be further refined. Following Fig. 6.3, Train is refined as described

136 Chapter 6 Case Study

machine Track sees MetroSystem Cl

event openDoor
any t occpTrns ds

invariants where
theorem @typing occpZ occpZ € P(TRAIN x CDV) @typing t t = TRAIN
theorem @typing occp occp € P(CDV x TRAIN) @typing occpTrns occpTrns € P(CDV)
theorem @typing next next € P(CDV x CDV) @typing_ds ds € P(DOOR)
theorem @typing occpA occpA € P(TRAIN x CDV) €grds occpTrns = occp~[{t}]

variables next occp occpA occpZ

@VetroSystem MO invl next ¢ net @grd7 ds#a
@MetroSystem MO inv2 next € CDV = CDV end
@etroSystem MO inv12 finite(occp~) event leave(DV
any tl cl c2
event sendTrainMsg where
any tI bb @typing t1 t1I € TRAIN
where @grd2 cl1 e CDV
@typing tl t1 € TRAIN @grd3 c2 € CDV

@typing bb bb € BOOL @grd5 cledom(next)
@grd3 bb = bool (occpZ(tl)Edom(next) @grd6 cl=occpA(tl)
A next(occpZ(t1))¢dom(occp)) @grd7 c2=next(cl)
end @grd8 occpA(tl)#occpZ(tl)
@grd9 c2 e (occp\{cI»tI})~[{tI}]
@grdl0 Vtt- ttedom(occpZ)
A card(((occp \ {cI» tI}))~[{tt}])>1
= (occpA<{tl » c2})(tt)#occpZ(tt)

event enterCDV
any tl cl c2

where h
@typing tl t1 € TRAIN t ?,n
Gord2 ¢l e CDV (gdcﬂ occpA(tl)=c2
Ggrd3 c2 e CDV @act2 occp = (occp\{cIptl})
@rd5 ¢l = occpZ(tl) end
@grd6 cledom(next) event toggleEmergencyButton
@rd7 c2 = next(occpZ(tl)) any t value occpTrns
@grds Vtt- ttedom(occpZ) where
A card((occp u {c2 » tI})~[{tt}])>1 @typing t t € TRAIN
= (occpZ«{tl » c2})(tt) # occpA(tt) @typing occpTrns occpTrns € P(CDV)
@grd9 c2edom(occp) @grd2 value € BOOL
then @grd4 occpTrns = occp~[{t}]
@actl occpZ(tl) = c2 end

@act2 occp=occp v { c2» tI}
end

FIGURE 6.13: Excerpt of Track
in the following section.

6.7 Refinement of Train: Train_M1

In Train_M1, carriages are introduced as parts of a train. Each carriage has an individual
alarm that when activated, triggers the train alarm (enables the emergency button of
the train). Each train has a limited number of carriages. Each carriage has a set of
doors and the sum of carriage doors corresponds to the doors of a train. The properties

to be preserved are:

1. There is a limit to the number (M AX_NUMBER_CARRIAGE) of carriages per

train.

2. Whenever a carriage alarm is activated, then the emergency button of that same

train is activated.

3. The sum of carriage doors corresponds to the doors of a train.

The definition of these requirements require the introduction of some static elements
like a carrier set CARRIAGE, constants MAX NUMBER_CARRIAGE and
DOOR_CARRIAGE (function between DOOR and CARRIAGE). The latter is defined

as a constant because the number of doors in a carriage does not change. Context

Chapter 6 Case Study

137

invariants

@MetroSystem MO inv3
@MetroSystem MO inv9

@MetroSystem M1 inv2
@MetroSystem M1 inv7
@MetroSystem M2 invl
@MetroSystem M2 inv2
@MetroSystem M2 inv3
@MetroSystem M2 invé4
@MetroSystem M2 inv5

machine Train sees MetroSystem_C1

variables trns speed permit braking emergency button door_state door

theorem @typing trns trns € P(TRAIN)

theorem @typing door state door state € P(DOOR x DOOR_STATE)
theorem @typing braking braking € P(TRAIN)

theorem @typing speed speed € P(TRAIN x Z)

theorem @typing permit permit € P(TRAIN x BOOL)

theorem @typing door door € P(TRAIN x P(DOOR))

theorem @typing emergency button emergency button € P(TRAIN x BOOL)

@VetroSystem MO inv10O speed € trns — N

theorem @MetroSystem M2 thml Vt-t € dom(door) A door(t) n door_state~[{OPEN}] =g

trns ¢ TRAIN
braking ¢ trns

permit € trns — BOOL

emergency button € trns — BOOL

door_state € DOOR — DOOR_STATE

door € trns — P(DOOR)

Vt1,t2-t1 € dom(door) A t2 € dom(door) A tI #t2 = door(tl) n door(t2) =
Vt-t € dom(door) =>(3d-dcdoor(t) A door_state[d]={0PEN} = speed(t)=0)
Vt-t € dom(door) A speed(t) > @ = door(t) ¢ door state~[{CLOSED}]

= door(t)cdoor state~[{CLOSED}]

(a) Variables and invariants in Train

event recvTrainMsg
any t1 bb
where
@typing t1 t1 € TRAIN
@typing bb bb e BOOL
then
@act2 permit(tl)=bb
end

event changeSpeed
any t1 sl
where
@typing t1 t1 € TRAIN
@typing sl sl e Z
@grdl sI eN
@grd2 t1 e dom(door)

then
@actl speed (tI) = sI
end

event brake
any tl
where
@typing t1l t1 e TRAIN
@grdl t1 e trns\braking
@grd2 t1 e dom(emergency button)
@grd3 permit(tl) = FALSE
v emergency button(tI)=TRUE
then
@actl braking = braking v {tI}
end

@grd3 t1 € braking = sI < speed (tI)
@grd4 door(tl) n door_state~[{OPEN}] =o

event openDoor
any t occpTrns ds
where
@typing t t € TRAIN
@typing occpTrns occpTrns € P(CDV)
@typing ds ds € P(DOOR)
@grdl t e dom(door)
@grd2 speed(t) = 0
@grd4 occpTrns n PLATFORM # o
v emergency button(t) = TRUE
@grd5 ds ¢ door(t)
@grd6 3d-deds=>door_state(d)=CLOSED
@grd7 ds#e
then
@actl door_state= door state < (dsx{OPEN})
end

event addDoorTrain

any td

where
@typing d d € P(DOOR)
@typing t t € TRAIN
@grdl t € trns
@grd2 d < DOOR
@grd3 Ytr-tredom(door) A tret

A door(tr)#e = dndoor(tr)=g

@grd5 speed(t)=0
@grd7 dndoor(t)=o

then
@actl door(t)=door(t)ud
@act2 door_state=door state<(dx{CLOSED})

end

event removeDoorTrain

any t d

where
@typing d d € P(DOOR)
@typing t t € TRAIN
@grdl t e dom(door)
@grd2 d ¢ DOOR
@grd3 d ¢ door(t)
@grd4 door_state[d]={CLOSED}
@grd5 speed(t)=0

then
@actl door(t) = door(t)\d

event closeDoor

any t ds

where
@typing t t € TRAIN
@typing ds ds € P(DOOR)
@grdl t e dom(door)
@grd2 speed(t) = 0
@grd3 ds ¢ door(t)
@grd4 door_state[ds]={OPEN}
@grd5 ds#e

then
@actl door_state= door_state < (dsx{CLOSED})

end end

event leaveCDV

event toggleEmergencyButton any tl cl c2

any t value occpTrns where
where @typing t1 t1 € TRAIN
@typing t t € TRAIN @grdl tI € dom(door)

@yrd2 cl e CDV

@typing occpTrns occpTrns € P(CDV)
@grd3 c2 e CDV

@grdl t e dom(door)

@grd2 value € BOOL @grd4 speed(t1)>0

@grd3 door(t) n door state~[{OPEN}] # & @grd1l door(tI)ndoor_state~[{OPEN}]=o
A PLATFORM n occpTrns=o @grd12 permit(t1)=TRUE
= value = TRUE

then
@actl emergency button(t)= value
end

(b) Some events of Train

FIGURE 6.14: Excerpt of Train

Train_C2 is depicted in Fig. 6.16(a). Several variables are added such as train_carriage

relating carriages with trains and carriage_alarm that is a total function between
CARRIAGE and BOOL, illustrated in Fig. 6.16(b). Property 1 is expressed by invari-
ant inv6 stating that trains have a maximum of MAX NUMBER_CARRIAGE carriages.

Property 2 is defined in inv7 as seen in Fig. 6.16(b). Events activate EmergencyCarriage-

Button and deactivateEmergencyTrainButton refine abstract event toggle EmergencyBut-

ton: the first event enables a carriage alarm and consequently enables the emergency

button of the train; the

later occurs when the emergency button of a train is active

138 Chapter 6 Case Study

machine Middleware sees MetroSystem C1
variables tmsgs
invariants event recvTrainMsg
theorem tmsgs € P(TRAIN x P(BOOL)) @ny tl1 bb
where
events tl € TRAIN
event INITIALISATION bb € BOOL
then t1 € dom(tmsgs)
tmsgs = @ bb € tmsgs(tl)
end then
tmsgs(tl)=e
event sendTrainMsg end
any tl1 bb
where event addTrain
tl € TRAIN any t oc
bb € BOOL where
t1 € dom(tmsgs) t € TRAIN
tmsgs(tl)=o oc € CDV
then then
tmsgs(t1) = {bb} tmsgs (t)=o
end end

FIGURE 6.15: Machine Middleware

and corresponds to the deactivation of the last enabled carriage alarm which results in
deactivating the emergency button; a new event deactivate EmergencyCarriage Button
is added to model the deactivation of a carriage alarm when there is still another alarm
enabled for the same train (guards grd4 and grd5). The allocation and removal of
carriages (events allocateCarriage Train and removeCarriage Train) refine addDoorTrain
and removeDoorTrain respectively. In these two events, the parameter d representing
a set of doors, is replaced in the witness section by the doors of the added/removed
carriage: d = DOOR_CARRIAGE~'[{c}]. We continue the refinement of Train in the

following section.

6.8 Second Refinement of Trawn: Train_ M2

In this refinement of Train, carriages requirements are added. We specify carriage
doors instead of the more abstract train doors. As a consequence, variable doors is
data refined and disappears. Each train contains two cabin carriages (type A) and two
ordinary carriages (type B) allocated as follows: A+B+B+A. Only one of the two cabin
carriages is set to be the leader carriage controlling the set of carriages and the moving
direction. Trains have states defining if they are in maintenance or if they are being
driven manually or automatically. More safety requirements are introduced: if the speed
of a train exceeds the safety maximum speed, the emergency brake for that train must
be activated. The abstract event representing the change of speed is refined by several
concrete events and includes the behaviour of the system when a train is above the

maximum speed. The properties to be preserved in this refinement are:

1. If a train is not in maintenance, then it must have the correct number of carriages
and the leader carriage must be defined already. Consequently, this is a condition

to be verified before the train can change speed.

Chapter 6 Case Study 139

machine Train_M1 refines Train sees Train_Cl

variables trns speed permit braking door state door emergency button

context Train Cl extends MetroSystem C1 X . .
- - train_carriage carriage alarm

constants MAX_NUMBER_CARRIAGE

DOOR_CARRIAGE invariants

@invl finite(trns)

@inv2 carriage_alarm € CARRIAGE — BOOL
@inv3 train_carriage € CARRIAGE —+ trns
@inv4 finite(train_carriage)

sets CARRIAGE

axioms

@axnl MAX_NUMBER_CARRIAGE e N1 @inv5 finite(dom(train_carriage))
@axm2 DOOR CARRIAGE € DOOR—CARRIAGE @inve Vt-t € trns = card(train_carriage~[{t}])sMAX_NUMBER_CARRIAGE
@axm3 Yc-ceran(DOOR_CARRIAGE) @inv7 3c-(c € dom(train carriage) A carriage alarm(c) = TRUE
=>DOOR_CARRIAGE~[{C}]==¢ < c € dom(train_carriage) A emergency button(train_carriage(c))= TRUE)
end @inv8 Vt-tedom(door) => door(t)=DOOR_CARRIAGE~[train_carriage~[{t}]]
(a) Context Train-C1 (b) Variables and Invariants of Train_M1

event activateEmergencyCarriageButton
refines toggleEmergencyButton
any c occpTrns

where
@grdl ocepTrns € P(CDV) event alocateCarriageTrain refines addDoorTrain
@grd2 ¢ € dom(train_carriage) any c t
@grd3 carriage_alarm(c) = FALSE where
with @grdl ¢ € CARRIAGE\dom(train_carriage)
@value valLlne = TRUE @grd2 carriage alarm[{c}]= {FALSE}
@t t = train_carriage(c) @grd3 Vtr-tredom(door) A tr#t A door(tr)#e
then = DOOR_CARRIAGE~[{c}]ndoor(tr)=o

@actl carriage_alarm(c) = TRUE

@grd4
@act2 emergency button(train_carriage(c)) = TRUE @grd4 t & trns

@grd5 emergency button(t) = FALSE

@grd6 finite(train_carriage~[{t}])

@grd7 card(dom(train_carriage > {t}))
<MAX_NUMBER_CARRIAGE

end

event deactivateEmergencyCarriageButton

any ¢
where @grd8 speed(t)=0
@grdl ¢ e dom(train carriage) @grd9 DOOR_CARRIAGE~[{c}] n door(t)=e
@grd2 emergency button(train_carriage(c)) = TRUE with
@grd3 carriage alarm(c) = TRUE @d d=(DOOR_CARRIAGE~[{c}])
@grd4 {c} # (dom(carriage alarm > {TRUE}) then
n train carriage~[{train carriage(c)}1) @actl train_carriage(c)= t
@grd5 card(train_carriages{train carriage(c)})>1 @act2 door(t)=door(t) u DOOR_CARRIAGE~[{c}]
then @act3 door_state=
@actl carriage alarm(c)= FALSE door_state<(DOOR_CARRIAGE~[{c}]x{CLOSED})
end end
event deactivateEmergencyTrainButton event removeCarriageTrain refines removeDoorTrain
refines toggleEmergencyButton any ct
any c occpTrns where
where @grdl t e dom(door)
@grdl occpTrns € P(CDV) @grd2 o»t € train_carriage

@yrd2 ¢ e dom(train_carriage)
@grd3 emergency button(train_carriage(c)) = TRUE
@grd4 carriage alarm(c) = TRUE
@grd5 {c} = (dom(carriage alarm > {TRUE})

n train carriage~[{train carriage(c)}])
@grd6 door(train_carriage(c))ndoor state~[{OPEN}] = &

@grd3 carriage_alarm(c) = FALSE

@grd4 emergency button(t) = FALSE

@grd5 speed(t)=0

@grd6 DOOR_CARRIAGE~[{c}]cdoor(t)

@grd7 DOOR_CARRIAGE~[{c}]#2

@grd8 door state[DOOR_CARRIAGE~[{c}]]={CLOSED}

with .
@value value = FALSE with
@t t = train carriage(c) @ d = (DOOR_CARRIAGE~[{c}])
then then
@actl carriage alarm(c)= FALSE @actl train_carriage = {c}<train_carriage
@act2 emergency button(train_carriage(c)) = FALSE @act2 door(t)=door(t)\DOOR_CARRIAGE~[{c}]
end end

(c) Some events of Train_M1

FIGURE 6.16: Excerpt of machine Train_M1

2. If a train is in maintenance, then it must be stopped.

3. If the speed of a train exceeds the maximum speed, the emergency brake must be

activated.

Figure 6.17(a) illustrates two new carrier sets: SIDFE corresponding to which side a car-
riage door or a platform is located (constants LEFT or RIGHT) and TRAIN _STATE
that defines the state of a train (MAINTENANCE, MANUAL or AUTOMATIC).
There are some new constants added as well: CABIN_CARRIAGE defined as a sub-

140 Chapter 6 Case Study

set of CARRIAGE, NUMBER_CABIN_CARRIAGE defining the number of cabin
carriages allowed per train, DOOR_SIDFE defined as a total function between DOOR
and SIDEFE representing which side a door is located, M AX_SPEFED defining the up-

per speed limit for running a train before the activation of the emergency brake and
PLATFORM _SIDE defining the side of a platform.

Figure 6.17 shows Train_M2 where several new variables are introduced: leader_carriage
defining the leader carriage for a train (inv6), trns_state defining the state of a train
(inv8), emergency_brake that defines which trains have the emergency brake activated
(inv1l) and carriage_door_state defining the state of the carriage doors (inv15). More-
over door_train_carriage defines the train doors based on the carriages (inv2, inv3 and
inv4) and each door belongs to at most one train (inv4) although a train can have
several doors (inv2). This variable refines door that disappears in this refinement level,
plus some gluing invariants: invl, invb and theorem thm2 state that the range of door

for a train ¢ is the same as the range of door_train_carriage as long as t has doors.

Property 1 is expressed by inv9. Property 2 is expressed by nvl0 and property 3
by invl2. inwvwl3 and invl4 state that the doors in the domain of door_state are the
same as the ones in carriage_door_state and therefore their state must match. Theorem
thm1 relates the carriages doors with variables door _train_carriage and train_carriage.
Theorem thm3 states that the domain of carriage_door_state is a subset of the domain

of door_state since both variables refer to the same set of doors.

New events are added defining the allocating of a leader carriage to a train (event
allocate LeaderCabinCarriageTrain in Fig. 6.17(c)). This event is enabled only if the
train is in maintenance (grd5), already has the required number of carriages (grd6)
but does not have a leader carriage yet (grd7). To deallocate the leader carriage in
event deallocateLeaderCabinCarriageTrain, the train must be in maintenance. A
train change state in event modi fyTrain: to change to MAINTENANCE, the train
must be stopped (grd2); for the other states, the number of cabin carriages must be
NUMBER_CABIN_CARRIAGE and a leading carriage have to be allocated already
(grd3). Abstract event changeSpeed is refined by four events: two to increase the
speed (increaseSpeed and increaseMaxSpeed in Fig. 6.17(c)) and two to reduce the
speed (reduceSpeed and reduceMaxSpeed). If the speed of a train is increasing in a
way that is superior to MAX_SPEED, event increaseMaxSpeed is enabled and if it
occurs, the emergency_brake is activated. If the current speed of a train is superior to
MAX _SPFEED but the new speed is decreasing in a way that is inferior to the maximum

speed then the emergency_brake can be deactivated (event reduce MaxSpeed).

Chapter 6 Case Study

141

context Train_C2 extends Train C1

constants CABIN_CARRIAGE NUMBER CABIN_CARRIAGE
LEFT RIGHT DOOR_SIDE PLATFORM_SIDE
MAINTENANCE MANUAL AUTOMATIC MAX_SPEED

sets SIDE TRAIN_STATE

axioms

@axml CABIN_CARRIAGE c CARRIAGE

@axm2 NUMBER_CABIN_CARRIAGE e N1

@axm3 DOOR_SIDE € DOOR — SIDE

@axm4 partition(SIDE, {LEFT}, {RIGHT})

@axm5 partition(TRAIN_STATE, {MAINTENANCE},

{MANUAL}, {AUTOMATIC})

@axm6 MAX_SPEED € N1

@axm7 PLATFORM_SIDE e PLATFORM — SIDE

@axm8 finite(CABIN_CARRIAGE)

@axm9 PLATFORM zg

@axm10 CABIN_CARRIAGE#g

@axm11l CABIN_CARRIAGEc ran(DOOR_CARRIAGE)
end

(a) Context Train-C2

variabl
leader_c

invaria
@invl
@inv2
@inv3
@invéd
@inv5
@invé
@inv7
@inv8
@inv9

@inv1o
@inv1l
@inv12
@inv13
@inv14
@inv15
theor

theorem @thm2 Vc-c € dom(train_carriage) A door(train_carriage(c)) n door_state~[{OPEN}]=¢

theorem @thm3 dom(dom(carriage door state)) c dom(door state)

es trns speed permit braking door state emergency button train_carriage carriage_alarm
arriage trns_state emergency brake carriage door state door train_carriage

nts
Vt-te dom(door train carriage) = t € dom(door) A door(t) = door train_carriage[{t}] A door(t)#z
door_train_carriage € trns < DOOR
door_train_carriage = (DOOR_CARRIAGE;train_carriage)~
door_train_carriage~e DOOR + trns
Vt-te dom(door) A door(t)#e = door(t) = door_train_carriage[{t}]
leader_carriage € trns -+ CABIN_CARRIAGE
finite(leader_carriage)
trns_state € trns — TRAIN_STATE
Vt,c-teran(train_carriage) A trns_state(t)#MAINTENANCE A c = train_carriage~[{t}]
A finite(CABIN_CARRIAGE) A t € dom(leader_carriage)
= card(cnCABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE A leader carriage(t) € ¢
Vt-tetrns A trns_state(t)=MAINTENANCE = speed(t)=0
emergency brake ctrns
Vt-((tetrns A speed(t)>MAX_SPEED) = t € emergency_brake)
carriage_door_state € DOOR_CARRIAGE — DOOR_STATE
Vd-d € dom(door_state) A door_state(d)=OPEN = carriage door_state(a»DOOR_CARRIAGE (d))=0PEN
Vd-dedom(door_state)adoor_ state(d)=CLOSED = carriage _door_state(d»DOOR_CARRIAGE (d))=CLOSED
em @thml Vc-ceran(DOOR_CARRIAGE) A cedom(train_carriage)
= DOOR_CARRIAGE~[{c}]cdoor_train_carriage[{train_carriage(c)}]

A door(train_carriage(c))#e = DOOR_CARRIAGE~[{c}]cdoor(train carriage(c)
A DOOR_CARRIAGE~[{c}] n door_state~[{OPEN}]=¢

(b) Variables and Invariants

event increaseMaxSpeed refines changeSpeed
any tl sl
where
@grdl sI € N
@grd2 t1 e dom(door_train_carriage)\braking
@grd3 trns_state(tl) # MAINTENANCE
@grd4 s1 > MAX_SPEED
@grd5 speed(tl)<sl event allocateLeaderCabinCarriageTrain
@grd6 tl e emergency brake any ¢
@grd7 speed(tl)= MAX_SPEED where
@grd8 door_train_carriage[{t1}] @grdl ¢ € dom(train_carriage)
n door state~[{OPEN}] =& @grd2 finite(train_carriage~[{train_carriage(c)}]
@grd9 door_train_carriage[{t1}]#e @grd3 ¢ € CABIN_CARRIAGE
@grd10 permit(tI)=TRUE @grd4 c € dom(train_carriage > {train_carriage(c)})
then @grd5 trns_state(train_carriage(c))=MAINTENANCE
@actl speed (t1) = sl @grd6 card(dom(train_carriage > {train_carriage(c)}))
@act2 emergency brake =emergency brake v {tI} =MAX_NUMBER_CARRIAGE
end @grd7 train_carriage(c) e dom(leader carriage)
then
event modifyTrain refines modifyTrain @actl leader carriage(train carriage(c)) = ¢
any t state end
where
@grdl t e trns event deallocateLeaderCabinCarriageTrain
@grd2 state = MAINTENANCE = speed(t)=0 any t
@grd3 card(train_carriage~[{t}]nCABIN_CARRIAGE) where
=NUMBER_CABIN_CARRIAGE @grdl t e dom(leader carriage)
A t € dom(leader_carriage) @grd2 finite(train_carriage~[{t}]
A leader_carriage(t) € train_carriage~[{t}] @grd3 trns_state(t)=MAINTENANCE
@grd4 state € TRAIN_STATE @grd4 card(dom(train_carriage > {t}))
@grd5 state # trns_state(t) =MAX_NUMBER_CARRIAGE
then then
@actl trns_state(t)=state @actl leader carriage = {t}<leader carriage
end end

(¢) Some events of Train_M2

FIGURE 6.17: Excerpt of machine Train_M2

142 Chapter 6 Case Study

6.9 Third Refinement of Train: Train_M3

As a continuation of the refinement of the train doors by carriage, we data refine vari-
able door_state. The opening doors event needs to be strengthened to specify which
doors to open when a train is stopped in a platform. Figure 6.18 shows an excerpt of
Train_M3. Some additional properties related to the allocation of the leader carriage
are defined: when a train has already allocated a leader carriage, then it has the cor-
rect number of carriages (inv2) and the leader carriage belongs to the set of carriage
of that train (inv3). These two invariants could have been included in the previous
refinement. Nevertheless due to the high number of proof obligations already existing
in the previous refinement, they were added later. Variable door_state disappears being
refined by door_carriage_state and gluing invariants invl and thm2. Theorem thml
is added to help with the proofs: the carriage doors of a train ¢ are the same as the
doors defined by the constant DOOR_CARRIAGE restricted to the carriages. Some
existing events are strengthened in this refinement to be consistent with the invariants
as illustrated in Fig. 6.18(b). Due to inv2, event allocateLeaderCabinCarriageTrain
needs to be strengthened by adding guard grd8: this event is only enabled if the number
of carriages for that train is equal to NUMBER CABIN_CARRIAGE. Also events
allocateCarriageTrain and removeCarriageTrain require an additional guard (grd4
and grdl1 respectively) stating that the events are only enabled if train ¢ does not have
a leader carriage yet. Therefore we reinforce some ordering in the events: first car-
riages are allocated/removed; after the leader carriage can be allocated. Refined event
openDoors is strengthened with the inclusion of guard grd8: the set of carriage doors

ds that are opened are located in the same side as the plat form.

6.10 Fourth Refinement of Train and Second Decomposi-
ton: Train_M}

The fourth refinement of Train corresponds to the preparation step before the decom-
position. Context Train_C4, illustrated in Fig. 6.19(a), introduces an enumerated car-
rier set TRAIN_MOVING_STATE defining the moving state of a train: MOVING,
NOT_READY (not ready to move) and NEUTRAL (not moving but ready to move).
We use additional control variables to help in the separation of aspects resulting in
adding variables ready_train and train_doors_closed. Both are total functions between
trns and BOOL (invl and inv2 in Fig. 6.19(b)). ready_train defines trains that are
ready to move or moving (which therefore have a leader carriage and the correct number
of carriages to move (inv3)); train_doors_closed defines trains that have all their doors
closed (inv4). These variables are somehow redundant and are mainly added as a prepa-
ration for the shared event decomposition: they will be allocated to LeaderCarriage and

represent a combination of states defined by Carriage variables. They also simplify

Chapter 6 Case Study 143

machine Train_M3 refines Train_M2 sees Train_C2

variables trns speed permit braking emergency button train carriage carriage alarm leader carriage
trns_state emergency brake carriage door state door train_carriage

invariants
@invl Vd,ds-d € dom(door_state) A ds € DOOR_STATE A carriage_door_state(d»DOOR_CARRIAGE (d))=ds & door_state(d)=ds
@inv2 Vt-tetrns A t € dom(leader_carriage) A card(train_carriage~[{t}])=MAX_NUMBER_CARRIAGE
A card(train_carriage~[{t}]nCABIN_CARRIAGE)=NUMBER_CABIN_CARRIAGE
@inv3 Vt-tetrns A t € dom(leader_carriage) = leader carriage(t) € train_carriage~[{t}]
theorem @thml Vt-tedom(door_train_carriage) = door_train_carriage[{t}]=DOOR_CARRIAGE~[train_carriage~[{t}]]
theorem @thm2 Vd,ds-d c dom(door_state) A ds € DOOR_STATE A carriage door_state[dxDOOR_CARRIAGE[d]]={ds}
<door state[d]={ds}

(a) Variables and invariants

event openDoors refines openDoors
any t occpTrns platform ds
where
@grdl t e TRAIN
@rdl c e dom(train_carriage) @grd2 occpTrns € P(CDV)

@grd2 finite(train carriage~[{train carriage(c)}]) @grd3 platform € PLATFORM
@yrd3 ¢ € CABIN_CARRIAGE @grd4 platform € (occpTrns n PLATFORM)

@yrd4 c e dom(train carriage > {train carriage(c)}) @grd5 t e dom((DOOR_CARRIAGE;train carriage)~)

@grd5 trns state(train carriage(c))=MAINTENANCE @grd6 speed(t) =0

@grd6 card(train carriage~[{train_ carriage(c)}]) @yrd7 ({platform} # @) v emergency button(t) = TRUE
=MAX NUMBER CARRIAGE @grd8 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}

@grd7 train carriage(c) ¢ dom(leader carriage) @grd9 ds c DOOR_CARRIAGE~[train_carriage~[{t}]]

@grd8 card(train carriage~[{train carriage(c)}]nCABIN_CARRIAGE)Cyrdl0 Vd-deds

event allocateLeaderCabinCarriageTrain
refines allocatelLeaderCabinCarriageTrain
any ¢
where

=NUMBER CABIN CARRIAGE =carriage_door_state[{d}<DOOR_CARRIAGE]={CLOSED
then N - @grdll ds#o
@actl leader carriage(train carriage(c)) = ¢ then
end @actl carriage_door_state= carriage_door_state
< ((ds<DOOR_CARRIAGE)x{OPEN})
event allocateCarriageTrain refines allocateCarriageTrain end
any c t
where event removeCarriageTrain refines removeCarriageTrain
@yrdl ¢ € CARRIAGE\dom(train carriage) any c t
@grd2 carriage alarm{{c}]= {FALSE} where))
@rd3 Ytr-tr e dom(door train carriage) A tr=t @rdl t e dom(dgoritra%nicarrlage)
= DOOR_CARRIAGE~[{c}]ndoor train carriage[{tr}]=o @grd2 c»t € train_carriage
@grd4 t € trns\dom(leader_carriage) @grd3 carriage alarm(c) = FALSE
@yrd5 emergency button(t) = FALSE @grd4 emergency button(t) = FALSE
@grd6 finite(train carriage~[{t}]) @grd5 trns_state(t)=MAINTENANCE
@grd7 card(dom(train carriage > {t}))<MAX_NUMBER_CARRIAGE @grde speed(t)=0
@grd8 speed(t)=0 @grd7 carriage_door state[DOOR_CARRIAGE>{c}]={CLOSED}
@grd9 DOOR_CARRIAGE~[{c}] n door train carriage[{t}]=o @grd8 Vd-deDOOR_CARRIAGE~[{c}]
@grd10 trns state(t)=MAINTENANCE = t = door_train_carriage~(d)
then @yrd9 c € ran(DOOR_CARRIAGE)

@actl train_carriage(c)= t @yrd10 DOOR_CARRIAGE~[{c}]cdoor train_carriage[{t}]

@act? door train carriage = door train carriage @rdll t e dom(leader carriage)
u ({t} x DOOR_CARRIAGE~[{c}]) then _ . . -
@act3 carriage_door_state= carriage door_state Gactl train carriage = {c}strain carriage
< ((DOOR_CARRIAGE>{c})x{CLOSED}) ~ (actZ door train carriage = door train carriage

end >DOOR_CARRIAGE~[{c}]

(b) Refinement of some events in Train_M3

FIGURE 6.18: Excerpt of machine Train_M3

the event splitting by replacing predicates that contain variables related to carriages.
For instance, in Fig. 6.19(c) guard grd8 of event increaseMaxSpeed replaces guard
grd8 in the abstract event (Fig. 6.17(c)): this event does not need to refer to variable
door _train_carriage since it is only required to ensure that all the train doors are closed
when a train increases its speed (train_doors_closed(t1) = TRUE). The consequence of
adding these variables is that they need to be consistent throughout the events. For in-
stance, act2 needs to be added to the actions of deallocate LeaderCabinCarriageTrain
when a leader carriage is deallocated from a train which implies that the train is no
longer ready to move (Fig. 6.19(c)). Therefore these control variables should be added
with care in particular when it is intended to further refine the resulting sub-events after
an event decomposition. Invariants invb and inv6 are gluing invariants resulting from
the added variables: the first states that if a train has its doors opened, then the train

must be stopped; the second states that if a train is ready, then the set of carriages for

144

Chapter 6 Case Study

that train is not empty. All other events are updated reflecting the introduction of the

new variables.

context Train C4 extends Train C2
constants MOVING NOT_READY NEUTRAL
sets TRAIN_MOVING_STATE

axioms

end

@axml partition(TRAIN_MOVING_STATE, {MOVING}, {NOT_READY}, {NEUTRAL})

(a) Context Train-Cj

invariants
@invl ready train € trns — BOOL

> >

=NUMBER_CABIN_CARRIAGE
t € dom(leader_carriage)
@inv4 Vt-tedom(train_doors_closed)

A train_doors_closed(t) = TRUE

>

@inv5 Vt-tedom(train_doors_closed)

machine Train M4 refines Train M3 sees Train C4

variables trns speed permit braking emergency button train_carriage
carriage alarm leader carriage trns_state emergency brake
carriage_door_state door_train_carriage ready train train_doors_closed

@inv2 train_doors closed € trns — BOOL

@inv3 Vt-tedom(ready train) A ready train(t) = TRUE = tetrns
card(train_carriage~[{t}])=MAX_NUMBER_CARRIAGE
card(train_carriage~[{t}1nCABIN_CARRIAGE)

= (Vd-d edoor train carriage[{t}]
= carriage door state(dsDOOR_CARRIAGE (d))=OPEN)

A train_doors closed(t) = FALSE = speed(t) = 0
@inv6 Vt-tedom(ready train) A ready train(t) = TRUE
= DOOR_CARRIAGE>train_carriage~[{t}]#o

(b) Variables and invariants

event increaseMaxSpeed refines increaseMaxSpeed
any tI sl
where
@grdl s1 eN
@grd2 t1 e trns
@grd3 t1 & braking

end end

@grd4 trns state(tl) # MAINTENANCE event deallocateLeaderCabinCarriageTrain
@grd5 s1 > MAX_SPEED refines deallocatelLeaderCabinCarriageTrain
@grd6 speed(tl)<sl any t lc
@yrd7 t1 e emergency brake where
@grd8 speed(tl)s MAX_SPEED @rdl t e dom(leader_carriage)
@grd9 train_doors_closed(tl) = TRUE @grd2 finite(train_carriage~[{t}])
@yrdl0 permit(tl)=TRUE @rd3 trns_state(t)=MAINTENANCE
@grdll speed(t1)>0 @grd4 card(dom(train_carriage > {t}))=MAX_NUMBER_CARRIAGE
@yrdl2 ready train(tl) = TRUE @grd5 lc = leader_carriage
then then
@actl speed (tl) = sI @actl leader carriage = {t}<leader_carriage
@act2 emergency brake = emergency brake u {tI} @act2 ready_train(t) = FALSE

(c) Refinement of some events in Train_M4

FIGURE 6.19: Excerpt of machine Train_M}

Now we are ready to proceed to the next decomposition as described in Fig. 6.3. We want

to separate the aspects related to carriages from the aspects related to leader carriages:

Leader Carriage: Allocates the leader carriage, controls the speed of the train, modi-

fies the state of the train, receives the messages sent from the central, handles the

emergency button of the train.

Carriage: Add and removes carriages, opens and closes carriage doors, handles the

carriage alarm.

Chapter 6 Case Study 145

The decomposition is summarised in Table 6.1 (equivalent to view of Fig. 6.12 with the

addition of the variable partition):

LeaderCarriage Carriage
Variables | trns, permit, braking, emergency_button carriage_alarm,leader_carriage
trns_state, speed, emergency_-brake carriage_door_state, door_train_carriage
ready_train, train_doors_closed train_carriage
Events openDoors, close Doors openDoors, close Doors
activate EmergencyCarriage Button activate EmergencyCarriage Button
deactivate EmergencyCarriage Button deactivate EmergencyCarriage Button
deactivate EmergencyTrain Button deactivate EmergencyTrain Button
allocateLeaderCabinCarriageTrain allocateLeaderCabinCarriageTrain
deallocate Leader CabinCarriageT rain deallocate LeaderCabinCarriageTrain
allocateCarriageTrain allocateCarriageTrain
modi fyTrain, removeCarriageTrain modi fyTrain, removeCarriageTrain
increaseSpeed, increase MaxSpeed
reduceSpeed, reduce M axSpeed
recvTrainMsg, brake, stopBraking
addT'rain,enterC DV, leaveC DV

TABLE 6.1: Decomposition summary of Train_M4

6.10.1 Machine LeaderCarriage

Machine LeaderCarriage contains the variables that are not related to the carriages
(Fig. 6.20(a)). Some events are only included in this sub-component: events dealing
with the speed changes, entering and leaving sections, receiving messages and adding

trains. All the other events are shared between the two sub-components.

6.10.2 Machine Carriage

The variables related to carriages are included in sub-component Carriage (Fig. 6.20(b)).
All the events of Carriage result from splitting the original events as described in Ta-
ble. 6.1. We are interested in adding more details about the carriage doors, therefore we

further refine Carriage.

6.10.3 Refinement of Carriage and Decomposition: Carriage M1

This refinement is a preparation step before the next decomposition. We intend to
use an existing generic development of carriage doors as a pattern and apply a generic
instantiation to our model. We use the shared event decomposition to adjust our current
model to fit the first machine of the pattern. Carriage_M1 refines Carriage and after is
decomposed in a way that one of the resulting sub-components fits the generic model of

carriage doors. The generic model is described in Sect. 6.11.

Two variables are introduced in this refinement, representing the carriage doors (carriage_door)

and their respective state (carriage_ds) as seen in Fig. 6.21(a). The last variable is used

146 Chapter 6 Case Study

machine LeaderCarriage sees LeaderCarriage_CO

variables trns speed permit braking emergency button trns_state
emergency_brake ready_train train_doors_closed

invariants
theorem @typing train doors closed train_doors_closed € P(TRAIN x BOOL)
@Train MetroSystem MO_inv3 trns ¢ TRAIN
@Train MetroSystem MO inv9 braking ¢ trns
@Train_MetroSystem MO inv10® speed € trns — N
MetroSystem M1 inv2 permit € trns — BOOL
MetroSystem M1 inv3 emergency button € trns — BOOL
M1 invl finite(trns)
M2_inv8 trns_state € trns — TRAIN_STATE
M2 inv10 Vt-tetrns A trns_state(t)=MAINTENANCE = speed(t)=0
M2 invll emergency brake ctrns
@Train M2 inv12 ¥Yt-((tetrns A speed(t)>MAX_SPEED) = t € emergency brake)
@Train M4 invl4 ready train € trns — BOOL
W
W

3

=

@Train

@lrain M4 inv16 train_doors_closed € trns — BOOL

@Train M4 inv18 Vt-tedom(train_doors closed) A train_doors closed(t) = FALSE
= speed(t) =0

theorem @WD Train M4 inv6 Vt-tedom(ready train)=>ready traineTRAIN -+ BOOL

(a) sub-component LeaderCarriage

machine Carriage sees Carriage CO

variables train_carriage carriage _alarm leader carriage carriage door_ state
door_train_carriage

invariants
theorem @typing leader carriage leader_carriage € P(TRAIN x CARRIAGE)
theorem @typing door train carriage door_train_carriage € P(TRAIN x DOOR)
theorem @typing train carriage train_carriage € P(CARRIAGE x TRAIN)
theorem @typing carriage alarm carriage alarm € P(CARRIAGE x BOOL)
@Train M1 inv2 carriage_alarm € CARRIAGE — BOOL
@Train M1 inv4 finite(train_carriage)
@Train M1 inv5 finite(dom(train_carriage))
@Train_M2_inv3 door_train_carriage = (DOOR_CARRIAGE;train_carriage)~
@Train M2 inv7 finite(leader_carriage)
@Train M2 inv13 carriage_door_state € DOOR_CARRIAGE — DOOR_STATE
theorem @Train M2 thml Yc-ceran(DOOR_CARRIAGE) A cedom(train_carriage)
= DOOR_CARRIAGE~[{c}]cdoor train_carriage[{train_carriage(c)}]
theorem @Train M3 thml Vt-tedom(door train_carriage)
= door_train_carriage[{t}]=DOOR_CARRIAGE~[train_carriage~[{t}]]

(b) sub-component Carriage

FIGURE 6.20: Variables and invariants of LeaderCarriage and Carriage

to data refine carriage_door_state that disappears. The gluing invariant for this data
refinement is expressed by inv4: the state of all the doors in carriage_ds match the state
of the same door in carriage_door_state. As a result, some events need to be refined to
fit the new variables. For instance, in Fig. 6.21(b), actl in event openDoors updates
variable carriage_ds instead of the abstract variable carriage_door_state. Also when
carriage doors are allocated, both new variables are assigned as seen in actions act3 and

actd of event allocateCarriageTrain (similar for removeCarriageTrain).

Comparing with the generic model of carriage doors, the relevant events to fit the instan-
tiation are openDoors, closeDoors, allocateCarriagelrain and removeCarriageT rain.
Not by coincidence, these events manipulate variables carriage_ds and carriage_door
that will instantiate generic variables generic_door_state and generic_door respectively.

The decomposition summary is described in Table 6.2.

6.10.4 Machine Carriagelnterface

Machine Carriagelnterface contains the variables that are not related to the carriage

doors. This machine handles the activation/deactivation of the carriage alarm, the deac-

Chapter 6 Case Study

147

machine Carriage M1 refines Carriage sees Carriage CO
variables carriage alarm leader carriage train_carriage carriage door carriage ds door_ train_carriage

invariants
@invl carriage_door ¢ DOOR
@inv2 carriage_ds € carriage door — DOOR_STATE
@inv3 VYc-cedom(train_carriage) = DOOR_CARRIAGE~[{c}]ccarriage_door
@inv4 ¥Yd, c-drcedom(carriage_door_state) A d € dom(carriage ds) A deran(door_train_carriage)
=carriage_ds(d)=carriage_door_state(dnc)
door_train_carriage~eDOOR -+ TRAIN
Vd-deran(door_train_carriage) = d € carriage_door

@invs
@invé

(a) Variables and invariants

event allocateCarriageTrain refines allocateCarriageTrain

event openDoors refines openDoors
any t occpTrns platform ds
where
@typing platform platform € CDV
@typing ds ds € P(DOOR)

@grdl t € TRAIN
@grd2 occpTrns € P(CDV)
@grd3 platform € PLATFORM
@grd4 platform € (occpTrns n PLATFORM)
@grd5 t e dom((DOOR_CARRIAGE;train_carriage)~)
@grd6 DOOR_SIDE[ds]={PLATFORM_SIDE(platform)}
@grd7 ds ¢ DOOR_CARRIAGE~[train carriage~[{t}]]
@rd8 ds ¢ dom(carriage ds)
@grd9 carriage ds[ds]={CLOSED}
then

@actl carriage ds=carriage ds< (dsx{OPEN})

end

event closeDoors refines closeDoors
any t ds closed cds
where
@typing closed closed € BOOL
@typing ds ds € P(DOOR)

@grdl t € TRAIN
@grd2 t e dom(((train_carriage~);(DOOR_CARRIAGE~)))
@grd3 ds ¢ ((train_carriage~); (DOOR_CARRIAGE~))[{t}]
@grd4 cds = carriage_ds
@grd5 (3d-deDOOR_CARRIAGE~[train carriage~[{t}]]\ds
A cds(d)#CLOSED) < closed = FALSE
@grd6 ds c dom(carriage_ds)
@grd7 carriage_ds[ds]={OPEN}
then
@act2 carriage_ds=carriage ds < (dsx{CLOSED})
end

any c tds

where
@typing t t € TRAIN
@typing ¢ ¢ € CARRIAGE

@grdl ¢ € CARRIAGE\dom(train carriage)
@grd2 carriage alarm[{c}]= {FALSE}
@grd3 t e dom(door_train_ carriage)
@grd4 Vtr-tr € dom(door train_carriage) A tr#t

= DOOR_CARRIAGE~[{c}]ndoor train carriage[{tr}]=o
@grd5 finite(train_carriage~[{t}])
@grd6 card(dom(train_carriage > {t}))<MAX_NUMBER_CARRIAGI
@grd7 DOOR_CARRIAGE~[{c}] n door train_carriage[{t}]=o
@grd8 tedom(leader carriage)
@yrd9 ds = DOOR_CARRIAGE~[{c}]

@grd10 dsndom(carriage ds)=o
then
@actl train_carriage(c)= t
@act2 door_train_carriage = door_train_carriage
U ({t} x DOOR_CARRIAGE~[{c}])
@act3 carriage_door = carriage_door u ds
@act4 carriage_ds = carriage ds u (dsx{CLOSED})
end

event removeCarriageTrain refines removeCarriageTrain
any c t ds
where
@typing t t € TRAIN
@typing c ¢ € CARRIAGE
@grdl t e dom(door_train_carriage)
@rd2 o»t € train_carriage
@grd3 carriage_alarm(c) = FALSE
@grdl6 t € dom(door_train_carriage)
@grdl0 Vd-deDOOR_CARRIAGE~[{c}]
= t = door_train_carriage~(d)
c € ran(DOOR_CARRIAGE)
@grdl2 t e dom(leader_carriage)
@grdl3 ds = DOOR_CARRIAGE~[{c}]
@grdl4 dsccarriage_door
@grdl5 carriage_ds[DOOR_CARRIAGE~[{c}]] = {CLOSED}
then
@actl train_carriage = {c}<train_carriage
@act2 door_train_carriage =
door_train_carriage »DOOR_CARRIAGE~[{c}
@act3 carriage_door = carriage_door \ ds
@act4 carriage_ds = ds<carriage_ds
end

@grdll

(b) Refinement of some events in Carriage-M1

FIGURE 6.21: Excerpt of machine Carriage_M1

tivation of the emergency button and the allocation/deallocation of the leader cabin car-

riage. Events openDoors, closeDoors, allocateCarriagelrain and removeCarriageTrain

are shared with CarriageDoor.

6.10.5 Machine CarriageDoor

CarriageDoors contains the variables related to carriage doors and the events resulting

from splitting the original events as described in Table 6.2. The resulting sub-events can

be seen in Fig. 6.22.

148

Chapter 6 Case

Study

Carriagelnterface

CarriageDoor

Variables carriage_alarm,leader_carriage carriage_doors, carriage-ds
train_carriage, door_train_carriage
Events openDoors, close Doors openDoors, closeDoors

allocateCarriageTrain
removeCarriagelrain

allocateCarriageTrain
removeCarriagelrain

activate EmergencyCarriage Button
deactivate EmergencyCarriage Button
deactivate EmergencyTrain Button
allocate LeaderCabinCarriageTrain
deallocate LeaderCabinCarriagelrain

modifyTrain

TABLE 6.2: Decomposition summary of Carriage_M1

event openDoors
any t occpTrns platform ds
where
@typing_platform platform € CDV
@typing_ds ds € P(DOOR)
@grd1 t € TRAIN
@grd2 occpTrns € P(CDV)
@grd3 platform € PLATFORM
@qgrd4 platform € (occpTrns n PLATFORM)
@grd7 DOOR_SIDE[ds]={PLATFORM_SIDE (p/atform)}
@grd11 ds = dom(carriage_ds)
@grd12 carriage_ds[ds]={CLOSED}
then
@act2 carriage_ds=carriage_ds (dsx{OPEN})
end

event closeDoors
any t ds closed cds
where
@typing_cds cds € P(DOOR x DOOR_STATE)
@typing_closed closed € BOOL
@typing_ds ds € P(DOOR)
@grd1 t € TRAIN
@gd13 cds = carriage_ds
@grd11 ds = dom(carriage_ds)
@grd12 carriage_ds[ds]={OPEN}
then
@act2 carriage_ds=carriage_ds
end

(dsx{CLOSED})

event allocateCarriageTrain
any ctds
where
@typing_ds ds € P(DOOR)
@typing_t t € TRAIN
@typing_c ¢ € CARRIAGE
@grd14 ds = DOOR_CARRIAGE~[{c}]
@grd15 dsndom(carriage_ds)=2
then
@act3 carriage_door = carriage_door u ds
@act4 carriage_ds = carriage_ds u (dsx{CLOSED})
end

event removeCarriageTrain
any ctds
where
@typing_ds ds € P(DOOR)
@typing_t t € TRAIN
@typing_c ¢ € CARRIAGE
@grd11 ¢ € ran(DOOR_CARRIAGE)
@grd13 ds =DOOR_CARRIAGE~[{c}]
@grd14 dsccarriage_door
@grd15 carriage_ds[DOOR_CARRIAGE~[{c}]] = {CLOSED}
then
@act3 carriage_door = carriage_door \ ds
@act4 carriage_ds = ds<carriage_ds
end

FIGURE 6.22: Events of sub-component CarriageDoors

There are two kind of carriage doors: emergency doors and service doors. We intend to

instantiate twice the generic doors development, one per kind of door (the developments

are similar for both kind of doors). Specific details for each kind of door are added

as additional refinements later on. We describe the generic model and afterwards the

instantiation.

6.11 Generic Model: GCDoor

The generic model for the carriage doors is based in three refinements: GCDoor_ M0,

GCDoor_M1 and GCDoor_M2. In each refinement step, more requirements and details

are introduced.

Chapter 6 Case Study 149

6.11.1 Abstract machine GCDoor_MO0

We start by adding the carriage doors and respective states. Four events model carriage
doors. The properties to be preserved are:
1. Doors can be added or removed.

2. Doors can be in an opening or closing state. Doors can only be open if the train

is in a platform.

3. When adding/removing doors, they are closed by default for safety reasons.

The static part of the generic development is initially divided in two parts: context
GCDoor_C0 for the doors and context GCTrack_C0 for the tracks as seen in Fig. 6.23.

context GCDoor CO extends GCTrack CO

constants GEN_DOOR_CARRIAGE context GCTrack CO

DOOR_SIDE

OPEN CLOSED constants RIGHT PLATFORM LEFT PLATFORM_SIDE

sets DOOR DOOR_STATE sets SIDE TRACK

GEN_CARRIAGE axioms

@axml PLATFORM c TRACK

partition(SIDE, {LEFT}, {RIGHT})
@axm3 PLATFORM_SIDE € PLATFORM — SIDE

end

axioms
@axml partition(DOOR_STATE, {OPEN}, {CLOSED}
@axm2 GEN_DOOR_CARRIAGE € DOOR — GEN_CARRIAGE
@axm3 DOOR_SIDE € DOOR — SIDE

end (b) Context GCTrack-C0

(a) Context GCDoor-C0O

FIGURE 6.23: Generic contexts

Context GCDoor_C0 contains sets DOOR, DOOR_STATE and GEN_DOOR_CARRIAGE,
representing carriage doors, defining if a door is opened or closed and defining the car-
riages to which a door belongs to, respectively. Context GCTrack-C0O contains sets
SIDE and TRACK, defining the side (LEFT or RIGHT) of a door or platform
and each section of the track, respectively. Machine GCDoor_ M0 contains variables
generic_door and generic_door_state. The invariants of this abstraction are quite weak

since we just add the type variables as can be seen in Fig. 6.24(a).

Property 1 is expressed by events addDoor and removeDoor. Property 2 is expressed by
variable generic_door_state and events openDoors and closeDoors. Event openDoors is
only enabled if the set of doors ds is closed and if the parameter occpT'rns, corresponding
to the sections occupied by the carriage, intersects a platform. Doors are removed in
event removeDoor, if they are CLOSFED confirming property 3. Next section describes

the refinement of this machine.

150 Chapter 6 Case Study

event closeDoors
any ds
where
@rd ds ¢ DOOR
@grdl ds ¢ dom(generic door state)
@rd2 generic_door state[ds]={OPEN}
@grd3 ds #@
then
@actl generic_door_state=generic_door_state
< (dsx{CLOSED})

machine GCDoor MO sees GCDoor CO

variables generic_door generic_door state end
invariants

@invl generic_door ¢ DOOR event addDoor

@inv2 generic_door state € generic_door — DOOR_STATE any ds ¢
- where
@grdl ds n generic door = @
event openDoors @grd2 ds # o
any ds platform occpTrns @grd3 ds = GEN_DOOR_CARRIAGE~[{c}]
where then B B

@grd ds ¢ DOOR
@grdl ds c dom(generic_door_state)
@grd2 generic_door_state[ds]={CLOSED}
@grd3 platform € PLATFORM

~d4 platform € (occpTrns n PLATFORM)

@actl generic_door = generic_door u ds
@act2 generic_door state = generic door state
u (dsx{CLOSED})
end

@grd5 ds #g
@grd6 DOOR_SIDE[ds]={PLATFORM_SIDE (platform)} event removeDoor
any ds ¢
then
where

@actl generic_door_ state=generic door state < (dsx{OPEN})

@yrdl ds c generic_door
end @gr cg -

@grd2 ds # @
@yrd3 generic_door_state[ds]={CLOSED}
@yrd4 ds = GEN_DOOR_CARRIAGE~[{c}]
then
@actl generic_door = generic_door \ ds
@act2 generic_door state =
ds<generic_door_state

(a) Variables, invariants and event openDoors

end

(b) Some events in GCDoors_M0

FIGURE 6.24: Machine GCDoors_M0

6.11.2 Second refinement of GCDoor: GCDoor_M1

In this refinement more details are introduced about the possible behaviour of the doors.

The properties to be preserved are:

1. The actions involving the doors may result from commands sent from the central
door control. These commands have a type (OPEN_RIGHT _DOORS,
OPEN_LEFT_DOORS, CLOSE_RIGHT_DOORS, CLOSE_LEFT_DOORS,
ISOLATE_DOORS, REMOVE_ISOLATION _DOORS), astate (START, FAIL,
SUCCESS and EXECUTED) and a target (set of doors).

2. After the doors are closed, they must be locked for the train to move.

3. If a door is open, then an opening device was used: MANUAL_PLATFORM if
opened manually in a platform, MANUAL_INTERN AL if opened inside the car-
riage manually and AUTOMATIC_ CENTRAL_DOOR if opened automatically

from the central control.
4. Doors can get obstructed when closed automatically (people/object obstruction).

If an obstruction is detected then it should be tried to close the doors again.

The context used in this refinement (GCDoor_C1) extends the existing one as seen in

Fig. 6.25(a). Abstract events are refined to include the properties defined above. Some

Chapter 6 Case Study 151

context GCDoor Cl extends GCDoor_CO

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR START FAIL SUCCESS EXECUTED
OPEN_RIGHT_DOORS OPEN_LEFT_DOORS CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS

sets OPENING_DEVICE COMMAND_STATE COMMAND_TYPE COMMAND

axioms
eaxml partition(OPENING_DEVICE, {MANUAL_PLATFORM}, {MANUAL_INTERNAL}, {AUTOMATIC_CENTRAL_DOOR})
@axm2 partition(COMMAND_STATE, {START}, {FAIL}, {SUCCESS},{EXECUTED})
@axm3 partition(COMMAND_TYPE, {OPEN_RIGHT_DOORS}, {OPEN_LEFT_DOORS}, {CLOSE_RIGHT_DOORS},
{CLOSE_LEFT_DOORS}, {ISOLATE_DOORS}, {REMOVE_ISOLATION_DOORS})
end

(a) Context GCDoors-C1

machine GCDoor M1 refines GCDoor MO sees GCDoor Cl

variables generic_door generic_door state locked doors door_opening device obstructed_door command
command_doors command_type command_state

invariants
@invl locked doors ¢ DOOR
@inv2 Yd-delocked _doors A d € dom(generic_door_state) = generic_door_state(d)e{OPEN}
@inv3 door_opening_device € generic_door + OPENING_DEVICE
@inv4 Yd-degeneric_door A generic_door_state(d)=0PEN =>dedom(door_opening_device)
@inv5 obstructed door ¢ dom(generic_door state)
@inv6e command ¢ COMMAND
@inv7 command_type € command — COMMAND_TYPE
@inv8 command_state € command — COMMAND_STATE
@inv9 command_doors € command — [P(generic_door)
@inv10 Vdos-doseran(command_doors) = dos #o
@invll ¥Yd,opDev-d € generic_door A opDev € OPENING_DEVICE A (d»opDev)edoor opening device
A opDev=AUTOMATIC_CENTRAL_DOOR (3cmd-cmdecommand A d € command_doors(cmd))

(b) Variables, invariants

FIGURE 6.25: Excerpt of machine GCDoors_M1

new invariants are added as seen in Fig. 6.25(b). Property 1 is defined by new variables
command, command_type, command_state and command_doors (see invariants inv6
to inv9). Property 2 is defined by invariant inv2 (if a door is locked, then the door
is not opened) and events lockDoor /unlockDoor. Property 3 is defined by variables
door_opening_device, inv3 and invll (if a door is opened automatically, then a com-
mand has been issued to do so). Property 4 is defined by variable obstructed_door, inv5
and events doorlsObstructed and closeObstructedDoor. The system works as follows:
doors can be opened/closed manually or automatically. To open/close a door automati-
cally, a command must be issued from the central door control defining which doors are
affected (for instance, to open a door automatically, event commandOpenDoors needs
to occur). A command starts with state ST ART which can lead to a successful result
(SUCCESS) or failure (FAIL). Either way, it finishes with state EXECUTED. Ab-
stract event otherCommandDoors refers to commands not defined in this refinement. If
a door gets obstructed when being closed automatically (event doorIsObstructed) then
event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

The system works as follows: doors can be opened/closed manually or automatically. If
it is done automatically, a command sent from the central door control is issued defin-
ing which doors are affected (for instance, event commandOpenDoors, illustrated in
Fig. 6.26, issues a command to open a set of doors automatically). Event otherCommandDoors
is left abstract the enough in order to refer to commands not defined in this refinement.

If a door gets obstructed when closing automatically (event doorIsObstructed) then

152 Chapter 6 Case Study

event openDoorAutomatically

event commandOpenDoors refines openDoors
any doors cmd cmd type any ds cmd
where where

@grd doors € generic_door @grd ds ¢ generic door\locked doors
@grdl generic_door state[doors]={CLOSED} @grdl ds ¢ dom(generic door state)

@grd2 cmd_type @grd2 generic_door state[ds]={CLOSED}
{OPEN_RIGHT_DOORS,O0PEN_LEFT_DOORS} (443 g e command

@grd3 cmd € COMMAND\command @grd4 command type(cmd) €

@grd4 doors #o {OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}

then @grd5 command_state(cmd)=START
@actl command_state(cmd)=START @qrd6 ds ¢ command doors (cmd)

@act2 command_doors(cmd)=doors @grd7 ds #o

m

@act3 command = command u {cmd} then
@act4 command_type(cmd)=cmd_type @actl generic door state=
end generic_door state < (dsx{OPEN})
@act2 door_opening device = door_opening device
event otherCommandDoors < (dsx{AUTOMATIC_CENTRAL_DOOR})
any doors cmd cmd type end - -
where
@grd doors c generic_door event lockboor
@yrdl cmd type € COMMAND_TYPE any d
where

@grd3 cmd € COMMAND\command
@grd4 doors #o

then
@actl command_ state(cmd)=START
@act2 command_doors(cmd)=doors
@act3 command = command v {cmd}
@act4 command_type(cmd)=cmd_type

@grd d € generic_door\locked doors
@grdl generic_door state(d)=CLOSED
then
@actl locked doors:=locked doors u {d}
end

event unlockDoor
any d
where
@grdl d e generic_door
@grd2 d € locked doors
then
@actl locked doors=locked doors \ {d}

end

end

event closeObstructedDoor
refines closeDoors
any ds cmd st
where
@grd ds ¢ obstructed_door
@grdl ds c dom(generic_door state)

event doorIsObstructed
any ds cmd

thr?d P DOORN (Locked d betructed d @grd2 cmd € command
Gord ds ¢ A\ (ocked_doors v obstructe oor) @grd3 command_type(cmd)e
@grdl ds ¢ dom(generic_door_state) {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}

@grd2 cmd € command

@grd3 command_type(cmd)
€ {CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS} @grd6 ds =o

@grd4 command_state(cmd)e{START,FAIL} @(ﬁrd7 generic door state[ds]={OPEN}

@grd5 ds ¢ command_doors (cmd) @grds st e {SUCCESS,FAIL}

LEQ?? ds #a . Catelds]o(OPEN @yrd9 st = SUCCESS « command_doors (cmd)\ds=e

@grd7 generic_door state[ds]={ ¥ v generic_door_state[command_doors (cmd)\ds]

then _
@actl obstructed_door = obstructed door v ds then ={CLOSED}

@act2 command_state(cmd)=FAIL @actl generic door state=
end generic_door_state<(dsx{CLOSED})
@act2 obstructed door = obstructed door \ ds
@act3 command_state(cmd)=st

@grd4 command_state(cmd)=FAIL
@grd5 ds ¢ command_doors (cmd)

end

FIGURE 6.26: Some events in GCDoors_M1

event closeObstructedDoor models a successful attempt to close an obstructed door.

Otherwise, it needs to be closed manually.

6.12 Third refinement of GCDoor: GCDoor_M2

In the third refinement, malfunctioning doors can be isolated and in that case, they
ignore the commands issued by the central command. Isolated doors can be either
opened or closed. After the execution of a command, the corresponding state is updated

according to the success/failure of the command. The properties to be preserved are:

Chapter 6 Case Study 153

1. Doors can be isolated (independently of the respective door state) in case of mal-

function or safety reasons.
2. If a command is successful, it means that the command already occurred.

3. Two commands cannot have the same door as target except if the command has

already been executed.

4. If a door is obstructed, then it must be in a state corresponding to OPEN.

The properties to be preserved are mainly defined as invariants. Property 1 is de-
fined by new variable isolated_door, invl, inv6 and events commandlsolationDoors,
isolateDoor and removelsolatedDoor as seen in Fig. 6.27(b). Property 2 is defined by
several invariants depending on the command: inv2 for opening doors, inv3 for closing
doors, inv4 to isolate doors, inv5 to lift the isolation from a door. Property 3 is defined

by inv7 and the last property by inv8.

An excerpt of GCDoors_M2 is depicted in Fig. 6.27. New event commandl solationDoors
models a command to add/remove doors from isolation refining the abstract event
otherCommandDoors. After this command is issued, the actual execution (or not) of
the command dictates the command state at refined event updatelsolationCmdState.
A command log is created corresponding to the end of the command’s task in event
executeLogCmdState. Other commands could be added in a similar manner but we
restrict to these commands for now. The state update of other commands (opening and

closing doors) follows the same behaviour as the isolation one.

This model has three refinement layers with all the proof obligations discharged. We
instantiate this model, benefiting from the discharged proof obligations and refinements

to model emergency and service doors.

6.13 Instantiation of Generic Carriage Door

We use the GCDoor development as a pattern to model emergency and service doors.
The instantiation is similar for both kind of doors: specific details for each type of door
are added later. We abstract ourselves from these details and focus in the instantiation

of one of the doors: emergency doors.

The pattern context is defined by contexts GCDoor_C0 (and context GCTrack_C0)
in Fig. 6.23 and GCDoor_C1 in Fig. 6.25(a). The parameterisation context seen by
the instance results from the context seen by the abstract machine CarriageDoors as
illustrated in Fig. 6.28(a). CarriageDoors-C0 does not contain all the sets and constants

that need to be instantiated. Therefore CarriageDoors_C1 is created based on the
pattern context GCDoor_C1 (Fig. 6.28(b)).

154 Chapter 6 Case Study

machine GCDoor M2 refines GCDoor M1 sees GCDoor Cl

variables generic door generic_door state isolated door locked doors door opening device obstructed door
command command_doors command_type command_state

invariants
@invl isolated_door ¢ DOOR
@inv2 Vemd, d-cmd € command A command_type(cmd)e{OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}
Ad € DOORAd € command doors(cmd)acommand state(cmd)=SUCCESS A d ¢ isolated door=> generic door state(d)=0PEN
@inv3 VYemd, d-cmd € command A command_type(cmd)e{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}
A d € DOOR A d e command_doors(cmd)Acommand_state(cmd)=SUCCESSAd & isolated_door=> generic_door_state(d)=CLOSED
@inv4 Vemd,d-cmd € command A command_type(cmd)=ISOLATE_DOORS A d € DOOR
A d € command_doors(cmd) A command_state(cmd)=SUCCESS = de isolated door
@inv5 Vemd, d-cmd € command A command_type(cmd)=REMOVE_ISOLATION_DOORS
A d € DOOR A d € command doors(cmd) A command state(cmd)=SUCCESS = de isolated door
@inv6 Vd-deisolated_door A d € dom(generic_door_ state)=> generic_door_state(d)e{OPEN, CLOSED}
@inv7 Yemdl, cmd2- cmdlecommand A cmd2ecommand A cmdI#cmd2
A command_state(cmdl)#EXECUTED A command state(cmd2)#EXECUTED =>command_doors(cmdI)ncommand doors(cmd2)=e
@inv8 Vd-deobstructed_door = generic_door_state(d)=0PEN

(a) Variables, invariants

event commandIsolationDoors refines otherCommandDoors event executedLogCmdState refines updateCmdState
any doors cmd cmd type any cmd
where where
@grd doors c generic_door @guard3 cmd € command
@grdl cmd type € {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} @guardl command_state(cmd)e{FAIL,SUCCESS}
@grd2 cmd € COMMAND\command with
@grd3 Ycmd1- cmdlecommand @state state = EXECUTED
A command_state(cmd1)#EXECUTED then
=>doorsncommand_doors (cmdl)=¢ @actl command_state(cmd)=EXECUTED
@grd4 doors #a end
@grd5 cmd type = ISOLATE_DOORS < (doorsnisolated door = o)
@grd6 cmd type = REMOVE_ISOLATION_DOORS & isolated door#e event isolateDoor
A doorsnisolated_door#g any d cmd
then where
@actl command_state(cmd)=START @grd d € generic_door\isolated_door
@act2 command_doors(cmd)=doors @grdl cmd € command
@act3 command = command u {cmd} @grd2 command_state(cmd)=START
@act4 command_type(cmd)=cmd type @grd3 d € command_doors (cmd)
end @grd4 command_type(cmd) = ISOLATE_DOORS
@grd5 generic_door_state(d)e{OPEN, CLOSED}
event updateIsolationCmdState refines updateCmdState then
any state cmd @actl isolated_door= isolated door u {d}
where end
@grd cmd € command
@grdl state € COMMAND_STATE\{START,EXECUTED} event removeIsolatedDoor
@grd2 command_state(cmd)=START any d cmd
@grd3 command_type(cmd) where
€ {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS} @rd d € isolated door
@grd4 (command_type(cmd) = ISOLATE_DOORS @grdl cmd € command
A (3d-decommand_doors(cmd) A d eisolated _door)) @grd3 d € command_doors (cmd)
v (command_type(cmd) = REMOVE_ISOLATION_DOORS @grd4 command_type(cmd) = REMOVE_ISOLATION_DOORS
A (3d-decommand_doors(cmd) A d €isolated door)) @grd2 command_state(cmd)=START
& state = FAIL @grd5 generic_door_state(d)e{OPEN, CLOSED}
then then
@actl command_state(cmd)=state @actl isolated_door= isolated_door \ {d}
end end

(b) Some events in GCDoor_M2

FIGURE 6.27: Excerpt of machine GCDoor_M2

Following the steps suggested in Sect. 3.5.2, we create the instantiation refinement for
emergency carriage doors as seen in Fig. 6.29. As expected, the generic sets and con-
stants are replaced by the instance sets existing in contexts CarriageDoors_C0O and
CarriageDoors_C1. Moreover, generic variables are renamed to fit the instance and be
a refinement of abstract machine C'arriageDoors. The same happens to generic events

addDoor and removeDoor.

Comparing the abstract machine of the pattern GCDoor_M0 and the last refinement of
our initial development CarriageDoors, we realise that they are similar but not a perfect
match. CarriageDoors events contains some additional parameters and guards result-
ing from the previous refinements. For instance, event closeDoors in CarriageDoors

(Fig. 6.30(b)) contains an additional parameter cds compared to event closeDoors in

Chapter 6 Case Study 155

context CarriageDoor_ CO

constants PLATFORM DOOR_SIDE PLATFORM_SIDE CLOSED OPEN
DOOR_CARRIAGE

sets DOOR DOOR_STATE CDV SIDE CARRIAGE

axioms
@letroSystem C1 axml partition(DOOR_STATE, {OPEN}, {CLOSED})
@etroSystem C1 axm2 PLATFORM ¢ CDV
@Train C1 axm2 DOOR_CARRIAGE € DOOR — CARRIAGE
@Train C1 axm3 Vc-ceran(DOOR_CARRIAGE)=DOOR_CARRIAGE~[{c}]#c
@Train C2 axm4 DOOR_SIDE € DOOR — SIDE
@Train C2_axm5 PLATFORM_SIDE € PLATFORM — SIDE
@Train C2 axm6 PLATFORM =#g
end

(a) Context CarriageDoors_CO

context CarriageDoor Cl extends CarriageDoor CO

constants MANUAL_PLATFORM MANUAL_INTERNAL AUTOMATIC_CENTRAL_DOOR
START FAIL SUCCESS EXECUTED OPEN_RIGHT DOORS OPEN_LEFT_DOORS
CLOSE_RIGHT_DOORS CLOSE_LEFT_DOORS ISOLATE_DOORS REMOVE_ISOLATION_DOORS

sets OPEN_DEV COMD_ST COMD_TYPE COMD

axioms
@axml partition(OPEN_DEV, {MANUAL_PLATFORM}, {MANUAL_INTERNAL},
{AUTOMATIC_CENTRAL_DOOR})

@axm2 partition(COMD_ST, {START}, {FAIL}, {SUCCESS},{EXECUTED})

@axm3 partition(COMD_TYPE,{OPEN_RIGHT_DOORS},{OPEN_LEFT_DOORS},
{CLOSE_RIGHT_DOORS}, {CLOSE_LEFT_DOORS},{ISOLATE_DOORS},
{REMOVE_ISOLATION_DOORS})

end

(b) Context CarriageDoors_C1

FIGURE 6.28: Parameterisation context CarriageDoors_C0 plus additional context
CarriageDoors_C'1

INSTANTIATED REFINEMENT IEmergencyDoor_M2
INSTANTIATES GCDoors_-M2 VIA GCDoor_C0 GCDoor_C1
REFINES CarriageDoors /* abstract machine */
SEES CarriageDoors_C0 CarriageDoors_C1 /* instance contexts */
REPLACE
SETS GEN_CARRIAGE := CARRIAGE DOOR := DOOR
DOOR_STATE := DOOR_STATE SIDE :=SIDE
OPENING_DEVICE := OPEN_DEV COMMAND_STATE :=COMD_ST
COMMAND :=COMD COMMANDTYPE :=COMDITYPE
CONSTANTS GEN_DOOR_CARRIAGE := DOOR_CARRIAGE
OPEN := OPEN PLATFORM := PLATFORM
CLOSED :=CLOSED PLATFORM _SIDE := PLATFORM_SIDE

RENAME /*rename variables, events and params®/
VARIABLES generic_doors := carriage_doors generic_door_state := carriage_ds
EVENTS addDoor := allocateCarriageTrain removeDoor := removeCarriageTrain
END

FIGURE 6.29: Instantiated Refinement IEmergencyDoor_M2

GCDoor_M0 (Fig. 6.30(a)). Some customisation is tolerable in the generic event to en-
sure that the instantiation of GCDoor_M0.closeDoors refines CarriageDoors.close Doors

by adding a parameter that match cds and respective guard grdl13.

The customisation can be realised by a (shared event) composition of event

GCDoor_M0.closeDoors with another event that introduces the additional parameter
cds and guard cds = carriage_ds. The monotonicity of the shared event composition
allows the composed pattern to be instantiated as initially desired. Another option is

to introduce an additional step: the last machine of the refinement chain before the

156 Chapter 6 Case Study

event closeDoors event closeDoors
any ds any ds cds
where where
@grd ds ¢ DOOR @typing cds cds € P(DOOR x DOOR_STATE)
@grdl ds c dom(generic_door state) @typing ds ds € P(DOOR)
@grd2 generic_door_state[ds]={OPEN} @grdll ds ¢ dom(carriage ds)
@grd3 ds # @grd12 carriage ds[ds]={OPEN}
then @grdl3 cds = carriage ds
@actl generic_door_state=generic_door_state then
< (dsx{CLOSED}) @act2 carriage ds=carriage_ds < (dsx{CLOSED})
end end
(a) Event GCDoor_M0.closeDoors (b) Event CarriageDoors.closeDoors

event closeDoors refines closeDoors
any ds
where
@typing ds ds € P(DOOR)
@grdll ds ¢ dom(carriage_ds)
@grdl2 carriage ds[ds]={OPEN}
with
@cds cds = carriage_ds
@t t € TRAIN
@closed closed € BOOL
then
@act2 carriage_ds=carriage ds < (dsx{CLOSED})
end

(c) Event CarriageDoorsInst_-MO0.close Doors

FIGURE 6.30: Event closeDoors in the pattern and instance; they differ in the param-
eters, guards and witnesses

instantiation (in our case study, machine CarriageDoors) is refined. The resulting re-
finement machine (CarriageDoorsInst_MO0) refines the first instantiation machine (i.e.
CarriageDoors T CarriageDoorsInst_ M0 T EmergencyDoors_M0) “customising”
the instantiation. Therefore the additional parameters (and respective guards) can dis-
appear by means of witnesses as can be seen in Fig. 6.30(c). Ideally we aim to have a
syntactic match (after instantiation) between the pattern and the initial instantiantion.

Nevertheless a valid refinement is enough to apply the instantiation.

An instance machine EmergencyDoor-M2 (Fig. 6.31) is similar to GC Door_M2 apart
from the replacements and renaming applied in IEmergencyDoor_M2 (cf. Figs. 6.27,
Fig. 6.29 and Fig. 6.31). That machine can be further refined (and decomposed) intro-
ducing the specific details related to emergency doors. The instantiation of the service

doors follows the same steps.

Statistics: In Table 6.3, we describe the statistics of the development in terms of vari-
ables, events and proof obligations (and how many POs were automatically discharged
by the theorem prover of the Rodin platform) for each refinement step. Almost 3/4 of

the proof obligations are automatically discharged.

This case study was carried out under the following conditions:

e Rodin v2.1

e Shared Event Composition plug-in v1.3.1

Chapter 6 Case Study 157

machine EmergencyDoors_M2 refines EmergencyDoors_M1 sees CarriageDoors_C1

variables carriage_door carriage_ds isolated_door locked_doors door_opening_device obstructed_door
command command_doors command_type command_state

invariants
@inv1 isolated_door = DOOR

A d & isolated_door- carriage_ds(d)=OPEN

A d & isolated_door= carriage_ds(d)=CLOSED

A command_state(cmd7)=EXECUTED

@inv2 Yemd,d- cmd € command A command_type(cmd)€{OPEN_RIGHT_DOORS,OPEN_LEFT_DOORS}
A d € DOOR A d € command_doors(cmd) A command_state(cmd)=SUCCESS

@inv3 Yemd,d- cmd € command A command_type(cmd)€{CLOSE_RIGHT_DOORS,CLOSE_LEFT_DOORS}
A d € DOOR A d € command_doors(cmd) A command_state(cmd)=SUCCESS

@inv4 Yd- deisolated_door A d € dom(carriage_ds)= carriage_ds(d)€{OPEN, CLOSED}
@inv5 Yemd1,cmd2- cmdT€command A cmd2€command A cmd1=cmd2

A command_state(cmd2)=EXECUTED =command_doors(cmdT)ncommand_doors(cmd2)=2
@inv6 Yemd,d- cmd € command A command_type(cmd)=ISOLATE_DOORS A d € DOOR

A d € command_doors(cmd) A command_state(cmd)=SUCCESS - d€ isolated_door
@inv7 Yemd,d- cmd € command A command_type(cmd)=REMOVE_ISOLATION_DOORS

A d € DOOR A d € command_doors(cmd) A command_state(cmd)=SUCCESS = d¢ isolated_door
@inv8 Yd- deobstructed_door = carriage_ds(d)=0OPEN

(a) Variables, invariants

event commandisolationDoors refines otherCommandDoors

any doors cmd cmd_type

where
@guard doors < carriage_door
@quard1 cmd_type

€ {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS}
@guard3 cmd € COMD\command
@guard4 YemdT - emd1€command
A command_state(cmd1)=EXECUTED
=sdoorsncommand_doors(cmdT)=e
@qgrd4 doors =@
@grd5 cmd_type = ISOLATE_DOORS « (doorsnisolated_door = &)
@grd6 cmd_type = REMOVE_ISOLATION_DOORS = isolated_door=2
A doorsnisolated_door=e

then
@act] command_state(cmd)=START
@act2 command_doors(cmd)=doors
@act3 command = command u {cma}
@act4 command_type(cmad)=cmd_type

end

event updatelsolationCmdState refines updateCmdState
any state cmd
where
@guard3 cmd € command
@guard state € COMD_ST\{START,EXECUTED}
@guard1 command_state(cmd)=START
@guard5 command_type(cmd)
€ {ISOLATE_DOORS,REMOVE_ISOLATION_DOORS}
@grd3 (command_type(cmd) = ISOLATE_DOORS
A (3d - dEcommand_doors(cmd) A d &isolated_door))
v (command_type(cmd) = REMOVE_ISOLATION_DOORS
A (3d - dEcommand_doors(cmd) A d €Eisolated_door))

event executedLogCmdState refines updateCmdState
any cmd
where
@guard3 cmd € command
@guard1 command_state(cmd)€{FAIL,SUCCESS}
with
@state state = EXECUTED
then
@act1 command_state(cmd)=EXECUTED
end

event isolateDoor
any d cmd
where
@guard d € carriage_door\isolated_door
@guard1 cmd € command
@guard2 command_state(cmd)=START
@guard3 d € command_doors(cmd)
@guard4 command_type(cmd) = ISOLATE_DOORS
@guard5 carriage_ds(d)€{OPEN, CLOSED}
then
@act1 isolated_door= isolated_door u {d}
end

event removelsolatedDoor

any d cmd

where
@guard d € isolated_door
@guard1 ecmd € command
@guard3 d € command_doors(cmd)
@guard4 command_type(cmd) = REMOVE_ISOLATION_DOORS
@guard2 command_state(cmd)=START

« state = FAIL @guard5 carriage_ds(d)€{OPEN, CLOSED}
then then
@act] command_state(cmd)=state @act1 isolated_door= isolated_door \ {ad}
end end
(b) Some events in EmergencyDoor_M2
FIGURE 6.31: Excerpt of instantiated machine EmergencyDoor_M2
e Model Decomposition plug-in v1.2.1

ProB v2.1.2

Camille Text Editor 2.0.1

Instantiation was done manually (currently tool support is not available).

Although we are interested mainly interested in safety properties, the model checker
ProB [141] proved to be very useful as a complementary tool during the development

of this case study. In some stages of the development, all the proof obligations were

158 Chapter 6 Case Study

Variables | Events | ProofObligations/Auto
TransitiveClosureCtx — — 10/10
MetroSystem_C0 — — 5/3
MetroSystem_C1 — — 0/0
MetroSystem_-MO 7 10 75/64
MetroSystem_M1 10 13 17/17
MetroSystem_M2 12 17 78/57
MetroSystem_M3 12 17 24/22
Track 4 10 0/0
Train 7 14 0/0
Middleware 1 4 0/0
Train-M1 9 16 74/52
Train_-M2 13 21 155/79
Train_-M3 12 21 65/24
Train-M4 14 21 119/89
LeaderCarriage 9 21 0/0
Carriage 5 11 0/0
Carriage_M1 6 11 28/21
Carriagelnterface 4 11 0/0
CarriageDoors 2 5 0/0
CarriageDoorsInst_MO 2 5 2/1
GCDoor_MO0 2 5 6/6
GCDoor_M1 9 15 81/80
GCDoor_M2 10 22 170/153
Total 909/678(74.6%)

TABLE 6.3: Statistics of the metro system case study
discharged but with ProB we discovered that the system was deadlocked due to some
missing detail. In large developments, these situations possibly occur more frequently.
Therefore we suggest discharging the proof obligations to ensure the safety properties
are preserved and run the ProB model checker to confirm that the system actually is

free from deadlocks.

6.14 Discussion: Conclusions and Lessons Learned

We modelled a metro system case study, starting by proving its global properties through
several refinement steps. Afterwards, due to an architectural decision and to alleviate
the problem of modelling and handling a large system in one single machine, the system
is decomposed in three sub-components. We further refine one of the resulting sub-
components (Train), introducing several details in four refinements levels. Then again,
due to the number of proof obligations, to achieve separation of aspects and to ease the
further developments, we decompose it into two sub-components: LeaderCarriage and
Carriage. Since we are interested in modelling carriage doors, sub-component Carriage
is refined and afterwards decomposed originating sub-component CarriageDoors. Ben-
efiting from an existing generic development for carriage doors GCDoor, we consider
this development as a pattern and instantiate two kind of carriage doors: service and
emergency doors. Although the instantiation is similar for both types of doors, the
resulting instances can be further refined independently. Using generic instantiation, we
avoid having to prove the proof obligations regarding the pattern GCDoor: GCDoor_M0),
GCDoor_M1 and GCDoor_M2 (in the overall 257 POs). This figure only considers the

instantiation of emergency doors (the instantiation of service doors would imply twice

Chapter 6 Case Study 159

the number of POs).

From the experience of other developments involving a large number of refinements lev-
els or refinements with large models, the development tools reach a point where it is not
possible to edit the model due to the high amount of resources required to do it (or it
is done very slowly). The decomposition is a possible solution that alleviates this issue
by splitting the model into more tool manageable dimensions. Following a top-down
approach, developed models become more complex in each refinement step. Neverthe-
less by applying decomposition, we alleviate the consequences of such complexity by
separating concerns (architecture approach), decreasing the number of events and vari-
ables per sub-component which results in models that are more manageable from a tool
point of view. Moreover, for each refinement, the properties (added as requirements)
are preserved. Using generic instantiation, we avoid proving the pattern proof obliga-
tions GCDoor. Therefore we reach our goal of reusing existing developments as much as
possible and discharge as little proof obligations as possible. Even the interactive proofs
were relatively easy to discharge once the correct tactic was discovered. This task would
be more difficult without the decomposition due to the elevated number of hypotheses
to considered for each PO. Nevertheless we believe that the effort of discharging proof
obligations could be minimised by having a way to reuse tactics. In particular when the

same steps are followed to discharge similar POs.

In a combination of refinement and instantiation, we learned that the abstract machine
and the abstract pattern do not necessarily match perfectly. In particular, some extra
guards and parameters may exist resulting from previous refinements in the instance.
Nevertheless the generic model can still be reused. We can (shared event) compose the
pattern with another machine in a way that the resulting events include the additional
parameters and guards to guarantee a valid refinement. Another interesting conclusion is
that throughout an instantiation, it is possible not to use all the generic events. A subset
of generic events can be instantiated in opposition to instantiate all. This a consequence
of the event refinements that only depend on abstract and concrete events. Nevertheless
this only applies for safety properties. If we are interested in liveness properties, the

exclusion of a generic event may result in a system deadlock.

With this case study we aim to illustrate the application of decomposition and generic
instantiation as techniques to help the development of formal models. Following these
techniques, the development is structured in a way that simplifies the model by sepa-
rating concerns and aspects and decreases the number of proof obligations to be dis-
charged. Although we use Event-B, these techniques are generic enough to suit other
formal notations and other case studies. Formal methods has been widely used to val-
idate requirements of real systems. The systems are formally described and properties
are checked to be preserved whenever a system transition occurs. Usually this result
in complex models with several properties to be preserved, therefore structuring and

reusability are pursued to facilitate the development. Lutz [114] describes the reuse of

160 Chapter 6 Case Study

formal methods when analysing the requirements and designing the software between
two spacecrafts’ formal models. Stepney et al. [177, 178] propose patterns to be applied
to formal methods in system engineering. Using the Z notation, several patterns (and
anti-patterns) are identified and catalogued to fit particular kind of models. These pat-
terns introduce structure to the models and aim to aid formal model developers to choose
the best approach to model a system, using some examples. Although the patterns are
expressed for Z, they are generic enough to be applied to other notations. Comparing
with the development of our case study, the instantiation of service and emergency doors
corresponds to the Z promotion, where a global system is specified in terms of multiple
instances of local states and operations. Although there is not an explicit separation of
local and global states in our case study, service and emergency doors states are con-
nected to the state of CarriageDoor and we even use decomposition, instantiation and
refactoring (called meaning preservation refactoring steps in Z promotion) to fit into a
specific pattern. [177] suggests template support and architecture patterns to be sup-
ported by tools, something that currently does not happen. We have a similar viewpoint
and we would like to address this issue in the future. Templates could be customised
according to the modeller’s needs and selected from an existing list, perhaps categorised

as suggested in [177].

Butler [44] uses the shared event approach in classical B to decompose a railway system
into three sub-components: Train, Track and Communication. The system is modelled
and reasoned as a whole in an event-based approach, both the physical system and
the desired control behaviour. Our case study follows a similar methodology applied
to a metro system following the same shared event style. Moreover we introduce more
requirements regarding the trains and the carriage doors, expressed through the use of

decomposition and generic instantiation.

Chapter 7

Conclusions and Future Work

In this chapter we wrap up the contributions of this thesis and outline our objectives for
the future. We aim to introduce reusability and modularity mechanisms when developing
system specifications in particular large systems that become cumbersome to manage
when scaling. For that we propose the use of composition, decomposition and generic
instantiation to facilitate the development of large systems. We use the Event-B formal
notation and the Rodin platform for the development of these techniques and respective
tool support. We separate the conclusions and future work into three main topics giving

more detail about each as follows.

7.1 Composition

Based on the close relation between action systems and Event-B plus the correspon-
dence between action systems and CSP [53], we define our Event-B composition with an
event-based behaviour. Shared event composition is proved to be monotonic by means of
proof obligations. Consequently sub-components can be further refined independently.
Refinement in a “top-down” style for developing specifications is allowed including the
generation of POs. During composition, sub-components interact through event pa-
rameters by value-passing. We extend Event-B to support shared event composition,
allowing combination and reuse of existing sub-components through the introduction
of composed machines. Required static checks are defined and POs are generated to
validate the composition. Such an approach seems suitable for modelling distributed

systems, where the system can be seen as a combination of sub-components.

Currently we have developed a plug-in that allows shared event composition using Event-
B in the Rodin platform. Some of the proofs to be generated are also generated in the
included machines. By identifying the similarities between proofs, we have established

that we can reuse proof obligations and reduce the effort of discharging proof obligations

161

162 Chapter 7 Conclusions and Future Work

that are already done in the included machines. The shared event composition tool gen-
erates a new (composed) machine to ensure the validity of the composition using the
already existing validation scheme for machines (generation of proof obligations). In the
future the composed machine generation should be optional since this validation should
be done directly over the composition file. Although the shared variable composition
was not in the initial plans for this thesis, the close relation with our work suggested
a deeper understanding of that style. During that study, we discovered a close relation
between the rely /guarantee composition for VDM and the shared variable composition
for Event-B that is also mentioned in Hoang and Abrial’s work [90]. It should be possible
to create a correspondence between these two approaches and we intend to investigate
this in the future. Schneider et al [159] define a CSP semantics for Event-B as described
in Sect. 1.5.6. Following that work, we define as future work the derivation the CSP
semantics for Event-B machines to define the composition of machines in terms of traces,
failures, divergences and infinite traces. A paper was accepted for the B workshop run-
ning in parallel with FM 2011 (International Symposium on Formal Methods) [161] and
another to FMCO 2010 (International Symposia on Formal Methods for Components
and Objects) based on shared event composition [164] and we gave a presentation about
this work in the Rodin Workshop 2009.

To summarize, we list the future work for composition below:

e Generation of proof obligations for shared event composition directly rather than

indirectly by expanding machine compositions.
e Further investigation on reuse of proofs obligations in the Rodin platform.

e Can rely/guarantee for VDM be applied to (Abrial) shared variable composition
for Event-B?

e Adding enabledness POs when available for the Rodin platform.

e Derivation of CSP semantics for Event-B machines described by Schneider et
al [159] to define the composition of machines in terms of traces, failures, di-

vergences and infinite traces.

7.2 Generic Instantiation

The generic instantiation work was a result of the achievements towards composition and
decomposition. The possibility to have patterns that can be reused in another develop-
ments seems very attractive while creating specifications in particular in a top-bottom
style. Event-B supports generic developments but lacks the capacity to instantiate and
reuse those generic developments. As a solution, generic instantiation is applied to

patterns and as an outcome instantiated machines are created and parameterised. An

Chapter 7 Conclusions and Future Work 163

instantiated machine instantiates a generic machine, is parameterised by a context and
the pattern elements are renamed /replaced according to the instance. In a similar style,
an instantiated refinement instantiates a chain of refinements reusing the pattern proof
obligations assuming that the instantiated proof obligations are as valid as the pattern
ones. By quantifying the variables, constants and types we ensure that pattern proof
obligations remain valid when instantiating. A renaming plug-in was developed sup-
porting the renaming of Event-B elements and respective proofs. Optimisation at level
of proof renaming will be investigated in the future as it may become a slow operation
for large proof trees. A paper was accepted at ICFEM 2009 (International Conference
on Formal Engineering Methods) [163] describing this work. In the future, we intend
to have tool support for generic instantiation as described in Chapter 3. With larger
and relevant cases studies we should improve the tool and publish a paper with the re-
sults and conclusions. Moreover a library of patterns could be provided when modelling,

divided according to the categories are suggested in [178].

To summarize, we list the future work for generic instantiation below:

Optimisation of proof renaming

Tool development in collaboration with ETH Zurich.

Application of a large case study to and test the scalability and improve the tool.

Definition of a categorised pattern library and customisable templates.

Writing and submitting a paper as a continuation of the initial study describing

the tool support and conclusions of application of a case study.

7.3 Decomposition

There is a need for modularisation and reuse of sub-components in order to model
large systems and manage better the respective POs. Event-B lacks a sub-component
mechanism. Thus we propose to tackle that problem through the decomposition of
a system by their events or variables. The shared variable (state-based) approach is
suitable for designing parallel algorithms while the shared event (event-based) is suitable
for message-passing distributed systems [45]. Following any of these two approaches, the
parallel components of a distributed system can be refined and decomposed separately
without making any assumptions about the rest of the system. The shared variable
style relies on the work of Abrial and Hallerstede [15] where variables are shared and
exists the notion of external events. Butler [45] suggests the shared event decomposition
where events are partition through the sub-components and the interaction occurs via

shared parameters. The work developed by Butler in [40] for action system is strongly

164 Chapter 7 Conclusions and Future Work

related with the same approach for shared event decomposition in Event-B [45] as both

approaches are state-based formalism combined with event-based CSP.

We have collaborated in the tool support development for the decomposition technique
in the Rodin platform, being responsable for the shared event approach development.
The tool allows the semi-automatic decomposition in a shared variable and shared event.
An initial study of such work has been accepted as a workshop paper for the ABZ 2010
conference [165] and an extended version of that paper was published in the journal
Software: Practise and Experience expressing our results [166]. With the application of
more case studies, we should have more results and conclusions that can be published.
As described in Chapter 4, the decomposition tool has been widely used with positive
feedback. Some improvements on the tool have been suggested and we intend to carry
them out in the future. A large case study based on some real requirements is described
in Chapter 6 and shows a practical implementation of the technique, the possible com-
bination with generic instantiation and respective tool support. To summarize, we list

the future work for decomposition below:

Tool development and improvements.

Extension of the composed machine plug-in to support the shared variable com-

position in order to store the decomposition configuration.

Application of a large case study to test scalability.

Writing and submitting a paper with the results of the application of decomposition

in scalable systems.

7.4 Future Work

In the previous sections we described the future related to each technique that we studied
in this document. Although they are powerful techniques that help the formal modelling
of large and/or complex systems, there is still plenty to be studied and researched when
it comes to the reusability of models. In particular, there is a need to decrease the
user’s effort when developing models, in particular, for the reuse of proofs. From our
own experience, discussions with other formal developers and even for the industrial
companies that use formal methods, often the time spent discharging proofs is greater
than the time spent modelling the system itself. The same model can be developed in
many different manners but the generated number of proofs and the ease to discharge
them vary. Therefore although the outcome may be the same, the properties to be proved
may be harder to achieve. This situation somehow suggests the need for guidelines
on how to achieve the same goal in a simpler, cleaner and possible easier in terms of

discharging proofs. These guidelines could be arranged by some modelling patterns that

Chapter 7 Conclusions and Future Work 165

tend to occur even when different kind of systems are being developed. We intend to
research these modelling patterns and come up with practical guidelines that can be
easily applied to existing developments (in a way, it is a different continuation path

from generic instantiation).

The reuse of proofs is another topic that also requires further study. Currently the
Rodin platform allows the reuse of existing proofs to be applied to other proofs but these
usually fail if the structure of the proof is slightly different. We need more powerful proof
patterns that can be applied that are less sensitive to the structure. The modelling tactics
often are repeated throughout a development and consequently results in similar kind
of proof obligations to be discharged. Ideally once these kind of proofs are discharged,
that proof tactic should easily be applied to the rest of the family of proof obligations.
What happens at the moment is cumbersome where the user has to redo and re-apply
the proofs steps instead of tackling more interesting and challenging proofs. This topic
is quite broad but we intend to investigate to come up with more possible reuse of proofs

techniques.

More recently, code generation [67] has been proposed for Event-B following the path
of classical B. But this approach is more flexible as it allows the user to define tasking
machines [68] to define how the model can be implemented. Tasking machines can be
periodic, triggered by an event or happen only once (one shot). Moreover the implemen-
tation allows the definition of tasks that model or simulate the environment (Environ
machine) and the definition of data that can be accessed by different threads (Shared
machine). The communication and implementation of these different machines use the
shared event composition to structure them in one single place. Another powerful option
is to define the implementation data structure according to the target language to be
implemented. As future work, we intend to extend the existing theory plug-in [115] to
allow the mapping of new (or existing) theories into executable code. The intention is
to let the user define new Event-B data structures (since they are not fixed) and map to
the corresponding implementation for the specific target language. At the moment only

Ada and C are supported, although in the future other target languages will supported.

Bibliography

1]

Martin Abadi and Leslie Lamport. Composing Specifications. In J. W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed
Systems - Models, Formalisms, Correctness, volume 430, pages 1-41, Berlin, Ger-

many, 1989. Springer-Verlag.

Martin Abadi and Leslie Lamport. Decomposing Specifications of Concurrent Sys-
tems. In PROCOMET °9: Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3
Working Conference on Programming Concepts, Methods and Calculi, pages 327—
340, Amsterdam, The Netherlands, The Netherlands, 1994. North-Holland Pub-
lishing Co.

Jean-Raymond Abrial. Extending B without Changing it (for Developing Dis-
tributed Systems). In Proceedings of 1st Conference on the B method, pages 169—
191, Nantes, France, November 1996. Springer-Verlag.

Jean-Raymond Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, 1996.

Jean-Raymond Abrial. Formal Methods in Industry: Achievements, Problems,
Future. In ICSE °06: Proceedings of the 28th international conference on Software
engineering, pages 761-768, New York, NY, USA, 2006. ACM.

Jean-Raymond Abrial. A System Development Process with Event-B and the
Rodin Platform. In Formal Methods and Software Engineering, volume 4789,
pages 1-3. Springer Berlin / Heidelberg, 2007.

Jean-Raymond Abrial. Formal Methods: Theory Becoming Practice. J. UCS,
13(5):619-628, May 2007.

Jean-Raymond Abrial. Event Model Decomposition. Technical report, ETH
Zurich, 2009 (Unpublished).

Jean-Raymond Abrial. Modeling in Fvent-B: System and Software Engineering.
Cambridge University Press, 2010.

167

168

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: An Open Toolset for Modelling and

Reasoning in Event-B. International Journal on Software Tools for Technology
Transfer (STTT), April 2010.

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Michael Leuschel,
Matthias Schmalz, and Laurent Voisin. Proposals for Mathematical Extensions for
Event-B. http://deploy-eprints.ecs.soton.ac.uk/216/ (Unpublished), 2009.

Jean-Raymond Abrial, Michael Butler, Rajev Joshi, Elena Troubitsyna, and Jim
C. P. Woodcock. 09381 Extended Abstracts Collection — Refinement Based Meth-
ods for the Construction of Dependable Systems. In Jean-Raymond Abrial,
Michael Butler, Rajeev Joshi, Elena Troubitsyna, and Jim C. P. Woodcock, edi-
tors, Refinement Based Methods for the Construction of Dependable Systems, num-
ber 09381 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2010. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, and Laurent Voisin.
An Open Extensible Tool Environment for Event-B. In ICFEM, pages 588-605,
2006.

Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Refinement and
Reachability in Event B. ZB 2005: Formal Specification and Development in Z
and B, pages 222-241, 2005.

Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and
Instantiation of Discrete Models: Application to Event-B. Fundam. Inf., 77(1-
2):1-28, 2007.

Jean-Raymond Abrial, Christophe Metayer, and Laurent Voisin. Rodin Manual
and Language Definition. http://deploy-eprints.ecs.soton.ac.uk/11/, 2007.

Jean-Raymond Abrial and Louis Mussat. Introducing Dynamic Constraints in
B. In B ’98: Proceedings of the Second International B Conference on Recent
Advances in the Development and Use of the B Method, pages 83-128, London,
UK, 1998. Springer-Verlag.

R.D. Arthan. Undefinedness in Z: Issues for Specification and Proof.
In CADE-13 Workshop on Mechanization of Partial Functions. Awvail-
able on the Web as ftp://ftp.cs.bham.ac.uk/pub/authors/M.Kerber/96-CADE-
WS/Arthan.ps.gz, pages 3—12. Springer, 1996.

Atelier B Web Page. http://www.atelierb.eu/, September 2008. Online; ac-
cessed 27-July-2010.

B-Core, The B-Technology Company: B-Toolkit. http://www.b-core.com/
btoolkit.html, September 2008. Online; accessed 27-July-2010.

http://deploy-eprints.ecs.soton.ac.uk/216/
http://deploy-eprints.ecs.soton.ac.uk/11/
http://www.atelierb.eu/
http://www.b-core.com/btoolkit.html
http://www.b-core.com/btoolkit.html

BIBLIOGRAPHY 169

[21]

22]

[30]

[31]

[32]

B4Free. B4free. http://www.b4dfree.com, September 2008. Online; accessed
27-July-2010.

Ralph-Johan Back. Correctness Preserving Program Refinements: Proof Theory
and Applications, volume 131 of Mathematical Center Tracts. Mathematical Cen-
tre, Amsterdam, The Netherlands, 1980.

Ralph-Johan Back. Refinement Calculus, part II: Parallel and Reactive Pro-
grams. In REX workshop: Proceedings on Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness, pages 67-93, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

Ralph-Johan Back. Refinement of Parallel and Reactive Programs. Technical
report, California Institute of Technology, Pasadena, CA, USA, 1992.

Ralph-Johan Back and Michael Butler. Fusion and Simultaneous Execution in the
Refinement Calculus. Acta Informatica, 35(11):921-949, 1998.

Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of Process Nets
with Centralized Control. In PODC ’83: Proceedings of the second annual ACM
symposium on Principles of distributed computing, pages 131-142, New York, NY,
USA, 1983. ACM.

Ralph-Johan Back and Joakim von Wright. Trace refinement of action systems,
pages 367-384. Springer Berlin / Heidelberg, 1994.

Jos C. M. Baeten and Jan A. Bergstra. Real Time Process Algebra. Formal Asp.
Comput., 3(2):142-188, 1991.

Elisabeth Ball. An Incremental Process for the Development of Multi-Agent Sys-
tems in Event-B. PhD thesis, Southampon University, 2008.

Elisabeth Ball and Michael Butler. Using Decomposition to Model Multi-agent
Interaction Protocols in Event-B. In FM’06 Doctoral Symposium. Springer, 2006.

Hubert Baumeister. Using Algebraic Specification Languages for Model-Oriented
Specifications. Technical Report MPI-1-96-2-003, Max-Planck-Institut fiir Infor-
matik, Saarbriicken, February 1996.

Frangoise Bellegarde, Jacques Julliand, and Olga Kouchnarenko. Synchronized
Parallel Composition of Event Systems in B. In ZB ’02: Proceedings of the 2nd
International Conference of B and Z Users on Formal Specification and Develop-
ment in Z and B, pages 436-457, London, UK, 2002. Springer-Verlag.

Sandrine Blazy, Frédéric Gervais, and Régine Laleau. Reuse of Specification Pat-
terns with the B Method. In Springer-Verlag SEP, editor, ZB 2003: Formal

Specification and Development in Z and B Lecture Notes in Computer Science,

http://www.b4free.com

170

BIBLIOGRAPHY

[41]

[42]

[45]

volume 2651 of Lecture Notes in Computer Science, pages 40-57, Turku, Finland,
June 2003.

E. A. Boiten, J. Derrick, H. Bowman, and M. Steen. Coupling schemas: data
refinement and view(point) composition. In D.J. Duke and A.S. Evans, editors,
2nd BCS-FACS Northern Formal Methods Workshop, Workshops in Computing,
page 18. Springer-Verlag, July 1997.

Tommaso Bolognesi. A Conceptual Framework for State-Based and Event-Based
Formal Behavioural Specification Languages. In ICECCS ’04: Proceedings of the
Ninth IEEE International Conference on Engineering Compler Computer Systems
Navigating Complexity in the e-Engineering Age (ICECCS’04), pages 107116,
Washington, DC, USA, 2004. IEEE Computer Society.

Azad Bolour. Eclipse plug-in architecture. http://www.eclipse.org/articles/
Article-Plug-in-architecture/plugin_architecture.html, September
2008. Online; accessed 27-July-2010.

J. P. Bowen. Formal Specification and Documentation using Z: A Case Study

Approach. International Thomson Computer Press, 1996.

Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths of Formal Meth-
ods. IEEFE Software, 12:34—41, 1995.

Brama: Graphical tool of modeling applied to the B formal method. http://www.
brama.fr/, September 2008. Online; accessed 27-July-2010.

Michael Butler. Refinement and Decomposition of Value-Passing Action Systems.
In CONCUR ’93: Proceedings of the 4th International Conference on Concurrency
Theory, pages 217-232, London, UK, 1993.

Michael Butler. Stepwise Refinement of Communicating Systems. Science of
Computer Programming, 27(2):139-173, September 1996.

Michael Butler. An Approach to the Design of Distributed Systems with B AMN.
In Proc. 10th Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM),
LNCS 1212, pages 221-241, 1997.

Michael Butler. csp2B: A Practical Approach to Combining CSP and B. Formal
Aspects of Computing, 12:182-196, 2000.

Michael Butler. A System-based Approach to the Formal Development of Em-
bedded Controllers for a Railway. Design Automation for Embedded Systems,
6:355-366, 2002.

Michael Butler. Synchronisation-Based Decomposition for Event-B. In RODIN
Deliverable D19 Intermediate report on methodology, pages 47-57, 2006.

http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.brama.fr/
http://www.brama.fr/

BIBLIOGRAPHY 171

[46]

[47]

[48]

[49]

[50]

[51]

[55]

[56]

[59]

Michael Butler. Incremental Design of Distributed Systems with Event-B. Mark-
toberdorf Summer School 2008 Lecture Notes, November 2008.

Michael Butler. Decomposition Structures for Event-B. Integrated Formal Methods
1FM2009, pages 20-38, February 2009.

Michael Butler. External and Internal Choice with Event-B Groups in Event-B.
Formal Aspects of Computing, (To be published), 2012.

Michael Butler and Stefan Hallerstede. The Rodin Formal Modelling Tool. BCS-
FACS Christmas 2007 Meeting - Formal Methods In Industry, London., pages 1-5,
December 2007.

Michael Butler and Michael Leuschel. Combining CSP and B for Specification
and Property Verification. In John Fitzgerald, Ian Hayes, and Andrzej Tarlecki,
editors, Formal Methods 2005, number 3582 in LNCS, pages 221-236. Springer,
January 2005.

Michael Butler and Issam Maamria. Mathematical Extension in Event-B through
the Rodin Theory Component. http://deploy-eprints.ecs.soton.ac.uk/251/
(Unpublished), 2010.

Michael Butler and Marina Waldén. Distributed System Development in B. Tech-
nical Report TUCS-TR-53, Turku Centre for Computer Science, 14, 1996.

Michael J. Butler. A CSP Approach to Action Systems. PhD thesis, Oxford
University, 1992.

Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. A Refinement Strategy
for Circus. Formal Aspects of Computing, 15:146-181, 2003. 10.1007/s00165-003-
0006-5.

Jingwen Cheng. A Reusability-Based Software Development Environment. SIG-
SOFT Softw. Eng. Notes, 19(2):57-62, 1994.

John Colley and Michael Butler. On Proving with Event-B that a Pipelined Pro-
cessor Model Implements its ISA Specification. In Dagstuhl Seminar on Refinement
Based Methods for the Construction of Dependable Systems, 2009.

Community Z Tools. Community Z Tools. http://czt.sourceforge.net/, Jan-
uary 2010.

Dan Craigen. Tool Support for Formal Methods. In Proceedings of the 13th
international conference on Software engineering, ICSE 91, pages 184-185, Los
Alamitos, CA, USA, 1991. IEEE Computer Society Press.

CSK Systems. VDMTools. http://www.vdmtools. jp/en/, January 2011.

http://deploy-eprints.ecs.soton.ac.uk/251/
http://czt.sourceforge.net/
http://www.vdmtools.jp/en/

172

BIBLIOGRAPHY

[60]

[61]

[63]

[67]

[68]

[69]

Kriangsak Damchoom. An Incremental Refinement Approach to a Development
of a Flash-Based File System in Event-B. PhD thesis, School of Electronics and

Computer Science, University of Southampton, 2010.

Kriangsak Damchoom, Michael Butler, and Jean-Raymond Abrial. Modelling and
Proof of a Tree-Structured File System in Event-B and Rodin. In Proceedings of
the 10th International Conference on Formal Methods and Software Engineering,
ICFEM ’08, pages 25-44, Berlin, Heidelberg, 2008. Springer-Verlag.

Kriangsak Damchoom and Michael J. Butler. Applying Event and Machine De-
composition to a Flash-Based Filestore in Event-B. In SBMF, pages 134-152,
2009.

Robert Darimont and Axel van Lamsweerde. Formal Refinement Patterns for
Goal-Driven Requirements Elaboration. In SIGSOFT °96: Proceedings of the 4th
ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 179—
190, New York, NY, USA, 1996. ACM.

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, EnglewoodCliffs,
New Jersey, 1976.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Se-
mantics. Springer-Verlag, 1990.

Eclipse. Eclipse homepage. http://www.eclipse.org, September 2008. Online;
accessed 27-July-2010.

Andy Edmunds. Code generation. http://wiki.event-b.org/index.php/Code_

Generation, January 2012.

Andy Edmunds. Tasking Event-B Overview. http://wiki.event-b.org/index.
php/Tasking_Event-B_0verview, January 2012.

Neil Evans and Michael Butler. A Proposal for Records in Event-B. In Tobias Nip-
kow, Jayadev Misra, and Emil Sekerinski, editors, Formal Methods 2006, volume
LNCS 4085, pages 221-235. Springer, 2006.

Neil Evans and Neil Grant. Towards the Formal Verification of a Java Processor
in Event-B. FElectronic Notes in Theoretical Computer Science, 201:45-67, March
2008.

Event-B. Event-B.org. http://www.event-b.org, September 2008. Online; ac-
cessed 27-July-2010.

Jerome Falampin, Michael Butler, and John Fitzgerald. Deploy deliverable d16
d2.1 pilot deployment in transportation (wp2). http://www.deploy-project.
eu/pdf/D16_final6.pdf, September 2009.

http://www.eclipse.org
http://wiki.event-b.org/index.php/Code_Generation
http://wiki.event-b.org/index.php/Code_Generation
http://wiki.event-b.org/index.php/Tasking_Event-B_Overview
http://wiki.event-b.org/index.php/Tasking_Event-B_Overview
http://www.event-b.org
http://www.deploy-project.eu/pdf/D16_final6.pdf
http://www.deploy-project.eu/pdf/D16_final6.pdf

BIBLIOGRAPHY 173

73]

[77]

Asieh Salehi Fathabadi, Abdolbaghi Rezazadeh, and Michael Butler. Applying
Atomicity and Model Decomposition to a Space Craft System in Event-B. In
THIRD NASA FORMAL METHODS SYMPOSIUM, February 2011.

Ludger Fiege, Gero Miihl, and Felix C. Gértner. Modular event-based systems.
Knowl. Eng. Rev., 17(4):359-388, 2002.

Clemens Fischer. CSP-OZ: a Combination of Object-Z and CSP. In Proceedings of
the IFIP TC6 WG6.1 international workshop on Formal methods for open object-
based distributed systems, pages 423-438, London, UK, UK, 1997. Chapman &
Hall, Ltd.

Clemens Fischer. How to Combine Z with Process Algebra. In Proceedings of the
11th International Conference of Z Users on The Z Formal Specification Notation,
pages 5-23, London, UK, 1998. Springer-Verlag.

John S. Fitzgerald. Triumphs and Challenges for Model-Oriented Formal Methods:
The VDM++ Experience (Abstract). In ISOLA ’06: Proceedings of the Second
International Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation (isola 2006), pages 1-4. IEEE Computer Society, November
2006.

John S. Fitzgerald and CIliff B. Jones. The connection between two ways of rea-
soning about partial functions. Inf. Process. Lett., 107(3-4):128-132, 2008.

Flowgate Consulting. Fastest. http://www.flowgate.net/?lang=en&seccion=

herramientas#, January 2011.

Formal Systems (Europe) Ltd. Formal Systems. http://www.fsel.com/
software.html, January 2011.

Dimitra Giannakopoulou and Corina S. Pasareanu. Special Issue on Learning
Techniques for Compositional Reasoning. Form. Methods Syst. Des., 32(3):173—
174, 2008.

GMF. Graphical Modeling Framework. http://www.eclipse.org/modeling/
gmf/, September 2008. Online; accessed 27-July-2010.

Kentaro Go and Norio Shiratori. A Decomposition of a Formal Specification: An
Improved Constraint-Oriented Method. IEEE Transactions on Software Engineer-
ing, 25(2):258-273, 1999.

Joseph Goguen and Joseph Tardo. An introduction to OBJ: a language for writing
and testing software specifications. In Marvin K. Zelkowitz, editor, Specification
of Reliable Software, pages 170-189. IEEE Press, 1979, Reprinted in Software
Specification Techniques, Nehan Gehani and Andrew McGettrick, Eds., Addison-
Wesley, 1985, pages 391-420. No pdf file.

http://www.flowgate.net/?lang=en&seccion=herramientas#
http://www.flowgate.net/?lang=en&seccion=herramientas#
http://www.fsel.com/software.html
http://www.fsel.com/software.html
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/gmf/

174 BIBLIOGRAPHY
[85] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

[86] John V. Guttag and James J. Horning. Larch: languages and tools for formal

specification. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

[87] Stefan Hallerstede. Justifications for the Event-B Modelling Notation. In The 7th
International B Conference, volume 4355 of Lecture Notes in Computer Science,
pages 49-63. Springer Berlin / Heidelberg, Besancon , FRANCE, January 2007.

[88] Stefan Hallerstede. On the Purpose of Event-B Proof Obligations. In ABZ2008,
June 2008.

[89] Karl Hess. The Importance of Tools. http://www.fff.org/freedom/0493c.asp,
April 1993.

[90] Thai Hoang and Jean-Raymond Abrial. Event-B Decomposition for Parallel Pro-
grams. Abstract State Machines, Alloy, B and Z, pages 319-333, 2010.

[91] Charles Antony Richard Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666-677, 1978.

[92] Charles Antony Richard Hoare. Communicating Sequential Processes. Prentice
Hall International Series in Computer Science, 1985.

[93] Tony Hoare and Peter O’Hearn. Separation Logic Semantics for Communicating
Processes. Electron. Notes Theor. Comput. Sci., 212:3-25, April 2008.

[94] Sonja Holl. Refactoring of B Models, Bachelor Thesis. http://www.stups.
uni-duesseldorf.de/thesis_detail.php?id=9, August 2008. Online; accessed
27-July-2010.

[95] J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Semantics
for Statecharts. In J.-J.Ch. Meyer J.W. Klop and J.J.M.M. Rutten, editors, Liber
Amicorum: J.W. de Bakker, 25 jaar semantiek, pages 275-287, Amsterdam: CWI,
1989.

[96] Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander Romanovsky, Kimmo
Varpaaniemi, Dubravka Ilic, and Timo Latvala. Supporting Reuse in Event B
Development: Modularisation Approach. In 16th International Symposium on
Formal Methods, June 2009.

[97] Transportation Systems Design Inc. Communications based train control. http:
//www.tsd.org/cbtc/, January 2012.

[98] ISO. LOTOS A Formal Description Technique Based on the Temporal Order-

ing of Observational Behaviour. Information Systems Processing - Open Systems

Interconnection, 1987.

http://www.fff.org/freedom/0493c.asp
http://www.stups.uni-duesseldorf.de/thesis_detail.php?id=9
http://www.stups.uni-duesseldorf.de/thesis_detail.php?id=9
http://www.tsd.org/cbtc/
http://www.tsd.org/cbtc/

BIBLIOGRAPHY 175

[99]

[100]

[101]

[102]

[103]

[104]

[105]

106

[107]

108]

[109]

[110]

[111]

[112]

Daniel Jackson. Structuring Z specifications with views. ACM Trans. Softw. Eng.
Methodol., 4(4):365-389, 1995.

Jonathan Jacky. The way of Z: practical programming with formal methods. Cam-
bridge University Press, New York, NY, USA, 1996. No pdf file.

Lu Jian. Introducing data decomposition into VDM for tractable development of
programs. SIGPLAN Not., 30(9):41-50, 1995.

Lu Jian. Developing Parallel Object-Oriented Programs in the Framework of
VDM. Ann. Software Eng., 2:199-211, 1996.

Cliff B. Jones. Development Methods for Computer Programs including a Notion
of Interference. PhD thesis, Oxford University, printed as Programming Research
Group Technical Monograph 25, June,, 1981.

Cliff B. Jones. Tentative Steps Toward a Development Method for Interfering
Programs. ACM Trans. Program. Lang. Syst., 5(4):596-619, 1983.

Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall In-

ternational, second edition, 1990.

Cliff B. Jones. Wanted: a compositional approach to concurrency. In Programming
methodology, pages 5-15. Springer-Verlag New York, Inc., New York, NY, USA,
2003.

P. Kefalas, G. Eleftherakis, and A. Sotiriadou. Developing Tools for Formal Meth-
ods. In In 9th Panhellenic Conference on Informatics, Thessaloniki, pages 625—
639, 2003.

Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872-923, May 1994.

Leslie Lamport. TLZ. Z Users Conference, pages 267-268, 1994.

Arnaud Lanoix. Event-B Specification of a Situated Multi-Agent System: Study
of a Platoon of Vehicles. In TASE ’08: Proceedings of the 2008 2nd IFIP/IEEE
International Symposium on Theoretical Aspects of Software Engineering, pages
297-304, Washington, DC, USA, 2008. IEEE Computer Society.

Yves Ledru and Pierre-Yves Schobbens. Applying VDM to Large Developments.
In Conference proceedings on Formal methods in software development, pages 55—

58, New York, NY, USA, 1990. ACM.

Xiaodong Liu, Zhigiang Chen, Hongji Yang, Hussein Zedan, and William C. Chu.
A Design Framework for System Re-Engineering. In APSEC ’97: Proceedings of
the Fourth Asia-Pacific Software Engineering and International Computer Science
Conference, page 342, Washington, DC, USA, 1997. IEEE Computer Society.

176

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Xiaodong Liu, Hongji Yang, and Hussein Zedan. Formal Methods for the Re-
Engineering of Computing Systems: A Comparison. In COMPSAC ’97: Proceed-
ings of the 21st International Computer Software and Applications Conference,
page 409, Washington, DC, USA, 1997. IEEE Computer Society.

Robyn R. Lutz. Reuse of a Formal Model for Requirements Validation. In In
Fourth NASA Langley Formal Methods Workshop. NASA, 1997.

Issam Maamria. Theory plug-in. http://wiki.event-b.org/index.php/
Theory_Plug-in, August 2011.

Issam Maamria and Michael Butler. Rewriting and Well-Definedness within a
Proof System. In Partiality and Recursion in Interactive Theorem Provers PAR-
10, July 2010.

Brendan Mahony and Jin Song Dong. Overview of the Semantics of TCOZ. In
K. Araki, A. Galloway, and K. Taguchi, editors, IFM’99: Integrated Formal Meth-
ods, pages 66—85. Springer-Verlag, 1999.

Brendan Mahony and Jin Song Dong. Timed Communicating Object Z. IEEE
Transactions on Software Engineering, 26(2):150-177, February 2000.

Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992. No pdf file.

Andrew Martin. Relating Z and First-Order Logic. In Proceedings of the Wold
Congress on Formal Methods in the Development of Computing Systems-Volume
1I; FM ’99, pages 1266-1280, London, UK, 1999. Springer-Verlag.

MATISSE. Methodologies and Technologies for Industrial Strength Systems En-
gineering. http://cordis.europa.eu/search/index.cfm?fuseaction=proj.
document&PJ_RCN=5253649, February 2003.

Farhad Mehta. A Practical Approach to Partiality — A Proof Based Approach.
In Proceedings of the 10th International Conference on Formal Methods and Soft-
ware Engineering, ICFEM 08, pages 238-257, Berlin, Heidelberg, 2008. Springer-
Verlag.

Farhad Mehta. Proofs for the Working Engineer. PhD thesis, ETH ZURICH,
2008.

Christophe Métayer, Jean-Raymond Abrial, and Laurent Voisin. Event-B Lan-
guage. Technical report, Deliverable 3.2, EU Project IST-511599 - RODIN, May
2005.

Christophe Métayer and Laurent Voisin. The Event-B Mathematical Language.
Technical report, ClearSy and ETH Zurich, October 2007.

http://wiki.event-b.org/index.php/Theory_Plug-in
http://wiki.event-b.org/index.php/Theory_Plug-in
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=5253649
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=5253649

BIBLIOGRAPHY 177

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

136

[137]

[138]

Robin Milner. Commaunication and Concurrency. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1989.

Andrew P. Moore. The Specification and Verified Decomposition of System Re-
quirements Using CSP. IEEE Trans. Softw. Eng., 16(9):932-948, 1990.

Carroll Morgan. The specification statement. ACM Trans. Program. Lang. Syst.,
10(3):403-419, 1988.

Carroll Morgan. Of wp and CSP. In Beauty is our business: a birthday salute to
Edsger W. Dijkstra, pages 319-326. Springer-Verlag New York, Inc., New York,
NY, USA, 1990.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Ernst-Ridiger Olderog and Heike Wehrheim. Specification and (property) inheri-
tance in CSP-OZ. Sci. Comput. Program., 55(1-3):227-257, 2005.

M V M Oliveira, A L C Cavalcanti, and J C P Woodcock. Refining Industrial Scale
Systems in Circus. In I.R. East, J. Martin, P.H. Welch, D. Duce, and M. Green,
editors, Communicating Process Architectures 200/, volume 62 of Concurrent Sys-

tems Engineering Series, pages 281-309. IOS Press, September 2004.

Mehmet Ali Orgun and Wanli Ma. An Overview of Temporal and Modal Logic
Programming. In D M Gabbay and H J Ohlbach, editors, ICTL °94: Proceedings
of the First International Conference on Temporal Logic, pages 445-479, Berlin
Heidelberg, 1994. Springer-Verlag.

Overture Community. Overture: Tools for Formal Modelling in VDM. http:

//www.overturetool.org/, January 2011.

Antonis Papatsaras and Bill Stoddart. Global and Communicating State Machine
Models in Event Driven B: A Simple Railway Case Study. In ZB 2002:Formal
Specification and Development in Z and B, volume 2272, pages 77-100. Springer
Berlin / Heidelberg, 2002.

Atanas N. Parashkevov and Jay Yantchev. ARC - A Tool for Efficient Refine-
ment and Equivalence Checking for CSP. In IEEFE International Conference on
Algorithms and Architectures for Parallel Processing ICA3SPP 96, pages 68-75,
1996.

Lawrence C. Paulson. Isabelle: a Generic Theorem Prover, volume 828 of Lecture

Notes in Computer Science. Springer — Berlin, 1994.

Michael Poppleton. The Composition of Event-B Models. In ABZ2008: Int. Con-
ference on ASM, B and Z, volume 5238, pages 209-222. Springer LNCS, September
2008.

http://www.overturetool.org/
http://www.overturetool.org/

178

BIBLIOGRAPHY

[139)]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Michael Poppleton, Bernd Fischer, Christopher Franklin, Ali Gondal, ColinSnook,
and Jennifer Sorge. Towards Reuse with “Feature-Oriented Event-B”. In McG-
PLE: Workshop on Modularization, Composition, and Generative Techniques for
Product Line Engineering, pages 1-6. Department of Informatics and Mathematics

University of Passau, Germany, October 2008.

Marie-Laure Potet and Yann Rouzaud. Composition and Refinement in the B-
Method. In B ’98: Proceedings of the Second International B Conference on Recent
Advances in the Development and Use of the B Method, pages 46-65, London, UK,
1998. Springer-Verlag.

ProB. ProB. http://www.stups.uni-duesseldorf.de/ProB/overview.php,
September 2008. Online; accessed 27-July-2010.

S. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation for TCOZ in Uni-
fying Theories of Programming. In FMFE 2003 : Formal Methods : International
Symposium of Formal Methods Furope, 8-14 September 2003, Pisa, Italy: proceed-
ings., number 2805 in Lecture notes in computer science, pages 321-340. Springer,
Berlin, September 2003.

Wolfgang Reisig. Petri Nets: an introduction. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS 02, pages 55-74, Washington, DC, USA, 2002. IEEE Computer Society.

John C. Reynolds. Toward a Grainless Semantics for Shared-Variable Concurrency.
In Proc. FSTTCS 04, volume 3328 of LNCS, pages 35-48. Springer-Verlag, 2004.

John C. Reynolds. An Overview of Separation Logic. In Bertrand Meyer and Jim
Woodcock, editors, Verified Software: Theories, Tools, Experiments, chapter An
Overview of Separation Logic, pages 460-469. Springer-Verlag, Berlin, Heidelberg,
2008.

Abdolbaghi Rezazadeh. Formal Patterns for Web-based Systems Design. PhD
thesis, Southampton University, 2007.

Abdolbaghi Rezazadeh and Michael Butler. Event-Based Modelling and Refine-
ment of Distributed Monitoring and Control Systems. In Refinement of Critical
Systems (RCS’03), 2003.

Abdolbaghi Rezazadeh and Michael Butler. Some Guidelines for Formal Develop-
ment of Web-based Applications in B-Method. In 4th International Conference of
B and Z Users (ZB 2005), 2005.

http://www.stups.uni-duesseldorf.de/ProB/overview.php

BIBLIOGRAPHY 179

[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Abdolbaghi Rezazadeh, Neil Evans, and Michael Butler. Redevelopment of an
Industrial Case Study Using Event-B and Rodin. In BCS-FACS Christmas 2007
Meeting - Formal Methods In Industry, December 2007.

Rodin. RODIN project Homepage. http://rodin.cs.ncl.ac.uk, September
2008. Online; accessed 27-July-2010.

A. W. Roscoe and Geoff Barrett. Unbounded Nondeterminism in CSP. In Pro-
ceedings of the 5th International Conference on Mathematical Foundations of Pro-

gramming Semantics, pages 160-193, London, UK, 1990. Springer-Verlag.
A. William Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

Denis Sabatier. Reusing Formal Models. In IFIP Congress Topical Sessions, pages
613-620, 2004.

Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. Refinement in Circus. In
Lars-Henrik Eriksson and Peter Lindsay, editors, FMFE 2002:Formal Methods—
Getting IT Right, volume 2391 of Lecture Notes in Computer Science, pages 1-15.
Springer Berlin / Heidelberg, 2002.

Matthias Schmalz. The Logic of Event-B. Information Security Technical Reports
698: ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/698.pdf,
ETH Ziirich, November 2010.

Matthias Schmalz. Term Rewriting in Logics of Partial Functions. Proceedings of
ICFEM 2011, 2011.

Steve Schneider. The B method: an introduction. Palgrave, 2001.

Steve Schneider, Helen Treharne, and Heike Wehrheim. A CSP Account of Event-
B Refinement. In Refine, pages 139-154, 2011.

Renato Silva. Renaming Framework. http://wiki.event-b.org/index.php/
Refactoring Framework, July 2009. Online; accessed 27-July-2010.

Renato Silva. Towards the Composition of Specifications in Event-B. FElectronic
Notes in Theoretical Computer Science, 280(0):81-93, February 2011. Proceedings
of the B 2011 Workshop, a satellite event of the 17th International Symposium on
Formal Methods (FM 2011).

Renato Silva and Michael Butler. Parallel Composition Using Event-B. http:
//wiki.event-b.org/index.php/Parallel_Composition_using_Event-B, July
2009. Online; accessed 27-July-2010.

Renato Silva and Michael Butler. Supporting Reuse of Event-B Developments

through Generic Instantiation. In Karin Breitman and Ana Cavalcanti, editors,

http://rodin.cs.ncl.ac.uk
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/698.pdf
http://wiki.event-b.org/index.php/Refactoring_Framework
http://wiki.event-b.org/index.php/Refactoring_Framework
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

180

BIBLIOGRAPHY

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]
[174]

[175]

176

[177]

Formal Methods and Software Engineering, volume 5885 of Lecture Notes in Com-
puter Science, pages 466-484. Springer Berlin / Heidelberg, Rio de Janeiro, Brazil,
December 2009.

Renato Silva and Michael Butler. Shared Event Composition/Decomposition in
Event-B. In FMCO Formal Methods for Components and Objects, November 2010.

Renato Silva, Carine Pascal, T. S. Hoang, and Michael Butler. Decomposition

Tool for Event-B. Technical report, University of Southampton, October 2009.

Renato Silva, Carine Pascal, Thai Son Hoang, and Michael Butler. Decomposition
Tool for Event-B. Software: Practice and FEzxperience, 41(2):199-208, February
2011.

Graeme Smith. A Semantic Integration of Object-Z and CSP for the Specification
of Concurrent Systems. In Proceedings of FME 1997, volume 1313 of LNCS, pages
62-81. Springer-Verlag, 1997.

Graeme Smith. The Object-Z Specification Language. Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

Colin Snook. Combining UML and B. In Forum on specification € design lan-
guages, pages 24-27, Marseille, September 2002.

Colin Snook and Michael Butler. UML-B and Event-B: an integration of languages
and tools. In The IASTED International Conference on Software Engineering -
SE2008, February 2008.

Colin Snook and Kim Sandstrom. Using UML-B and U2B for formal refinement

of digital components. In Forum on specification & design languages, 2003.

Jennifer Sorge, Mike Poppleton, and Michael Butler. A Basis for Feature-Oriented
Modelling in Event-B. In ABZ2010, February 2010.

J. Mike Spivey. The Z Notation: a Reference Manual. Prentice-Hall, Inc., 1989.
J. Mike Spivey. The fuzz Manual. The Spivey Partnership, Oxford, 1995.

J. Mike Spivey. The fuzz type-checker for Z. http://spivey.oriel.ox.ac.uk/
mike/fuzz/, January 2011.

Thomas A. Standish. An Essay on Software Reuse. IFEE Trans. Software Eng.,
10(5):494-497, 1984.

Susan Stepney, Fiona Polack, and Tan Toyn. An outline pattern language for Z:
five illustrations and two tables. In Proceedings of the 3rd international conference
on Formal specification and development in Z and B, ZB’03, pages 2-19, Berlin,
Heidelberg, 2003. Springer-Verlag.

http://spivey.oriel.ox.ac.uk/mike/fuzz/
http://spivey.oriel.ox.ac.uk/mike/fuzz/

BIBLIOGRAPHY 181

178

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

Susan Stepney, Fiona Polack, and Ian Toyn. Patterns to Guide Practical Refac-
toring: examples targetting promotion in Z. In Didier Bert, Jonathan P. Bowen,
Steve King, and Marina Walden, editors, ZB2003: Third International Conference
of B and Z Users, Turku, Finland, volume 2651 of LNCS, pages 20-39. Springer,
2003.

Kenji Taguchi and Keijiro Araki. The state-based CCS semantics for concurrent
7 specification. In Formal Engineering Methods., 1997. Proceedings., First IEEE
International Conference on, pages 283 —292, November 1997.

Z Word Tools. Z Word Tools. http://zwordtools.sourceforge.net/, January
2011.

Helen Treharne and Steve Schneider. Using a Process Algebra to Control B Oper-
ations. In IFM ’99: Proceedings of the 1st International Conference on Integrated
Formal Methods, pages 437-456, London, UK, 1999. Springer-Verlag.

Formal Modelling with UML. http://users.ecs.soton.ac.uk/cfs/umlb.html,
September 2008. Online; accessed 27-July-2010.

Logic Viktor Vafeiadis. A Marriage of Rely/Guarantee and Separation. Springer
Berlin / Heidelberg, 2007.

Laurent Voisin and Nicolas Beauger. Rodin Index Design. http://wiki.event-b.
org/index.php/Rodin_Index_Design, September 2008. Online; accessed 27-July-
2010.

Jim Woodcock and Ana Cavalcanti. A Concurrent Language for Refinement. In
A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish Workshop in Formal
Methods, BCS Electronic Workshops in Computing, Dublin, Ireland, July 2001.

Jim Woodcock and Ana Cavalcanti. Circus: a Concurrent Refinement Language.
Technical report, Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford OX1 3QD UK, July 2001.

Jim Woodcock and B. Dickinson. Using VDM with Rely and Guarantee-
Conditions. In Proceedings of the 2nd VDM-FEurope Symposium on VDM—The
Way Ahead, pages 434-458, New York, NY, USA, 1988. Springer-Verlag New York,

Inc.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
methods: Practice and experience. ACM Comput. Surv., 41:19:1-19:36, October
2009.

Jim Woodcock and Carroll Morgan. Refinement of State-Based Concurrent Sys-
tems. In VDM ’90: Proceedings of the Third International Symposium of VDM

http://zwordtools.sourceforge.net/
http://users.ecs.soton.ac.uk/cfs/umlb.html
http://wiki.event-b.org/index.php/Rodin_Index_Design
http://wiki.event-b.org/index.php/Rodin_Index_Design

182

BIBLIOGRAPHY

[190]

[191]

Europe on VDM and Z - Formal Methods in Software Development, pages 340-351,
London, UK, 1990. Springer-Verlag.

Sanaz Yeganefard, Michael Butler, and Abdolbaghi Rezazadeh. Evaluation of a
Guideline by Formal Modelling of Cruise Control System in Event-B. In Proceed-
ings of the Second NASA Formal Methods Symposium (NFM 2010), NASA/CP-
2010-216215, pages 182-191, April 2010.

Pamela Zave and Michael Jackson. Conjunction as Composition. ACM Trans.
Softw. Eng. Methodol., 2(4):379-411, 1993.

	Thesis copyright cover sheet.pdf
	Thesis.pdf
	Acknowledgements
	1 Introduction
	1.1 Thesis contribution
	1.1.1 Overview
	1.1.2 Contributions

	1.2 Formal Methods
	1.3 Overview of some formal methods
	1.3.1 Communicating Sequential Processes - CSP
	1.3.2 Vienna Development Method - VDM
	1.3.3 Action Systems
	1.3.4 Classical B
	1.3.5 Z

	1.4 Refinement
	1.5 Event-B
	1.5.1 Preliminaries
	1.5.1.1 Notation
	1.5.1.2 Types
	1.5.1.3 Functions
	1.5.1.4 Well-Definedness

	1.5.2 Events
	1.5.3 Proof obligations
	1.5.3.1 Consistency POs
	1.5.3.2 Refinement POs
	1.5.3.3 Enabledness PO

	1.5.4 Feasibility and Initialisation
	1.5.5 Event-B and Action Systems
	1.5.6 CSP Semantics for Event-B Machines
	1.5.7 Rodin Platform

	1.6 Composition
	1.6.1 Shared State Composition
	1.6.2 Shared Event Composition
	1.6.3 Fusion Composition

	1.7 Decomposition
	1.7.1 Shared Event Decomposition
	1.7.2 Shared Variable Decomposition

	2 Shared Event Composition for Event-B
	2.1 Introduction
	2.2 Shared Event Approach
	2.3 Composed Machines: Composition and Refinement
	2.3.1 Structure of Composed Machines
	2.3.2 Static Checks
	2.3.3 Proof Obligations
	2.3.3.1 Consistency
	2.3.3.2 Refinement

	2.3.4 Monotonicity of Shared Event Composition for Composed Machines
	2.3.4.1 Monotonicity of Non-Composed Events for Composed Machines
	2.3.4.2 New Events

	2.4 File Access Management case study
	2.5 Related Work
	2.6 Conclusions

	3 Generic Instantiation
	3.1 Introduction
	3.2 Generic Instantiation
	3.3 Generic Instantiation and Instantiated Machines
	3.3.1 Contexts
	3.3.2 Example of Instantiated Machine
	3.3.3 Definition of Generic Instantiation of Machines
	3.3.4 Avoiding re-proofs

	3.4 Example of Instantiation and Composition
	3.5 Generic Instantiation applied to a chain of refinements
	3.5.1 Refinement of the Channel case study
	3.5.2 Instantiation of a chain of refinements
	3.5.3 Definition of Generic Instantiation of Refinements

	3.6 Instantiating Theorems and Invariants
	3.7 Conclusions

	4 Decomposition
	4.1 Introduction
	4.2 Decomposition Styles
	4.2.1 Shared Event Decomposition of Communication
	4.2.1.1 Refinement of Sub-Components

	4.2.2 Shared Variable Decomposition of Communication

	4.3 Definition and Validity of Decomposition
	4.3.1 Shared Event Style
	4.3.2 Shared Variable Style

	4.4 Limitations
	4.5 Conclusions

	5 Tool Support
	5.1 Introduction
	5.2 Shared Event Composition Plug-in
	5.2.1 Composed Machines

	5.3 Generic Instantiation Plug-in
	5.4 Renaming Refactory Framework
	5.4.1 User interface
	5.4.2 Renaming Proof Obligations

	5.5 Decomposition tool
	5.6 Conclusions

	6 Case Study
	6.1 Introduction
	6.2 Overview of the safety-critical metro system
	6.3 Abstract Model: MetroSystem_M0
	6.4 First Refinement: MetroSystem_M1
	6.5 Second Refinement: MetroSystem_M2
	6.6 Third Refinement and First Decomposition: MetroSystem_M3
	6.6.1 Machine Track
	6.6.2 Machine Train
	6.6.3 Machine Middleware

	6.7 Refinement of Train: Train_M1
	6.8 Second Refinement of Train: Train_M2
	6.9 Third Refinement of Train: Train_M3
	6.10 Fourth Refinement of Train and Second Decompositon: Train_M4
	6.10.1 Machine LeaderCarriage
	6.10.2 Machine Carriage
	6.10.3 Refinement of Carriage and Decomposition: Carriage_M1
	6.10.4 Machine CarriageInterface
	6.10.5 Machine CarriageDoor

	6.11 Generic Model: GCDoor
	6.11.1 Abstract machine GCDoor_M0
	6.11.2 Second refinement of GCDoor: GCDoor_M1

	6.12 Third refinement of GCDoor: GCDoor_M2
	6.13 Instantiation of Generic Carriage Door
	6.14 Discussion: Conclusions and Lessons Learned

	7 Conclusions and Future Work
	7.1 Composition
	7.2 Generic Instantiation
	7.3 Decomposition
	7.4 Future Work

	Bibliography

