The University of Southampton
University of Southampton Institutional Repository

The interplay of proteomics, genomics and bioinformatics approaches and their potential for cancer diagnosis and prognosis

Parkinson, Erika, Matharoo-Ball, Balwir, Ball, Graham, Shardendorf, Dirk, Ugurel, Selma, Creaser, Colin and Rees, Robert C. (2006) The interplay of proteomics, genomics and bioinformatics approaches and their potential for cancer diagnosis and prognosis AACR Meeting Abstracts, 47, p. 687.

Record type: Article

Abstract

To gain a comprehensive understanding of the physiology and pathophysiology of cancer an approach that harmoniously integrates the various omic' platforms is key to cancer biomarker discovery. We have used a combination of high throughput protein pattern detection methods using matrix assisted mass spectrometry time-of-flight (MALDI-TOF) instrumentation and in some studies with protein chip technology to investigate discriminatory protein patterns in melanoma patients in matched serum and plasma and primary tumor cell lines. The cell lines have further been studied using a genomic based method of RT-PCR to give identity to the expressed genes at the time of tumor excision. The gene mutations studied were BRAF, P16, TP53, PTEN, NRAS, INK4A, CTNNB1, and CDK4. Artificial neural networks (ANNs) and descriptive statistics were applied to the combined proteomic and genomic data for the cell lines and protein patterns for matched serum and plasma to identify discriminatory patterns with different clinical disease states in melanoma and to further identify the important biomarkers for the future diagnosis and prognosis of this cancer. Preliminary results for the protein fingerprint patterns and a TP53 gene mutation in metastatic melanoma cell lines showed that the ANNs were capable of predicting with 99% confidence in a blind sample set whether the cell line had a gene mutation or not. For the serum melanoma study the ANNS using proteomic "fingerprint" identified, 9 ions to date. The 9 ion ANNs model classified the data correctly with a median accuracy of 92.3 % (inter-quartile range 89.4 - 94.9 %) for a separate test set of data set aside for validation over 50 random sample cross validation data splits. All ions show statistically significant increase/decrease in intensities. Some peaks could be identified by eye, some cannot

Full text not available from this repository.

More information

Published date: 2006
Organisations: Molecular and Cellular

Identifiers

Local EPrints ID: 340252
URI: http://eprints.soton.ac.uk/id/eprint/340252
ISSN: 1948-3279
PURE UUID: 58178270-9b9a-4a83-8d01-c304152b6898

Catalogue record

Date deposited: 15 Aug 2012 14:13
Last modified: 18 Jul 2017 05:46

Export record

Contributors

Author: Erika Parkinson
Author: Balwir Matharoo-Ball
Author: Graham Ball
Author: Dirk Shardendorf
Author: Selma Ugurel
Author: Colin Creaser
Author: Robert C. Rees

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×