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ABSTRACT

The response of the tropical atmosphere to a collapse of the thermohaline circulation (THC) is investigated
by comparing two 5-member ensemble runs with a coupled climatemodel (CCM), the difference being that in
one ensemble a hosing experiment was performed. An extension of the Held–Hou–Lindzen model for the
Hadley circulation is developed to interpret the results. The forcing associated with a THC collapse is
qualitatively similar to, but smaller in amplitude than, the solstitial shift from boreal summer to winter. This
forcing results from reduced ocean heat transport creating an anomalous cross-equatorial SST gradient. The
small amplitude of the forcingmakes it possible to arrive at analytical expressions using standard perturbation
theory. The theory predicts the latitudinal shift between the Northern Hemisphere (NH) and Southern
Hemisphere (SH) Hadley cells, and the relative strength of the anomalous cross-equatorial Hadley cell
compared to the solstitial cell. The poleward extent of the Hadley cells is controlled by other physics. In the
NH the Hadley cell contracts, while zonal velocities increase and the subtropical jet shifts equatorward,
whereas in the SH cell the opposite occurs. This behavior can be explained by assuming that the poleward
extent of the Hadley cell is determined by baroclinic instability: it scales with the inverse of the isentropic
slopes. Both theory and CCM results indicate that a THC collapse and changes in tropical circulation do not
act in competition, as a possible explanation for abrupt climate change; they act in concert.

1. Introduction

It is well established that a collapse of the Atlantic
thermohaline circulation (THC) leads to significant cool-
ing over the North Atlantic and northwestern Europe
(e.g., Manabe and Stouffer 1994; Vellinga and Wood
2002). The oceanic forcing of the atmosphere occurs
through decreased sea surface temperature (SST), es-
pecially in regions where convective activity ceases to
occur (Vellinga and Wood 2002), and the increase of sea
ice coverage. As a result, the atmospheric temperature
anomaly peaks in the subpolarNorthAtlantic andArctic,
suggesting a locally forced heat flux response.
However, the global extent of (pre)historical abrupt

climate change necessitates significant changes in trop-
ical climate. And indeed, the atmospheric response to
a THC collapse is far reaching (Vellinga and Wood

2002; Zhang and Delworth 2005), that is, well into the
tropics, although the signal in SST and surface air tem-
perature is much weaker there. Assuming that Bjerknes
compensation occurs for ocean heat transport changes
that result from a THC collapse, Seager and Battisti
(2007) argued for a tropical source for abrupt climate
change that was independent of the THC. Their theory
was built on a study of Lee and Kim (2003), in which the
relation between tropical SST and latitude and strength
of the subtropical jet and midlatitude eddy-driven jet
was investigated, suggesting hysteresis behavior and
multiple equilibria for these jets. Inspired by this theory,
van der Schrier et al. (2007) demonstrated in a simple
coupled climate model (CCM) how (sub)tropical SST
anomalies indeed force changes in themidlatitude eddy-
driven jet.
While smaller fluctuations in meridional overturning

circulation (MOC) imply ocean and atmosphere heat
transport changes that are subject to the Bjerknes com-
pensation (Shaffrey and Sutton 2006; van der Swaluw
et al. 2007), for larger fluctuations the Bjerknes com-
pensation no longer applies and a rearrangement of the
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earth’s energy budget is necessary to accommodate the
change in net meridional energy transport by the cou-
pled ocean–atmosphere system. This holds true in par-
ticular for a THC collapse (Vellinga and Wu 2008).
Consequently, Vellinga and Wu not only found changes
in surface radiation balance and top of the atmosphere
(TOA) radiative fluxes that extend into the tropic belt
and even into the Southern Hemisphere (SH), they also
noticed a significantly changed Hadley circulation. This
suggests that the Lee and Kim (2003) theory and the
THC theory for abrupt climate change act together. A
link between the two could be provided by a theory for
the response of theHadley circulation to a THC collapse.
An important first step toward a theory for theHadley

circulation was taken by Schneider (1977) and Held and
Hou (1980, hereafter HH80). They developed a theory
that was built on angular momentum conservation. The
axisymmetric model predicts, among others, the width
of the Hadley cell, the meridional transport, and the
distribution of the zonal velocity. Not all aspects of the
Hadley circulation were quantitatively described, but
the most important features appeared qualitatively cor-
rect. Since HH80, the theory for the Hadley circulation
was extended further to account for, for example, asym-
metric heating and seasonality (Lindzen and Hou 1988,
hereafter LH88), narrowness of the heating branch (Hou
and Lindzen 1992), moist convection (Fang and Tung
1996), and baroclinic eddy fluxes (Held 2000;Walker and
Schneider 2005, 2006).
Because the large-scale tropical temperature response

to a THC collapse mainly consists of a dipole pattern
associated with reduced cross-hemispheric heat trans-
port (Fig. 1, see alsoVellinga andWood 2002), the theory
of LH88 is relevant for this case. Figure 1 shows the

heating and cooling pattern associated with a THC col-
lapse comparing two 5-member ensembles of the En-
semble Simulations of Extreme Weather Events under
Nonlinear Climate Change (ESSENCE) project (Sterl
et al. 2008). The heating pattern is antisymmetric, with
respect to the equator, and can be compared, albeit
smaller in amplitude, with the differential heating as-
sociated with the seasonal cycle. In Fig. 2, a schematic of
the asymmetric Hadley circulation is depicted that is
consistent with this signal.
One of the main results of LH88, namely, that sea-

sonally varying heating amplifies the annually averaged
circulation, has been criticized a number of times. Both
a lack of stationarity (Fang and Tung 1999) and vertical
diffusion of momentum and eddy fluxes (Walker and
Schneider 2005) counteract this amplification, making it
doubtful whether the averaged summer and winter so-
lutions differ markedly from the solution for an annually
averaged forcing. Because eddies affect the boundary
conditions at the poleward edge of the Hadley cell
(Walker and Schneider 2006), it can be argued that they
compromise the axisymmetric theory for predicting other
aspects of the circulation as well. However, changes in
relative intensity of the Hadley cells and the latitude of
the surface mass flux convergence are predicted by the
axisymmetric theory. Also, an eddy-permitting model
was shown to recover the sensitivity of the Hadley cell
to displacements of the latitude of maximum heating, as
predicted by LH88, although it did not reproduce the
nonlinear amplification of the annually averaged circu-
lation when seasonal forcing is allowed (Walker and
Schneider 2005).
The LH88 framework does not correctly predict the

changes in the poleward extent of the Hadley cells and

FIG. 1. The tropical Atlantic 2-m air temperature response associated with a collapse of the
THC. The pattern is obtained from the ensemble-averaged mean air temperature over 2090–
2100 for five simulations following the Special Report on Emissions Scenarios (SRES) A1b
scenario, with an additional freshwater supply of 1 Sv in the northernNorth Atlantic from 2100
onward, and subtracting this pattern from the 2-m air temperature for five simulations with the
same state in year 2100, but without the anomalous freshwater supply after 2100.
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the intensity of the subtropical jets. The changes at the
edge of the Hadley cells are controlled by eddy fluxes
and can be explained from baroclinic instability consid-
erations (Held 2000) and results from eddy-permitting
nonaxisymmetric models (e.g., Walker and Schneider
2005, 2006). This point will be addressed in section 5c.
However, other aspects of the circulation can be de-
scribed within the LH88 framework. Two simplifica-
tions to the LH88 model will be introduced that allow
for an analytical solution for the response of the Hadley
cell to weak asymmetric heating. The first simplification
is the small-angle approximation that was already intro-
duced by HH80. The second approximation is the ap-
plication standard perturbation theory in which the
relation between all other variables and the latitude of
maximum heating is established. Together, these re-
lations show the intricate link between changes in the
THC and changes in the Hadley circulation.

2. The equal-area solution for the Hadley
circulation

HH80 and LH88 constructed equal-area solutions for
the inviscid Hadley circulation, with symmetric and
asymmetric heating, respectively. Their models consist
of a few basic elements, which are a thermally driven
flow, conservation of angular momentum, geostrophic
balance, and energy conservation. The thermal forcing is
represented by Newtonian cooling as

Q5
ue ! u

t
, (1)

where u is the vertically averaged potential temperature,
ue is the radiative equilibrium temperature, and t is the
radiative relaxation time. The general expression for ue

that allows for an off-equatorial heatingmaximum is given
by Eq. (1b) in LH88. For vertically averaged temperature
this becomes

ue(f)

u0
5 11

DH

3
[1! 3(sinf! sinf0)

2], (2)

where f0 is the latitude of maximum heating, DH is the
fractional change in potential temperature from equator
to pole, and u0 is the globally averaged value of ue.
Using the small-angle approximation this equation

can be rewritten as

ue(f)

u0
5

ue(0)

u0
! DHf

2 1 2DHf0f. (3)

The antisymmetric heating term can be interpreted as
a heating anomaly arising from the temperature differ-
ence between the North and South Poles (James 1994),

ue(f)

u0
5

ue(0)

u0
! DHf

2 1
DNS

2
f. (4)

Here, DNS is defined as the temperature difference be-
tween the two poles. The latitude of maximum heating
must then obey

2DHf0f5
DNS

2
f. (5)

When we define DTC as the temperature difference be-
tween the Tropics of Capricorn and Cancer, f0 re-
appears as a scaled temperature difference,

f0 5
DTC

DH

. (6)

FIG. 2. Schematic of the Hadley circulation with a heating maximum in the SH (boreal winter).

1 FEBRUARY 2010 DR I J FHOUT 759



Now we consider the case that off-equatorial heating
can be due to stationary SST anomalies. The diabatic
forcing becomes

Q5
ue ! u

t
1

SSTan

t
[

u f ! u

t
. (7)

We assume that the same radiative time scale applies to
SST anomalies as to radiative temperature anomalies. This
is true when the SST anomalies are large scale and sta-
tionary. Whether this assumption is correct will be tested
in section 5, when the appropriate scaling relations are
applied to the model data. Here, uf can then be written as

u f (f)

u0
5

ue(0)

u0
! DHf

2 1 2DHf0f1
SSTan

u0
. (8)

For certain conditions, the equation for uf becomes sim-
ilar to the equation for ue, namely, when the SST anomaly
consists of a cross-equatorial SST gradient that linearly
scales with f. In that case,

SSTan

u0
5 2DHf0*f, (9)

and for f0* Eq. (6) similarly holds, which defines the off-
equatorial maximum heating latitude. In that case, the
forcing temperature uf can be written as ue in Eq. (3).
However, nowf0 is the shift inmaximumheating latitude
resulting from either changes in ocean circulation, or the
seasonality in insolation. The implication of this similarity
is that changes in cross-equatorial heat and mass trans-
port in the ocean impose a similar (but smaller) forcing as
the insolation change between summer and winter.
To arrive at a model for the response of the Hadley

circulation to such SST anomalies, we proceed as in
LH88. In the small-angle limit the actual temperature
profile is given by

u(f)

u0
5

u(f1)

u0
!V2a2

2gH
(f2 ! f2

1)
2 (10)

[see expression (7) in LH88], where f1 is the dividing
line between the summer and winter cell (see Fig. 2).
The expression for uf can be reformulated to depend
on f1 as

u f (f)

u0
5

u f (f1)

u0
! DH(f

2 ! f2
1)1 2DHf0(f! f1).

(11)

By substituting f0 5 f1 5 0 in Eqs. (10) and (11), the
expressions (14a) and (14b) from HH80 are recovered.
The equal-area solutions in HH80 and LH88 result

from demanding

ðfW

f1

(u! u f ) df5 0 (12)

and

u(fW)5 u f (fW). (13)

Similar equations hold for the SH Hadley cell, with fW

being replaced by fS.
For f0 5 f1 5 0, Eqs. (12) and (13) can be solved

exactly (in this case fW 5 2fS 5 fH), giving a scaling
relation for fH. When f0 and f1 are unequal to zero, the
expression that results from substituting Eqs. (12) and
(13) into Eqs. (10) and (11) no longer has an analytical
solution. Substituting Eq. (13) into Eqs. (10) and (11)
yields

u(f1)! u f (f1)

u0
5

V2a2

2gH
(f2

W ! f2
1)

2 ! DH(f
2
W ! f2

1)

1 2DHf0(fW ! f1). (14)

Similarly, Eq. (12) can be substituted into Eqs. (10) and
(11) to give (see appendix A)

u(f1)! u f (f1)

u0
(fW ! f1)5 (fW ! f1)

V2a2

10gH
f4
W 1f3

Wf1 !
7

3
f2
Wf2

1 !
7

3
fWf3

1 1
8

3
f4
1

" #

! (fW ! f1)
DH

3
(f2

W 1fWf1 ! 2f2
1)1 (fW ! f1)DHf0(fW ! f1). (15)

Combining Eqs. (14) and (15) and defining a thermal
Rossby number,

R5
gHDH

V2a2
, (16)

one obtains

1

10R
4f4

W ! f3
Wf1 !

23

3
f2
Wf2

1 1
7

3
fWf3

1 1
7

3
f4
1

" #

! 1

3
(2f2

W ! fWf1 ! f2
1)1f0(fW ! f1)5 0. (17)
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When the heating profile is symmetric, Eq. (17) becomes

1

10R
4f4

H ! 1

3
2f2

H 5 0, (18)

from which the HH80 scaling relation,

fH 5 (5/3R)1/2, (19)

is recovered. When f0 and f1 are unequal to zero, an
analytical solution for Eq. (17) is impossible.

3. A perturbation analysis for small asymmetric
heating profiles

Here, the case with f0 , 0 and f1 , 0 will be dis-
cussed, but this choice is not essential for the derivation.
To retain the largest amount of generality we write

fS 5!
ffiffiffiffiffiffiffi
5

3
R

r
1 !S

 !
5!(fH 1 !S) and (20)

fW 5

ffiffiffiffiffiffiffi
5

3
R

r
1 !W 5fH 1 !W . (21)

Together with Eq. (17), a system of two equations is
obtained with four small parameters: three unknowns
(!S, !W, and f1) and one forcing parameter f0. It is evi-
dent that another equation is needed, but first the ex-
pressions for fS and fW are substituted in Eq. (17). At
first order, only terms that are linear in the small pa-
rameters are retained. Equation (17) becomes, at first
order,

1

10R
(4f4

W ! f3
Wf1)!

1

3
(2f2

W ! fWf1)1f0fW 5 0.

(22)

Substituting the expressions for fW and fS gives

1

10R

80R

3
fH!W ! 5R

3
fHf1

% &
! 1

3
[4fH!W ! fHf1]

1f0fH 5 0 and (23)

1

10R

80R

3
fH!S 1

5R

3
fHf1

% &
! 1

3
[4fH!S 1fHf1]

! f0fH 5 0. (24)

It is evident that !S 52!W. We write !W 52!S 5 !. The
final relation between the small parameters becomes

8!1f1 5!6f0. (25)

To solve Eq. (25) an extra equation is needed, which
comes from demanding continuity of u in f1. Equation
(14) expresses u(f1) 2 uf (f1) as a function of fW, f1,
and f0. However, the exact same relation, with fW

replaced by fS, must hold when the SH cell is consid-
ered. As a result, all terms containing fW in Eq. (14)
must equal the same expression, with fW replaced by
fS. We obtain

f4
W

2R
! f2

1f
2
W

R
! f2

W 12f0fW 5
f4
S

2R
! f2

1f
2
S

R
! f2

S 1 2f0fS.

(26)

When expanding fW and fS in !, in the first-order bal-
ance one finds

!5!3

2
f0. (27)

Substituting this into Eq. (25) gives

f1 5 6f0. (28)

The dividing latitude between the Northern Hemi-
sphere (NH) and SHHadley cells shifts with the latitude
of maximumheating, and in the linear regime this shift is
6 times larger than the shift of the latitude of maximum
heating.

4. The second-order expansion

a. Linear in fH but nonlinear in f0

The perturbation method can be continued with pro-
gressively higher-order expansions for fW and fS, but
care has to be taken to remain consistent with the small-
angle approximation. A second-order expansion, how-
ever, is still useful. Figure 4 of LH88 shows that fW and
fS display significant curvature as functions of f0. Here,
fS first decreases as a function of f0, consistent with the
first-order linear expansion. However, for larger f0, fS

increases as a function of f0. Also, the initial linear gra-
dient of these curves is corrected by higher-order ex-
pansions infH. Here, the second-order expansion inf0 is
considered without relaxing the (linear) small-angle ap-
proximation. This expansion is not fully consistent for
smallf0, but it facilitates the derivation of the full second-
order problem. In the full second-order problem, a non-
linear small-angle approximation is needed, which allows
a higher-order expansion in fH. This affects the linear
relation between f0 and all other variables.
When using a linear small-angle approximation, the

form of fW and fS is anticipated to become to second
order, as
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fS 5!fH 1 !! d2 and (29)

fW 5fH 1 !1 d2. (30)

The second-order approximation of Eq. (17) is

1

10R
4f4

W ! f3
Wf1 !

23

3
f2
Wf2

1

" #

! 1

3
(2f2

W ! fWf1 ! f2
1)1f0(fW ! f1)5 0, (31)

and a similar equation for fS holds. Substituting the
expressions for fW (fS) and retaining only those terms
that are second order in the small parameters !, d, f1,
and f0 gives an expression for fW and fS that can be
solved directly as

d2 5
195f2

0

8fH

. (32)

A quadratic term could be added to the equation for
f1, but it turns out that this term must be zero. Thus,

fS 5!fH 1
3jf0j
2

! 195f2
0

8fH

1O(f3
0), (33)

fW 5fH 1
3jf0j
2

1
195f2

0

8fH

1O(f3
0), and (34)

f1 5 6f0 1O(f3
0). (35)

b. Nonlinear in fH and f0

To be fully consistent, the sine and cosine terms that
were linearized in the small-angle approximation have
to be expanded to higher order too. It must be recalled
thatfW is (much) larger than eitherf1 orf0, and that we
only need to retain terms that are second order inf0 and
f1, or larger. When Eqs. (14) and (15) are expanded and
combined together (see appendix B), one obtains

1

10R
4f4

W ! f3
Wf1!

23

3
f2
Wf2

1 1
34

21
f6
W ! 3

14
f5
Wf1

"

1
302

315
f8
W

#
! 1

3
2f2

W ! fWf1 ! f2
1 !

2

3
f4
W 1

4

45
f6
W

"

1
1

6
f3
Wf1

#
1f0 fW ! f1 !

1

6
f3
W

" #
5 0. (36)

In section 4a, it was found that the first-order expan-
sion of fW and fS in f0 only contains antisymmetric
terms, while the second-order expansion only contains
symmetric terms. Equation (36), however, allows for

symmetric and antisymmetric terms at both orders inf0.
We have to rewrite this as

fW 5fH 1 !1b1 d2 1 g2, (37)

fS 5!fH 1 ! ! b! d2 1g2, and (38)

f1 5 6f0 1a2. (39)

The symmetric part of the first-order expansion of
Eq. (36) becomes

1

10R
4f4

W 1
34

21
f6
W

" #
! 1

3
2f2

W ! 2

3
f4
W

" #
5 0, (40)

which gives

b5!31

84
f3
H . (41)

Having b 5 O(fH
3 ), we demand that f0, !, and f1 are

O(fH
3 ). In reality, this only holds for a certain range of

f0, but it facilitates the derivation when it is assumed
that b and ! are each of the same order. In practice,
relaxing this demand does not change the solution in
a fundamental way. It only determines the amount of
terms with fH that have to be retained, relative to the
amount of terms with f0. Because we are only interested
in a first-order nonlinear correction to the linear results
of the previous paragraph, it is convenient to take the
first-order symmetric and antisymmetric terms to be of
equal size.
The symmetric part of the second-order expansion of

Eq. (36) is (see appendix C)

d2 5
195f2

0

8fH

1
f5
H

4
. (42)

Comparing Eqs. (42) and (32) we see that, like in case of
b, curvature terms enter the equation for d2, which de-
pend on higher-order terms in fH. The antisymmetric
terms in the second-order expansion of Eq. (36) give rise
to the relation (appendix C)

4

3
g2 1

1

6
a2 5

11

14
f2
Hf0. (43)

From the full second-order expansion of Eq. (26), one
obtains (appendix C)

4

3
g2 5

8

7
f0f

2
H . (44)

Taking Eqs. (43) and (44) together then gives
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a2 5!15

7
f0f

2
H . (45)

The final relations for fW, fS, and f1 become

fW 5fH 1
3jf0j
2

! 31

84
f3
H 1

195f2
0

8fH

1
f5
H

4
! 6

7
jf0jf

2
H ,

(46)

fS 5!fH 1
3jf0j
2

1
31

84
f3
H ! 195f2

0

8fH

! f5
H

4
! 6

7
jf0jf

2
H ,

and (47)

f1 5 6f0 !
15

7
f0f

2
H . (48)

These relations are displayed in Fig. 3, which can be
compared to Fig. 4 in LH88. For small f0 the agreement
is good. The most remarkable difference is the behavior

of f1, which becomes smaller for larger fH, contrary
to the functional relationship displayed in LH88. This
discrepancy disappears at higher order. Then, terms
of the form f0

2 /fH and f0
3 /fH

4 , etc., are added to
Eqs. (46)–(48). They bend the curve of f1 for smaller
fH below the curve for larger fH.
In addition, the width of the solstitial winter cell Ww

can be compared to the width of the equinoctial cellWeq,

Ww5Weq1
15jf0j

2
! 31

84
f3
H1

195f2
0

8fH

1
f5
H

4
! 3jf0jf

2
H

" #
.

(49)

The width of the summer cell has the same form, but a
minus term between the brackets instead of this positive
term.

5. Numerical solutions from a coupled
climate model

In this section the analytical solutions are compared to
results from the CCM simulation: the ECHAM5/Max
Planck Institute Ocean Model (MPI-OM) climate model
(Marsland et al. 2003; Roeckner et al. 2003). With this
model, a 17-member ensemble of model simulations was
performed over the 1950–2100 period, with increasing
greenhouse gas concentrations, as part of the ESSENCE
project (Sterl et al. 2008), plus some additional dedicated
ensemble experiments. Here, two 5-member ensemble
simulations are compared. In one ensemble, a freshwater
anomaly of 1 Sv (1 Sv [ 106 m3 s21) was uniformly ap-
plied over the northern North Atlantic between 508 and
708N from 2001 onward, starting from five 1 January 2001
states of the 17-member ensemble baseline experiment.
The 5-member subset of the 17-member baseline exper-
iment is the reference ensemble. After this date, the two
ensembles develop differently. In the hosing ensemble,
the additional freshwater supply leads to a collapse of the
THCwithin 20 yr. After this collapse, the ensemblemean
difference between the two ensembles hardly evolves.
An almost stationary anomaly pattern prevails that can
be seen as the fingerprint of the THC collapse on the
atmosphere (Laurian et al. 2010). At first order, this
fingerprint is independent of the precise mean atmo-
spheric state (climate). This is probably because of
the fact that the THC weakens only moderately during
the twenty-first century in the baseline experiment.
In this study, the atmospheric fingerprint of the THC
collapse is defined as the difference in ensemble mean
between the two 5-member ensembles over the 2091–
2100 period.

FIG. 3. Here, f1, fW, and fS are in radians as functions of
f0 (x axis) for DH 5 1/3 (solid lines) and DH 5 1/6 (dashed lines),
being equivalent to 978 and 488C, respectively. These values have
been chosen to coincide with those used by LH88 in their Fig. 4.
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a. The shift in rising branch

First, the relation

f1 5 6f0 !
15

7
f0f

2
H (50)

is examined. We take the annual mean circulation as
a base state. Figure 4 shows the zonally averaged SST
anomaly associated with a THC collapse, together with
a linear regression of the temperature profile to latitude.
Here, DTC is estimated to be 1.4668C. As in HH80, DH is
taken to be the temperature difference on earth when
forced with annual mean solar fluxes, namely, 1008C.
Then, f0 is 0.8388 (noting that 0.88 equals 0.014 radians).
Furthermore, fH 5 32.58 5 0.569 radians. Substituting
these values into Eq. (50) it follows that f1 is 4.48.
Without the nonlinear term the number would be 5.08;
the nonlinear term adds a correction of about 10%.
Figure 5 shows the displacement of the dividing line
between the annual mean SH and NH Hadley cells as
a function of height in the CCM. Here, f1 varies be-
tween 18 and 88, depending on the latitude, with lower
values near the surface and in the stratosphere and a
maximum near 400 hPa. The average value of f1 is 4.28,
the difference between the CCM estimate and the the-
oretical value is less than 10%. This is also true when the
seasonally varying circulation is taken as a base state.
The agreement, however, is somewhat fortuitous, given
the large variation that f1 displays with height. Also,
Eq. (50) can be applied to the seasonal cycle. For the
June–September (JJAS)minusDecember–March (DJFM)
circulation, the theory predicts 15.18 versus 14.38 ob-
served, and for the more extreme July minus January
circulation the prediction is 17.58 versus 15.38 observed.

The larger numbers predicted by theory are consistent
with the fact that the relation between f1 and f0 is a
downward-bending curve for larger f0 (see Fig. 4 of
LH88).
The width of the winter and summer cells can be esti-

mated fromEq. (49). The difference between the two is for
a large part determined by f1. Equation (49), however,
significantly overestimates the difference in width because
the poleward extent of the Hadley cells is not correctly
captured. This issue is further discussed in section 5c.

b. The strength of the anomalous meridional
circulation

The strength of the anomalous cross-equatorial cell
that results from a THC collapse is 3.03 1010 kg s21

(Fig. 6). This can be compared to the solstitial circulation
that features a cross-equatorial cell of 24.54 1010 kg s21.
The strength of the solstitial circulation is obtained by
subtracting the time-averaged January and July circu-
lations from the annually averaged meridional mass
transport. The annually mean meridional circulation is
asymmetric (Fig. 6), but the yearly average of the NH
and SH Hadley cells is 9.43 1010 kg s21.
TheHH80 andLH88models for theHadley circulation

systematically underpredict the strength of the Hadley
circulation because of a too-broad heating pattern (Hou
and Lindzen 1992). Also, the absolute magnitude of the
Hadley cell cannot be assessedwithout accounting for the
role of eddies (Walker and Schneider 2005, 2006). How-
ever, if the rectification resulting from eddies scales with
the strength of the mean flow, the scaling for the strength
of the flow still holds in a relative sense. Therefore, only
its relative strength will be compared with the scaling that

FIG. 4. The difference in the zonally averaged tropical SST that is
caused by a collapse of the THC (dashed line) and the linear re-
gression against the latitude of this temperature profile (solid line).

FIG. 5. The displacement of the dividing line between the SH and
NH Hadley cells as a function of height (dashed line), resulting
from a THC collapse. The star symbol denotes the theoretical
value.
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results from the expansion discussed before. The starting
point for estimating the mass flux in the Hadley cell is the
notion that the strength of the Hadley circulation is
proportional to the difference between u and ue (LH88).
The relevant scaling for the symmetric case is given by
Eq. (18) from HH80 as

C }
ðf

0

(ue ! u)

u0
df9. (51)

With the aid of Eqs. (10) and (11), this equation is re-
formulated for the asymmetric case:

Cas }
ðf

f1

u f (f1)! u(f1)

u0
1

DH

2R
(f92 ! f2

1)
2 ! DH(f9

2 ! f2
1)1 2DHf0(f9! f1)

" #
df9. (52)

Here, Cas is the equatorially asymmetric overturning
circulation driven by off-equatorially heating. To arrive
at an equation that solely depends on the forcing pa-
rameters, the functional dependence of the temperature
on f has to be substituted. This is possible with the use
of Eq. (14), which describes the temperature deviation
from the radiative equilibrium temperature. Substitut-
ing Eq. (14) into Eq. (52), and using the expansion given
by Eqs. (46)–(48), one finds that for small f (see
appendix D),

Cas }
(f! f1)

fH

11 93
f2
0

f2
H

! 2
f2

f2
H

! 6
f0f

f2
H

" #

. (53)

Forf05 0 andf15 0 this equation is equal to Eq. (18) of
HH80, apart from the fourth-order terms that were ne-
glected here. The part within brackets in Eq. (53) is ex-
pressed inf0, while the integrand is expressed in terms of
f1. The reason for this is that the integral bounds are

exact, while the formula within brackets is based on an
expansion in f0. Replacing f0 by f1, here, means that
higher-order terms are introduced. These terms are sig-
nificant for the solstitial circulation (for which this ex-
pansion strictly spoken is not valid), but terms of similar
order were neglected in that expansion. As a result, the
equation becomes unbalanced when f0 is replaced by f1.
The anomalous overturning circulation can easily be

derived from Eq. (53). This circulation peaks at the
equator, where the mean symmetric circulation is zero.
For f 5 0, the anomalous cross-equatorial cell equals
the asymmetric solution,

Can }!
f1

fH

11 93
f2
0

f2
H

" #

. (54)

In the CCM ensemble, the ratio between the cross-
equatorial cell associated with the seasonal cycle and the
cell resulting from a THC collapse is 24.54/3.03 5 8.1.

FIG. 6. The ensemble-averaged meridional overturning difference associated with a THC
collapse as obtained in ESSENCE, overplotted with contours of the annual mean overturning
in the control climate (1010 kg s21).
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For the THC collapse f1 524.28, fH 5 32.58, and f0 5
20.848. For the solstitial circulation the values are f1 5
215.38,fH5 30.38, andf0523.38 (the cross-equatorial
SST gradient was estimated from a linear regression to
latitude as 5.88C). These values imply a ratio of 7.8 for
the solstitial cell compared to the THC-induced cell.
This number compares to the ratio found in the CCM.

c. The poleward extent of the Hadley cell and the
strength of the zonal jet

Figure 6 shows that the NH meridional cell increases
in strength, but that its outer boundary recedes, while
the SH meridional cell weakens and its outer boundary
expands after a THC collapse. This behavior is further
illustrated by Fig. 7. It is seen that the SH cell slightly

expands its outer edge with 0.18, while the NH cell outer
edge shrinks with 0.68. However, according to Eq. (48),
the outer edge of the SH cell should shrink in response
to the displacement ofmaximumheating latitude, whereas
the poleward extent of the NH cell should increase. The
change in the poleward extent of the Hadley cells, as
predicted from theory, is contrary to what the CCM
shows.
The reason for the discrepancy is that the poleward

extent of the Hadley cells is controlled by baroclinic
instability. Angular momentum conservation only ap-
plies as long as the vertical shears do not exceed a critical
value (Held 2000). If baroclinic instability occurs at
a latitude that is smaller than the latitude determined by
angular momentum conservation, baroclinic instability
determines the poleward extent of the Hadley cell. Lu
et al. (2007) found that the Hadley cell expanded and
weakened under global warming in a series of Inter-
governmental Panel on Climate Change Fourth Asses-
sment Report (IPCC AR4) models, following the Held
(2000) scaling, whereas angular momentum conserva-
tion predicts the opposite behavior. This result implies
that baroclinic instability indeed controls the outer
boundary of the Hadley circulation in the present cli-
mate. Both in Held (2000) and in Lu et al. (2007), it is
assumed that the velocity profile itself does not change,
and that the change in the poleward extent of theHadley
cell is determined by changes in tropopause height and
static stability. In the case of a THC collapse, this as-
sumption does not apply. The latitudinal temperature
profile changes significantly and as a result the balanced
zonal wind changes (see Fig. 8). The Held (2000) scaling

FIG. 7. The displacement of the outer boundaries of the SH (solid
line) and NH (dashed line) Hadley cells as a function of height,
resulting from a THC collapse.

FIG. 8. The difference in the zonally averaged zonal velocity resulting from a collapse of the
THC (m s21). Contours denote mean values in the control climate.
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can still be taken as a starting point to explain this be-
havior. The flow becomes unstable when

u’
bgHDV

f 2
, (55)

where b5 ›f/›y. In Held (2000), it is assumed that when
the angular momentum–conserving wind exceeds a crit-
ical shear, the Hadley cell is terminated. However, near
the Hadley cell terminus, upper-tropospheric flows de-
viate substantially from angular momentum–conserving
winds (Walker and Schneider 2006). Instead, we simply
demand thermal wind balance,

fu5!gH

au0

›u

›f
. (56)

To equate the Eqs. (55) and (56) results in a super-
criticality criterion:

›u

a›f
5!

bDVu0
f

. (57)

This criterion is almost the same as the one advocated by
Korty and Schneider (2008), only here the meridional
gradient of the vertically averaged potential tempera-
ture is used instead of the surface potential temperature.
We arrive at the following scaling,

fH }
DVu0
›u/›f

. (58)

The polewardHadley cell extent is inversely proportional
to the isentropic slopes, when the slopes increase the
Hadley cell contracts and vice versa.
To calculate the change resulting from a THC col-

lapse, temperature gradients were averaged over the
latitude band of 308–408, which includes the zero contour
of the meridional streamfunction and the subtropical jet
velocitymaximum. First, the fractional change inDVu0 is
considered.With surface warming in the SH and cooling
in the NH, the static stability in the SH near the outer
boundary of the Hadley cell decreases by 1.2% and it
increases in the NH by 2.5%. The fractional change in
›u/›f gives a decrease of 3.2% in the SH and an increase
of 6.4% in the NH. The net result is that the SH Hadley
cell should expand with 2.0%’ 0.68 and the NHHadley
cell should shrink with 3.9% ’ 1.28. When comparing
with Fig. 7, it is seen that the predicted changes are
overestimated. In the CCM, the poleward expansion in
the SH is only 0.18, and the contraction of the outer edge
of the NH cell is 0.68. The Korty and Schneider (2008)
criterion overestimates the changes in Hadley cell ex-

tent even more. Qualitatively, both criteria predict the
change in the Hadley cell extent, but quantitatively
there are discrepancies. These are probably related to
the neglect of changes in moisture.
There is no simple theory to predict the observed

changes in ›u/›f. However, the axisymmetric theory
demands that poleward of theHadley cell terminus u5 uf.
This is not strictly true, because eddies transport heat
when the meridional flow is absent, but it is still worth-
while to investigate whether the changes in forcing tem-
perature as predicted by theory are consistent with the
observed changes in actual temperature. The derivative of
Eq. (12) is

›u f

›f
;!DH(f! f0). (59)

In other words,

d(›u f /›f)

›u f /›f
;!

d(f0)

(fH ! f0)
1

d(DH)

DH

. (60)

It follows that ›uf /›f increases by 2.7% in the NH; it
decreases by 2.5% in the SH because of the shift in
maximum heating latitude.
Next, the change resulting from a change in absorbed

radiation is estimated. The THC collapse induces a large
albedo response in the NH, and the signal in the SH is
weak and insignificant. In the NH the decrease in
absorbed shortwave radiation is 7.2%. This implies
a temperature drop of 0.25 3 7.2% 5 1.8%, which is
equivalent to 3.18C near the North Pole. This means that
DH also increases by 3.1%.
According to the analytical model, the decrease in

›uf /›f in the SH is 2.5%, compared to a 3.2% decrease
of actual temperature gradient in the CCM. The in-
crease in the forcing temperature gradient in the NH is
predicted to be 5.8%, compared to a 6.4% increase of
the actual temperature gradient in the CCM. The ana-
lytically predicted changes in the forcing temperature are
consistent with the observed changes in the actual tem-
perature gradient near the outer boundary of the Hadley
cells. The heat transport by the eddies is significant, but it
does not break up the relation that exists near the ter-
minus of theHadley cells between the actual temperature
changes and changes in the forcing temperature.

6. Conclusions and discussion

Our main conclusions are as follows:

1) The cross-hemispheric SST anomaly associated with
a THC collapse is equivalent to an equatorward shift
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of the latitude of maximum heating. The dividing
latitude between theNHand SHHadley cells features
an equatorward and southward shift that is roughly
5 times larger than the shift in latitude of maximum
heating.

2) The equatorward shift of the mean Hadley circula-
tion resulting from aTHC collapsemakes theHadley
circulation more symmetric. The anomalous cross-
hemispheric circulation features enhanced energy
transport from the SH to the NH (the total Hadley
circulation features reduced energy transport from
the NH to the SH). This cell can be expressed as
a polynomial of the shift in heating latitude.

3) In the NH, the Hadley cell contracts, while the zonal
velocities increase and the subtropical jet shifts
equatorward. In the SH the opposite occurs. This
behavior is explained by assuming that the outer
boundary of the Hadley cell is determined by baro-
clinic instability. Then, its poleward extent scales
with the inverse of the isentropic slope at subtropical
latitudes.

The qualitative agreement between the scaling laws
derived from the dry axisymmetric model of the Hadley
circulation and the CCM results may come as a surprise.
The role of the oceans in the Hadley circulation pri-
marily is changing the thermal forcing by (moist) convec-
tion. Also, the altered thermal forcing has a distinct zonal
pattern related to the land–sea distribution (Clement
2006). This zonal asymmetry is even further strength-
ened by the role of the Atlantic as the primary forcing
agent when the THC collapses, whereas the other oceans
play a smaller role. Therefore, the changes in atmo-
spheric moist content are large and show a distinct zonal
pattern.
Also, eddiesmay compromise the axisymmetricmodel.

The zonal flow in the Hadley cells deviates substan-
tially from the angular momentum–conserving flow be-
cause eddy momentum fluxes are large (Walker and
Schneider 2006), especially near the terminus of the
Hadley cell. As a result, they significantly alter the mo-
mentum balance. Indeed, the CCM deviates qualita-
tively from the scalings that we derived from the HH80
and LH88 theories, with regard to the poleward extent
of the Hadley cell and changes in zonal velocity. Both
are governed by baroclinic instability (Held 2000).
When this aspect is included in the simple axisymmetric
model, the CCM response is consistent with the appro-
priate scaling. This also applies for the widening of the
Hadley cell resulting from greenhouse warming (e.g., Lu
et al. 2007).
The use of the Held (2000) criterion, however, has

been criticized byKorty andSchneider (2008). Therefore,

Korty and Schneider advocated an alternative criterion
that was based on supercriticality, namely, one that
measures the depth of the eddy entropy flux. The scaling
that we used consists of a modification to the Held (2000)
scaling, consistent with the arguments of Korty and
Schneider, but with a slightly different outcome.
This deviation from the HH80 and LH88 model

stresses the role of eddies in affecting the Hadley circu-
lation. Also, the relation between ENSO and variations
in the Hadley cell strength point to an important role of
eddies, with ENSO affecting eddy stresses in the tropical
momentum balance (Quan et al. 2004; Caballero 2007).
The main difference between tropical forcing by ENSO
and by a THC collapse is that the THC collapse is as-
sociated with an SST anomaly with a strong cross-
hemispheric SST gradient, which imposes a similar
forcing as seasonally varying insolation; whereas the
ENSO-related tropical SST anomaly mainly consists
of zonal contrasts, which affect the tropical stationary
waves.
The latitude where the summer and winter cell divide

shifts southward, and as a result the latitude of the
intertropical convergence zone (ITCZ) shifts south-
ward, in response to a THC collapse (see, e.g., Zhang
andDelworth 2005). Such a shift also occurs either when
large-scale NHSST cooling is applied in an atmosphere–
slab ocean model (Broccoli et al. 2006), or when NH
land and sea ice cover changes (Chiang and Bitz 2005).
With the present theory, it is clear why all of these
forcings are equivalent. Instrumental in the southward
shift of the ITCZ is the decrease in the latitude of
maximal heating f0, which follows from imposing
a cross-hemispheric SST anomaly. Such an anomaly
immediately causes a response in the tropical Hadley
circulation, with a southward shift of the dividing line
between the NH and SH cells f1, which is equivalent to
a southward shift of the annual mean position of the
ITCZ.
This southward shift in latitude of maximum heating

dominates the Hadley cell response to reduced ocean
heat transport when the THC collapses. Clement (2006)
argues that ocean heat transport weakens the symmetric
Hadley circulation in favor of the asymmetric solsti-
tial cell. Reduced ocean heat transport resulting from
a THC collapse then enhances the symmetric Hadley
circulation but weakens the solstitial cell. In the CCM
both cells weaken. The effect of reduced ocean heat
transport in enhancing the symmetric cell is offset by the
equatorward shift of the latitude of maximum heating
that acts to decrease the symmetric Hadley cell.
It has often been surmised that reduced ocean heat

transport associated with a THC collapse would be
compensated by increased atmospheric heat transport
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by the Bjerknes compensation (see, e.g., Cheng et al.
2007; Vellinga andWu 2008). There is a tendency for the
atmosphere to compensate for reduced ocean heat trans-
port in the CCM, but this compensation is far from com-
plete and a different climate statewith a different radiation
balance results after the THC collapses. The anomalous
meridional mass flux that arises because of this different
radiation balance consists of a cross-equatorial cell. This
cell is maintained by anomalous TOA net downward
radiation in the SH tropics and anomalous TOA net
upward radiation in the NH tropics. At midlatitudes and
subpolar latitudes, the anomalous net TOA radiation is
upward, consistent with reduced northward heat trans-
port in the NH. These net changes in radiation balance
are dominated by a large-scale cloud response (Laurian
et al. 2010), because clear-sky long- and shortwave ra-
diation changes almost compensate for one another
(Vellinga and Wu 2008).
The enhanced northward angular momentum trans-

port by the NH Hadley cell must be associated with
enhanced angular momentum transport by the eddy-
driven Ferrel cell (Cheng et al. 2007), and as a result an
increase in NH transient baroclinic wave activity occurs.
The NH subtropical jet intensifies but also shifts south-
ward. This affects the NH eddy-driven jet and storm
tracks as well (Lee and Kim 2003). All of these changes
point to an intricate link between a THC collapse, a re-
sponse in the tropical ocean and atmospheric circula-
tion, and the extratropical atmospheric response. Note
that for a large part the extratropical atmospheric re-
sponse is not directly forced by extratropical SST changes,
but rather is mediated by the tropical atmospheric re-
sponse to a tropical SST change,most noticeably the cross-
equatorial SST gradient.
Seager and Battisti (2007) discussed possible causes

for abrupt climate change and advocated for an active
role for the tropics as an alternative for what they called
the THC theory. Although they noted that a THC col-
lapse induces changes in the tropics, they concluded that
the overall atmospheric response was too small to ex-
plain the paleorecord. Their alternative theory was
based on a bifurcation in the position and strength of
the eddy-driven jets (following Lee and Kim 2003).

The results presented in this paper strongly suggest
that this competition between the tropics and the THC
is artificial. In reality, all mechanisms discussed pre-
viously appear to be intrinsically linked. The THC col-
lapse induces tropical SST changes resulting from ocean
adjustment and a wind–evaporation–SST (WES) feed-
back (Chiang and Bitz 2005), and this, in turn, affects
the Hadley circulation. The changed Hadley circula-
tion, being associated with a shift in the subtropical
jets, impacts midlatitude storm tracks and the eddy-
driven jet.
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APPENDIX A

Energy Conservation

Substituting Eq. (12) into Eqs. (10) and (11) gives

ðfW
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The LHS of this equation can be written as
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The first term on the RHS becomes
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the second term on the RHS is

DH
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and the last term on the RHS is
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APPENDIX B

Equation for the Poleward Boundary

When the small-angle approximation in Eq. (14) is expanded further, one obtains
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Also, we find
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and
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Thus, the next-order expansion in the small angle of
Eq. (14) gives
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In a similar way, Eq. (15) is modified. The LHS of this equation can be written as
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The first term on the RHS becomes
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the second term on the RHS is
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and the last term on the RHS is
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The next-order expansion in small angle of Eq. (15) then gives
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Combining Eqs. (B4) and (B9) then gives Eq. (36).
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APPENDIX C

Perturbation in Second Order

The symmetric terms in the second-order expansion of Eq. (36) become

1
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1 1
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This equation can be written as
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Substituting for b, !, and f1 gives
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The final result is approximately
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The antisymmetric terms in the second-order expansion
of Eq. (36) become
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This gives the relation
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After substituting for !, b, and f1, this becomes either
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The full second-order expansion of Eq. (26) is
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The antisymmetric terms in this equation give
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This leads to either the relation
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which is equivalent to
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7
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2
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APPENDIX D

Cross-Equatorial Mass Flux

The starting point is Eq. (52),
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It is assumed thatCan peaks at f5 0, soCan5Cas(0). To
obtain the response in f1, this equation is developed in
secondorder. For convenience, higher-order expansions in
fH are neglected becausef1 now can be of the same order
of magnitude as fH. Therefore, the expansion of section
4b is used here. The first term on the RHS is written as
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The second part is of higher order and can be neglected. The third part is written as

ðf

f1

!DH(f9
2 ! f2

1) df95
DH

3
(f3

1 ! f3 ! 3f3
1 1 3f2

1f)5!
DH

3
(2f3

1 1f3 ! 3f2
1f)

5!DH

5R

18
4
f3
1

f2
H

1 2
f3

f2
H

! 6
f2
1f

f2
H

 !
5!DH(f1 ! f)

5R

18
144

f2
0

f2
H

! 2
f2

f2
H

! 12
f0f

f2
H

 !
,

(D3)

and the last part can be written as
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